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Abstract— Accurate tracking of transparent objects, such as
glasses, plays a critical role in many robotic tasks such as
robot-assisted living. Due to the adaptive and often reflective
texture of such objects, traditional tracking algorithms that
rely on general-purpose learned features suffer from reduced
performance. Recent research has proposed to instill trans-
parency awareness into existing general object trackers by
fusing purpose-built features. However, with the existing fusion
techniques, the addition of new features causes a change in the
latent space making it impossible to incorporate transparency
awareness on trackers with fixed latent spaces. For example,
many of the current days’ transformer-based trackers are fully
pre-trained and are sensitive to any latent space perturbations.
In this paper, we present a new feature fusion technique that
integrates transparency information into a fixed feature space,
enabling its use in a broader range of trackers. Our proposed
fusion module, composed of a transformer encoder and an MLP
module, leverages key query-based transformations to embed
the transparency information into the tracking pipeline. We
also present a new two-step training strategy for our fusion
module to effectively merge transparency features. We propose
a new tracker architecture that uses our fusion techniques to
achieve superior results for transparent object tracking. Our
proposed method achieves competitive results with state-of-
the-art trackers on TOTB, which is the largest transparent
object tracking benchmark recently released. Our results and
the implementation of code will be made publicly available at
https://github.com/kalyan0510/TOTEM.

I. INTRODUCTION

Object tracking is a fundamental problem in robotics that

aims to locate and identify an object in a sequence of images

or videos. Researchers have dedicated much effort [1], [2],

[3], [4] to addressing various challenges in object tracking,

such as occlusions, fast-moving objects, and changing light-

ing conditions. However, tracking transparent objects is a

somewhat less explored topic. Transparent objects, such as

glass and plastic, are common in everyday life, and reliably

tracking them has numerous practical applications in robotics

[5], surveillance, and augmented reality. Transparent object

tracking can be used in robotic medical procedures to track

and visualize the movement of glass vials and syringes.

Though there is a pressing need to track transparent

objects reliably, it is very challenging. These objects possess

unique properties since they primarily borrow texture from

the background and are also reflective. When such an object

moves, its appearance changes drastically due to background

influence. These properties pose severe issues to appearance-

based trackers as they tend to extract feature information

1Stony Brook University, Stony Brook, NY, USA
2Air Force Research Lab, Arlington, VA, USA
3City College of New York, New York, NY, USA

TOMPTOTEM (Ours) TransATOM

#016 #075 #437

#183 #224 #273

#030 #228 #250

Fig. 1: Qualitative comparison of the proposed TOTEM tracking
algorithm with state-of-the-arts [1], [6] on three challenging se-
quences from TOTB [6]. Owing to the effective fusion technique
tailored for transparency awareness, TOTEM can accurately localize
transparent objects under challenging scenarios. All figures in this
paper are best viewed digitally, in color, significantly zoomed in.

from visual cues of striking color and edge patterns. Thereby

generic trackers tend to rely on falsely extracted background

features, thus performing poorly on transparent objects.

In contrast to some application-specific tracking tasks

such as person tracking or UAV tracking, transparent object

tracking suffers from the absence of a dedicated training

dataset. Consequently, end-to-end training to improve track-

ing performance is impractical currently. To overcome this

challenge, recent research has proposed to use knowledge

transfer techniques to imbue generic trackers with trans-

parency awareness. Specifically, features from a backbone

module trained for transparent object segmentation are fused

into the tracker pipeline. It is hypothesized that such a

backbone encodes transparent textures well and thus helps

trackers perform with accuracy.

However, while the above feature fusion approach seems

promising, it is not always straightforward. Simple fusion

techniques may not always be effective, as the fusion of

features in a pipeline can disrupt the feature space and require

retraining of the entire model to learn to utilize the fused

features. Retraining can be particularly challenging when

labeled data is scarce. The solution in [6] uses ATOM [7] and

DiMP [3] trackers, which are capable of consuming fused

features without requiring full retraining, as they consist of

fully online-learned modules. However, this approach may

not be viable for many state-of-the-art trackers that rely on

components pre-trained on large datasets.

