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1. Introduction
The equation
Up — Uggt + Uy + utty =0 (1.1)

was introduced by Benjamin, Bona, and Mahony in [3] as an improvement of the
Korteweg—de Vries equation

Up + Uggy + Uty =0 (1.2)

for modeling unidirectional propagation of long waves of small amplitude on R. We will
for simplicity refer to (1.1) as BBM and to (1.2) as KdV.

Olver showed in [28] that BBM possesses exactly three independent and non-trivial
conservation laws, whereas KdV is known to possess infinitely many [24]. Both equations
admit solitary wave solutions. KAV can be described via a Lax pair [22], whereas BBM
cannot.

Establishing the existence of solutions to the Cauchy problem associated with BBM
is simpler for decaying or periodic initial data. For some foundational results in these
two special cases we refer the reader to [3] and [25], respectively. In the present paper we
are interested in studying spatially quasi-periodic solutions, which is a more challenging
task.

For KdV with quasi-periodic initial data, the existence and uniqueness of solutions
was studied by Tsugawa [30] and Damanik-Goldstein [11]. More recently, the analogous
problem for the generalized Korteweg—de Vries (gKdV) equation
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Up + Uggy + P uy =0 (1.3)

was studied by the three of us in [12]. Via these works it is known that sufficiently small
quasi-periodic initial data with exponentially decaying Fourier coefficients admit a local
in time solution that remains quasi-periodicity in the spatial variable with exponentially
decaying Fourier coefficients. Indeed, within this class of functions, the solution is unique.
For KdV one can go further and show that, for Diophantine frequency vector, the local
result can be iterated in constant time steps. In this way, one obtains global existence
and uniqueness [11]. We mention in passing that the dependence on time is in this setting
known to be almost periodic [4], which is a result in line with (and providing evidence
for) the Deift conjecture [8,9], which states that the KdV equation with almost periodic
initial data admits a global solution that is almost periodic both in space and time.”

This passage from a local to a global result in [11] rests on a rather involved spectral
analysis of quasi-periodic Schrodinger operators [10]. As an input of this kind is not
available for gKdV, it is at present unclear how to leverage the local result from [12] to
a global result.

In this paper we want to discuss the existence and uniqueness of spatially quasi-
periodic solutions of BBM, and in fact more generally of the generalized Benjamin-
Bona-Mahony (gBBM) equation

Up — Uggt + Uy + P Tuy =0, (1.4)

on the real line R, where 2 < p € N.
As initial data we consider quasi-periodic functions of the form

u(0,z) = Z a(n)el™e, (1.5)

nezv
where £ € R, 2 < v € N, w = (w1, -+ ,w,) € R” (a given frequency vector), n =
(n1,-++,n,) € Z¥ (the lattice vector), and (n) £ (n,w) is the standard inner product

defined by letting (n,w) := Z;’:l n;jw;. As usual we assume that the frequency vector is
non-resonant or rationally independent, that is, (n) = 0 implies that n =0 € Z".
What we are interested in is the existence and uniqueness of spatially quasi-periodic

solutions defined by the Fourier series

u(t,x) = Z a(t,n)el ™= (1.6)

nezZv

to the quasi-periodic Cauchy problem (1.4)—(1.5) in the classical sense.

5 While our paper was under consideration, the Deift conjecture as formulated in [8,9] has been disproved
by Chapouto, Killip, and Visan in [7]. It remains an interesting open problem to establish a positive result
in the spirit of the Deift conjecture, that is, a proof of an accordingly modified conjecture.
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Throughout this paper, we will use |n| to denote the ¢!(Z")-norm of n = (nq,-,n,) €
Z7, that is, [n| := 37, [nyl.

Our main results are the following Theorem A (exponential decay) and Theorem B
(polynomial decay) below.

Theorem A. Suppose the Fourier coefficients 4(n) of the initial data satisfy the following
exponential decay condition,

la(n)| < AvTe "l vn e z”, (1.7)

where A >0 and 0 < p < 1.
Then, on the time interval [0, Lp], where

A 1 p—1 p(p—l)y

the quasi-periodic Cauchy problem (1.4)—(1.5) has a spatially quasi-periodic solution in
the classical sense of the form

u(t,x) = Z a(t,n)e e

nezZv
with
la(t,n)| < Bye™ 51",
IR
where B, = S AT (6p by,

Moreover, this solution is unique among all solutions subject to this exponential decay
estimate for the Fourier coefficients.

Remark 1.1. Theorem A is a local existence and uniqueness result with arbitrary time

horizon. That is, given any T > 0, we provide an explicit class of quasi-periodic initial
data with exponential Fourier decay (namely those obeying (1.7) with parameters A, p, v

1 p—1 p(pfl)l/
2(1-3) doww T

for the prescribed value of T') for which we establish the existence of a unique spatially

subject to the condition

quasi-periodic solution to (1.4)—(1.5) up to the time horizon T

Furthermore, we may replace the exponential decay condition (1.7) by the polyno-
mial decay condition (1.9) below and obtain the same conclusions for gBBM (1.4) as in
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Theorem A. To express the time horizon as a function of the parameters of the decay
parameters, it is convenient to introduce

ot £ (o))

where ( is the Riemann zeta function,

()=
n=1

Theorem B. Suppose the Fourier coefficients @(n) of the initial data satisfy the following
polynomial decay condition,

a(n)| < A7 T(1+|n|)", VneZ, (1.9)

where A > 0 and2§u<£—2.
Then, on the time interval [0, L], where

Pl ~(r-1)
L;é2<1—%> a7l (Sir) (1.10)

the quasi-periodic Cauchy problem (1.4)—(1.5) has a spatially quasi-periodic solution in
the classical sense of the form

u(t,z) = Y dft,n)em”

nezv
with

[a(t, )] < By(1+|n|)7%,

p L1, (¢
where B, = SoTAT! b (5;1/).
Moreover, this solution is unique among all solutions subject to this polynomial decay

estimate for the Fourier coefficients.

Remark 1.2. (a) What was pointed out in Remark 1.1 applies equally well here. Theo-
rem B is a local existence and uniqueness result with arbitrary time horizon. That is,
given any T > 0, we provide an explicit class of quasi-periodic initial data with poly-
nomial Fourier decay (namely those obeying (1.9) with parameters A, r, v subject to the
condition

N"" e D
B - —. >
2(1 p) A 6(2,1/) >T
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for the prescribed value of T') for which we establish the existence of a unique spatially
quasi-periodic solution to (1.4)—(1.5) up to the time horizon T'.

(b) It follows from the exponential (resp. polynomial) decay that the solution we
construct is in the classical sense. In addition, the exponential decay property implies
that our result can be viewed as a Cauchy-Kovalevskaya theorem in the space variable
for the gBBM equation with quasi-periodic initial data, based on a basic fact: a quasi-
periodic Fourier series with exponentially decaying Fourier coefficients is analytic.

