

1 Title: Rhythmic lipid and gene expression responses to chilling in panicoid grasses  
2

3 Authors: Sunil K. Kenchanmane Raju<sup>1, \*, †</sup> (kenchanmane@gmail.com), Yang Zhang<sup>1,\*,‡</sup>  
4 (yang.zhang@stjude.org), Samira Mahboub<sup>1,2</sup> (samira.mahboub@unl.edu), Daniel W. Ngu<sup>1</sup>  
5 (dngu2@yahoo.com), Yumou Qiu<sup>3</sup> (yumouqiu@iastate.edu), Frank G. Harmon<sup>4</sup>  
6 (fharmon@berkeley.edu), James C. Schnable<sup>1,5,‡</sup> (schnable@unl.edu), and Rebecca L.  
7 Roston<sup>1,2,‡</sup> (rroston@unl.edu)

8  
9 \* Contributed equally - Sunil K. Kenchanmane Raju and Yang Zhang

10 # Corresponding authors - James C. Schnable and Rebecca L. Roston  
11

12  
13 <sup>1</sup>Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA

14 <sup>2</sup>Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA

15 <sup>3</sup>Department of Statistics, Iowa State University, Ames, IA, USA

16 <sup>4</sup>Plant Gene Expression Center, USDA-ARS, Albany, CA, USA and Department of Plant and  
17 Microbial Biology, University of California, Berkeley, CA, USA.

18 <sup>5</sup>Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA  
19

20 †Present Affiliation: Department of Botany and Plant Sciences, University of California,  
21 Riverside, CA, USA

22 ‡Present Affiliation: St. Jude Children's Research Hospital, Computational Biology, Memphis,  
23 TN, USA

24 Corresponding Authors:

25 James C. Schnable

26 1901 Vine St.

27 Lincoln, NE, 68588

28 402-472-4540

29 [schnable@unl.edu](mailto:schnable@unl.edu)

30

31 Rebecca L. Roston

32 1901 Vine St.

33 Lincoln, NE, 68588

34 402-472-2936

35 [rroston@unl.edu](mailto:rroston@unl.edu)

36

37 **Preprint Servers:** bioRxiv

38  
39 **Date of Submission:** 01/24/2024

40  
41 **Word count: 7645 (Abstract – Discussion)**

42  
43 **HIGHLIGHT**

44  
45 Chilling stress triggers distinct, time-specific lipid and transcriptional responses in cold-tolerant  
46 foxtail millet compared to their non-tolerant relatives, elucidating species-specific adaptations,  
47 and conserved circadian rhythms across plants.

48 **ABSTRACT**

49 Chilling stress threatens plant growth and development, particularly affecting membrane fluidity  
50 and cellular integrity. Understanding plant membrane responses to chilling stress is important  
51 for unraveling the molecular mechanisms of stress tolerance. Whereas core transcriptional  
52 responses to chilling stress and stress tolerance are conserved across species, the associated  
53 changes in membrane lipids appear to be less conserved, as which lipids are affected by chilling  
54 stress varies by species. Here, we investigated changes in gene expression and membrane  
55 lipids in response to chilling stress during one 24 hour cycle in chilling-tolerant foxtail millet  
56 (*Setaria italica*), and chilling-sensitive sorghum (*Sorghum bicolor*), and *Urochloa* (browntop  
57 signal grass, *Urochloa fusca*, lipids only), leveraging their evolutionary relatedness and differing  
58 levels of chilling-stress tolerance. We show that most chilling-induced lipid changes are  
59 conserved across the three species, while we observed distinct, time-specific responses in  
60 chilling-tolerant foxtail millet, indicating the presence of a finely orchestrated adaptive  
61 mechanism. We detected rhythmicity in lipid responses to chilling stress in the three grasses,  
62 which were also present in *Arabidopsis* (*Arabidopsis thaliana*), suggesting the conservation of  
63 rhythmic patterns across species and highlighting the importance of accounting for time of day.  
64 When integrating lipid datasets with gene expression profiles, we identified potential candidate  
65 genes that showed corresponding transcriptional changes in response to chilling stress,  
66 providing insights into the differences in regulatory mechanisms between chilling-sensitive  
67 sorghum and chilling-tolerant foxtail millet.

68 **Key words:** Chilling stress, panicoid grasses, lipid abundance, lipid unsaturation, diel rhythms

69 **Abbreviations:** thin layer chromatography (TLC), Fragments Per Kilobase of transcript per  
70 Million mapped reads (FPKM), differential regulated orthologs (DRO), false discovery rates  
71 (FDR), linear mixed model (LMM), monogalactosyldiacylglycerol (MGDG),  
72 digalactosyldiacylglycerol (DGDG), phosphatidylcholines (PC), triacylglyceride (TAG),

73 phosphatidylglycerol (PG)

74 **Introduction:**

75

76 Climate change has increased the frequency and severity of extreme weather events,  
77 threatening future food supply (Ray et al. 2013). Major crop species important for global food  
78 security, such as maize (*Zea mays*), sorghum (*Sorghum bicolor*), and rice (*Oryza sativa*), are  
79 sensitive to chilling stress owing to their tropical origin, limiting their geographical distribution  
80 and productivity in temperate climates (Lyons 1973; Taylor and Rowley 1971). Chilling stress is  
81 major stress experienced by plants during their lifecycle, hindering energy metabolism and  
82 growth, most notably by reducing the activity of enzymes associated with photosynthesis and  
83 the energy-demanding production of protective proteins and substances (Kaplan and Guy 2004;  
84 Hurry et al. 2002). Moreover, plants must endure daily and seasonal temperature fluctuations  
85 and unexpected extreme variations (Larran, Pajoro, and Qüesta 2023). Plants have devised  
86 various strategies to cope with such environmental challenges.

87

88 At the cellular level, low-temperature stress leads to increased membrane rigidity and impaired  
89 containment of cytosolic contents, resulting in cell death (Zoldan et al. 2012; Matsuo Uemura et  
90 al. 2006). Changes in glycerolipids, major components of cell membranes, include membrane  
91 lipid polyunsaturation (Hugly and Somerville 1992; Miquel et al. 1993), changing the ratio of lipid  
92 head groups, and removing membrane-destabilizing lipids in response to low temperature  
93 (Moellering, Muthan, and Benning 2010; Barnes, Benning, and Roston 2016). The contribution  
94 of unsaturated fatty acids to membrane fluidity at different temperatures and their role in  
95 protecting the photosynthetic machinery from photoinhibition under chilling stress are well  
96 known (Nishida and Murata 1996). However, no consistent changes in membrane lipid  
97 abundance during chilling stress have been reported across species. These discrepancies in

98 changes in lipid compositions or content during stress may be due to differences in the duration  
99 and/or intensity of the applied stress, time-of-day effects, and/or genetic and physiological  
100 differences across species (Kenchanmane Raju et al. 2018).

101

102 Plant responses to these stressful environments can vary greatly at the transcriptional level,  
103 although a core set of transcriptional responses is mostly conserved across species  
104 (Kenchanmane Raju et al. 2018). Notably, most studies of cold tolerance in the Pooideae grass  
105 subfamily of the Poaceae (including wheat [*Triticum aestivum*], barley [*Hordeum vulgare*], and  
106 rye [*Secale cereale*]) have revealed chilling adaptive mechanisms that are not shared by closely  
107 allied subfamilies within the grasses, such as the Ehrhartoideae (which includes rice). This lack  
108 of conservation suggests that different plant lineages have adapted to growth in temperate  
109 environments using distinct genetic and physiological mechanisms. Panicoid grasses,  
110 comprising many important crops such as maize, sugarcane (*Saccharum officinarum*),  
111 switchgrass (*Panicum virgatum*), sorghum, and foxtail millet (*Setaria italica*), exhibit a range of  
112 sensitivities to cold temperatures (Hope and McELROY 1990; Dohleman and Long 2009;  
113 Kenchanmane Raju et al. 2018). The repeated acquisition and loss of chilling tolerance within  
114 this subfamily (Sandve et al. 2008; Pardo and VanBuren 2021) make it an ideal system to study  
115 the conserved and species-specific adaptation strategies for chilling tolerance.

116

117 Sorghum, an important crop in the arid and semi-arid regions of the world, originated in the  
118 semi-arid tropics of Africa and quickly spread into other parts of the world, including India,  
119 China, and the United States (Doggett and Majisu 1968). Due to its tropical origin, sorghum is  
120 susceptible to chilling (Burow et al. 2011). While landraces and wild relatives are important gene  
121 pools for adaptive traits such as biotic stress resistance and abiotic stress tolerance (Brozynska,

122 Furtado, and Henry 2016), the limited availability of standing genetic variation and newer  
123 cropping environments require the transfer of stress adaptation mechanisms from closely  
124 related stress-adapted species. Like sorghum, foxtail millet is also a grain crop domesticated  
125 from a panicoid grass. However, foxtail millet was initially domesticated in northeast China from  
126 a wild grass, green foxtail (*Setaria viridis*) that grows in temperate climates where low-  
127 temperature stress is more common (Yang et al. 2012; G. Zhang et al. 2012; Bennetzen et al.  
128 2012).

129

130 Orthologous genes, even within closely related taxa, can show differential regulation of chilling  
131 stress responsive gene expression between maize and sorghum, or between maize, sorghum  
132 and eastern gamagrass (*Tripsacum dactyloides*) (Y. Zhang et al. 2017; Yan et al. 2019),  
133 suggesting that orthology alone is not a reliable predictor of stress-induced gene expression in  
134 related species (Meng et al. 2021). It can therefore be challenging to narrow down target genes  
135 for chilling-stress tolerance in sorghum and related chilling-sensitive species.

136

137 To overcome these challenges, we designed a time-course experiment to account for potential  
138 time-of-day variation and tested the relationship between chilling-stress tolerance, changes in  
139 membrane glycerolipid contents, and evolutionary relatedness using three panicoid grasses.  
140 Browntop signal grass (*Urochloa fusca*, *Urochloa* hereafter) is a grass closely related to foxtail  
141 millet that is less chilling tolerant. *Urochloa* and sorghum are more distantly related and have  
142 similar susceptibility to chilling stress. In this study, we profiled the changes in membrane lipid  
143 contents and composition and in transcript levels in these three species using paired time-  
144 course measurements of control and chilling-stress conditions. We identified differentially  
145 regulated genes increased in chilling-tolerant foxtail millet, including 3-KETOACYL-COA

146 SYNTHASE 1 (KCS1), known for its effects on chilling stress tolerance. We also showed that  
147 correlating lipid abundance changes with gene expression profiles allowed the identification of  
148 lipid metabolic genes responding to chilling within a species, such as sorghum's  
149 DIGALACTOSYL DIACYLGLYCEROL DEFICIENT 1 (SbDGD1). These genes have potential  
150 application in engineering chilling tolerance in sorghum and related chilling-sensitive grasses.

151 **Materials and Methods**

152 **Plant growth and chilling treatment**

153 Seeds for the reference genotypes for sorghum (*Sorghum bicolor*, *BTx623*), maize (*Zea mays*,  
154 *B73*), *Urochloa* (*Urochloa fusca*, *LBJWC-52*) and foxtail millet (*Setaria italica*, *Yugu1*) were  
155 grown in a Percival growth chamber (E-41L2) with 60% relative humidity, with a 12 h light/12 h  
156 dark photoperiod and a target temperature of 29°C during the day and 23°C at night. Chilling  
157 stress was applied to 12-day-old seedlings, when collars of two leaves are visible. Immediately  
158 at the end of the light period, seedlings were moved to a second growth chamber with identical  
159 photoperiod settings and a target temperature of 6°C. Each sample represents a pool of above-  
160 ground tissue from at least three seedlings. Samples were harvested from the control conditions  
161 and chilling stress treated plants at the designated time points after the onset of chilling stress.  
162 *Arabidopsis* of the Columbia ecotype were planted as described (Barnes et al. 2023), and grown  
163 under a 16h light/8 h dark photoperiod to enhance the effect of initial chilling in this frost-tolerant  
164 species. Chilling stress was applied to 4-week-old rosettes, at the transition to flowering.  
165 Immediately at the end of the light period, seedlings were moved to a second growth chamber  
166 with equivalent identical settings and a target temperature of 6°C

167

168 For lipid analysis, whole shoot tissue of seedlings was removed at soil level,  
169 excluding the coleoptile of grasses. Samples were harvested at 0 min (immediately before

170 reducing the chamber temperature to 6°C), 10 min, 3 h, 6 h, 12 h, and 24 h. The 10-minute  
171 sample was taken 10 after the chamber air temperature reached 6°C, approximately 20 minutes  
172 past time 0. Whole shoot tissue excluding the coleoptile, was collected at the soil level. Due to a  
173 combination of sample loss during processing and outlier analysis, the number of represented  
174 biological replicates changed by the lipid species analyzed (always ≥ 3 biological replicates for  
175 each growth / treatment trial). The tissue was quickly and gently submerged in 1 mL of ice-cold  
176 extraction solvent (2:1:0.1 v/v/v methanol:chloroform:formic acid) in a 2 ml tube and shaken on  
177 a bead beater at 4000 inversions per minute in 30-second intervals with intervening ice  
178 incubations until the tissue was thoroughly disrupted. Lipid extraction continued following a  
179 modified Bligh and Dyer protocol (Mahboub et al. 2021). Following extraction, lipids were  
180 concentrated and stored at -80°C under nitrogen. Lipids were separated as described in Wang  
181 and Benning (Wang and Benning 2011) with the following modifications. A 10% lipid spot was  
182 loaded in the corner of each thin layer chromatography (TLC) plate that did not see solvent  
183 which served as a control for total fatty acids and was used to make internal comparisons.

