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ABSTRACT  15 

SMAX1-LIKE (SMXL) proteins are transcriptional co-repressors that regulate many 16 

aspects of plant growth and development. Proteins from the SMAX1- and SMXL78-clades 17 

of this family are targeted for degradation after karrikin or strigolactone perception, 18 

triggering downstream responses. We investigated how SMXL proteins control 19 

development. SMXL7 can partially replicate SMAX1 function in seeds and seedlings, but 20 

SMAX1 cannot replace SMXL7 in shoot branching control. Therefore, the distinct roles of 21 

these genes arise from differences in protein activity more than expression. Analysis of 22 

chimeras and domain deletions of SMAX1 and SMXL7 proteins revealed that an N-23 

terminal domain is necessary and sufficient to specify developmental functions. We 24 

screened 158 transcription factors for interactions with SMAX1. The N-terminal domain is 25 

necessary and/or sufficient for the majority of candidate interactions. These discoveries 26 

enable cross-wiring of karrikin and strigolactone control of plant development and lay a 27 

foundation for understanding how SMXL proteins evolved functional differences. 28 

  29 
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INTRODUCTION 30 

Plant hormones control growth, development, and responses to the environment through 31 

regulation of transcriptional networks (Yin et al. 2023). Several plant hormones, including 32 

auxin, jasmonate, gibberellin, and strigolactone, initiate downstream responses through 33 

hormone-triggered polyubiquitination and degradation of transcriptional regulatory 34 

proteins (Blázquez et al. 2020). Strigolactones (SLs), for example, promote protein-35 

protein interactions between an ɑ/ꞵ-hydrolase receptor, DWARF14 (D14)/DECREASED 36 

APICAL DOMINANCE2 (DAD2), an F-box protein within an SCF (Skp1-Cullin-F-box) E3 37 

ubiquitin ligase complex, MORE AXILLARY GROWTH2 (MAX2), and a subset of proteins 38 

within the SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE (SMXL)/DWARF(D53) family. The 39 

associated SMXL proteins are then polyubiquitinated by SCFMAX2 and rapidly destroyed 40 

by the 26S proteasome (Jiang et al. 2013; Wang et al. 2015; Zhou et al. 2013; 41 

Soundappan et al. 2015; de Saint Germain et al. 2016; Yao et al. 2016; Hamiaux et al. 42 

2012). SMXL proteins are thought to function as transcriptional co-repressors, as they 43 

interact with TOPLESS (TPL)/TPL-RELATED (TPR) proteins via one or more EAR 44 

(Ethylene-responsive element binding factor-associated Amphiphilic Repression) motifs 45 

(Soundappan et al. 2015; Ma et al. 2017; Jiang et al. 2013; Wang et al. 2015; Liang et al. 46 

2016). Thus, SMXL degradation initiates downstream responses through the release of 47 

transcriptional repression.  48 

 49 

https://paperpile.com/c/TV1lL8/Xfv5O
https://paperpile.com/c/TV1lL8/dzX4H
https://paperpile.com/c/TV1lL8/MEGWp+DesLu+PtAp3+AtCPQ+0ifw3+RRBTU+Kq6lq
https://paperpile.com/c/TV1lL8/MEGWp+DesLu+PtAp3+AtCPQ+0ifw3+RRBTU+Kq6lq
https://paperpile.com/c/TV1lL8/MEGWp+DesLu+PtAp3+AtCPQ+0ifw3+RRBTU+Kq6lq
https://paperpile.com/c/TV1lL8/AtCPQ+boHto+MEGWp+DesLu+j5OLt
https://paperpile.com/c/TV1lL8/AtCPQ+boHto+MEGWp+DesLu+j5OLt


 

4 
 

Proteins within the SMXL family have diversified to regulate different developmental 50 

processes and to be regulated, in turn, by different signaling mechanisms. In 51 

angiosperms, SMXL proteins are grouped into four phylogenetic clades: aSMAX1, 52 

SMXL39, aSMXL4, and SMXL78 (Walker et al. 2019). aSMAX1-clade proteins, 53 

represented by SMAX1 and SMXL2 in Arabidopsis thaliana or OsSMAX1 in Oryza sativa 54 

(rice), regulate seed germination, seedling photomorphogenesis (or in rice, mesocotyl 55 

elongation in the dark), root hair density and elongation, drought tolerance, and symbiotic 56 

interactions with arbuscular mycorrhizal fungi (Stanga et al. 2013; Feng et al. 2022; 57 

Villaécija-Aguilar et al. 2022; Park et al. 2022; Bursch et al. 2021; Carbonnel et al. 2020a; 58 

Bunsick et al. 2020; Choi et al. 2020; Zheng et al. 2020). SMAX1 and SMXL2 are targeted 59 

for degradation in an SCFMAX2-dependent manner by a paralog of D14, KARRIKIN 60 

INSENSITIVE2 (KAI2)/HYPOSENSITIVE TO LIGHT (HTL) (Khosla et al. 2020a; Wang 61 

et al. 2020b; Zheng et al. 2020). KAI2 putatively mediates responses to a metabolite of 62 

karrikins (KARs), butenolide molecules found in smoke, as well as an undiscovered 63 

endogenous compound(s) known as KAI2 ligand (KL) (Waters and Nelson 2022). 64 

Diversification of KAI2 proteins in some lineages has led to selective recognition of 65 

different KARs or alternative ligands such as SLs and (–)-germacrene D (Conn et al. 66 

2015; Toh et al. 2015; Tsuchiya et al. 2015; Stirling et al. 2024; Martinez et al. 2022; 67 

Guercio et al. 2022; de Saint Germain et al. 2021; Carbonnel et al. 2020b; Sun et al. 68 

2020; Conn and Nelson 2015). SMAX1 and SMXL2 can also be targeted by D14–69 

SCFMAX2 when SLs are sufficiently abundant (Li et al. 2022; Wang et al. 2020b). SMXL78-70 

clade proteins, represented by SMXL6, SMXL7, and SMXL8 in Arabidopsis and D53 in 71 

https://paperpile.com/c/TV1lL8/WY9mn
https://paperpile.com/c/TV1lL8/GgnUH+BVBCq+Vv9ED+z3LKv+1gzHz+NCf75+5EjJv+IH9Fn+m1ukc
https://paperpile.com/c/TV1lL8/GgnUH+BVBCq+Vv9ED+z3LKv+1gzHz+NCf75+5EjJv+IH9Fn+m1ukc
https://paperpile.com/c/TV1lL8/GgnUH+BVBCq+Vv9ED+z3LKv+1gzHz+NCf75+5EjJv+IH9Fn+m1ukc
https://paperpile.com/c/TV1lL8/nJI7f+Mp4F2+m1ukc
https://paperpile.com/c/TV1lL8/nJI7f+Mp4F2+m1ukc
https://paperpile.com/c/TV1lL8/1TgLa
https://paperpile.com/c/TV1lL8/UZ7au+yylFB+mjnEz+W2G1A+C7Sfh+Pgdsl+XMMUc+mFjWI+Tm3j6+6Lru6
https://paperpile.com/c/TV1lL8/UZ7au+yylFB+mjnEz+W2G1A+C7Sfh+Pgdsl+XMMUc+mFjWI+Tm3j6+6Lru6
https://paperpile.com/c/TV1lL8/UZ7au+yylFB+mjnEz+W2G1A+C7Sfh+Pgdsl+XMMUc+mFjWI+Tm3j6+6Lru6
https://paperpile.com/c/TV1lL8/UZ7au+yylFB+mjnEz+W2G1A+C7Sfh+Pgdsl+XMMUc+mFjWI+Tm3j6+6Lru6
https://paperpile.com/c/TV1lL8/OipGg+Mp4F2
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rice, control axillary branching or tillering, secondary growth, leaf elongation, internode 72 

elongation, and more (Jiang et al. 2013; Zhou et al. 2013; Agusti et al. 2011; Liang et al. 73 

