

1 **All Members of the Arabidopsis DGAT and PDAT Acyltransferase Families Operate During High and
2 Low Temperatures**

3
4 Zachery D. Shomo¹, Samira Mahboub¹, Hathaichanok Vanviratikul², Mason McCormick¹, Tatpong
5 Tulyananda³, Rebecca L. Roston^{1,†,*}, and Jaruswan Warakanont^{2,†,*}
6
7 ¹Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, NE
8 68588; ²Department of Botany, Kasetsart University, Chatuchak, Bangkok 10900 Thailand; ³School of
9 Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok
10 10400 Thailand

11
12 *Authors for correspondence
13 *Rebecca L. Roston
14 Center for Plant Science Innovation, Department of Biochemistry
15 1901 Vine Street, N123
16 Lincoln NE, 68588
17 Tel: 1-402-472-2936
18 Email: roston@unl.edu
19 and

20 *Jaruswan Warakanont
21 Department of Botany, Faculty of Science, Kasetsart University
22 50 Ngamwongwan Rd., Chatuchak, Bangkok Thailand 10900
23 Tel: 668-6412-9360
24 Email: jaruswan.w@ku.th

25
26 †These authors contributed equally to this work
27

28 Running head: TAG and temperature tolerance in Arabidopsis
29
30 One sentence summary: The link between TAG accumulation and temperature tolerance was studied by
31 stressing Arabidopsis acyltransferase mutants, revealing that the two are not tightly linked.

32 **Abstract**

33 The accumulation of triacylglycerol (TAG) in vegetative tissues is necessary to adapt to changing
34 temperatures. It has been hypothesized that TAG accumulation is required as a storage location for
35 maladaptive membrane lipids. The TAG acyltransferase family has five members (DGAT1/2/3 and PDAT
36 1/2), and their individual roles during temperature challenges were either described conflictingly or not
37 at all. Therefore, we used *Arabidopsis thaliana* loss of function mutants in each acyltransferase to
38 investigate the effects of temperature challenge on TAG accumulation, plasma membrane integrity, and
39 temperature tolerance. All mutants were tested under one high- and two low-temperature regimens,
40 during which we quantified lipids, assessed temperature sensitivity, and measured plasma membrane
41 electrolyte leakage. Our findings revealed reduced effectiveness in TAG production during at least one
42 temperature regimen for all acyltransferase mutants compared to the wildtype, resolved conflicting
43 roles of *pdat1* and *dgat1* by demonstrating their distinct temperature-specific actions, and uncovered
44 that plasma membrane integrity and TAG accumulation do not always coincide, suggesting a
45 multifaceted role of TAG beyond its conventional lipid reservoir function during temperature stress.

46 **Introduction**

47 The ability of a plant to adapt and overcome environmental stressors is one of the strongest tools in
48 its arsenal. However, as the climate continues to change, plants have become increasingly challenged by
49 unseasonable temperature events, leading to decreases in agricultural yields and financial losses (Burke
50 and Emerick, 2016; Cohen et al., 2021). To prepare for temperature changes, plants acclimate via
51 exposure to non-lethal temperatures triggering molecular remodeling to survive more severe conditions
52 in both freezing (Wanner and Junttila, 1999), and heat (Lindquist, 1986). If acclimation is interrupted,
53 plants become susceptible to temperatures at which they would otherwise survive (Gusta et al., 2009).

54 During high and low temperatures, triacylglycerol (TAG) accumulates in leaves and is essential for
55 survival (Mueller et al., 2017; Arisz et al., 2018; Tan et al., 2018); however, the reason for TAG
56 accumulation is unclear. Several hypotheses have been proposed to explain this phenomenon. First, TAG
57 could accumulate as an energy reserve to aid in recovery from temperature stress by producing ATP via
58 β -oxidation. Studies in *Chlamydomonas reinhardtii* showed that TAG accumulates rapidly in response to
59 nitrogen deprivation but quickly degrades after adding back nitrogen, coinciding with the resynthesis of
60 organellar membranes (reviewed by Li-Beisson et al., 2015). Second, TAG may accumulate to prevent
61 oxidative damage to the photosystems during high heat and freezing conditions. Oxidation of thylakoid
62 membrane lipids occurs in *Chlamydomonas reinhardtii* (Du et al., 2018) and Arabidopsis (Schmid-Siegert
63 et al., 2016), and if not removed cause reductions in photosynthetic efficiency (Yu et al., 2021). Third,
64 TAG could serve as a reservoir for damaged and remodeled membrane lipids that could compromise
65 membrane integrity if not removed (reviewed by Lu et al., 2020). Support for this hypothesis comes from
66 the increase in plastid-derived fatty acids that appear in TAG during temperature stresses due to specific
67 remodeling enzymes. During heat stress, HEAT-INDUCIBLE LIPASE1 removes fluidizing polyunsaturated
68 fatty acids from the plastid that are stored as TAG (Higashi et al., 2018). Similarly during freezing,
69 SENSITIVE TO FREEZING2 (SFR2) remodels the outer envelope of the chloroplast ultimately moving
70 monogalactosyldiacylglycerol (MGDG) backbones into TAG (Moellering et al., 2010).

71 In each of these scenarios, TAG accumulation is related to maintaining interorganellar and plasma
72 membrane integrity. A stable membrane provides one of the first lines of defense against damage to cell
73 permeability and organellar leakage. To maintain fluidity, the types of lipids incorporated into
74 membranes must change. During low temperatures, the levels of rigidifying lipids decrease (Miquel et
75 al., 1993; Ghosh et al., 2021), whereas in high temperatures the incorporation of rigidifying lipids is
76 favored (Falcone et al., 2004; Shiva et al., 2020; Guihur et al., 2022). In both cases, unfavorable,
77 damaged, or oxidized lipids are removed via membrane remodeling to modify the degree of fatty acid

78 saturation and headgroup abundance. These byproducts can be toxic and lead to programmed cell
79 death during heat (Fan et al., 2013a; Higashi et al., 2018) and chloroplast damage during freezing
80 (Moellering et al., 2010). Approximately four percent of fatty acids are degraded via turnover pathways
81 per day (Bao et al., 2000). Because temperature stress can occur within hours, plants need alternatives
82 to *de novo* synthesis pathways to quickly store remodeled fatty acids.

83 In *Arabidopsis*, there are two families of acyltransferases that generate TAG: the DIACYLGLYCEROL
84 ACYLTRANSFERASES (DGAT1, 2, and 3) and PHOSPHOLIPID: DIACYLGLYCEROL ACYLTRANSFERASES
85 (PDAT1 and PDAT2). The DGAT family catalyzes the transfer of soluble acyl-CoA with diacylglycerol
86 (DAG) to produce TAG (Liu et al., 2012). DGAT1 and DGAT2 have been shown to be membrane-bound in
87 the endoplasmic reticulum (ER) (Fig. 1A, Shockey et al., 2006), whereas the subcellular location of
88 soluble DGAT3 has been contended (Saha et al., 2006; Aymé et al., 2018; Carro et al., 2022). PDATs are
89 membrane-bound in the ER and catalyze the transfer of an acyl chain from a phospholipid, primarily
90 phosphatidylcholine (PC) in the ER to DAG, producing TAG and a lyso-phospholipid as a byproduct (Fig.
91 1A, Ståhl et al., 2004; Mhaske et al., 2005).

92 A loss-of-function mutant in each acyltransferase family was previously shown to affect TAG
93 accumulation and temperature tolerance in either freezing or heat. During heat challenge, *pdat1*
94 mutants accumulated less TAG and had impaired recovery (Mueller et al., 2017). When challenged with
95 freezing conditions, plants lacking *dgat1* were unable to recover and had lower TAG levels, whereas
96 DGAT1 overexpression performed better than wild type (Arisz et al., 2018; Tan et al., 2018). However, a
97 recent study showed PDAT1 overexpression in *Arabidopsis* also improved low temperature tolerance
98 compared to wild type, and *pdat1* loss-of-function mutants were susceptible (Demski et al., 2020). In
99 these studies, the methods used for plant growth and temperature treatment varied making
100 comparisons of the functions of acyltransferase enzymes in heat and freezing more challenging. The
101 type, temperature, duration, and relative severity of temperature treatments applied to a plant change
102 their physiological responses and tolerance to temperature stress (Lindquist, 1986; Gilmour et al., 1988;
103 Wanner and Junntila, 1999). Together, this suggested that the type of temperature treatment may allow
104 us to tease out the function of all DGAT and PDAT acyltransferase family members during temperature
105 stress.

106 Therefore, we hypothesized that both DGAT and PDAT family members are required for
107 temperature tolerance and that any changes to TAG accumulation would directly correlate with
108 impaired membrane integrity. To test this, we assayed loss-of-function mutants of *Arabidopsis* DGAT1,
109 2, 3, PDAT1, and 2 under the same conditions over a time course (Fig. 1). We used the *sfr2-3* mutant as a

110 control for post-freezing recovery (Barnes et al., 2016). We also used a mutant deficient in MEMBRANE-
111 BOUND O-ACYL TRANSFERASE 5 (MBOAT5) as a control for TAG accumulation. The MBOAT5 enzyme has
112 been shown to catalyze wax biosynthesis (Klypina and Hanson, 2008), and has been renamed LONG-
113 CHAIN-ALCOHOL O-FATTY-ACYLTRANSFERASE 2 (AT2) since we began this work (Wang et al., 2018).

114 Our goal was to investigate whether the duration and severity of low and high temperatures affect
115 the importance of which acyltransferases respond. We used the resulting dataset to probe coincidence
116 of TAG production and plasma membrane integrity in low temperatures. We found that loss of either
117 DGAT or PDAT enzyme family members can reduce TAG accumulation during temperature stress ,
118 confirmed that deficits in TAG accumulation can lead to leaf damage, but that TAG accumulation does
119 not always coincide with plasma membrane integrity.

120 **Results**

121 Previous work reported that a role for multiple acyltransferase mutants could be observed during
122 treatment with high and low temperatures (Mueller et al., 2017; Arizz et al., 2018; Tan et al., 2018;
123 Demski et al., 2020). To encompass all family members, address the apparent conflict between PDAT1
124 and DGAT1 roles at low temperatures, and explore the relationship of TAG accumulation to temperature
125 tolerance, we subjected Arabidopsis mutants (*dgat1*, 2, 3, or *pdat1*, 2) to two low-temperature and one
126 high-temperature regimen.

127

128 The first low-temperature step used multiple, long-term low-temperature steps, where each low
129 temperature was applied at the end of the light cycle, **Fig. 1B**. This and similar assays, commonly used to
130 simulate field conditions experienced by plants, mimic overnight freezing at the end of the relative day
131 (Wanner and Junntila, 1999; Gusta et al., 2009; Moellering et al., 2010; Barnes et al., 2016). It is a non-
132 lethal assay, that allows for scoring of leaf damage and plant recovery. The second low-temperature
133 ramp used a descending temperature ramp, **Fig. 1C**, to rapidly challenge plasma membrane integrity,
134 resembling an unseasonable cold spell (Warren et al., 1996; Thalhammer et al., 2020; Barnes et al.,
135 2023). In both assays, plants were exposed to a low but non-freezing temperature (4°C) for cold
136 acclimation in preparation for subzero freezing temperatures. The high-temperature step, **Fig. 1D**, was
137 based on a previous study that showed a 15-fold increase in some TAG species (Mueller et al., 2017). It
138 used a mild heat stress (37°C) and multiple timepoint samples to capture discrete changes in the TAG
139 profile.

140

141 **TAG accumulation and recovery of *pdat1* and *dgat1* are uniquely impacted during the cold and**
142 **freezing**

143 After three weeks of growth during normal conditions, lipids were extracted and relative mole percents
144 (%) of TAG were quantified. The TAG levels were similar in the mutants compared to wild type (**Fig. 2A**,
145 **i**). After two days at 4°C, *dgat1* mutants only accumulated 1.2% TAG compared to 2.9% in wild type, a
146 difference of 42% (**Fig. 2A, ii**). After one week at 4°C, the percent of TAG in *dgat1* mutants was similar to
147 that of wild type, while the percent of TAG in *pdat1* mutants was slightly increased (**Fig. 2A, iii**). At two
148 hours of -6°C treatment, the TAG levels in all the mutants were equivalent to wild type (**Fig. 2A, iv**).
149 After sixteen hours of -6°C treatment, *pdat1* mutants had 52% less TAG than wild type, while all other
150 mutants accumulated TAG levels similar to wild type. We also checked for any visible phenotypes in any
151 of the acyltransferase mutants following three weeks growth and during the low-temperature regimen

152 and found none (**Fig. 2B, i-v**). However, *pdat1* mutants displayed more leaf damage compared to
153 wildtype after returning to growing conditions for two days. (**Fig. 2B, vi and C**). All acyltransferase
154 mutants recovered, and after twelve days post-freezing they showed no changes in dry weight
155 compared to wildtype (**Supplemental Fig. S7**).

156

157 **Cellular electrolyte leakage reveals a disconnect between membrane integrity and TAG accumulation**

158 After observing that both acyltransferase families participated in TAG production during the stepped
159 low-temperature assay, but only loss of *pdat1* caused leaf damage, we decided to explore the link
160 between TAG production and plasma membrane integrity using a faster low-temperature ramp (**Fig. 1C**)
161 with paired measurements of electrolyte leakage (Willing and Leopold, 1983; Thalhammer et al., 2020).
162 We reasoned that transient changes in TAG levels might have a more pronounced effect on cell damage
163 when measured in a quickly changing environment, assuming that decreases in TAG represent
164 transiently reductions in membrane remodeling and therefore transiently increased plasma membrane
165 leakage. At -4.5°C, we measured TAG levels and found a decrease in *pdat1* (3.2%) and *pdat2* (2.9%)
166 mutants, while all other mutants were similar to wild type (5.8%) (**Fig. 3A**). We hypothesized that
167 decreases in TAG accumulation would directly correlate with impaired plasma membrane integrity.
168 Therefore, we measured plasma membrane permeability and damage by assessing the electrical
169 conductivity of ions leaked during decreasing temperatures. The inflection points on each curve were
170 used to determine the LT₅₀ value, which served as a proxy for the temperature at which 50% of the total
171 electrolytes were released into solution. Results showed the LT₅₀ for *dgat1* (-3.1°C), *dgat2* (-2.8°C), and
172 *pdat2* (-2.6°C) occurred at significantly warmer temperatures compared to wild type (-4.1°C) (**Fig. 3B**).
173 Also, *dgat1* and *dgat2* mutants reached their maximum leakages at warmer temperatures compared to
174 wild type, which occurred at -10°C (**Fig. 3C**) (Warren et al., 1996). The leftward shift of the curve in the
175 *dgat1* and *dgat2* mutants indicated a more damaged membrane (**Fig. 3C**).