Our proposed fusion technique selectively fuses trans-20
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parency features with the original ones without disrupting

the feature space, thus allowing for integration with most

trackers. Our module consists of a transformer encoder block

and an MLP block. The transformer block has attention

layers to efficiently fuse transparency information. The MLP

block projects the fused features back into the original feature

space. This property of our fusion module allows for the

integration of learned transparency priors in many trackers.

Moreover, we have demonstrated that the fusion module

can be trained efficiently in a two-step process. Specifically,

an additional pre-training step is performed, which com-

pels the fusion module to rely exclusively on transparency

features for tracking by cutting off the feed of originally

extracted features to the fusion module. Further, we design

a new tracker, called TOTEM (Transparent Object Track-

ing with feature Enhancing Module), that uses our fusion

methods to achieve robust performance on transparent object

scenarios, as shown in Fig. 1.

The contributions of this work are as follows:

• We propose a novel transparency feature fusion module

for tracking transparent objects.

• We devise a novel two-step training strategy for effec-

tive learning.

• We design a new tracker architecture TOTEM aimed at

better transparent object tracking.

• We perform extensive experiments over the transparent

object tracking benchmark (TOTB) [6] with ablation

studies to showcase the benefit of our design choices.

II. RELATED WORK

Transparent objects and tracking. Transparent objects

present unique challenges for classification, segmentation,

and tracking due to their optical properties. Previous studies

[8], [9], [10] have proposed handcrafted techniques that

rely on reflective and refractive light properties to model

transparent objects. Recently, due to the progress of deep

learning techniques, algorithms that gain complex skills by

learning from huge data have shown promising results. The

works of [11], [12] prove that learnable components such as

convolution-based feature extractors and transformer encoder

blocks can leverage from training on labeled transparent

object datasets for accurate segmentation. Similarly, [13],

[14] learn over huge data to model transparent objects.

However, the problem of tracking transparent objects

remains a challenge due to the scarcity of labeled datasets. To

address this, a large tracking benchmark named TOTB is con-

structed in [6] for transparent objects. Further, they proposed

a transfer learning approach that introduces transparency

awareness into existing generic object trackers. However,

their method is only applicable to trackers with online

learned tracking modules. In contrast, our proposed fusion

module does not have any restrictions on applicability. Given

the recent popularity of transformers in tracking architectures

[1], [15], [16], which are typically pre-trained models, our

approach shows promise in leveraging these strong baselines.

Particularly, our model is built on top of TOMP [1], a

transformer model prediction tracker.

Segmentation and Dataset. Research over transparent ob-

jects has gained momentum in recent years, with several

datasets such as [14], [12], [11] providing valuable sources

for learning transparency priors for object segmentation. In

this work, we leverage the pixel-level segmentation dataset

[11], which includes annotations for five different categories

of transparent objects. This dataset closely represents real-

world transparent objects and provides accurate pixel-level

labeling for improved localization. While the dataset from

[17] offers exhaustive labeling, it is not used in this work

due to the synthetic nature of the objects and their limited

representation of real-world scenarios. Further, we use dif-

ferent portions of TOTB [6] for training and benchmarking

our tracker algorithm.

Feature fusion. Recently, more attention has been devoted

to multi-modal architectures. These works mainly benefit

from the early fusion techniques [18], [19] like concatenation

[6], feature pruning [20], and re-weighting [21], [22]. These

fusion methods mainly aim at merging the information

from multiple modalities and do not necessarily operate as

learnable modules. Lately, more robust fusion methods were

proposed that utilize the transformer’s attention mechanism

to fuse features. For example, the works of [23], [1] use

transformers for fusing image features.

Our proposed fusion technique distinguishes itself from

existing ones by being designed to work with pre-trained

networks. Unlike existing fusion modules, which are trained

as part of the end-to-end training of the network, our fusion

module is trained separately to produce features that are

compatible with pre-trained networks. To achieve this, we

equip our fusion module with MLPs to project the features

to the known latent space of the pre-trained network.