184

185 A two-dimensional TLC plate was used for separation. In the first dimension, a mixture of  
186 chloroform: methanol: ammonium hydroxide, (130:50:10, v/v/v) was used as solvent and in the  
187 second dimension, chloroform: methanol: acetic acid: water (85:12.5:12.5:4, v/v/v/v) was used  
188 as a solvent. A separate one dimensional thin-layer chromatogram was used to separate non-  
189 polar triacylglycerol, with petroleum ether:diethyl ether:acetic acid (80:20:1, v/v/v) as solvent.  
190 Lipids were identified by retention time compared to standards purchased from Avanti Polar  
191 Lipids. Remaining analysis was precisely done as described in Barnes et al 2016 (Barnes,  
192 Benning, and Roston 2016)

193

194 The statistical analysis of lipid data involved several steps. Outliers were assessed at two levels.  
195 Firstly, for fatty acid abundance, a robust regression of outlier removal (ROUT) analysis was  
196 performed at a 10% threshold using GraphPad v9.5.0 to eliminate any misidentified peaks or  
197 anomalies. Any outliers detected at this step were removed from further analysis. Second, the  
198 relative mole percentages of each lipid were calculated and normalized to the total fatty acids  
199 present. The resulting mole percentages were then screened for outliers using one interquartile  
200 distance from the median for each lipid class for each genotype at each temperature. Asterisks  
201 denote statistical significance ( $p \leq 0.05$ ), determined by fitting a mixed model, with Tukey's  
202 correction for multiple tests. Due to a combination of manual error causing sample loss during  
203 processing and outlier analysis, the exact number of represented biological replicates changed  
204 by the lipid species analyzed, always between 3 and 8 biological replicates for each split among  
205 at least two separate growth trials.

206

207 The double bond index (DBI) was calculated using the formula:  $(X:1) \times 1 + (X:2) \times 2 + (X:3) \times 3 / 100$ ,  
208 where X represents the relative mole % of 16:n and 18:n fatty acids, and n denotes one, two, or  
209 three double bonds. Multiple comparisons were adjusted using Tukey's multiple comparisons  
210 test when comparing between genotypes.

211

## 212 **Measurement of CO<sub>2</sub> assimilation rates**

213 Seedlings were grown and stress treated as above, with the modification that small plastic caps  
214 were placed over sorghum, foxtail millet, and Urochloa seedlings to prevent them from  
215 becoming too tall to fit into the LI-COR measurement chamber. After 0, 1, or 8 days of chilling  
216 treatment, seedlings were allowed to recover in the greenhouse overnight under control

217 conditions and CO<sub>2</sub> assimilation rates were measured the next morning using the LI-6400  
218 portable photosystem unit under the following conditions: PAR 200  $\mu\text{mol mol}^{-1}$ , CO<sub>2</sub> at 400  
219  $\mu\text{mol mol}^{-1}$  with flow at 400  $\mu\text{mol mol}^{-1}$  and humidity at greenhouse conditions. Whole  
220 seedlings readings were measured for sorghum, foxtail millet, and Urochloa after covering the  
221 pots with clay and using the LI-COR's Arabidopsis chamber. Readings for maize were  
222 measured using the leaf clamp attachment which was always placed on the second leaf at a  
223 position 3 cm above the ligule. Leaf area was measured using the LI-3100C area meter.

224

## 225 **RNA isolation and RNA-seq analysis**

226 Total RNA was isolated from paired samples collected at 30 min, 1 h, 3 h, 6 h, 16 h, and 24 h  
227 after the onset of chilling. Library construction was performed following the protocol described  
228 by Zhang et al. 2017 (Y. Zhang et al. 2017). Sequencing was conducted at the Illumina  
229 Sequencing Genomics Resources Core Facility at Weill Cornell Medical College. Raw  
230 sequencing data are available through the NCBI (<http://www.ncbi.nlm.nih.gov/bioproject>) under  
231 accession number SRA: SRP090583 and BioProject: PRJNA344653. Summary statistics for all  
232 the libraries are provided in Table S1. Adapters were removed from the raw sequence reads  
233 using *cutadapt* v1.6. RNA-seq reads were mapped to genome assemblies downloaded from  
234 Phytozome (v13): v3.1 (sorghum) and v2.2 (foxtail millet). RNA-seq reads from each species  
235 were aligned using GSNAp (Wu et al. 2016) and Fragments Per Kilobase of transcript per  
236 Million mapped reads (FPKM) values were obtained using cufflinks v2.2.1 (Trapnell et al. 2010).

## 237 **Syntenic orthologs in sorghum and foxtail millet**

238 A final set of 9778 syntenic orthologous gene pairs between sorghum and foxtail millet was  
239 calculated from the previously published list of syntenic orthologs (Schnable, Zang, and Ngu

240 2016) after filtering for standard deviation < 0.4 and r-square > 0.1 of the FPKM values (**Table**  
241 **S5**). Clustering was performed using ‘correlation’ from R packages ‘fpc’ (“Fpc: Flexible  
242 Procedures for Clustering” n.d., “Finding Groups in Data: Cluster Analysis Extended  
243 Rousseeuw et Al. [R Package Cluster Version 2.1.4]” 2022). To observe treatment effects, the  
244 ratio between treatment FPKM and control FPKM was determined for the time course. A  
245 permutation test was performed by keeping the sorghum gene constant and randomly assigning  
246 a different foxtail millet gene 100 times to determine the appropriate r2, standard deviation, and  
247 number of clusters. Syntenic orthologs found within the same clusters were considered co-  
248 expressed (CEO), while syntenic orthologs found in different clusters were considered as  
249 differentially expressed orthologs (DEO)

250

### 251 **Identification of differentially regulated orthologs**

252 The FPKM values were measured from three biological replicates each for sorghum and foxtail  
253 millet under control and cold treatment at six time points (30 min, 1 h, 3 h, 6 h, 16 h, and 24 h).  
254 Similar to the cluster analysis, the treatment over control (T/C) FPKM ratios at each time point  
255 for sorghum and foxtail millet were calculated and treated as a response. A linear mixed model  
256 (LMM) was used to model the T/C ratios as a relationship between the species identity and  
257 sampling time under chilling stress on the same set of syntenic orthologous gene pairs used in  
258 the cluster analysis. Let  $y_{ijkl}$  denote the T/C ratio of the  $i$ th gene from the  $k$ th species and the  $l$ th  
259 biological replication at the  $j$ th time point, where  $j = 1-6$  to represent the six time points,  $k = 1$ , or  
260 2 to represent the two species: sorghum and foxtail millet, and  $l = 1, 2$ , or 3 to represent the  
261 three biological replicates. There was a total of six biological replicates in the study, three from  
262 sorghum and three from foxtail millet. We modeled the biological replication as a random effect.  
263 For the  $i$ th gene, conditioned on this random replication effect, the response  $y_{ijkl}$  is normally

264 distributed with mean  $\mu_{ijkl}$  and variance  $\sigma^2$ . The expected T/C ratio  $\mu_{ijkl}$  was linearly related to  
265 the species, time and their interactions as  $\mu_{ijkl} = \nu_i + \alpha_{ij} + \beta_{ik} + \gamma_{ijk} + \eta_{ijkl}$  for  $\eta_{ijkl} \sim N(0, \theta^2)$ ,  
266 (1) where  $\nu_i$  is the intercept;  $\alpha_{ij}$  and  $\beta_{ik}$  stand for the main effect of time and species for the  $i$ th  
267 gene respectively;  $\gamma_{ijk}$  is the interaction between time and species, denoting different patterns of  
268 expression between the two species over time; and  $\eta_{ijkl}$  is the random effect for the biological  
269 replicates, which is assumed to be normally distributed with mean 0 and variance  $\theta^2$ . Note  
270 that the interaction effect  $\gamma_{ijk}$  in the model (1) stands for the difference of the T/C ratios over  
271 time between sorghum and foxtail millet. The non-zero interaction effect represents different  
272 patterns of T/C ratios changing over time between the two species, while the zero  $\gamma_{ijk}$  indicates  
273 a similar trend of the responses of the two species. Those genes with nonzero interaction effect  
274 are defined as differential regulated orthologs (DRO) and the ones with zero interaction effect  
275 are called comparable regulated orthologs (CRO). In order to identify the DROs, we considered  
276 the hypotheses  $H_{i,0}: \gamma_{ijk} = 0$  for all  $j, k$  vs.  $H_{i,a}: \gamma_{ijk} \neq 0$  for some  $j, k$  (2) for each gene.  
277 Estimation of  $\gamma_{ijk}$  and its associated standard error were obtained by the '*lmer*' function in the R  
278 package *lme4*. Wald test statistic was conducted for the hypothesis (2), and the associated p-  
279 value for each gene was calculated. Benjamini and Hochberg multiple test correction was  
280 applied to control for false discovery rates (FDR)  $> 0.001$ . Those pairs with FDR  $< 0.001$  were  
281 considered as DRO, and those with FDR  $> 0.01$  were considered as CROs.

282

### 283 **Lipid genes in sorghum and foxtail millet.**

284 A manually curated list of *Arabidopsis* genes known to be involved in lipid pathways was first  
285 created using the Aralip database (<http://aralip.plantbiology.msu.edu/pathways/pathways>). The  
286 sorghum and foxtail millet genes were then matched to the *Arabidopsis* lipid genes using the  
287 published best *Arabidopsis* hits for the sorghum and foxtail millet genome on Phytozome (v13).

288 Each sorghum and foxtail millet hit was matched with their respective syntenic ortholog in the  
289 other species, creating a list of syntenic orthologous pairs of lipid genes in sorghum and foxtail  
290 millet (Table S9).

291

292 **Gene expression and lipid heatmaps**

293 FPKM values and lipid abundance and unsaturation were normalized by linear transformation  
294 such that the minimum value within the time series turned into a zero and maximum values are  
295 turned to one. All other values get transformed into decimals between 0 and 1. Heatmaps were  
296 generated using heatmap2 function in R.

297

298 **Identification of rhythmicity in lipid abundance and expression of lipid related genes.**

299 Rhythms in lipid abundance were identified with the 'circa\_single' method in CircaCompare  
300 (package version 0.1.1) in R (version 4.3.0) with default settings (Parsons et al. 2020).  
301 Differences in lipid abundance waveforms were detected with the 'circacompare' method in the  
302 same package. FPKM values representing expression at 3-hour intervals over 72-hours for the  
303 356 lipid-metabolism-associated genes that were syntenic between sorghum and foxtail millet  
304 were derived from previously published transcriptomes of comparably staged third-leaf-stage  
305 seedlings from sorghum, foxtail millet, and maize (Lai et al. 2020). Genes in the 356  
306 metabolism-associated data set exhibiting differential rhythmicity between temperature  
307 treatments (i.e., cold treatment vs. no treatment) or genotypes (sorghum vs. foxtail millet) were  
308 identified with the R package *LimoRhyde* (Singer and Hughey 2019) in Bioconductor  
309 (Gentleman et al. 2004). *LimoRhyde* reports Benjamini and Hochberg q-values(Benjamini and  
310 Hochberg 1995) of the rhythmicity of gene and differential rhythmicity for genes shared

311 between the two data sets. Statistical significance for either rhythmicity or differential rhythmicity  
312 was set at a q-value of  $\leq 0.05$ . Foxtail millet genes were keyed to their sorghum synteologs for  
313 *LimoRhyde* identification of differential rhythmicity between sorghum and foxtail millet genes.