2016; Wang et al. 2020a; Yang et al. 2020; de Saint Germain et al. 2013; Li et al. 2020). 74 

These proteins are specifically targeted by D14 and not by KAI2 (Wang et al. 2015; Khosla 75 

et al. 2020a; White et al. 2022). Finally, SMXL3- and aSMXL4-clade proteins, represented 76 

by SMXL3, SMXL4, and SMXL5 in Arabidopsis, regulate phloem development and 77 

anthocyanin abundance (Cho et al. 2018; Wallner et al. 2017, 2023; Wu et al. 2017; Li et 78 

al. 2024). Unlike other members of the SMXL family, these proteins are not targeted for 79 

degradation by SCFMAX2, putatively due to loss of a P-loop or Arg-Gly-Lys-Thr (RGKT) 80 

motif (Wallner et al. 2017). In addition to imposing transcriptional regulation on its own, 81 

SMXL5, and perhaps its similarly stable homologs, attenuates SL signaling by inhibiting 82 

degradation of SMXL7 (Li et al. 2024).  83 

 84 

The diverse functions of SMXL proteins in plants raise the largely unanswered questions 85 

of what genes do SMXL proteins regulate and how do they do so? SMXL proteins are 86 

distantly related to a ClpB-type heat shock protein, HSP101, that forms hexameric 87 

ATPase complexes involved in solubilizing protein aggregates (Gallie et al. 2002; Stanga 88 

et al. 2013). SMXL proteins are composed of a Clp N-terminal domain, a degenerate 89 

ATPase domain (D1), a middle region (M), and a C-terminal, degenerate ATPase domain 90 

(D2) (Zhou et al. 2013; Wang et al. 2011; Khosla et al. 2020a). Structure-function 91 

analyses have revealed roles for several SMXL protein features. The D1M region confers 92 

specificity for SMXL interactions with D14 or KAI2 (Khosla et al. 2020a). The D2 domain 93 

https://paperpile.com/c/TV1lL8/MEGWp+PtAp3+YUpbS+j5OLt+aHufr+3BNxV+LTFPf+kKpue
https://paperpile.com/c/TV1lL8/MEGWp+PtAp3+YUpbS+j5OLt+aHufr+3BNxV+LTFPf+kKpue
https://paperpile.com/c/TV1lL8/DesLu+nJI7f+t09Q8
https://paperpile.com/c/TV1lL8/DesLu+nJI7f+t09Q8
https://paperpile.com/c/TV1lL8/GWsrT+AeRrM+UorfS+NR5qn+xG7mS
https://paperpile.com/c/TV1lL8/GWsrT+AeRrM+UorfS+NR5qn+xG7mS
https://paperpile.com/c/TV1lL8/AeRrM
https://paperpile.com/c/TV1lL8/xG7mS
https://paperpile.com/c/TV1lL8/YW8vl+GgnUH
https://paperpile.com/c/TV1lL8/YW8vl+GgnUH
https://paperpile.com/c/TV1lL8/PtAp3+afcGK+nJI7f
https://paperpile.com/c/TV1lL8/nJI7f
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contains the aforementioned RGKT and EAR motifs (Jiang et al. 2013; Soundappan et 94 

al. 2015; Wang et al. 2015; Liang et al. 2016; Ma et al. 2017). D2 is necessary for 95 

degradation of SMXL proteins, but is not sufficient except when full-length SMXL proteins 96 

are also present (Khosla et al. 2020a). This is likely due to multimeric SMXL complexes 97 

that are formed at least in part through interactions at the C-terminus (Khosla et al. 98 

2020a). The EAR motif also likely contributes to stabilization of multimeric SMXL 99 

complexes (Ma et al. 2017; Li et al. 2024).  100 

 101 

Only a few studies have identified direct genomic targets of SMXL proteins and partner 102 

proteins that putatively guide SMXL associations with DNA (Wang et al. 2020a; Song et 103 

al. 2017; Hu et al. 2020; Xu et al. 2023; Kim et al. 2022; Fang et al. 2020). ChIP-seq 104 

analysis of SMXL6 revealed 729 candidate target sites in the Arabidopsis genome, 105 

although there was little overlap with 401 SL-responsive genes (Wang et al. 2020a). 106 

Genes directly targeted by SMXL6 include BRC1, SMXL2, SMXL6, SMXL7, and SMXL8 107 

(Wang et al. 2020a). Unexpectedly, SMXL6 and SMAX1 can bind DNA directly; both 108 

proteins recognize the motif  5’-ATAACAA-3’ or 5’-TTGTTAT-3’ (Wang et al. 2020a; Xu 109 

et al. 2023). In rice, D53 interacts with the transcription factors BRI1-EMS 110 

SUPPRESSOR1 (OsBES1), GROWTH REGULATORY FACTOR4 (OsGRF4), 111 

REDUCED LEAF ANGLE1 (OsRLA1), and IDEAL PLANT ARCHITECTURE1 (OsIPA1) 112 

(Song et al. 2017; Hu et al. 2020; Sun et al. 2023; Fang et al. 2020). In Arabidopsis, 113 

SMAX1 interacts with phytochrome B and DELLA proteins (Park et al. 2022; Kim et al. 114 

2022; Xu et al. 2023). Therefore, transcriptional regulation by SMXL proteins may arise 115 

https://paperpile.com/c/TV1lL8/MEGWp+AtCPQ+DesLu+j5OLt+boHto
https://paperpile.com/c/TV1lL8/MEGWp+AtCPQ+DesLu+j5OLt+boHto
https://paperpile.com/c/TV1lL8/nJI7f
https://paperpile.com/c/TV1lL8/nJI7f
https://paperpile.com/c/TV1lL8/nJI7f
https://paperpile.com/c/TV1lL8/boHto+xG7mS
https://paperpile.com/c/TV1lL8/aHufr+euyV3+Rem01+UiwQn+ePTF1+nU7tW
https://paperpile.com/c/TV1lL8/aHufr+euyV3+Rem01+UiwQn+ePTF1+nU7tW
https://paperpile.com/c/TV1lL8/aHufr
https://paperpile.com/c/TV1lL8/aHufr
https://paperpile.com/c/TV1lL8/aHufr+UiwQn
https://paperpile.com/c/TV1lL8/aHufr+UiwQn
https://paperpile.com/c/TV1lL8/euyV3+Rem01+lQH2a+nU7tW
https://paperpile.com/c/TV1lL8/z3LKv+ePTF1+UiwQn
https://paperpile.com/c/TV1lL8/z3LKv+ePTF1+UiwQn
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from a combination of binding specific cis-regulatory motifs as well as associating with 116 

transcription factors (TFs). Here, we investigated the molecular basis of transcriptional 117 

control by SMXL proteins.  118 

RESULTS 119 

SMAX1 and SMXL7 are not interchangeable 120 

Differential expression of genes in the SMAX1- and SMXL78-clades occurs in many 121 

tissue types and developmental stages of Arabidopsis thaliana, although in some cases 122 

both types of genes show similar expression (Stanga et al. 2013; Soundappan et al. 123 