III. PROPOSED METHOD

The core idea of our proposed method is to enhance the

effectiveness of generic object trackers for transparent object

tracking. The TOMP framework (detailed in section III-

A) serves as the baseline object tracker. Next, we describe

a separate network for extracting transparency features in

section III-B. Then, we present a novel fusion technique in

section III-C that combines these features with the baseline

object tracker to enhance its effectiveness.

A. Baseline Tracker - TOMP

One of the robust paradigms for visual object tracking

is discriminative model prediction-based target localization.

Specifically, a kernel (target model) is predicted to accurately

represent the appearance of the target object and is used to

localize the target in subsequent frames by proposing bound-

ing boxes. A transformer-based model predictor, TOMP [1],

utilizes the self-attention operations between test and refer-

ence branch features to produce a kernel.

TOMP consists of a test and a training branches. The

training branch operates on two input ground-truth/memory

frames Itr1, Itr2 ∈ R
H×W×3 where H and W indicate the

image size. In the train branch, the target state information

(bounding box size and position) is encoded and fused with
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der. In the end-to-end training environment, the incentive of

the backbone and transformer encoder would be to produce

features that encode the unique properties of transparent

objects. The decoder and the segmentation head would learn

specific priors to categorize the transparent objects. Since

we are mainly interested in image encodings, we adopt the

backbone and encoder module part of Trans2Seg as the

transparency feature extractor for our tracker.

The backbone module takes in an input image I ∈
R

H×W×3 and produces a feature vector x̃ ∈ R
h×w×c,

where H and W are the image height and image width

respectively, and h, w and c are the height, width, and the

number of channels of the produced feature map. Further,

the transformer encoder operates over the input feature x̃

and produces a globally attended and enriched feature map

x′ which has the same shape as that of x̃. We refer our reader

to [11] for more details of this module.

C. Fusing the transparency features

Why fusion. One way to utilize transparency features for

tracking is to replace the tracker’s backbone with the above

transparent feature extractor directly. But this may hurt the

tracking performance because the transparency backbone is

trained for a less related objective and thus may not extract

features specific to the tracking problem. For example,

a motion-blur-affected object is never encountered when

training the Trans2seg network, whereas correctly extracting

motion features is critical for tracking. So, we adopt a

fusion-based approach to take advantage of the transparency

feature while still retaining essential cues for tracking. Also,

this way, the tracker learns to selectively ingress the useful

encodings of the input image detail.

However, there are certain challenges to using trans-

parency features in the above-discussed transformer model

predictor architecture. Firstly, all the components in this

tracker are offline learned, meaning that any change in

architecture that modifies intermediate feature space must

be accompanied by offline re-training. The perk of direct

inference without training after feature fusion, as observed in

[6], does not exist with the selected baseline TOMP. Further,

we do not have a large-scale training dataset consisting of

transparent object video sequences. So we must adopt a

simple fusion mechanism that does not require full-scale re-

training from scratch.

We found that it is best to fuse the transparency features

into the TOMP pipeline just before the transformer model

predictor block. This way, we can leverage the strong local

and global reasoning provided by the transformer encoder-

decoder module over the transparency features.

The fusion module (depicted in Fig. 2) is designed taking

into account the following constraints:

- The end-to-end model, after the transparency feature

fusion, should not require re-training over the large

datasets, given their lack of availability

- fusion of transparency features should not regress the

tracker’s performance on transparent object tracking

- it should be lightweight both in terms of the number of

learnable parameters and the number of computations

To be able to reuse most of the learning modules, we

designed our fusion module to be trained without having to

re-train the existing components of the TOMP. While this de-

sign choice helps with the above constraints, it poses certain

challenges. The TOMP model predictor is completely made

of learned parameters, and it expects the input features to

belong to a specific feature space. The feature space refers to

the mapping between each channel in the feature vector and

the set of specific patterns that activate a channel’s response.

Most of the machine-learned components are sensitive to the

feature space of the input. For example, we cannot simply

replace the backbone network of a classification model with a

better feature extractor and see a performance improvement.