176

177 **Both DGATs and PDATs are necessary for high-temperature TAG production**

178 To test the role of acyltransferase family members at high temperatures, we treated acyltransferase
179 mutants at 37°C from zero to 300 minutes following the schematic in **Fig. 1D**. From zero to 200 minutes,
180 TAG increased indistinguishably across all genotypes (**Fig. 4 A-C**). At 300 minutes there was statistically
181 less TAG in *pdat1* (5.2%), *dgat2* (7.8%) and *dgat3* (7.3%) mutants, compared to wild type (11.6% of total
182 fatty acids) (**Fig. 4D**). The *pdat1* decrease in TAG accumulation was approximately 45% and is in
183 agreement with previous reports (Mueller et al., 2017). Throughout the challenge with high

184 temperatures, no phenotypic differences were observed in mutants compared to wild type (*data not*
185 *shown*).

186

187 **Loss of PDATs affects levels of phosphatidylcholine and free fatty acids during low temperatures**

188 To investigate the role of PC as a direct substrate for the PDAT family, we measured PC levels during the
189 stepped low-temperature assay for all mutants, as shown in **Fig. 5A**. For clarity, separate panels are
190 dedicated to displaying data for *pdat1* and *pdat2* mutants, and TAG levels from all mutants (**Fig. 2A**) are
191 displayed in **Fig. 5B**.

192

193 In wild type plants, PC levels spiked after one week at 4°C, decreased at two hours at -6°C, and then
194 increased again at sixteen hours at -6°C (**Fig. 5A**). While most acyltransferase mutants followed this
195 pattern, some deviated. After one week at 4°C, *pdat1* mutants had decreased levels of PC (6.5%)
196 compared to wild type (16.7%), but their PC levels matched those of wild type after treatment with -6°C
197 for two hours (**Fig. 5A**). In an opposite pattern, *pdat2* mutants had PC levels similar to wild type after
198 one week at 4°C, but decreased after sixteen hours at -6°C (9.5%) compared to wild type (14.9%, **Fig.**
199 **5A**). The PC levels in *dgat2* and *dgat3* mutants also decreased somewhat after one week at 4°C (10.1%,
200 and 9.9%, respectively), compared to wild type (**Supplemental Fig. S2**). While PC levels in *dgat2* mutants
201 returned to wild type levels after 16 hours at -6°C, levels in *dgat3* mutants remained lower
202 (**Supplemental Fig. S2**). The strongest changes in PC levels occurred in *pdat1* mutants and did not
203 coincide with the strongest impairment of TAG levels, which occurred at the 16 hour time point (**Fig. 5B**)
204 and coincided with leaf damage (**Fig. 2B,C**). We then considered the possibility that other substrates or
205 byproducts of PDAT or DGAT may explain the coincidence of leaf damage and TAG level impairment. We
206 quantified accumulation of lyso-PC, free fatty acids and DAG after treatment with -6°C for sixteen hours
207 (**Supplemental Fig. S8**). Increases in lysolipids, free fatty acids, or DAG can damage membranes, as these
208 are non-bilayer forming (Cevc and Richardsen, 1999). However, we observed no changes in lyso-PC or
209 DAG levels, and there was a 4.6-fold decrease in free fatty acids in the *pdat1* mutant (0.5%) compared to
210 wild type (2.3%).

211

212 Because plastid-derived fatty acids appear in TAG during temperature stress (Li-Beisson et al., 2010), we
213 checked for changes in levels of the two most abundant plastid-derived lipids, MGDG and DGDG.
214 Generally, MGDG levels remained constant until they decreased after sixteen hours at -6°C in both wild
215 type and the acyltransferase mutants (**Fig. 5C**). The *dgat1* mutants began the assay with relatively higher

216 MGDG levels but returned to wild type levels after two days at 4°C. (**Supplemental Fig. S2**). The DGDG
217 levels remained constant throughout the low-temperature assay, increasing only after sixteen hours at -
218 6°C (**Supplemental Fig. S2**).

219

220 **Loss of *pdat1* but not *dgat1* affects the accumulation of double bonds in TAG**

221 Under normal conditions, TAG typically contains a relatively low number of double bonds. During
222 temperature stress, the number of double bonds increases, often attributed to accumulation of fatty
223 acids from membrane lipids due to membrane remodeling (Mueller et al., 2015; Tan et al., 2018). We
224 quantified changes in TAG double bonds using a double bond index (DBI). Throughout the low-
225 temperature step, the DBI of TAG steadily increased in wildtype (**Fig. 6A**) and all mutants (**Supplemental**
226 **Fig. S3**). In *pdat1* mutants, the DBI of TAG increased less from the start of the assay (0.7) to 1.1 or 1.2
227 after two or 16 hours at -6°C, respectively (**Fig. 6A**). Notably, after 16 hours at -6°C, the DBI of *pdat1*
228 TAG became distinguishably lower than wild type (2.0) (**Fig. 6A**).

229 Plastid lipids are characterized by higher ratios of 16C fatty acids, while lipids in other parts of the cell
230 have higher ratios of 18C fatty acids (LaBrant et al., 2018). Despite the lower DBI of TAG from *pdat1*
231 mutants after 16 hours at -6°C, the ratio of 16:3 to 18:3 fatty acids in TAG of *pdat1* mutants remained
232 similar to that of the wild type. (**Fig. 6B**). This contrasts with that of *sfr2*, known to change the 16:3 to
233 18:3 ratio (Barnes et al., 2016).

234

235 To determine whether the reduced DBI observed in TAG was attributed to changes in PC, we also
236 quantified the DBI of PC. Throughout the low-temperature regimen, the DBI in PC fluctuated slightly, but
237 none of the acyltransferase mutants deviated significantly from wild type (**Fig. 6C**). The ratio of 16:3 to
238 18:3 in PC remained similar between the *pdat* mutants and the wild type, while the ratio in the *dgat2*
239 mutants increased to 0.1 compared to wild type (0.08) (**Fig. 6D**). We also investigated the DBI of the
240 major plastid membrane lipids MGDG and DGDG. While there were slight trends in the DBI over the
241 course of the low-temperature regimen, no statistically significant changes were observed
242 (**Supplemental Fig. S3**). When investigating any changes in DBI for lyso-PC, free fatty acids and DAG in
243 the *pdat1* mutant, we found that only free fatty acids were more saturated than wild type plants
244 (**Supplemental Fig. S8**).

245

246 Consistent with the observations in low temperatures, in high temperatures, all wildtype and mutant
247 lines had an increasing trend in the DBI of TAG (**Fig. 6E, Supplemental Fig. S3**). Specifically, the wildtype

248 showed an increase in DBI from 0.4 at the start, to 1.0 after 200 minutes and 1.1 after 300 minutes. In
249 the *pdat1* mutants, the DBI of TAG increased more gradually. It was measurably different from time zero
250 after 300 minutes at 37°C (DBI increased from 0.29 to 0.55), but remained significantly lower than
251 wildtype at 200 and 300 minutes (Fig. 6E). Additionally, in the TAG of *pdat1* mutants, there was a higher
252 16:3/18:3 ratio (0.3), compared to wild type (0.1) at 100 minutes (Fig. 6F). As the treatment at 37°C
253 continued, the incorporation of 18:3 fatty acids into TAG increased more significantly than that of 16:3
254 (Supplemental Fig. S6), thus we chose to depict the 100-minute timepoint in Fig. 6.

255

256 We also examined any changes in the levels of fully saturated 16:0 and 18:0 fatty acids in the
257 acyltransferase mutants during the high temperature. Generally, saturation levels decreased as time in
258 heat progressed, except for *pdat1* mutants, which maintained higher saturation levels at 200 and at 300
259 minutes of 37°C treatment (0.8 and 0.7, respectively) compared to wild type (0.6 and 0.5, Supplemental
260 Fig. S3). In the *pdat2* mutants, the TAG composition was more saturated (0.7) than wild type (0.5) at 300
261 minutes of 37°C (Supplemental Fig. S3).

262

263 **Discussion**

264 Previous studies described two TAG-producing acyltransferases as necessary for TAG accumulation
265 during temperature stress. However, no studies examined mutants of all DGATs and PDATs. In this
266 study, we aimed to investigate the requirement of all members of the two acyltransferase families
267 responsible for TAG accumulation, and to take advantage of this system to explore the assumption that
268 TAG accumulation is required for membrane integrity. We demonstrated that all five DGAT and PDAT
269 family members are necessary for wildtype levels of TAG accumulation in low or high temperatures
270 (Figs. 2 and 4), and that membrane integrity does not directly coincide with TAG accumulation (Fig. 3).
271 Our results suggest that the severity and duration of temperature challenges influence the importance
272 of specific acyltransferases, and that TAG accumulation may have a use in addition to being a lipid
273 reservoir. Moreover, our results suggest that a more comprehensive understanding of the roles of
274 multiple gene family members relevant to temperature tolerance can be obtained through the use of
275 temperature regimens that vary length, onset, and severity of stress.

276

277 **TAG is produced by multiple acyltransferases during temperature stress**

278 In plants lacking DGAT1 or PDAT1, decreases in TAG accumulation were correlated with decreased
279 freezing tolerance, while overexpression lines were more tolerant than wild type (Arisz et al., 2018; Tan

280 et al., 2018; Demski et al., 2020). The periods of cold acclimation in these studies varied from two to
281 four days at 4°C, followed by differing chilling (Demski et al., 2020) or freezing stresses (Arisz et al.,
282 2018; Tan et al., 2018). In our study, we implemented a one-week cold acclimation period, as this is
283 known to maximize freezing tolerance (Uemura et al., 1995) (Fig. 1B). When we measured TAG after one
284 week at 4°C and after freezing, the *dgat1* levels were similar to wild type, which differed from what had
285 been previously reported (Arisz et al., 2018; Tan et al., 2018). However, when we increased the sampling
286 frequency and measured TAG after two days at 4°C, we found that *dgat1* mutants had less TAG than
287 wild type, consistent with previous findings (Fig. 2A). We also expanded the known role of *pdat1* in
288 chilling tolerance (Demski et al., 2020), to include a role in freezing tolerance and TAG accumulation
289 during freezing (Fig. 2A, C) In high temperatures, impaired TAG accumulation has been associated with
290 *pdat1* mutants (Mueller et al., 2015; Mueller et al., 2017). Our study supports this previous finding as we
291 also observed 55% less TAG in *pdat1* mutants. By including the other acyltransferase family members,
292 we showed that TAG levels also decreased in *dgat2* (by 33%) and *dgat3* (by 37%) mutants compared to
293 wild type (Fig. 4).

294
295 To evaluate the functional significance of these observations, we measured freezing tolerance through
296 two mechanisms: leaf damage after freezing, and recovery potential twelve days later. Leaf damage
297 associated with insufficient freezing tolerance typically manifests within two days post-freezing (Wanner
298 and Junntila, 1999), while recovery assessments based on meristematic activity and new leaf growth
299 requires a longer timeframe (Minami et al., 2015; Saucedo-García et al., 2021). Interestingly, while the
300 *pdat1* mutant showed leaf damage two days post-freezing, all acyltransferase mutants, including *pdat1*,
301 had full recovery potential twelve days post-freezing (Fig. 2B, C, Supplemental Fig. S7). This suggests
302 that TAG accumulation plays a role in early protection of leaf tissue after freezing (Fig. 5). It also
303 suggests the role of TAG accumulation for meristem protection is minimal during the tested
304 temperature regimens.

305
306 **Exploring potential mechanisms underlying *pdat1* freezing sensitivity**
307 Given the decreased TAG accumulation and observed leaf damage in *pdat1* mutants, we investigated
308 the levels of potential acyl-transferase-derived toxic intermediates, DAG, lyso-PC, and free fatty acids.
309 Interestingly, after 16 hours of freezing, we observed no changes in DAG or lyso-PC levels, and a
310 surprising decrease in levels of free fatty acids (Supplemental Fig. S8). These findings suggest that the
311 mechanisms controlling accumulation of these potentially toxic intermediates may be more robust than

312 those governing TAG accumulation. Therefore, the observed leaf damage in *pdat1* mutants is likely due
313 to impaired membrane remodeling, rather than accumulation of toxic intermediates.

314 **Disassociation of TAG accumulation and plasma membrane integrity in low temperatures**

315 Production of TAG during temperature stress has been suggested to be a necessary byproduct of lipid
316 remodeling to produce more tolerant membranes (Lu et al., 2020). Tan and colleagues found decreases
317 in both plasma membrane integrity and TAG amounts for *dgat1* mutants (Tan et al., 2018). We found a
318 similar decrease in membrane integrity for *dgat1* and *dgat2* mutants but without decreased TAG
319 accumulation (Fig. 3). Conversely, *pdat1* mutants exhibited reduced TAG accumulation without
320 compromised plasma membranes (Fig. 3). This apparent disconnect is not unprecedented. Warren et al.,
321 (1996) reported similar observations in *sfr2* and *sfr6* mutants (Warren et al., 1996). Notably, loss of
322 either SFR2 (Moellering et al., 2010; Barnes et al., 2016) or SFR6 (Knight et al., 1999) causes membrane
323 damage to chloroplasts, further suggesting that disruptions in internal membrane remodeling may be
324 independent of plasma membrane integrity.

325 Taken together, these observations suggest that TAG accumulation and plasma membrane remodeling
326 are not always coupled. This raises intriguing questions about the freezing sensitivity of the *pdat1*
327 mutants (Fig. 2). It could be that *pdat1* is freezing sensitive due to internal membrane damage. Similarly,
328 the loss of plasma membrane integrity in *dgat1* and *dgat2* mutants without changes in TAG levels
329 remains unexplained. Our findings underscore the complex interplay between acyltransferases and their
330 unique impact on membrane remodeling during low temperatures. The seemingly contradictory
331 changes in TAG and plasma membrane integrity point towards potential alterations in TAG metabolism.
332 Considering the pivotal role of plasma membrane remodeling in low-temperature tolerance (Willing and
333 Leopold, 1983; Zhang et al., 2013), any impairments in the ability of lipids to be removed from the
334 membrane, delaying remodeling could result in changes in integrity and leakage.