2015). For example, SMAX1-clade transcripts are enriched in seeds and emerging 124 

seedlings, while SMXL78-clade transcripts are enriched in the roots and apices of older 125 

seedlings; however, both types of transcripts are abundant in leaves and floral tissues 126 

(Supplemental Fig. S1) (Klepikova et al. 2016).  127 

 128 

This led us to investigate whether the different roles of the SMAX1- and SMXL78-clades 129 

in Arabidopsis development are due to their expression patterns. We focused on SMAX1 130 

and SMXL7 as representative members of each clade because they generally showed 131 

the highest expression (Supplemental Fig. S1). We performed a promoter-swapping 132 

experiment in which we tested whether SMXL7 expressed under the control of a SMAX1 133 

promoter (SMAX1pro::SMXL7) could rescue the smax1-2 smxl2-1 (hereafter, smax1,2) 134 

mutant. SMAX1pro::SMAX1 fully rescued the hypocotyl elongation of smax1,2 seedlings 135 

https://paperpile.com/c/TV1lL8/GgnUH+AtCPQ
https://paperpile.com/c/TV1lL8/GgnUH+AtCPQ
https://paperpile.com/c/TV1lL8/A8pr4
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grown under dim red light. In contrast, SMAX1pro::SMXL7 partially rescued hypocotyl 136 

growth and inhibited cotyledon expansion (Fig. 1 A and B). Similarly, while 137 

SMAX1pro::SMAX1 restored seed dormancy to smax1,2, SMAX1pro::SMXL7 had a 138 

significantly weaker effect (Fig. 1C). This implies that SMXL7 shares some function with 139 

SMAX1 but the genes are not equivalent. 140 

 141 

Regulation of SMAX1 and SMXL7 in these transgenic seedlings was consistent with prior 142 

studies (Fig. 1B). Hypocotyl elongation of SMAX1pro::SMAX1 smax1,2 seedlings was 143 

inhibited by KAR2 and a synthetic SL, GR245DS, implying KAI2- and D14-induced 144 

degradation of SMAX1, respectively. SMAX1pro::SMXL7 smax1,2 seedlings, however, 145 

were responsive to GR245DS only, consistent with D14-specific targeting of SMXL7 for 146 

degradation (Fig. 1B). Therefore, even though the SMXL78 clade has little or no control 147 

of hypocotyl elongation in Arabidopsis (Soundappan et al. 2015; Li et al. 2022), regulation 148 

of misexpressed SMXL7 is intact in seedlings.  149 

 150 

We then tested the converse situation: could SMAX1 replace a SMXL78-clade deficiency 151 

when expressed under the control of a SMXL7 promoter? To avoid D14-induced 152 

degradation of SMAX1 (Li et al. 2022; Wang et al. 2020b), which might reduce the 153 

effectiveness of a SMXL7pro::SMAX1 transgene, and to maximize the phenotypic 154 

differences between rescued and non-rescued lines, we introduced SMXL7pro::SMAX1 155 

into max3 smxl6,7,8. This quadruple mutant is SL-deficient, but also has constitutive SL 156 

responses. SMXL7pro::SMXL7 rescued the axillary branching and shoot height 157 

https://paperpile.com/c/TV1lL8/AtCPQ+OipGg
https://paperpile.com/c/TV1lL8/OipGg+Mp4F2


 

9 
 

phenotypes of max3 smxl6,7,8 to those seen in the max3 single mutant. In contrast, 158 

SMXL7pro::SMAX1 did not affect either shoot phenotype (Fig. 1 D and E). Altogether 159 

these observations demonstrated that the unique functions of SMAX1 and SMXL7 are 160 

not simply a consequence of their expression patterns. Therefore, SMAX1 and SMXL7 161 

proteins likely regulate distinct developmental processes by regulating different sets of 162 

genes, for example through selective interactions with transcription factor partners.  163 

 164 

An N-terminal “output” domain specifies developmental control by SMAX1 and 165 

SMXL7  166 

To determine which part of SMXL proteins specifies their roles in development, we 167 

performed a structure-function analysis. Our first strategy was to swap major domains of 168 

SMAX1 and SMXL7 proteins and test the functions of the resulting chimeras (hereafter, 169 

SMXL𝜒, where the Greek letter 𝜒 represents chimera). Domains in SMAX1 and SMXL7 170 

have three conserved globular regions connected by less conserved, often intrinsically 171 

disordered regions (IDRs) of variable lengths (Supplemental Fig. S2 and S7A) (Khosla et 172 

al. 2020a; Tal et al. 2022; Temmerman et al. 2022). Therefore, to keep the swapped 173 

domains in a near-native context within the broader protein structure, we adjusted the 174 

previously defined domain boundaries of SMAX1 and SMXL7 to end at nearby, highly 175 

conserved residues (Supplemental Fig. S2). We also considered a prediction of SMAX1 176 

protein structure created by AlphaFold2 (Jumper et al. 2021). This model suggested that 177 

our initial C-terminal boundary for the SMAX1N domain at aa 158 is located in the middle 178 

https://paperpile.com/c/TV1lL8/nJI7f+9mubL+1ACBu
https://paperpile.com/c/TV1lL8/nJI7f+9mubL+1ACBu
https://paperpile.com/c/TV1lL8/hXE8k
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of the ninth alpha helix (Supplemental Fig. S1). This led us to also test a longer, 210-aa 179 

version of the SMAX1N domain that encompasses the predicted globular N-terminal 180 

region and part of a putative IDR that follows it.  We created a series of reciprocal swaps 181 

of the N, D1 and M (D1M), and D2 domains from SMAX1 and SMXL7 (Fig. 2A). (The 182 

three numbers following SMXL𝜒 in each chimera name indicate the source of the N, D1M, 183 

and D2 domains, respectively.) To validate the expression and correct subcellular 184 

localization of the SMXL𝜒 proteins, we created N-terminal fusions with eYFP and 185 

transiently expressed each construct in Nicotiana benthamiana leaves. All eYFP-SMXL𝜒 186 

proteins produced nuclear-localized fluorescence that was consistent with the localization 187 

of wild-type SMAX1 and SMXL7 (Supplemental Fig. S3). 188 

 189 

We then tested whether the SMXL𝜒 proteins could rescue smax1,2 or max3 smxl6,7,8 190 

when expressed under the control of SMAX1 or SMXL7 promoters, respectively. 191 

SMAX1pro::SMXL𝜒177 mostly rescued the short hypocotyl phenotype of smax1,2 (Fig. 192 

2B). In contrast, SMAX1pro::SMXL𝜒771 rescued hypocotyl elongation weakly, similar to 193 

SMAX1pro::SMXL7, and SMAX1pro::SMXL𝜒717 had no effect (Fig. 1A and 2B). This 194 

suggested that SMAX1N is sufficient to specify control of hypocotyl growth. Furthermore, 195 

because SMXL𝜒711 had limited ability to rescue smax1,2 hypocotyl elongation, the N 196 

domain may be necessary for SMAX1 function (Supplemental Fig. S4B). In case SMXL7 197 

turnover limits its effectiveness in smax1,2, we tested an Arg-Gly-Lys-Thr (RGKT) 198 

deletion mutant that is resistant to SL-induced degradation (Zhou et al. 2013; Jiang et al. 199 

