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This paper studies the existence and uniqueness problem 
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with quasi-periodic initial data on the real line. We obtain 
an existence and uniqueness result in the classical sense with 
arbitrary time horizon under the assumption of polynomially 
decaying initial Fourier data using the combinatorial analysis 
method developed in earlier papers by Christ [6], Damanik-
Goldstein [11], and the present authors [12]. Our result is valid 
for exponentially decaying initial Fourier data and hence can 
be viewed as a Cauchy-Kovalevskaya theorem in the space 
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Generalized Benjamin-Bona-Mahony 
equation

variable for the gBBM equation with quasi-periodic initial 
data.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

The equation

ut − uxxt + ux + uux = 0 (1.1)

was introduced by Benjamin, Bona, and Mahony in [3] as an improvement of the 
Korteweg–de Vries equation

ut + uxxx + uux = 0 (1.2)

for modeling unidirectional propagation of long waves of small amplitude on R. We will 
for simplicity refer to (1.1) as BBM and to (1.2) as KdV.

Olver showed in [28] that BBM possesses exactly three independent and non-trivial 
conservation laws, whereas KdV is known to possess infinitely many [24]. Both equations 
admit solitary wave solutions. KdV can be described via a Lax pair [22], whereas BBM 
cannot.

Establishing the existence of solutions to the Cauchy problem associated with BBM 
is simpler for decaying or periodic initial data. For some foundational results in these 
two special cases we refer the reader to [3] and [25], respectively. In the present paper we 
are interested in studying spatially quasi-periodic solutions, which is a more challenging 
task.

For KdV with quasi-periodic initial data, the existence and uniqueness of solutions 
was studied by Tsugawa [30] and Damanik-Goldstein [11]. More recently, the analogous 
problem for the generalized Korteweg–de Vries (gKdV) equation
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ut + uxxx + up−1ux = 0 (1.3)

was studied by the three of us in [12]. Via these works it is known that sufficiently small 
quasi-periodic initial data with exponentially decaying Fourier coefficients admit a local 
in time solution that remains quasi-periodicity in the spatial variable with exponentially 
decaying Fourier coefficients. Indeed, within this class of functions, the solution is unique. 
For KdV one can go further and show that, for Diophantine frequency vector, the local 
result can be iterated in constant time steps. In this way, one obtains global existence 
and uniqueness [11]. We mention in passing that the dependence on time is in this setting 
known to be almost periodic [4], which is a result in line with (and providing evidence 
for) the Deift conjecture [8,9], which states that the KdV equation with almost periodic 
initial data admits a global solution that is almost periodic both in space and time.5

This passage from a local to a global result in [11] rests on a rather involved spectral 
analysis of quasi-periodic Schrödinger operators [10]. As an input of this kind is not 
available for gKdV, it is at present unclear how to leverage the local result from [12] to 
a global result.

In this paper we want to discuss the existence and uniqueness of spatially quasi-
periodic solutions of BBM, and in fact more generally of the generalized Benjamin-
Bona-Mahony (gBBM) equation

ut − uxxt + ux + up−1ux = 0, (1.4)

on the real line R, where 2 ≤ p ∈ N.
As initial data we consider quasi-periodic functions of the form

u(0, x) =
∑

n∈Zν

û(n)ei〈n〉x, (1.5)

where x ∈ R, 2 ≤ ν ∈ N, ω = (ω1, · · · , ων) ∈ Rν (a given frequency vector), n =
(n1, · · · , nν) ∈ Zν (the lattice vector), and 〈n〉 � 〈n, ω〉 is the standard inner product 
defined by letting 〈n, ω〉 :=

∑ν
j=1 njωj . As usual we assume that the frequency vector is 

non-resonant or rationally independent, that is, 〈n〉 = 0 implies that n = 0 ∈ Zν .
What we are interested in is the existence and uniqueness of spatially quasi-periodic 

solutions defined by the Fourier series

u(t, x) =
∑

n∈Zν

û(t, n)ei〈n〉x (1.6)

to the quasi-periodic Cauchy problem (1.4)–(1.5) in the classical sense.

5 While our paper was under consideration, the Deift conjecture as formulated in [8,9] has been disproved 
by Chapouto, Killip, and Visan in [7]. It remains an interesting open problem to establish a positive result 
in the spirit of the Deift conjecture, that is, a proof of an accordingly modified conjecture.
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Throughout this paper, we will use |n| to denote the �1(Zν)-norm of n = (n1, ·, nν) ∈
Zν , that is, |n| :=

∑ν
j=1 |nj |.

Our main results are the following Theorem A (exponential decay) and Theorem B
(polynomial decay) below.

Theorem A. Suppose the Fourier coefficients û(n) of the initial data satisfy the following 
exponential decay condition,

|û(n)| ≤ A 1
p−1 e−ρ|n|, ∀n ∈ Zν , (1.7)

where A > 0 and 0 < ρ ≤ 1.
Then, on the time interval [0, Lp], where

Lp � 2
(

1 − 1
p

)p−1
ρ(p−1)ν

A6(p−1)ν
, (1.8)

the quasi-periodic Cauchy problem (1.4)–(1.5) has a spatially quasi-periodic solution in 
the classical sense of the form

u(t, x) =
∑

n∈Zν

û(t, n)ei〈n〉x

with

|û(t, n)| ≤ Bpe− ρ
2 |n|,

where Bp � p
p−1 A 1

p−1 (6ρ−1)ν .
Moreover, this solution is unique among all solutions subject to this exponential decay 

estimate for the Fourier coefficients.

Remark 1.1. Theorem A is a local existence and uniqueness result with arbitrary time 
horizon. That is, given any T > 0, we provide an explicit class of quasi-periodic initial 
data with exponential Fourier decay (namely those obeying (1.7) with parameters A, ρ, ν
subject to the condition

2
(

1 − 1
p

)p−1
ρ(p−1)ν

A6(p−1)ν
≥ T

for the prescribed value of T ) for which we establish the existence of a unique spatially 
quasi-periodic solution to (1.4)–(1.5) up to the time horizon T .

Furthermore, we may replace the exponential decay condition (1.7) by the polyno-
mial decay condition (1.9) below and obtain the same conclusions for gBBM (1.4) as in 
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Theorem A. To express the time horizon as a function of the parameters of the decay 
parameters, it is convenient to introduce

b(s; ν) � 1 +
ν∑

j=1

(
ν
j

)
2jj−s

{
ζ

(
s
j

)}j

,

where ζ is the Riemann zeta function,

ζ(s) =
∞∑

n=1

1
ns .

Theorem B. Suppose the Fourier coefficients û(n) of the initial data satisfy the following 
polynomial decay condition,

|û(n)| ≤ A
1

p−1 (1 + |n|)−r, ∀n ∈ Zν , (1.9)

where A > 0 and 2 ≤ ν < r
4 − 2.