335

336 **Acyl chain saturation of TAG during high and low-temperature stress is increased in the *pdat1* mutant**

337 In the stepped low temperature assay, we found a decreased DBI in TAG of *pdat1* mutants (Fig. 6A) but
338 we did not observe any changes in plastidic acyl chain flux via 16:3/18:3 ratios in TAG in any of the
339 acyltransferase mutants (Fig. 6B), suggesting that plastid remodeling was not impaired. In high
340 temperatures, *pdat1* mutants again showed a decreased DBI (Fig. 6E) and a corresponding increase in
341 the saturation of TAG (Supplemental Fig. S3). Unlike during low temperatures, *pdat1* mutants did have a
342 higher 16:3/18:3 ratio in the heat (Fig. 6F), which could indicate a lower 18:3 incorporation or a higher
343 16:3 incorporation into TAG. The PDAT1 enzyme has been reported to have a higher preference for 18:3

344 (Ståhl et al., 2004; Fan et al., 2013b) and its lack in the *pdat1* mutant may drive a relatively lower
345 incorporation of 18:3 and higher 16:3/18:3 ratio. Alternatively, lipases specific to 18:3 may be impacted
346 in the *pdat1* background. Lipases active in high temperatures and that control 18:3 release include HIL1
347 (Higashi et al., 2018), and PHOSPHOLIPASE A2 of *Chlamydomonas reinhardtii* (Légeret et al., 2016).

348

349 In both high and low temperature stress, polyunsaturated TAG was shown to accumulate in leaf tissue
350 (Degenkolbe et al., 2012; Mueller et al., 2015; Shiva et al., 2020). Our results agree with these findings
351 for wildtype *Arabidopsis* (**Fig. 6A, E**). However, in both our high and low-temperature assays, *pdat1*
352 mutants showed a decreased DBI in TAG while all other mutants remained similar to wild type,
353 suggesting *pdat1* mutants are unable to effectively remove polyunsaturated fatty acids into TAG (**Fig.**
354 **6A, E; Supplemental Fig. S3**). Again, this is consistent with the known preference of PDAT1 for 18:3 fatty
355 acids (Ståhl et al., 2004; Fan et al., 2013b) and the absence of this activity in the *pdat1* mutants. Since
356 acyl chain composition of membrane lipids and TAG were shown to be a crucial factor for temperature
357 tolerance (Higashi and Saito, 2019), the altered DBI of the *pdat1* mutants could explain the impaired
358 freezing recovery phenotype we observed (**Fig. 2**).

359

360 **Major chloroplast lipids are not affected by acyltransferase mutants in low temperatures**

361 Glycerolipids make up the largest fraction of membrane lipids and contribute to temperature tolerance
362 via their relative ratios of head groups to one another. In the plastid, MGDG to DGDG ratios are essential
363 to maintain the correct membrane curvature and organelle structure (Rocha et al., 2018; Yu et al.,
364 2020). In both low and high temperatures, an increase in the lamellar lipid DGDG and a decrease in non-
365 lamellar MGDG are observed, and imbalances lead to impaired plastid membrane integrity (Chen et al.,
366 2006; Moellering et al., 2010; Zheng et al., 2016). Neither the MGDG and DGDG levels (**Fig. 5**), their DBI
367 (**Supplemental Fig. S3**), nor their 16:3 to 18:3 ratios (**Supplemental Fig. S4**) were affected in the
368 acyltransferase mutants. This suggests that the chloroplast was able to maintain relative levels of
369 membrane lipids and saturation levels even while TAG accumulation was impaired (**Supplemental Fig.**
370 **S3**), consistent with work showing that lipid synthesis not only occurs during low temperatures but is
371 necessary for survival (Miquel et al., 1993; Li et al., 2004; Arisz et al., 2013; Barrero-Sicilia et al., 2017).

372

373 ***pdat1* mutants alter PC amount and saturation in low-temperature stress.**

374 Just as MGDG and DGDG are the most abundant plastid lipids, PC is the most abundant extraplastidic
375 membrane lipid. Its relative levels are critical to maintain membrane structure and function (Hamai et

376 al., 2006; Li et al., 2008; Ishiwata-Kimata et al., 2022). The PC levels were relatively lower in the *pdat1*
377 mutants at 1 week of 4°C treatment but returned to wild-type levels at the end of the low-temperature
378 step (**Fig. 5**). These changes to PC levels could have contributed to poor recovery of the *pdat1* mutants
379 after freezing (**Fig. 2**). Inside the cell, PC is also a sink for lipid trafficking and many membrane lipid
380 backbones are temporarily accumulated as PC prior to accumulation as TAG (Karki et al., 2019). We
381 showed that PC levels had an overall DBI increase, consistent with remodeled lipids being incorporated
382 into PC (**Fig. 6C**).

383

384 In conclusion, TAG accumulation in *Arabidopsis* during high and low temperatures is mediated by both
385 DGAT and PDAT families. We show the severity and duration of temperature stress impact which
386 acyltransferases are most critical for TAG production, and find that loss of any PDAT or DGAT family
387 member shows a reduction in TAG in at least one condition. We also find the role of TAG accumulation is
388 more complex than simply maintaining plasma membrane integrity. Taken together, this work highlights
389 the importance of both acyltransferase families for TAG accumulation, plasma membrane integrity, and
390 temperature tolerance.

391

392 **Materials and Methods**

393 **Plant Materials**

394 The Columbia ecotype of *Arabidopsis thaliana* was used for all wild-type samples. Homozygous T-DNA
395 insertions for *dgat1* (SALK_039456C), *dgat2* (SALK_067809C), *dgat3* (GABI_696F08), *pdat1*
396 (SALK_065334), *pdat2* (SALK_010854C), *mboat5* (SALK_021674C), and *sfr2-3* (SALK_106253) were
397 confirmed using PCR with primers listed in (**Supplemental Table S1**). Acyl transferase mutants *dgat1*,
398 *pdat1*, and *mboat5* were a kind gift from Dr. Timothy Durrett (Kansas State University). The remaining T-
399 DNA mutants for the acyltransferase knockout lines were supplied from the *Arabidopsis* Biological
400 Research Center. All lines are currently available from the *Arabidopsis* Biological Research Center.

401

402 **Low-Temperature Step Assay and Recovery**

403 Before planting, seeds were surface sterilized by washing in 30% bleach (8.25% sodium hypochlorite) for
404 28 minutes followed by five washes with sterile ddH₂O. Sterilized seeds were planted on solid ½
405 Murashige and Skoog with vitamins, no glycine media (Caisson Labs) containing 1% sucrose, 0.5% MES,
406 and 0.6% Agargel (Sigma) at pH 5.7. Plated seeds were held at 4°C for two days in the dark and then

407 moved to the growth chamber (18-hour day/22°C, 120 $\mu\text{mol m}^{-2} \text{s}^{-1}$ light; 6-hour night/18°C) for three
408 weeks.

409

410 After three weeks of growth, plants were moved to a cold acclimation chamber held at 4°C (12-hour
411 day/night, 60 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ light) for 1 week. During cold acclimation, light intensity was decreased by
412 half to prevent the induction of photoinhibition and high light stress (*reviewed in* Janda et al., 2014).
413 Then, at the end of the relative day/night cycle plants were moved to a freezer (Darwin Chambers)
414 without light at -2°C for two hours. After two hours, nucleation of ice formation was initiated by placing
415 an ice chip on the media. Immediately following, the temperature was dropped to -6°C, and plants were
416 held at this temperature for sixteen hours. While the chamber cools within 45 minutes to -6°C, the
417 internal temperature of the agar plate reaches -6°C after seven hours as measured with a temperature
418 logger (Lascar Electronics).

419

420 To assess leaf damage, the frozen plates were placed on a Styrofoam surface with less than 10 $\mu\text{mol}\cdot$
421 $\text{m}^{-2}\cdot\text{s}^{-1}$ ($\pm 5\%$) of photosynthetically available light (Spectrum Technologies) for 24 hours where they
422 gradually warmed to 21°C. After 24 hours, the plates were then moved back to the growth chamber for
423 two day to assess leaf damage as described in (**Fig. 1B**, Moellering et al., 2010). Scoring of leaf damage
424 was measured using a 1-3 scale, with 1 representing severe damage, 2 being partially damaged, and 3
425 showing no observable damage. Representative rosettes for each scoring class are shown in **Fig. 2B, vi.**

426

427 To assess whole plant recovery a modified assay from Minami et al was used (2015). Briefly, frozen
428 plates were warmed on Styrofoam for 2.5 hours to 6°C and plants were transferred to chilled 8°C soil
429 (Berger BM2 Seed Germination and Propagation Mix). To prevent shock from transferring, the plants
430 were covered to prevent immediate high light stress and moved to a 10°C chamber for 24 hours. Plants
431 were then moved to a growth chamber (22°C, 16 hour day/8 hour night) with a clear dome for two days.
432 Following two days, the dome was removed, and plants were allowed to grow for a total of twelve days
433 at which point post-freezing recovery was scored and biomass measurements were taken
434 (**Supplemental Fig. S7**). For recovery scoring, a 1-3 scale was used with 1 being not able to recover, 2
435 being partially recovered, and 3 able to fully recover. Dry weight was measured on individual rosettes
436 that has been allowed to dry in foil bags for four days at 65°C, $n \geq 60$ rosettes sampled over four growth
437 trials.

438

439 Sampling

440 At each indicated point in **Fig. 1B**, a subset of plants was sampled for lipid analysis, and others were
441 photographed. All samples were taken at the end of the respective day, except for freezing samples,
442 which were taken the indicated numbers of hours post-end of day, and beginning of freezing. For lipid
443 analysis, two rosettes were sampled in duplicate and immediately flash-frozen in liquid nitrogen and
444 stored at -80°C until lipid extraction and analysis were performed. Each sample was considered one
445 biological replicate Only rosette tissue was collected, roots were discarded. For quantification of low
446 abundance lipids (free fatty acids (FFA), DAG, and lyso-phosphatidyl choline (Lyso-PC), four rosettes
447 were sampled and lipids were immediately extracted as one biological replicate
448 For electrolyte leakage, two rosettes were harvested into a 5-mL snap cap tube containing 3-mL of 18.2
449 MΩ-cm resistance water. Duplicates were made for each temperature point. Each sample was
450 considered one biological replicate.

451 For all experiments, there were a minimum of two growth trials conducted.

452

453 Lipid Extraction and Analysis

454 Lipids were extracted using the modified Bligh and Dyer method as described in (Mahboub et al., 2021).
455 Thin-layer chromatography was then used to isolate lipids of interest. After extraction, lipids were dried
456 down under N₂ gas, resuspended in an equal volume of chloroform, and loaded onto thin-layer
457 chromatography plates pretreated with ammonium sulfate (Macherey-Nagel 810063). The first resolving
458 solvent containing acetone: toluene: water (91:30:8, v/v/v) was run 12 cm from the loading site. The
459 plate was then dried with N₂ and further resolved with a second solvent containing petroleum ether:
460 diethyl ether: acetic (80:20:1 v/v/v).

461 For isolating FFA, DAG and Lyso-PC, dried lipids were resuspended in an equal volume of chloroform,
462 and loaded onto Silica60 thin-layer chromatography plates (Sigma Aldrich 1.0521.0001). The first
463 resolving solvent contained chloroform: methanol: acetic acid: acetone: water (35:25:4:14:2, v/v/v/v/v)
464 was run 10 cm from the loading site, as described in (Xu et al., 1996). The plate was then dried with N₂
465 and further resolved with a second solvent containing petroleum ether: diethyl ether: acetic (80:20:1
466 v/v/v).

467 Silica bands containing lipids of interest were scraped, and pentadecanoic acid was added as an internal
468 standard. Lipids were then derivatized into fatty acid methyl esters (FAMEs) as described in (Benning
469 and Somerville, 1992). FAMEs were then separated using a 30-m HP-Innowax capillary column (Agilent)
470 with hydrogen carrier gas. The separation method began at 90°C for one minute, ramped to 235°C at

471 30°C/min, was held at 235°C for five minutes, and ended with flame ionized detection. Outliers were
472 first removed after analyzing the fatty acid composition of C16:3 and C18:3 for all mutants and wild type
473 at each temperature tested using ROUT analysis at a 10% threshold (GraphPad v9.5.0) (Motulsky and
474 Brown, 2006). Fatty acid profiles for lipids measured in the low- and high-temperature steps can be
475 found in Supplemental Figures S5 and S6. Any outliers detected resulted in the removal of the lipid from
476 further analysis. Following removal, relative mole percentages of MGDG, DGDG, PC, TAG, FFA, DAG,
477 Lyso-PC were calculated as compared to the total lipids present. The resulting mole percents were then
478 screened for outliers using one interquartile distance from the median for each lipid class of each
479 genotype at each temperature. Asterisks indicate a significance of $P \leq 0.05$ calculated with Brown-
480 Forsythe and Welch One-Way ANOVA compared to wild type control for MGDG, DGDG, PC, TAG.
481 Asterisks indicate a significance of $P \leq 0.05$ calculated with an unpaired t test with Welch's correction for
482 *pdat1* compared to wild type control.

483 Double bond index (DBI) was calculated using: $\frac{(X:1) \times 1 + (X:2) \times 2 + (X:3) \times 3}{100}$ where X represents the mole %
484 of 16:n and 18:n fatty acids, where n is one, two, or three double bonds.

485 The saturation index was calculated in a similar way using: $\frac{16:0 + 18:0}{100}$.

486 Multiple comparisons were corrected by using Dunnett's test for comparisons to wild type directly, or
487 Tukey's multiple comparisons test when genotypes were compared against one another. For all samples
488 $n \geq 2$ growth trials each containing $n \geq 2$ replicates. (Ex. A minimum of four biological replicates grown in
489 two separate growth trials).

490

491 Low-Temperature Ramp Assay and Electrolyte Leakage

492 To determine electrolyte leakage of the *Arabidopsis* at various subzero temperatures, a refrigerated
493 chiller (AP15R, VWR) was used, and conditions were performed essentially as described in (Warren et
494 al., 1996) chilling at a rate of 2°C/hour with slight modifications. Cellular leakage of electrolytes in the
495 samples was measured using a conductivity meter (Orion Star A212, Thermo Scientific). Plants were
496 grown as described in the *Low-Temperature Step Assay and Recovery* and were prepared as described in
497 *Sampling*. The growth scheme and temperature profile used is diagramed in **Fig. 1C**, and representative
498 images of rosettes following one week of cold acclimation are shown in **Fig 2B, iii**. Before application of
499 low-temperature, conductivity was measured and recorded as initial leakage. Samples were then placed
500 in floats to suspend in the refrigerated chiller set to 0°C and incubated for one hour. After one hour, ice
501 formation was initiated using an ice chip (18-MΩ water) placed into the tube. Samples were then

502 collected from 0°C to -10°C and left to thaw overnight at 4°C. The chilling rate began at 3°C for samples
503 collected above 0°C and no nucleation was used. The rate of cooling was the same as described.
504 Conductivity was then measured and recorded as the leakage at the temperate when the sample was
505 removed from the chiller. Finally, to measure the end-point leakage, samples were heated to 65°C for 30
506 minutes, cooled to room temperature, and then shaken at 250 rpm for fifteen minutes to release all
507 electrolytes into solution. Conductivity was measured and recorded as final leakage.