314

315 **Results:**

316 **Foxtail millet is chilling tolerant compared to other panicoid grasses.**

317 Chilling stress causes structural transitions in biological membranes of cold-susceptible plants.  
318 These membrane changes cause respiration abnormalities and photosynthetic  $\text{CO}_2$  and  $\text{O}_2$   
319 exchange rates(Lyons 1973; Larcher 1995). Lower photosynthesis for prolonged periods,  
320 continuing for hours or days, is an essential identifier of chilling susceptibility(Larcher 1995).  
321 Here, we used,  $\text{CO}_2$  assimilation rates to quantitatively assess differences in chilling tolerance  
322 among closely related panicoid grasses (**Figure 1A**)(Y. Zhang et al. 2017). Accordingly, we  
323 measured 12-day-old seedlings grown under control conditions (29°C during the day and 23°C at  
324 night) and after exposure to chilling treatment (6°C) in growth chambers for one or eight days.  
325 After eight days of chilling stress, sorghum, Urochloa, and maize showed lower values for  $\text{CO}_2$   
326 assimilation compared to the control time point, indicating impaired photosynthetic activity. In  
327 fact, sorghum and Urochloa seedlings had dead leaves, which was reflected in the negative  $\text{CO}_2$   
328 assimilation values (**Figure 1B**). Foxtail millet showed moderate impairment in its  
329 photosynthetic rate as its  $\text{CO}_2$  assimilation measurements remained at about 55% of control  
330 levels even after eight days of stress, indicating higher tolerance to chilling (**Figure 1B**)  
331 consistent with its native range and center of domestication in Northern China(H. Lu et al. 2009;  
332 G. Zhang et al. 2012). Based on these photosynthetic measurements, we classified the four  
333 panicoid species into two categories: chilling-susceptible - sorghum, Urochloa, and maize, and  
334 chilling-tolerant - foxtail millet. Prolonged stress clearly differentiated tolerance levels in foxtail  
335 millet. Following two weeks of chilling stress at 6°C and two days of return to normal growing

336 temperatures, Urochloa and sorghum seedlings were dead while foxtail millet seedlings looked  
337 healthier with fewer necrotic leaves (**Figure 1C**).

338

339 **Foxtail millet membranes have distinct responses to chilling stress.**

340 Many cellular membrane systems are damaged in response to chilling (Nishida and Murata  
341 1996; Lyons 1973), and changes in membrane lipid compositions are required to achieve  
342 chilling tolerance (M. Uemura, Joseph, and Steponkus 1995; Zoldan et al. 2012). We profiled  
343 membrane lipids from sorghum, Urochloa, and foxtail millet seedlings grown under control and  
344 chilling-stress conditions. We hypothesized that patterns unique to foxtail millet and not in both  
345 sorghum and Urochloa potentially stem from the difference in chilling tolerance among the  
346 species. Likewise, patterns in foxtail millet that are shared by Urochloa but not sorghum are  
347 likely to reflect their closer evolutionary relationship. We collected samples for lipid profiling at  
348 10 min, 3 h, 6 h, 12 h, 16 h, and 24 h following the onset of chilling stress. Of the 11 lipids  
349 measured (**Table S1**), nine lipids exhibited 24-hour rhythmic accumulation (rhythmic hereafter)  
350 in at least one species (**Table S2**) (Singer and Hughey 2019). In foxtail millet, all three major  
351 membrane lipids, monogalactosyldiacylglycerol (MGDG, LimoRhyde, q-value = 0.07),  
352 digalactosyldiacylglycerol (DGDG, LimoRhyde q-value = 0.04), and phosphatidylcholines (PC,  
353 LimoRhyde q-value = 0.03) were found to be rhythmic (Figure 2, Table S2). PC was rhythmic in  
354 all three species, while triacylglyceride (TAG) and phosphatidylglycerol (PG) were rhythmic in  
355 sorghum and Urochloa. Major lipids such as DGDG and PC were rhythmic in foxtail millet and  
356 Urochloa (**Figure 2A**), suggesting a strong influence of genetic relatedness on major lipid  
357 abundance patterns. However, a foxtail millet-specific increase in MGDG abundance was  
358 observed at 24 hr post chilling stress compared to sorghum and Urochloa (p-value = 0.003 and  
359 p-value = 0.004, respectively) (**Figure 2A**). Further, we tested the difference in rhythmicity in PC

360 and DGDG between species using CircaCompare analysis (Parsons et al. 2020). The time at  
361 which the metabolites (response variable) reach peak abundance (phase) is significantly  
362 different for PC in all three species (**Table S3**). Mesor, a rhythm-adjusted mean, is significantly  
363 different in foxtail millet compared to sorghum (p-value = 0.001) and Urochloa (p-value =0.006).  
364 We also examined the variation in rhythmicity of lipid saturation levels among species. In foxtail  
365 millet, DGDG, MGDG, PC, and total saturation exhibited significant rhythmicity, whereas in  
366 Urochloa only PC and total saturation showed significant rhythmicity. In sorghum, only total lipid  
367 saturation displayed significant rhythmicity (**Table S3**). These results show that rhythmic lipids  
368 across species differ in their rhythmicity or peak and mesor values suggesting species-specific  
369 control of rhythmicity in lipid content and composition.

370

371 Similar headgroup and fatty acid tail sizes in lipids like PC and DGDG favor strong interactions  
372 that stiffen membranes during cold stress, while smaller headgroups like MGDG's promote  
373 fluidity at lower temperatures (**Figure 2C**). We initially expected a dip in PC and DGDG levels  
374 alongside corresponding climbs in PE and MGDG during chilling but observed no such trend  
375 within the first 24 hours for any species (**Figure 2A, Figure S1**). This prompted us to shift our  
376 focus to fatty acid unsaturation, as it affects the head-to-tail size ratio and influences membrane  
377 fluidity. Further, low temperature-induced increases in fatty acid polyunsaturation of membrane  
378 lipids are associated with greater membrane fluidity and increased chilling tolerance (Quinn,  
379 Joo, and Vigh 1989; Miquel et al. 1993). We detected significant differences in DGDG  
380 unsaturation levels in foxtail millet compared to Urochloa following 3 h of chilling stress and  
381 relative to Urochloa and sorghum at 6 h of chilling stress, indicating a foxtail millet-specific early  
382 stress response (**Figure 2B, Table S4**). We observed similar species-specific differences in lipid  
383 unsaturation levels for minor lipids such as phosphatidylethanolamine (PE), phosphatidylinositol  
384 (PI), phosphatidylglycerol (PG), phosphatidylserine (PS), and sulfoquinovosyldiacylglycerol

385 (SQDG) (**Figure S1**). The total lipid unsaturation index remained high for sorghum throughout  
386 the time course, while foxtail millet and Urochloa were characterized by lower unsaturation near  
387 the end of the time course (**Figure 2D, Table S4**). Thus, neither the bulk changes in lipid head  
388 groups nor unsaturation in these species can explain the increased low-temperature tolerance  
389 of foxtail millet in the first 24 hours of chilling.

390

391 **Transcriptional changes in lipid metabolism genes are associated with lipid abundance**  
392 **change.**

393 In previous work, we have shown that lipid pathway genes were differentially regulated in  
394 temperate-adapted *Tripsacum dactyloides* compared to maize and sorghum in response to  
395 chilling stress and were enriched among genes experiencing rapid rates of protein sequence  
396 evolution in *T. dactyloides* (Yan et al. 2019). To examine whether transcriptional changes in lipid  
397 metabolism genes match the observed patterns of lipid changes between chilling-tolerant foxtail  
398 millet and chilling-sensitive sorghum, we collected samples from sorghum and foxtail millet for  
399 transcriptome sequencing (RNA-seq) at 30 min, 1 h, 3 h, 6 h, 16 h, and 24 h after the onset of  
400 chilling stress, as well as from paired control samples not exposed to chilling stress, collected at  
401 the same time points. We employed a conventional correlation co-expression clustering method  
402 and a linear mixed model (LMM) based method to understand the differences and  
403 commonalities in how sorghum and foxtail millet respond to chilling stress at the transcriptional  
404 level (see Methods).

405

406 We used a set of 16,796 syntenic orthologous gene pairs conserved between sorghum and  
407 foxtail millet (25). Of these, 9,778 gene pairs passed an expression data quality filter of standard

408 deviation < 0.4 and r-square > 0.1 (**Table S5**, see Methods). Of this filtered set, 2,233 gene  
409 pairs (**Table S6**) exhibited a significant species \* treatment interaction effect (multiple testing  
410 corrected false discovery rate [FDR] < 0.001(Benjamini and Hochberg 1995), indicating  
411 differences in the chilling stress-induced transcriptional response of orthologous genes between  
412 the two species. In parallel, we applied conventional correlation clustering analysis to identify  
413 co-expressed syntenic orthologous gene pairs in sorghum and foxtail millet. We used the ratio  
414 of expression values between treatment and control conditions for clustering analysis. Using a  
415 permutation test, we defined 16 clusters (see methods; (**Figure S2; Table S7**) and identified  
416 2,245 syntenic orthologous genes in different clusters as being co-expressed orthologs. We  
417 classified the remaining 7,533 syntenic orthologs as non-co-expressed orthologs and referred to  
418 them as correlation cluster - differentially regulated orthologs (CC-DROs, Table S8). Clusters 2,  
419 4, 6, and 14 had more sorghum genes, while clusters 1, 3, 5, 7, 8, 9, 10, 11, and 13 have higher  
420 proportions of foxtail millet genes. Clusters 12, 15, and 16 had a similar number of genes from  
421 sorghum and foxtail millet (**Table S7**). Clusters 1, 3, 6, and 7 contained genes up-regulated at 6  
422 hr into stress, indicating a possible role in early chilling-stress response. We illustrate the  
423 divergence in transcriptional responses to chilling between syntenic gene pairs in a Circos plot,  
424 in which lines that cross over between groupings in the center of the chart represent genes that  
425 are syntenic orthologs and have distinct patterns of gene expression between foxtail millet and  
426 sorghum (**Figure S2**).

427

428 We then identified high-confidence differentially regulated orthologs (HC-DROs) by taking the  
429 overlap of CC-DROs identified by the clustering method and the DROs identified with LMM  
430 (**Table S9**). We determined that 1,708 syntenic orthologous gene pairs overlap in the two sets,  
431 which we further used for gene ontology term enrichment (GO) analysis. GO analysis of these  
432 1,708 HC-DRO pairs revealed enrichment for two GO categories: 'stress response' and

433 'macromolecule metabolic process'. In validation of our focus on lipids, we observed an  
434 enrichment for the GO metabolic process category, 'lipid metabolic process' (GO:0006629, p-  
435 value=0.003, **Table S10**).

436

437 We then defined a set of *a priori* candidates from the most likely set of *Arabidopsis* (*Arabidopsis*  
438 *thaliana*) lipid genes corresponding to fatty acid and glycerolipid metabolism from the AraLipid  
439 database (<http://aralip.plantbiology.msu.edu/pathways/pathways>), and a corresponding set of  
440 356 sorghum-foxtail millet gene pairs homologous to these *Arabidopsis* genes with syntenic  
441 orthologs in both sorghum and foxtail millet. (**Table S11**). The overall gene expression patterns  
442 of these 356 gene pairs revealed that lipid-related genes are mostly up-regulated under chilling  
443 treatment in chilling-tolerant foxtail millet, but not in sorghum. Of the 356 lipid-related gene pairs,  
444 34 showed differential responses to chilling stress between sorghum and foxtail millet, with  
445 pronounced up-regulation of lipid-related gene expression in foxtail millet exposed to chilling  
446 stress (**Figure 3, Table S12**). One example of such a differentially regulated ortholog in  
447 sorghum and foxtail millet is provided by *3-KETOACYL-COA SYNTHASE 1* (*KCS1*), encoding  
448 an enzyme in the fatty acid elongation pathway for wax biosynthesis and involved in chilling  
449 tolerance in *Arabidopsis* (Chen et al. 2020). The sorghum ortholog of *KCS1*, Sobic.001G438100,  
450 was down-regulated throughout the chilling-stress time course. However, the *KCS1* ortholog in  
451 the chilling-tolerant foxtail millet, Seita.9G470700, was upregulated at later time points (**Figure**  
452 **3**), suggesting that the differential regulation of *KCS1* ortholog expression between sorghum  
453 and foxtail millet may be leading to the differences in chilling tolerance between the two species.