Then, on the time interval [0, L′
p], where

L′
p � 2

(
1 − 1

p

)p−1

A−1b
(r

2 ; ν
)−(p−1)

. (1.10)

the quasi-periodic Cauchy problem (1.4)–(1.5) has a spatially quasi-periodic solution in 
the classical sense of the form

u(t, x) =
∑

n∈Zν

û(t, n)ei〈n〉x

with

|û(t, n)| ≤ Bp(1 + |n|)− r
2 ,

where Bp = p
p−1 A

1
p−1 b 

( r
2 ; ν

)
.

Moreover, this solution is unique among all solutions subject to this polynomial decay 
estimate for the Fourier coefficients.

Remark 1.2. (a) What was pointed out in Remark 1.1 applies equally well here. Theo-
rem B is a local existence and uniqueness result with arbitrary time horizon. That is, 
given any T > 0, we provide an explicit class of quasi-periodic initial data with poly-
nomial Fourier decay (namely those obeying (1.9) with parameters A, r, ν subject to the 
condition

2
(

1 − 1
)p−1

A−1b
(r ; ν

)−(p−1)
≥ T
p 2
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for the prescribed value of T ) for which we establish the existence of a unique spatially 
quasi-periodic solution to (1.4)–(1.5) up to the time horizon T .

(b) It follows from the exponential (resp. polynomial) decay that the solution we 
construct is in the classical sense. In addition, the exponential decay property implies 
that our result can be viewed as a Cauchy-Kovalevskaya theorem in the space variable 
for the gBBM equation with quasi-periodic initial data, based on a basic fact: a quasi-
periodic Fourier series with exponentially decaying Fourier coefficients is analytic.

(c) The extension of the existence result for BBM with smooth and decaying initial 
data from [3] to the case of gBBM was discussed by Albert in [1], see also [2]. Moreover, 
solutions for gBBM with p = 5 that are periodic in space and quasi-periodic in time 
were discussed by Shi and Yan in [29]. Let us also mention that Wang discussed in [32]
solutions to nonlinear PDEs that are periodic in space and quasi-periodic in time from 
a more general perspective.

(d) The dependence on the spatial variable in our setting is neither decaying nor pe-
riodic. There are only a few existing results for initial data lacking these two properties. 
In addition to the works already mentioned, Oh discussed the nonlinear Schrödinger 
equation in one dimension with almost periodic initial data [26,27] and Wang presented
spatially quasi-periodic standing wave solutions to the nonlinear Schrödinger equation 
in arbitrary dimension [33]. We also refer the reader to [13,14,19] for a broader discus-
sion and to [17,18,20,23], which are primarily based on inverse spectral theory and the 
preservation of reflectionlessness by equations in the KdV hierarchy (see also [5,15,16,31]
for related work).

(e) The absence of decay and periodicity makes the problem at hand significantly 
more difficult. As in the works [11] and [12] we have to deal with the higher dimensional 
discrete convolution operation

û∗p(fixed total distance) =
∑

q1,··· ,qp∈Zν

q1+···+qp= fixed total distance

p∏
j=1

û(qj)

appearing in the Picard iteration, during which the number of terms will increase expo-
nentially. More precisely, let Nk be the number of terms for the Picard sequence. It is easy 
to see that N1 = 2 and Nk = 1 + Np

k−1 for all k ≥ 2. The key point to overcoming this 
difficulty is an explicit combinatorial analysis in order to obtain the exponential (resp. 
polynomial) decay of the Picard sequence; see [6], [11] and [12] for an implementation of 
this strategy for NLS, KdV and gKdV, respectively.

(f) The structure of the proofs of Theorem A and Theorem B is given by the following 
diagram:
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reduction of a PDE to a nonlinear infinite system of coupled ODEs

feedback of nonlinearity

Picard iteration
discrete convolution

combinatorial analysis

Cauchy sequence exponential/polynomial decay
interpolation

local existence uniqueness

2. The special case p = 2: BBM

For the sake of convenience and readability, we first study the quasi-periodic Cauchy 
problem (1.4)–(1.5) for p = 2. Whenever we refer to (1.4) in this section we tacitly 
assume that p = 2.

We will denote the Fourier coefficients at time 0 and time t by c(n) � û(n) and 
c(t, n) � û(t, n), respectively.

2.1. Reduction

The first step in our proof is a reduction of the PDE in question to a nonlinear infinite 
system of coupled ODEs. For the latter we then consider a suitable Picard sequence.

Formally, by the Cauchy product for infinite series (i.e., the discrete convolution op-
eration), we have

(u2)(t, x) =
∑

n∈Zν

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

c(t, nj)ei〈n〉x. (2.1)

Assuming that ∂ and 
∑

can be interchanged, we have

ut − uxxt =
∑

n∈Zν

(1 + 〈n〉2)(∂tc)(t, n)ei〈n〉x, (2.2a)

ux =
∑

n∈Zν

i〈n〉c(t, n)ei〈n〉x, (2.2b)

uux = ∂x

(
u2

2

)
=

∑
n∈Zν

i〈n〉
2

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

c(t, nj)ei〈n〉x. (2.2c)

Substituting (2.2a)-(2.2c) into (1.4) yields
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∑
n∈Zν

⎧⎪⎪⎨
⎪⎪⎩(1 + 〈n〉2)(∂tc)(t, n) + i〈n〉c(t, n) + i〈n〉

2
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

c(t, nj)

⎫⎪⎪⎬
⎪⎪⎭ ei〈n〉x = 0.

By the orthogonality of {ei〈n〉x : x ∈ R} relative to

< u, v >L2(R):= lim
L→+∞

1
2L

+L∫
−L

u(x)v̄(x)dx,

we see that (1.4) is equivalent to the nonlinear infinite system of coupled ODEs

d
dt

c(t, n) − λ(n)c(t, n) = λ(n)
2

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

c(t, nj), (2.3)

where

λ(n) � −i〈n〉
1 + 〈n〉2 (a purely imaginary number) (2.4)

obeys the uniform bound |λ(n)| ≤ 1
2 for all n ∈ Zν . Here we use “ d

dt ” rather than “∂t” 
to emphasize that (2.3) is an ODE for any given n ∈ Zν .

Motivated by an idea from [21], we observe that c(t, n) is determined by the following 
integral equation,

c(t, n) = eλ(n)tc(n) + λ(n)
2

t∫
0

eλ(n)(t−τ)
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

c(τ, nj) dτ. (2.5)

To determine c(t, n), we construct a Picard sequence {ck(t, n)}k≥0 to approximate 
it. We choose eλ(n)tc(n) as the initial guess c0(t, n) and obtain {ck(t, n)}k≥1 via the 
following iteration,

ck(t, n) := c0(t, n) + λ(n)
2

t∫
0

eλ(n)(t−τ)
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

ck−1(τ, nj) dτ, ∀k ≥ 1. (2.6)

2.2. Combinatorial tree for the Picard sequence

Our goal is to show that the Picard sequence converges. To this end, it is convenient 
to express it via a combinatorial tree. This is the aim of the present subsection.
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Set

♠(k) :=
{

{0, 1}, k = 1;
{0} ∪ (♠(k−1))2, k ≥ 2.