508 Percent leakage was calculated using:
$$\frac{\text{Leakage at } T(\text{°C})}{\text{Final Leakage} - \text{Average of Initial Leakage}} \times 100$$

509
510 Percent leakage was normalized to zero using the initial leakage measurements, and outliers were
511 removed with ROUT analysis set to 10%. The data was plotted along with a non-linear fit constrained to
512 $\{x \mid 0 < x < 100\}$ (GraphPad v9.5.0). Asymptotic 95% confidence interval was graphed for error, and LT_{50}
513 values were recorded.

514
515 To compare data from the discontinuous freezing assay, lipids from wild type and the acyltransferase
516 mutants were extracted from plants frozen to -4.5°C. Conditions for freezing with the refrigerated chiller
517 and sample preparation were performed as described above. Once the internal temperature reached -
518 4.5°C, samples were removed from the chiller and thawed at room temperature for 40 minutes.
519 Rosettes were removed and blotted dry and immediately transferred into 1-mL of cold extraction buffer
520 following the modified Bligh and Dyer described above. Lipids were then resolved using a ten-
521 centimeter Silica-60 TLC plate (Sigma Aldrich 1.05721.0001) using a mobile phase containing petroleum
522 ether: diethyl ether: acetic acid (80:20:1 v/v/v). Silica containing TAG was scraped derivatized into
523 FAMEs, quantified and outliers removed as described in *Lipid Extraction and Analysis*.

524

525 High-Temperature Treatment

526 For high-temperature experiments, seeds (genotypes listed in *Plant Materials*) were surface sterilized in
527 70% ethanol with 0.05% Triton X-100 for fifteen minutes, followed by six washes with 95% ethanol and
528 air-dried on sterile filter paper. Sterilized seeds were planted on solid ½ Murashige and Skoog media
529 (Phytotech) that contained 1% sucrose and 0.5% phytagel (Sigma) at pH 5.7 for germination. Plated
530 seeds were held at 4°C for three days in the dark and then moved to a growth chamber (18-hour
531 day/22°C, 140 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ light; 6-hour night/18°C) for three days. After three days of incubation,
532 seedlings were transferred to larger plates (media as described above) for fourteen days of growth.

533 Starting two hours after the start of their relative day, 17-day-old plants were subjected to non-lethal
534 heat treatment at 37°C, as described in Mueller et al 2017 using a Liebherr incubator equipped with
535 lamps at 140 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ illumination. Plates containing plants were placed into the incubator and were
536 sampled after 0, 100, 200, and 300 minutes of heat treatment, as diagramed in **Fig. 1D**.

537

538 *Sampling and Lipid Extraction During High-Temperature Treatment*

539 After sampling rosette tissue, lipid extraction for the high-temperature treatment was immediately
540 performed using the modified Shiva et al. (2018) method as described in (Mahboub et al., 2021). Rosette
541 tissue was placed into one volume of isopropanol and boiled at 75°C for fifteen minutes. Three volumes
542 of chloroform: methanol: water (30:41.5:3.5 v/v/v) were then added and samples were incubated at
543 37°C on an orbital shaker at 250 rpm for 24 hours. The plant tissue was then removed and the solvent
544 was evaporated under nitrogen gas. Dried lipids were stored at -20°C. n ≥ 2 growth trials each
545 containing n ≥ 2 biological replicates. (Ex. A minimum of four biological replicates grown in two separate
546 growth trials)

547

548 *Lipid Analysis During High-Temperature Treatment*

549 Dried lipids were resuspended in chloroform. An equal volume of resuspended lipids was loaded onto
550 TLC plates (SIL G, Macherey-Nagel) for TAG separation and total fatty acid analysis. Plates were placed
551 into tanks containing petroleum ether: diethyl ether: acetic acid (80:20:1 v/v/v). Silica bands containing
552 lipids of interest were scraped, derivatized, and standardized as described in (Benning and Somerville,
553 1992). Samples were separated using a 30 m capillary DB-23 column (Agilent) with helium carrier gas.
554 The separation method began at 90°C for 1 min, ramped to 235°C at 30°C min⁻¹, was held at 235°C for 5
555 min, and ended with detection flame ionization. Data analysis was completed as described in *Lipid
556 Extraction and Analysis*.

557

558 **Author contributions**

559 ZDS, RLR, and JW designed the research; ZDS, SM, HV, and JW performed research; TT contributed
560 analytic tools; ZDS analyzed the data and wrote the manuscript; all authors edited the article.

561

562 **Supplemental Data**

563 Supplemental Figure S1: Relative mole percents of MGDG, DGDG, and PC following the low-temperature
564 step.

565 Supplemental Figure S2: Line graphs of the relative mole percents of MGDG, DGDG, PC, and TAG in low-
566 temperature step. Supplemental Fig. S3: Double bond and saturation index for TAG, MGDG, DGDG, and PC for
567 both the low- and high-temperature steps.
568 Supplemental Figure S4: 16:3/18:3 ratios for TAG, MGDG, DGDG, and PC during the low- and high-
569 temperature steps.
570 Supplemental Figure S5: Relative mole percent of fatty acids for TAG, MGDG, and DGDG following the low-
571 temperature step.
572 Supplemental Figure S6: Relative mole percent of fatty acids for PC in the low-temperature step and TAG in
573 the high-temperature step.
574 Supplemental Fig. S7: All acyltransferase mutants are able to recover after a 12-day period.
575 Supplemental Fig. S8: Relative mole percents, double bond, and saturation indices for lyso-PC, DAG,
576 and free fatty acids after sixteen hours of freezing.
577 Supplemental Table S1: Primers used for genotyping loss-of-function mutants
578 Supplemental Table S2: Average Scoring Percents of Leaf Damage Two Days Post-Freezing

579 Acknowledgements

580 We would like to thank Aline Rodrigues de Queiroz, Evan LaBrant, and Cailin Smith for their thoughtful
581 feedback on this work.

582

583 Funding

584 This work was supported by the National Science Foundation (IOS-1845175), and partially supported by
585 the Nebraska Agricultural Experiment Station with funding from the Hatch Multistate Research capacity
586 funding program (Accession Number NC1203) from the USDA National Institute of Food and Agriculture.
587 JW was supported by the Kasetsart University Research and Development Institute, KURDI (FF(KU)22.64)
588 and the National Science and Technology Development Agency (FDA-CO-2561-8404-TH).

589

590 References

591 **Arisz SA, Heo J-Y, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds**
592 **T, et al** DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. *Plant Physiol.*
593 2018;177:1410–1424. <https://doi.org/10.1104/pp.18.00503>

594 **Arisz SA, van Wijk R, Roels W, Zhu J-K, Haring MA, Munnik T** (2013) Rapid phosphatidic acid
595 accumulation in response to low temperature stress in *Arabidopsis* is generated through
596 diacylglycerol kinase. *Front Plant Sci.* 2013;4:1-15 <https://doi.org/10.3389/fpls.2013.00001>

597 **Aymé L, Arragain S, Canonge M, Baud S, Touati N, Bimai O, Jagic F, Louis-Mondésir C, Briozzo P,**
598 **Fontecave M, et al** *Arabidopsis thaliana* DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis.
599 *Sci Reports* 2018;8:1–10. <https://doi.org/10.1038/s41598-018-35545-7>

600 **Bao X, Focke M, Pollard M, Ohlrogge J** Understanding *in vivo* carbon precursor supply for fatty acid
601 synthesis in leaf tissue. *Plant J.* 2000;22:39–50. <https://doi.org/10.1046/j.1365-313x.2000.00712.x>

602 **Barnes AC, Benning C, Roston RL** Chloroplast Membrane Remodeling during Freezing Stress Is
603 Accompanied by Cytoplasmic Acidification Activating SENSITIVE TO FREEZING2. *Plant Physiol.*
604 2016;171:2140–2149. <https://doi.org/10.1104/pp.16.00286>

605 **Barnes AC, Myers JL, Surber SM, Liang Z, Mower JP, Schnable JC, Roston RL** Oligogalactolipid
606 production during cold challenge is conserved in early diverging lineages. *J Exp Bot.* 2023;17:5405–
607 5417. <https://doi.org/10.1093/jxb/erad241>

608 **Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson L V.** Lipid remodelling: Unravelling the response to
609 cold stress in *Arabidopsis* and its extremophile relative *Eutrema salsugineum*. *Plant Sci* 2017;263:
610 194–200. <https://doi.org/10.1016/j.plantsci.2017.07.017>

611 **Benning C, Somerville CR** Isolation and genetic complementation of a sulfolipid-deficient mutant of
612 *Rhodobacter sphaeroides*. *J Bacteriol* 1992;174:2352–2360. <https://doi.org/10.1128/jb.174.7.2352-2360.1992>

613 **Burke M, Emerick K** Adaptation to Climate Change: Evidence from US Agriculture. *Am Econ J Econ Policy*
614 2016;8:106–140. <https://doi.org/10.1257/pol.20130025>

615 **Carro M de las M, Gonorazky G, Soto D, Mamone L, Bagnato C, Pagnussat LA, Beligni MV** Expression of
616 *Chlamydomonas reinhardtii* chloroplast DIACYLGLYCEROL ACYLTRANSFERASE3 is induced by light in
617 concert with triacylglycerol accumulation. *Plant J* 2022;110:262–276.
618 <https://doi.org/10.1111/tpj.15671>

619 **Cevc G, Richardsen H** Lipid vesicles and membrane fusion. *Adv Drug Deliv Rev* 1999;38: 207–232.
620 [https://doi.org/10.1016/S0169-409X\(99\)00030-7](https://doi.org/10.1016/S0169-409X(99)00030-7)

621 **Chen J, Burke JJ, Xin Z, Xu C, Velten J** Characterization of the *Arabidopsis* thermosensitive mutant *atts02*
622 reveals an important role for galactolipids in thermotolerance. *Plant Cell Environ* 2006;29:1437–
623 1448. <https://doi.org/10.1111/j.1365-3040.2006.01527.x>

624 **Cohen J, Agel L, Barlow M, Garfinkel CI, White I** Linking Arctic variability and change with extreme
625 winter weather in the United States. *Science* 2021;373:1116–1121.
626 <https://doi.org/10.1126/science.abi9167>

627 **Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Willmitzer L** Differential remodeling of the

629 lipidome during cold acclimation in natural accessions of *Arabidopsis thaliana*. *Plant J* 2012;**72**:
630 972–982. <https://doi.org/10.1111/tpj.12007>

631 **Demski K, Łosiewska A, Jaseniecka-Gazarkiewicz K, Klińska S, Banaś A**

632 **PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1** Overexpression Delays Senescence and
633 Enhances Post-heat and Cold Exposure Fitness. *Front Plant Sci.* 2020;**11**:1–14.
634 <https://doi.org/10.3389/fpls.2020.611897>

635 **Du Z-Y, Lucker BF, ZIENKIEWICZ K, Miller TE, Zienkiewicz A, Sears BB, Kramer DM, Benning C**

636 **Galactoglycerolipid Lipase PGD1** Is Involved in Thylakoid Membrane Remodeling in Response to
637 Adverse Environmental Conditions in Chlamydomonas. *Plant Cell* 2018;**30**: 447–465.
638 <https://doi.org/10.1105/tpc.17.00446>

639 **Falcone DL, Ogas JP, Somerville CR** Regulation of membrane fatty acid composition by temperature in
640 mutants of *Arabidopsis* with alterations in membrane lipid composition. *BMC Plant Biol.* 2004;**4**:17.
641 <https://doi.org/10.1186/1471-2229-4-17>

642 **Fan J, Yan C, Xu C** **PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE**-mediated triacylglycerol
643 biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of
644 *Arabidopsis*. *Plant J.* 2013a;**76**:930–942. <https://doi.org/10.1111/tpj.12343>

645 **Fan J, Yan C, Zhang X, Xu C** Dual role for **PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE**:
646 enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in
647 *arabidopsis* leaves. *Plant Cell* 2013b;**25**:3506–3518. <https://doi.org/10.1105/tpc.113.117358>

648 **Ghosh UK, Islam MN, Siddiqui MN, Khan MAR** Understanding the roles of osmolytes for acclimatizing
649 plants to changing environment: a review of potential mechanism. *Plant Signal Behav.* 2021;**16**:1–
650 13. <https://doi.org/10.1080/15592324.2021.1913306>

651 **Gilmour SJ, Hajela RK, Thomashow MF** Cold Acclimation in *Arabidopsis thaliana*. *Plant Physiol*
652 1988;**87**:745–750. <https://doi.org/10.1104/pp.87.3.745>

653 **Guilher A, Rebeaud ME, Goloubinoff P** How do plants feel the heat and survive? *Trends Biochem Sci*
654 2022;**47**:824–838. <https://doi.org/10.1016/j.tibs.2022.05.004>

655 **Gusta L V., Wisniewski ME, Trischuk RG** Patterns of freezing in plants: the influence of species,
656 environment and experiential procedures. *Plant cold hardiness from Lab. to F.* CABI, UK 2009:214–
657 225. <http://dx.doi.org/10.1079/9781845935139.0214>

658 **Hamai C, Yang T, Kataoka S, Cremer PS, Musser SM** Effect of average phospholipid curvature on
659 supported bilayer formation on glass by vesicle fusion. *Biophys J* 2006;**90**:1241–1248.
660 <https://doi.org/10.1529/biophysj.105.069435>

661 **Higashi Y, Okazaki Y, Takano K, Myouga F, Shinozaki K, Knoch E, Fukushima A, Saito K** HEAT INDUCIBLE
662 LIPASE1 remodels chloroplastic monogalactosyldiacylglycerol by liberating α -linolenic acid in
663 Arabidopsis leaves under heat stress. *Plant Cell* 2018;30:1887–1905.
664 <https://doi.org/10.1105/tpc.18.00347>

665 **Higashi Y, Saito K** Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. *Prog*
666 *Lipid Res* 2019;75:1-14. <https://doi.org/10.1016/j.plipres.2019.100990>