2013; Wang et al. 2015; Soundappan et al. 2015). Like wild-type SMXL7, SMXL7ΔRGKT 200 

https://paperpile.com/c/TV1lL8/PtAp3+MEGWp+DesLu+AtCPQ
https://paperpile.com/c/TV1lL8/PtAp3+MEGWp+DesLu+AtCPQ
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recovered hypocotyl elongation of smax1,2 only partially (Supplemental Fig. S4 C and 201 

D). SMXL𝜒177ΔRGKT was more effective at rescuing hypocotyl length, and 202 

SMXL𝜒121077ΔRGKT even moreso (Supplemental Fig. S4 C and D).  203 

 204 

Hypocotyl elongation of SMAX1pro::SMXL𝜒177 and SMAX1pro::SMXL𝜒771 smax1,2 205 

seedlings was inhibited by GR245DS treatment, but not by KAR2 (Fig. 2B). This suggests 206 

that these chimeric proteins, which share the D1M domain from SMXL7, are targeted for 207 

degradation by D14 but not KAI2. It provides further evidence that the D1M domain 208 

specifies SMXL interactions with D14 or KAI2 receptors (Khosla et al. 2020a) and also 209 

demonstrates cross-wiring of the KAR and SL signaling systems. Unexpectedly, we also 210 

saw hypocotyl elongation responses to GR245DS in SMXL7ΔRGKT, SMXL𝜒177ΔRGKT, and 211 

SMXL𝜒121077ΔRGKT smax1,2 lines, which may indicate that the RGKT deletion does not 212 

confer degradation resistance in this background (Supplemental Fig. S4 C and D). In the 213 

max3 smxl6,7,8 background, however, SMXL7ΔRGKT  functioned as expected for a 214 

hypermorphic protein; SMXL7pro::SMXL7ΔRGKT had a stronger effect than 215 

SMXL7pro::SMXL7, producing shoot branching and height phenotypes that were even 216 

more dramatic than max3 (Supplemental Fig. S5).  217 

 218 

We observed similar results in germination assays of the SMXL𝜒 smax1,2 transgenic 219 

lines. SMAX1pro::SMXL𝜒177 restored seed dormancy to smax1,2, but 220 

SMAX1pro::SMXL𝜒717 and SMAX1pro::SMXL𝜒771 did not affect germination 221 

https://paperpile.com/c/TV1lL8/nJI7f
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significantly (Fig. 2C). Likewise, SMXL𝜒177ΔRGKT and SMXL𝜒121077ΔRGKT rescued seed 222 

dormancy to a greater degree than SMXL7ΔRGKT (Supplemental Fig. S4D).  223 

 224 

We next investigated whether the N domain of SMXL7 specifies control of axillary 225 

branching and shoot height (Fig. 2 D and E). SMXL7pro::SMXL𝜒711 restored the axillary 226 

branching of max3 smxl6,7,8 to the level of max3, as we had observed for wild-type 227 

SMXL7 (Fig. 1D and 2D). In contrast, SMXL7pro::SMXL𝜒171 and SMXL7pro::SMXL𝜒117 228 

did not affect axillary branching (Fig. 2D). This suggests that SMXL7N is sufficient to 229 

specify control of axillary branching. SMXL7pro::SMXL𝜒177 also did not affect the axillary 230 

branching phenotype of max3 smxl6,7,8 (Supplemental Fig. S5A), implying that SMXL7N 231 

is necessary for axillary branching control. Interestingly, none of the chimeras affected 232 

the height of max3 smxl6,7,8 plants (Supplemental Fig. S5B). Therefore, regions of 233 

SMXL7 in addition to the N domain may be required to control shoot height. As well as 234 

having increased axillary branching from the rosette (i.e. primary branches), max3 has 235 

excess secondary branching from cauline nodes (Booker et al. 2004). We found that 236 

SMXL7pro::SMXL𝜒711 did not rescue secondary branching (Supplemental Fig. S5 C and 237 

D). Therefore, SMXL7N is only sufficient for regulation of rosette axillary branching.  238 

 239 

Collectively, these results indicate that the N domains of SMAX1 and SMXL7 play crucial 240 

roles in specifying downstream signaling outputs. However, other domains may also 241 

contribute to the distinct functions of these proteins, in particular for SMXL7. 242 

https://paperpile.com/c/TV1lL8/nR09u
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SMAX1N is necessary and sufficient for regulating early development 243 

To further investigate the role of the N domain in developmental regulation by SMAX1 244 

and SMXL7, we performed a deletion analysis. We fused an N-terminal nuclear 245 

localization signal (NLS) from simian virus 40 (SV40) to all truncated proteins in order to 246 

maintain the correct subcellular localization (Fig. 3A). SMAX1pro::SMAX1ΔN failed to 247 

rescue smax1,2 hypocotyl elongation or seed dormancy (Fig. 3 B and C). Similarly, 248 

SMXL7pro::SMXL7ΔN did not rescue the axillary branching or shoot height phenotypes 249 

of max3 smxl6,7,8 (Fig. 3D and E). Therefore, the N domain is necessary for SMAX1 and 250 

SMXL7 functions.  251 

 252 

We also tested SMAX1N alone and found that it had no effect on smax1,2 hypocotyl 253 

growth or germination (Fig. 3 B and C). This was not surprising, as SMXL functions are 254 

highly dependent on a C-terminal EAR motif(s) that facilitates interactions with TPL/TPR 255 

transcriptional co-repressors (Jiang et al. 2013; Wang et al. 2015; Liang et al. 2016; Ma 256 

et al. 2017; Soundappan et al. 2015; Li et al. 2024). To better mimic SMAX1 function, we 257 

fused SRDX, an artificial transcriptional repression domain based on EAR motif 258 

sequences (Hiratsu et al. 2003), to the C-terminus of SMAX1N. SMAX1pro::SMAX1N-259 

SRDX moderately recovered hypocotyl elongation of smax1,2 and restored seed 260 

dormancy (Fig. 3 B and C). A similar fusion with the longer version of SMAX1N was more 261 

effective. SMAX1N210-SRDX robustly rescued smax1,2, causing hypocotyl elongation to 262 

exceed wild-type Col-0 (Fig. 3 B and C). This was not a consequence of SRDX alone, as 263 

SMAX1pro::GFP-SRDX had no effect on hypocotyl elongation of smax1,2 and only 264 

https://paperpile.com/c/TV1lL8/MEGWp+DesLu+j5OLt+boHto+AtCPQ+xG7mS
https://paperpile.com/c/TV1lL8/MEGWp+DesLu+j5OLt+boHto+AtCPQ+xG7mS
https://paperpile.com/c/TV1lL8/qHWwW
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affected seed germination weakly (Supplemental Fig. S6). These results demonstrate that 265 

SMAX1N, in particular the 210-aa version, is sufficient to specify regulation of germination 266 

and seedling growth. Notably, SMAX1N210-SRDX reconstitutes the function of full-length 267 