For γ(k) = 0 ∈ ♠(k), k ≥ 1, N(k,0) := Zν ; for γ(1) = 1 ∈ ♠(1), N(1,1) := (Zν)2; for 
γ(k) = (γ(k−1)

1 , γ(k−1)
2 ) ∈ (♠(k−1))2, k ≥ 2, N(k,γ(k)) :=

∏2
j=1 N

(k−1,γ
(k−1)
j ).

Define a function μ : ∪∞
k=1(Zν)k → Zν by letting μ(♣) =

∑k
j=1 ♣j if ♣ = (♣j ∈

Zν)1≤j≤k ∈ (Zν)k.
For k ≥ 1, γ(k) = 0 ∈ ♠(k), n = n(k) ∈ N(k,0),

C(k,0)(n(k)) := c(n),

I(k,0)(t, n(k)) := eλ(n)t,

F(k,0)(n(k)) := 1;

for k = 1, γ(1) = 1 ∈ ♠(1), (n1, n2) = n(1) ∈ N(1,1),

C(1,1)(n(1)) :=
2∏

j=1
c(nj),

I(1,1)(t, n(1)) :=
t∫

0

eλ(μ(n(1)))(t−τ)
2∏

j=1
eλ(nj)τ dτ,

F(1,1)(n(1)) := λ(μ(n(1)))
2 ;

for k ≥ 2, γ(k) = (γ(k−1)
1 , γ(k−1)

2 ) ∈ (♠(k−1))2, (n(k−1)
1 , n(k−1)

2 ) = n(k) ∈ N(k,γ(k)),

C(k,γ(k))(n(k)) :=
2∏

j=1
C(k−1,γ

(k−1)
j )(n(k−1)

j ),

I(k,γ(k))(t, n(k)) :=
t∫

0

eλ(μ(n(k)))(t−τ)
2∏

j=1
I(k−1,γ

(k−1)
j )(τ, n

(k−1)
j )dτ,

F(k,γ(k))(n(k)) := λ(μ(n(k)))
2

2∏
j=1

F(k−1,γ
(k−1)
j )(n(k−1)

j ).

Remark 2.1. For the convenience of understanding these abstract notations, we give an 
interpretation as follows; see also [12].

These symbols are produced and defined in the Picard iteration process. We use ♠(k) to 
label the set of trees at iteration k. The coefficient C is associated with the initial Fourier 
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data c and it can be viewed as the multi-linear accumulative product of c, the coefficient 
I stands for the time integration and the coefficient F is the rest. This separation and 
independence form is exactly the power of the combinatorial analysis method in dealing 
with an infinite product of Fourier series.

Lemma 2.2. The Picard sequence {ck(t, n)} can be reformulated as the following combi-
natorial tree,

ck(t, n) =
∑

γ(k)∈♠(k)

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

C(k,γ(k))(n(k))I(k,γ(k))(t, n(k))F(k,γ(k))(n(k)), ∀k ≥ 1.

(2.7)

Proof. We first notice that

c0(t, n) =
∑

γ(k)=0∈♠(k)

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

C(k,γ(k))(n(k))I(k,γ(k))(t, n(k))F(k,γ(k))(n(k)), ∀k ≥ 1.

For k = 1, we have

c1(t, n) − c0(t, n) = λ(n)
2

t∫
0

eλ(n)(t−τ)
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

c0(τ, nj) dτ

=
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

c(nj) · λ(n)
2 ·

t∫
0

eλ(n)(t−τ)
2∏

j=1
eλ(nj)τ dτ

=
∑

γ(1)=1∈♠(1)

∑
n(1)∈N

(1,γ(1))

μ(n(1))=n

C(1,γ(1))(n(1))I(1,γ(1))(t, n(1))F(1,γ(1))(n(1)).

Hence we have

c1(t, n)

=

⎛
⎝ ∑

γ(1)=0∈♠(1)

+
∑

γ(1)=1∈♠(1)

⎞
⎠ ∑

n(1)∈N
(1,γ(1))

μ(n(1))=n

C(1,γ(1))(n(1))I(1,γ(1))(t, n(1))F(1,γ(1))(n(1))

=
∑

γ(1)∈♠(1)

∑
n(1)∈N

(1,γ(1))

μ(n(1))=n

C(1,γ(1))(n(1))I(1,γ(1))(t, n(1))F(1,γ(1))(n(1)).

This shows that (2.7) holds for k = 1.
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Let k ≥ 2 and assume that (2.7) is true for 1, · · · , k − 1. For k, we have

ck(t, n) − c0(t, n)

= λ(n)
2

t∫
0

eλ(n)(t−τ)
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

ck−1(τ, nj) dτ

= λ(n)
2

t∫
0

eλ(n)(t−τ)
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

∑
γ

(k−1)
j ∈♠(k−1)

∑
n

(k−1)
j ∈N

(k−1,γ
(k−1)
j )

μ(n
(k−1)
j )=nj

C(k−1,γ
(k−1)
j )(n(k−1)

j )I(k−1,γ
(k−1)
j )(τ, n

(k−1)
j )F(k−1,γ

(k−1)
j )(n(k−1)

j ) dτ

=
∑

γ
(k−1)
j ∈♠(k−1)

j=1,2

∑
n1,n2∈Zν

n1+n2=n

∑
n

(k−1)
j ∈N

(k−1,γ
(k−1)
j )

μ(n
(k−1)
j )=nj

j=1,2

2∏
j=1

C(k−1,γ
(k−1)
j )(n(k−1)

j )

× λ(n)
2

2∏
j=1

F(k−1,γ
(k−1)
j )(n(k−1)

j )

×
t∫

0

eλ(n)(t−τ)
2∏

j=1
I(k−1,γ

(k−1)
j )(τ, n

(k−1)
j ) dτ

=
∑

γ(k)∈(♠(k−1))2

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

C(k,γ(k))(n(k))I(k,γ(k))(t, n(k))F(k,γ(k))(n(k)).

Thus we have

ck(t, n) =

⎛
⎝ ∑

γ(k)=0∈♠(k)

+
∑

γ(k)∈(♠(k−1))2

⎞
⎠

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

C(k,γ(k))(n(k))I(k,γ(k))(t, n(k))F(k,γ(k))(n(k))

=
∑

γ(k)∈♠(k)

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

C(k,γ(k))(n(k))I(k,γ(k))(t, n(k))F(k,γ(k))(n(k)).

This shows that (2.7) holds for k. By induction, it follows that (2.7) is true for all k ≥ 1. 
This completes the proof of Lemma 2.2. �



12 D. Damanik et al. / Journal of Functional Analysis 286 (2024) 110238
Remark 2.3. We refer to (2.7) as a combinatorial tree to emphasize both the tree structure 
of the summation formula and the importance of understanding the combinatorics of 
the expansion terms for the given PDE problem. Indeed, while the general philosophy 
underlying the approach worked out in present paper is the same as in our previous study 
of the generalized KdV equation, [12], the details of dealing with the combinatorial tree 
are dependent on the given PDE and pose model-specific challenges. Motivated by a 
question posed to us by the late Thomas Kappeler, there is forthcoming work that 
applies this approach to the standard nonlinear Schrödinger equation, as well as the 
derivative nonlinear Schrödinger equation. The key will again be to find a way to deal 
with the combinatorial tree arising from the NLSE in question.