454

455 **Gene expression correlation with lipid buildup and breakdown**

456 We asked whether changes in the expression of genes in lipid pathways in foxtail millet and  
457 sorghum were consistent with changes in lipid abundance and saturation. To this end, we  
458 combined time-course lipid and gene expression profiles to understand how differential gene  
459 expression in these two species affects lipid abundance and saturation under chilling stress,  
460 using only shared time points between the two datasets. A diagram of the glycerolipid  
461 biosynthesis pathway is shown in **Figure 4A**. Looking at the sorghum ortholog of *Arabidopsis*  
462 *DIGALACTOSYL DIACYLGLYCEROL DEFICIENT 1* (*DGD1*), Sobic.006G075100, its  
463 expression profile had a positive correlation with DGDG accumulation during chilling  
464 (Pearson's correlation coefficient (PCC  $r = 0.85$ ,  $p$ -value = 0.03). However, the expression of  
465 the *DGD1* ortholog in foxtail millet was not correlated with DGDG accumulation (**Figure 4B**).  
466 Similarly, the expression of *NON-SPECIFIC PHOSPHOLIPASE C1* (*NPC1*) orthologs in  
467 sorghum and foxtail millet was positively correlated with PE accumulation during chilling (PCC  $r$   
468 = 0.79,  $p$ -value = 0.06; PCC  $r = 0.84$ ,  $p$ -value = 0.03, respectively). However, the expression of  
469 *NPC2*, *NPC6*, and *PHOSPHOLIPID N METHYLTRANSFERASE* (*PLMT*) was also positively  
470 correlated with PE accumulation in sorghum but not in foxtail millet (**Figure 4C**). Notably, we  
471 detected correlations between gene expression and lipid contents for lipids with species-specific  
472 changes in lipid abundance, such as MGDG and DGDG, as shown in **Figure 2** and **Figure 4B**.

473

474 The accumulation of triacylglycerols (TAGs) in plants arises from multiple sources (Xu and  
475 Shanklin 2016; Du and Benning 2016) and TAGs are important for low-temperature tolerance  
476 (Klińska-Bachor et al. 2023; J. Lu et al. 2020; Arisz et al. 2018). Correlating gene expression  
477 patterns with TAG abundance was expected to shed light on the potential source of TAG during  
478 the chilling response. The expression levels of the foxtail millet ortholog to *Arabidopsis LIPID*  
479 *PHOSPHATE PHOSPHATASE 2* (*LPP2*), Seita.4G217800, showed a significant and positive  
480 correlation with lipid abundance in TAG accumulation during chilling stress response in foxtail

481 millet (PCC  $r = 0.86$ , p-value = 0.003). By contrast, the expression levels of the sorghum  
482 ortholog to LPP2, Sobic.010G190300, showed no significant correlation with TAG accumulation  
483 (**Table S13**). This finding suggests that, at least in foxtail millet, phospholipids are the primary  
484 source of chilling-stress-induced TAG accumulation. A list of specific orthologs in foxtail millet  
485 and sorghum whose expression levels were significantly correlated with the buildup and  
486 breakdown of each lipid species is provided in **Tables S13 and S14**.

487 **Conservation of chilling-induced changes in lipid composition and rhythmicity in**  
488 **Arabidopsis**

489 Previous reports of lipid diel rhythmicity, or rhythmicity on a 24-hour cycle, described changes of  
490 specific lipids under normal growing conditions in *Arabidopsis* (Scheu et al. 2012, Nakamura et  
491 al. 2014). To test if differences in rhythmicity were observable between normal and chilling  
492 conditions, we quantified representative lipids from *Arabidopsis* seedlings across a time-course  
493 with paired control samples and chilling-stress samples collected immediately before chilling  
494 stress (0 h), and after 2 h, 6 h, 10 h, 14 h, 18 h, 22 h, and 26 h of stress. DGDG levels remained  
495 constant during normal conditions or chilling stress, whereas MGDG levels were slightly higher  
496 upon chilling stress compared to control conditions, reaching statistical significance at 22 h and  
497 26 h into stress (**Figure 5A**). This increase in MGDG levels at the late time points was similar to  
498 the significant increase in MGDG after 24 h of exposure to stress in chilling-tolerant foxtail millet  
499 compared to chilling-susceptible sorghum and *Urochloa* (**Figure 2**). PC levels increased and  
500 remained higher across the entire time course (**Figure 5A, Table S15**). However, PC saturation  
501 under chilling stress conditions was only distinguishable from control samples at a few time  
502 points (**Figure 5B, C**). We detected significant rhythmicity in MGDG levels in control conditions  
503 (Table S16, rhythmic p-value = 0.005) using the 'circa\_single' method in CircaCompare analysis  
504 (Parsons et al. 2020), and the pattern differed by the end of the 24 hours sufficiently to decrease  
505 the rhythmicity prediction below significance. Similar rhythmicity changes were observed for

506 DGDG and PC saturation levels (**Figure 5B**). CircaCompare analysis supported the significance  
507 of DGDG saturation rhythmicity during chilling (**Table S16**, rhythmic p-value = 0.017), but not  
508 under control conditions, and PC saturation rhythmicity during control (**Table S16**, rhythmic p-  
509 value = 0.013), but not during chilling conditions. Interestingly, the amplitudes of major lipids –  
510 MGDG, DGDG, and PC were much lower in Arabidopsis compared to the three grasses. These  
511 results suggest the conservation of chilling tolerance-induced changes in lipid content and  
512 composition and rhythmic patterns of lipids across grasses and Arabidopsis despite 150 million  
513 years of divergence between monocots and eudicots (Brendel, Kurtz, and Walbot 2002).

514 **Lipid-related genes exhibit expression rhythmicity.**

515 The conservation of chilling-induced lipid changes implied that chilling tolerance may have  
516 evolved in response to daily rhythms in temperature, and then adapted to seasonal variation  
517 (Fig. 5D). To determine which sorghum and foxtail millet lipid-related genes exhibit 24-hour  
518 rhythms, we examined the patterns of 356 sorghum-foxtail millet lipid-related gene pairs in a  
519 previously published 72 h RNA-seq time-course (Lai et al. 2020). We identified 224 sorghum  
520 and 189 foxtail millet genes in this set as being rhythmically expressed. Of these, 145 pairs  
521 were rhythmic in both sorghum and foxtail millet. We then used the *LimoRhyde* package (Singer  
522 and Hughey 2019) to identify those genes with rhythmic expression under control conditions in  
523 our data sets. This analysis indicated that 131 sorghum and 204 foxtail millet lipid-related genes  
524 had rhythmic expression patterns under control conditions (**Table S17**). Further, we employed  
525 *LimoRhyde* to test for differences in rhythmic expression, or differential rhythmicity (DR), for  
526 each gene between the control and chilling treatments in sorghum and foxtail millet. We  
527 identified 142 foxtail millet lipid-related genes and 101 sorghum lipid-related genes displaying  
528 differential rhythmicity between the control and chilling treatments (**Table S17**). Among the 58  
529 lipid-related gene pairs that showed DR between control and chilling stress in both sorghum and  
530 foxtail millet, 36 showed rhythmic expression under control conditions in both species (**Figure**

531 **6A**). These lipid-related gene pairs are rhythmic genes that change their rhythmicity patterns  
532 under chilling treatment and likely represent shared targets in sorghum and foxtail millet for  
533 chilling stress-induced alterations in expression.

534 An example of such a lipid-related gene whose rhythmic expression under control conditions is  
535 altered during chilling stress in both sorghum and foxtail millet was *DGD1* (**Figure 6B, C**).  
536 Sorghum and foxtail millet *DGD1* showed similar rhythmic patterns of expression under control  
537 conditions. However, their rhythm and magnitude of expression change significantly during  
538 chilling stress in both species. Of note, *DGD1* was identified as a differentially regulated  
539 ortholog in **Figure 3**. In addition, *SbDGD1* expression during chilling stress was positively  
540 correlated with DGDG abundance in sorghum. The foxtail millet *DGD1* ortholog did not show  
541 such a correlation, suggesting species-specific changes in their response to chilling stress.  
542 These results indicate that differences in the diel regulation of lipid-related genes in sorghum  
543 and foxtail millet may lead to differential responses to chilling stress.

544 **Discussion:**

545 Panicoid grasses represent an interesting clade with repeated gain or loss of chilling tolerance,  
546 reflecting parallel adaptation strategies in different lineages within the clade. Using  
547 representative chilling-susceptible sorghum and chilling-tolerant foxtail millet allowed us to  
548 identify changes to transcript and lipid levels that are likely to be functionally linked to variation  
549 in chilling tolerance between the related species. We included *Urochloa*, a chilling-sensitive  
550 panicoid grass that is more closely related to foxtail millet, as a control for the large evolutionary  
551 divergence between foxtail millet and sorghum.

552 Here, we assembled time course datasets for transcript levels and lipid metabolic profiling in  
553 three panicoid grasses with different genetic relatedness and tolerance to chilling stress to  
554 understand whether and how changes in the composition of membrane lipids and

555 corresponding changes in gene expression contribute to chilling tolerance in foxtail millet. Most  
556 changes in lipid content and composition were consistent across the three species (**Figure 2A,**  
557 **B, D**), likely representing shared responses to chilling stress due to their genetic relatedness.  
558 Urochloa appears to behave more like foxtail millet than it does like chilling-susceptible  
559 sorghum, likely an effect of its short evolutionary distance compared to foxtail millet. By  
560 comparing sorghum to Urochloa, we were able to tease out a small subset of lipid metabolic  
561 changes that are unique to foxtail millet, the most chilling tolerant panicoid grass tested in this  
562 study (**Figure 2**). These results also indicate that lipid unsaturation is unlikely to be the source  
563 of chilling tolerance in foxtail millet, as it is similarly adjusted in all three species during the first  
564 24 hours of chilling (**Figure 2B, S2**).

565 There is little consensus in reports of changes in lipid content and composition in response to  
566 cold stress across land plants (Kenchannane Raju et al. 2018). These discrepancies in lipid-  
567 related changes may reflect inherent genetic and physiological differences in how individual  
568 species respond to chilling stress; alternatively, they may stem from varying experimental  
569 designs and variation due to sampling time. Evidence is fast emerging for the role of circadian  
570 clock regulation in coordinating dynamic plant responses to daily and seasonal environmental  
571 fluctuations (Panter et al. 2019; Espinoza et al. 2010). However, daily rhythms in lipid  
572 metabolism had not previously been reported for important clades of crops like panicoid grasses  
573 under chilling conditions. Notably, rhythmic changes in lipid composition and gene expression  
574 during chilling stress are not similar across species, suggesting that a general strategy is not to  
575 stop or slow down the circadian clock during stress, rather plants may have developed species-  
576 specific strategies to overcome these challenges. Our time-series dataset of changes affecting  
577 lipids during chilling stress in three grasses allowed us to uncover rhythmic patterns of lipid  
578 abundance and unsaturation. Moreover, our lipid dataset reveals chilling-tolerance-related  
579 changes in lipid abundance and unsaturation at specific time points, potentially explaining part

580 of the difficulty in extracting conserved patterns for lipids across species in previous reports  
581 involving one or a few time points. We also detected rhythmicity in the expression of lipid  
582 metabolic genes in both sorghum and foxtail millet. The rhythmic nature of changes in lipids and  
583 specific changes during chilling stress were similar between grasses and *Arabidopsis*, in  
584 contrast to other published studies that show differences. These findings highlight the  
585 importance of time-series datasets to account for diel cycles in uncovering conserved features  
586 of chilling-stress responses across large phylogenetic distances.

587 The diel variation in lipid abundance observed in *Arabidopsis* (**Figure 5A**) was roughly half as  
588 intense as that observed in the panicoid grasses (**Figure 2A**). This disparity raises the question:  
589 why do grasses exhibit such pronounced fluctuations in lipidome composition relative to  
590 *Arabidopsis*? While previous studies in maize, a related panicoid grass, highlight a rhythmic  
591 accumulation of lipids and lipid precursors (Li et al. 2020), a potential explanation for the  
592 stronger amplitudes in grasses may lie in their C4 photosynthetic architecture. Long et al. (1999)  
593 demonstrated higher peak photosynthetic activity in C4 species, and photosynthate can  
594 theoretically be directly converted into lipids (Clark and Schwender 2022). Notably, engineered  
595 sorghum strains can produce substantial amounts of lipid (Vanhercke et al. 2019). This  
596 potentially higher lipid influx in grasses could explain the more pronounced -diel oscillations  
597 observed. Additionally, our inability to detect consistent rhythmicity in all major lipids of  
598 *Arabidopsis* may be linked to its overall lower amplitude. However, a definitive understanding of  
599 the species-specific variation in lipidome dynamics requires further comparative studies  
600 encompassing both transcriptomes and lipidomes, preferably across diverse genotypes and  
601 chilling stress conditions with many time points.