SMAX1 but not its regulation by SCFMAX2, as SMAX1N210-SRDX smax1,2 seedlings were 268 

insensitive to KAR2 and GR245DS treatments (Fig. 3B). 269 

 270 

We similarly tested the necessity and sufficiency of SMXL7N for regulating SL responses. 271 

SMXL7pro::SMXL7ΔN did not rescue the axillary branching or shoot height phenotypes 272 

of max3 smxl6,7,8, supporting the necessity of the N domain for these functions. SMXL7N 273 

and SMXL7N-SRDX also failed to rescue max3 smxl6,7,8 even though SMXL7N was 274 

sufficient to confer axillary branching control to SMXL𝜒711. A longer N domain may be 275 

required to recapitulate SMXL7 function in an SRDX fusion or other domains may also be 276 

required to coordinate gene regulation. 277 

 278 

The N domain putatively mediates SMXL interactions with many transcription 279 

factors  280 

SMXL6 and SMAX1 have been reported to bind to the same DNA motif (Wang et al. 281 

2020a; Xu et al. 2023). This implies that additional factors are required to achieve distinct 282 

developmental outputs. We reasoned that SMAX1 may control different gene regulatory 283 

networks than SMXL7 through differential interactions with transcription factor (TF) 284 

https://paperpile.com/c/TV1lL8/aHufr+UiwQn
https://paperpile.com/c/TV1lL8/aHufr+UiwQn
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protein partners. This led us to screen for potential TF partners of SMAX1 and SMXL7, 285 

simultaneously examining the importance of the N domain for such interactions. 286 

 287 

We conducted yeast two-hybrid (Y2H) assays with 158 transcriptional regulators from an 288 

Arabidopsis thaliana TF library (Pruneda-Paz et al. 2014). The following criteria aided our 289 

selection of candidate TFs (Supplemental Table S1): 1) physical and/or genetic 290 

interactions with SMAX1 or SMXL78-clade proteins, 2) putative direct targets of SMXL6, 291 

3) differential expression after GR24 treatment, and 4) association with seed 292 

development/germination, photomorphogenesis, root hair development, or leaf 293 

morphology (Wang et al. 2020a; Humphreys et al. 2023). We focused on identifying 294 

potential interactions between candidate TFs and SMAX1, which has been less 295 

characterized (Fig. 4, Supplemental Fig. S5). Potential SMAX1 interactors were then 296 

tested for interactions with SMXL7. The respective N domains (SMAX1N and/or SMXL7N) 297 

or SMXL proteins lacking the N domain (SMAX1ΔN and/or SMXL7ΔN) were also tested 298 

to determine the basis of any positive Y2H interactions. If a TF interacted with a full-length 299 

SMXL protein but not the N domain alone, we tested whether it could interact with a longer 300 

version of the N domain (SMAX1N210 and/or SMXL7N190), as SMAX1N210-SRDX had 301 

proven more effective than SMAX1N-SRDX in transgenic plants. 302 

 303 

We identified 33 TFs that showed positive Y2H interactions with full-length SMAX1. The 304 

majority of these interactions (25/33) required SMAX1N. The N domain was sufficient for 305 

interactions with eight of these proteins, and the longer 210-aa version of N was sufficient 306 

https://paperpile.com/c/TV1lL8/V8FGA
https://paperpile.com/c/TV1lL8/aHufr+MMkOz
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for interaction with three proteins. Fourteen proteins that required the N domain for 307 

interaction did not show interaction with any of the SMAX1 truncation proteins. This 308 

suggests that binding these TFs may require the N domain as well as another part of 309 

SMAX1. Of the remaining eight TFs that did not require the N domain for interaction with 310 

SMAX1, four could interact with the N domain alone and three putatively interacted with 311 

the 52-amino acid, IDR-containing region that distinguishes the long and short versions 312 

of SMAX1N. Altogether these observations support the importance of the N domain in 313 

transcriptional control by SMAX1 and identify a set of TFs that may be involved in 314 

developmental regulation by SMAX1. Notably, only 17 of the 33 SMAX1-interacting TFs 315 

also interacted with SMXL7 or its derivatives. Some of the differential Y2H interactions 316 

we observed with TFs may explain the unique roles of SMAX1 and SMXL7 in plant 317 

development.  318 

 319 

DISCUSSION 320 

This study implicates the N domain of SMXL proteins as a major determinant of SMXL 321 

roles in plant growth and development. It remains to be seen whether the N domain is 322 

responsible for direct DNA-binding by SMXL proteins or only interactions with TFs. 323 

Because the N domain is more stable than full-length SMAX1, it may be more amenable 324 

to chromatin immunoprecipitation analysis and identification of SMAX1 protein partners 325 

via co-immunoprecipitation and tandem mass spectrometry. Further refinement of critical 326 

features within the N domain that specify developmental roles will also be useful in order 327 



 

17 
 

to determine how SMXL proteins evolved different functions during the diversification of 328 

this family in the angiosperm lineage.  329 

 330 

In future studies, it will be important to validate the candidate TF interactions with SMAX1 331 

or SMXL7 through genetic and biochemical approaches. Of particular interest are TFs 332 

that may differentially interact with SMAX1 and SMXL7. Our screen suggested that 333 

SMAX1 may interact with multiple members of the TCP, HB, GRAS, bHLH, and 334 

AP2/EREBP families (Supplemental Table S1). TEOSINTE BRANCHED 335 

1/CYCLOIDEA/PCF (TCP) family proteins are categorized into class I-PCF, class II-CIN, 336 

and class II-CYC/TB1 subclades. All class I TCPs that we tested, except for TCP21, 337 

interacted with both SMAX1 and SMXL7. Most of the tested class II TCPs also interacted 338 

with both SMAX1 and SMXL7, but TCP5 and TCP17 only interacted with SMAX1. 339 

TCP18/BRANCHED1, a key regulator of branching (Aguilar-Martínez et al. 2007; Wang 340 

et al. 2019), putatively interacted with SMAX1 and SMXL7 through the N domain. 341 

Regarding the GRAS family, we examined four of the five Arabidopsis DELLAs. GAI, 342 

RGL1, and RGL3 interacted with SMAX1 and SMXL7, but RGA showed SMAX1-specific 343 

interaction. The N domain was necessary but not sufficient for SMXL–DELLA interactions, 344 

consistent with a prior report that these DELLAs cannot interact with SMAX1 lacking its 345 

first 163 amino acids (Kim et al. 2022). In some cases, our Y2H results differed from 346 

expectations. For example, we did not observe clear SMAX1 or SMXL7 interactions with 347 