At least the classification heads have to be re-trained before

the model can produce any meaningful output.

For the same reason, we cannot simply concatenate the

transparency features with the features extracted by the

TOMP backbone to achieve performance improvement. In

fact, this will cause the network to lose performance be-

cause the transparency features are unexpected perturbations

(noise) to the model predictor. So, we propose a feature

fusion module and a training strategy that produce enriched

features by combining useful cues from each source. Because

of the training objective, the module produces a fused feature

that would align with the feature space of the original TOMP

backbone.

Fusion Module. Our transformer-based feature fusion mod-

ule sits between the backbone and transformer encoder stages

of the TOMP pipeline and fuses the features x ∈ R
h×w×c

and x′ ∈ R
h×w×c into a new feature x′′ ∈ R

h×w×c.

This module is designed to operate pixel-wise rather than

to use global context information. So, the fusion occurs

between the corresponding feature vectors x⟨i,j⟩ ∈ R
c and

x′
⟨i,j⟩ ∈ R

c at every pixel position ⟨i, j⟩ ∈ {[0, h)× [0, w)}.

Note that attention operations do not occur across spatial

locations.

The module consists of two main components: 1) Trans-

former Encoder and 2) a Fully Connected Projection module.

1) Transformer Encoder: The Transformer Encoder fuses

the vectors x⟨i,j⟩ and x′
⟨i,j⟩ by transforming a query em-

bedding equery into an intermediate feature representation

finterim (shown in eq. 1 and 2). Inspired by the architecture

described in [1], [24], we designed this module Tenc with

multiple encoder layers. But different from [24], we do not

use a 1 × 1 convolutional layer to project the features into

a smaller dimension, as this would throw away important

detail. Also, we do not add any positional embeddings, as

no spatial information needs to be preserved. Each encoder

layer follows standard architecture and consists of a multi-

head self-attention module and a feed-forward network.

We perform experiments in the next section exploring the

effect of using a query embedding versus using one of the

transformed input features.

z = concat(x⟨i,j⟩, x
′
⟨i,j⟩, equery) ∈ R

3×c (1)
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Fig. 4: Tracking performance of TOTEM, its baseline TOMP, and the two state-of-the-art trackers (TransATOM and TransDiMP), in
terms of precision, normalized precision and success metrics. Our tracker TOTEM achieves the best results with all three metrics. (Legend
shows values in rate unit)

ranked according to their area-under-the-curve (AUC) score

for each plot, which is presented in the legend. Our proposed

TOTEM tracker outperforms the previous state-of-the-art

TransATOM tracker by a significant margin of 13.4% in

terms of Success AUC. Importantly, our proposed tracker

outperforms its baseline TOMP by 3.3% thanks to the

transparency cues incorporated by our fusion module.

C. Attribute analysis

In order to analyze the performance of our algorithm on

certain tracking challenges, we evaluate our tracker TOTEM

under 12 different attributes. We explore the performance

gain specifically due to the addition of transparency feature

fusion by comparing TOTEM against the baseline TOMP.

Also, we include the evaluations of ATOM vs TransATOM

in this section so that we can compare the performance gains

dues to transparency feature infusion in our work against that

in [6].

Both the baselines TOMP and ATOM are directly adapted

from their respective works [1], and [7] without any modifi-

cations, whereas TransATOM and TOTEM follow the same

training settings as described in the above section IV-B.

Tab. I lists the comparison results against all 12 attributes

using the success AUC metric. We observe that TOTEM

performs best on 10 out of 12 attributes. TOTEM shows

a major improvement in the case of Illumination Variation,

Deformation, Aspect Ration Change, and Low Resolution

attributes (see Fig. 5a, 5b and 5c respectively) outperforming

its baseline with Sucess AUC scores of 82.2%, 79.2%, 73.5%

and 74.0% by 7.1%, 13%, 6.4% and 10.9% respectively.

