
1 **KARRIKIN UPREGULATED F-BOX 1 negatively regulates drought tolerance in**
2 **Arabidopsis**

3 Hongtao Tian,^{1,2} Yasuko Watanabe,³ Kien Huu Nguyen,⁴ Cuong Duy Tran,⁴ Mostafa
4 Abdelrahman,^{5,6} Xiaohan Liang,² Kun Xu,² Claudia Sepulveda,⁷ Mohammad Golam
5 Mostafa,⁸ Chien Van Ha,⁸ David C. Nelson,⁷ Keiichi Mochida,^{3,9,10,11,12} Chunjie
6 Tian,¹ Maho Tanaka,^{13,14} Motoaki Seki,^{13,14} Yuchen Miao,² Lam-Son Phan Tran^{8*} and
7 Weiqiang Li^{1,2*}

8

9 ¹Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun
10 Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols
11 Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy
12 of Sciences, Changchun 130102, China

13 ²State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for
14 Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85
15 Jinming Road, Kaifeng 475004, China.

16 ³Bioproductivity Informatics Research Team, RIKEN Center for Sustainable
17 Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan

18 ⁴National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics
19 Institute, Vietnam Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi,
20 100000, Vietnam

21 ⁵Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt

22 ⁶Molecular Biotechnology Program, Faculty of Science, Galala University, Suze,
23 New Galala 43511, Egypt

24 ⁷Department of Botany & Plant Sciences, University of California, Riverside,
25 Riverside, CA 92521, USA

26 ⁸Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University,
27 Lubbock, TX 79409, USA

28 ⁹Microalgae Production Control Technology Laboratory, RIKEN Baton Zone
29 Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama,
30 Japan

31 ¹⁰Kihara Institute for Biological Research, Yokohama City University, Yokohama,
32 Japan

33 ¹¹Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan

34 ¹²School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan

35 ¹³Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource
36 Science, Yokohama, Japan

37 ¹⁴Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research,
38 Wako, Japan

39

40 **Running head:** *KUF1* role in drought tolerance

41

42 ***Correspondence:**

43 Weiqiang Li (weiqiangli@henu.edu.cn or liweiqiang@iga.ac.cn)

44 Lam-Son Phan Tran (son.tran@ttu.edu)

45

46

47 The author responsible for distribution of materials integral to the findings presented
48 in this article in accordance with the policy described in the Instructions for Authors
49 (<https://academic.oup.com/pphys/pages/General-Instructions>) is: Weiqiang Li
50 (liweiqiang@iga.ac.cn)

51

52 **One-sentence summary**

53 A smoke-activated F-box protein negatively regulates drought tolerance by inhibiting
54 stomatal closure, cuticle formation, and root hair development in *Arabidopsis*.

55

56 **Author contributions**

57 L.-S.P.T. and W.L. planned and designed the research. W.L., H.T., X.L. K.H.N., C.
58 D.T., Y.W., M.T, M. S., K.X., and C.V.H performed the experiments. W.L., M.A., C.T.,
59 M.G.M., Y.M., and K.M. analyzed the data with the input of L.-S.P.T. C.S. and D.C.N.
60 contributed research materials. L.-S.P.T., D.C.N., and W.L. wrote the paper.

61

62 **Abstract**

63 The karrikin (KAR) receptor and several related signaling components have been
64 identified by forward genetic screening, but only a few studies have reported on
65 upstream and downstream KAR signaling components and their roles in drought
66 tolerance. Here, we characterized the functions of *KAR UPREGULATED F-BOX 1*
67 (*KUF1*) in drought tolerance using a reverse genetics approach in *Arabidopsis*
68 (*Arabidopsis thaliana*). We observed that *kuf1* mutant plants were more tolerant to
69 drought stress than wild-type (WT) plants. To clarify the mechanisms by which *KUF1*
70 negatively regulates drought tolerance, we performed physiological, transcriptome,
71 and morphological analyses. We found that *kuf1* plants limited leaf water loss by
72 reducing stomatal aperture and cuticular permeability. In addition, *kuf1* plants showed
73 increased sensitivity of stomatal closure, seed germination, primary root growth, and
74 leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of
75 *kuf1* and WT rosette leaves before and after dehydration showed that the differences
76 in various drought tolerance-related traits were accompanied by differences in the
77 expression of genes associated with stomatal closure (e.g., *OPEN STOMATA 1*), lipid
78 and fatty acid metabolism (e.g., *WAX ESTER SYNTHASE*), and ABA responsiveness
79 (e.g., *ABA-RESPONSIVE ELEMENT 3*). The *kuf1* mutant plants had higher root/shoot
80 ratios and root hair densities than WT plants, suggesting that they could absorb more
81 water than WT plants. Together, these results demonstrate that *KUF1* negatively
82 regulates drought tolerance by modulating various physiological traits, morphological
83 adjustments and ABA responses and that the genetic manipulation of *KUF1* in crops
84 is a potential means of enhancing their drought tolerance.

85

86 **Keywords:** KUF1, Drought, Cuticle, Stomata, Abscisic acid, Root hair

87

88 **Introduction**

89 Drought is a substantial environmental problem that limits crop production
90 worldwide. This problem is becoming more serious as a growing global population
91 increases the demand for agricultural water (Farooq et al., 2009; Abdelrahman et al.,
92 2018). Plants adjust their physiological, biochemical, morphological and molecular
93 responses to survive under water deficiency, but these changes often result in yield
94 reduction (Farooq et al., 2009; Tardieu et al., 2018; Gupta et al., 2020). Changes in
95 endogenous hormone levels, hormone-mediated signal transduction, and metabolite
96 production and mobilization are well-known processes by which plants regulate the
97 balance between growth and drought tolerance (Claeys and Inze, 2013; Bailey-Serres
98 et al., 2019; Fabregas and Fernie, 2019; Gupta et al., 2020). Abscisic acid (ABA) is
99 the best-studied hormone that regulates plant tolerance to drought. ABA promotes
100 stomatal closure, cuticle formation and the accumulation of several metabolites under
101 water-deficient conditions (Santiago et al., 2009; Kuromori et al., 2018; Gupta et al.,
102 2020). Complex interactions between ABA signaling and other plant hormone
103 signaling pathways also occur in response to drought stress (Nakata et al., 2013;
104 Colebrook et al., 2014; Nir et al., 2014; Riemann et al., 2015; Urano et al., 2017).

105 Recently, two types of butenolide signaling molecules, strigolactones (SLs) and
106 karrikins (KARs), and several members of their identified signaling components were
107 shown to positively regulate plant drought responses through their effects on the same
108 processes, namely stomatal closure, cuticle formation, and the accumulation of
109 secondary metabolites like anthocyanins (Bu et al., 2014; Ha et al., 2014; Li et al.,
110 2017; Li et al., 2020; Yang et al., 2020; Zheng et al., 2020). KARs are bioactive
111 signaling molecules originally purified from smoke-water that are known for their
112 role in promoting seed germination (Flematti et al., 2004; Nelson et al., 2009; Nelson
113 et al., 2012). Under different abiotic stress conditions, however, KARs inhibit seed
114 germination (Wang et al., 2018). KARs also promote cotyledon expansion and
115 greening (Nelson et al., 2010), inhibit elongation of light-grown hypocotyls and root
116 skewing (Nelson et al., 2010; Waters et al., 2012; Swarbreck et al., 2019;

117 Villaecija-Aguilar et al., 2019), and promote root hair density and elongation
118 (Villaecija-Aguilar et al., 2019; Carbonnel et al., 2020).

119 Genetic studies have shown that KAR responses in *Arabidopsis* (*Arabidopsis*
120 *thaliana*) require the genes *MORE AXILLARY GROWTH 2* (*MAX2*) and *KARRIKIN*
121 *INSENSITIVE 2* (*KAI2*) (Nelson et al., 2010; Sun and Ni, 2011; Waters et al., 2012).
122 *MAX2* encodes an F-box protein that also participates in SL signaling (Nelson et al.,
123 2010), while *KAI2* encodes an α/β hydrolase with high similarity to the SL receptor
124 *DWARF14* (D14) (Sun and Ni, 2011; Waters et al., 2012). Phenotypic analyses of
125 *kai2* mutant plants suggested that *KAI2* was a possible KAR receptor (Waters et al.,
126 2012), and this possibility was supported by the direct binding of *KAI2* to different
127 types of KARs (Guo et al., 2013). However, more recent observations suggest that
128 KARs require metabolism by plants to activate *KAI2* (Waters et al., 2015; Khosla et
129 al., 2020; Wang et al., 2020). *KAI2* is also thought to recognize an endogenous signal,
130 *KAI2* ligand (KL), that has not yet been identified (Conn and Nelson, 2016). A
131 negative regulatory component in KAR signaling, *SUPPRESSOR OF MAX2 1*
132 (*SMAX1*), was identified by screening for suppressors of *max2* (Stanga et al., 2013).
133 Genetic analyses showed that *SMAX1* and its homolog *SMAX1 LIKE 2* (*SMXL2*)
134 suppress KAR responses with partial redundancy (Stanga et al., 2013; Stanga et al.,
135 2016). The current model of KAR signaling proposes that KAR-derived molecules or
136 KL are bound by *KAI2*, triggering a conformational change in *KAI2* that allows for
137 recruitment of *MAX2* to form a *KAI2-Skp1-Cullin-F-box (SCF)^{MAX2}* complex
138 (Stanga et al., 2016; Khosla et al., 2020; Wang et al., 2020; Zheng et al., 2020). This
139 complex then polyubiquitinates *SMAX1* and *SMXL2*, triggering their degradation by
140 the 26S proteasome (Stanga et al., 2016; Khosla et al., 2020; Wang et al., 2020; Zheng
141 et al., 2020). The degradation of *SMAX1* and *SMXL2*, which putatively function as
142 transcriptional co-repressors, leads to the expression of KAR-responsive genes that
143 activate a series of biological processes summarized above (Stanga et al., 2016;
144 Khosla et al., 2020; Wang et al., 2020).

145 Several genes, such as *D14-LIKE2* (*DLK2*), *B-BOX DOMAIN PROTEIN 20/*

146 *SALT TOLERANCE HOMOLOG 7 (BBX20/STH7), KARRIKIN UPREGULATED*
147 *F-BOX1 (KUF1)*, and *INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19)*, are
148 frequently used as transcriptional markers of KAR/KL signaling because their
149 expression is strongly affected by KAR treatment or the loss of core KAR/KL
150 signaling components (Nelson et al., 2010; Nelson et al., 2011; Waters et al., 2012;
151 Sun et al., 2016; Yao et al., 2018; Wang et al., 2020). Some KAR-responsive genes
152 have been implicated in drought tolerance. Among these marker genes, *IAA19* has
153 been reported to enhance drought tolerance by promoting the accumulation of
154 glucosinolates (GLSs) (Salehin et al., 2019). *BBX20/STH7* and its close homolog
155 *BBX21* (53% identity) function in part as downstream KAR signaling components
156 that influence anthocyanin accumulation and hypocotyl elongation (Thussagunpanit et
157 al., 2017; Bursch et al., 2021). Although direct evidence for the role of *BBX20/STH7*
158 in drought tolerance is still lacking, its positive role in anthocyanin accumulation
159 suggests its possible involvement in enhancing plant drought tolerance
160 (Thussagunpanit et al., 2017; Bursch et al., 2021), owing to the well-known
161 ROS-scavenging activity of anthocyanins (Nakabayashi et al., 2014). Interestingly,
162 two homologs of BBX20/STH7 in *Chrysanthemum morifolium*, CmBBX19 and
163 CmBBX22, were recently shown to attenuate and enhance *C. morifolium* drought
164 tolerance, respectively (Liu et al., 2019; Xu et al., 2020).

165 These observations led us to wonder whether another marker gene of KAR/KL
166 response, *KUF1* that is up-regulated by KAR treatment (Nelson et al. 2010), may
167 influence drought tolerance. A recent reverse genetic analysis of *KUF1* revealed that it
168 attenuates KAR/KL signaling, thus forming a negative feedback loop (Sepulveda et
169 al., 2022). A *kuf1* loss-of-function mutant shows constitutive KAR/KL response
170 phenotypes, such as enhanced seedling photomorphogenesis, increased root hair
171 density and elongation, and differential expression of KAR/KL markers. The
172 photomorphogenesis phenotypes of *kuf1* seedlings are dependent on *MAX2* and *KAI2*,
173 but they are not due to changes in *KAI2* protein abundance. Intriguingly, *kuf1* is
174 hypersensitive to KAR₁ but not to KAR₂. *kuf1* seedlings also have normal responses

175 to *rac*-GR24, a mixture of an SL analog and its enantiomer that preferentially activate
176 D14 and KAI2, respectively. This indicates that KUF1 acts upstream of
177 KAI2-SCF^{MAX2} to influence perception of some ligands by KAI2. It is currently
178 hypothesized that KUF1 negatively regulates the biosynthesis of endogenous KL and
179 the metabolism of KAR₁ into an active ligand for KAI2 (Sepulveda et al., 2022).

180 Current evidence indicates that *KUF1* imposes negative feedback regulation of
181 KAR/KL signaling. However, only a few traits regulated by KAR/KL signaling have
182 been examined, raising the question of whether the role of *KUF1* is limited to
183 seedlings. We previously found that *KAI2* promotes drought tolerance in *Arabidopsis*
184 (Li et al., 2017). This led us to investigate the role of *KUF1* in the regulation of
185 *Arabidopsis* drought tolerance under both severe and moderate drought conditions.
186

187 **Results**

188

189 ***kuf1* mutant plants are more drought tolerant than WT plants**

190 To evaluate the contribution of *KUF1* to drought tolerance, we first compared the
191 survival rates of *kuf1* mutant and WT plants under severe drought stress using the
192 ‘same tray method’. After drought treatment and re-watering, the survival rate was
193 significantly higher in the *kuf1* mutant (by approximately 4.7-fold) than in the WT
194 plants (Figure 1A). To confirm the improved drought tolerance of the *kuf1* plants, we
195 also compared the survival rates of *kuf1* and two *KUF1pro:KUF1 kuf1*
196 complementation lines (*KUF1* 8-5 and 19-8) under drought conditions. The *kuf1*
197 plants showed 5.3- and 2.4-fold increases in survival rate compared with *KUF1* 8-5
198 and *KUF1* 19-8 plants, respectively (Supplemental Figure S1, A and B). Higher
199 drought tolerance in the *kuf1* mutant than in the WT was also observed under
200 moderate drought stress using the ‘gravimetric method’ (Harb and Pereira, 2011). As
201 shown in Figure 1, B–D, the relative biomass reduction of *kuf1* plants was lower than
202 that of WT, *KUF1* 8-5, and *KUF1* 19-8 plants after 14 d of moderate drought.
203 Together, these results demonstrated that the loss of *KUF1* function enhances plant

204 tolerance to both severe and moderate drought stresses.

205

206 **Leaf water loss and stomatal aperture size are reduced in the *kuf1* mutant**

207 Next, we studied the physiological mechanisms associated with the increased
208 drought tolerance of *kuf1* mutant plants. We measured leaf surface temperatures as a
209 proxy for estimation of transpiration rates in the *kuf1* mutant, the WT, and the two
210 *KUF1* complementation lines. The *kuf1* mutant always had a higher leaf surface
211 temperature than the WT (Figure 2A) and the complementation lines (Supplemental
212 Figure S1C), suggesting that slower leaf water loss is an important trait that
213 contributes to the drought tolerance phenotype of the *kuf1* mutant plants. Guard cells
214 in the leaf epidermis form a stomatal pore that is the main channel for water
215 transpiration (Buckley, 2019). Stomatal aperture was smaller in the leaves of the *kuf1*
216 mutant than in those of the WT (Figure 2, B and C), suggesting that *KUF1* plays an
217 important role in slowing water loss by modulating stomatal opening.

218

219 **ABA responsiveness of the *kuf1* mutant**

220 It has been well documented that ABA responsiveness is associated with stomatal
221 closure and drought tolerance (Hsu et al., 2021). We hypothesized that the smaller
222 stomatal aperture observed in *kuf1* mutant leaves might be related to enhanced ABA
223 responsiveness. Stomatal closure assays (Figure 2, D and E) revealed faster
224 ABA-induced stomatal closure in the *kuf1* mutant than in the WT plants, indicating
225 that the *kuf1* mutant was more highly responsive to ABA in terms of stomatal closure.
226 To further investigate the role of *KUF1* in ABA responsiveness, we measured seed
227 germination, primary root growth, and chlorophyll levels of *kuf1* and WT plants in the
228 presence and absence of ABA. ABA significantly inhibited seed germination and
229 primary root growth to a greater extent in the *kuf1* mutant than in the WT, and the
230 effect of ABA increased with increasing concentration as evidenced by seed
231 germination assay (Figure 3, A and B). Furthermore, in growth medium without ABA,
232 the level of chlorophyll was higher in the leaves of *kuf1* than of WT (0 μ M ABA,

233 Figure 3C, Supplemental Figure S2); however, its content was lower in *kuf1* leaves
234 than in WT leaves when 1 μ M ABA was present in the growth medium (Figure 3, C
235 and D, Supplemental Figure S2). These data suggested that *kuf1* has increased ABA
236 responsiveness, in terms of seed germination, primary root growth, and ABA-induced
237 senescence as well. Together, these results demonstrated that *KUF1* negatively
238 regulates ABA responsiveness, and that loss-of-function of *KUF1* contributes to a
239 greater ABA responsiveness, and thus drought tolerance in *kuf1* plants.