Arabidopsis homologs of OsGRF4, OsBES1, and OsIPA1 (Supplemental Fig. S9 and 348 

Supplemental Table S1) (Sun et al. 2023; Hu et al. 2020; Song et al. 2017). 349 

https://paperpile.com/c/TV1lL8/dQa70+w6pCM
https://paperpile.com/c/TV1lL8/dQa70+w6pCM
https://paperpile.com/c/TV1lL8/ePTF1
https://paperpile.com/c/TV1lL8/lQH2a+Rem01+euyV3
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Finally, we showed that chimeric SMXL proteins could be created that crosswire the 350 

normal responses to KARs and SLs. For example, the SMXL𝜒177 protein enabled SL-351 

specific control of seed germination and seedling growth (Fig. 2). This suggests that 352 

important agronomic traits in crops that are controlled by SMXL proteins, including plant 353 

architecture and symbiotic interactions with microbes, could be genetically engineered to 354 

be regulated by a different hormone. We also demonstrated the creation of a miniaturized 355 

form of SMAX1 through the SMAX1N210-SRDX fusion. This protein recapitulates SMAX1 356 

function but escapes SCFMAX2-dependent regulation (Fig. 3). It could conceivably be 357 

further fused to degrons from plant or non-plant systems to generate novel, inducible 358 

forms of developmental control (Huang and Rojas-Pierce 2024).  359 

 360 

METHODS 361 

Plant materials and growth conditions 362 

Arabidopsis thaliana mutants smax1-2 smxl2-1, max3-9, and max3-9 smxl6-4 smxl7-3 363 

smxl8-1 were described previously (Stanga et al. 2016; Wang et al. 2015). Seeds were 364 

surface-sterilized, stratified at 4℃ for 3 d, plated on 0.5x Murashige and Skoog (0.5x MS) 365 

medium with 0.8% (w/v) Bacto agar, unless otherwise specified. For branching and height 366 

measurements, 10-d-old seedlings grown on 0.5xMS solid medium were transplanted to 367 

soil (Sungro Professional Growing Mix) supplemented with Gnatrol WDG and Marathon 368 

(imidacloprid) under 16-h white light/8-h dark cycles at ~21℃. 369 

https://paperpile.com/c/TV1lL8/EGBke
https://paperpile.com/c/TV1lL8/hdzM9+DesLu
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DNA constructs for transgenic plants 370 

A binary Gateway destination vector, pGWBcitr, was generated by replacing the 371 

hygromycin resistance cassette of pGWB501 with a seed coat-specific Citrine cassette 372 

from pYUU (Nakagawa et al. 2007; Angulo et al. 2023). The promoter upstream of the 373 

Gateway cassette was replaced with Arabidopsis SMAX1 and SMXL7 promoter (3 kbp of 374 

DNA upstream of the translation start site). Arabidopsis SMAX1 and SMXL7 coding 375 

sequences with C-terminal 3xFLAG tags were cloned into pDONR221 vector by Gateway 376 

BP reaction (Invitrogen). SMXL chimeras were assembled by overlap-extension PCR 377 

(Nelson and Fitch 2011) and cloned into pDONR221. N-terminal SV40 NLS-, C-terminal 378 

FLAG-, and SRDX-fused SMAX1N, SMAX1N210, SMXL7N, SMXL7N190 sequences were 379 

synthesized (Twist Biosciences) and cloned into pDONR221. NLS-SMAX1N-FLAG, NLS-380 

SMAX1N210-FLAG, NLS-SMXL7N-FLAG and NLS-SMXL7N190-FLAG were amplified from 381 

the synthetic DNA by a FLAG specific primer and introduced into pDONR221 to generate 382 

Gateway entry clones. NLS-eGFP-FLAG-SRDX and NLS-eGFP-FLAG were assembled 383 

through NEBuilder (New England Biolabs) and cloned by BP reaction. Entry clones of 384 

NLS-SMAX1ΔN-FLAG  and  NLS-SMXL7ΔN-FLAG were generated with NEBuilder by 385 

replacing eGFP from an NLS-eGFP-FLAG entry clone with N-terminally truncated SMAX1 386 

and SMXL7. Entry clones of SMAX1ΔRGKT, SMXL7ΔRGKT, SMXL𝜒177ΔRGKT, and 387 

SMXL𝜒121077ΔRGKT were generated with Q5 Site-Directed Mutagenesis Kit (New England 388 

Biolabs). Inserts in Gateway entry clones were transferred into pGWBcitr-SMAX1pro and 389 

pGWBcitr-SMXL7pro by Gateway LR reaction (Invitrogen). The eYFP-SMXL𝜒 fusions 390 

used for testing subcellular localization were made by introducing the series of entry 391 

https://paperpile.com/c/TV1lL8/YWh3z+RwQ2N
https://paperpile.com/c/TV1lL8/oV2l9
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clones containing the intact and chimeric SMXLs into pGWB542 (Nakagawa et al. 2007) 392 

by Gateway LR reaction. Primers used for cloning, plasmid construction, and genotyping 393 

are listed in Supplemental Table S3. 394 

Structural analysis of SMAX1 and SMXL7 395 

Globular regions of SMAX1 and SMXL7 were predicted with IUPred3 structural domains 396 

tool (Erdős et al. 2021). IDR regions were predicted using the D2P2 database (Oates et 397 

al. 2013). Predicted IDRs with over 75% agreement are indicated in Supplemental Fig. 398 

S7 and Supplemental Table S1.  399 

Plant phenotyping 400 

Hypocotyl elongation assays were performed with slight modification as previously 401 

described (Sepulveda et al. 2022). Seeds were surface-sterilized, plated on 0.5xMS 402 

media supplemented with 1 µM KAR2, GR245DS, or an equivalent volume of acetone 403 

solvent, stratified for 3 d at 4°C in darkness, and moved to a HiPoint DCI-700 LED Z4 404 

growth chamber to grow at 21 °C under white light (150 µmol m−2 s−1) for 3 h, dark for 21 405 

h, and continuous red light (30 µmol m−2 s−1) for 6 d. Hypocotyl lengths were measured 406 

from photographs of seedlings using ImageJ (NIH). Statistical significance (P<0.05) was 407 

calculated through Tukey’s multiple comparisons. 408 

For branching and shoot height measurement, seedlings grown on 0.5xMS were moved 409 

to soil without fertilizer and grown as described above for 8 weeks. The primary shoot 410 

https://paperpile.com/c/TV1lL8/YWh3z
https://paperpile.com/c/TV1lL8/uaLFD
https://paperpile.com/c/TV1lL8/VBoNv
https://paperpile.com/c/TV1lL8/VBoNv
https://paperpile.com/c/TV1lL8/ygZnA
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height and the number of rosette axillary branches at least 10 mm in length were counted. 411 

Statistical significance (P<0.05) was calculated through Tukey’s multiple comparisons. 412 

Germination assays of seeds aged at room temperature for at least one-month after 413 

harvest were performed as previously described (Bunsick et al. 2020). Seeds were 414 

surface-sterilized, plated on 0.5x MS containing 3 µM paclobutrazol (PAC), stratified 4 d 415 

at 4°C in darkness, and then moved to a HiPoint DCI-700 LED Z4 growth chamber to 416 

grow at 25°C under continuous white light (100 µmol m−2 s−1). After 10 d, germination was 417 

scored as radicle emergence.  418 

Yeast two-hybrid assays 419 

SMAX1, SMAX1ΔN, SMAX1N, SMAX1N210, SMXL7, SMXL7ΔN, SMXL7N, and SMXL7N190 420 

in Gateway entry clones were transferred into pDEST32 (Invitrogen) by Gateway LR 421 

reaction. Bait plasmids were introduced into the Y2HGold yeast strain (Takara) using the 422 

lithium acetate method (Gietz and Schiestl 2007). Prey plasmids from the pDEST22-423 

Arabidopsis TF library (Pruneda-Paz et al. 2014) were introduced into bait-transformed 424 

yeast lines. Co-transformed yeast were selected through growth on −Leu/−Trp (−LW) 425 

synthetic dropout media for 3 d at 30 °C. Bait-prey interactions were examined by spotting 426 

cells (10 μL of colony suspension at OD600 0.15) on −LW and −Leu/−Trp/−His (−LWH) 427 

synthetic dropout plates. After 3 d at 30 °C, plates were photographed and colony growth 428 

was quantified using a modified density analysis method (Petropavlovskiy et al. 2020). 429 