667 **Ishiwata-Kimata Y, Le QG, Kimata Y** Induction and aggravation of the endoplasmic-reticulum stress by
668 membrane-lipid metabolic intermediate phosphatidyl-N-monomethylethanolamine. *Front Cell Dev*
669 *Biol.* 2022;9:1-11. <https://doi.org/10.3389/fcell.2021.743018>

670 **Janda T, Majláth I, Szalai G** Interaction of Temperature and Light in the Development of Freezing
671 Tolerance in Plants. *J Plant Growth Regul.* 2014;33:460–469. <https://doi.org/10.1007/s00344-013-9381-1>

673 **Karki N, Johnson BS, Bates PD** Metabolically distinct pools of phosphatidylcholine are involved in
674 trafficking of fatty acids out of and into the chloroplast for membrane production. *Plant Cell*
675 2019;11:2768-2788. <https://doi.org/10.1105/tpc.19.00121>

676 **Klypina N, Hanson SF** *Arabidopsis thaliana* wax synthase gene homologues show diverse expression
677 patterns that suggest a specialized role for these genes in reproductive organs. *Plant Sci*
678 2008;175:312–320. <https://doi.org/10.1016/j.plantsci.2008.05.002>

679 **Knight H, Veale EL, Warren GJ, Knight MR** The *sfr6* mutation in Arabidopsis suppresses low-temperature
680 induction of genes dependent on the CRT/DRE sequence motif. *Plant Cell* 1999;11:875–886.
681 <https://doi.org/10.1105/tpc.11.5.875>

682 **LaBrant E, Barnes AC, Roston RL** Lipid transport required to make lipids of photosynthetic membranes.
683 *Photosynth Res* 2018;138:345–360. <https://doi.org/10.1007/s11120-018-0545-5>

684 **Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, Blanc G, Li-Beisson Y** Lipidomic
685 and transcriptomic analyses of *Chlamydomonas reinhardtii* under heat stress unveil a direct route
686 for the conversion of membrane lipids into storage lipids. *Plant Cell Environ* 2016;39:834–847.
687 <https://doi.org/10.1111/pce.12656>

688 **Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A,**
689 **Durrett TP, et al** Acyl-Lipid Metabolism. *Arab B* 2010;8:1-65. <https://doi.org/10.1199/tab.0133>

690 **Li-Beisson Y, Beisson F, Riekhof W** Metabolism of acyl-lipids in *Chlamydomonas reinhardtii*. *Plant J*
691 2015;82:504–522. <https://doi.org/10.1111/tpj.12787>

692 **Li W, Li M, Zhang W, Welti R, Wang X** The plasma membrane–bound phospholipase D δ enhances

693 freezing tolerance in *Arabidopsis thaliana*. *Nat Biotechnol* 2004;**22**: 427–433
694 <https://doi.org/10.1038/nbt949>

695 **Li W, Wang R, Li M, Li L, Wang C, Welti R, Wang X** Differential degradation of extraplastidic and plastidic
696 lipids during freezing and post-freezing recovery in *Arabidopsis thaliana*. *J Biol Chem*
697 2008;**283**:461–468. <https://doi.org/10.1074/jbc.m706692200>

698 **Lindquist S** The Heat-Shock Response. *Annu Rev Biochem* 1986;**55**:1151–1191.
699 <https://doi.org/10.1146/annurev.bi.55.070186.005443>

700 **Liu Q, Siloto RMP, Lehner R, Stone SJ, Weselake RJ** ACYL-CoA:DIACYLGLYCEROL ACYLTRANSFERASE:
701 Molecular biology, biochemistry and biotechnology. *Prog Lipid Res* 2012;**51**:350–377.
702 <https://doi.org/10.1016/j.plipres.2012.06.001>

703 **Lu J, Xu Y, Wang J, Singer SD, Chen G** The role of triacylglycerol in plant stress response. *Plants*.
704 2020;**9**:1–13. <https://doi.org/10.3390/plants9040472>

705 **Mahboub S, Shomo ZD, Regester RM, Albusharif M, Roston RL** Three methods to extract membrane
706 glycerolipids: comparing sensitivity to lipase degradation and yield. *Methods Mol Bio*
707 2021;**2295**:15–27. https://doi.org/10.1007/978-1-0716-1362-7_2

708 **Mhaske V, Beldjilali K, Ohlrogge J, Pollard M** Isolation and characterization of an *Arabidopsis thaliana*
709 knockout line for PHOSPHOLIPID: DIACYLGLYCEROL TRANSACYLASE gene (At5g13640). *Plant
710 Physiol Biochem* 2005;**43**:413–417. <https://doi.org/10.1016/j.plaphy.2005.01.013>

711 **Minami A, Tominaga Y, Furuto A, Kondo M, Kawamura Y, Uemura M** *Arabidopsis* dynamin-related
712 protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development
713 of freezing tolerance. *Plant J.* 2015;**83**:501–514. <https://doi.org/10.1111/tpj.12907>

714 **Miquel M, James D, Dooner H, Browse J** *Arabidopsis* requires polyunsaturated lipids for low-
715 temperature survival. *Proc Natl Acad Sci.* 1993;**90**:6208–6212.
716 <https://doi.org/10.1073/pnas.90.13.6208>

717 **Moellering ER, Muthan B, Benning C** Freezing tolerance in plants requires lipid remodeling at the outer
718 chloroplast membrane. *Science* 2010;**330**:226–228. <https://doi.org/10.1126/science.1191803>

719 **Motulsky HJ, Brown RE** Detecting outliers when fitting data with nonlinear regression – a new method
720 based on robust nonlinear regression and the false discovery rate. *BMC Bioinformatics* 2006;**7**:123.
721 <https://doi.org/10.1186/1471-2105-7-123>

722 **Mueller SP, Krause DM, Mueller MJ, Fekete A** Accumulation of extra-chloroplastic triacylglycerols in
723 *Arabidopsis* seedlings during heat acclimation. *J Exp Bot* 2015;**66**:4517–4526.
724 <https://doi.org/10.1093/jxb/erv226>

725 **Mueller SP, Unger M, Guender L, Fekete A, Mueller MJ** PHOSPHOLIPID:DIACYLGLYCEROL
726 ACYLTRANSFERASE-mediated triacylglycerol synthesis augments basal thermotolerance. *Plant*
727 *Physiol* 2017;**175**:486–497. <https://doi.org/10.1104/pp.17.00861>

728 **Rocha J, Nitenberg M, Girard-Egrot A, Jouhet J, Maréchal E, Block MA, Breton C** Do galactolipid
729 synthases play a key role in the biogenesis of chloroplast membranes of higher plants? *Front Plant*
730 *Sci* 2018;**9**:1–7. <https://doi.org/10.3389/fpls.2018.00126>

731 **Saha S, Enugutti B, Rajakumari S, Rajasekharan R** Cytosolic triacylglycerol biosynthetic pathway in
732 oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. *Plant*
733 *Physiol* 2006;**141**:1533–1543. <https://doi.org/10.1104/pp.106.082198>

734 **Saucedo-García M, González-Córdova CD, Ponce-Pineda IG, Cano-Ramírez D, Romero-Colín FM,**
735 **Arroyo-Pérez EE, King-Díaz B, Zavafer A, Gavilanes-Ruiz M** Effects of MPK3 and MPK6 kinases on
736 the chloroplast architecture and function induced by cold acclimation in *Arabidopsis*. *Photosynth*
737 *Res* 2021;**149**:201–212. <https://doi.org/10.1007/s11120-021-00852-0>

738 **Schmid-Sieger E, Stepushenko O, Glauser G, Farmer EE** Membranes as structural antioxidants:
739 recycling of malondialdehyde to its source in oxidation-sensitive chloroplast fatty acids. *J Biol Chem*
740 2016;**291**:13005–13013. <https://doi.org/10.1074/jbc.m116.729921>

741 **Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, et**
742 **al.** Leaf lipid alterations in response to heat stress of *Arabidopsis thaliana*. *Plants* 2020;**9**:1–22.
743 <https://doi.org/10.3390/plants9070845>

744 **Shockley JM, Gidda SK, Chapital DC, Kuan J-C, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM**
745 Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are
746 localized to different subdomains of the endoplasmic reticulum. *Plant Cell* 2006;**18**:2294–2313.
747 <https://doi.org/10.1105/tpc.106.043695>

748 **Ståhl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banaś W, Banaś A, Stymne S** Cloning and
749 functional characterization of a PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE from
750 *Arabidopsis*. *Plant Physiol* 2004;**135**:1324–1335 <https://doi.org/10.1105/tpc.106.043695>

751 **Tan W-J, Yang Y-C, Zhou Y, Huang L-P, Xu L, Chen Q-F, Yu L-J, Xiao S** DIACYLGLYCEROL
752 ACYLTRANSFERASE and DIACYLGLYCEROL KINASE modulate triacylglycerol and phosphatidic acid
753 production in the plant response to freezing stress. *Plant Physiol* 2018;**177**:1303–1318.
754 <https://doi.org/10.1104/pp.18.00402>

755 **Thalhammer A, Pagter M, Hincha DK, Zuther E** Measuring Freezing Tolerance of Leaves and Rosettes:
756 Electrolyte Leakage and Chlorophyll Fluorescence Assays. *Methods Mol Biol* 2020;**2156**: 9–21.

757 https://doi.org/10.1007/978-1-0716-0660-5_2

758 **Uemura M, Joseph RA, Steponkus PL** Cold acclimation of *Arabidopsis thaliana* (effect on plasma
759 membrane lipid composition and freeze-induced lesions). *Plant Physiol* 1995;**109**:15–30.

760 <https://doi.org/10.1104/pp.109.1.15>

761 **Wang T, Xing J, Liu X, Yao Y, Hu Z, Peng H, Xin M, Zhou D-X, Zhang Y, Ni Z** GCN5 contributes to stem
762 cuticular wax biosynthesis by histone acetylation of CER3 in Arabidopsis. *J Exp Bot* 2018;**69**:2911–
763 2922. <https://doi.org/10.1093/jxb/ery077>

764 **Wanner LA, Junntila O** (1999) Cold-induced freezing tolerance in Arabidopsis. *Plant Physiol* **120**: 391–400
765 <https://doi.org/10.1104/pp.120.2.391>

766 **Warren G, McKown R, Marin A, Teutonico R** Isolation of mutations affecting the development of
767 freezing tolerance in *Arabidopsis thaliana* (L.) Heynh. *Plant Physiol* 1996;**111**:1011–1019.
768 <https://doi.org/10.1104/pp.111.4.1011>

769 **Willing RP, Leopold AC** Cellular Expansion at Low Temperature as a Cause of Membrane Lesions. *Plant
770 Physiol.* 1983;**71**: 118–121 <https://doi.org/10.1104/pp.71.1.118>

771 **Xu G, Waki H, Kon K, Ando S** Thin-layer chromatography of phospholipids and their lyso forms:
772 application to determination of extracts from rat hippocampal CA1 region. *Microchem J*
773 1996;**53**:29–33. <https://doi.org/10.1006/mchj.1996.0005>

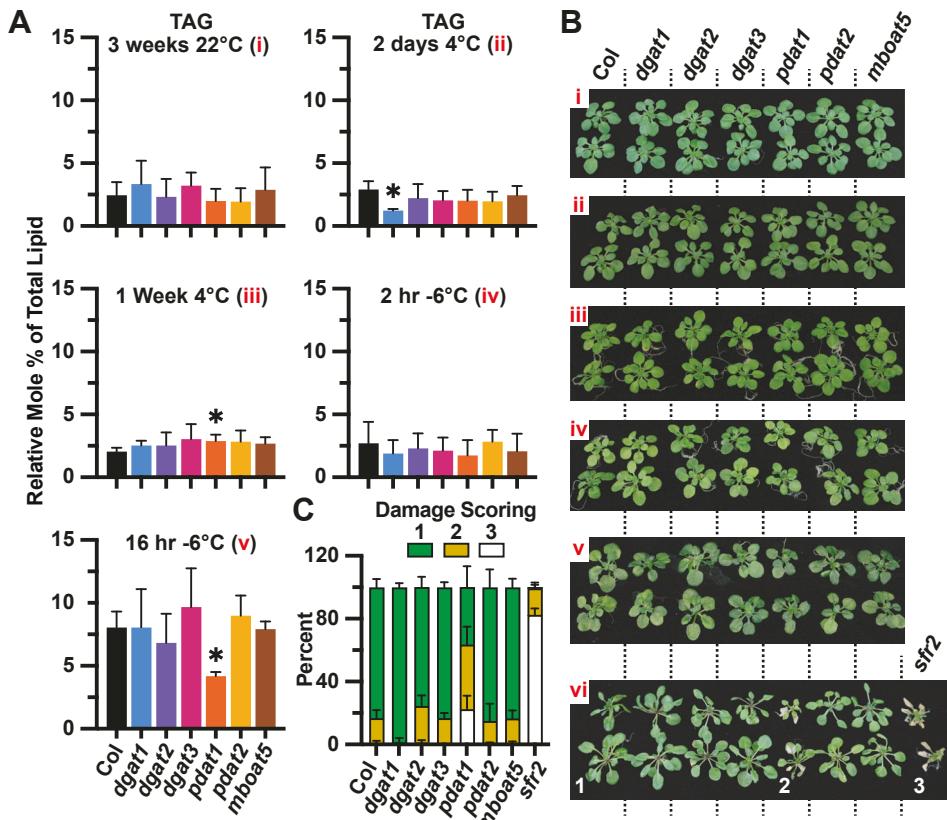
774 **Yu CW, Lin YT, Li H-min** Increased ratio of galactolipid MGDG:DGDG induces jasmonic acid
775 overproduction and changes chloroplast shape. *New Phytol* 2020;**228**:1327–1335.
776 <https://doi.org/10.1111/nph.16766>

777 **Yu L, Fan J, Zhou C, Xu C** Chloroplast lipid biosynthesis is fine-tuned to thylakoid membrane remodeling
778 during light acclimation. *Plant Physiol* 2021;**185**:94–107. <https://doi.org/10.1093/plphys/kiaa013>


779 **Zhang XD, Wang RP, Zhang FJ, Tao FQ, Li WQ** Lipid profiling and tolerance to low-temperature stress in
780 *Thellungiella salsuginea* in comparison with *Arabidopsis thaliana*. *Biol Plant* 2013;**57**: 149–153
781 <https://doi.org/10.1007/s10535-012-0137-8>

782 **Zheng G, Li L, Li W** Glycerolipidome responses to freezing- and chilling-induced injuries: Examples in
783 Arabidopsis and rice. *BMC Plant Biol* 2016;**16**:1–15. <https://doi.org/10.1186%2Fs12870-016-0758-8>