240

241 **Germination of *kuf1* seeds under different abiotic stresses**

242 Originally, *KUF1* came in view for its induced expression during seed germination
243 process by exogenous application of KARs that promotes seed germination under
244 normal conditions (Nelson et al. 2009; Nelson et al., 2010). These results suggested
245 that *KUF1* might be involved in regulation of seed germination. Interestingly, a later
246 investigation indicated that KARs inhibited seed germination under salt,
247 mannitol-induced osmotic and high-temperature stress conditions (Wang et al. 2018).
248 We, therefore, asked whether *KUF1* plays a role in seed germination under these
249 environmental stresses. Our results showed that the germination rates of *kuf1* seeds
250 were significantly lower than those of WT seeds at 40, 80 and 120 mM NaCl
251 concentrations (Supplemental Figure S3A). The same tendency was observed in
252 responses to 40, 80 and 120 mM mannitol concentrations (Supplemental Figure S3B).
253 However, after the imbibed seeds were incubated at 30°C for 0, 2 and 4 days, *kuf1*
254 seeds showed higher germination percentage than WT seeds (Supplemental Figure
255 S3C). These results indicate that *KUF1* plays different roles in seed germination under
256 different types of abiotic stress.

257

258 **Transcriptome data show that *KUF1* regulates plant hormone signaling and fatty 259 acid metabolism**

260 To gain insight into the molecular mechanisms by which *KUF1* functions in
261 drought tolerance, we performed transcriptome profiling of rosette leaves from WT

262 and *kuf1* mutant plants under normal and dehydrated conditions. Rosette leaves were
263 dissected from soil-grown plants, and their water loss was monitored by measuring
264 relative water content (RWC) over time under laboratory conditions (Figure 4A).
265 Consistent with the drought tolerance phenotype of *kuf1* plants, RWC was higher in
266 leaves of the *kuf1* mutant than in those of the WT after dehydration (Figure 4B).
267 Rosette leaves of WT and *kuf1* mutant plants were harvested for microarray analysis
268 after 0, 2, and 4 h of dehydration (Figure 4B) as shown in Figure 4C. The resulting
269 transcriptome data are available at the National Center for Biotechnology Information
270 under accession number GSE167120, and the results of the transcriptome analysis are
271 provided in Supplemental Table S1. Differentially expressed genes (DEGs) in each
272 comparison were identified based on a transcript-level fold-change of at least 2 and an
273 adjusted false discovery rate (i.e. *q*-value) < 0.05. The numbers of DEGs in all
274 comparisons are summarized in Figure 4C and Supplemental Table S2. In brief, there
275 were 125, 89 and 124 upregulated genes, and 102, 28 and 80 downregulated genes in
276 the comparisons of *kuf1* with WT under well-watered conditions (*kuf1*-W/WT-W),
277 *kuf1* with WT after 2 h of dehydration (*kuf1*-D2/WT-D2), and *kuf1* with WT after 4 h
278 of dehydration (*kuf1*-D4/WT-D4), respectively (Figure 4C; Supplemental Table S2,
279 m–o and q–s). These DEGs were potentially associated with the roles of *KUF1* under
280 well-watered and dehydrated conditions. In comparison between dehydrated and
281 well-watered WT plants, there were more DEGs after 4 h (5,938) than after 2 h (4,824)
282 of dehydration (Figure 4C; Supplemental Table S2, a–b and d–e). Similar trends and
283 numbers of DEGs were observed in the *kuf1* mutant plants after 2 (4,675) and 4 h
284 (5,717) of dehydration (Figure 4C; Supplemental Table S2, g–h and j–k).

285 Venn diagram analyses indicated that 27 genes were upregulated and 32 genes
286 were downregulated in *kuf1* versus WT plants under well-watered conditions
287 (*kuf1*-W/WT-W) and also in dehydrated versus well-watered WT plants
288 (WT-D/WT-W) (Figure 4D; Supplemental Table S3b and S4b). These genes were
289 differentially expressed in response to dehydration in the WT but were also
290 differentially expressed in the mutant compared with the WT under well-watered

291 conditions. Their differential expression may therefore have primed the *kuf1* mutant to
292 better respond to dehydration. In addition, many genes (46) were upregulated and a
293 few (6) were downregulated in *kuf1*-D/WT-D and also in the WT-D/WT-W and
294 *kuf1*-D/*kuf1*-W comparisons (Figure 4D; Supplemental Table S3e and S4e). These
295 genes were differentially expressed in both WT and *kuf1* plants under dehydration, but
296 the extent of their differential expression under dehydration was greater in *kuf1* plants.
297 Some upregulated (18) and downregulated (8) genes also overlapped in both the
298 *kuf1*-W/WT-W and *kuf1*-D/WT-D comparisons (Figure 4D; Supplemental Table S3h
299 and S4h), suggesting that these genes were stably regulated by *KUF1* under both
300 normal and dehydrated conditions. We selected 26 genes involved in important
301 drought tolerance mechanisms (e.g., anthocyanin biosynthesis, GLS biosynthesis, and
302 cuticle formation), and synthesis or signaling of several plant hormones (e.g., auxin,
303 ethylene, karrikins, etc.) for confirmation of the transcriptome data by reverse
304 transcription quantitative polymerase chain reaction (RT-qPCR) (Supplemental Figure
305 S4). We generally observed consistent results between the microarray and RT-qPCR
306 data.

307 To further investigate the roles of *KUF1* in drought tolerance, we analyzed DEGs
308 derived from transcriptomic comparisons of the *kuf1* mutant with those of the WT
309 under well-watered (Supplemental Table S2m and q) and dehydrated conditions
310 (Supplemental Table S2p and t). We performed enrichment analysis using Metascape
311 (<http://metascape.org>) to classify the DEGs from the *kuf1*-W/WT-W and
312 *kuf1*-D/WT-D comparisons into various functional categories and pathways based on
313 Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
314 (Supplemental Table S5a-b). On the basis of the *P*-values, the top 12 enriched
315 terms/pathways in the *kuf1*-W/WT-W DEG set (Supplemental Figure S5) and the top
316 12 enriched terms/pathways in the *kuf1*-D/WT-D DEG set (Figure 4E) were selected
317 for further analysis (Figure 4E; Supplemental Figure S5).

318 In the DEG set from the *kuf1*-W/WT-W comparison, three sulfate
319 metabolism-related terms/pathways ('S-glycoside biosynthesis process', 'cellular

320 response to sulfur starvation' and 'glucosinolate biosynthesis') and two
321 hormone-related terms ('response to jasmonic acid' and 'response to karrikin') were
322 enriched (Supplemental Figure S5). In the DEG set from the *kuf1*-D/WT-D
323 comparison, five drought tolerance-related terms/pathways ('secondary metabolic
324 process', 'fatty acid derivative metabolic process', 'flavonoid biosynthesis', 'response
325 to lipid' and 'fatty acid elongation') and one hormone-related term ('response to
326 karrikin') were enriched (Figure 4E). In summary, the 'response to karrikin' term
327 appeared in both the *kuf1*-W/WT-W and *kuf1*-D/WT-D comparisons. Under normal
328 growth conditions, *KUF1* appeared to mainly influence sulfate metabolism and
329 hormone interactions, whereas under drought stress conditions *KUF1* appeared to
330 mainly affect drought tolerance through the regulation of fatty acid and lipid
331 metabolism.

332

333 ***KUF1* negatively regulates cuticle formation and positively regulates**
334 **anthocyanin accumulation**

335 Because the DEGs derived from the *kuf1*-W/WT-W comparison were enriched in
336 the term 'response to karrikin' (Figure 4E), and KAR signaling enhances drought
337 tolerance by promoting cuticle formation (Li et al., 2017), we hypothesized that
338 cuticle formation was enhanced in the *kuf1* mutant plants, thereby reducing leaf water
339 loss through a non-stomatal mechanism. To assess this possibility, we measured the
340 cuticular permeability of *kuf1* and WT leaves by toluidine blue (TB) staining and
341 chlorophyll leaching assays. Consistent with the differential expression of genes
342 related to cuticle formation that was observed when comparing the leaf transcriptomes
343 of *kuf1* and WT plants (Supplemental Figure S4; Supplemental Table S6a), the rosette
344 leaves of the mutant exhibited less TB staining than those of the WT under both low
345 (Figure 5A and B) and high humidity (Supplemental Figure S6) conditions. Likewise,
346 the *kuf1* mutant showed significantly less chlorophyll leaching than the WT under low
347 humidity conditions (Figure 5C). We suspected that enhanced cuticle formation might
348 be related to increased wax biosynthesis, as the wax content of the cuticle layer

349 strongly affects its permeability (Yeats and Rose, 2013). Therefore, we used scanning
350 electron microscopy (SEM) to observe epicuticular wax crystals on the surfaces of
351 young stems and siliques. The wax crystal density was markedly higher on the stem
352 and siliques surfaces of the *kuf1* mutant than on those of the WT after 10 d of drought
353 stress (Figure 5D). Taken together, these results indicate that *KUF1* negatively
354 regulates cuticle formation, wax synthesis, and wax crystal formation under drought.

355 Many anthocyanin biosynthesis-related genes were strongly downregulated in the
356 *kuf1* mutant relative to the WT under dehydrated conditions (*kuf1*-D/WT-D),
357 particularly after 4 h of dehydration (Supplemental Figure S4 and Supplemental Table
358 S6b). We, therefore, hypothesized that anthocyanin accumulation might be inhibited
359 in the *kuf1* mutant plants. To test this possibility, we measured anthocyanin contents in
360 *kuf1* and WT plants under normal and drought conditions. Under well-watered
361 conditions, there were no significant differences in shoot anthocyanin content
362 between *kuf1* and WT plants (Supplemental Figure S7, A and B). Under drought
363 conditions, the shoots of both *kuf1* and WT plants accumulated higher levels of
364 anthocyanins than those of well-watered conditions, and anthocyanin content was
365 significantly lower in *kuf1* plants than in WT plants (Supplemental Figure S7, A and
366 B). To confirm the role of *KUF1* in anthocyanin accumulation under drought stress,
367 we investigated the leaf anthocyanin contents of the WT, the *kuf1* mutant, and two
368 *KUF1* complementation lines under drought conditions. As shown in Supplemental
369 Figure S7, C and D, anthocyanin content of the rosette leaves was lower in the *kuf1*
370 mutant than in the WT and the two *KUF1* complementation lines under drought.
371 Taken together, these results suggest that *KUF1* promotes anthocyanin accumulation
372 under drought conditions.

373

374 ***KUF1* negatively regulates root/shoot ratio and root hair density**

375 The architecture of the root system also strongly influences drought tolerance
376 through its effects on water absorption (Iwata et al., 2013; Uga et al., 2013). The
377 shoots of the *kuf1* seedlings were smaller than those of the WT (Figures 5, A and B,

378 6A; Supplemental Figures S2, S6, A and B), and the root/shoot ratio was higher in the
379 *kuf1* mutant than in the WT seedlings (Figure 6B). Because root/shoot ratio is an
380 important morphological parameter for estimating plant drought tolerance (Du et al.,
381 2020), this result suggests that the *kuf1* mutant may have a higher ratio of water
382 absorption to water loss capacity than the WT. Detailed investigations showed that
383 *kuf1* mutant seedlings had smaller palisade cells than WT in fully expanded
384 cotyledons and the fifth rosette leaf. The hypocotyl cortex cells were also smaller in
385 *kuf1* than WT seedlings (Figure 6, C–E). Furthermore, detailed observation of root
386 hair development confirmed that the *kuf1* mutant had a higher root hair density and
387 root hair length than the WT (Figure 6, F–H) (Sepulveda, 2022). These observations
388 imply that *kuf1* plants may have a greater relative capacity for soil water and nutrient
389 uptake. Taken together, these results indicate that *KUF1* negatively regulates the
390 root/shoot ratio and root hair development.

391

392 Discussion

393 KAI2-mediated KAR/KL signaling positively regulates plant tolerance to drought
394 stress by promoting stomatal closure, cuticle formation and anthocyanin accumulation
395 (Li et al., 2020). However, the roles of many genes downstream of KAR/KL signaling
396 in drought tolerance are not yet fully understood. Here, we characterized such a
397 downstream gene, *KUF1*, which is known to be induced by KAR signaling (Nelson et
398 al., 2010; Nelson et al., 2011; Waters et al., 2012; Sun et al., 2016; Yao et al., 2018;
399 Wang et al., 2020). Our aims were to clarify the functions and mechanisms by which
400 *KUF1* influences plant drought responses through physiological, transcriptomic and
401 morphological comparisons of the *kuf1* mutant and WT plants under drought stress.

402

403 ***KUF1* negatively regulate drought tolerance by inhibiting cuticle formation,
404 stomatal closure, ABA responsiveness, root/shoot ratios, root hair densities and
405 root hair length**

406 Under natural growth conditions, crop plants are typically affected by moderate

407 drought stress over long periods of time because of insufficient precipitation or
408 irrigation during the growing season, which decreases plant growth and crop
409 productivity (Farooq et al., 2009; Tardieu et al., 2018; Gupta et al., 2020). The effect
410 of moderate drought stress on biomass is therefore widely used as an indicator of crop
411 drought tolerance, as in the calculation of water use efficiency (Salekdeh et al., 2009).
412 We found that relative biomass reduction was lower in the *kuf1* mutant than in the WT
413 plants under drought stress (Figure 1D), indicating that *kuf1* plants were more tolerant
414 to moderate drought stress than the WT. We also found that the *kuf1* mutant was more
415 tolerant to severe drought than the WT based on the comparison of their survival rates
416 (Figure 1A). Consistently, moderate and severe drought tolerance phenotypes were
417 lost when *KUF1* was transferred back into the *kuf1* mutant plants (Figure 1, A and D).
418 These results consistently supported the notion that *KUF1* functions as a negative
419 regulator of plant drought tolerance.

420 The prevention of leaf water loss is an important drought avoidance mechanism,
421 and our results suggest that *KUF1* enhances leaf water loss (Figure 2A, 4B;
422 Supplemental Figure S1C), leading to enhanced drought tolerance in *kuf1* mutant
423 plants (Figure 1A, D). Leaf water loss can be regulated by both stomatal and
424 non-stomatal mechanisms (Varone et al., 2012). The smaller stomatal apertures and
425 lower cuticular permeability of the *kuf1* mutant (Figure 2, B and C, Figure 5, A–C;
426 Supplemental Figure S6) implied that *KUF1* contributes to increasing both stomatal
427 and nonstomatal water loss. This result was consistent with the leaf temperature
428 measurements that suggested reduced transpiration rates in *kuf1* plants relative to the
429 WT (Figure 2A). At the molecular level, our transcriptome analysis suggested that
430 genes associated with the regulation of stomatal aperture, such as *ATP-BINDING*
431 *CASSETTE G22 (ABCG22)* (Kuromori et al., 2011; Kuromori et al., 2017), *OPEN*
432 *STOMATA 1 (OST1)* (Acharya et al., 2013) and *PLASMA MEMBRANE INTRINSIC*
433 *PROTEIN 2;1/2A (PIP2;1/PIP2A)* (Grondin et al., 2015), were significantly
434 upregulated in leaves of the *kuf1* mutant under well-watered and dehydrated
435 conditions (Supplemental Table S6c). *ABCG22* was also found to be differentially

436 regulated in *max2*, *kai2*, and *smax1 smxl2* mutants, confirming its importance as a
437 KAR/KL pathway-regulated gene (Ha et al., 2014; Li et al., 2017; Bursch et al., 2021).
438 These results suggest that *KUF1* may negatively regulate the expression of these
439 stomatal closure-related genes, and thereby promoting stomatal opening. In addition,
440 the *kuf1* mutant showed upregulation of many cuticle formation-related genes
441 compared with the WT under well-watered and dehydrated conditions. These genes
442 included *ECERIFERUM 1 (CER1)*, *CER2*, *CYTOCHROME P450 86A2 (CYP86A2)*,
443 *WAX ESTER SYNTHASE/DIACYLGLYCEROL ACYLTRANSFERASE 1 (WSD1)*, *MYB*
444 *DOMAIN PROTEIN 94 (MYB94)* and *WAX INDUCER1/SHINE1 (WIN1/SHN1)* (Cui
445 et al., 2016) (Supplemental Figure S4; Supplemental Table S6a). These findings
446 collectively suggest that *KUF1* inhibits cuticle formation and promotes stomatal
447 opening, thereby increasing leaf water loss.