Briefly, photographs were converted to grayscale, and gray values of yeast spots and 430 

their backgrounds were measured using ImageJ (NIH). Background values were 431 

https://paperpile.com/c/TV1lL8/5EjJv
https://paperpile.com/c/TV1lL8/fktu
https://paperpile.com/c/TV1lL8/V8FGA
https://paperpile.com/c/TV1lL8/nRxzp
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subtracted from yeast spot values on the same plate. The background-subtracted values 432 

from −LWH plates were divided by the corresponding values from −LW plates. The ratios 433 

for the two colony replicates in each test were log2 transformed and averaged. Values 434 

above -0.5 were considered a positive interaction. 435 

Subcellular localization analysis 436 

A. tumefaciens strain GV3101 carrying pGWB542 expression clones with SMAX1, 437 

SMXL7, and SMXL𝜒 variants were infiltrated into N. benthamiana as previously described 438 

(Khosla et al. 2020b). The eYFP, 4′,6-diamino-2-phenylindole dihydrochloride (DAPI) and 439 

propidium iodide (PI) fluorescent signals were visualized using 880 Inverted Airyscan Fast 440 

confocal microscope (Zeiss) with the setting of eYFP (excitation, 514 nm; emission, 527 441 

nm), DAPI (excitation, 405 nm; emission, 488 nm) and PI (excitation, 535/20 nm; 442 

emission, 610/20). For co-staining, leaf discs were incubated in distilled water 443 

supplemented with 10 µg/mL DAPI and 10 µg/mL PI for 20 min in darkness.  444 

 445 

Gene accession numbers 446 

SMAX1 (AT5G57710.1), SMXL2 (AT4G30350.1), SMXL6 (AT1G07200.2), SMXL7 447 

(AT2G29970.1), SMXL8 (AT2G40130.2), OsD53 (Os11g01330.1), OsSMAX1L 448 

(Os08g15230.1), OsSMXL2 (Os02g54720.1). Accession numbers for TFs used in the 449 

Y2H assay are listed in Supplemental Table S2.  450 

 451 

https://paperpile.com/c/TV1lL8/11mUi
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Figure 1. Differences in SMAX1 and SMXL7 functions are not due to expression alone
(A) Hypocotyl length of Col-0, smax1,2, and transgenic seedlings grown 6 d in red light expressing
SMAX1pro::SMAX1 or SMAX1pro::SMXL7 in the smax1,2 background . Seedlings were treated with mock, 1 μM
KAR2, or 1 μM GR245DS (n>20). (B) Representative image of the seedlings used in A. Scale bar = 2 mm. (C)
Germination of transgenic lines expressing SMAX1 and SMXL7 under the SMAX1 promoter in smax1,2. (n=3,
>50 seeds per replicate) (D) Rosette branch numbers of 8-week-old Col-0, max3, max3 smxl6,7,8, and
SMXL7pro::SMAX1 or SMXL7pro::SMXL7 in max3 smxl6,7,8 (n>9). (E) Height of plants in D. Boxplots indicate
mean with quartiles and Tukey’s whiskers; open symbols are outlier points that fall beyond the range of the
whiskers. Letters indicate groups with significant differences (P<0.05, two-way ANOVA in B, or one-way ANOVA
in C-E, followed by Tukey’s multiple comparisons test).
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Figure 2. Chimera analysis implicates N domain of SMXL proteins in developmental control
(A) Schematic of N, D1M, and D2 domain boundaries of SMAX1, SMXL7, and chimeric SMXL proteins. (B) 
Hypocotyl length of red light-grown seedlings treated with mock, 1 μM KAR2, or 1 μM GR245DS (n>20). (C) 
Germination Col-0, smax1,2, and transgenic lines expressing SMXL!177, SMXL!717, and SMXL!771 under the 
SMAX1 promoter in smax1,2. (n=3, >50 seeds per replicate) (D) Rosette axillary branch numbers in Col-0, 
max3, max3 smxl6,7,8, and transgenic lines expressing SMXL!711, SMXL!171, and SMXL!117 under control 
of the SMXL7 promoter in max3 smxl6,7,8 (n>9). (E) Height of the plants in D. Boxplots indicate mean with 
quartiles and Tukey’s whiskers; open symbols are outlier points that fall beyond the range of the whiskers. 
Letters indicate groups with significant differences (P<0.05, two-way ANOVA in B, or one-way ANOVA in C-E,
followed by Tukey’s multiple comparisons test). S!, abbreviation for SMXL!.
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Figure 3. SMAX1N specifies control of Arabidopsis germination and seedling growth
(A) Schematic representation of truncated SMAX1 and SMXL7 proteins. GFP-SRDX was used as a negative
control. black, SV40 NLS added to the N-termini of truncated SMXL proteins. yellow, EAR or SRDX motifs. (B-C)
Hypocotyl length of red light-grown seedlings treated with mock, 1 μM KAR2, or 1 μM GR245DS (B, n>20) and
germination (C, n=3, >50 seeds per replicate) of Col-0, smax1,2, and transgenic lines expressing SMAX1ΔN,
SMAX1N, SMAX1N-SRDX, and SMAX1N210-SRDX under control of the SMAX1 promoter in smax1,2. (D) Rosette
axillary branch numbers of Col-0, max3, max3 smxl6,7,8, and transgenic lines (n>9) expressing SMXL7ΔN,
SMXL7N, and SMXL7N-SRDX (n>9). (E) height of plants in D. Boxplots indicate mean with quartiles and Tukey’s
whiskers; open symbols are outlier points that fall beyond the range of the whiskers. Letters indicate groups with
significant differences (P<0.05, two-way ANOVA in B, or one-way ANOVA in C-E, followed by Tukey’s multiple
comparisons test). S1 or S7, abbreviations for SMAX1 or SMXL7.



Figure 4. SMAX1N is involved in most of the potential interactions with transcription factors
(A) Heatmap summarizing positive Y2H interactions between full-length and truncated SMAX1 or SMXL7
proteins with various TFs. Interaction level was quantified by comparing yeast growth on –LW and –LWH media
and presented on a log2 scale. Interactions with values above -0.5 (purple) were considered positive, while
below -0.5 (white) were considered non-interacting. Black boxes indicate untested combinations. (B) Schematic
of the TFs that interact with the N-terminal domain of SMAX1 (top) or SMXL7 (bottom). TFs are grouped based
on their interaction requirements with the SMAX1/SMXL7 N domain: “N”, TFs for which the N domain is both
necessary and sufficient for interactions; “N AND ?”, TFs that require the N domain and an additional SMXL
region(s) for interaction; “N OR ?”, TFs for which the N domain is sufficient but not necessary for interaction.
hatched boxes, three longest predicted intrinsically disordered regions (IDRs) based on Supplemental Figure S7.
TFs belonging to the same family are depicted in the same color in A and B.
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Supplemental Figure 1. Expression pattern of SMAX1- and SMXL78-clade genes in different stages of
Arabidopsis development.
Overview of mRNA expression of SMAX1 and SMXL78 clades using TraVA (travadb.org) (Klepikova et al. 
2016). The number in each box represents the normalized average count per million reads for each gene in the 
corresponding sample. ‘Seed’ samples were collected on the specified days after germination. Seedling samples 
labeled ‘1-day-old’ were collected from one-day-old seedlings, and ‘7 dpg’ samples were collected from the 
whole or specified tissues of the third leaf at the time of anthesis of the first flower. All the samples categorized in 
‘Mature leaf’ were collected from the whole or specified tissue of the third leaf at the time of anthesis of the first 
flower. The ‘internode’ sample represents the first elongated internode between the last rosette leaf and the first 
cauline leaf, collected at the time of the anthesis of the first flower. ‘Whole flowers and inflorescence’ represents 
the average expression of flowers collected at the time of anthesis of the first flower. Samples of ‘Mature flower’ 
were collected from the specified floral parts collected at the moment of the anthesis of the first flower. ‘D’ means 
day, and ‘dpg’ means day post-germination. More detailed information on the samples can be found in 
http://travadb.org/samples/. 