2.3. Uniform exponential decay of the Picard sequence

In this subsection we show with the help of notations established in the previous sub-
section that the Picard sequence for the Fourier coefficients obeys a uniform exponential 
decay estimate.

Indeed, we have the following result:

Lemma 2.4. Assume that the initial Fourier coefficients c satisfy the exponential decay 
property (1.7). With the constants A and ρ from (1.7) and the dimension ν, set

B2 � 2A(6ρ−1)ν (2.8)

and

L2 � ρν

A6ν
. (2.9)

Then, we have

sup
t∈[0,L2]

k≥0

|ck(t, n)| ≤ B2e− ρ
2 |n| (2.10)

for every n ∈ Zν .

To prove Lemma 2.4, we need the following lemmas.

Lemma 2.5. For all k ≥ 1 we have

|C(k,γ(k))(n(k))| ≤ Aσ(γ(k))e−ρ|n(k)|, (2.11)

|I(k,γ(k))(t, n(k))| ≤ t�(γ(k))

D(γ(k))
, (2.12)

|F(k,γ(k))(n(k))| ≤ 1
4�(γ(k)) ≤ 1, (2.13)
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where σ(0) = 1, �(0) = 0, D(0) = 1; σ(1) = 2, �(1) = 1, D(1) = 1; for k ≥ 2, γ(k) =
(γ(k−1)

1 , γ(k−1)
2 ) ∈ (♠(k−1))2,

σ(γ(k)) =
2∑

j=1
σ(γ(k−1)

j ),

�(γ(k)) = 1 +
2∑

j=1
�(γ(k−1)

j ),

D(γ(k)) = �(γ(k))
2∏

j=1
D(k−1,γ

(k−1)
j ),

and |n(k)| =
∑2

j=1 |n(k−1)
j | if n(k) = (n(k−1)

j )1≤j≤2.

Remark 2.6. Regarding these notations, there is an intuitive understanding: σ means the 
degree or the multiplicity (of nonlinearity), � means the number of time integrations, and 
D quantifies the decay after time integration.

Proof. Recall that λ(n) is a purely imaginary number; see (2.4).
For k ≥ 1, 0 = γ(k) ∈ ♠(k), n = n(k) ∈ N(k,0),

|C(k,0)(n(k))| = |c(n)| ≤ Ae−ρ|n| = Aσ(0)e−ρ|n(k)|;

|I(k,0)(t, n(k))| = |eλ(n)t| ≤ 1 = t�(0)

D(0) ;

|F(k,0)(n(k))| = 1 = 1
4�(0) ≤ 1.

For k = 1, 1 = γ(1) ∈ ♠(1), (n1, n2) = n(1) ∈ N(1,1),

|C(1,1)(n1, n2)| =
2∏

j=1
|c(nj)| ≤

2∏
j=1

Ae−ρ|nj | = A2e−ρ(|n1|+|n2|) = Aσ(1)e−ρ|n(1)|;

|I(1,1)(t, n(1))| ≤
t∫

0

|eλ(μ(n(1)))(t−τ)|
2∏

j=1
|eλ(nj)τ |dτ = t = t�(1)

D(1) ;

|F(1,1)(n(1))| = |λ(μ(n(1)))|
2 ≤ 1

4 = 1
4�(1) < 1.

Hence (2.11)–(2.13) hold for k = 1.
Let k ≥ 2 and assume that they are true for 1, · · · , k − 1. For k, (γ(k−1)

1 , γ(k−1)
2 ) =

γ(k) ∈ (♠(k−1))2 and (n(k−1)
1 , n(k−1)

2 ) = n(k) ∈
∏2

j=1 N
(k−1,γ

(k−1)
j ), one can derive that
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|C(k,γ(k))(n(k))| =
2∏

j=1
|C(k−1,γ

(k−1)
j )(n(k−1)

j )|

≤
2∏

j=1
Aσ(γ

(k−1)
j )e−ρ|n(k−1)

j |

= A
∑2

j=1 σ(γ
(k−1)
j )e−ρ

∑2
j=1 |n(k−1)

j |

= Aσ(γ(k))e−ρ|n(k)|;

|I(k,γ(k))(t, n(k))| ≤
t∫

0

|eλ(μ(n(k)))(t−τ)|
2∏

j=1
|I(k−1,γ

(k−1)
j )(τ, n

(k−1)
j )|dτ

≤
t∫

0

2∏
j=1

τ �(γ
(k−1)
j )

D(γ(k−1)
j )

dτ

= t1+
∑2

j=1 �(γ
(k−1)
j )

(1 +
∑2

j=1 �(γ(k−1)
j ))

∏2
j=1 D(γ(k−1)

j )

= t�(γ(k))

D(γ(k))
;

|F(k,γ(k))(n(k))| ≤ |λ(μ(n(k)))|
2

2∏
j=1

|F(k−1,γ
(k−1)
j )(n(k−1)

j )|

≤ 1
4

2∏
j=1

1
4�(γ

(k−1)
j )

= 1

41+
∑2

j=1 �(γ
(k−1)
j )

= 1
4�(γ(k))

< 1.

These imply that (2.11)–(2.13) are true for k. By induction, they hold for all k ≥ 1. This 
completes the proof of Lemma 2.5. �
Lemma 2.7.

(1) For all k ≥ 1,

σ(γ(k)) = �(γ(k)) + 1. (2.14)
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(2) If 0 < ρ ≤ 1, then ∑
n∈Z

e−ρ|n| ≤ 3ρ−1. (2.15)

(3) Let dimZν N(k,γ(k)) be the integer number of components per Zν, that is, N(k,γ(k)) =
(Zν)dimZν N

(k,γ(k)) . Then

dimZν N(k,γ(k)) = σ(γ(k)). (2.16)

(4) If 0 < � ≤ 1
4 , then

♦k �
∑

γ(k)∈♠(k)

��(γ(k))

D(γ(k))
≤ 2. (2.17)

Proof. (1) Since σ(0) = 1, �(0) = 0; σ(1) = 2, �(1) = 1, then σ(0) = �(0) + 1 and 
σ(1) = �(1) + 1. Hence (2.14) holds for k = 1. Let k ≥ 2. Assume that is true for 
1, · · · , k − 1. For k and (γ(k−1)

1 , γ(k−1)
2 ) = γ(k) ∈ (♠(k−1))2, one has

σ(γ(k)) =
2∑

j=1
σ(γ(k−1)

j ) =
2∑

j=1
(�(γ(k−1)

j ) + 1) = 1 + �(γ(k)).