448 The plant hormone ABA is widely reported to positively regulate plant drought
449 tolerance (Kuromori et al., 2018; Hsu et al., 2021). Here, we found that *kuf1* mutant
450 plants were more sensitive to ABA in terms of stomatal closure, seed germination,
451 primary root growth and leaf senescence (Figures 2, D and E, Figure 3, A–C;
452 Supplemental Figure S2). These results suggest that the drought tolerance of *kuf1*
453 mutant plants is associated with the enhancement of ABA signaling, which also
454 promotes stomatal closure and cuticle formation (Cui et al., 2016) (Figure 2, B and C;
455 Figure 5; Supplemental Figure S6). Consistently, several ABA response-related genes,
456 such as *ABA-RESPONSIVE ELEMENT 3 (AREB3)*, *HVA22 HOMOLOGUE C*
457 (*HVA22C*), *MYB2*, *OST1* and *PIP2A*, were significantly upregulated in leaves of the
458 *kuf1* mutant relative to those of WT plants under well-watered and/or dehydrated
459 conditions (Supplemental Table S6c). Although we did not measure endogenous ABA
460 levels in *kuf1* mutant plants, the expression of *CYP707A3* (Supplemental Table S6c), a
461 key gene in ABA catabolism during dehydration stress (Umezawa et al., 2006), was
462 significantly higher in the leaves of drought-tolerant *kuf1* than in those of WT under
463 dehydration, suggesting that endogenous ABA levels may have been lower in the *kuf1*
464 mutant under those conditions. This possibility remains to be experimentally verified.

465 The opposite results have been observed in drought-susceptible *kai2* mutant plants,
466 which exhibit lower expression of *CYP707A3* and higher ABA levels than WT plants
467 (Li et al., 2017; Zheng et al., 2020). Given the greater ABA sensitivity of the *kuf1*
468 mutant relative to WT plants (Figure 3; Supplemental Figure S2), we hypothesize that
469 ABA levels might be decreased. These results might indicate a feedback mechanism,
470 which is associated with the function of *KUF1* during drought stress, between ABA
471 levels and ABA responsiveness. Further experiments will be required to investigate
472 the involvement of ABA levels and signal transduction in *kuf1* mutant plants under
473 drought stress.

474 In addition to the physiological mechanisms of leaf water loss, we were also
475 curious about the process of water uptake from the soil through the root system. A
476 root system architecture with favorable root traits, including vigorous root growth and
477 high root hair density, may enhance plant water uptake and drought tolerance (Iwata
478 et al., 2013; Uga et al., 2013). Here, the *kuf1* mutant exhibited higher root/shoot ratios,
479 root hair densities and root hair length than the WT (Figure 6, B, G and H), which
480 might endorse it with a greater water uptake capacity, thereby contributing to its
481 enhanced drought tolerance (Figure 1A and D). These findings collectively suggest
482 that *KUF1* negatively regulates root/shoot ratios, root hair densities and root hair
483 length, affecting plant response to drought.

484

485 ***KAI2 and KUF1 often, but not always, have opposing effects on drought***
486 ***tolerance traits and gene expression***

487 It has recently been established that *KUF1* attenuates KAR/KL signaling and that
488 *kuf1* and *kai2* seedlings have opposing phenotypes (Sepulveda, 2022). We found
489 further support for this antagonistic relationship in our analysis of *kuf1*, which
490 included the examination of genome-wide changes in gene expression. The
491 expression levels of several KAR-signaling marker genes, such as *DLK2*, *DWARF4*
492 (*DWF4*), *BBX20/STH7* and *WOX2*, were significantly higher in the *kuf1* mutant but
493 lower in the *kai2* mutant than in the WT under both normal and dehydrated conditions

494 (Supplemental Table S6d). This result was consistent with constitutive activation of
495 KAR/KL signaling in the *kuf1* mutant. *KUF1* has been proposed to restrict the
496 biosynthesis of the unknown endogenous signal KL (Sepulveda, 2022). If so, our
497 findings here and prior analyses of *max2* and *kai2* (Ha et al., 2014; Li et al., 2017)
498 suggest a positive role for KL in establishing drought tolerance. F-box proteins
499 typically form part of an SCF-E3 ubiquitin-protein ligase complex that tags specific
500 substrate proteins for ubiquitination and induces 26S proteasome-mediated
501 degradation (Xu et al., 2009; Zhang et al., 2019). Screening for the target substrates of
502 *KUF1* will be an interesting topic for future research and may aid in the identification
503 of KL.

504 In comparing the effects of *KAI2* and *KUF1* on drought tolerance, we found that
505 they play opposite roles in stomatal closure, cuticle formation and ABA
506 responsiveness (Figure 7A; Supplemental Table S6, a–c) (Li et al., 2017; Li et al.,
507 2020). However, both *KUF1* and *KAI2* positively regulate anthocyanin accumulation
508 under drought stress, as indicated by the lower anthocyanin contents and the reduced
509 expression of several anthocyanin biosynthesis-related genes in both *kuf1* and *kai2*
510 mutant plants in comparison with WT (Supplemental Figures S3 and S6;
511 Supplemental Table S6b) (Li et al., 2017). One possible interpretation of this
512 observation is that *kuf1* mutants are less stressed by water-deprivation than WT, and
513 this somehow overrides *KAI2*-mediated anthocyanin accumulation. We also found
514 that some GLS biosynthesis-related genes were significantly downregulated in *kuf1*
515 versus WT and *kai2* versus WT under well-watered and dehydrated conditions
516 (Supplemental Table S6f), suggesting a positive role for both *KUF1* and *KAI2* in GLS
517 biosynthesis (Figure 7A). Furthermore, many jasmonic acid (JA) biosynthesis-related
518 genes were downregulated in *kuf1* versus WT and *kai2* versus WT under well-watered
519 and dehydrated conditions (Supplemental Table S6e), suggesting that both *KUF1* and
520 *KAI2* positively regulate JA biosynthesis as well (Figure 7A). However, many BR
521 biosynthesis-related genes were significantly upregulated in *kuf1* versus WT but not in
522 *kai2* versus WT under well-watered and dehydrated conditions (Supplemental Table

523 S6e), suggesting that KUF1 negatively regulates BR biosynthesis (Figure 7A). Key
524 GA-biosynthetic genes, such as *GA20OX3* and *GA3OX1* (Yamaguchi, 2008), were
525 upregulated in *kuf1* versus WT but downregulated in *kai2* versus WT under
526 dehydration (Supplemental Table S6e; Supplemental Figure S4), suggesting that
527 KUF1 and KAI2 may have opposite roles in the regulation of GA biosynthesis.
528 Measurement of JA, BR, GA and GLS contents in *kuf1* and *kai2* mutant plants under
529 normal and drought stress conditions will provide further insight into the influence of
530 KUF1 on these hormones and their metabolic regulation in comparison with KAI2.

531 Previous investigations showed that seed germination is a very complex
532 developmental process, which is affected by both endogenous hormone signaling
533 pathways and environmental clues (Gazzarrini and Tsai, 2015). KARs promote
534 germination of seeds of *Arabidopsis* under normal conditions (Nelson et al. 2009), but
535 inhibit *Arabidopsis* seed germination in the presence of osmolytes or under high
536 temperature stresses (Wang et al. 2018). Additionally, even under normal (non-stress)
537 conditions, KARs play negative regulatory role in germination of soybean (*Glycine*
538 *max*) seeds under weak light conditions via regulation of ABA levels (Meng et al.
539 2016). These data indicated that the function of KARs in seed germination is largely
540 dependent on the growth conditions and environmental cues, and demonstrated
541 complex interactions between KAR signaling and growth conditions, which requires
542 further investigations.

543 In summary, our results show that *KUF1* negatively regulates drought tolerance
544 by inhibiting stomatal closure, cuticle formation and root system development (Figure
545 7B). In addition, our transcriptome data suggest that *KUF1* regulates genes associated
546 with multiple plant hormone pathways and with several primary and secondary
547 metabolic pathways under drought, implying that these pathways and hormones may
548 be related to drought tolerance with the involvement of KUF1. More studies of the
549 underlying mechanisms by which *KUF1* regulates drought tolerance will help
550 delineate the signaling network that controls plant drought stress responses and will
551 provide potential approaches for enhancing crop productivity on arid land.

552

553 **Materials and Methods**

554

555 **Plant materials**

556 The Columbia-0 accession of *Arabidopsis* (*Arabidopsis thaliana*) was used as the
557 wild-type (WT) in all experiments. The *kuf1* loss-of-function allele (*kuf1-1*) and the
558 two rescued *KUFIp:KUFI kuf1-1* transgenic lines are described in (Sepulveda et al.,
559 2022). There is a 200-bp deletion (between +107 and +307 in the coding sequence) in
560 the *kuf1* allele (Sepulveda et al., 2022).

561

562 **Drought tolerance assays**

563 The ‘same tray method’ and ‘gravimetric method’ were used to evaluate the
564 drought tolerance of different genotypes under severe and mild drought stress
565 conditions, respectively. The details of the ‘same tray method’ have been described
566 previously (Nishiyama et al., 2011). In brief, we placed 14-d-old agar-grown
567 seedlings of different genotypes side-by-side in a soil-filled tray. After the seedlings
568 had grown in soil for one week, water was withheld. After withholding water for
569 about two weeks, the drought-stressed plants were re-watered when a clear difference
570 was observed between the genotypes. To calculate survival rates, 30
571 plants/genotype/experiment and three ($n = 3$) experiments were used. We also grew
572 WT and *kuf1* plants in parallel under well-watered conditions. The ‘gravimetric
573 method’ was performed as described previously (Harb and Pereira, 2011; Li et al.,
574 2017), and the following equation was used to calculate the percentage of biomass
575 reduction:

576
$$\text{Biomass reduction (\%)} = [(\text{dry weight of well-watered plant} - \text{dry weight of} \\ 577 \text{stressed plant}) \times 100]/(\text{dry weight of well-watered plant}).$$

578 To calculate biomass reduction percentages, 15 plants/genotype ($n = 15$) were used.

579 **Leaf water loss and surface temperature measurements**

580 Relative water content was measured in rosette leaves of *kuf1* mutant and WT

581 plants after dehydration. In brief, rosette leaves were cut from 24-d-old, soil-grown
582 *kuf1* mutant and WT plants, then placed on the surface of a paper for drying. Fresh
583 weights (FWs) of the leaf samples were measured at different time points after the
584 initiation of dehydration (0.5–8 h). When the dehydration treatment was complete, the
585 leaf samples were immersed in distilled water with shaking for 3 h at room
586 temperature. When the leaves were fully hydrated, leaf turgid weights (TWs) were
587 measured after removing water from the leaf surface using tissue paper. The leaves
588 were then oven-dried at 65°C for 48 h in paper bags, and their dry weights (DWs)
589 were recorded. Relative water contents of the leaf samples ($n = 4$ plants/genotype)
590 were calculated using the following equation:

591
$$\text{Relative water content (\%)} = 100 \times (\text{FW} - \text{DW}) / (\text{TW} - \text{DW})$$

592 Room temperature and relative air humidity were also measured throughout the
593 dehydration treatment. Leaf surface temperatures of rosette leaves from 24-d-old,
594 soil-grown WT and *kuf1* plants were estimated using a thermal camera system
595 (FLIR-530; FLIR Optoelectronic Technology, Shanghai Co., Ltd, USA).

596

597 **Measurement of stomatal aperture**

598 Measurements of stomatal aperture were modified from a previously described
599 method (Osakabe et al., 2013). In brief, 24-d-old fully expanded rosette leaves were
600 harvested from different genotypes, and the abaxial epidermis was peeled from the
601 detached leaves. To measure aperture sizes of *kuf1* and WT plants under normal
602 growth conditions, the epidermal strips were quickly placed in water and the pictures
603 of stomata were taken within 5 min after peeling from leaves.

604 To measure the response of stomatal closure to ABA, the epidermal strips were
605 preincubated in MES-KCl buffer (10 mM MES, 50 mM KCl, 0.1 mM CaCl₂, pH
606 adjusted to 6.15 with 1 M NaOH) for 2 h in the light (150 $\mu\text{mol m}^{-2} \text{ s}^{-1}$) to promote
607 stomatal opening. Subsequently, the strips were transferred to new MES-KCl buffer
608 alone or with ABA and incubated for an additional 2 h, as indicated in each
609 experiment. Pictures of guard cells were taken using a light microscope equipped with

610 a digital camera at the right moment, and stomatal apertures were measured using
611 ImageJ software package. Stomatal aperture sizes are presented as the means \pm SDs of
612 10 leaves ($n = 10$, for each leaf the average of 20 stomatal measurements was
613 calculated).

614

615 **Assays for ABA responsiveness in terms of seed germination, seedling growth
616 inhibition, and leaf senescence**

617 To obtain the seeds for ABA responsiveness assay, we grew WT and *kuf1* plants
618 (30 plants/genotype) in the same tray side-by-side, then their seeds were harvested at
619 the same time. To allow after-ripening effect, we stored the seeds in a desiccator (in
620 the presence of silica gel) under room temperature for 2 months. When the
621 germination abilities of WT and *kuf1* seeds were similar, these seeds were used for
622 germination assays with and without ABA.

623 For germination assay, after 2 d of cold treatment at 4°C in the dark, seeds of WT
624 and *kuf1* mutant plants were sown on germination medium (GM, 4.43 g Murashige &
625 Skoog Basal Medium with vitamins, 10 g sucrose, and 0.8 g agar were added in 1 L
626 GM, pH adjusted to 7.7 with 1 M KOH) plates supplemented with 0, 0.5, 1, or 2 μ M
627 ABA and incubated in a growth chamber at 22 \pm 2°C with an 8-h dark/16-h light
628 photoperiod (white light 150 μ mol m⁻² s⁻¹). Seed germination was defined as the
629 appearance of the radicle and was observed every 12 h after the GM plates had been
630 transferred to the light. To calculate germination percentages, 50 seeds/genotype/
631 experiment and three ($n = 3$) experiments were used. After 2 weeks of growth on GM
632 plates, whole seedlings were harvested, and their FWs were measured (6
633 seedlings/reading). Relative FWs were determined using the following equation:

634 Relative FW (%) = 100 \times (FW of plants with ABA treatment/FW of plants
635 without ABA treatment)

636 The germination assays in responses to different NaCl and mannitol
637 concentrations, and high temperature were performed following the procedures
638 previously reported in (Wang et al. 2018) and (Toh et al. 2008), respectively.

639

640 For the leaf senescence assay, WT and *kuf1* mutant seeds were sown on GM
641 plates and grown for 3 d, then transferred to another set of GM plates supplemented
642 with 0 or 1 μ M ABA and grown in the growth chamber as previously described (Zhao
643 et al., 2016). When the seedlings had grown for another 11 d, their shoots were
644 harvested, FWs were recorded, and chlorophyll contents ($n = 5$ plants/genotype) were
645 measured as previously described (Li et al., 2020). Absorbances of the chlorophyll
646 extracts were measured at 663 nm and 645 nm (A_{663} and A_{645}) using a
647 spectrophotometer (Epoch Microplate Spectrophotometer; BioTek Instruments, Inc,
648 USA).

649

650 **Rosette leaf dehydration treatment and microarray analysis**

651 Rosette leaves from 24-d-old seedlings were subjected to a dehydration treatment
652 under the same environmental conditions described above for leaf water loss
653 measurements, and leaves were harvested after 0, 2 and 4 h of dehydration. Total
654 RNA was extracted using the TRIzol Reagent Kit (ThermoFisher Scientific, USA).
655 For microarray analysis, RNA samples from 4 biological replicates ($n = 4$ of WT and
656 *kuf1* leaves) were processed using the Arabidopsis Oligo 44K DNA microarray
657 (version 4.0; Agilent, USA). Details of data acquisition and processing were described
658 previously (Ha et al., 2014), and more information on the microarray dataset is
659 available in the Gene Expression Omnibus (<https://www.ncbi.nlm.nih.gov/geo/>) under
660 accession number GSE167120.

661

662 **TB staining and chlorophyll leaching assays**

663 A TB staining assay was used to observe cuticle defects in *Arabidopsis* leaves
664 (Tanaka et al., 2004). In brief, rosette leaves of 24-d-old plants grown in soil under
665 low (40–50%) or high (> 90%) relative air humidity were harvested, placed on ice for
666 30 min, and submerged in 40 mL TB solution (0.05% w/v) for 2 h. The leaves were
667 gently transferred to water to remove excess TB stain, then cut and placed on dry soft

668 wet paper for photography to prevent leaf water loss. For the chlorophyll leaching
669 assay, detached rosette leaves ($n = 5$ plants/genotype) were submerged in 40 mL of 80%
670 (v/v) ethanol. Small volumes of leaching solution (100 μ L) were sampled every 10
671 min until 60 min, then sampled again at 24 h. The percentage of extracted
672 chlorophylls was calculated as: $[(100 \times \text{concentration at a given time}$
673 $\text{point}) / (\text{concentration at 24 h})]$.

674

675 **Observation of epicuticular wax by SEM**

676 Epicuticular wax was observed using SEM (Quanta 250, FEI, USA). Stem
677 samples were harvested 2 cm from the top of the stem, and siliques samples were
678 harvested 4 d after flowering. The tissue samples were coated with platinum using an
679 auto fine coater (Leica RM2235, Germany) before SEM observation.