602 One of our most intriguing observations was the diel variation in fatty acid double bond content,  
603 observed in both, panicoid grasses and *Arabidopsis* (**Figure 2D, 5C, Tables S3, S4, S15, S16**).  
604 Manipulating desaturase activity to increase unsaturation is a proven strategy for boosting low-

605 temperature tolerance in various plant species, including grasses and *Arabidopsis* (Wang 2019,  
606 Wang 2021, Shi 2018). Similarly, loss of desaturase activity reduces plant low-temperature  
607 tolerance (Kunst 1989, Hugly 1992, Miquel 1993, Chen 2013). However, the relationship  
608 between fatty acid unsaturation and low temperature is more nuanced than this implies, as  
609 analysis of ten published low-temperature treatments revealed a decrease in the double bond  
610 index with dropping temperatures (Kenchannane Raju et al. 2018). In our hands, foxtail millet  
611 and *Urochloa* exhibited a transient rise in total lipid double bond index within the first 10 minutes  
612 of chilling exposure, potentially reflecting an adaptation to initial membrane stiffening (**Figure**  
613 **2D, Figure S4, Table S4 S15**). However, this trend did not persist throughout the 24-hour  
614 chilling period for any species tested (**Figure 2D, Figure 5C, Table S4, S15**), suggesting that  
615 other mechanisms, such as phytosterols or membrane protein interactions, play a role in  
616 maintaining membrane fluidity alongside unsaturation during the first 24 hours of chilling.

617 Previous studies in *Arabidopsis* have documented diel variations in lipid saturation under normal  
618 growth conditions (Ekman et al. 2007, Maatta et al. 2012, Nakamura et al. 2014), which has  
619 been attributed to light-dependent fatty acid synthesis (Kim et al. 2023, Browse et al. 1981).  
620 Congruently, our analysis revealed diel variation in total fatty acid saturation across all three  
621 grass species (**Figure 2B, Tables S3, S4**), suggesting a similar underlying biological  
622 mechanism. While previous research in *Arabidopsis* focused on highly unsaturated  
623 phosphatidylcholine (PC) molecules peaking in the dark, (Ekman et al. 2007, Maatta et al. 2012,  
624 Nakamura et al. 2014) our study did not analyze specific PC molecules. However, we observed  
625 rhythmicity in PC saturation across foxtail millet, *Urochloa*, and *Arabidopsis*, with overall  
626 saturation levels declining in the dark (**Figures 2B, 5B, and Tables S3, S4, Table S15, S16**). In  
627 contrast, sorghum did not exhibit similar PC saturation rhythmicity, indicating species-specific  
628 differences. Furthermore, species-specific variations in saturation rhythmicity were also  
629 observed in MGDG and DGDG among the grass species (**Tables S3, S4**).

630 Combined lipidomic and transcriptomic analysis has been used to unravel transcriptional  
631 regulation of lipid metabolism during chilling-stress responses in maize (Gu et al. 2017). Our  
632 results show species-specific differences in transcriptional correlation with lipid metabolic  
633 changes, suggesting complex regulation of metabolic perturbations involved in plants' response  
634 to environmental challenges. We propose that this approach with chilling-susceptible and  
635 chilling-tolerant species can empower the identification of specific genes whose transcript levels  
636 are correlated with changes in lipid metabolites, in response to chilling stress. However, our  
637 experimental design may miss non-syntenic genes that may have acquired novel chilling-  
638 induced changes in their expression. We identified species-specific differences in the extent of  
639 correlation between lipid related gene expression and changes in lipid abundance changes,  
640 potentially informing the flux of fatty acids. For example, we discovered that the expression of  
641 the foxtail millet *LPP2* is tightly correlated with TAG abundance. *LPP2* generates DAG from  
642 phospholipids in the ER, DAG is a precursor to TAG (**Figure 4A**), implying that that  
643 phospholipids are the primary source of TAG in foxtail millet during chilling response. By  
644 contrast, the expression of the sorghum ortholog of *LPP2* was not correlated with TAG  
645 abundance, suggesting species-specific differences in membrane lipid funneling to TAG  
646 between these two species during chilling stress. *NPC1* expression (**Figure 4**) and PE levels  
647 are another example of an unexpected lipase influencing lipid levels. *NPC1* expression was  
648 correlated with PE accumulation in foxtail millet and sorghum. *NPC1* produces DAG either  
649 through the hydrolysis of PC or MGDG and DGDG, which can in turn be converted to PE (Cao  
650 et al. 2016; Krčková et al. 2015). The role of *NPC1* in response to heat stress is known (Krčková  
651 et al. 2015). Here, we propose a role for *NPC1* in PE accumulation and chilling tolerance in  
652 panicoid grasses.

653 Overall, we show that despite the conservation of many transcriptional and metabolic responses  
654 to chilling stress across species, the unique combination of species employed in our study

655 allowed us to identify a smaller set of genes more likely to be functionally linked to variation in  
656 chilling tolerance than merely due to genetic relatedness. This study provides a framework to  
657 probe potential genes whose function in changes to lipid content and composition may not be  
658 previously known. For the first time, we also report diel rhythmicity in lipid abundance,  
659 saturation, and expression of lipid-related genes in these panicoid grasses during chilling stress.

660 **Supplementary Data:**

661 **Figure S1.** Minor lipid responses to chilling include effects related to genetic distance and  
662 chilling tolerance.

663 **Figure S2.** Circos plot showing differential expression of sorghum - foxtail millet orthologous  
664 genes.

665 **Figure S3:** Venn diagram showing overlap of rhythmic genes under control and chilling stress in  
666 sorghum (SB) and foxtail millet (FM).

667 **Figure S4:** Total lipid unsaturation in the initial period of chilling stress in foxtail millet, sorghum,  
668 and Urochloa.

669 **Table S1.** Averages and standard errors of each lipid abundance measurements across  
670 different time points in foxtail millet, Urochloa, and sorghum.

671 **Table S2.** LimoRhyde test of rhythmicity of measured lipids in three grasses.

672 **Table S3.** CircaCompare test of rhythmicity for DGDG, PC, and MGDG in three grasses. Mesor  
673 is average expression, amplitude is the difference between mesor and peak level, phase is  
674 when the peak occurs (in radians), and peak time is hours of peak expression after time 0.

675 **Table S4.** Averages and standard errors of each lipid unsaturation across different time points  
676 in foxtail millet, urochloa, and sorghum.

677 **Table S5.** FPKM values of 9778 syntenic gene pairs in sorghum and foxtail millet across each  
678 time points with triplicates in chilling stress and control.

679 **Table S6.** Differentially regulated orthologs (DROs) between sorghum and foxtail millet using a

680 linear mixed model.

681 **Table S7.** Sorghum and foxtail millet genes classified into 16 clusters based on the ratios of  
682 expression values between control and treatments.

683 **Table S8.** Differentially regulated orthologs in sorghum and foxtail millet using conventional  
684 clustering method.

685 **Table S9.** High Confidence DROs identified from the overlap of DROs from conventional  
686 clustering method and the linear mixed model.

687 **Table S10.** Gene ontology (GO) analysis of 1,708 high-confidence Differentially Regulated  
688 Orthologs

689 **Table S11.** Gene expression profiles of sorghum-foxtail millet orthologous genes corresponding  
690 to Arabidopsis lipid-related genes.

691 **Table S12.** Log<sub>2</sub> fold change of differentially regulated orthologs in chilling treated sorghum and  
692 foxtail millet derived from the list of 356 lipid gene pairs in table S9.

693 **Table S13.** Pearson correlations of foxtail millet and sorghum genes with changes in buildup of  
694 each lipid species during chilling stress response.

695 **Table S14.** Pearson correlations of foxtail millet and sorghum genes with changes in breakdown  
696 of each lipid species during chilling stress response.

697 **Table S15.** Averages and standard errors of lipid accumulation and unsaturation in Arabidopsis.

698 **Table S16.** CircaCompare test of rhythmicity for DGDG, PC, and MGDG in Arabidopsis. Mesor  
699 is average expression, amplitude is the difference between mesor and peak level, phase is  
700 when the peak occurs (in radians), and peak time is hours of peak expression after time 0

701 **Table S17.** Averages and standard errors of each lipid accumulation and unsaturation across  
702 different time points in control and chilling treated Arabidopsis.

703

704 **Acknowledgments:** We thank Samantha Link and Kandy Hanthorn for their assistance in plant  
705 growth and management.

706

707 **Author Contribution:** RLR, JCS, and YZ designed the research; YZ, SM, and DWN performed  
708 stress experiments; YZ and DWN processed RNA; SM processed lipids; YZ and SM performed  
709 initial data analysis; SKR, YZ, RR, FGH, YQ, and DWN performed final data analyses; SKR,  
710 RR, FMH, JCS, and YZ wrote and edited the manuscript.

711

712 **Conflict of Interest Statement:** JCS has equity interests in Data2Bio, LLC; Dryland Genetics  
713 Co; and EnGeniousAg LLC. He is a member of the scientific advisory board of GeneSeek. We  
714 have no other conflicts to disclose.

715

716 **Funding Statement:** This work was supported by the National Institute of Food and Agriculture  
717 at the United States Department of Agriculture grant 2016-67013-24613 to JCS and RLR, the  
718 National Science Foundation grants IOS-1845175 to RLR; OIA-1557417 to JCS, and the United  
719 States Department of Agriculture Agricultural Research Service award 2030-21000-049-00D to  
720 FGH. The project also received support from the United States Department of Agriculture  
721 Formula Funds Multistate Hatch Project NEB-30-131.

722

723 **Data Availability:** Sequencing data are available through the NCBI  
724 (<http://www.ncbi.nlm.nih.gov/bioproject>) under accession number SRA: SRP090583 and  
725 BioProject: PRJNA344653.

## References

**Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C.** 2018. DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. *Plant Physiol* **177**, 1410-1424.

**Barnes AC, Elowsky CG, Roston RL.** 2019. An *Arabidopsis* protoplast isolation method reduces cytosolic acidification and activation of the chloroplast stress sensor SENSITIVE TO FREEZING 2. *Plant Signaling & Behavior*, 1-7.

**Barnes AC, Myers JL, Surber SM, Liang ZK, Mower JP, Schnable JC, Roston RL.** 2023. Oligogalactolipid production during cold challenge is conserved in early diverging lineages. *Journal of Experimental Botany* **74**, 5405-5417.

**Benjamini Y, Hochberg Y.** 1995. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B-Statistical Methodology* **57**, 289-300.

**Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM.** 2012. Reference genome sequence of the model plant *Setaria*. *Nat Biotechnol* **30**, 555-561.

**Brendel V, Kurtz S, Walbot V.** 2002. Comparative genomics of *Arabidopsis* and maize: prospects and limitations. *Genome Biology* **3**, REVIEWS1005.

**Brozynska M, Furtado A, Henry RJ.** 2016. Genomics of crop wild relatives: expanding the gene pool for crop improvement. *Plant Biotechnol J* **14**, 1070-1085.

**Burow G, Burke JJ, Xin ZG, Franks CD.** 2011. Genetic dissection of early-season cold tolerance in sorghum (*Sorghum bicolor* (L.) Moench). *Molecular Breeding* **28**, 391-402.

**Cao H, Zhuo L, Su Y, Sun L, Wang X.** 2016. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. *Plant J* **86**, 308-321.

**Chen L, Hu W, Mishra N, Wei J, Lu H, Hou Y, Qiu X, Yu S, Wang C, Zhang H, Cai Y, Sun C, Shen G.** 2020. AKR2A interacts with KCS1 to improve VLCFAs contents and chilling tolerance of *Arabidopsis thaliana*. *Plant J* **103**, 1575-1589.

**Doggett H, Majisu BN.** 1968. Disruptive Selection in Crop Development. *Heredity* **23**, 1-8.

**Dohleman FG, Long SP.** 2009. More Productive Than Maize in the Midwest: How Does Miscanthus Do It? *Plant Physiology* **150**, 2104-2115.