(c) The extension of the existence result for BBM with smooth and decaying initial
data from [3] to the case of gBBM was discussed by Albert in [1], see also [2]. Moreover,
solutions for gBBM with p = 5 that are periodic in space and quasi-periodic in time
were discussed by Shi and Yan in [29]. Let us also mention that Wang discussed in [32]
solutions to nonlinear PDEs that are periodic in space and quasi-periodic in time from
a more general perspective.

(d) The dependence on the spatial variable in our setting is neither decaying nor pe-
riodic. There are only a few existing results for initial data lacking these two properties.
In addition to the works already mentioned, Oh discussed the nonlinear Schrédinger
equation in one dimension with almost periodic initial data [26,27] and Wang presented
spatially quasi-periodic standing wave solutions to the nonlinear Schrédinger equation
in arbitrary dimension [33]. We also refer the reader to [13,14,19] for a broader discus-
sion and to [17,18,20,23], which are primarily based on inverse spectral theory and the
preservation of reflectionlessness by equations in the KdV hierarchy (see also [5,15,16,31]
for related work).

(e) The absence of decay and periodicity makes the problem at hand significantly
more difficult. As in the works [11] and [12] we have to deal with the higher dimensional
discrete convolution operation

(q;)

@*P(fixed total distance) = Z
=1

q17"'7qp€ZV ‘7
q1+-+qp= fixed total distance

P

appearing in the Picard iteration, during which the number of terms will increase expo-
nentially. More precisely, let N be the number of terms for the Picard sequence. It is easy
to see that Ny =2 and N, =1+ NZ—1 for all £ > 2. The key point to overcoming this
difficulty is an explicit combinatorial analysis in order to obtain the exponential (resp.
polynomial) decay of the Picard sequence; see [6], [11] and [12] for an implementation of
this strategy for NLS, KdV and gKdV, respectively.

(f) The structure of the proofs of Theorem A and Theorem B is given by the following
diagram:
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reduction of a PDE to a nonlinear infinite system of coupled ODE5|

feedback of nonlinearity

discrete

Juti
Picard iteration combinatorial analysis

interpolati

Cauchy sequence |ewponential/polynomial decay|

|

local existence uniqueness

2. The special case p = 2: BBM

For the sake of convenience and readability, we first study the quasi-periodic Cauchy
problem (1.4)—(1.5) for p = 2. Whenever we refer to (1.4) in this section we tacitly
assume that p = 2.

We will denote the Fourier coefficients at time 0 and time ¢ by c(n) £ 4(n) and
c(t,n) £ a(t,n), respectively.

2.1. Reduction

The first step in our proof is a reduction of the PDE in question to a nonlinear infinite
system of coupled ODEs. For the latter we then consider a suitable Picard sequence.

Formally, by the Cauchy product for infinite series (i.e., the discrete convolution op-
eration), we have

(u?)(t,z) = Z Z Hc(t,nj)ei<”>x. (2.1)

neZv ny,no €LY j=1
ni+nz=n

Assuming that d and ) can be interchanged, we have

Ut = Ugmr = B (14 (n)?)(0r0)(t,n)e! ™", (2.2a)
nezv
ug = Y i(n)e(t,n)e M, (2.2b)
nezv
Uy = O u_2 = Z Hn) Z ﬁc(t n;)el{me (2.2¢)
x T 2 2 J s 1oy . .
nezv ny,ma €L j=1

ni+n2=n

Substituting (2.2a)-(2.2¢) into (1.4) yields
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Z (1+ (n)*)(9ec)(t,n) +i{n)c(t,n) + @ Z H c(t,n;) § eme =0,
nezy ni,ne€Z” j=1
ni+nz=n

By the orthogonality of {¢{")* : & € R} relative to

) +L
< U,V >p2R)y= LEIEOO 2 /u(z)ﬁ(z)dw,
-L

we see that (1.4) is equivalent to the nonlinear infinite system of coupled ODEs

d A(n) 2

et = Ame(t.m) = 23230 [T et (2.3)
nlil2€Z Jj=1
nyrna2=n

where

A(n) & %&?}2 (a purely imaginary number) (2.4)

obeys the uniform bound |A(n)| < % for all n € Z". Here we use “-” rather than “9,”

to emphasize that (2.3) is an ODE for any given n € Z".
Motivated by an idea from [21], we observe that ¢(t,n) is determined by the following
integral equation,

ny,na €LY j=1
ni+nz2=n

2
c(t,n) = MMt %/@ (=) Z Hc(r,nj)dr. (2.5)
0

To determine c(t,n), we construct a Picard sequence {cx(t,n)}r>0 to approximate

A(n)t

it. We choose e c(n) as the initial guess co(t,n) and obtain {cy(t,n)}x>1 via the

following iteration,

>/

ny,na €LY j=1
ni+nz2=n

2
n
ck(t,n) == co(t,n) (T /e)‘ n)(E-7) Z Hck_l(r, n;)dr, Vk>1. (2.6)
0

2.2. Combinatorial tree for the Picard sequence

Our goal is to show that the Picard sequence converges. To this end, it is convenient
to express it via a combinatorial tree. This is the aim of the present subsection.
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Set

‘(k) - {07 1}7 k= 1;
{0} U (MEDY2 > 2

For v®) =0 € &% k> 1, MK .= 7¥; for v = 1 ¢ &), mLD .= (Z¥)?; for
_ _ (k1)
Y = ("5 Y) € (BT > 2, 0= T e,

Define a function p : U2 (Z¥)* — ZY by letting u(d) = 25:1 & if = (b c
Z')1<j<k € (Z¥)".
For k > 1,7(’“) =0c &P n=nk cnko),
eF0 (n®)) .= ¢(n),
5(k,0) (t,n(k)) — e/\(n)t,

g(kyo)(n(k)) =1

fOr ]{ = 1,'}/(1) = ]_ & .(1)’ (nl,nQ) = n(l) (S m(lal)’

D () = [ elny)

—.

1

J

t 2
D (1, (D)) = /ek(u(n“)))(t—f) I] 7 ar,
0

3(1,1)(71(1)) — /\(M(n(l))).
for k> 2,7® = (4" 7V 4 FD) € (@02 (D ) = ) e ™)

2
(k) _ 1.~k k—1
B (pk)) = H k=1, )(ng ))’

j=1

¢ 2
3EA) (¢, n 0y = /eA(u(n““)))(t—T) H;;(k—l,w;’“*“)(ﬂ ng,kfl))dﬂ
0

Jj=1

g(kry(’”)(n(k)) — w ﬁg(k—l,y;k’l))(n§k—l)).
j=1
Remark 2.1. For the convenience of understanding these abstract notations, we give an
interpretation as follows; see also [12].
These symbols are produced and defined in the Picard iteration process. We use #(*) to
label the set of trees at iteration k. The coefficient € is associated with the initial Fourier
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data c and it can be viewed as the multi-linear accumulative product of ¢, the coefficient
J stands for the time integration and the coefficient § is the rest. This separation and
independence form is exactly the power of the combinatorial analysis method in dealing
with an infinite product of Fourier series.