Hence (2.14) holds for all k ≥ 1 by induction.
(2) Let z(y) := (3 − y)ey − (3 + y), 0 < y ≤ 1. After a simple calculation, we find

z′(y) = (2 − y)ey − 1, z′′(y) = (1 − y)ey.

Since 0 < y ≤ 1, then z′′(y) ≥ 0. Hence z′ is monotonically increasing and z′(y) ≥
z′(0) = 1 > 0. Similarly one can see that z(y) ≥ z(0) = 0, that is ey+1

ey−1 ≤ 3y−1

provided that 0 < y ≤ 1. By the symmetry of Z and 0 < ρ ≤ 1,

∑
n∈Z

e−ρ|n| = 2
∞∑

n=0
e−ρn − 1 (ρ>0)= 2

1 − e−ρ
− 1 = eρ + 1

eρ − 1
(0<ρ≤1)

≤ 3ρ−1. (2.18)

(3) For k ≥ 1, N(k,0) = Zν , we know that dimZν N(k,0) = 1 = σ(0). Also N(1,1) = (Zν)2, 
hence dimZν N(1,1) = 2 = σ(1). This implies that (2.16) holds for k = 1. Let k ≥ 2. 
Assume that it is true for 1, · · · , k − 1. For k, γ(k) = (γ(k−1)

1 , γ(k−1)
2 ) ∈ (♠(k−1))2, 

and N(k,γ(k)) =
∏2

j=1 N
(k−1,γ

(k−1)
j ), we have

dimZν N(k,γ(k)) =
2∑

j=1
dimZν N(k−1,γ

(k−1)
j ) =

2∑
j=1

σ(γ(k−1)
j ) = σ(γ(k)).

By induction, (2.16) holds for all k ≥ 1.
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(4) For k = 1, by the definition of ♠(1), � and D, we have

♦1 = ��(0)

D(0) + ��(1)

D(1) = 1 + � ≤ 5
4 ≤ 2.

Let k ≥ 2. Suppose that (2.17) holds for 1, · · · , k − 1. For k, we first have

∑
γ(k)=(γ

(k−1)
1 ,γ

(k−1)
2 )∈(♠(k−1))2

��(γ(k))

D(γ(k))

=
∑

γ
(k−1)
j ∈♠(k−1)

j=1,2

�1+
∑2

j=1 �(γ
(k−1)
j )(

1 +
∑2

j=1 �(γ(k−1)
j )

)∏2
j=1 D(γ(k−1)

j )

≤ �
∑

γ
(k−1)
j ∈♠(k−1)

j=1,2

2∏
j=1

��(γ
(k−1)
j )

D(γ(k−1)
j )

= �
2∏

j=1

∑
γ

(k−1)
j ∈♠(k−1)

��(γ
(k−1)
j )

D(γ(k−1)
j )

≤ 22�.

Hence we have

♦k = ��(0)

D(0) +
∑

γ(k)=(γ
(k−1)
1 ,γ

(k−1)
2 )∈(♠(k−1))2

��(γ(k))

D(γ(k))

≤ 1 + 22�

≤ 2.

This shows that (2.17) is true for k. By induction, (2.17) holds for all k ≥ 1. �
Proof of Lemma 2.4. If 0 ≤ t ≤ L2, then

|ck(t, n)|
(2.7)
≤

∑
γ(k)∈♠(k)

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

|C(k,γ(k))(n(k))||I(k,γ(k))(t, n(k))||F(k,γ(k))(n(k))|

(2.11)−(2.14)
≤ A

∑
γ(k)∈♠(k)

(4−1At)�(γ(k))

D(γ(k))
∑

n(k)∈N
(k,γ(k))

(k)

e−ρ|n(k)|
μ(n )=n
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≤ A
∑

γ(k)∈♠(k)

(4−1At)�(γ(k))

D(γ(k))
∑

n(k)∈N
(k,γ(k))

e− ρ
2 |n(k)| · e− ρ

2 |n|

(2.16)
≤ A

∑
γ(k)∈♠(k)

(4−1At)�(γ(k))

D(γ(k))
∑

n(k)∈(Zν )σ(γ(k))

e− ρ
2 |n(k)| · e− ρ

2 |n|

= A
∑

γ(k)∈♠(k)

(4−1At)�(γ(k))

D(γ(k))

σ(γ(k))∏
j=1

ν∏
j′=1

∑
njj′ ∈Z

e− ρ
2 |njj′ | · e− ρ

2 |n|

(2.15)
≤ A

∑
γ(k)∈♠(k)

(4−1At)�(γ(k))

D(γ(k))
(6ρ−1)σ(γ(k))ν · e− ρ

2 |n|

(2.14)= A(6ρ−1)ν
∑

γ(k)∈♠(k)

(
4−1A(6ρ−1)νt

)�(γ(k))

D(γ(k))
· e− ρ

2 |n|

(2.17)
≤ B2e− ρ

2 |n|,

provided that 0 ≤ t ≤ L2, where B2 is given by (2.8), i.e., B2 = 2A(6ρ−1)ν . This 
completes the proof of Lemma 2.4. �
2.4. Convergence of the Picard sequence

We are now in a position to show that the Picard sequence for the Fourier coefficients 
converges. The following lemma establishes a bound for the magnitude of ck(t, n) −
ck−1(t, n), from which the desired conclusion follows.

Lemma 2.8. For k ≥ 1, 0 ≤ t ≤ L2 with L2 from (2.9), and n ∈ Zν , we have

|ck(t, n) − ck−1(t, n)| ≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj | (2.19)

≤ B2(12ρ−1)ν

2 ·
(
2−1B2(12ρ−1)νt

)k

k! · e− ρ
4 |n|. (2.20)

Hence, {ck(t, n)} is a Cauchy sequence.

Proof. It follows from Lemma 2.4 and induction that we can complete this proof.
In fact, for k = 1 we have

|c1(t, n) − c0(t, n)| ≤ |λ(n)|
2

t∫
0

|eλ(n)(t−τ)|
∑

n1,n2∈Zν

2∏
j=1

|c0(τ, nj)| dτ
n1+n2=n
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≤ B2
2t

4
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

e− ρ
2 |nj |.

This shows that (2.19) holds for k = 1.
Let k ≥ 2 and assume that (2.19) is true for 1, · · · , k − 1. For k, we first have

|ck(t, n) − ck−1(t, n)|

≤ |λ(n)|
2

t∫
0

|eλ(n)(t−τ)|
∑

n1,n2∈Zν

n1+n2=n

∣∣∣ 2∏
j=1

ck−1(τ, nj) −
2∏

j=1
ck−2(τ, nj)

∣∣∣ dτ

≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

|ck−1(τ, n1)||ck−1(τ, n2) − ck−2(τ, n2)| dτ � (I)

+ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

|ck−1(τ, n1) − ck−2(τ, n1)||ck−2(τ, n2)| dτ � (II).