680

681 **Measurement of anthocyanin contents**

682 Seeds of the *kuf1* mutant and WT were sown directly in soil. After 21 d of growth
683 in soil trays, water was withheld from the seedlings ($n = 30$) for 14 d, while another
684 set of seedlings continued to receive water. To confirm the role of *KUF1* in
685 anthocyanin accumulation under drought, 14-d-old agar-grown seedlings of WT, *kuf1*,
686 and two *kuf1* complementation lines (*KUF1 8-5* and *KUF1 19-8*) were transferred to
687 soil. The 2-week-old plants ($n = 12$) were then subjected to drought stress for 21 d.
688 The rosette leaves from all plants were freeze-dried (LGJ-12D freeze drier; Beijing
689 Sihuan Technology, China) for 48 h. After measuring their DWs, leaf anthocyanin
690 contents were measured according to a previously described method (Ito et al., 2015).
691 Absorbance of the anthocyanin extracts was measured at 530 nm (A_{530}) using a
692 microplate reader (Epoch Microplate Spectrophotometer; BioTek, USA).

693

694 **Observations of cells from different plant tissues and root hairs**

695 Palisade mesophyll cells form 7-d-old agar-grown cotyledons ($n = 4$
696 seedlings/genotype, 12 cells/seedling), cortex cells from 7-d-old agar-grown

697 hypocotyls ($n = 4$ seedlings/genotype, 12 cells/seedling) and palisade mesophyll cells
698 from 21-d-old soil-grown fifth true leaves ($n = 4$ seedlings/genotype, 12 cells/seedling)
699 were photographed by using microscope, and cell sizes were measured by using
700 ImageJ software package. The root hairs of 8-d-old WT and *kuf1* were photographed
701 by using microscope. Then root hair density ($n = 25$ roots/genotype) and the root hair
702 lengths ($n = 10$ roots/genotype, 21 root hairs/root) were measured at 4-5 mm place
703 from root tip by using ImageJ software package.

704

705 **RT-qPCR analysis**

706 The PrimeScript II 1st Strand cDNA Synthesis Kit (TaKaRa Bio Inc., Kusatsu,
707 Shiga, Japan) was used for reverse transcription and cDNA synthesis from the same
708 RNA samples used for microarray analysis. RT-qPCR was performed following a
709 previously reported procedure (Le et al., 2012; Livak and Schmittgen, 2001) with
710 *UBQ10* as the reference gene. All primers for RT-qPCR analysis are listed in
711 Supplemental Table S7.

712 **Statistical analyses**

713 Statistically significant differences among the data sets (more than three data sets)
714 were assessed by one-way analysis of variance (ANOVA) Sum of Squares Type II (P
715 < 0.05 ; Tukey's honestly significant difference test).

716 **Accession Numbers**

717 Sequence data from this article can be found in the GenBank/EMBL data libraries
718 under accession numbers: *KUF1*, At1g31350; *KAI2*, At4g37470. The transcriptome
719 data have been deposited in the National Center for Biotechnology Information GEO
720 database under accession number GSE167120,

721 **Supplemental Data**

722 **Supplemental Figure S1.** Drought tolerance and leaf surface temperatures of different
723 genotypes.

724 **Supplemental Figure S2.** Leaf senescence of WT and *kuf1* plants in response to
725 ABA.

726 **Supplemental Figure S3.** Seed germination percentages of WT and *kuf1* mutant
727 plants in responses to NaCl, mannitol-induced osmotic and high-temperature stresses.

728 **Supplemental Figure S4.** Confirmation of transcriptome data by qRT-qPCR.

729 **Supplemental Figure S5.** Top 12 enriched terms/pathways of the DEGs identified by
730 comparing the transcriptomes of *kuf1* and WT plants under well-watered conditions.

731 **Supplemental Figure S6.** Toluidine blue (TB) staining of rosette leaves of WT and
732 *kuf1* plants grown under high humidity (> 90%).

733 **Supplemental Figure S7.** Anthocyanin accumulation in rosette leaves of different
734 genotypes under drought stress.

735 **Supplemental Table S1.** Gene expression levels and fold-changes in rosette leaves of
736 *kuf1* and wild-type (WT) plants under well-watered and dehydrated conditions.

737 **Supplemental Table S2.** List of up-regulated and down-regulated genes (fold-change >
738 2 and q-value < 0.05) in the different comparisons.

739 **Supplemental Table S3.** Venn analysis of the up-regulated gene (fold-change > 2 and
740 q-value < 0.05) sets in the different comparisons.

741 **Supplemental Table S4.** Venn analysis of the down-regulated gene (fold-change > 2
742 and q-value < 0.05) sets in the different comparisons.

743 **Supplemental Table S5.** Enrichment analysis of differentially expressed genes from
744 *kuf1* versus wild-type under well-watered and dehydrated conditions using both Gene
745 Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.

746 **Supplemental Table S6.** Gene sets related to cuticle formation, anthocyanin
747 metabolism, hormone biosynthesis and signaling, sulfur metabolism, and
748 glucosinolate biosynthesis from different comparisons.

749 **Supplemental Table S7.** List of primers used in reverse transcription quantitative
750 PCR analysis.

751

752

753

754

755 **Funding**

756 W.L. appreciates grant support from the Strategic Priority Research Program of the
757 Chinese Academy of Sciences (Grant No. XDA28110100), the National Key R&D
758 Programme of China (#2018YFE0194000, 2018YFD0100304,) from the Ministry of
759 Science and Technology of the People's Republic of China and the Key Scientific
760 Research Projects of Institutions of Higher Education in Henan Province
761 (22A180012). Y.M. appreciates grant support from the National Natural Science
762 Foundation of China (31770300), Henan Overseas Expertise Introduction Centre for
763 Discipline Innovation (CXJD2020004) and the 111 Project#D16014. Support to
764 D.C.N. was provided by National Science Foundation award IOS-1856741. This work
765 was partially supported by Cabinet Office, Government of Japan, Moonshot Research
766 and Development Program for Agriculture, Forestry and Fisheries (funding agency:
767 Bio-oriented Technology Research Advancement Institution, No. JPJ009237).

768

769 **Acknowledgments**

770 We gratefully acknowledge helpful discussions with Dr Qingtian Li (University of
771 California, Riverside) of the David C. Nelson laboratory.

772 **Figure legends**

773 **Figure 1. Drought tolerance of different genotypes under severe and moderate**
774 **drought stresses.** (A) Survival rates of wild-type (WT) and *kuf1* plants under severe
775 drought assessed by the 'same tray method'. WT and *kuf1* plants were grown in pairs
776 for three weeks under well-watered conditions (Before drought), and water was then
777 withheld until visible differences in wilting of stem bases were observed between the
778 genotypes (Drought + re-watered). Well-watered control plants were grown at the
779 same time (Well-watered). Survival rates of the tested genotypes after drought and
780 re-watering are shown at right. Data are means \pm standard deviations (SDs) of three
781 independent experiments ($n = 3$, 30 plants/genotype/experiment). Asterisks indicate
782 significant differences between the two genotypes (** $P < 0.001$; Student's *t*-test). (B)
783 Pot weights of WT, *kuf1*, and two complementation lines under moderate drought ($n =$

784 12 biological replicates). (C-D) Biomass accumulation (C) and biomass reduction
785 percentages (D) of WT, *kuf1* and two complementation lines (*KUF1* 8-5 and *KUF1*
786 19-8) under moderate drought and well-watered conditions measured by the
787 'gravimetric method'. Data are means \pm SDs ($n = 15$ biological replicates).
788 Different alphabet letters indicate significant differences among the genotypes ($P <$
789 0.05; Tukey's honestly significant difference test).

790 **Figure 2. Leaf surface temperatures and stomatal apertures of WT and *kuf1***
791 **plants.** (A) Leaf surface temperatures of 24-d-old, soil-grown WT and *kuf1* plants (24
792 plants/genotype) grown in well-watered soil. Optical (*Left*) and thermal imaging
793 (*Right*) pictures were taken at the same time. (B-C) Stomatal aperture sizes of leaves
794 from WT and *kuf1* plants under well-watered conditions. Representative guard cell
795 pictures taken within 5 min after the epidermal strips being peeled from leaves and
796 incubated in water (B), and stomatal aperture size data (C) from the abaxial side of
797 rosette leaves of WT and *kuf1* plants. Data are means \pm SDs ($n = 10$, average
798 stomatal aperture from each of 10 leaves was determined using 20 randomly selected
799 stomata from each leaf). Asterisks indicate significant differences between the
800 genotypes (** $P < 0.01$; Student's *t*-test). (D-E) Stomatal closure response of WT and
801 *kuf1* plants to abscisic acid (ABA). Representative guard cell pictures taken within 2 h
802 after the peeled epidermal strips being incubated in buffer solution containing 0 (H₂O)
803 or 30 μ M of ABA (D), and stomatal aperture size data (E) from the abaxial side of
804 rosette leaves of WT and *kuf1* plants (D). Data are means \pm SDs ($n = 10$, average
805 stomatal aperture from each of 10 leaves was determined using 20 randomly selected
806 stomata from each leaf). Different alphabet letters indicate significant differences
807 between the two genotypes in all treatments ($P < 0.05$; Tukey's honestly significant
808 difference test).

809 **Figure 3. Seed germination, primary root length, and chlorophyll levels of WT**
810 **and *kuf1* plants in response to abscisic acid (ABA).** (A) Seed germination
811 percentages for WT and *kuf1* mutant in the absence (0 μ M) and presence (0.5, 1, and 2
812 μ M) of ABA. Data are mean \pm SDs ($n = 3$, 50 seeds/genotype/experiment).

813 Asterisks indicate significant differences between the genotypes (* $P < 0.05$; ** $P <$
814 0.01; *** $P < 0.001$; Student's *t*-test). (B) Primary root length of 11-d-old WT and
815 *kuf1* mutant seedlings grown in media containing 0 and 1 μ M ABA for 7 d. Data are
816 means \pm SDs ($n = 8$). (C–D) Chlorophyll levels (C) and relative chlorophyll levels
817 (D) of 19-d-old shoots from WT and *kuf1* mutant seedlings grown in media containing
818 0 and 1 μ M ABA for 15 d. Data are means \pm SDs ($n = 5$). Different alphabet letters
819 indicate significant differences between the genotypes in all treatments ($P < 0.05$;
820 Tukey's honestly significant difference test).

821 **Figure 4. Comparative transcriptome analysis of *kuf1* and WT plants under**
822 **well-watered and dehydrated conditions.** (A) Room temperature and relative air
823 humidity during the dehydration treatment. (B) Relative water contents of leaves from
824 24-d-old WT and *kuf1* plants. Data are means \pm SDs ($n = 4$ plants/genotype).
825 Asterisks indicate significant differences between the genotypes (* $P < 0.05$; ** $P <$
826 0.01; *** $P < 0.001$; Student's *t*-test). Red arrows indicate sampling time points. (C)
827 Summary of differential gene expression data for *kuf1* versus WT plants before and
828 after dehydration treatments. Shoot tissues were used in the transcriptome analysis.
829 Numbers indicate the numbers of differentially expressed genes (DEGs) for different
830 comparisons; red indicates upregulation, and blue indicates downregulation. (D) Venn
831 diagrams showing the common and unique DEGs from different comparisons.
832 *kuf1*-W/WT-W, *kuf1* well-watered 0 h versus WT well-watered 0 h; WT-D/WT-W,
833 WT dehydrated 2 h and/or 4 h versus WT well-watered 0 h; *kuf1*-D/WT-D, *kuf1*
834 dehydrated 2 h versus WT dehydrated 2 h and/or *kuf1* dehydrated 4 h versus WT
835 dehydrated 4 h; *kuf1*-D/*kuf1*-W, *kuf1* dehydrated 2 h and/or 4 h versus *kuf1*
836 well-watered 0 h. (E) Top 12 enriched terms/pathways of the DEGs identified from
837 *kuf1*-D/WT-D. The DEGs were classified based on enrichment analysis of gene
838 ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and
839 Genomes (KEGG) pathways. The horizontal axis shows the cumulative
840 hypergeometric *P*-values of genes mapped to the terms/pathways and represents the
841 abundance of the GO terms and KEGG pathways.

842 **Figure 5. Cuticle permeability of rosette leaves and epicuticular wax**
843 **accumulation on stems and siliques of WT and *kuf1* plants grown under low**
844 **humidity (40–50%).** (A–B) Rosette leaves of plants grown in soil for 24 d were
845 stained with toluidine blue for 4 h. (C) Chlorophyll leaching percentages from rosette
846 leaves of plants grown in soil for 24 d and measured at different time points. Data are
847 means \pm SDs ($n = 5$ plants/genotype). Asterisks indicate significant differences
848 between WT and *kuf1* mutant plants (* $P < 0.05$, ** $P < 0.01$; Student's *t*-test). (D)
849 Scanning electron micrographs of epicuticular wax on the surface of the stems (2 cm
850 from the top when the stem was > 15 cm) and siliques (4 d after flowering) of
851 35-d-old, soil-grown plants after water had been withheld for 10 d.

852 **Figure 6. Root/shoot ratios, cell sizes of different tissues and root hairs of**
853 **wild-type (WT) and *kuf1* plants.** (A) Representative picture of 14-d-old WT and
854 *kuf1* mutant seedlings. (B) Root/shoot ratios of 14-d-old WT and *kuf1* mutant
855 seedlings. Data are means \pm SDs ($n = 12$ seedlings/genotype). (C) The sizes of
856 palisade mesophyll cells from cotyledons of 7-d-old agar-grown WT and *kuf1*
857 seedlings. Data are means \pm SDs ($n = 4$ seedlings/genotype, 12 cells/seedling). (D)
858 The sizes of cortex cells from hypocotyls of 7-d-old agar-grown WT and *kuf1*
859 seedlings. Data are means \pm SDs ($n = 4$ seedlings/genotype, 12 cells/seedling). (E)
860 The sizes of palisade mesophyll cells from the fifth leaf of 21-d-old soil-grown WT
861 and *kuf1* plants. Data are means \pm SDs ($n = 4$ seedlings/genotype, 12 cells/seedling).
862 (F) Representative pictures of 8-d-old root hairs of the WT and *kuf1* mutant plants. (G)
863 Root hair densities of WT and *kuf1* mutant plants. Data are means \pm SDs ($n = 25$
864 roots/genotype). (H) Root hair lengths of WT and *kuf1* mutant plants. Data are means
865 \pm SDs ($n = 10$ roots/genotype, 21 root hairs/root). Asterisks indicate significant
866 differences between the genotypes for all statistical analyses in this figure (** $P < 0.01$;
867 *** $P < 0.001$; Student's *t*-test).

868 **Figure 7. Comparison of the roles of KUF1 and KAI2 and a model of the**
869 **mechanisms by which KUF1 functions in *Arabidopsis* drought tolerance.** (A)
870 KUF1 inhibits stomatal closure and cuticle formation and decreases the abscisic acid

871 (ABA) response, whereas KAI2 functions in opposite ways, as supported by both
872 phenotypic analyses and gene expression under drought stress. Both KUF1 and KAI2
873 promote anthocyanin biosynthesis and accumulation under drought stress.
874 Transcriptome data demonstrate that KUF1 may inhibit brassinosteroid (BR)
875 biosynthesis and gibberellin (GA) biosynthesis, and may promote jasmonic acid (JA)
876 and glucosinolate (GLS) biosyntheses. KAI2 may promote JA, GA and GLS
877 biosyntheses, as well as KAR signaling. In addition, KAI2 may be activated by an
878 endogenous ligand (KL), and activated KAI2 induces the expression of *KUF1* (long
879 black arrow). KUF1 may interact with an SCF-type E3 ubiquitin ligase complex to
880 target an unknown protein(s) (question mark) for polyubiquitination and proteasomal
881 degradation. This unknown protein(s) may participate in KL biosynthesis. Arrows
882 indicate promotion, and blunt bars indicate inhibition. Blue arrows and blunt bars
883 represent the various roles of KUF1, and red arrows and blunt bars represent the
884 various roles of KAI2. Dotted bars and arrows indicate possible regulation.
885 Components of the E3 ubiquitin ligase complex other than *Arabidopsis* S-phase
886 Kinase associated protein 1 (ASK1) are not shown. (B) KUF1 inhibits ABA
887 responsiveness, stomatal closure, cuticle formation, root/shoot ratios, root hair
888 densities and root hair development, thereby negatively regulating drought tolerance
889 through increasing shoot water loss and reducing root water absorption. Black blunt
890 bars indicate inhibition by KUF1, and black arrows indicate promotion of processes
891 associated with drought tolerance.

892

893

894

895 **References**

896 **Abdelrahman M, Jogaiah S, Burritt DJ, Tran LP** (2018) Legume genetic resources
897 and transcriptome dynamics under abiotic stress conditions. *Plant Cell Environ*
898 **41**: 1972-1983

899 **Acharya BR, Jeon BW, Zhang W, Assmann SM** (2013) Open Stomata 1 (OST1) is
900 limiting in abscisic acid responses of *Arabidopsis* guard cells. *New*
901 *Phytologist* **200**: 1049-1063

902 **Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI** (2019)
903 Genetic strategies for improving crop yields. *Nature* **575**: 109-118

904 **Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH, Schroeder JI, Huq E** (2014) Regulation of drought tolerance by the
905 F-box protein MAX2 in *Arabidopsis*. *Plant Physiol* **164**: 424-439

906 **Buckley TN** (2019) How do stomata respond to water status? *New Phytologist* **224**:
907 21-36

908 **Bursch K, Niemann ET, Nelson DC, Johansson H** (2021) Karrikins control
909 seedling photomorphogenesis and anthocyanin biosynthesis through a
910 HY5-BBX transcriptional module. *Plant J* **107**:1346-1362.