Lemma 2.2. The Picard sequence {ck(t,n)} can be reformulated as the following combi-
natorial tree,

cx(t,n) = Z Z ek ™) (B3R ™) (¢ nB))gEA ) () e > 1.
Y €M) () 2o (v (F))
p(n)y=n
(2.7)

Proof. We first notice that

colt,n) = Z Z ek ™) (B3R ™) (4 nB)FEA ) (B g > 1.
YR =0EMF) (k) cgq(e,y(H)

n(n*)=n

For k =1, we have

ni,no €LY j=1
ni+n2=n

2
c1(t,n) —co(t,m) %n)/e)‘ -7 Z HCO(T,TLj)dT
0

2

A(n) / 2

n n —T n;)T

= E | I c(nj) - T'/e)‘( (=) I | )T dqr
5 j=1

ny,no€Z” j=1
ni+nz=n

— Z Z Y™ ()30 (¢, (M) FAAD) (D,

M =1cMD 1),y
p(nM)=n

Hence we have

c1(t,n)

N IR IR SIS D Ty
yD=0ca® yD=1ca@® n(l)em(lﬂ(l))
n(n®)=n

(1) (1) (1)
Z Z e (3T (¢ WY FE) (),

YD e 1) cqar D)
;L(n<1)):n

This shows that (2.7) holds for k = 1.
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Let k > 2 and assume that (2.7) is true for 1,--- ,k — 1. For k, we have

ek (t,n) — co(t,m)

¢ 2
(n) r
= eAmE=m) H ck—1(7,n;)dr
0

ni, no€ZY j=1
n1+n2 n

SCED Ol | (D SR »

ni,ne€Z” j=1 (k 1) (k—1) (k—1)
i e —n ) (k Deqmt-17; )

>~

>~

Aln)
2

o _

p(n=n

e(k—178" ”)(n§,k*1))3(k—1n§kfl))(77n§_k*1))3(k—1,w§’“*”)(ng_k*l))dT

2

D SRR I SR | (e el

(k Deat-b Zifﬁfzn n(k D egtk—1 'y(k Dy =1
7j=1,2 (k—1)
wny )=

j12

2
(n) k=14 0) (1)
TH gt D)

o oo T>HJ<k L) (D)

J

o —_

- Z Z k™) ()3 RA™) (4 )R ™) (1 (B
Y E(ME=D)2 (k) (o))
p(n®)=n

Thus we have

cr(t,n) = Z + Z

AR =0chE) () c(MkE-1))2

Z k) ()3 kA ™) (4 (05 kr ™) (1 (R))

n(® ey *)
u(n™)=n

= Z Z k™) (kD) 3RA®) (¢ )R ( (B

YE EME) (k) con (kv (F))
u(n®)=n

This shows that (2.7) holds for k. By induction, it follows that (2.7) is true for all k > 1.
This completes the proof of Lemma 2.2. O
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Remark 2.3. We refer to (2.7) as a combinatorial tree to emphasize both the tree structure
of the summation formula and the importance of understanding the combinatorics of
the expansion terms for the given PDE problem. Indeed, while the general philosophy
underlying the approach worked out in present paper is the same as in our previous study
of the generalized KdV equation, [12], the details of dealing with the combinatorial tree
are dependent on the given PDE and pose model-specific challenges. Motivated by a
question posed to us by the late Thomas Kappeler, there is forthcoming work that
applies this approach to the standard nonlinear Schrédinger equation, as well as the
derivative nonlinear Schrédinger equation. The key will again be to find a way to deal
with the combinatorial tree arising from the NLSE in question.

2.8. Uniform exponential decay of the Picard sequence

In this subsection we show with the help of notations established in the previous sub-
section that the Picard sequence for the Fourier coefficients obeys a uniform exponential
decay estimate.

Indeed, we have the following result:

Lemma 2.4. Assume that the initial Fourier coefficients ¢ satisfy the exponential decay
property (1.7). With the constants A and p from (1.7) and the dimension v, set

By 2 2A(6p7 1) (2.8)
and
pl/
Lo 2 2.9
2T Aev (29)
Then, we have
sup |ep(t,n)| < Bye %" (2.10)
tG[O, 2]
k>0

for everyn € Z".
To prove Lemma 2.4, we need the following lemmas.

Lemma 2.5. For all kK > 1 we have

e ()] < 470 e, (211)
o)
kv ™) (p g < 1~
3 (t,n"™)| < D)’ (2.12)
(k)
I5E) (nM))] < e <1, (2.13)
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where U( ) =1 E( ) = 07@(0) =1 U(l) = 276(1) = 179(1) =1; for k > 277(k) =

(1Y) e (a2,

a(yM) =3 o( ),

Jj=1

2
Uy )y =143 (),
j=1

2
_ (k—1)
Q(V(k)) ZE(W(k))HQ(k 1,4 )7

Jj=1

(nd* )

and [n®] = ¥5_, [n{" V] if n® = 1<j<e-

Remark 2.6. Regarding these notations, there is an intuitive understanding: ¢ means the
degree or the multiplicity (of nonlinearity), £ means the number of time integrations, and

® quantifies the decay after time integration.

Proof. Recall that A(n) is a purely imaginary number; see (2.4).
For k> 1,0 =7 ¢ &%) n =nk) ¢ nk0),

€F0 ()] = |e(n)] < Ae~#Inl = 47O =rln™,
££(0)
F050) (1 (Y] = (A < 1 — :
| ( 7n )| |e | — @(0)7
1
B0) ( ()Y = 1 =
TP ) =1= gy <1
For k=1,1=~0 c &0 (ny,ny) =n® e N1,
2
€D (ny,ma)| = T le(ns)] < HAe Pinil — pg2e=p(mil+ina) — go()g—pln®.
Jj=1 j=1
: 2 o1
|3(1’1)(t,n(1))| < /l A(u(n(l)))(t—q—)‘ H |e)\(nj)7—|d7_ — = t (1) ;
/ - (1)
) 1 1
(1,1 ()Y — Alu(n')] _ 1 _
[ (nt)] 5 < 4= <!