For the first component, it follows from the induction hypothesis and Lemma 2.4 that

(I) ≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

B2e− ρ
2 |n1| · 2k−2Bk

2 τk−1

4k−1 · (k − 1)!
∑

m1,··· ,mk∈Zν

m1+···+mk=n2

k∏
j=1

e− ρ
2 |mj | dτ

= 2k−2Bk+1
2 tk

4k · k!
∑

n1,n2∈Zν

n1+n2=n

∑
m1,··· ,mk∈Zν

m1+···+mk=n2

e− ρ
2 |n1|

k∏
j=1

e− ρ
2 |mj |

= 2k−2Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |.

Analogously, for the second component we have

(II) ≤ 2k−2Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |.

Thus we find that

|ck(t, n) − ck−1(t, n)| ≤ (I) + (II)

≤ 2 × 2k−2Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

k+1∏
j=1

e− ρ
2 |nj |
n1+···+nk+1=n
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≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |.

By induction, we see that (2.19) holds for all k ≥ 1. Furthermore,

|ck(t, n) − ck−1(t, n)| ≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |

≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

k+1∏
j=1

e− ρ
4 |nj | · e− ρ

4 |n|

= 2k−1Bk+1
2 tk

4k · k!

k+1∏
j=1

ν∏
j′=1

∑
njj′ ∈Z

e− ρ
4 |njj′ | · e− ρ

4 |n|

(2.15)
≤ 2k−1Bk+1

2 tk

4k · k! (12ρ−1)(k+1)ν · e− ρ
4 |n|

= B2(12ρ−1)ν

2 ·
(
2−1B2(12ρ−1)νt

)k

k! · e− ρ
4 |n|.

Hence {ck(t, n)} is a Cauchy sequence on [0, L2] × Zν , completing the proof of 
Lemma 2.8. �
2.5. Proof of Theorem A: existence

In this subsection we prove the existence part of Theorem A.

Proof. By Lemma 2.8 we know that {ck(t, n)} is a Cauchy sequence and there exists 
a limit function, denoted by c†(t, n), where 0 ≤ t ≤ L2 and n ∈ Zν . By the triangle 
inequality we have

|c†(t, n)| ≤ |c†(t, n) − ck(t, n)| + |ck(t, n)|, ∀k ≥ 1.

Since k ≥ 1 is arbitrary in this estimate and the ck(t, n) obey the uniform upper bound 
(2.10), it follows that the same upper bound holds for c†(t, n), that is,

|c†(t, n)| ≤ B2e− ρ
2 |n|. (2.21)

Naturally we regard the coefficients c†(t, n) as the Fourier coefficients of a candidate 
solution u†(t, x) of the Cauchy problem in question, and hence set

u†(t, x) :=
∑

c†(t, n)ei〈n〉x;

n∈Zν
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(∂#
x u†)(t, x) :=

∑
n∈Zν

(i〈n〉)#c†(t, n)ei〈n〉x, # = 1, 2;

(u†u†
x)(t, x) :=

∑
n∈Zν

i〈n〉
2

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

c†(t, nj)ei〈n〉x;

(u†
t)(t, x) :=

∑
n∈Zν

⎧⎪⎪⎨
⎪⎪⎩λ(n)c†(t, n) + λ(n)

2
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

c†(t, nj)

⎫⎪⎪⎬
⎪⎪⎭ ei〈n〉x;

(u†
xxt)(t, x) :=

∑
n∈Zν

(i〈n〉)2

⎧⎪⎪⎨
⎪⎪⎩λ(n)c†(t, n) + λ(n)

2
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

c†(t, nj)

⎫⎪⎪⎬
⎪⎪⎭ ei〈n〉x.

We claim that u† is a classical spatially quasi-periodic solution to quasi-periodic Cauchy 
problem (1.4)–(1.5), that is, u†

t , u†
xxt, u

†
x, u†u†

x satisfy BBM (1.4) in the classical sense 
and u† has initial data (1.5). On the one hand, by the exponential decay of c†(t, n), one 
can see that u†, u†

t , u†
xxt, u

†
x, u†u†

x are uniformly and absolutely convergent. It is sufficient 
to verify that

∑
n∈Zν

(1 + |n| + |n|2)

⎧⎪⎪⎨
⎪⎪⎩c†(t, n) +

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

|c†(t, nj)|

⎫⎪⎪⎬
⎪⎪⎭ < ∞.

In fact, for # = 0, 1, 2, we have

∑
n∈Zν

|n|#|c†(t, n)|
(2.21)
�

∑
n∈Zν

|n|#e− ρ
2 |n|

=
∑

n∈Zν

|n|#e− ρ
4 |n|︸ ︷︷ ︸

bounded

e− ρ
4 |n|

�
∑

n∈Zν

e− ρ
4 |n|

(2.15)
≤ (12ρ−1)ν

< ∞

and

∑
n∈Zν

|n|#
∑

n1,n2∈Zν

2∏
j=1

|c†(t, nj)|
(2.21)
�

∑
n∈Zν

|n|#
∑

n1,n2∈Zν

2∏
j=1

e− ρ
2 |nj |
n1+n2=n n1+n2=n
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≤
∑

n∈Zν

|n|#e− ρ
8 |n|︸ ︷︷ ︸

bounded

∑
n1,n2∈Zν

2∏
j=1

e− ρ
4 |nj |

︸ ︷︷ ︸
bounded by (2.15)

e− ρ
8 |n|

�
∑

n∈Zν

e− ρ
8 |n|

(2.15)
≤ (24ρ−1)ν

< ∞.

On the another hand, since c† is the limit function of the Picard sequence {ck} defined 
by (2.6), it satisfies (2.5). Hence c† is a solution to (2.3) and satisfies the initial condition 
c†(0, n) = c(n). This implies that u† is a classical spatially quasi-periodic solution to the 
Cauchy problem (1.4)–(1.5). Hence the existence part of Theorem A is proved. �
2.6. Proof of Theorem A: uniqueness

In this subsection we prove the uniqueness part of Theorem A.

Proof. Let

v(t, x) =
∑

n∈Zν

v̂(t, n)ei〈n〉x and w(t, x) =
∑

n∈Zν

ŵ(t, n)ei〈n〉x

be two quasi-periodic solutions to (1.4)–(1.5), where v̂ and ŵ satisfy the following con-
ditions:

• (same initial data)

v̂(0, n) = ŵ(0, n), ∀n ∈ Zν ;

• (integral equation)

v̂(t, n) = eλ(n)tv̂(0, n) + λ(n)
2

t∫
0

eλ(n)(t−τ)
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

v̂(τ, nj)dτ,

ŵ(t, n) = eλ(n)tŵ(0, n) + λ(n)
2

t∫
0

eλ(n)(t−τ)
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

ŵ(τ, nj)dτ ;

• (exponential decay)

|v̂(t, n)| ≤ B2e− ρ
2 |n| and |ŵ(t, n)| ≤ B2e− ρ

2 |n|, 0 ≤ t ≤ L2, n ∈ Zν .
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For all k ≥ 1, one can derive that

|v̂(t, n) − ŵ(t, n)| ≤ 2kBk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |. (2.22)

In fact, we first have

|v̂(t, n) − ŵ(t, n)| ≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

|
2∏

j=1
v̂(τ, nj) −

2∏
j=1

ŵ(τ, nj)| dτ

≤ B2
2t

2
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

e− ρ
2 |nj |.