784


785 **Author Notes**

786 Rebecca Roston and Jaruswan Warakanont contributed equally to this work.

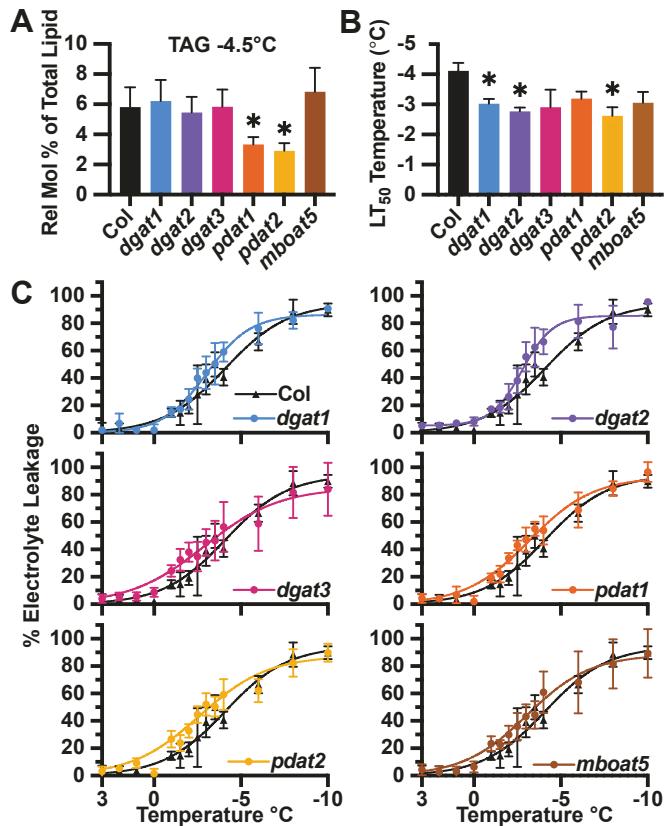
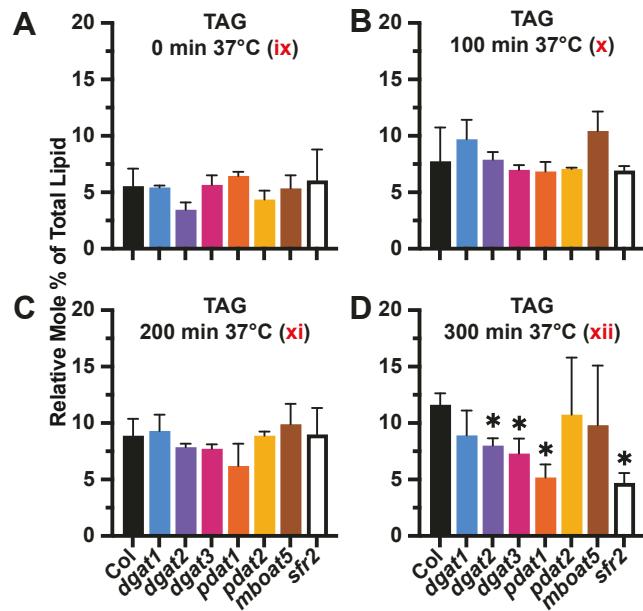
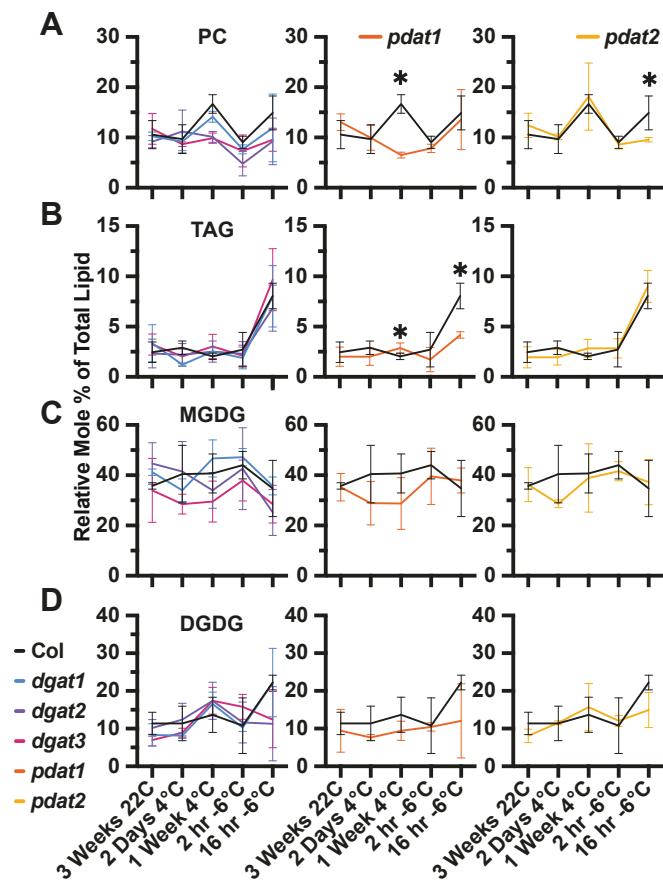
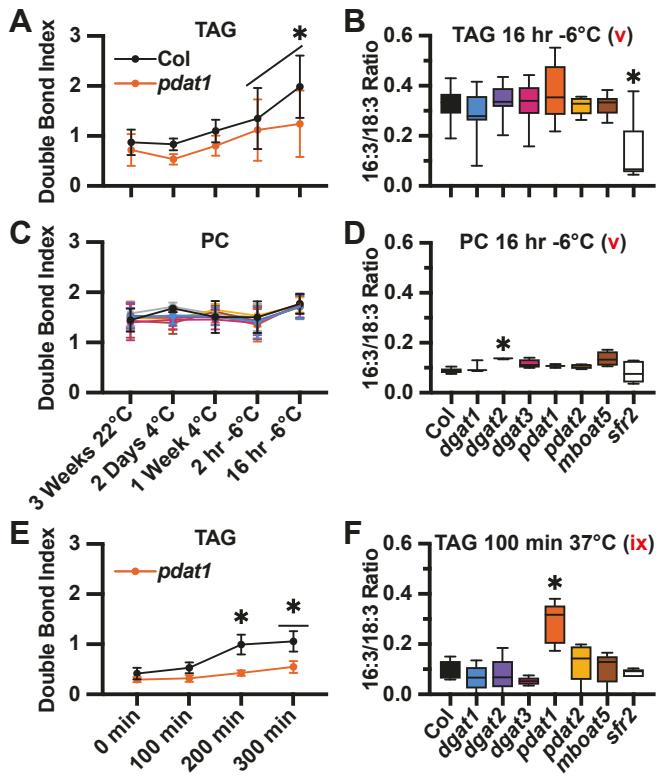
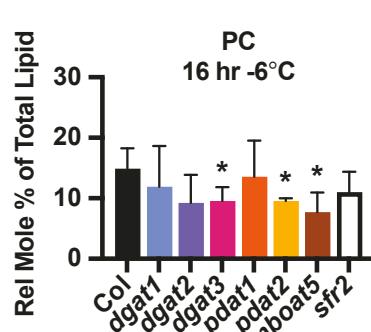
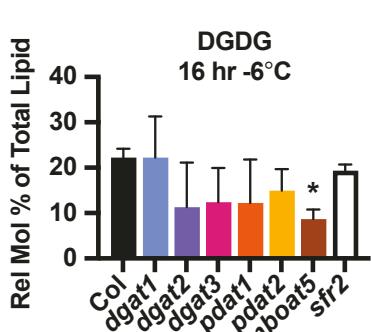
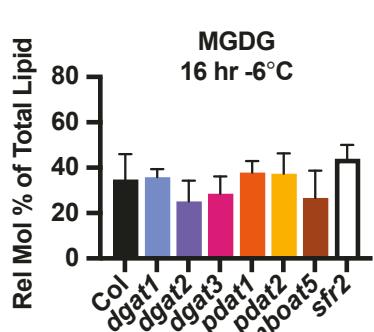
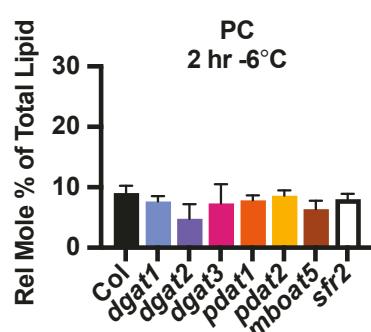
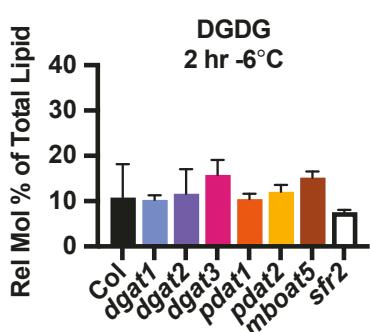
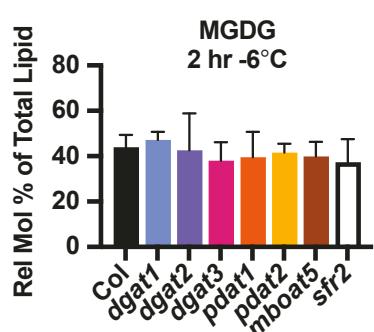
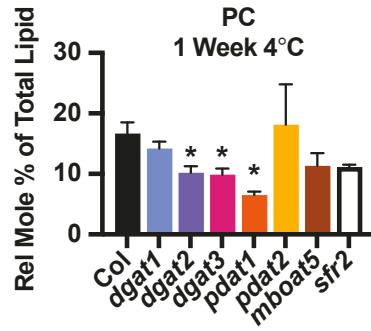
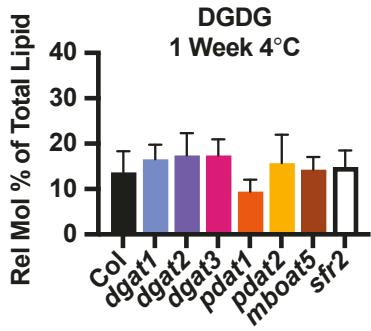
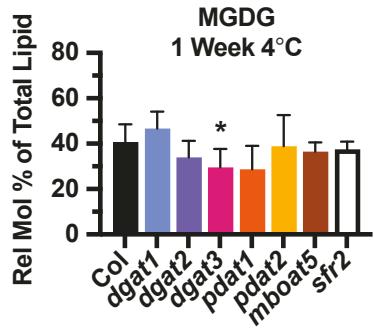
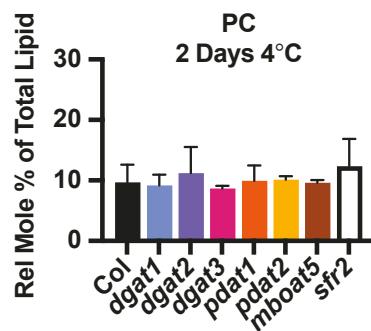
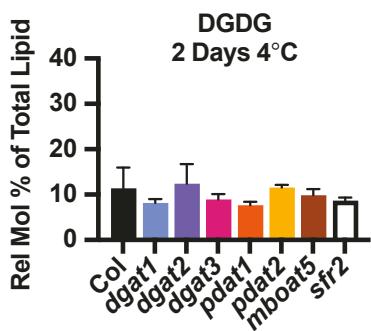
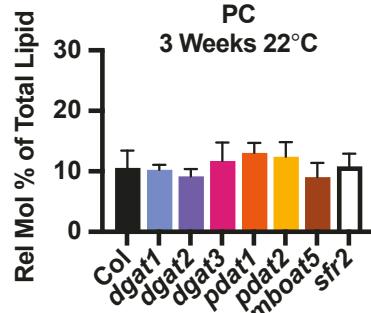
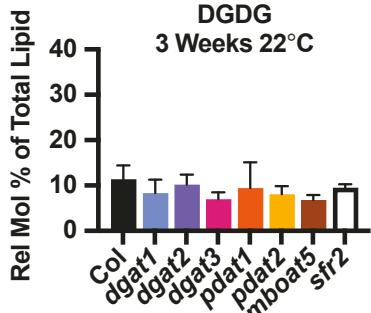
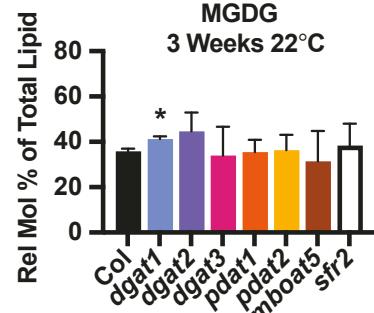


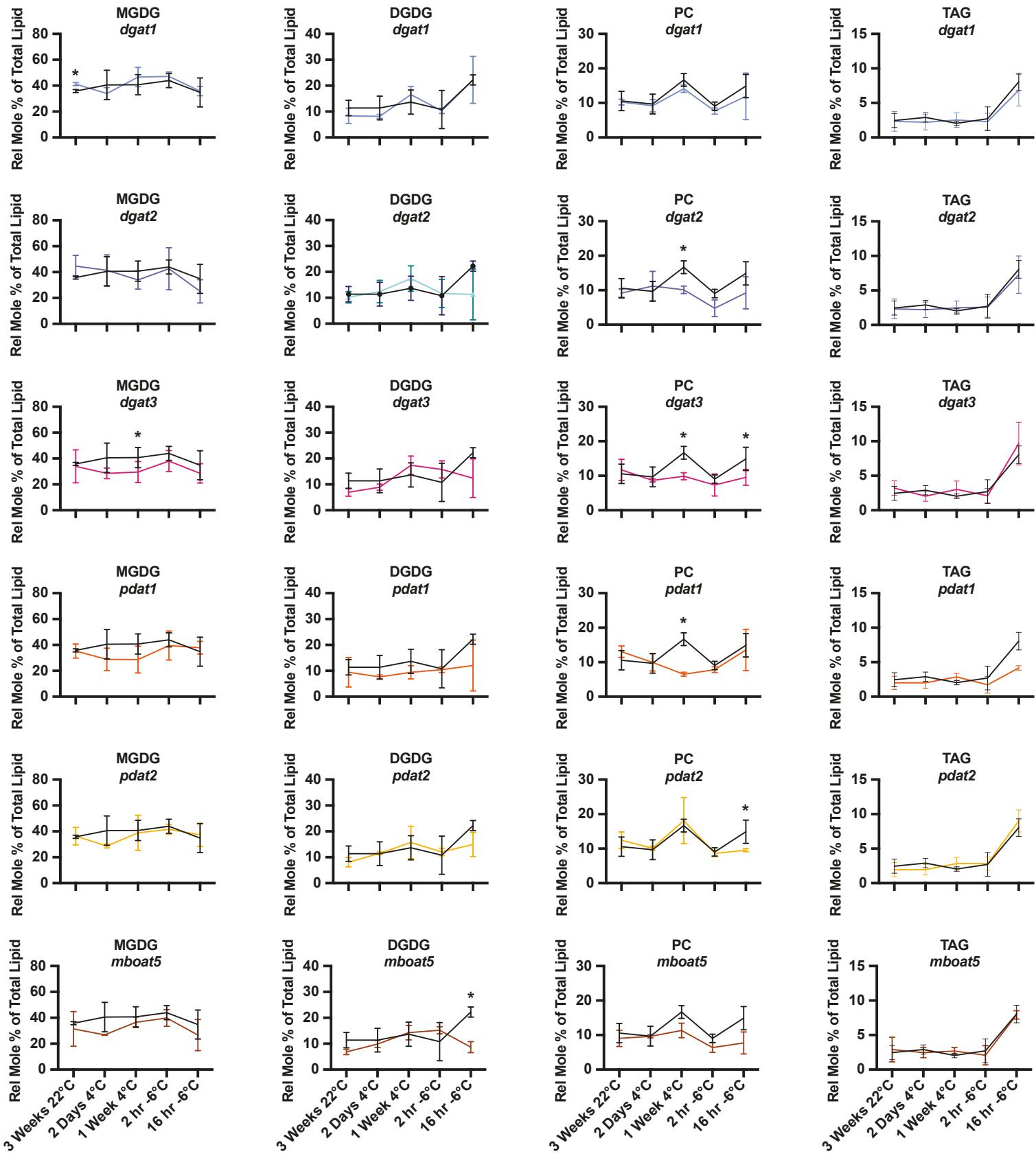
Fig. 1: Low and High-Temperature Treatment Regimens