Hence (2.11)—(2.13) hold for k = 1.
Let k£ > 2 and assume that they are true for 1,---  k — 1 For k, (yik_l),vék 1)) =
7*) € (#k=D)2 and (ngkﬂ)’nék*l)) n*) e H ‘ﬂ(k L") , one can derive that
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2
1t (i H eh=175"71) (V)|

2
< [ a0 Deelnd

— AT o ) e 3 I
(&)Y _pipR
— A7) gpln ™)

t

(k) n)) (t—1) (k=1) k-1
3 (1, 8| g/\ (=) TT =125 7, nE ) dr
0

[

Jj=1
2 e Y)
T\
S/1_[,}3 [)) dr
o =1 (’Yj )

S, L)

JRCIS S Ll Y § A )

(k))

ey
- D(y W)’

(k)
(k) ,u [A(u(n™))] (k=13 (k-1
I5EA) ()] < H kit 1,7 )( § ))|

_4H

4e(wﬁ 26051
- 1
= —41+Z ( (k 1))
_ 1
EYICIO))

<1

These imply that (2.11)—(2.13) are true for k. By induction, they hold for all k¥ > 1. This
completes the proof of Lemma 2.5. O

Lemma 2.7.

(1) Forallk >1,

o(y®) = ¢(y™®) +1. (2.14)
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(2) If 0 < p <1, then
D el <3pm (2.15)
nez

(3) Let dimge NEY™) be the integer number of components per Z, that is, M*™) =

. L)
(zv)dimzv e " Then
dimz. NET) = (50, (2.16)
(4) If0<b < L1 then

he(v™)
— <2
D(y*) ~

T

~ ) c M)

(2.17)

Proof. (1) Since o(0) = 1,£(0) = 0;0(1) = 2,4(1) = 1, then o(0) = £(0) + 1 and
o(1l) = ¢(1) + 1. Hence (2.14) holds for kK = 1. Let k£ > 2. Assume that is true for
1,---,k—1. For k and ('y§k71),’y§k71)) =" ¢ (#*=1)2 one has

2 2
,Y(k) ZU (kl Z kl) )_1+g( )
j=1

j=1
Hence (2.14) holds for all k£ > 1 by induction.
(2) Let z(y) == (3 —y)e?y — (3+y),0 <y < 1. After a simple calculation, we find

Z(y)=2—ye! =1, 2"(y)=(1—-y)e

Since 0 < y < 1, then 2”(y) > 0. Hence 2’ is monotonically increasing and z'(y) >
2'(0) = 1 > 0. Similarly one can see that z(y) > z(0) = 0, that is Zzﬂ < 3yt
provided that 0 < y < 1. By the symmetry of Z and 0 < p <1,

eP + 1 (0<p<1)

_ _ ) 2 = _
Ze p|n\_226 pn _q P2 —-l=0 7 < 3 L (2.18)

nezZ

(3) For k> 1,M*0 = Z¥ we know that dimz. N*9) = 1 = 5(0). Also N = (ZV)2,
hence dimz, MY = 2 = ¢(1). This implies that (2.16) holds for k = 1. Let k > 2.
Assume that it is true for 1,--- ,k — 1. For k, %) = (7§k71),'y£k71)) c (w12

and NEA") = H?zl =17

, we have

2
dimz» k™) = Zdlmz k= 2 = Z (k 1) (’Y(k))-

Jj=1 j=1

By induction, (2.16) holds for all k£ > 1.
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(4) For k = 1, by the definition of &™), ¢ and D, we have

H00) L)
20) " 2()

1= :1+b§ §2.

] ot

Let k > 2. Suppose that (2.17) holds for 1,--- ,k — 1. For k, we first have

He(v ™)
2 D(y®)

k—1 k—1 .
) =(4F 7D D) e (ak-1))2

pI+S s L )

- % o (1) T D0 )

j=1,2

SN |

He(rs )

k—1
(k 1)€¢(k 1) j= 19 ( )
j=1,2
2 (k—1)
pev; )
= b1_[ Z (k—1)
D( )
j=1 (k Decay(k—1) ’Y
< 2%,
Hence we have
H£(0) he(v™*)
R
D(0) D(yk)
YW=(r{" TV AT e (kD)2
<1+42%
<2.

This shows that (2.17) is true for k. By induction, (2.17) holds for all k > 1. O

Proof of Lemma 2.4. If 0 <t < L5, then

(2.7)
jex(tm)| < S > e @Bk, n0) R (n0))
YE €M) (k) 2o (kv (F))
u(n®)=n
(2.11)—(2.14) (4—1./4,5)2(7('“)) *
= A —p[nt]
S Z D() Z €
A (k) €M) () g (k)

p(n®)=n
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1At)f(7(k)) k)
A\ A —£n'™  —£&|n|
< A g (k)> E e 2 e 2

QAT 1 () ey )

(2.16) (4L At) ™) o1 (8) )
AN —5Int . =5l
< A Z D) Z e e’
RAGST YO n(k)e(zu)o(w(’”)
1At)g(,y(k)) o(v* v
_ Slnjirl . o—5Inl
= A X N H II > <
~ (k) c (k) j=1 j'= ln /€Z
215 1 o(~(F)
4 @A) oS g
A () c (k) D(yW)
_ EERRVICIL))
(2.14) 1 (4 "A(6p71) t) —5In|
= A(Gp )V e 2
W«g(m (W)
(2.17) ,
< Bye™ M,

provided that 0 < t < Ly, where By is given by (2.8), i.e., By = 2A(6p~1)”. This
completes the proof of Lemma 2.4. 0O

2.4. Convergence of the Picard sequence

We are now in a position to show that the Picard sequence for the Fourier coefficients
converges. The following lemma establishes a bound for the magnitude of ¢k (t,n) —
¢k—1(t,n), from which the desired conclusion follows.

Lemma 2.8. For k > 1, 0 <t < Ly with Lo from (2.9), and n € Z", we have

2k718§+1tk k+1 o
jen(t:n) —cxa(tin)] < —p2e— Y [[eE (2.19)

ni, g1 €LY j=1
N1t g =n

< Ba(12p71)" (2'B.(1201)1)" e 4lnl
- 2 k! '

(2.20)

Hence, {ci(t,n)} is a Cauchy sequence.

Proof. It follows from Lemma 2.4 and induction that we can complete this proof.
In fact, for £ = 1 we have

¢ 2
ler(t,m) — co(t,n)| < / A(n)(t=) Z H lco(T,m;)|dT
0

ny,na€ZY j=1
ni+nz2=n
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SBT%t Z ﬁe"%'”j'.

ni,ne€Z” j=1
ni+n2=n

This shows that (2.19) holds for k = 1.
Let k > 2 and assume that (2.19) is true for 1,--- ,k — 1. For k, we first have

lek(t,n) — cp—1(t,n)

_ A |/|>\(n(t'r)| 3 ’HC’HT”J Hcszn]‘

ni,na €LY j=1
ni+n2=n

1
1/ lex—1(m,n1)||ck—1(T,n2) — cr_a(T,n2)|dT £ (I)
0

ny,na €LY
ni+ne2=n

t

+ Z lek—1(Tym1) — cg—o(T,n1)||Cl—2(T, n2)| dT £ (ID).