https://paperpile.com/c/TV1lL8/A8pr4
http://travadb.org/samples/
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Supplemental Figure 2. Domain boundaries of SMAX1- and SMXL78-clade proteins in Arabidopsis and rice.
Multiple sequence alignment of SMAX1 and SMXL78-clade protein sequences from Arabidopsis thaliana and
Oryza sativa (rice) to show the domain boundaries. The start positions of the N, D1, M, D2a, and D2b domains
are indicated by black vertical bars and each domain is color-labeled with purple. The extended boundaries for
SMAX1N210 and SMXL7N190 are marked with blue bars. RGKT motif and EAR motif are orange highlighted. The
residues are highlighted based on their chemical properties. The alignment was performed using Clustal Omega
in DNASTAR MegAlign software.
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Supplemental Figure 3. Subcellular localization of eYFP-tagged chimeric SMXLs in N. benthamiana

Confocal microscopy images of transiently expressed N-terminal eYFP-tagged SMAX1, SMXL7, and chimeric
SMXLs in N. benthamiana. The leaf discs were stained with DAPI and PI. Arrows indicate stomata. Scale bar =
20 µm.
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Supplemental Figure 4. Seed and seedling growth control by SMXL N domains
(A) Diagram of SMAX1, SMXL7, SMXL!177, SMXL!121077, and their RGKT motif-deleted versions 
SMAX1ΔRGKT, SMXL7ΔRGKT, SMXL!177ΔRGKT, and SMXL!121077ΔRGKT. The positions of the RGKT motif and the 
extended N domain boundaries are indicated. (B) Hypocotyl length of Col-0, smax1,2 and two independent lines 
of SMAX1pro::SMXL!177 smax1,2. Seedlings were treated with mock (acetone), 1 μM KAR2, or 1 μM GR245DS
(n>20). (C) Hypocotyl length of Col-0, smax1,2, and transgenic lines expressing SMXL7ΔRGKT, SMXL!177ΔRGKT, 
and SMXL!121077ΔRGKT under control of the SMXL7 promoter with mock, 1 μM KAR2, or 1 μM GR245DS
treatment (n>20). (D) Germination of the lines in C (n=3, >50 seeds per replicate). Boxplots indicate mean with 
quartiles and Tukey’s whiskers; open symbols are outlier points that fall beyond the range of the whiskers. 
Letters indicate groups with significant differences (P<0.05, two-way ANOVA in B and C, or one-way ANOVA in 
D, followed by Tukey’s multiple comparisons test). S!, abbreviation for SMXL!.
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Supplemental Figure 5. SMXL7N is not sufficient to rescue max3 smxl6,7,8

(A) Number of axillary branches in transgenic lines expressing SMXL7pro::SMXL!177 and
SMXL7pro::SMXL7ΔRGKT in max3 smxl6,7,8 (n>9). Data for the Col-0, max3, and max3 smxl6,7,8 control plants
is duplicated in Figure 2. (B) Plant height of the lines used in A. (C) Number of rosette branches (white) and
secondary branches (gray) of the indicated transgenics. Data for the SMXL7pro::SMXL7 and
SMXL7pro::SMXL!711 lines is duplicated in Figure 2D, and data for the SMXL7pro::SMXL7ΔRGKT lines is
duplicated in A-B. (D) Ratio of secondary branches to rosette branches in the lines used in C. Boxplots indicate
mean with quartiles and Tukey’s whiskers; open symbols are outlier points that fall beyond the range of the
whiskers. Letters indicate groups with significant differences (P<0.05, one-way ANOVA followed by Tukey’s
multiple comparisons test). In C, significant differences were calculated separately for rosette branches
(uppercase letters) and secondary branches (lowercase letters).
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Supplemental Figure 6. GFP-SRDX does not rescue smax1,2 or max3 smxl6,7,8

(A) Hypocotyl length of Col-0, smax1,2 and two independent transgenic lines expressing SMAX1pro::GFP or
SMAX1pro::GFP-SRDX in smax1,2. Seedlings were treated with mock (acetone), 1 μM KAR2, or 1 μM GR245DS
(n>20). These lines were tested together with those in Figure 3B; Col-0 and smax1,2 data is duplicated in Figure 
3B. (B) Germination rate of the lines used in a (n=3, >50 seeds per replicate). (C) Number of rosette axillary 
branches in transgenic lines expressing SMXL7pro::GFP-SRDX in max3 smxl6,7,8 (n>9). Data for the Col-0,
max3, and max3 smxl6,7,8 plants is duplicated in Figure 2. (D) Plant height of the lines used in C. Letters 
indicate groups with significant differences (P<0.05, two-way ANOVA in A, or one-way ANOVA in B-D, followed 
by Tukey’s multiple comparisons test).
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Supplemental Figure 7. The boundaries of the defined N domains for SMAX1 and SMXL7 do not include the
entirety of the last predicted alpha helix in the domain.
(A) The prediction of globular domains and IDRs of SMAX1 and SMXL7. Globular domains were predicted using 
IUPred3, and disordered regions were predicted using D2P2. D2P2-predicted IDRs longer than 4 amino acids are 
represented by purple bars in the figure. Their detailed positions are listed in Supplemental Table 1. (B) The 
Alphafold2-predicted structure of SMAX1 and SMXL7. The N domains of SMAX1 and SMXL7 are highlighted in 
salmon pink and blue, respectively. The extended SMAX1 N domain (SMAX1N210) and SMXL7 N domain 
(SMXL7N190) are colored dark red and dark blue. The alpha helix regions at the N domain boundaries are 
magnified in the inset boxes. 
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Supplemental Figure 8. Photograph of Y2H results with TFs showing potential interactions with SMAX1 and/or
SMXL7.
Interactions between SMAX1, SMXL7 and their truncated variants fused to GAL4-BD and candidate TFs fused
to GAL4-AD were tested. Two replicates were spotted onto selective growth medium (-L, -Leu; -W, -Trp; -H, -
His), incubated 3 d at 30℃, and photographed.
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Supplemental Figure 9. Y2H assays that showed no interaction between SMAX1 and candidate TFs.
(A) Autoactivation test for SMAX1, SMXL7, and their truncated versions fused with the GAL4-BD. (B) Y2H assay 
results showing no interaction between SMAX1 or SMXL7 and the indicated TFs fused to GAL4-AD.