**Du ZY, Benning C.** 2016. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae. *Subcell Biochem* **86**, 179-205.

**Ekman A, Bulow L, Stymne S.** 2007. Elevated atmospheric CO<sub>2</sub> concentration and diurnal cycle induce changes in lipid composition in *Arabidopsis thaliana*. *New Phytologist* **174**, 591-599.

“Finding Groups in Data”: Cluster Analysis Extended Rousseeuw et al. [R package cluster version 2.1.4] (2022) (April 3, 2023).

**fpc**: Flexible Procedures for Clustering. *Comprehensive R Archive Network (CRAN)* (April 3, 2023).

**Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang JH.** 2004. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biology* **5**.

**Gu Y, He L, Zhao C, Wang F, Yan B, Gao Y, Li Z, Yang K, Xu J.** 2017. Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature. *Front Plant Sci* **8**, 2053.

**Hope HJ, McElroy A.** 1990. Low-Temperature Tolerance of Switchgrass (*Panicum-Virgatum L.*). Canadian Journal of Plant Science **70**, 1091-1096.

**Hugly S, Somerville C.** 1992. A Role for Membrane Lipid Polyunsaturation in Chloroplast Biogenesis at Low-Temperature. Plant Physiology **99**, 197-202.

**Hurry V, Druart N, Cavaco A, Gardeström P, Strand A.** 2002. Photosynthesis at low temperatures: A case study with. Plant Cold Hardiness: Gene Regulation and Genetic Engineering, 161-179.

**Kaplan F, Guy CL.** 2004.  $\beta$ -amylase induction and the protective role of maltose during temperature shock. Plant Physiology **135**, 1674-1684.

**Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL.** 2018. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? Plant Sci **276**, 73-86.

**Kim SC, Edgeworth KN, Nusinow DA, Wang XM.** 2023. Circadian clock factors regulate the first condensation reaction of fatty acid synthesis in Arabidopsis. Cell Reports **42**.

**Klinska-Bachor S, Kedzierska S, Demski K, Banas A.** 2023. Phospholipid:diacylglycerol acyltransferase1-overexpression stimulates lipid turnover, oil production and fitness in cold-grown plants. BMC Plant Biol **23**, 370.

**Krckova Z, Brouzdova J, Danek M, Kocourkova D, Rainteau D, Ruelland E, Valentova O, Pejchar P, Martinec J.** 2015. Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Front Plant Sci **6**, 928.

**Lai X, Bendix C, Yan L, Zhang Y, Schnable JC, Harmon FG.** 2020. Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. BMC Genomics **21**, 428.

**Larcher W.** 1995. Photosynthesis as a Tool for Indicating Temperature Stress Events. In: Schulze E-D, Caldwell MM, eds. *Ecophysiology of Photosynthesis*. Berlin, Heidelberg: Springer Berlin Heidelberg, 261-277.

**Larran AS, Pajoro A, Qüesta J.** 2023. Is winter coming? Impact of the changing climate on plant responses to cold temperature. *Plant Cell and Environment* **46**, 3175-3193.

**Lu HY, Zhang JP, Liu KB, Wu NQ, Li YM, Zhou KS, Ye ML, Zhang TY, Zhang HJ, Yang XY, Shen LC, Xu DK, Li Q.** 2009. Earliest domestication of common millet (*Panicum miliaceum*) in East Asia extended to 10,000 years ago. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 7367-7372.

**Lu J, Xu Y, Wang J, Singer SD, Chen G.** 2020. The Role of Triacylglycerol in Plant Stress Response. *Plants (Basel)* **9**.

**Lyons JM.** 1973. Chilling Injury in Plants. *Annual Review of Plant Physiology and Plant Molecular Biology* **24**, 445-466.

**Maatta S, Scheu B, Roth MR, Tamura P, Li MY, Williams TD, Wang XM, Welti R.** 2012. Levels of leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle. *Frontiers in Plant Science* **3**.

**Mahboub S, Shomo ZD, Regester RM, Albusharif M, Roston RL.** 2021. Three Methods to Extract Membrane Glycerolipids: Comparing Sensitivity to Lipase Degradation and Yield. *Methods in molecular biology* **2295**, 15-27.

**Meng X, Liang Z, Dai X, Zhang Y, Mahboub S, Ngu DW, Roston RL, Schnable JC.** 2021. Predicting transcriptional responses to cold stress across plant species. *Proceedings of the National Academy of Sciences* **118**, e2026330118.

**Miquel M, James D, Dooner H, Browse J.** 1993. Arabidopsis Requires Polyunsaturated Lipids for Low-Temperature Survival. *Proceedings of the National Academy of Sciences of the United States of America* **90**, 6208-6212.

**Moellering ER, Muthan B, Benning C.** 2010. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. *Science* **330**, 226-228.

**Nakamura Y, Andres F, Kanehara K, Liu YC, Doermann P, Coupland G.** 2014. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. *Nature Communications* **5**.

**Nishida I, Murata N.** 1996. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. *Ann.Rev.Plant Physiol.* **47**, 568.

**Panter PE, Muranaka T, Cuitun-Coronado D, Graham CA, Yochikawa A, Kudoh H, Dodd AN.** 2019. Circadian Regulation of the Plant Transcriptome Under Natural Conditions. *Frontiers in Genetics* **10**, 1239.

**Pardo J, VanBuren R.** 2021. Evolutionary innovations driving abiotic stress tolerance in C grasses and cereals. *Plant Cell* **33**, 3391-3401.

**Parsons R, Parsons R, Garner N, Oster H, Rawashdeh O.** 2020. CircaCompare: a method to estimate and statistically support differences in mesor, amplitude and phase, between circadian rhythms. *Bioinformatics* **36**, 1208-1212.

**Pessoa M, Martins AM, Ferreira ME.** 2017. Molecular dating of phylogenetic divergence between

species based on complete chloroplast genomes. *BMC Genomics* **18**.

**Quinn PJ, Joo F, Vigh L.** 1989. The role of unsaturated lipids in membrane structure and stability. *Prog Biophys Mol Biol* **53**, 71-103.

**Ray DK, Mueller ND, West PC, Foley JA.** 2013. Yield Trends Are Insufficient to Double Global Crop Production by 2050. *PLoS one* **8**, e66428.

**Sandve SR, Rudi H, Asp T, Rognli OA.** 2008. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. *BMC Evolutionary Biology* **8**.

**Schnable J, Zang Y, W. C. Ngu D.** 2016. Pan-Grass Syntenic Gene Set (sorghum referenced). figshare.

**Singer JM, Hughey JJ.** 2019. LimoRhyde: A Flexible Approach for Differential Analysis of Rhythmic Transcriptome Data. *J Biol Rhythms* **34**, 5-18.

**Taylor AO, Rowley JA.** 1971. Plants under Climatic Stress .1. Low Temperature, High Light Effects on Photosynthesis. *Plant Physiology* **47**, 713-&.

**Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L.** 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol* **28**, 511-515.

**Uemura M, Joseph RA, Steponkus PL.** 1995. Cold Acclimation of *Arabidopsis thaliana* (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions). *Plant Physiol* **109**, 15-30.

**Wang Z, Benning C.** 2011. *Arabidopsis thaliana* polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC). *J Vis Exp*.

**Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ.** 2016. GMAP and GSNAp for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality. *Methods in molecular biology* **1418**, 283-334.

**Xu C, Shanklin J.** 2016. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. *Annual Review of Plant Biology*, Vol 62 **67**, 179-206.

**Yan L, Kenchanmane Raju SK, Lai X, Zhang Y, Dai X, Rodriguez O, Mahboub S, Roston RL, Schnable JC.** 2019. Parallels between natural selection in the cold-adapted crop-wild relative *Tripsacum dactyloides* and artificial selection in temperate adapted maize. *The Plant Journal* **0**.

**Yang X, Wan Z, Perry L, Lu H, Wang Q, Zhao C, Li J, Xie F, Yu J, Cui T, Wang T, Li M, Ge Q.** 2012. Early millet use in northern China. *Proc Natl Acad Sci U S A* **109**, 3726-3730.

**Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y,**

**Wang J, Zhao Z, Wang J.** 2012. Genome sequence of foxtail millet (*Setaria italica*) provides insights into grass evolution and biofuel potential. *Nat Biotechnol* **30**, 549-554.

**Zhang Y, Ngu DW, Carvalho D, Liang Z, Qiu Y, Roston RL, Schnable JC.** 2017. Differentially Regulated Orthologs in Sorghum and the Subgenomes of Maize. *Plant Cell* **29**, 1938-1951.

**Zoldan D, Band RS, Guy CL, Porat R.** 2012. Understanding Chilling Tolerance Traits Using Arabidopsis Chilling-Sensitive Mutants. In: Ahmad P, Prasad MNV, eds. *Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change*. New York, NY: Springer New York, 159-173.

## Figure Legends

### Figure 1 Foxtail millet is a chilling-tolerant representative of the panicoid grass clade.

**(A)** Evolutionary relationships of the four species evaluated with rice as an outgroup. Numbers indicate divergence time as reported in Zhang et al. and Pessoa-Filho et al. (23, 58) **(B)** Normalized relative CO<sub>2</sub> assimilation rates for panicoid grass species with differing degrees of sensitivity or tolerance to chilling stress. CO<sub>2</sub> assimilation was measured after treatment at 6°C for indicated times below (1 day or 8 days) followed by an overnight return to 30°C of approximately 10 hours. Leaf area was measured immediately after assimilation. Individual data points are jittered on the x-axis to avoid overlap. Lines indicate mean values for each species across three replicates and whiskers represent standard error of the mean. **(C)** Phenotypic response of foxtail millet, Urochloa, and sorghum to 6°C chilling stress for 14 days, followed by 2 days of return to 30°C. Scale bars, 6cm.

### Figure 2. Lipid responses to chilling include effects related to genetic distance and chilling tolerance.

The relative abundance of specific lipid species exhibits multiple sequential changes in the first 24 hours of exposure to chilling stress. In all panels, the x-axis indicates the time in hours (h)

**(A)** Mole percent abundance of lipids relative to all fatty acid-containing lipids for the following lipid classes: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in foxtail millet, Urochloa, and sorghum. **(B)** Unsaturation index, calculated as the average number of double bonds per fatty acid for all fatty acid-containing lipids: MGDG, DGDG, and PC. P-values were determined using Fisher's least significant difference (LSD). '\*' denotes p-value < 0.05, '\*\* p-value < 0.01, and \*\*\* p-value < 0.001. **(C)** Structural models of major lipids MGDG, DGDG, and PC, where blue indicates the hydrophilic

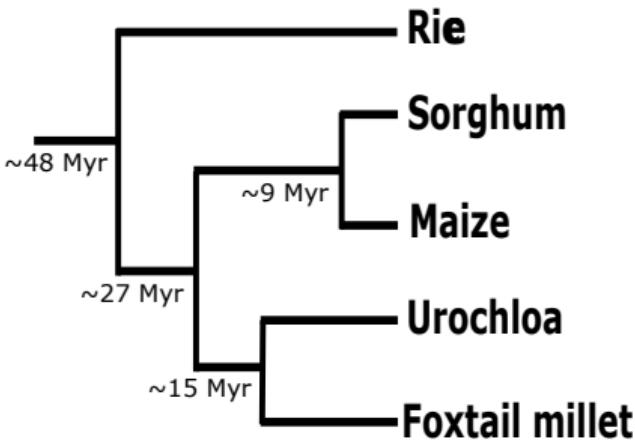
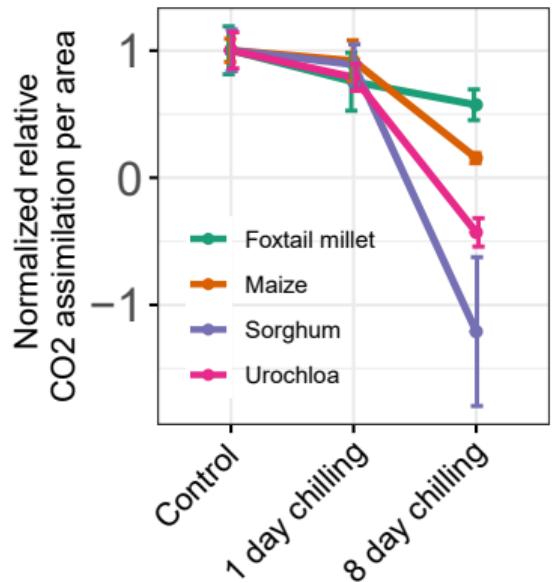
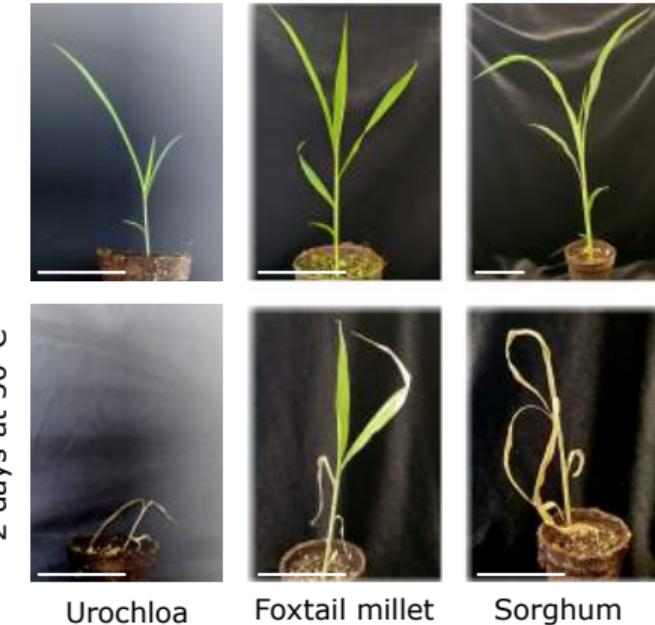
head group and orange indicates the hydrophobic tail group. **(D)** Total unsaturation index, calculated as the average number of double bonds per fatty acid for all fatty acid-containing lipids. For all samples, n was between 3 and 8 biological replicates.