0 n1,n2€ZY
ni+nz2=n

|

For the first component, it follows from the induction hypothesis and Lemma 2.4 that

()

—gin|, 2B T eim!
Z 826 m Z He 2™l dr

O ni,no €LY my,-- ,mp €LY j=1
nit+no=n mi+-+mp=na
k—2pk+1k k
_2 sz t 3 S sl T e bl
4k . k!
ny,n2 €LY my,-- ;mp €LY j=1

nitng=n mi+---+mr=nz

ok—2gk+14k k+1

=2ty e

M, ,nk+1€ZU Jj=1
nit+-+ngp1=n

Analogously, for the second component we have

ok—2k+14k k+1

(][)ST.QM Z He_5|ng‘|.

ni,,nEp1 €LY j=1
nit-tngp1=n

Thus we find that

leu(t,n) — e ()| < () + (I1)

ok—2gk+14k k+1

cox i 2 b S et

ni,-,nEp1 €LY j=1
nit+-t+ngr1=n
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k+1

ok—1ph+1 4k
2 "2 - —%In;l
< > I

ni, N1 €LY j=1
ni+-4ngr1=n

By induction, we see that (2.19) holds for all k¥ > 1. Furthermore,

_ k+1
2k IB/2€+1tk

lek(t,n) — cp—1(t,n)| < — Z Hefg\nﬂ

ny, N1 €LY j=1
n1 e N1 =n

A

2k 15tk T o—tinsl . —2ini
el e
oA > [Jeimlhed

Ny, ,npp1 €LY j=1

IN

WH H Z e~ il g=inl

J=1j'=1n;; €2

(2.15) 2k—1812<3+1tk

< 4164.k!(12p—1)(k+1)1’ e ilnl
By(12p~1)" . (2_182(12P_1)Vt)k e 4lnl
B 2 k! '

Hence {ck(t,n)} is a Cauchy sequence on [0,Ls] x ZY, completing the proof of
Lemma 2.8. O

2.5. Proof of Theorem A: existence
In this subsection we prove the existence part of Theorem A.

Proof. By Lemma 2.8 we know that {cy(t,n)} is a Cauchy sequence and there exists
a limit function, denoted by cf(¢,n), where 0 < t < £y and n € Z". By the triangle

inequality we have
T (t,n)| < |cf(t,n) — er(t,n)| + |er(t,n)|, Yk > 1.

Since k > 1 is arbitrary in this estimate and the c(¢,n) obey the uniform upper bound
(2.10), it follows that the same upper bound holds for cf(¢,n), that is,

|l (t,n)| < Boe 21 (2.21)

Naturally we regard the coefficients cf(¢,n) as the Fourier coefficients of a candidate
solution uf(t,2) of the Cauchy problem in question, and hence set

ul(t,z) = Z et (t,n)elme,

nezZv
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@Ful)(te) = 3 () el (t,m)ei ™7, # = 1,2

nezv
i(n) :
(uTu;f:)(t’ .13) = Z T Z H CT (t? nj)el<n>z;
nezv ni,no€Z" j=1
ni+ng=n
t i Aln) f i{n)a
(Ut)(t,.’ﬂ) = Z )‘(n)c (ta TL) + T Z H c (ta nj) € )
nezv ny,na€ZY j=1
ni+n2=n

(uhar) (¢, ) :

Il
E
S~—

[)
>
—~
S
o
:
=
3
N~—
_|_
>
S
o
,,
=

3
<
S~—

('b.—

B
8

nczv ni,ma€ZY j=1
ni+n2=n

We claim that ' is a classical spatially quasi-periodic solution to quasi-periodic Cauchy
problem (1.4)~(1.5), that is, u},ul_,,ul,uful satisfy BBM (1.4) in the classical sense

and u' has initial data (1.5). On the one hand, by the exponential decay of ¢f(¢,n), one

can see that uf, u:{ Jul ul,uTul are uniformly and absolutely convergent. It is sufficient

xxt)

to verify that

2
St nf+ ) cttn) + > ]l tng)lp < oo

nezv ni,me€ZY j=1
ni1+n2=n

In fact, for # =0, 1, 2, we have

#1 .t 221) #,—5|n
STl ) <D nFet

nezv nezv
— Z In|#e5IMl ¢~ 4Inl
Vﬁ—/
neZ bounded
< o= 4lnl
nezv
(2.15)
< (12p7)”
< o0
and
2 (2.21) 2 ,
Soml# > TLdEnpl S Y n# > J[e 2!
nezv ni,ne €LY j=1 nezv ni,ma€ZY j=1

ni+na2=n nit+nz=n
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2
"yl -yl . L
§:|n|#e §Inl E ||e Tlnil o= 5Inl
N————

nezv ni,na€ZY j=1

bounded
bounded by (2.15)
> i
nezv
(2.15) 1
< (24p70)
< oQ.

On the another hand, since c' is the limit function of the Picard sequence {c;} defined
by (2.6), it satisfies (2.5). Hence c' is a solution to (2.3) and satisfies the initial condition
c'(0,n) = ¢(n). This implies that u' is a classical spatially quasi-periodic solution to the
Cauchy problem (1.4)—(1.5). Hence the existence part of Theorem A is proved. O

2.6. Proof of Theorem A: uniqueness

In this subsection we prove the uniqueness part of Theorem A.

Proof. Let

u(t,z) = Z o(t,n)e™® and w(t,z) = Z (t,n)elm®

nezv nezv

be two quasi-periodic solutions to (1.4)—(1.5), where ¥ and @ satisfy the following con-
ditions:

o (same initial data)
0(0,n) = w(0,n), VneZ

o (integral equation)

ni,na €LY j=1
ni+n2=n

A
o(t,n) :e)\(”)“ (2n)/ )(t—=7) Z Hv T,n;)d
0

A 2
W(t,n) = et ( % /eA(”)(t*T) > I @(rndr
0

ny,na €LY j=1
ni+nz2=n

o (exponential decay)

|0(t,n)| < Boe™ 2™ and  |i(t,n)| < Bye 2", 0<t<Ly,nelZ".
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For all £ > 1, one can derive that

2k B+ gk M,
[0(t,n) = (t,n)| < =22 > el (2.22)

ni, - ,nEp1 €LY j=1
nit-Angp1=n

In fact, we first have

Hence (2.22) holds for k = 1. Let k£ > 2 and assume that it holds for 1,--- ,k — 1. For k,

we have

[0(t,n) — w(t,n)| <

AN
Ngy—
=} \ -
=
(3
X
S
|
Y
=
B
S
o
\]

[o(7, 1) — @(r,m)l[o(7, n2)| dr £ (I')

IA
NN
o .
]

> Ji(r,n)|[o(r,n2) — (1, ng)| d £ (I1').
0 n17n2€Z”
ni+nzs=n

For the first component we have

¢ k
L D1 il gyt

0 ni1,m2EZ” my,--- ,mp €LY j=1
ni+no=n mi+-+mp=ny
k—1p3k+1,k k
25 3 L | L
4k . k!
ny,ne€ZY my,-- ,mpELY j=1

nitnz=n mi+--+mr=ni
k+1

k—1Rk+14k
:% S [[eE

ny, N1 €LY j=1
nit+-+ngp1=n

After a similar argument we find



D. Damanik et al. / Journal of Functional Analysis 286 (2024) 110238 23

_ k+1
2k: lBk—l-ltk

ST-ZM Z H€*§|”j|_

ni, - ,nEp1 €LY J=1
ni+-+ngr1=n

(1)