This huge improvement in tracking accuracy can be di-

rectly attributed to the use of transparency features in the

pipeline. Deformation and aspect ratio changes are a result

of variations in the target object’s shape. Such variations are

hard to be dealt with if a tracker cannot fully understand

the target’s appearance. For example, a backbone network

that does not understand a target might encode two variant

poses of it into embeddings that do not relate well. Such

inefficiency in the backbone can further cause the model

prediction module to perform poorly at generating kernel

weights that produce accurate localization. In the case of

TOTEM tracker, the Trans2Seg model is extensively trained

to understand transparent objects and thus has the ability

to extract relevant features. For example, it might produce

embeddings invariant to background patterns, given that such

property benefits the network for performing segmentation

tasks on transparent objects. Having transparency features

fused into our baseline tracker’s pipeline will directly help

with better localization. In our case, the transparency features

helped the model to perform better in case of appearance-

varying situations.

D. Ablation Study

Our tracker TOTEM benefits from three main components.

First, we use TOMP as the baseline, which has a significant

performance advantage over the other baselines (ATOM

and DiMP, for example). Second, we utilize the Trans2Seg

backbone along with its encoder to extract transparency

features. Third, our proposed fusion module combines the

transparency features into our baseline tracker’s pipeline. In

this section, we ablate each component and show that the

design helps improve accuracy. We additionally evaluate our

two-step training strategy against other methods.

Baseline. We evaluate our baseline model TOMP against

the baselines of the other transparent object trackers as

shown in the Tab. II. All the trackers follow their original

configuration and are not pre-trained on TOTB. This analysis

provides us with the portion of improvement we solely gain

by using a transformer-based model predictor, independent

of other factors. We observe that TOMP outperforms ATOM

and DiMP by 11.4% and 13.5% in success AUC scores,

respectively. TOMP provided a better starting point which

in itself has surpassed the previous state-of-the-art tracker

TransATOM by a margin of 8.6%.

Transparency Features. In this subsection, we ablate the

components of Trans2Seg from TOTEM to analyze the

benefit due to transparency features in our pipeline.

We created a new tracker model, TOTEM-T, to enable

a fair ablation study of transparency features. TOTEM-
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All IV POC DEF MB ROT BC SV FOC FM OV LR ARC

TOMP 70.0 75.1 67.1 66.2 65.5 70.3 68.1 68.3 46.4 59.9 61.4 63.1 67.1
TransATOM 62.2 66.9 58.0 64.0 52.5 60.0 59.6 59.6 27.6 50.0 36.5 58.3 58.4
ATOM 58.6 62.6 55.6 58.6 50.0 55.3 58.1 53.8 31.6 45.4 40.0 58.7 50.9
TOTEM(Ours) 75.6 82.2 71.4 79.2 69.5 73.8 69.4 74.5 41.1 68.1 60.9 74.0 73.5

TABLE I: Per attribute analysis on TOTB Test split. Value in each cell corresponds to
success AUC metric (in %) corresponding to the tracker and attribute. TOTEM scores the
best against all the tracking challenges except Full-Occlusion and Out-of-View

Baseline Tracker SUC PE NPE

TOMP 70.0 72.2 80.7

ATOM 58.6 59.0 68.4
DiMP 56.5 54.5 62.7

TransATOM 61.4 61.7 71.4

TABLE II: Analysis of differ-
ent backbones for tracking perfor-
mance on TOTB using SUC score.
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Fig. 5: Tracking performance of different tracking algorithms over the attribute on which TOTEM shows significant improvement over
the baseline in terms of success metric. (Legend shows values in rate unit)

SUC PE NPE

TOTEM-TE 70.4 72.9 81.3
TOTEM-T 70.3 72.7 81.8
TOTEM 75.6 81.4 87.8

TABLE III: Analysis of trans-
parency features on tracking per-
formance.

Fusion Approach SUC PE NPE

TOTEM-MLPHead 66.3 67.8 77.4
TOTEM-equery 69.7 73.1 81.4
TOTEM-FFNFuse 67.7 69.3 79.4
TOTEM 70.2 72.9 82.4

TABLE IV: Analysis of fusion module
on tracking performance.