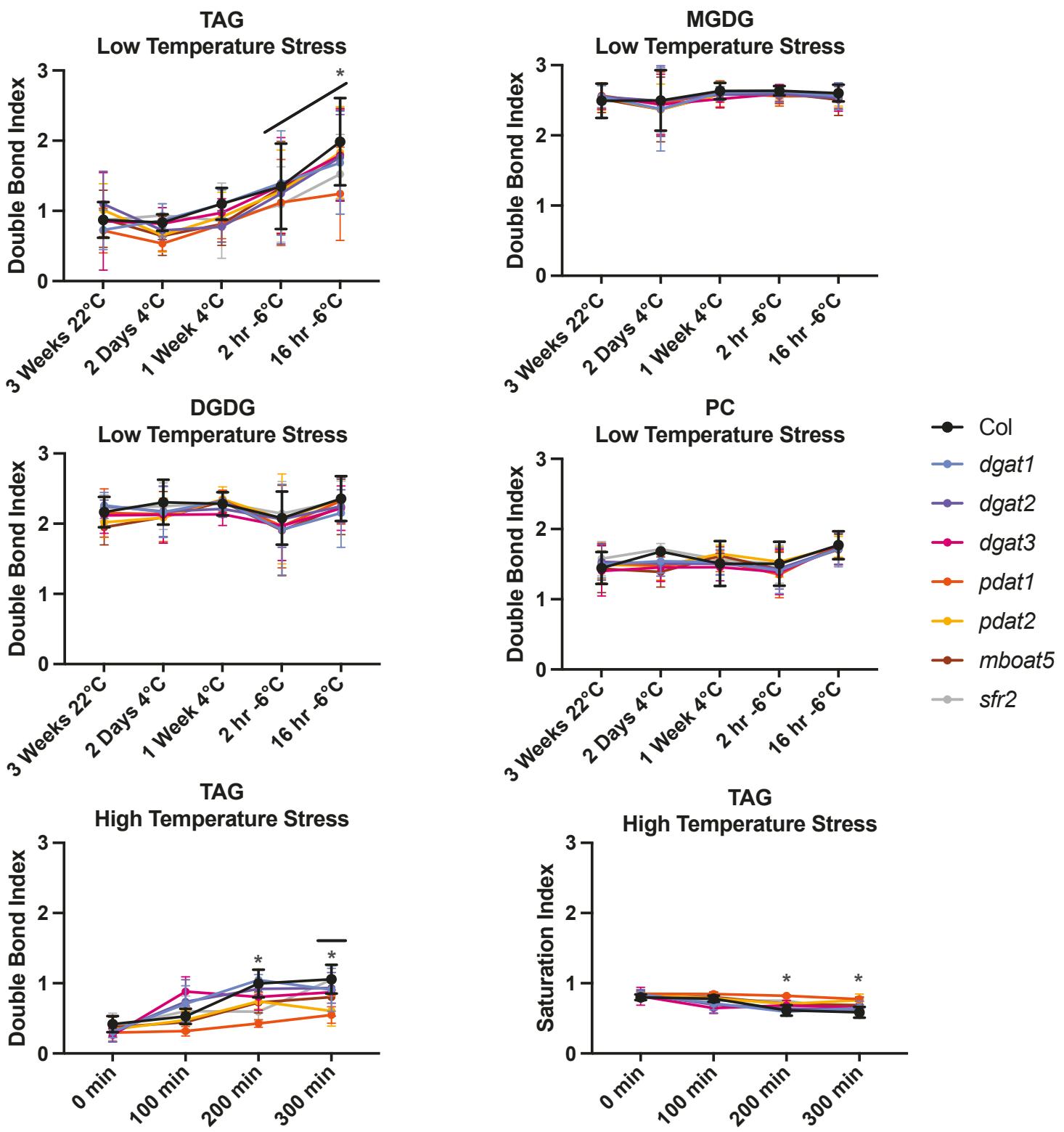

(A) Enzymatic reaction of the DGAT and PDAT enzymes highlighting the differences in substrates and products. **(B)** Schematic of the low-temperature step used for lipid analysis and phenotyping. Red Roman numerals indicate sampling after 3 weeks of growth (i), 2 days into cold acclimation at 4°C (ii), 1 week of cold acclimation at 4°C (iii), 2 hours into freezing at -6°C (iv), 16 hours of freezing at -6°C (v), 2 (vi) or 12 (vii) days post-freezing at growing conditions. Line for 22°C recovery after 12 days (vii) is offset for ease of viewing. **(C)** Schematic of growth, cold acclimation, and low-temperature ramp starting at 3°C and dropping to -10°C over the course of 8 hours to assess membrane integrity (viii). **(D)** Schematic of the high-temperature step applied after seventeen days of growth. Sampling was at 0 minutes (ix), 100 minutes (x), 200 minutes (xi),

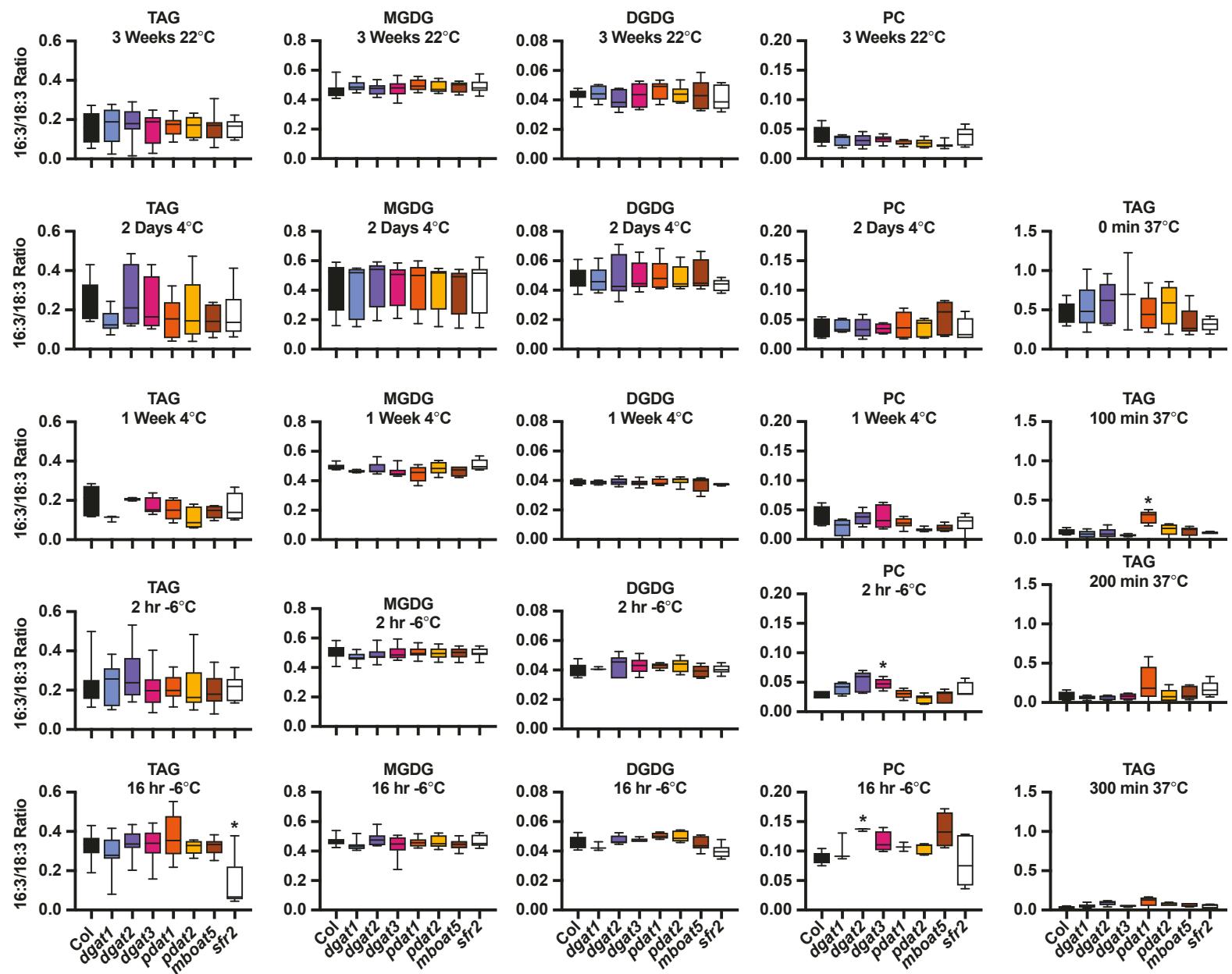

Fig. 2: dgat1 and pdat1 mutants uniquely affect TAG accumulation and leaf damage during the low-temperature step. (A) Relative mole percents of TAG analyzed following the treatment in Fig. 1B denoted with Roman numerals. $n \geq 4$ biological replicates. Error bars show standard deviations, and asterisks show significance of $P \leq 0.05$ using Brown-Forsythe and Welch one-way ANOVA compared to wild type control. (B) Photographs of representative rosettes taken at each temperature sampled; Roman numerals correspond to the schematic in Fig. 1B. (C) Quantification of leaf damage in Fig. 2B, vi after two days of regrowth based on manual scoring. Representative rosettes given each score of 1, 2, or 3 are labeled in Fig. 2B, vi. Percents used can be found in **Supplemental Table S2**. $n \geq 74$ rosettes. Error bars show standard deviations, and asterisks show significance of $P \leq 0.05$ using two-way ANOVA compared to wildtype control. Corresponding levels of MGDG, DGDG, and PC can be found in Fig. S1.


Fig. 3: Plasma membrane integrity and TAG accumulation are not linked in the acyltransferase mutants. (A) TAG levels quantified at -4.5°C using the assay in Fig. 1C. $n \geq 16$ biological replicates. Error bars depict SD, and significance denoted with an asterisk for $P \leq 0.05$ using Brown-Forsythe and Welch one-way ANOVA. **(B)** LT₅₀ temperatures from the full data shown in (C). Error bars depict SD, and significance denoted with an asterisk for $P \leq 0.05$ using Brown-Forsythe and Welch one-way ANOVA. **(C)** Cellular electrolyte leakage of acyltransferase mutants measured from 3°C to -10°C, compared to wild type control (Fig. 1C). Error bars depict 95% CI. $n \geq 6$ biological replicates.















Fig. 4: Both families of acyltransferase mutants show reduced TAG accumulation in response to heat challenge. Relative mole percent of TAG from *Arabidopsis* challenged with a 37°C heat stress for 0 minutes (A), 100 minutes (B), 200 minutes (C), and 300 minutes (D). Treatment and Roman numerals correspond to Fig. 1D. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch one-way ANOVA compared to wild type control. $n \geq 4$ biological replicates.


Fig. 5: Loss of PDATs affect the levels of PC when challenged with low temperatures. Line graphs depicting the changes in levels of PC (A), TAG (B), MGDG (C), and DGDG (D) during the low-temperature step (Fig. 1B). All mutants along with wild type are overlaid at the left of each panel, with *pdat1* and *pdat2* shown to the right for each lipid class respectively. $n \geq 4$ biological replicates. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch one-way ANOVA of the mutant compared to wild type control. Full data can be found in Fig. S2.


Fig. 6: *pdat1* mutants affect unsaturation in TAG in low and high-temperature treatments. DBI for TAG in *pdat1* mutants (A, E) and PC (C) in the low- or high-temperature step. Selected 16:3/18:3 ratios at 16 hours of -6°C TAG (B), or PC (D) and at 100 min of 37°C (F). Lines above the data points in (A) and (E) denote significance at that time point against itself at the start of the assay at 3 weeks 22°C (A), or 0 min 37°C (E). Asterisks denote significance to Col at the time point indicated. $n \geq 4$ biological replicates. Error bars represent standard deviations, and all asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch one-way ANOVA (B, D, and F) or a two-way ANOVA (A, C, E). Full data can be found in Fig. S3 and Fig. S4.


Fig. S1: Relative mole percents of MGDG, DGDG, and PC following the low-temperature step. The data show here was used to generate the line graphs in **Figure 5**, and is separated here to view the entire dataset at once. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch one-way ANOVA compared to wild type control. $n \geq 4$ biological replicates.