Hence we have

[0(t,n) = (t,n)| < (I') + (IT')
k+1

2k812€+1tk — 2 |n|
N

ny, g1 €LY j=1
nit-+ngp1=n

By induction, (2.22) holds for all £ > 1. By (2.15) one can derive that

k+1

Qb1 o
|U(t,n) — w(t,'n,)| S 4k—k' Z H e EI”JI

ny,ngp1 €27 j=1
nit-+ngp1=n

k+1

ok Btk
Sﬁ 3 e &l eti

Ny, g1 €ZY j=1

k+1 v

kRk+1,k
_2 5 t T TIIL et et
j= lj_ln /EZ"
kpk+l,k
: (2‘132(1k2'ﬂ‘1)”t)k e fInl,

< By(12p71)"

As these estimates hold for arbitrary & > 1, we can send & — oo in the upper bound for
[6(t,n) — w(t,n)|, and since the limit vanishes, we have

o(t,n) =w(t,n), 0<t<Ly,nelZ".

This implies that the spatially quasi-periodic solution to the quasi-periodic Cauchy prob-
lem (1.4)—(1.5) is unique. Hence the uniqueness component of Theorem A is proved. O

3. The general case: gBBM

In this section we study the general case, that is, p > 2. In particular we address the
remaining cases p > 3. The key point is to propose new indices for the term u?~1'u, and
their relations (compared with [11]). Proofs that are similar to the ones in Section 2 are
omitted; we only give those proofs that need significant new arguments.
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To avoid confusion of symbols, set 4(n) = ¢(n) and 4(¢,n) = ¢(¢,n). The counterparts
of M, €, 7, F, o, £ and © will be denoted by A", €, &, F, o, f and 2, respectively.
Their definitions will be introduced below.

In the Fourier space, the quasi-periodic Cauchy problem (1.4)—(1.5) is again reduced
to a nonlinear infinite system of coupled ODEs,

(0v¢)(t,n) — M(n)e(t,n) = %1) > etny), vnezr (3.1)
ny, ,npEZLY j=1
ni+---+np=n

with initial data
¢(0,n) =c(n), VneZzZ". (3.2)

Obviously ¢(t,0) = ¢(0). According to the variation of constants formula, the Cauchy
problem (3.1)—(3.2) is equivalent to the following integral equation,

c(t,n) = eXMie(n) + An) /eA(”)(th) Z ﬁ o(r,n;)dr, Vn e Z"\{0}.
0

p ny, - ,np€ZLY j=1
ni+-+np=n

Define the Picard sequence {cx(t,n)} to approximate ¢(¢,n) by letting

Amte(n), k= 0:
(t,m) = co(t,m) + 2 A ez [Ty i (rony)dr, k> 1

ni+---+np=n

Next we will use the combinatorial tree form of the Picard sequence to prove its
exponential decay property and then to prove that it is a Cauchy sequence.
Recall the definition of p; see subsection 2.2. Set

{0} U (D), k> 2.
v, 0=~® cq®) k>1;
k
A )= gy, 1=~
T Ry = 4B e (D) k> 2,

g ET ) (k) .=
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C(n), 0= ry(k) € ﬂ(k)vn = n(k) c </1/("770),k 2 ]_’

[T5- e(ny), 1=70 e qW, (n))1<j<p = nM € /D,
(k—1) — _

o @O ), (0 iggp =W e (10,

=1
— (k—1)
(nf izjep = n® € [T, #7150,
k> 2.
AW (g ) =
A, 0=~k ¢ qk)
n=nk c ko)
k>1;
JE A=) TP Mruordr, 1= 0 ¢ q),
(njhr<j<p = nt
S JV(M);
Jo XN e FE ) ar, () igyp = AW
€ (J*=1)p,
(08" D)1<jcp = n®
eI, ¥,
k> 2.
FEAD) (0 =
1, 0=~"k ¢ qk)
n=nk ¢ ko),
k>1;
A(u(;ﬁ”)), 1=~ ¢ q),

(nj)i<j<p = nM € /LY,

YE Migicp =70 € (TR,

(S Nigjcp = n®

(k—1)
c H?:l JV(k—l,Wj )

Alp(n® Z14Fy (k-1
(u(p ) Hlpﬂdz(k 17§ )(n§ )), (

k> 2.
With the help of these abstract symbols, we have the following;:

Lemma 3.1. The Picard sequence {c(t,n)} can be rewritten as a combinatorial tree, that
18,

cr(t,n) = Z Z gk () g k™) (g n () k™) () g > 1,

YR ETE) | (o) gy
p(n®)=n
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By induction, we can prove the following estimates for ¢, .# and .%.
Lemma 3.2. For all k > 1,

|<g(kﬁ““>)(n(k))‘ < A2 g=pln ™1

: B(v*))
(k™) (k) i
|.7 (t,n'")] < G®Y
7 (k™) ()] < 1
EZ (n'™)] < 2p)70) <1,
where

= =~®) e g | >1

a(y®) = P 1=+ eqW
k—1 k— _
j=1 a(%(. ), (’YJ( Ji<j<p =7 € (F-D)r,
k> 2,
0, O:'Y(k)Eﬂ(k)J{/’Zl;
— ~(1) (1).

syt e

1+ Z?:l /B(FYJ )7 (’Yj )1§j§p = r-)/(k) c (ﬂ(kfl))p’

k>2,

1, O:Py(k)gﬂ(k)7k21;

2(0)=1 1= e q0;
o k—1 k—1 B
(N 205", (0 higizr =2® € (1),
k> 2.

The following lemma contains some observations we will need below:

Lemma 3.3. For all k > 1,

(1) dimge A4 *7) = (p~ 1)a(y®);
(2) a(v®) =B ") + ;15
(3) [0 << 200" then

hﬁ('y(k)) P
¢ = — < ——, Vk>1
’ 2 (v*) = p-1

(k) cq (k)

Proof. We first prove the first two identities. It is easy to see that they are true for
0=~% c qF) L >1 and 1 = 4. Assume that they hold for 1,---,k — 1, where
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k > 2. For (7§k71)>1§jgp =~ ¢ %) by the definition of «, f and JV(]“”(’C)), one can
derive that

p
dimZV t/V(k”Y(k)) = dimZV H t/V(k_l”Y;'kil))

Jj=1

p
= Z dimg. Iy k=145"71)

j=1

=(p-1)> a(" )

<
—

and

By induction, it follows that the first two identities hold for all k£ > 1.
Next we will prove the last inequality. For k£ = 1, we have

(p—1)P!