Hence (2.22) holds for k = 1. Let k ≥ 2 and assume that it holds for 1, · · · , k − 1. For k, 
we have

|v̂(t, n) − ŵ(t, n)| ≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

∣∣∣ 2∏
j=1

v̂(τ, nj) −
2∏

j=1
ŵ(τ, nj)

∣∣∣ dτ

≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

|v̂(τ, n1) − ŵ(τ, n1)||v̂(τ, n2)| dτ � (I ′)

+ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

|ŵ(τ, n1)||v̂(τ, n2) − ŵ(τ, n2)| dτ � (II ′).

For the first component we have

(I ′) ≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

2k−1Bk
2 τk−1

4k−1 · (k − 1)!
∑

m1,··· ,mk∈Zν

m1+···+mk=n1

k∏
j=1

e− ρ
2 |mj | · B2e− ρ

2 |n2|dτ

= 2k−1Bk+1
2 tk

4k · k!
∑

n1,n2∈Zν

n1+n2=n

∑
m1,··· ,mk∈Zν

m1+···+mk=n1

e− ρ
2 |n2|

k∏
j=1

e− ρ
2 |mj |

= 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |.

After a similar argument we find
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(II ′) ≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |.

Hence we have

|v̂(t, n) − ŵ(t, n)| ≤ (I ′) + (II ′)

≤ 2kBk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |.

By induction, (2.22) holds for all k ≥ 1. By (2.15) one can derive that

|v̂(t, n) − ŵ(t, n)| ≤ 2kBk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

k+1∏
j=1

e− ρ
2 |nj |

≤2kBk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

k+1∏
j=1

e− ρ
4 |nj | · e− ρ

4 |n|

= 2kBk+1
2 tk

4k · k!

k+1∏
j=1

ν∏
j′=1

∑
njj′ ∈Zν

e− ρ
4 |njj′ | · e− ρ

4 |n|

≤ 2kBk+1
2 tk

4k · k! (12ρ−1)(k+1)ν · e− ρ
4 |n|

≤ B2(12ρ−1)ν · (2−1B2(12ρ−1)νt)k

k! · e− ρ
4 |n|.

As these estimates hold for arbitrary k ≥ 1, we can send k → ∞ in the upper bound for 
|v̂(t, n) − ŵ(t, n)|, and since the limit vanishes, we have

v̂(t, n) ≡ ŵ(t, n), 0 ≤ t ≤ L2, n ∈ Zν .

This implies that the spatially quasi-periodic solution to the quasi-periodic Cauchy prob-
lem (1.4)–(1.5) is unique. Hence the uniqueness component of Theorem A is proved. �
3. The general case: gBBM

In this section we study the general case, that is, p ≥ 2. In particular we address the 
remaining cases p ≥ 3. The key point is to propose new indices for the term up−1ux and 
their relations (compared with [11]). Proofs that are similar to the ones in Section 2 are 
omitted; we only give those proofs that need significant new arguments.
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To avoid confusion of symbols, set û(n) = c(n) and û(t, n) = c(t, n). The counterparts 
of N, C, I, F, σ, � and D will be denoted by N , C , I , F , α, β and D , respectively. 
Their definitions will be introduced below.

In the Fourier space, the quasi-periodic Cauchy problem (1.4)–(1.5) is again reduced 
to a nonlinear infinite system of coupled ODEs,

(∂tc)(t, n) − λ(n)c(t, n) = λ(n)
p

∑
n1,··· ,np∈Zν

n1+···+np=n

p∏
j=1

c(t, nj), ∀n ∈ Zν (3.1)

with initial data

c(0, n) = c(n), ∀n ∈ Zν . (3.2)

Obviously c(t, 0) ≡ c(0). According to the variation of constants formula, the Cauchy 
problem (3.1)–(3.2) is equivalent to the following integral equation,

c(t, n) = eλ(n)tc(n) + λ(n)
p

t∫
0

eλ(n)(t−τ)
∑

n1,··· ,np∈Zν

n1+···+np=n

p∏
j=1

c(τ, nj) dτ, ∀n ∈ Zν\{0}.

Define the Picard sequence {ck(t, n)} to approximate c(t, n) by letting

ck(t, n) :=

⎧⎨
⎩

eλ(n)tc(n), k = 0;
c0(t, n) + λ(n)

p

∫ t

0 eλ(n)(t−τ) ∑
n1,··· ,np∈Zν

n1+···+np=n

∏p
j=1 ck−1(τ, nj)dτ, k ≥ 1.

Next we will use the combinatorial tree form of the Picard sequence to prove its 
exponential decay property and then to prove that it is a Cauchy sequence.

Recall the definition of μ; see subsection 2.2. Set

¶(k) :=
{

{0, 1}, k = 1;
{0} ∪ (¶(k−1))p, k ≥ 2.

N (k,γ(k)) :=

⎧⎪⎪⎨
⎪⎪⎩
Zν , 0 = γ(k) ∈ ¶(k), k ≥ 1;
(Zν)p, 1 = γ(1);∏p

j=1 N (k−1,γ
(k−1)
j ), (γ(k−1)

j )1≤j≤p = γ(k) ∈ (¶(k−1))p, k ≥ 2.

C (k,γ(k))(n(k)) :=
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c(n), 0 = γ(k) ∈ ¶(k), n = n(k) ∈ N (k,0), k ≥ 1;∏p
j=1 c(nj), 1 = γ(1) ∈ ¶(1), (nj)1≤j≤p = n(1) ∈ N (1,1);∏p
j=1 C (k−1,γ

(k−1)
j )(n(k−1)

j ), (γ(k−1)
j )1≤j≤p = γ(k) ∈ (¶(k−1))p,

(n(k−1)
j )1≤j≤p = n(k) ∈

∏p
j=1 N (k−1,γ

(k−1)
j ),

k ≥ 2.

I (k,γ(k))(t, n(k)) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eλ(n)t, 0 = γ(k) ∈ ¶(k),

n = n(k) ∈ N (k,0),

k ≥ 1;∫ t

0 eλ(μ(n(1))(t−τ)) ∏p
j=1 eλ(nj)τ dτ, 1 = γ(1) ∈ ¶(1),

(nj)1≤j≤p = n(1)

∈ N (1,1);∫ t

0 eλ(μ(n(k)))(t−τ) ∏p
j=1 I (k−1,γ

(k−1)
j )(τ, n

(k−1)
j )dτ, (γ(k−1)

j )1≤j≤p = γ(k)

∈ (¶(k−1))p,

(n(k−1)
j )1≤j≤p = n(k)

∈
∏p

j=1 N (k−1,γ
(k−1)
j ),

k ≥ 2.