Training Method SUC PE NPE

One step train 70.2 72.9 82.4
Two step train 71.3 74.7 83.0

Two step train + end-to-end fine-tune 75.6 81.4 87.8

TABLE V: Analysis of training approach on track-
ing performance.

T uses our fusion module just like TOTEM, but it does

not have transparency features in the input. This way, the

only difference between TOTEM and TOTEM-T is the use

of transparency features with the fusion module. Tab. III

shows success (SUC) AUC results comparing TOTEM-T

with TOTEM. TOTEM shows better accuracy in tracking

with SUC, PRE, and NPRE metrics at 75.6%, 81.4%, and

87.8%, respectively (with gains of 5.3%, 8.7%, and 6%)

compared to TOTEM-Ts 70.3%, 72.7%, and 81.8%. This

proves that transparency features are certainly beneficial.

Further, we perform another ablation study with TOTEM-

TE by removing the Transformer encoder component from

the transparency feature extractor. This model is observed

to perform fairly in comparison with TOTEM-T, signifying

that the encoder block from Trans2Seg plays a crucial role

in providing transparency awareness.

Fusion Module. We evaluate the effectiveness of the pro-

posed fusion module by comparing it against the standard

feed-forward network (FFN) based fusion. We create a model

TOTEM-FFNFuse that uses an 8-layer feed-forward network

that projects a concatenated feature (of dimensions 512 =

256 + 256) into a fused feature (of size 256dim). For

fairness, we design the FFN fusion module to have the

same number of learnable parameters as our transformer-

based fusion module. In Tab. IV, we observe that TOTEM

outperforms TOTEM-FFNFuse in SUC metric by a margin

of 2.5%. This indicates that our transformer-based fusion

module is effective in fusing the transparency features into

the TOMP pipeline.

Further, we ablate components within the fusion mod-

ule. We first investigate the benefit of having a learnable

query embedding equery in the fusion stream by comparing

TOTEM with an ablated variant, TOTEM-equery, that lacks a

learnable feature in its fusion input. Tab. IV shows TOTEM-

equery has a slight performance drop of .5% and 1.0% in SUC

and NPRE metrics, respectively, while showing only a 0.2%

improvement in PE metrics. Overall a slight improvement is

noticed. Given that equery is only a 256-sized floating point

weight and has comparably less computation overhead, the

design choice of including it is beneficial.

We also ablate the MLP module φ that projects the

fused features into the encoder input space. In this test, we

create a variant TOTEM-φ by ablating the MLP. In Tab. IV,

when compared to TOTEM this variant showed a significant
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performance drop of 3.9% in the SUC metric, indicating

that MLP projection module is crucial to the performance

of fusion.

Two-step training approach Along with the new fusion

module, we proposed a two-step approach for training it,

reasoning that it helps the module use transparency features

well. In Tab. V, we produced results comparing the two-step

approach with simple one-step training. Here, we observe

that the two-step approach outperforms the simple method

by 1.1% in the SUC metric. We also notice 1.8% and 0.5%

gains with our approach in the PRE and NPRE metrics,

respectively.

Additionally, we demonstrate the efficiency of end-to-end

fine-tuning when performed in complement with two-step

training. Here, we fine-tune our entire tracker instead of only

updating the fusion module’s weights. With this extra tuning,

TOTEM observes a performance improvement of 4.3% in the

SUC metric. Interestingly, observing from the SUC metrics

of TOMP from Fig. 4a and Tab. II, we only observe a gain

of 2.3% with the baseline. This further shows the benefit of

fusing the transparency features.

V. CONCLUSION

In this work, we explored an important yet under-explored

problem of transparent object tracking. We proposed a novel

tracker architecture named TOTEM, which benefits from

understanding the unique texture properties of transparent

objects. In particular, we successfully transferred the in-

formation learned from transparent object segmentation to

tracking by using the pretrained Trans2Seg (a segmentation

network) model to aid our tracker with extra transparency

cues. In addition, we presented a new fusion module that

learns to fuse features from different streams and projects

them to the feature space of the original stream. Due to the

projection property, our module can be added/removed from

the tracker pipeline without retraining the network. Further,

we explored a new training strategy i.e., two-step training

that explicitly improves the fusion performance of our pro-

posed module. Comprehensive experiments are performed,

showing that TOTEM considerably outperforms the previous

state-of-the-art and its baseline. Our ablation studies show

that each design choice we made toward TOTEM has a

positive contribution to its performance.