=1 <1 .
¢ +5<1+ o S o1

This shows that it holds for £k = 1. Let £ > 2 and assume that it is true for 1,--- ,k — 1.
For k, we have

P ! (p—1) p
§° (-1 P \"_ »p
eo<1+o]] > s <o) =i

jzl,,;k*)eq[(k—l) J
Hence the last inequality is true for all £ > 1. This completes the proof of Lemma 3.3. O

In a similar way as in the proof of Lemma 2.4, we can obtain uniform exponential
decay for the Picard sequence {c(t,n)}:
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Lemma 3.4. Assume that the initial Fourier coefficients ¢(n) obey (1.7). With the con-
stants A and p from (1.7) and the dimension v set

B, £ ppr 1(6p7 1) (3.3)

and

s 2(p— 1P ple b
Lt = s (3.4)

Then, we have

sup |cx(t,n)| < Bpe~ 2!
te[0,L,]
E>0

for everyn € Z".

Furthermore using the following pattern decomposition,

* * j'—1 *
‘HAJ H.J|<ZH|.J| 7.j/|' H ‘Aj|’
j=1 =1j=1 Jj=j'+1

where

*

0
[]m:=1 and J] la;|:=1,
j=1

Jj=*+1

we can prove the following by induction:
Lemma 3.5. For all k > 1,

pk_lB(p—l)k+1tk (p—1)k+1

|ck(ta n) - Ck—l(t,n)l S W Z H e*%‘”]“

N, n(p_1 k41 €LY J=1
N1t N (p-1) k1=
1w —1zp—1 —1\(p—1)vp\ *
_ B(1207Y) C(@'Bp(azpT v
- D k!

~&in|_

Hence {ci(t,n)} is a Cauchy sequence on [0, L,] X Z¥.

With these estimates in hand, Theorem A for the quasi-periodic Cauchy problem
(1.4)—(1.5), i.e. gBBM, follows in the same way as it did in Section 2 for BBM. This
completes the proof of Theorem A.
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4. Proof of Theorem B

In this section we generalize the decay condition from exponential to polynomial for
the Fourier coefficients of the quasi-periodic initial data. For the sake of convenience
and readability, we take the case of p =2 (BBM) as an illustration. This generalization
works for the general case (we will give a proof for the general case in the forthcoming
paper on the nonlinear Schrédinger equation with quasi-periodic initial data mentioned
in Remark 2.3).

Specifically, the exponential decay condition (1.7) is replaced by the polynomial decay
condition (1.9), where 2 <v < 7 —2.

From the proof above, we need to re-estimate only €.

Lemma 4.1. If the initial Fourier coefficients satisfy the polynomial decay estimate (1.9),
then

a(v*) r
€™ ()] < g7 ™) 11 (1 + |(n(k))j|) . VE> 1. (4.1)
j=1

Proof. We first prove the following equality: for all £ > 1 and n(®) = (Mj)1<j<o(y)) €
k™)

o(y*
gkt )) nk)) H (4.2)

It is not difficult to see that (4.2) holds for 0 = v(k) c@® k>1and1=+D c &),
Let & > 2. Assume that it holds for 1,---,k — 1. For k,(y; (k= 1),7£k_1))

(k—1

7*) e (#*7)? and (”§k71)7nék71)) =n ¢ Hj:l k=1 ) ), where ngkfl) =

k—1 s
(n‘j)lgjga_(’y{k—l)) and né ) = (na(’ygk—l))J’»j)lgjgo_(’yik—l)), by the definition of €, one

can derive that

(k— 1))

g:(kw("))(n(k))zg(k 194 (n} (k= ) @k=175"" 1))( ék‘*l))

o({F ) o(v$F )

= JI e II e o))
j=1 j=1

a(v*))

I
—
a
S

j=1

By induction, (4.2) holds for all k& > 1. It follows from polynomial decay (1.9) for ¢ that
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o(y")

(k)
O = T le(™))]
j=1

o(®

)
IT aa+1@™),)—~
=1

a(y™)

=270 T+ 1m®))

Jj=1

IN

This completes the proof of Lemma 4.1. O
In addition, we need the following basic statements:

Lemma 4.2.

(1) (Mean value inequality)

n 1 n "
Hajg EZaj , a;>0,j=1,---,neN. (4.3)
j=1 7j=1
(2) (Bound for the Riemann zeta function on R)
— 1 1
> = = s)<l+— s>1L (4.4)
ns 1
n=1
(3) Set
nezv
If2 <v <s, then
A v y s Jo
H(siv) <b(s;v) 21+ Z <j0> 270 ;- {c <]—0>} . (4.6)
Jo=1
(4) (Generalized Bernoulli inequality)
[[a+z)=14> =, (4.7)
Jj=1 j=1
where 2 <m € N, 1, - ,x, are real numbers, all greater than —1, and all with the

same sign.
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Proof. (1) This is just the Arithmetic Mean-Geometric Mean inequality, so the proof is
omitted.

(2) Let g(z) = x7®,s > 1. Notice that g is monotonically decreasing on [1,c0). Thus,
we have

n+1
gn+1) < / g(r)dr, ¥n>1. (4.8)

n

For all N > 2, the summation of (4.8) over n =1,..., N — 1 yields
N

n=1

megawg/gﬂdn

that is,

N

1 1

E — <1+ R uniformly for N, provided that s > 1.
ns s —

n=1

Hence (4.4) holds for all s > 1.
(3) Set p:={0,---,v—1,v}. For every jo € g, define

Sj, ={n=(n1,--- ,n,) € Z" : exactly v — jo components are equal to zero}.
Hence we have the following decomposition,

H(siv) =1+ o (A4 EEL+V)
n€Ujg e 0y Sio

On the one hand, for all jo € p\{0}, we have

St = (X)X awhne

nesS;, n=(ni,--,njy,0,-- ,0)0€Z"
ni,,m 0 €Z\{0}

(1) = 1+

nlv"'anOEZ\{O} Jj=1

> f:lnjl

n17---,nj0€Z\{O} Jj=1

(4.3) Jo .
PGy x, fimr

i, NG €Z\{0} j=1

—Ss

IA
N\
S
N——
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Jo
- (;;)jo—sn >l
J=ln;eZ\{0}
1S

j=1n;=1

Hence we have

= Y )

n€Ujj e\ 10} Sio

Yo D> (t+a)”

Jo€p\{0} n€Sj,

@G

Jjo=1

Combining these estimates, we arrive at the following inequality,

(s;v) <1+Z< )2ﬂ0 S{g(%)}joéb(s;u).

It follows from (4.4) that . (s;v) is a bounded positive number for any fixed s and
v for which 2 < v < s.
(4) Clearly, for m = 2, it follows from the same sign condition of x; and x5 that

(I+z)A+z)=1421 + 22+ 2120 > 1+ 21 + 9.