911 **Carbonnel S, Das D, Varshney K, Kolodziej MC, Villaecija-Aguilar JA, Gutjahr C** (2020) The karrikin signaling regulator SMAX1 controls *Lotus japonicus*
912 root and root hair development by suppressing ethylene biosynthesis. *Proc Natl Acad Sci U S A* **117**: 21757-21765

913 **Claeys H, Inze D** (2013) The agony of choice: how plants balance growth and
914 survival under water-limiting conditions. *Plant Physiol* **162**: 1768-1779

915 **Colebrook EH, Thomas SG, Phillips AL, Hedden P** (2014) The role of gibberellin
916 signalling in plant responses to abiotic stress. *J Exp Biol* **217**: 67-75

917 **Conn CE, Nelson DC** (2016) Evidence that KARRIKIN-INSENSITIVE2 (KAI2)
918 receptors may perceive an unknown signal that is not karrikin or strigolactone.
919 Frontiers in Plant Science **6**

920 **Cui F, Brosche M, Lehtonen MT, Amiryousefi A, Xu E, Punkkinen M, Valkonen JP, Fujii H, Overmyer K** (2016) Dissecting abscisic acid signaling pathways
921 involved in cuticle formation. *Mol Plant* **9**: 926-938

922 **Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F** (2020) Effect of drought
923 stress on sugar metabolism in leaves and roots of soybean seedlings. *Plant Physiol Biochem* **146**: 1-12

924 **Fabregas N, Fernie AR** (2019) The metabolic response to drought. *J Exp Bot* **70**:
925 1077-1085

926 **Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA** (2009) Plant drought
927 stress: effects, mechanisms and management. *Sustainable Agriculture*:
928 153-188

929 **Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD** (2004) A compound from
930 smoke that promotes seed germination. *Science* **305**: 977

931 **Gazzarrini S, Tsai AY**. (2015) Hormone cross-talk during seed germination. *Essays Biochem* **58**: 151-164.

932 **Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C** (2015)
933 Aquaporins contribute to ABA-Triggered stomatal closure through
934 OST1-mediated phosphorylation. *Plant Cell* **27**: 1945-1954

935 **Guo Y, Zheng Z, La Clair JJ, Chory J, Noel JP** (2013) Smoke-derived karrikin
936 perception by the alpha/beta-hydrolase KAI2 from *Arabidopsis*. *Proc Natl Acad Sci U S A* **110**: 8284-8289

937 **Gupta A, Rico-Medina A, Cano-Delgado AI** (2020) The physiology of plant
938 responses to drought. *Science* **368**: 266-269

946 **Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LP** (2020)
947 Phytohormones regulate convergent and divergent responses between
948 individual and combined drought and pathogen infection. *Crit Rev Biotechnol*
949 **40**: 320-340

950 **Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y,**
951 **Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K,**
952 **Shinozaki K, Herrera-Estrella L, Tran LS** (2014) Positive regulatory role of
953 strigolactone in plant responses to drought and salt stress. *Proc Natl Acad Sci*
954 **U S A 111**: 851-856

955 **Harb A, Pereira A** (2011) Screening *Arabidopsis* genotypes for drought stress
956 resistance. *Methods Mol Biol* **678**: 191-198

957 **Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI** (2021) Signaling mechanisms in
958 abscisic acid-mediated stomatal closure. *Plant J* **105**: 307-321

959 **Ito S, Nozoye T, Sasaki E, Imai M, Shiwa Y, Shibata-Hatta M, Ishige T, Fukui K,**
960 **Ito K, Nakanishi H, Nishizawa NK, Yajima S, Asami T** (2015)
961 Strigolactone regulates anthocyanin accumulation, acid phosphatases
962 production and plant growth under low phosphate condition in *Arabidopsis*.
963 *PLoS One* **10**: e0119724

964 **Iwata S, Miyazawa Y, Fujii N, Takahashi H** (2013) MIZ1-regulated hydrotropism
965 functions in the growth and survival of *Arabidopsis thaliana* under natural
966 conditions. *Ann Bot* **112**: 103-114

967 **Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Do Choi Y, Cheong**
968 **JJ** (2007) Microarray-based screening of jasmonate-responsive genes in
969 *Arabidopsis thaliana*. *Plant Cell Reports* **26**: 1053-1063

970 **Khosla A, Morffy N, Li Q, Faure L, Chang SH, Yao J, Zheng J, Cai ML, Stanga**
971 **J, Flematti GR, Waters MT, Nelson DC** (2020) Structure-function analysis
972 of SMAX1 reveals domains that mediate its darrakin-induced proteolysis and
973 interaction with the receptor KAI2. *Plant Cell* **32**: 2639-2659

974 **Kuromori T, Seo M, Shinozaki K** (2018) ABA transport and plant water stress
975 responses. *Trends Plant Sci* **23**: 513-522

976 **Kuromori T, Sugimoto E, Ohiraki H, Yamaguchi-Shinozaki K, Shinozaki K**
977 (2017) Functional relationship of AtABCG21 and AtABCG22 in stomatal
978 regulation. *Sci Rep* **7**: 12501

979 **Kuromori T, Sugimoto E, Shinozaki K** (2011) *Arabidopsis* mutants of AtABCG22,
980 an ABC transporter gene, increase water transpiration and drought
981 susceptibility. *Plant J* **67**: 885-894

982 **Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Ha CV, Nishiyama R, Guttikonda**
983 **SK, Quach TN, Gutierrez-Gonzalez JJ, Tran LS, Nguyen HT** (2012)
984 Evaluation of candidate reference genes for normalization of quantitative
985 RT-PCR in soybean tissues under various abiotic stress conditions. *PLoS One*
986 **7**: e46487.

987 **Li W, Nguyen KH, Chu HD, Ha CV, Watanabe Y, Osakabe Y, Leyva-Gonzalez**
988 **MA, Sato M, Toyooka K, Voges L, Tanaka M, Mostofa MG, Seki M, Seo**
989 **M, Yamaguchi S, Nelson DC, Tian C, Herrera-Estrella L, Tran LP** (2017)

990 The karrikin receptor KAI2 promotes drought resistance in *Arabidopsis*
991 *thaliana*. PLoS Genet 13: e1007076

992 **Li W, Nguyen KH, Chu HD, Watanabe Y, Osakabe Y, Sato M, Toyooka K, Seo M,**
993 **Tian L, Tian C, Yamaguchi S, Tanaka M, Seki M, Tran LP** (2020)
994 Comparative functional analyses of DWARF14 and KARRIKIN
995 INSENSITIVE 2 in drought adaptation of *Arabidopsis thaliana*. Plant J 103:
996 111-127

997 **Liu Y, Chen H, Ping Q, Zhang Z, Guan Z, Fang W, Chen S, Chen F, Jiang J,**
998 **Zhang F** (2019) The heterologous expression of CmBBX22 delays leaf
999 senescence and improves drought tolerance in *Arabidopsis*. Plant Cell Rep 38:
1000 15-24

1001 **Livak KJ, Schmittgen TD** (2001) Analysis of relative gene expression data using
1002 real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:
1003 402-408.

1004 **Meng Y, Chen F, Shuai H, Luo X, Ding J, Tang S, Xu S, Liu J, Liu W, Du J, Liu J,**
1005 **Yang F, Sun X, Yong T, Wang X, Feng Y, Shu K, Yang W.** (2016) Karrikins
1006 delay soybean seed germination by mediating abscisic acid and gibberellin
1007 biogenesis under shaded conditions. Sci Rep 6: 22073.

1008 **Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y,**
1009 **Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael**
1010 **AJ, Tohge T, Yamazaki M, Saito K** (2014) Enhancement of oxidative and
1011 drought tolerance in *Arabidopsis* by overaccumulation of antioxidant
1012 flavonoids. Plant J 77: 367-379

1013 **Nakata M, Mitsuda N, Herde M, Koo AJ, Moreno JE, Suzuki K, Howe GA,**
1014 **Ohme-Takagi M** (2013) A bHLH-type transcription factor,
1015 ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION
1016 FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively
1017 regulate jasmonate signaling in *Arabidopsis*. Plant Cell 25: 1641-1656

1018 **Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM** (2012)
1019 Regulation of seed germination and seedling growth by chemical signals from
1020 burning vegetation. Annu Rev Plant Biol 63: 107-130

1021 **Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM**
1022 (2010) Karrikins enhance light responses during germination and seedling
1023 development in *Arabidopsis thaliana*. Proc Natl Acad Sci U S A 107:
1024 7095-7100

1025 **Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW,**
1026 **Smith SM** (2009) Karrikins discovered in smoke trigger *Arabidopsis* seed
1027 germination by a mechanism requiring gibberellin acid synthesis and light.
1028 Plant Physiol 149: 863-873

1029 **Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge**
1030 **CA, Ghisalberti EL, Smith SM** (2011) F-box protein MAX2 has dual roles
1031 in karrikin and strigolactone signaling in *Arabidopsis thaliana*. Proceedings of
1032 the National Academy of Sciences of the United States of America 108:
1033 8897-8902

1034 **Nir I, Moshelion M, Weiss D** (2014) The *Arabidopsis* gibberellin methyl transferase
1035 suppresses gibberellin activity, reduces whole-plant transpiration and
1036 promotes drought tolerance in transgenic tomato. *Plant Cell Environ* **37**:
1037 113-123

1038 **Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R,**
1039 **Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H,**
1040 **Schmulling T, Tran LS** (2011) Analysis of cytokinin mutants and regulation
1041 of cytokinin metabolic genes reveals important regulatory roles of cytokinins
1042 in drought, salt and abscisic acid responses, and abscisic acid biosynthesis.
1043 *Plant Cell* **23**: 2169-2183

1044 **Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H,**
1045 **Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K,**
1046 **Yamaguchi-Shinozaki K** (2013) Osmotic stress responses and plant growth
1047 controlled by potassium transporters in *Arabidopsis*. *Plant Cell* **25**: 609-624

1048 **Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P** (2015) Exploring
1049 jasmonates in the hormonal network of drought and salinity responses. *Front*
1050 *Plant Sci* **6**: 1077

1051 **Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kliebenstein DJ, Estelle M**
1052 (2019) Auxin-sensitive Aux/IAA proteins mediate drought tolerance in
1053 *Arabidopsis* by regulating glucosinolate levels. *Nat Commun* **10**: 4021

1054 **Salekdeh GH, Reynolds M, Bennett J, Boyer J** (2009) Conceptual framework for
1055 drought phenotyping during molecular breeding. *Trends Plant Sci* **14**: 488-496

1056 **Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY,**
1057 **Marquez JA, Cutler SR, Rodriguez PL** (2009) Modulation of drought
1058 resistance by the abscisic acid receptor PYL5 through inhibition of clade A
1059 PP2Cs. *Plant J* **60**: 575-588

1060 **Sepulveda C, Guzmán, M. A., Li, Q., Villaécija-Aguilar, J. A. Martinez, S.,**
1061 **Kamran, M., Khosla, A., Liu W., Gendron, J.M., Gutjahr, C., Waters,**
1062 **M.T., Nelson, D.C.** (2022) KARRIKIN UPREGULATED F-BOX 1 (KUF1)
1063 imposes negative feedback regulation of karrikin and KAI2 ligand metabolism
1064 in *Arabidopsis thaliana*. *Proc Natl Acad Sci U S A accepted* 1/31/22

1065 **Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ,**
1066 **Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong XN,**
1067 **Pieterse CMJ** (2003) NPR1 modulates cross-talk between salicylate- and
1068 jasmonate-dependent defense pathways through a novel function in the cytosol.
1069 *Plant Cell* **15**: 760-770

1070 **Stanga JP, Morffy N, Nelson DC** (2016) Functional redundancy in the control of
1071 seedling growth by the karrikin signaling pathway. *Planta* **243**: 1397-1406

1072 **Stanga JP, Smith SM, Briggs WR, Nelson DC** (2013) SUPPRESSOR OF MORE
1073 AXILLARY GROWTH2 1 controls seed germination and seedling
1074 development in *Arabidopsis*. *Plant Physiol* **163**: 318-330

1075 **Sun XD, Ni M** (2011) HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts
1076 downstream of ELONGATED HYPOCOTYL 5 to regulate seedling
1077 de-etiolation. *Mol Plant* **4**: 116-126

1078 **Sun YK, Flematti GR, Smith SM, Waters MT** (2016) Reporter gene-facilitated
1079 detection of compounds in *Arabidopsis* leaf extracts that activate the karrikin
1080 signalling pathway. *Front Plant Sci* **7**: 1799

1081 **Swarbreck SM, Guerrigue Y, Matthus E, Jamieson FJC, Davies JM** (2019)
1082 Impairment in karrikin but not strigolactone sensing enhances root skewing in
1083 *Arabidopsis thaliana*. *Plant J* **98**: 607-621

1084 **Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y** (2004) A new method
1085 for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of
1086 surface defects in *Arabidopsis*. *Plant J* **37**: 139-146

1087 **Tardieu F, Simonneau T, Muller B** (2018) The physiological basis of drought
1088 tolerance in crop plants: a scenario-dependent probabilistic approach. *Annu
1089 Rev Plant Biol* **69**: 733-759

1090 **Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y,
1091 Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M,
1092 Yamaguchi S, Kamiya Y, Nambara E, Kawakami N.** (2008) High
1093 temperature-induced abscisic acid biosynthesis and its role in the inhibition of
1094 gibberellin action in *Arabidopsis* seeds. *Plant Physiol* **146**: 1368-1385.

1095 **Thussagunpanit J, Nagai Y, Nagae M, Mashiguchi K, Mitsuda N, Ohme-Takagi
1096 M, Nakano T, Nakamura H, Asami T** (2017) Involvement of STH7 in
1097 light-adapted development in *Arabidopsis thaliana* promoted by both
1098 strigolactone and karrikin. *Biosci Biotechnol Biochem* **81**: 292-301

1099 **Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y,
1100 Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J,
1101 Matsumoto T, Takai T, Okuno K, Yano M** (2013) Control of root system
1102 architecture by DEEPER ROOTING 1 increases rice yield under drought
1103 conditions. *Nat Genet* **45**: 1097-1102

1104 **Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M,
1105 Koshiba T, Kamiya Y, Shinozaki K** (2006) CYP707A3, a major ABA
1106 8'-hydroxylase involved in dehydration and rehydration response in
1107 *Arabidopsis thaliana*. *Plant J* **46**: 171-182

1108 **Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K,
1109 Shinozaki K** (2017) Analysis of plant hormone profiles in response to
1110 moderate dehydration stress. *Plant J* **90**: 17-36

1111 **Varone L, Ribas-Carbo M, Cardona C, Galle A, Medrano H, Gratani L, Flexas J**
1112 (2012) Stomatal and non-stomatal limitations to photosynthesis in seedlings
1113 and saplings of Mediterranean species pre-conditioned and aged in nurseries:
1114 Different response to water stress. *Environmental and Experimental Botany* **75**:
1115 235-247

1116 **Villaecija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmidt C,
1117 Dawid C, Bennett T, Gutjahr C** (2019) SMAX1/SMXL2 regulate root and
1118 root hair development downstream of KAI2-mediated signalling in
1119 *Arabidopsis*. *PLoS Genet* **15**: e1008327

1120 **Wang L, Waters MT, Smith SM** (2018) Karrikin-KAI2 signalling provides
1121 *Arabidopsis* seeds with tolerance to abiotic stress and inhibits germination

1122 under conditions unfavourable to seedling establishment. *New Phytol* **219**:
1123 605-618

1124 **Wang L, Xu Q, Yu H, Ma H, Li X, Yang J, Chu J, Xie Q, Wang Y, Smith SM, Li J, Xiong G, Wang B** (2020) Strigolactone and karrikin signaling pathways elicit
1125 ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in
1126 *Arabidopsis*. *Plant Cell* **32**: 2251-2270

1127

1128 **Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YKM, Dixon KW, Smith SM** (2012) Specialisation within the DWARF14 protein family confers
1129 distinct responses to karrikins and strigolactones in *Arabidopsis*. *Development*
1130 **139**: 1285-1295

1131

1132 **Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM** (2015) A
1133 *Selaginella moellendorffii* ortholog of KARRIKIN INSENSITIVE2 functions
1134 in *Arabidopsis* development but cannot mediate responses to karrikins or
1135 strigolactones. *Plant Cell* **27**: 1925-1944

1136 **Xu G, Ma H, Nei M, Kong H** (2009) Evolution of F-box genes in plants: different
1137 modes of sequence divergence and their relationships with functional
1138 diversification. *Proc Natl Acad Sci U S A* **106**: 835-840

1139 **Xu Y, Zhao X, Aiwalli P, Mu X, Zhao M, Zhao J, Cheng L, Ma C, Gao J, Hong B**
1140 (2020) A zinc finger protein BBX19 interacts with ABF3 to affect drought
1141 tolerance negatively in chrysanthemum. *Plant J* **103**: 1783-1795

1142 **Yamaguchi S** (2008) Gibberellin metabolism and its regulation. *Annu Rev Plant Biol*
1143 **59**: 225-251

1144 **Yang T, Lian Y, Kang J, Bian Z, Xuan L, Gao Z, Wang X, Deng J, Wang C** (2020)
1145 The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and
1146 SMXL8 act as negative regulators in response to drought stress in *Arabidopsis*.
1147 *Plant Cell Physiol* **61**: 1477-1492