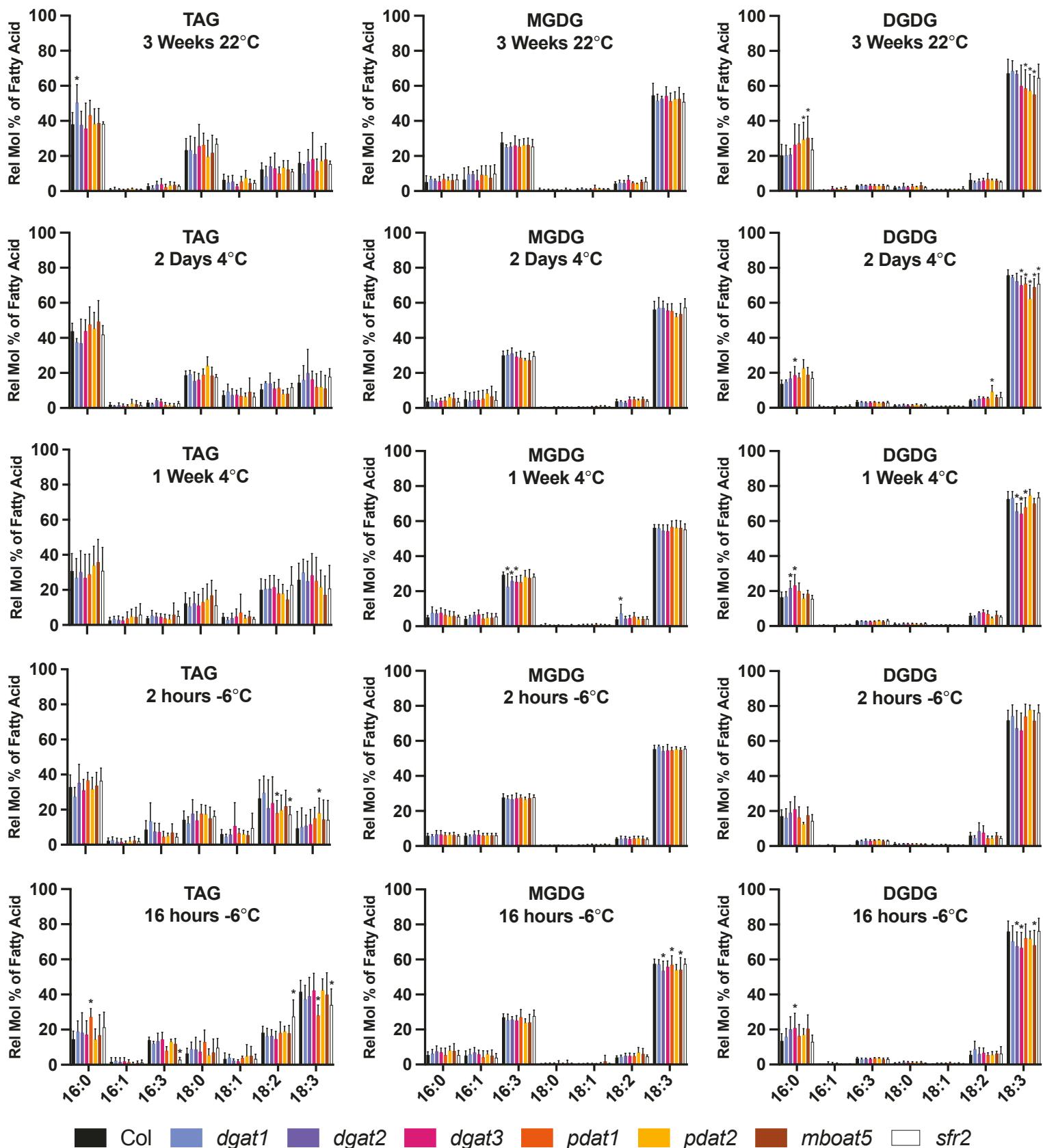
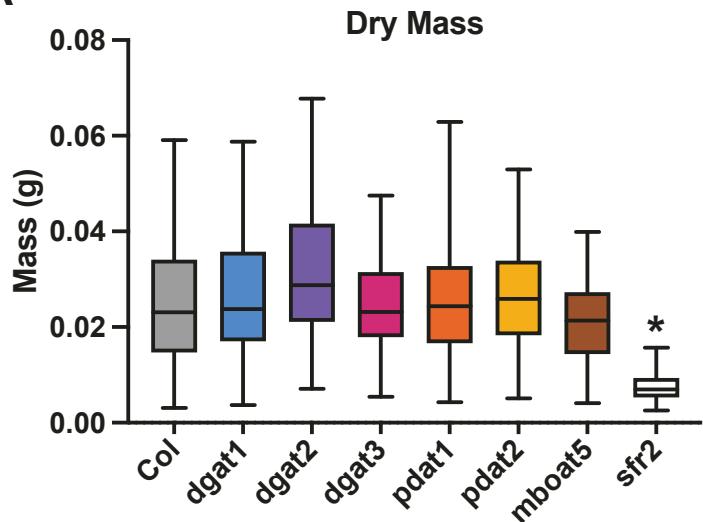
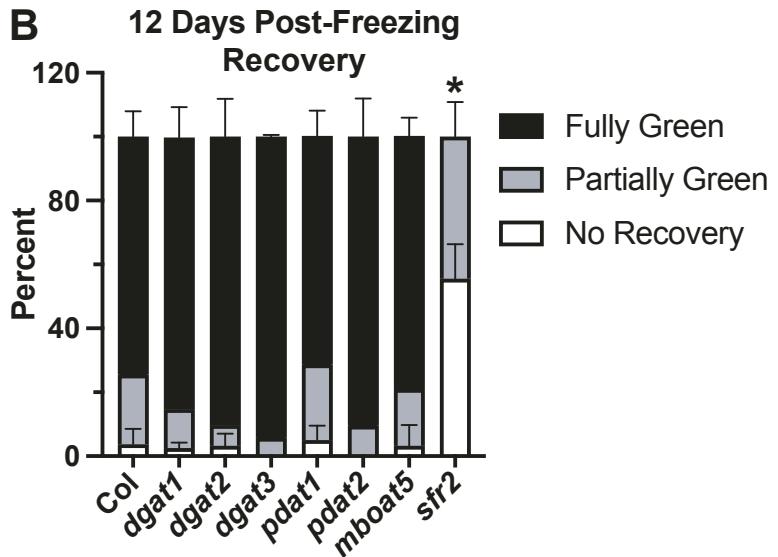

Fig. S2: Line graphs of the relative mole percents of MGDG, DGDG, PC, and TAG in low-temperature step. Line graphs show changes in percent of lipid in the acyltransferase mutants compared to the wild type control. One loss of function mutant is shown per graph. Mole percents used were the same as **Fig. S1**, and overlayed graphs can be seen in **Figure 5**. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch one-way ANOVA compared to wild type control. $n \geq 4$ biological replicates.

Fig. S3: Double bond and saturation index for TAG, MGDG, DGDG, and PC for both the low-temperature step assay, and high-temperature assay. Calculations show were done as described in the *Materials and Methods*. Data includes DBI graphs of *pdat1* TAG, and PC in **Fig. 6** for completeness. Lines above the graphs denote *pdat1* significance at that time point against itself at the start of the assay. Asterisks denote *pdat1* significance to Col at the time point indicated Error bars represent standard deviations, and significance is denoted for $P \leq 0.05$ calculated with Brown-Forsythe and Welch One Way ANOVA compared to wild type control. $n \geq 2$ growth trials with ≥ 2 biological replicates.



Fig. S4: 16:3/18:3 ratios for TAG, MGDG, DGDG, and PC for the low-temperature assay step and the high-temperature assay.
 Fatty acid mole percents for 16:3 and 18:3 were used. This figure also includes the graphs in Fig. 6 for completeness. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch One-Way ANOVA compared to wild type control.

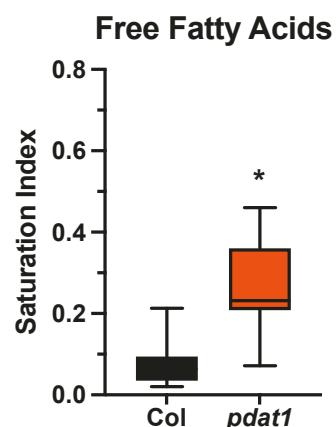
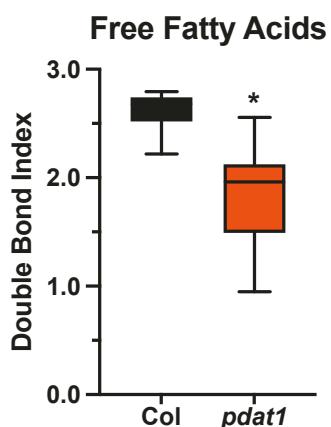
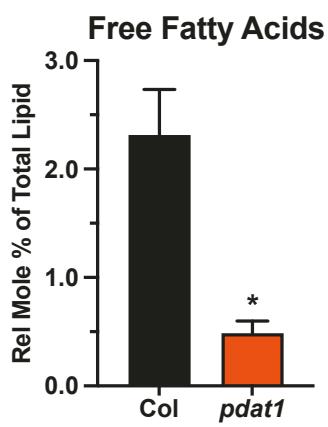
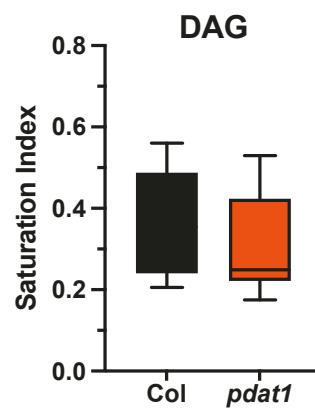
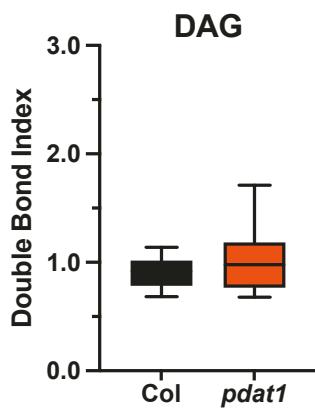
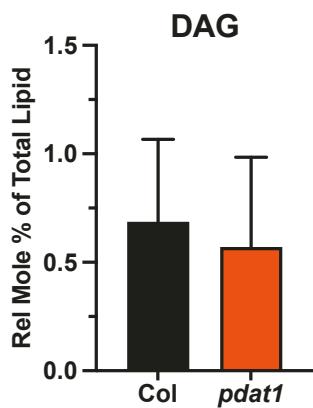
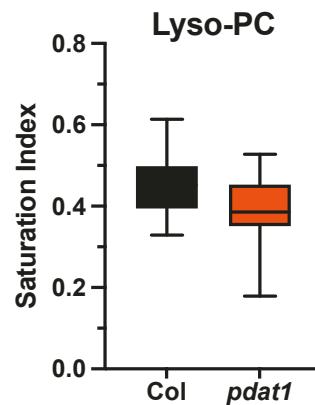
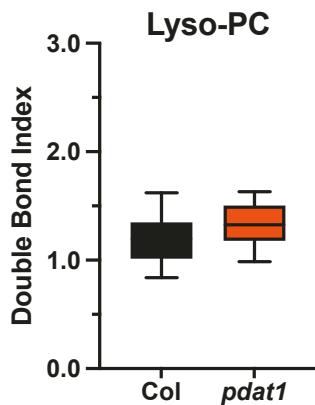
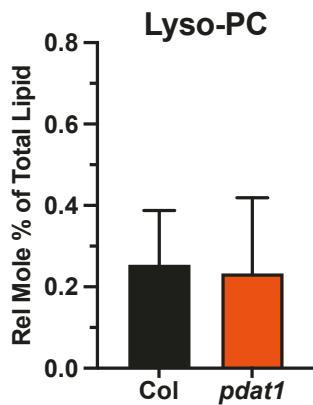









Fig. S5: Relative mole percent of fatty acids for TAG, MGDG, and DGDG following the low-temperature step assay. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch One-Way ANOVA compared to wild type control for each fatty acid species.

Fig. S6: Relative mole percent of fatty acids for PC in the low-temperature step assay and TAG in the high-temperature assay. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with Brown-Forsythe and Welch One-Way ANOVA compared to wild type control for each fatty acid species.

A**B****C**

Fig. S7: All acyltransferase mutants are able to recover after a 12-day period. (A) Dry weight of individual *Arabidopsis* plants for all acyltransferase mutants, wildtype and *sfr2* mutants. (B) Quantification of the survival of the mutants twelve days after freezing based on manual scoring. (C) Photographs of representative pots of recovered mutants taken after twelve days of regrowth. $n \geq 49$ individual plants grown across four growth trials. Error bars show standard deviations, and asterisks show significance of $P \leq 0.05$ using two-way ANOVA compared to wild type control.

Fig. S8: Relative mole percents, double bond, and saturation indices for lyso-PC, DAG, and free fatty acids after sixteen hours of freezing. All samples were taken after treatment with 16 hours at -6°C following the low-temperature step depicted in **Figure 1B**. Error bars represent standard deviations, and asterisks indicate significance of $P \leq 0.05$ calculated with an unpaired t test with Welch's correction. $n \geq 11$ biological replicates taken over four growth trials.

Table S1: Primers used for genotyping loss-of-function mutants

	Forward (5'-3')	Reverse (5'-3')
DGAT1 Salk	CGACCGTCGGTCCAGCTCATCGG	GCGGCCAATCTCGCAGCGATCTTG
DGAT2 Salk	GATATGGGTGGTCCAGAGAGTT	TCAAAGAATTTCAGCTAAGATCATA
DGAT3 Gabbi	CGCTTAAGGCTCAAGTCACAC	TCACAACCTAACGTTGGC
PDAT1 Salk	CATGTGGTGTGCATTTCAG	TTTTGTTTCGGTCTTGTG
PDAT2 Salk	CTTTCTGGCTCATTCATTG	TTCCATAACACCGAGGTATGC
MBOAT5 (AT2) Salk	CGATCAAGAACCTTAAGCCC	GCTGAAATCCAAGCTTGATG
SFR2-3 Salk	GAGCTTGATGTTCTGGA	TTGAACTTGAGCTGTCG
T-DNA Left Boarder Primer for Salk Lines (LBb1.3)	ATTTTGCCGATTCGGAAC	
GABBI Left Boarder	CCCATTGGACGTGAATGTAGACAC	

Supplemental Table S2: Average Scoring Percents of Leaf Damage Two Days Post-Freezing

Score	Col	Average Percents						
		<i>sfr2</i>	<i>dgat1</i>	<i>dgat2</i>	<i>dgat3</i>	<i>pdat1</i>	<i>pdat2</i>	<i>mboat5</i>
Level 1 (least severe)		83%	1%	99%	77%	83%	35%	88%
Level 2		16%	17%	1%	21%	17%	43%	12%
Level 3 (most severe)		1%	82%	0%	1%	0%	23%	1%