Let m > 3. Assume that (4.7) holds for all 2 < m' < m. For m, by the induction
hypothesis, x,, > —1 and the same sign condition, we have

m

m—1
H(l—i—xj):H 1+zj) x (14 zm)
j=1

j=1
>(1+zi 4+ +op1)(1+zm)
m—1
=l4+z1+--+Tmo1+Tm+ Zarjxm
j=1

14w+ Tp1 + T
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By induction, (4.7) holds for all 2<m € N. O

In what follows we will prove that the Picard sequence satisfies a uniform polynomial
decay estimate (Lemma 4.3) and is fundamental (i.e., a Cauchy sequence; Lemma 4.4).

Lemma 4.3. [f0 <t < (1ry)—£’ and 2 <v < 3, then
55

lex(t,n)] <Ba(14|n|)"2, forallN >k >1, where By £ 2Ab (g, V) . (49

Proof. We first have

(2.7)

lek(t,n)| < Z Z 1€EA D) (®) || 3R (1, nB) |55 (n(R)))
YE EME) (k) cp(k.y(F))
u(n®)=n
, ®
(4.1),(2.12)—(2.14) (4—1At)‘5(7(k)) a(v'") B
. > mom— > I asl@®);h @)

7 (k) € (k) B ek ) J=1

u(n™)=n

The main difference, compared to the proof in the exponential decay case, is to deal with

the term
o(y")
> I a+i@™),p—
n® ey ®)  J=1
u(n™)=n

o(v*®) o(v®)
SEED D | RGN P § (RN )i n R CREY
j=1

n gy J=1
p(n*)=n

o]

It follows from the generalized Bernoulli inequality (4.7) and p(n(®)) = n that

a(v*)

3 = [ a+1m®),)

i=1
o(v*) 2

= [ JI a+1c=™);)

Jj=1

(k) %
4 7) J('Y )

(ﬁ 1+ Z n(k)
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— (1 a0
.

< (1+]n|)~=. (4.12)
Inserting (4.12) into (4.11) yields
a(v*) MON
> Mare®ums X I 0+ @0k
n® e ) J=1 n(®) e,y () =1
p(nt®)=n
o(v*)
< >, IT G+nh 2 (1 +1n)2
nn (k) €2V =1
a(v")
H D+ E (14 n))E
n; €LY
= (%;v)<b(%;v) by (4.6)
o(v™*) .
< {b (gu>} (1+|n))~. (4.13)

Inserting (4.13) into (4.10), by (2.14), we obtain

r 4 2
|ex(t,m)| < Ab (g?y) Z { D ()

NOENO!

It follows from (2.17) that
jex(t,m)] < Ba(1+|n]) 7%, where By 2286 (i),
provided that

0<t<Lh=

=
o
—~
[SIEE M

V)

This completes the proof of Lemma 4.3. O

Lemma 4.4. If 2 <v < 7, then for all k > 1,

2k—1Bl2c+1tk k+1 ?

ny, €LY | J=1
ni+-Fngp1=n

A

IN

r. - L.y k r
Bob (21,7/) ) {2 lBQbk(!y )t} 140} 7. (4.15)
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This implies that {ci(t,n)} is a Cauchy sequence on (t,n) € [0, L5] x Z".

Proof. For k = 1 one has

|c1(t,n)—c0(t,n)|g1/ S° [T leolsny)l dr

0 n1,m2€ZY j=1
ni+n2=n

t

L[S Tk

0 n1, no€ZY j=1
n1+n2 n

B2t 2
ST Z H 1+|nj

ny,na€Z” \ j=1
ni+n2=n

>~

[SE

This shows that (4.14) is true for k¥ = 1. Let k& > 2 and suppose that it holds for
1,--- ,k — 1. For k, one can derive that

uttn) = st < 5 [ 30 Jenca(rim)lans(7ime) = cima(rina) dr 2 (1)

0 mni,m2EZ”
ni1+n2=n

t

1
+1 > er—1(mm) = ce—a(r,n1)||ch—2 (7, n2)| d £ (IT),
0 ’I’Ll,’ﬂzEZ
ni+n2=n
where
1 p ok—2pk k-1 k T
r —4“BSTET
! —Z 2
(I < 5 > By(l+|m) ST T > H1+|m] dr
0 n1,m2€l” my,e,mEp €LY | j=1
ni+ns=n mi+-t+mp=ns
2k—2B12<:+1tk . k 7
T 4R R > DORENCER IR I (CS 20
’ n1,n2 €LY ma, - ,mRELY j=1
ni+ne=n mi+---+mr=nq
B ok—2gk+1tk k+1 B

- S {Tla+mhy .

ni,nEpp1 €LY | J=1
nit-+ngp1=n

and analogously
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_x
2

_ k+1
2k 2B§+ltk

I <=—2a— Y [Ta+1nD

ny,npp1€ZY | j=1
ni+-+ngp1=n

Hence, according to (4.7), we have
lek(t,n) — cp—1(t,n)|
<(I')+ (T

k41
2k-1B12c+1tk +

SW Z (1 + [ny)

ok—1pk+1gk k+1 T (k1 o1
S > (1 + |nj]) : (L +[nyl)
) Ny, ,npr1€Z Jj=1 j=1
ni+-+ngr1=n
gl ke e
ST Z H(1+|”j|) : 1+Z|nj|
’ ni,,nEpp1 €LY J=1 j=1

2k—1B§+ltk k+1

S II X (a+imhy* {1+n)}"

Jj=1 n;e€Zv

Bob (i;y) ' {2_1B2b (i
2 k!

This completes the proof of Lemma 4.4. O
We are now in a position to prove our second main result, Theorem B.

Proof of Theorem B. The existence proof is similar to the case of exponential decay. The
uniqueness proof is analogous to proving that the Picard sequence is a Cauchy sequence.
We mainly give a convergence analysis to show that the solution we construct is in the
classical sense. In fact, for # = 0, 1,2, one can derive that

> nFlet, )| S > [nfF (14 |n]) "

nezv nezv

< 3 ()

nezv

(5=
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and

Yo l* Y TTle(t.ny)

nezv ni,ne €LY j=1

ni+nz2=n

DD

[T+ D2

nezv ni,ne€ZY j=1
ni+na2=n

(4.7

neZv ny,no €LY
ni+ne=n

< Y (A+|n)7F

nezv

IN
N
_
_|_
=
I

IS

<Y Gl L+ gy~ - (14 o)

ST+ a1+ [naf)*

ni,na €LY
ni+na=n

> T +nh*s

ni,na€Z” j=1
ni+nz=n

> JTa+nh*s

ni,na€Z” j=1

IA

oA+l ] D @l

nezv j=ln;ezZ"

r r 2
= () {r (G-#0))
It follows from (4.5) that the convergence needed can be guaranteed if

2<y<—2
v< = —2.

- 4

This completes the proof of Theorem B. 0O
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