**Figure 3. Syntenic orthologs in sorghum and foxtail millet show differential regulation during chilling stress.**

Heatmap representation of log2 fold change values for chilling stressed samples compared to control in sorghum and foxtail millet at different time points. Lipid related gene pairs that overlapped with high-confidence differentially regulated orthologs were considered and classified into lipid biosynthesis, lipid metabolism, and phospholipid signaling. Genes names in the center are suggestive only and derived from best-hit *Arabidopsis* genes.

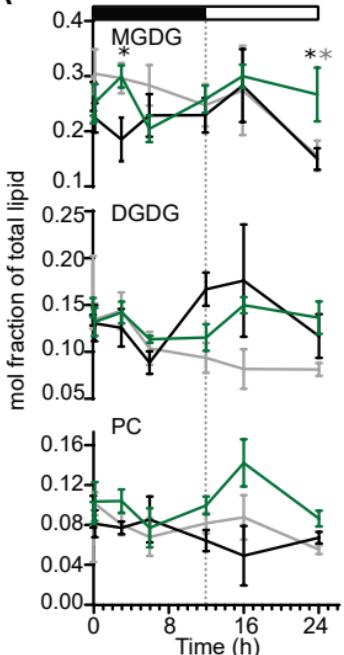
**Figure 4. Correlation of lipid and transcript abundances in the glycerolipid biosynthesis pathway allows identification of candidate genes.**

**(A)** Diagram of the glycerolipid biosynthesis pathway with lipid species shown in bold font and the enzymes responsible for each step denoted next to the corresponding arrows. **(B, C)** Heatmaps showing transcript abundance for candidate genes in lipid metabolism and abundance of lipid species (in bold font) at different time points for DGDG **(B)** and phosphatidylethanolamine (PE) **(C)**. Significant correlations measured by pearson correlation, between lipid changes and transcript abundance in either sorghum or foxtail millet are indicated by **“\*”** after the gene name.

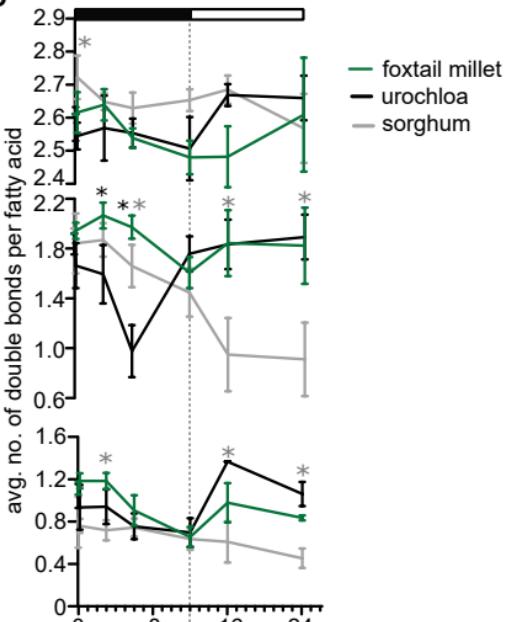



**Figure 5. Time-series profiles of *Arabidopsis* lipid abundance and unsaturation during chilling or control conditions.**

**(A)** Mole percent abundance of lipids relative to all fatty acid-containing lipids for the following

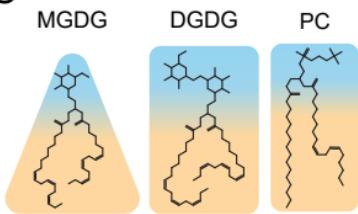
lipid classes: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in *Arabidopsis* during chilling or control conditions. **(B)** Unsaturation index, calculated as the average number of double bonds per fatty acid for MGDG, DGDG, and PC. **(C)** Unsaturation index, calculated as the average number of double bonds per fatty acid for all fatty acid-containing lipids. Significant p-values determined using Fisher's least significant differences. \* denotes p-value < 0.05, \*\* p-value < 0.01, and \*\*\* p-value < 0.001 **(D)** Diagram showing daily and seasonal fluctuation of temperature during the plants' growth cycle. For all samples, n was between 3 and 8 biological replicates.


**Figure 6. Comparison of rhythmicity and differential rhythmicity in sorghum and foxtail millet lipid related genes.**

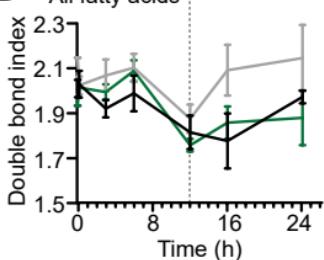
**(A)** Venn diagram showing the extent of overlap between rhythmic genes in sorghum and/or foxtail millet identified by *LimoRhyde* analysis under control conditions (244 genes in the green circle) and sorghum differentially rhythmic (DR) under control conditions compared to chilling treatment (101 genes in the pink circle) and foxtail millet DR under control conditions compared to chilling treatment (142 genes in the purple circle). The union of these three data sets is 36 genes representing rhythmic genes under control conditions that change their rhythmicity in response to chilling temperature in both foxtail millet and sorghum. **(B, C)** An example of a rhythmic gene *DGD1* showing a similar diel expression pattern under control conditions and changed rhythmicity during chilling stress response in sorghum **(B)** and foxtail millet **(C)**. *DGD1* expression is shown as average FPKM values from three biological replicates and the standard error of mean.


**A.****B.****C.**

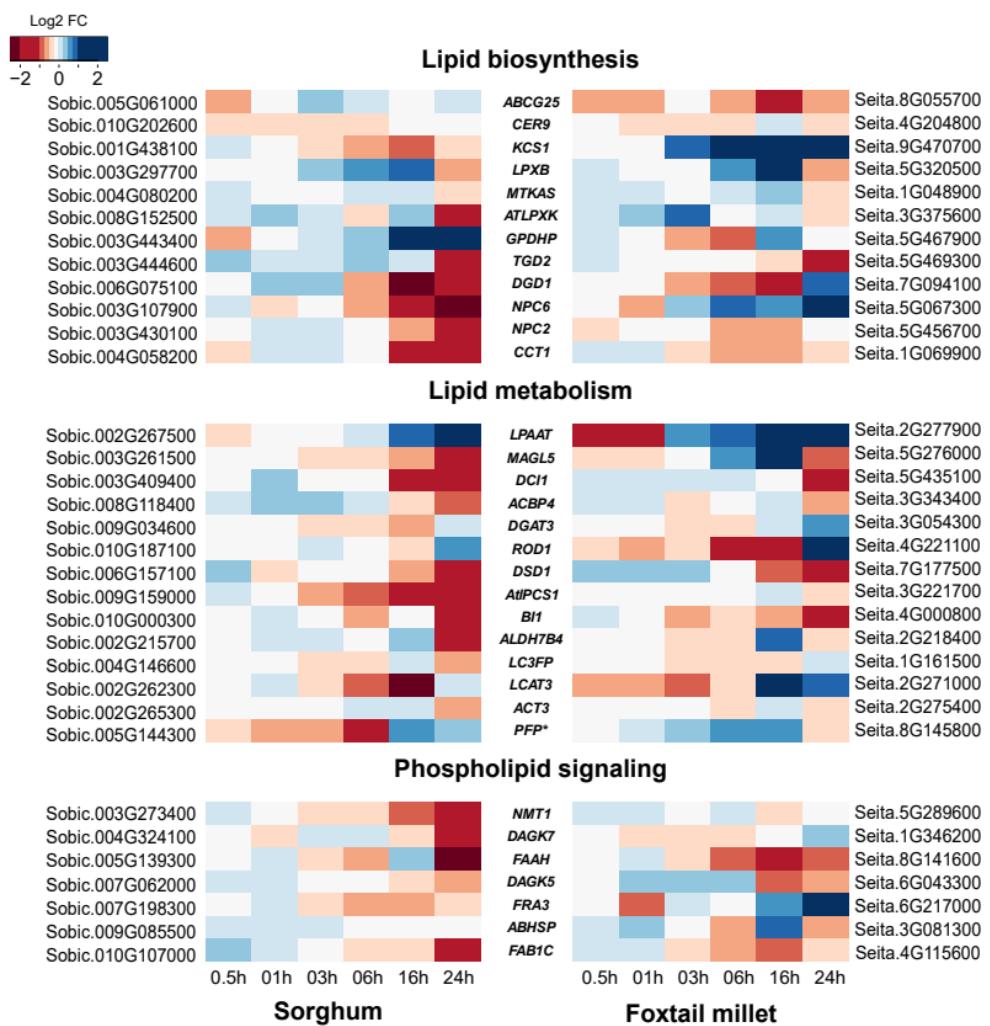
**Figure 1: Foxtail millet is a chilling-tolerant representative of the panicoid grass clade.** A) Evolutionary relationship of the four species evaluated with rice as an outgroup. Numbers indicate divergence time as reported in Zhang et al. 2017 and Pessoa-Filho et al. 2017 (B) Normalized relative  $\text{CO}_2$  assimilation rates for panicoid grass species with differing degrees of sensitivity or tolerance to chilling stress.  $\text{CO}_2$  assimilation was measured after treatment at 6°C for indicated times (1 day or 8 days) followed by return to 30°C for approximately 10 hours. Leaf area was measured immediately after assimilation. Individual data points are jittered on the x-axis to avoid overlap. Lines indicate mean values for each species across three replicates and whiskers represent standard error of the mean. (C) Phenotypic response of Urochloa, foxtail millet, and sorghum to 6°C chilling stress for 14 days, followed by 2 days of return to 30°C. Scale bars, 6cm.