1148 **Yao JR, Mashiguchi K, Scaffidi A, Akatsu T, Melville KT, Morita R, Morimoto Y, Smith SM, Seto Y, Flematti GR, Yamaguchi S, Waters MT** (2018) An
1149 allelic series at the KARRIKIN INSENSITIVE 2 locus of *Arabidopsis thaliana* decouples ligand hydrolysis and receptor degradation from
1150 downstream signalling. *Plant Journal* **96**: 75-89

1151

1152 **Yeats TH, Rose JK** (2013) The formation and function of plant cuticles. *Plant Physiol* **163**: 5-20

1153

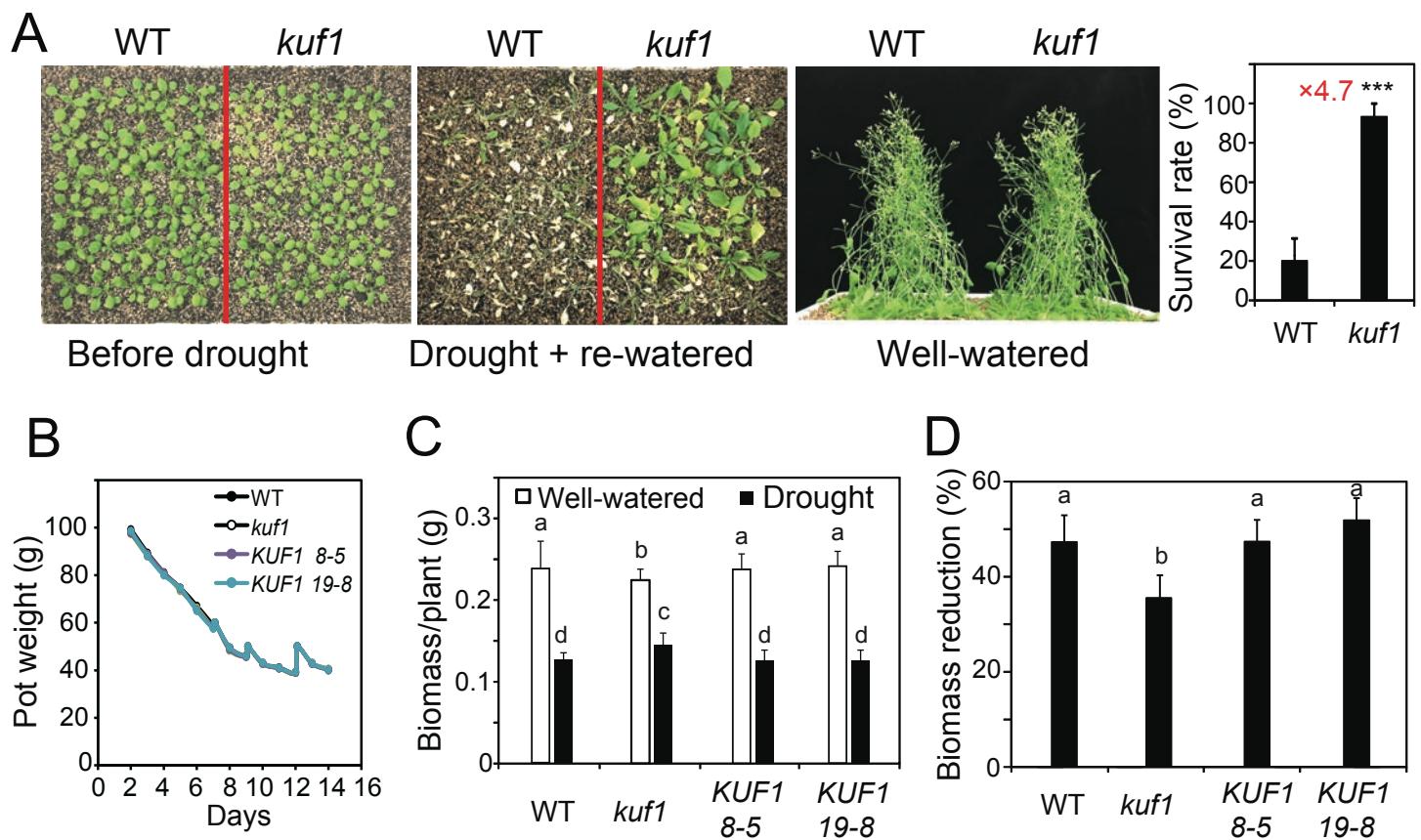
1154 **Zhang XB, Gonzalez-Carranza ZH, Zhang SL, Miao YC, Liu CJ, Roberts JA**
1155 (2019) F-box proteins in plants. *Annual Plant Reviews Online* **2**: 307-327

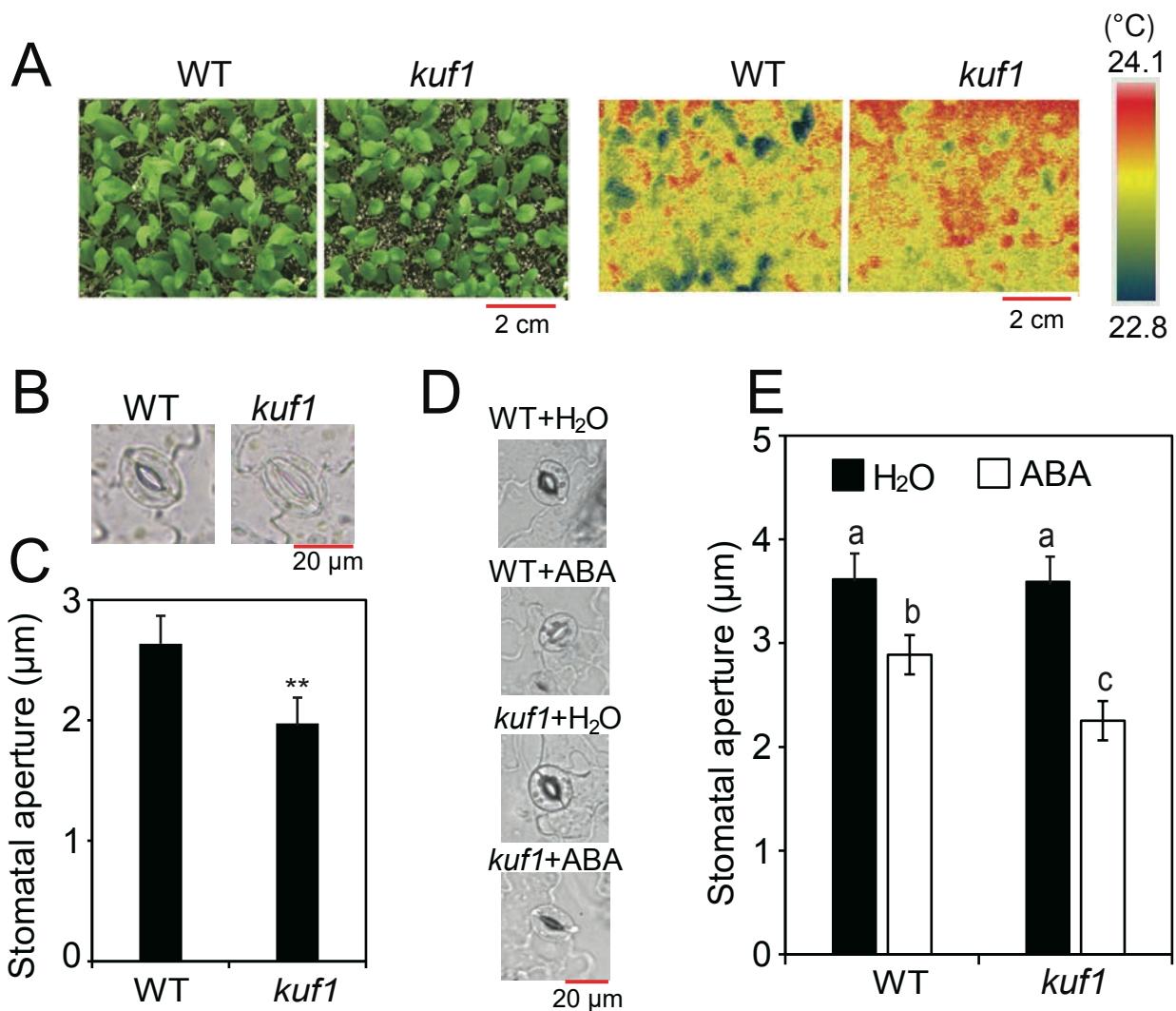
1156

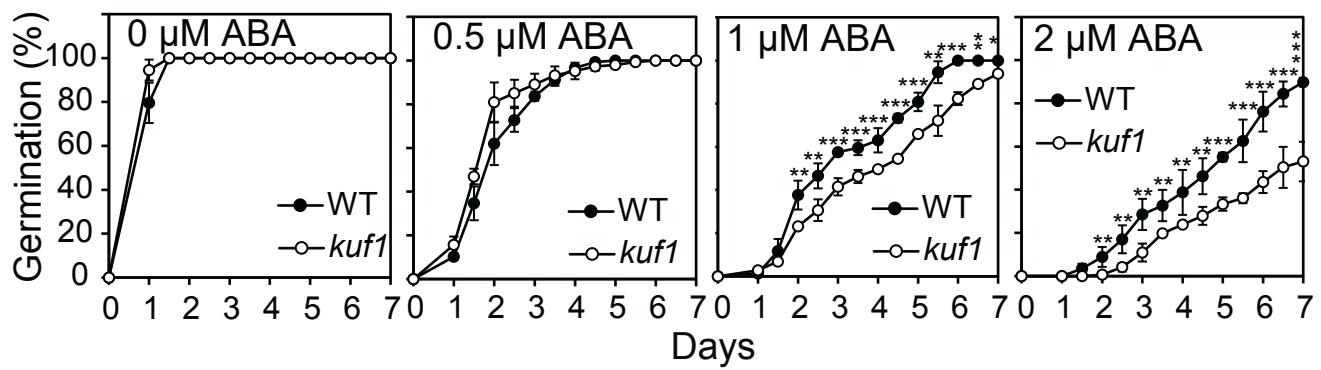
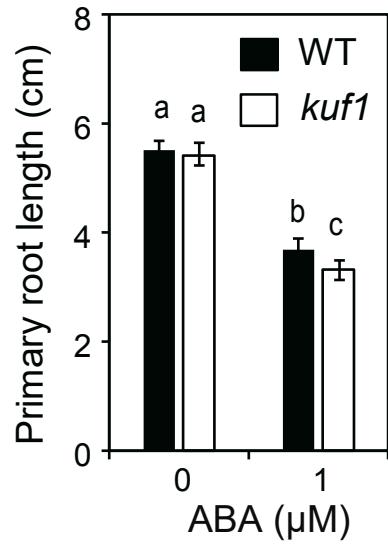
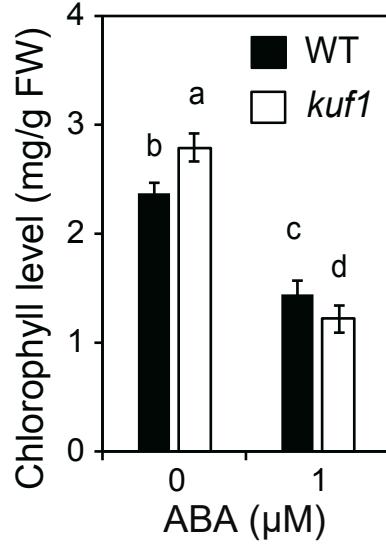
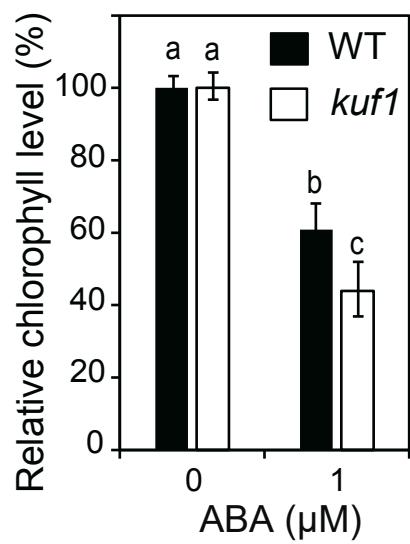
1157 **Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK** (2016) ABA
1158 receptor PYL9 promotes drought resistance and leaf senescence. *Proc Natl Acad Sci U S A* **113**: 1949-1954

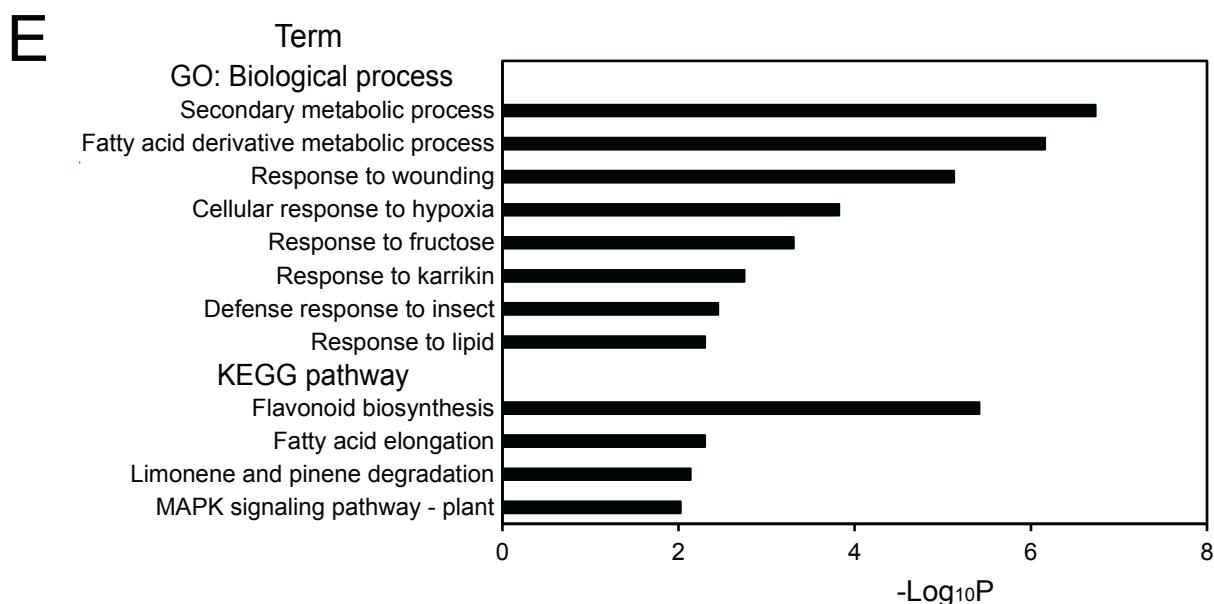
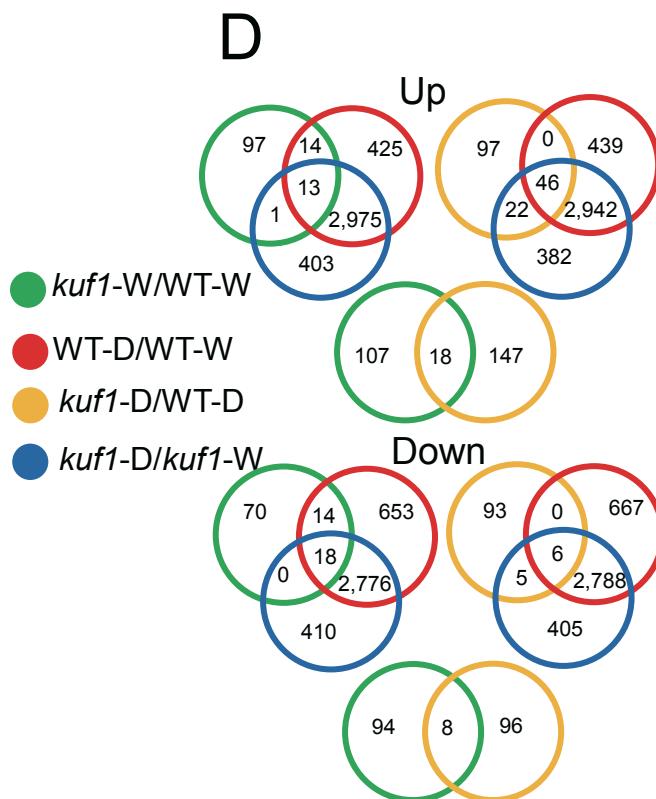
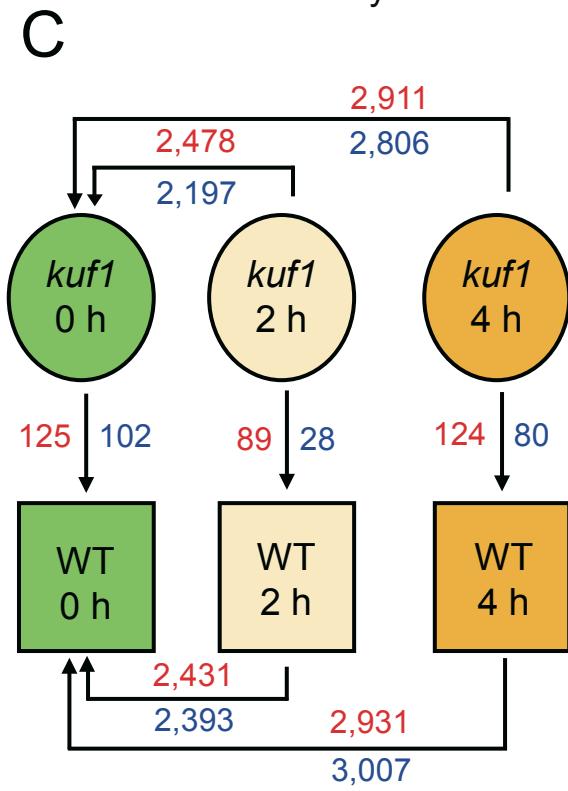
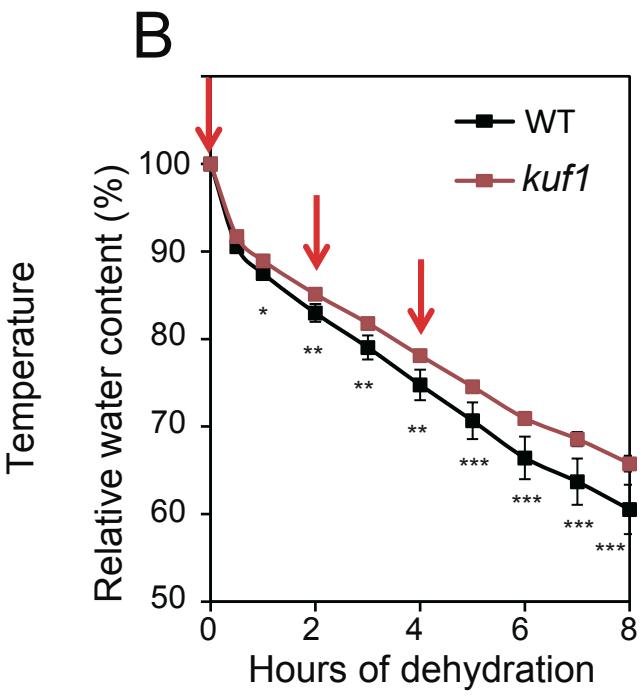
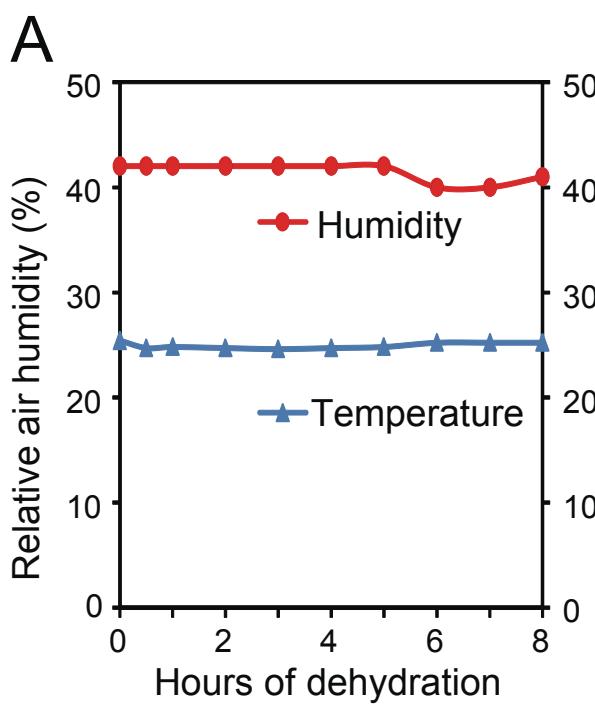
1159