Future Work. The fusion module combined with our two-

step training strategy shows promising performance gains.

In the future, we would extend the module to aid generic

trackers in gaining application-specific skills. For example,

camouflaged object tracking can be made possible without

explicit training data with the help of our fusion techniques.

ACKNOWLEDGEMENT

We thank all reviewers for valuable comments and sug-

gestions. The work was supported in part by US National

Science Foundation Grants 2006665, 2128350, and 2128187.

This work is also supported in part by by Air Force Office

of Scientific Research FA 9550-23-2-0002. The support of

these agencies is gratefully acknowledged. Any opinions,

findings, and conclusions, or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation or the

United States Air Force.

REFERENCES

[1] C. Mayer, M. Danelljan, G. Bhat, M. Paul, D. P. Paudel, F. Yu, and
L. Van Gool, “Transforming model prediction for tracking,” in CVPR,
2022.

[2] M. Paul, M. Danelljan, C. Mayer, and L. Van Gool, “Robust visual
tracking by segmentation,” in ECCV, 2022.

[3] G. Bhat, M. Danelljan, L. V. Gool, and R. Timofte, “Learning
discriminative model prediction for tracking,” in ICCV, 2019.

[4] H. Fan and H. Ling, “CRACT: cascaded regression-align-classification
for robust tracking,” in IROS, 2021.

[5] S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and
S. Song, “Clear grasp: 3d shape estimation of transparent objects for
manipulation,” in ICRA, 2020.

[6] H. Fan, H. A. Miththanthaya, Harshit, S. R. Rajan, X. Liu, Z. Zou,
Y. Lin, and H. Ling, “Transparent object tracking benchmark,” in
ICCV, 2021.

[7] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “Atom: Accurate
tracking by overlap maximization,” in CVPR, 2019.

[8] A. DelPozo and S. Savarese, “Detecting specular surfaces on natural
images,” in CVPR, 2007.

[9] R. W. Fleming and H. H. Bülthoff, “Low-level image cues in the
perception of translucent materials,” ACM TAP, 2005.

[10] Y. Xu, H. Nagahara, A. Shimada, and R.-i. Taniguchi, “Transcut:
Transparent object segmentation from a light-field image,” in ICCV,
2015.

[11] E. Xie, W. Wang, W. Wang, P. Sun, H. Xu, D. Liang, and P. Luo,
“Segmenting transparent object in the wild with transformer,” in IJCAI,
2021.

[12] E. Xie, W. Wang, W. Wang, M. Ding, C. Shen, and P. Luo, “Segment-
ing transparent objects in the wild,” in ECCV, 2020.

[13] Y. Zhu, J. Qiu, and B. Ren, “Transfusion: A novel slam method
focused on transparent objects,” in ICCV, 2021.

[14] G. Chen, K. Han, and K.-Y. K. Wong, “Tom-net: Learning transparent
object matting from a single image,” in CVPR, 2018.

[15] S. Gao, C. Zhou, C. Ma, X. Wang, and J. Yuan, “Aiatrack: Attention
in attention for transformer visual tracking,” in ECCV, 2022.

[16] B. Yan, H. Peng, J. Fu, D. Wang, and H. Lu, “Learning spatio-temporal
transformer for visual tracking,” in ICCV, 2021.

[17] A. Lukezic, Z. Trojer, J. Matas, and M. Kristan, “Trans2k: Unlocking
the power of deep models for transparent object tracking,” in BMVC,
2022.

[18] P. Ding and Y. Song, “Robust object tracking using color and depth
images with a depth based occlusion handling and recovery,” in FSKD,
2015.
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