A

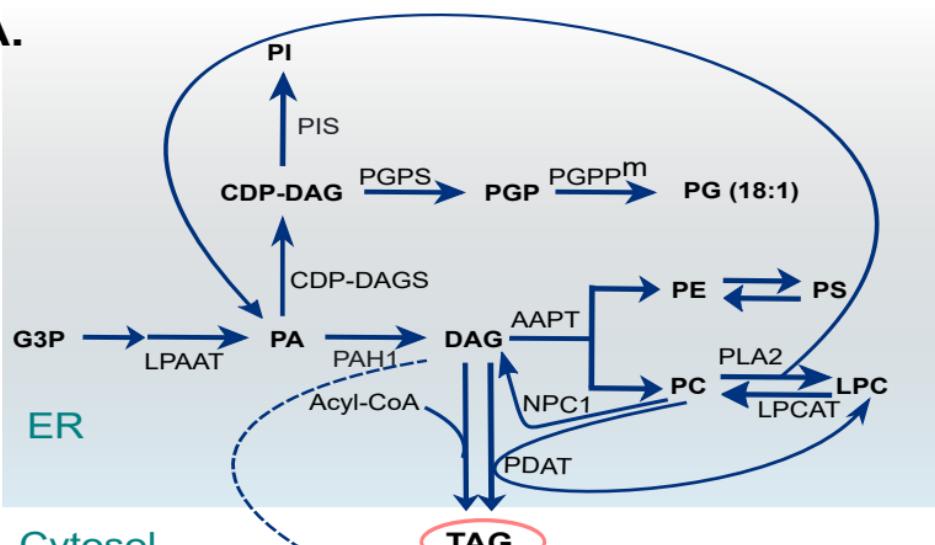
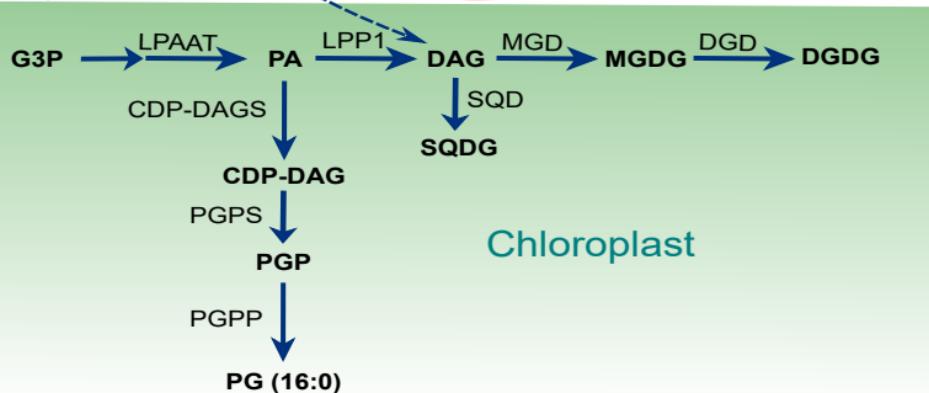
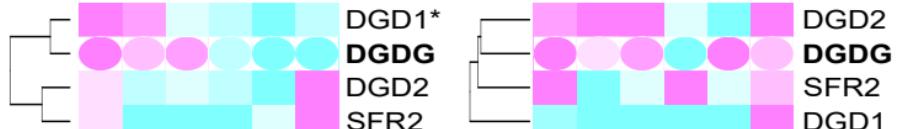
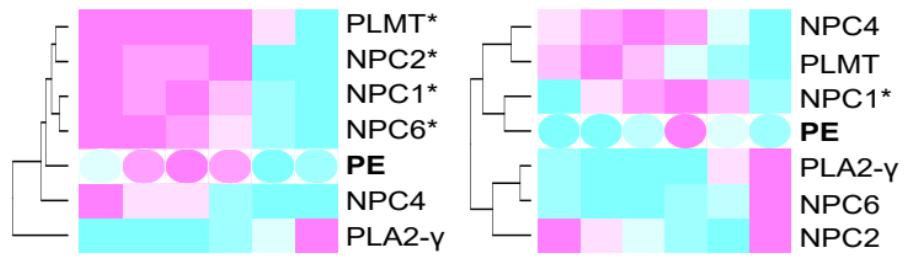
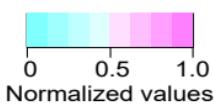



B

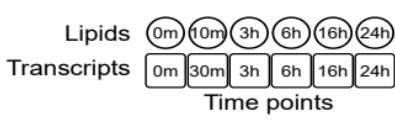



C

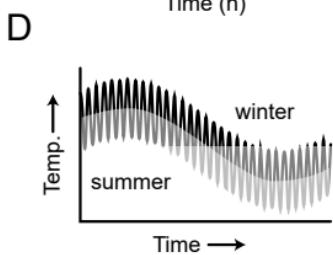
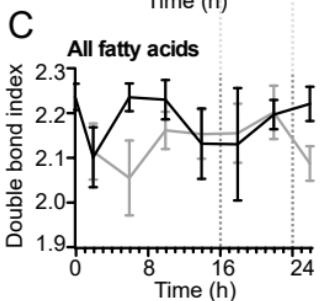
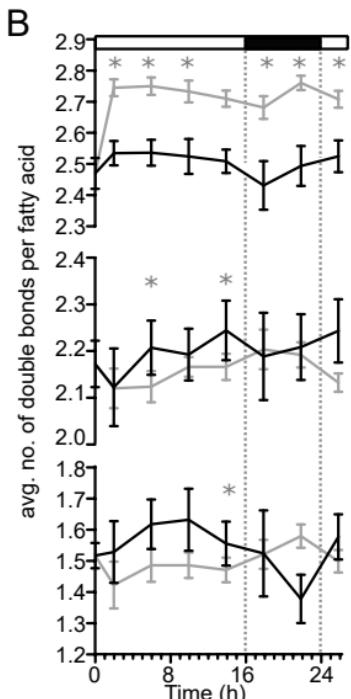
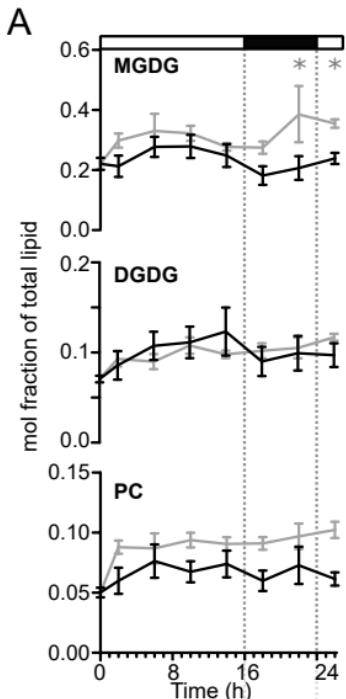







D

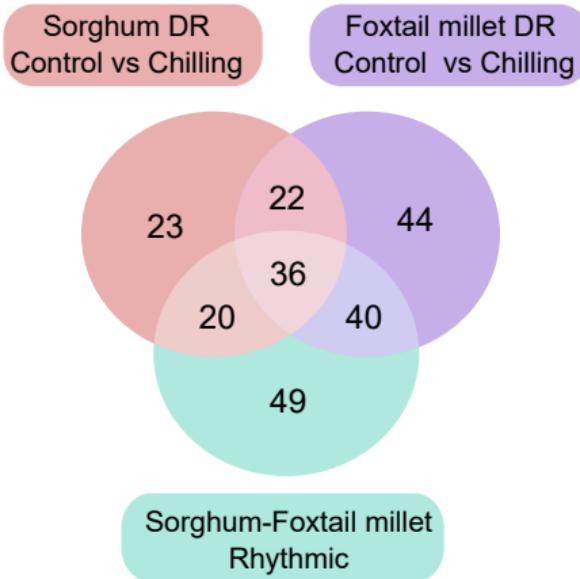
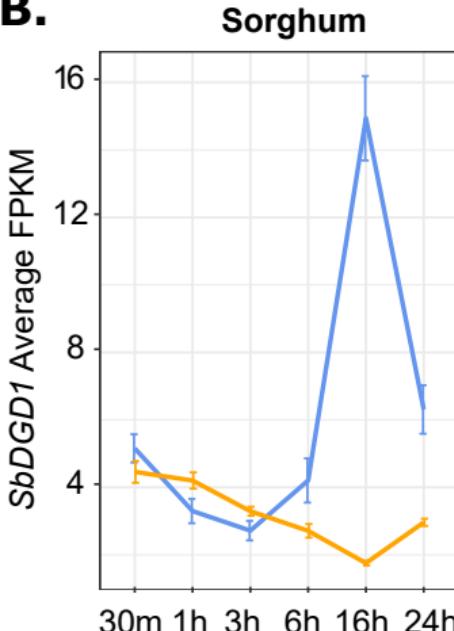
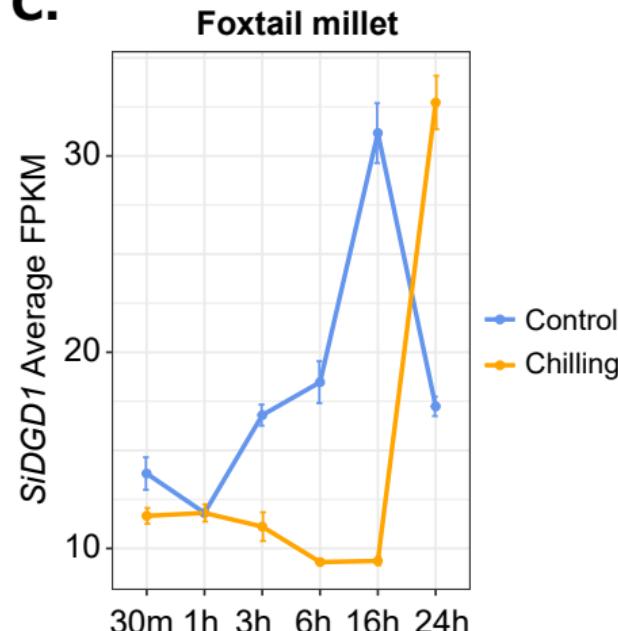



**Figure 2. Lipid responses to chilling include effects related to genetic distance and chilling tolerance.** The relative abundance of specific lipid species exhibits multiple sequential changes in the first 24 hours of exposure to chilling stress. In all panels, the x-axis indicates the time in hours (h). (A) Mole percent abundance of lipids relative to all fatty acid-containing lipids for the following lipid classes: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in foxtail millet, Urochloa, and sorghum. (B) Unsaturation index, calculated as the average number of double bonds per fatty acid for all fatty acid-containing lipids: MGDG, DGDG, and PC. P-values were determined using Fisher's least significant difference (LSD). '\*' denotes p-value < 0.05, '\*\*' p-value < 0.01, and '\*\*\*' p-value < 0.001. (C) Structural models of major lipids MGDG, DGDG, and PC. (D) Total unsaturation index, calculated as the average number of double bonds per fatty acid for all fatty acid-containing lipids. For all samples, n was between 3 and 8 biological replicates.







**Figure 3. Syntenic orthologs in sorghum and foxtail millet show differential regulation during chilling stress.** Heatmap representation of log2 fold change values for chilling stressed samples compared to control in sorghum and foxtail millet at different time points. Lipid related gene pairs that overlapped with high-confidence differentially regulated orthologs were considered and classified into lipid biosynthesis, lipid metabolism, and phospholipid signaling. Genes names in the center are suggestive only and derived from best-hit *Arabidopsis* genes.

**A.****Cytosol****TAG****Chloroplast****B.****C.****Sorghum****Foxtail millet**




Normalized values



**Figure 4. Correlation of lipid and transcript abundances in the glycerolipid biosynthesis pathway allows identification of candidate genes.** (A) Diagram of the glycerolipid biosynthesis pathway with lipid species shown in bold font and the enzymes responsible for each step denoted next to the corresponding arrows. (B, C) Heatmaps showing normalized transcript abundance for candidate lipid-related genes and normalized lipid abundance (in bold font) at different time points (12 h timepoint for lipid is removed because of lack of corresponding transcript data) for DGDG (B) and phosphatidylethanolamine (PE) (C). Significant correlations measured by pearson correlation, between lipid changes and transcript abundance in either sorghum or foxtail millet are indicated by '\*' after the gene name.



**Figure 5. Time-series profiles of *Arabidopsis* lipid abundance and unsaturation during chilling or control conditions.** (A) Mole percent abundance of lipids relative to all fatty acid-containing lipids for the following lipid classes: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in *Arabidopsis* during chilling or control conditions. (B) Unsaturation index, calculated as the average number of double bonds per fatty acid for MGDG, DGDG, and PC. (C) Unsaturation index, calculated as the average number of double bonds per fatty acid for all fatty acid-containing lipids. Significant p-values determined using Fisher's least significant differences. '\*' denotes p-value < 0.05, '\*\* p-value < 0.01, and \*\*\* p-value < 0.001 (D) Diagram showing daily and seasonal fluctuation of temperature during the plants growth cycle.

**A.****B.****C.**

**Figure 6 Comparison of rhythmicity and differential rhythmicity in sorghum and foxtail millet lipid related genes.** (A) Venn diagram showing the extent of overlap between rhythmic genes in sorghum and/or foxtail millet identified by LimoRhyde analysis under control conditions (244 genes in the green circle) and sorghum differentially rhythmic (DR) under control conditions compared to chilling treatment (101 genes in the pink circle) and foxtail millet DR under control conditions compared to chilling treatment (142 genes in the purple circle). The union of these three data sets is 58 genes representing rhythmic genes that change their rhythmicity in response to chilling temperature in both foxtail millet and sorghum. (B,C) An example of a rhythmic gene DGD1 showing a similar diel expression pattern under control conditions and changed rhythmicity during chilling stress response in sorghum (B) and foxtail millet (C). DGD1 expression is shown as average FPKM values from three biological replicates and the standard error of mean.