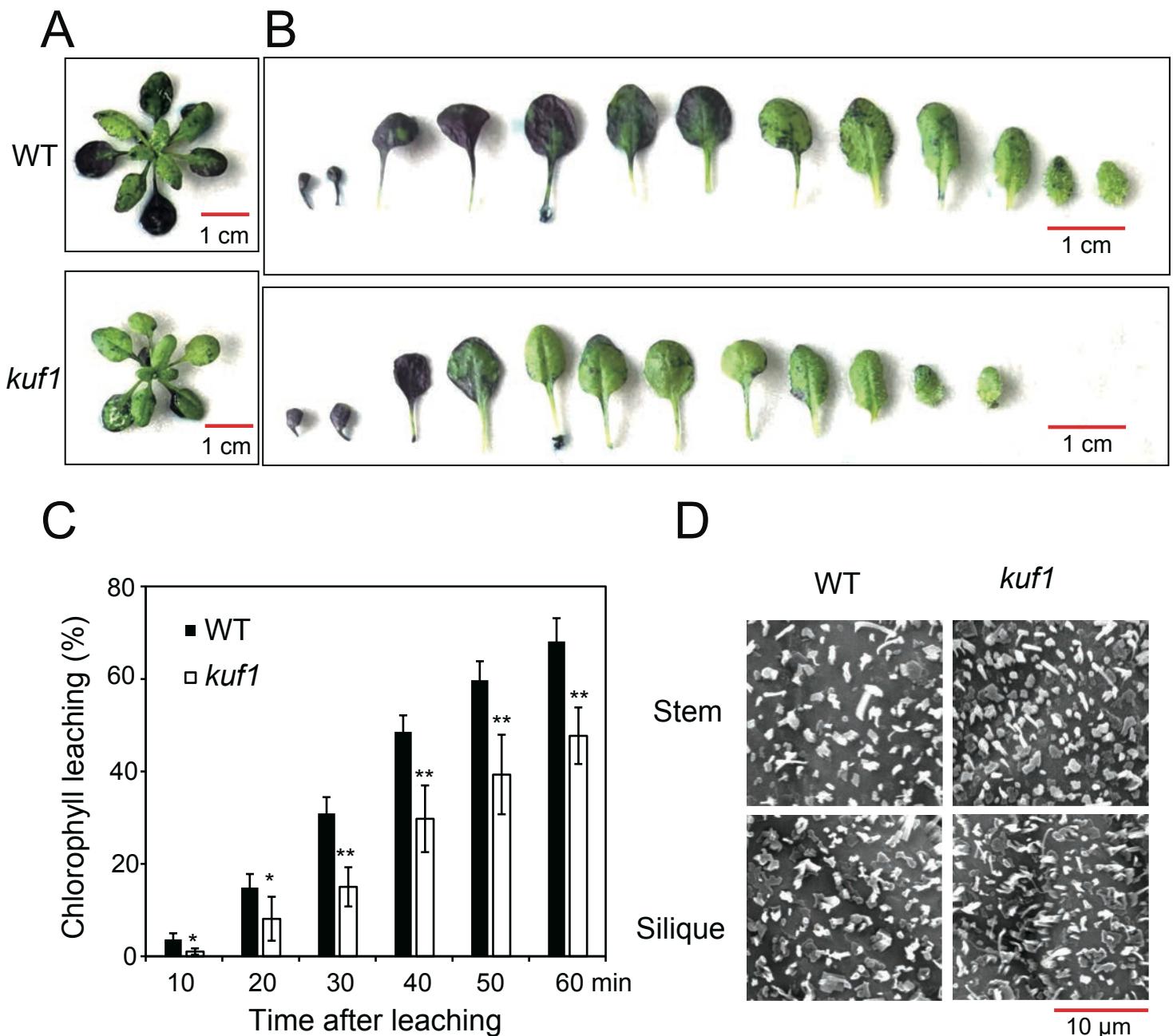
1160

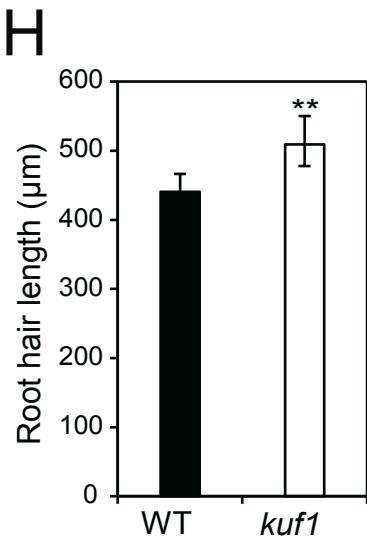
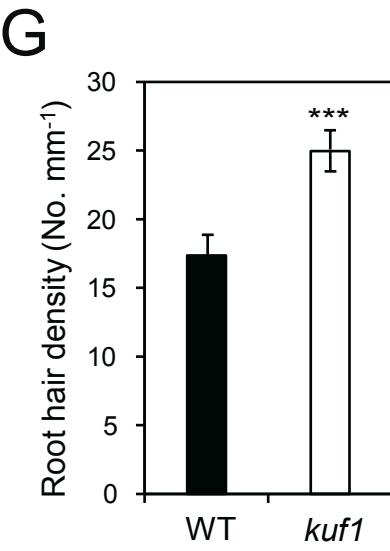
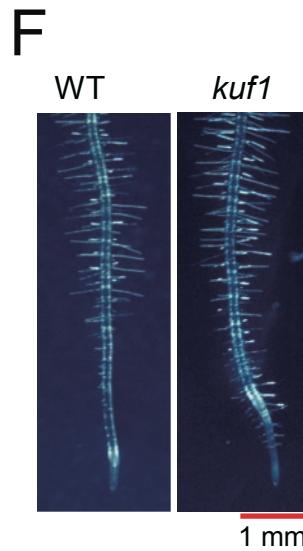
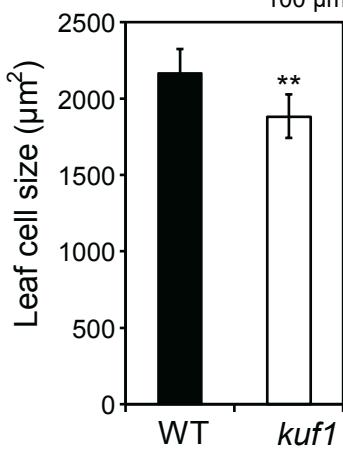
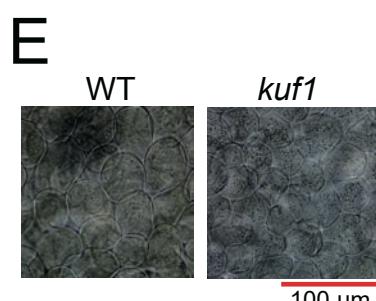
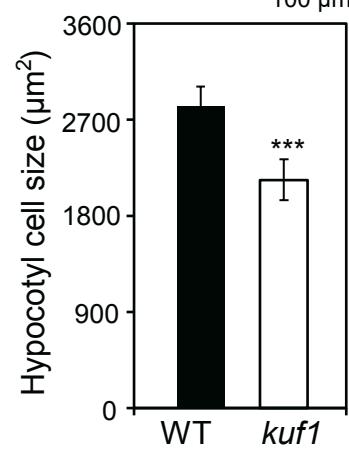
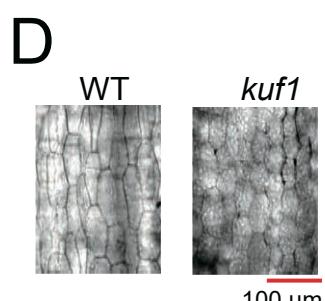
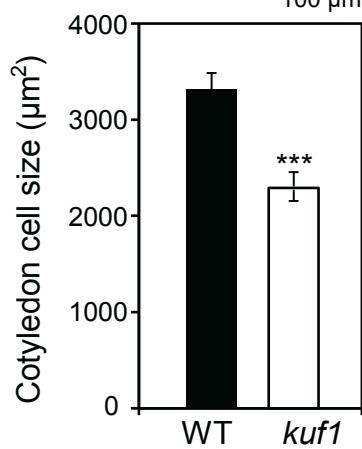
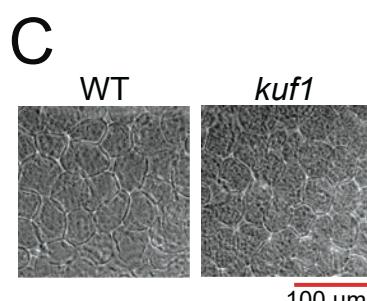
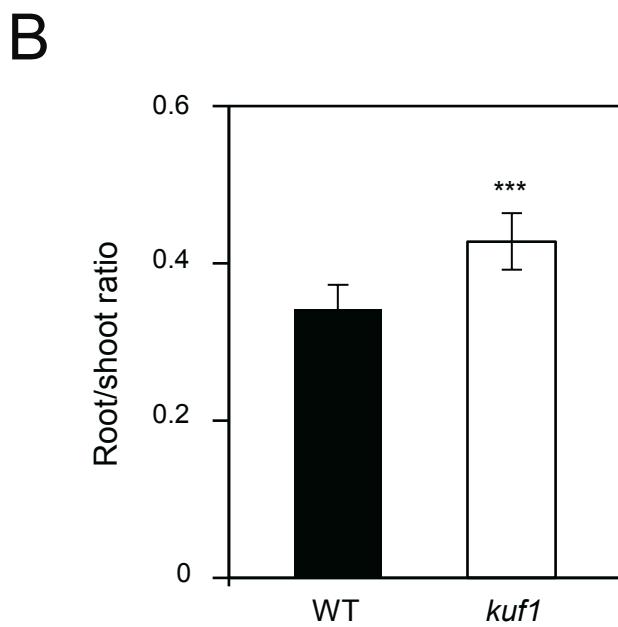
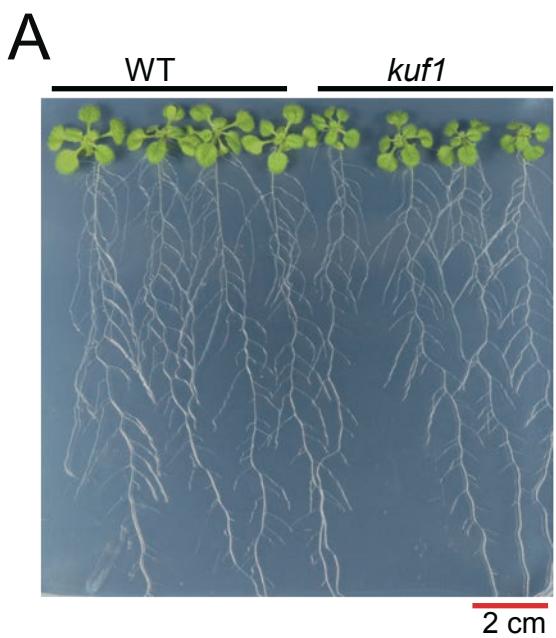

1161 **Zheng J, Hong K, Zeng L, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Hu J, Zeng D, Zhao Y, Cui P, Wang Q, Qian Q, Wang Y, Li J, Xiong G** (2020) Karrikin signaling acts parallel to and additively with
1162 strigolactone signaling to regulate rice mesocotyl elongation in darkness. *Plant Cell* **32**: 2780-2805

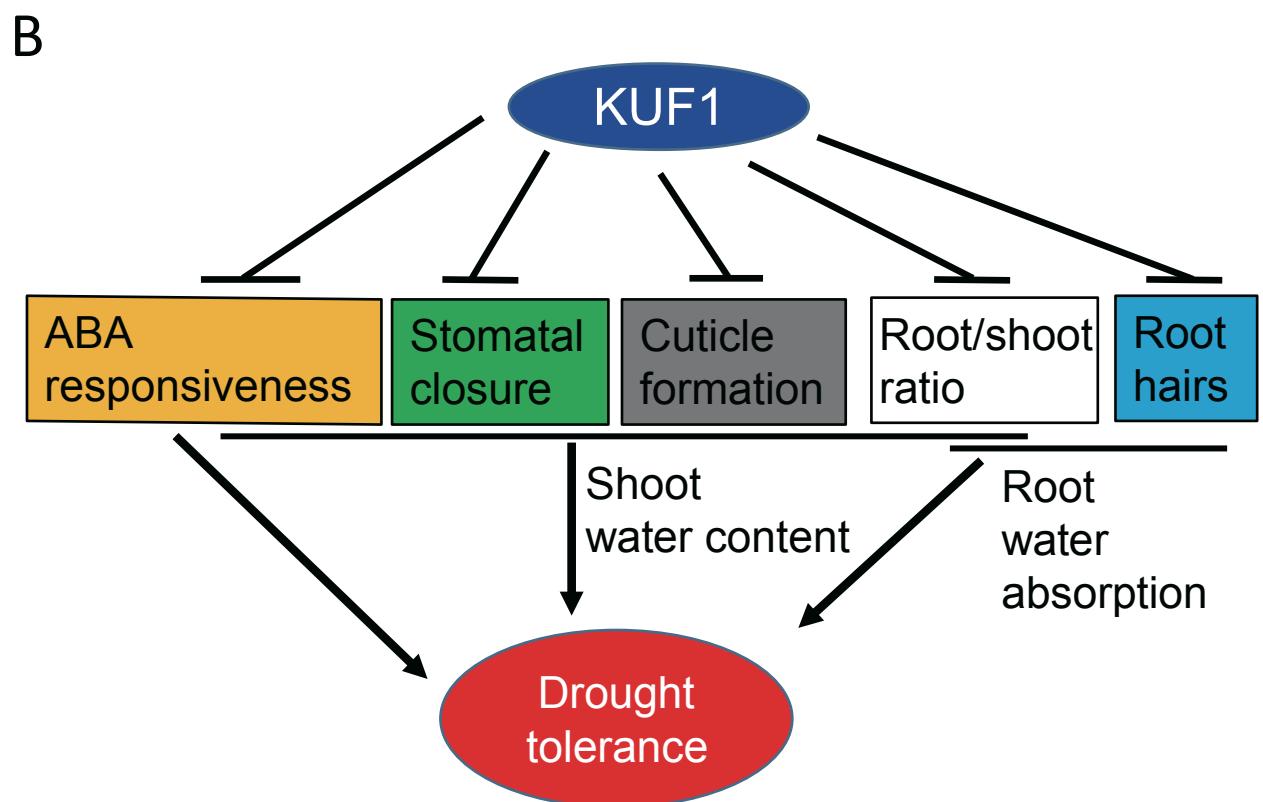
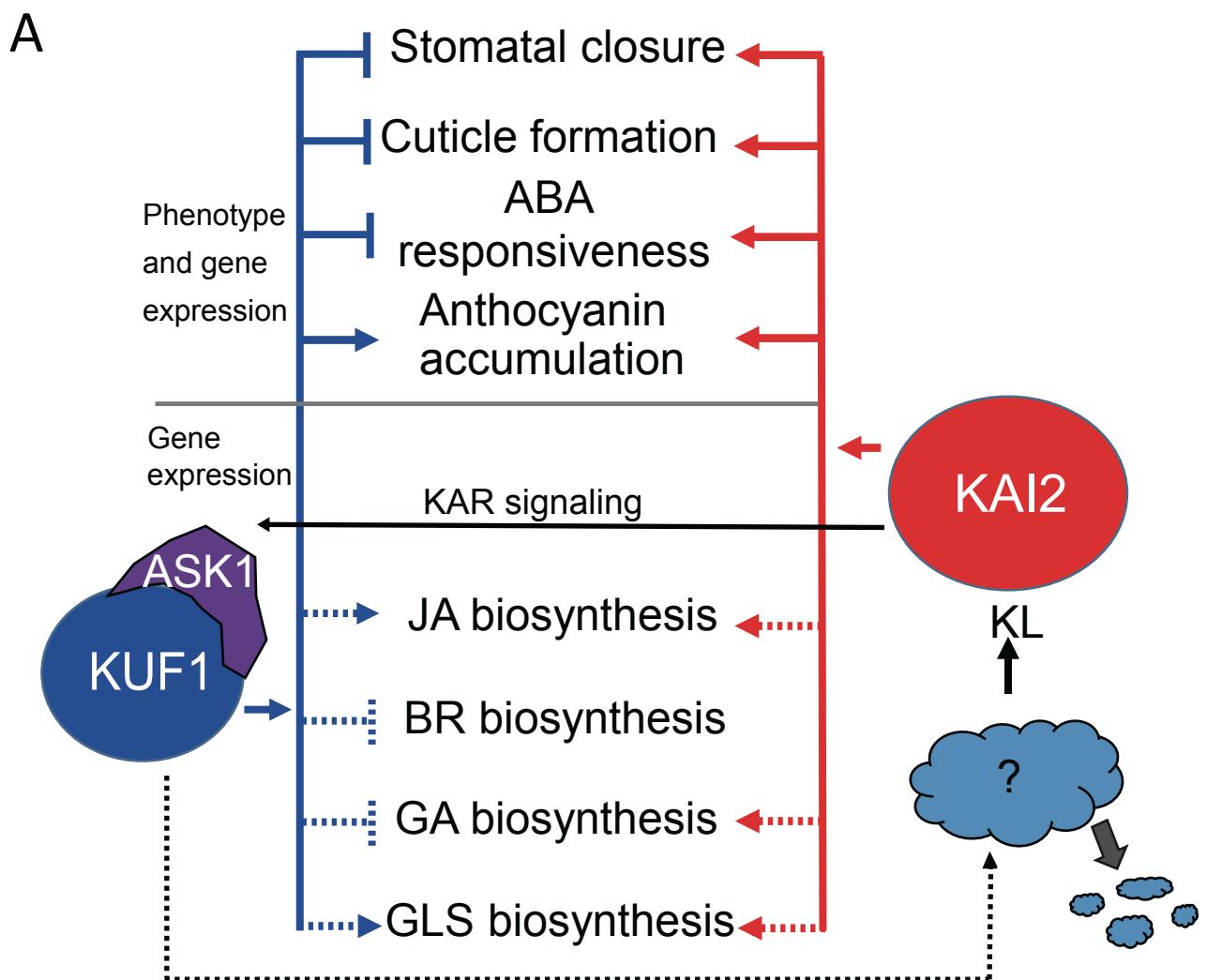

1163





1164






1165



A**B****C****D**

Parsed Citations

Abdelrahman M, Jogaiah S, Burritt DJ, Tran LP (2018) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. *Plant Cell Environ* 41: 1972-1983
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Acharya BR, Jeon BW, Zhang W, Assmann SM (2013) Open Stomata 1 (OST1) is limiting in abscisic acid responses of *Arabidopsis* guard cells. *New Phytologist* 200: 1049-1063
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. *Nature* 575: 109-118
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim TH, Schroeder JI, Huq E (2014) Regulation of drought tolerance by the F-box protein MAX2 in *Arabidopsis*. *Plant Physiol* 164: 424-439
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Buckley TN (2019) How do stomata respond to water status? *New Phytologist* 224: 21-36
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bursch K, Niemann ET, Nelson DC, Johansson H (2021) Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. *Plant J* 107:1346-1362.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Carbonnel S, Das D, Varshney K, Kolodziej MC, Villaecija-Aguilar JA, Gutjahr C (2020) The karrikin signaling regulator SMAX1 controls *Lotus japonicus* root and root hair development by suppressing ethylene biosynthesis. *Proc Natl Acad Sci U S A* 117: 21757-21765
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Claeys H, Inze D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. *Plant Physiol* 162: 1768-1779
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. *J Exp Biol* 217: 67-75
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Conn CE, Nelson DC (2016) Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. *Frontiers in Plant Science* 6
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cui F, Brosche M, Lehtonen MT, Amiryousefi A, Xu E, Punkkinen M, Valkonen JP, Fujii H, Overmyer K (2016) Dissecting abscisic acid signaling pathways involved in cuticle formation. *Mol Plant* 9: 926-938
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F (2020) Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. *Plant Physiol Biochem* 146: 1-12
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fabregas N, Fernie AR (2019) The metabolic response to drought. *J Exp Bot* 70: 1077-1085
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. *Sustainable Agriculture*: 153-188
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. *Science* 305: 977
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gazzarrini S, Tsai AY. (2015) Hormone cross-talk during seed germination. *Essays Biochem* 58: 151-164.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015) Aquaporins contribute to ABA-Triggered stomatal closure through OST1-mediated phosphorylation. *Plant Cell* 27: 1945-1954
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Guo Y, Zheng Z, La Clair JJ, Chory J, Noel JP (2013) Smoke-derived karrikin perception by the alpha/beta-hydrolase KAI2 from *Arabidopsis*. *Proc Natl Acad Sci U S A* 110: 8284-8289

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. *Science* 368: 266-269

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LP (2020) Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. *Crit Rev Biotechnol* 40: 320-340

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. *Proc Natl Acad Sci U S A* 111: 851-856

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Harb A, Pereira A (2011) Screening *Arabidopsis* genotypes for drought stress resistance. *Methods Mol Biol* 678: 191-198

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI (2021) Signaling mechanisms in abscisic acid-mediated stomatal closure. *Plant J* 105: 307-321

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ito S, Nozoye T, Sasaki E, Imai M, Shiwa Y, Shibata-Hatta M, Ishige T, Fukui K, Ito K, Nakanishi H, Nishizawa NK, Yajima S, Asami T (2015) Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in *Arabidopsis*. *PLoS One* 10: e0119724

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Iwata S, Miyazawa Y, Fujii N, Takahashi H (2013) MIZ1-regulated hydrotropism functions in the growth and survival of *Arabidopsis thaliana* under natural conditions. *Ann Bot* 112: 103-114

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jung C, Lyu SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Do Choi Y, Cheong JJ (2007) Microarray-based screening of jasmonate-responsive genes in *Arabidopsis thaliana*. *Plant Cell Reports* 26: 1053-1063

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Khosla A, Morffy N, Li Q, Faure L, Chang SH, Yao J, Zheng J, Cai ML, Stanga J, Flematti GR, Waters MT, Nelson DC (2020) Structure-function analysis of SMAX1 reveals domains that mediate its karrikin-induced proteolysis and interaction with the receptor KAI2. *Plant Cell* 32: 2639-2659

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. *Trends Plant Sci* 23: 513-522

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuromori T, Sugimoto E, Ohiraki H, Yamaguchi-Shinozaki K, Shinozaki K (2017) Functional relationship of AtABCG21 and AtABCG22 in stomatal regulation. *Sci Rep* 7: 12501

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuromori T, Sugimoto E, Shinozaki K (2011) *Arabidopsis* mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. *Plant J* 67: 885-894

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Ha CV, Nishiyama R, Guttikonda SK, Quach TN, Gutierrez-Gonzalez JJ, Tran LS, Nguyen HT (2012) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. *PLoS One* 7: e46487.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li W, Nguyen KH, Chu HD, Ha CV, Watanabe Y, Osakabe Y, Leyva-Gonzalez MA, Sato M, Toyooka K, Voges L, Tanaka M, Mostofa MG, Seki M, Seo M, Yamaguchi S, Nelson DC, Tian C, Herrera-Estrella L, Tran LP (2017) The karrikin receptor KAI2 promotes drought resistance in *Arabidopsis thaliana*. *PLoS Genet* 13: e1007076

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li W, Nguyen KH, Chu HD, Watanabe Y, Osakabe Y, Sato M, Toyooka K, Seo M, Tian L, Tian C, Yamaguchi S, Tanaka M, Seki M, Tran LP (2020) Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of *Arabidopsis thaliana*. *Plant J* 103: 111-127

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liu Y, Chen H, Ping Q, Zhang Z, Guan Z, Fang W, Chen S, Chen F, Jiang J, Zhang F (2019) The heterologous expression of CmBBX22 delays leaf senescence and improves drought tolerance in *Arabidopsis*. *Plant Cell Rep* 38: 15-24

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. *Methods* 25: 402-408.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Meng Y, Chen F, Shuai H, Luo X, Ding J, Tang S, Xu S, Liu J, Liu W, Du J, Liu J, Yang F, Sun X, Yong T, Wang X, Feng Y, Shu K, Yang W. (2016) Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. *Sci Rep* 6: 22073.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in *Arabidopsis* by overaccumulation of antioxidant flavonoids. *Plant J* 77: 367-379

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nakata M, Mitsuda N, Herde M, Koo AJ, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013) A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in *Arabidopsis*. *Plant Cell* 25: 1641-1656

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. *Annu Rev Plant Biol* 63: 107-130

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM (2010) Karrikins enhance light responses during germination and seedling development in *Arabidopsis thaliana*. *Proc Natl Acad Sci U S A* 107: 7095-7100

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger *Arabidopsis* seed germination by a mechanism requiring gibberellin acid synthesis and light. *Plant Physiol* 149: 863-873

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences of the United States of America* 108: 8897-8902

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nir I, Moshelion M, Weiss D (2014) The *Arabidopsis* gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. *Plant Cell Environ* 37: 113-123

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmulling T, Tran LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. *Plant Cell* 23: 2169-2183

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo SU, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K (2013) Osmotic stress responses and plant growth controlled by potassium transporters in *Arabidopsis*. *Plant Cell* 25: 609-624

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. *Front Plant Sci* 6: 1077

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salehin M, Li B, Tang M, Katz E, Song L, Ecker JR, Kieberstein DJ, Estelle M (2019) Auxin-sensitive Aux/IAA proteins mediate drought tolerance in *Arabidopsis* by regulating glucosinolate levels. *Nat Commun* 10: 4021

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. *Trends Plant Sci* 14: 488-496

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Marquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A APP2Cs. *Plant J* 60: 575-588

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sepulveda C, Guzmán, M. A., Li, Q., Villaécija-Aguilar, J. A. Martinez, S., Kamran, M., Khosla, A., Liu W., Gendron, J.M., Gutjahr, C., Waters, M.T., Nelson, D.C. (2022) KARRIKIN UPREGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in *Arabidopsis thaliana*. *Proc Natl Acad Sci U S A* accepted 1/31/22

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong XN, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. *Plant Cell* 15: 760-770

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stanga JP, Morffy N, Nelson DC (2016) Functional redundancy in the control of seedling growth by the karrikin signaling pathway. *Planta* 243: 1397-1406

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stanga JP, Smith SM, Briggs WR, Nelson DC (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in *Arabidopsis*. *Plant Physiol* 163: 318-330

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sun XD, Ni M (2011) HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. *Mol Plant* 4: 116-126

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sun YK, Flematti GR, Smith SM, Waters MT (2016) Reporter gene-facilitated detection of compounds in *Arabidopsis* leaf extracts that activate the karrikin signaling pathway. *Front Plant Sci* 7: 1799

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Swarbreck SM, Guerringue Y, Matthus E, Jamieson FJC, Davies JM (2019) Impairment in karrikin but not strigolactone sensing enhances root skewing in *Arabidopsis thaliana*. *Plant J* 98: 607-621

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y (2004) A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in *Arabidopsis*. *Plant J* 37: 139-146

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tardieu F, Simonneau T, Muller B (2018) The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. *Annu Rev Plant Biol* 69: 733-759

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. (2008) High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in *Arabidopsis* seeds. *Plant Physiol* 146: 1368-1385.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Thussagunpanit J, Nagai Y, Nagae M, Mashiguchi K, Mitsuda N, Ohme-Takagi M, Nakano T, Nakamura H, Asami T (2017) Involvement of STH7 in light-adapted development in *Arabidopsis thaliana* promoted by both strigolactone and karrikin. *Biosci Biotechnol Biochem* 81: 292-301

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. *Nat Genet* 45: 1097-1102

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8'-hydroxylase involved in dehydration and rehydration response in *Arabidopsis thaliana*. *Plant J* 46: 171-182

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, Shinozaki K (2017) Analysis of plant hormone profiles in response to moderate dehydration stress. *Plant J* 90: 17-36

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Varone L, Ribas-Carbo M, Cardona C, Galle A, Medrano H, Gratani L, Flexas J (2012) Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: Different response to water stress. *Environmental and Experimental Botany* 75: 235-247

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Villaecija-Aguilar JA, Hamon-Josse M, Carbonnel S, Kretschmar A, Schmidt C, Dawid C, Bennett T, Gutjahr C (2019) SMAX1/SMAX2 regulate root and root hair development downstream of KAI2-mediated signalling in *Arabidopsis*. *PLoS Genet* 15: e1008327

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang L, Waters MT, Smith SM (2018) Karrikin-KAI2 signalling provides *Arabidopsis* seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. *New Phytol* 219: 605-618

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang L, Xu Q, Yu H, Ma H, Li X, Yang J, Chu J, Xie Q, Wang Y, Smith SM, Li J, Xiong G, Wang B (2020) Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in *Arabidopsis*. *Plant Cell* 32: 2251-2270

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YKM, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in *Arabidopsis*. *Development* 139: 1285-1295

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waters MT, Scaffidi A, Moulin SL, Sun YK, Flematti GR, Smith SM (2015) A *Selaginella moellendorffii* ortholog of KARRIKIN INSENSITIVE2 functions in *Arabidopsis* development but cannot mediate responses to karrikins or strigolactones. *Plant Cell* 27: 1925-1944

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. *Proc Natl Acad Sci U S A* 106: 835-840

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, Zhao J, Cheng L, Ma C, Gao J, Hong B (2020) Azinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. *Plant J* 103: 1783-1795

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yamaguchi S (2008) Gibberellin metabolism and its regulation. *Annu Rev Plant Biol* 59: 225-251

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang T, Lian Y, Kang J, Bian Z, Xuan L, Gao Z, Wang X, Deng J, Wang C (2020) The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 act as negative regulators in response to drought stress in *Arabidopsis*. *Plant Cell Physiol* 61: 1477-1492

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yao JR, Mashiguchi K, Scaffidi A, Akatsu T, Melville KT, Morita R, Morimoto Y, Smith SM, Seto Y, Flematti GR, Yamaguchi S, Waters MT (2018) An allelic series at the KARRIKIN INSENSITIVE 2 locus of *Arabidopsis thaliana* decouples ligand hydrolysis and receptor degradation from downstream signalling. *Plant Journal* 96: 75-89

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yeats TH, Rose JK (2013) The formation and function of plant cuticles. *Plant Physiol* 163: 5-20

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang XB, Gonzalez-Carranza ZH, Zhang SL, Miao YC, Liu CJ, Roberts JA (2019) F-box proteins in plants. *Annual Plant Reviews* Online 2: 307-327

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, Gong Y, Mu Z, Wang H, Deng X, Wang P, Bressan RA, Zhu JK (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. *Proc Natl Acad Sci U S A* 113: 1949-1954

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zheng J, Hong K, Zeng L, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Hu J, Zeng D, Zhao Y, Cui P, Wang Q, Qian Q, Wang Y, Li J, Xiong G (2020) Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness. *Plant Cell* 32: 2780-2805

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)