F (k,γ(k))(n(k)) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 = γ(k) ∈ ¶(k),

n = n(k) ∈ N (k,0),

k ≥ 1;
λ(μ(n(1)))

p , 1 = γ(1) ∈ ¶(1),

(nj)1≤j≤p = n(1) ∈ N (1,1);
λ(μ(n(k)))

p

∏p
j=1 F (k−1,γ

(k−1)
j )(n(k−1)

j ), (γ(k−1)
j )1≤j≤p = γ(k) ∈ (¶(k−1))p,

(n(k−1)
j )1≤j≤p = n(k)

∈
∏p

j=1 N (k−1,γ
(k−1)
j ), k ≥ 2.

With the help of these abstract symbols, we have the following:

Lemma 3.1. The Picard sequence {ck(t, n)} can be rewritten as a combinatorial tree, that 
is,

ck(t, n) =
∑

γ(k)∈¶(k)

∑
n(k)∈N (k,γ(k))

μ(n(k))=n

C (k,γ(k))(n(k))I (k,γ(k))(t, n(k))F (k,γ(k))(n(k)), ∀k ≥ 1.
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By induction, we can prove the following estimates for C , I and F .

Lemma 3.2. For all k ≥ 1,

|C (k,γ(k))(n(k))| ≤ Aα(γ(k))e−ρ|n(k)|,

|I (k,γ(k))(t, n(k))| ≤ tβ(γ(k))

D(γ(k))
,

|F (k,γ(k))(n(k))| ≤ 1
(2p)β(γ(k)) < 1,

where

α(γ(k)) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
p−1 , 0 = γ(k) ∈ ¶(k), k ≥ 1;

p
p−1 , 1 = γ(1) ∈ ¶(1);∑p

j=1 α(γ(k−1)
j ), (γ(k−1)

j )1≤j≤p = γ(k) ∈ (¶(k−1))p,

k ≥ 2,

β(γ(k)) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 = γ(k) ∈ ¶(k), k ≥ 1;
1, 1 = γ(1) ∈ ¶(1);
1 +

∑p
j=1 β(γ(k−1)

j ), (γ(k−1)
j )1≤j≤p = γ(k) ∈ (¶(k−1))p,

k ≥ 2,

D(γ(k)):=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, 0 = γ(k) ∈ ¶(k), k ≥ 1;
1, 1 = γ(1) ∈ ¶(1);
�(γ(k))

∏p
j=1 D(γ(k−1)

j ), (γ(k−1)
j )1≤j≤p = γ(k) ∈ (¶(k−1))p,

k ≥ 2.

The following lemma contains some observations we will need below:

Lemma 3.3. For all k ≥ 1,

(1) dimZν N (k,γ(k)) = (p − 1)α(γ(k));
(2) α(γ(k)) = β(γ(k)) + 1

p−1 ;
(3) If 0 ≤ � ≤ (p−1)p−1

pp , then

�k �
∑

γ(k)∈¶(k)

�β(γ(k))

D(γ(k))
≤ p

p − 1 , ∀k ≥ 1.

Proof. We first prove the first two identities. It is easy to see that they are true for 
0 = γ(k) ∈ ¶(k), k ≥ 1, and 1 = γ(1). Assume that they hold for 1, · · · , k − 1, where 
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k ≥ 2. For (γ(k−1)
j )1≤j≤p = γ(k) ∈ ¶(k), by the definition of α, β and N (k,γ(k)), one can 

derive that

dimZν N (k,γ(k)) = dimZν

p∏
j=1

N (k−1,γ
(k−1)
j )

=
p∑

j=1
dimZν N (k−1,γ

(k−1)
j )

= (p − 1)
p∑

j=1
α(γ(k−1)

j )

= (p − 1)α(γ(k))

and

α(γ(k)) =
p∑

j=1
α(γ(k−1)

j )

=
p∑

j=1

(
β(γ(k−1)

j ) + 1
p − 1

)

= 1 +
p∑

j=1
β(γ(k−1)

j ) + 1
p − 1

= β(γ(k)) + 1
p − 1 .

By induction, it follows that the first two identities hold for all k ≥ 1.
Next we will prove the last inequality. For k = 1, we have

�1 = 1 + � ≤ 1 + (p − 1)p−1

pp
≤ p

p − 1 .

This shows that it holds for k = 1. Let k ≥ 2 and assume that it is true for 1, · · · , k − 1. 
For k, we have

�k ≤ 1 + �

p∏
j=1

∑
γ

(k−1)
j ∈¶(k−1)

�β(γ
(k−1)
j )

D(γ(k−1)
j )

≤ 1 + (p − 1)(p−1)

pp
·
(

p

p − 1

)p

= p

p − 1 .

Hence the last inequality is true for all k ≥ 1. This completes the proof of Lemma 3.3. �
In a similar way as in the proof of Lemma 2.4, we can obtain uniform exponential 

decay for the Picard sequence {ck(t, n)}:
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Lemma 3.4. Assume that the initial Fourier coefficients c(n) obey (1.7). With the con-
stants A and ρ from (1.7) and the dimension ν set

Bp � p

p − 1A 1
p−1 (6ρ−1)ν (3.3)

and

Lp � 2(p − 1)p−1ρ(p−1)ν

pp−1A6(p−1)ν
. (3.4)

Then, we have

sup
t∈[0,Lp]

k≥0

|ck(t, n)| ≤ Bpe− ρ
2 |n|

for every n ∈ Zν .

Furthermore using the following pattern decomposition,

|
�∏

j=1
�j −

�∏
j=1

�j | ≤
�∑

j′=1

j′−1∏
j=1

|�j | · |�j′−,�j′ | ·
�∏

j=j′+1
|�j |,

where

0∏
j=1

|�j | := 1 and
�∏

j=�+1
|�j | := 1,

we can prove the following by induction:

Lemma 3.5. For all k ≥ 1,

|ck(t, n) − ck−1(t, n)| ≤ pk−1B(p−1)k+1
p tk

(2p)k · k!
∑

n1,··· ,n(p−1)k+1∈Zν

n1+···+n(p−1)k+1=n

(p−1)k+1∏
j=1

e− ρ
2 |nj |

≤ Bp(12ρ−1)ν

p
·
(
2−1Bp−1

p (12ρ−1)(p−1)νt
)k

k! · e− ρ
4 |n|.

Hence {ck(t, n)} is a Cauchy sequence on [0, Lp] × Zν .

With these estimates in hand, Theorem A for the quasi-periodic Cauchy problem 
(1.4)–(1.5), i.e. gBBM, follows in the same way as it did in Section 2 for BBM. This 
completes the proof of Theorem A.
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4. Proof of Theorem B

In this section we generalize the decay condition from exponential to polynomial for 
the Fourier coefficients of the quasi-periodic initial data. For the sake of convenience 
and readability, we take the case of p = 2 (BBM) as an illustration. This generalization 
works for the general case (we will give a proof for the general case in the forthcoming 
paper on the nonlinear Schrödinger equation with quasi-periodic initial data mentioned 
in Remark 2.3).

Specifically, the exponential decay condition (1.7) is replaced by the polynomial decay 
condition (1.9), where 2 ≤ ν < r

4 − 2.
From the proof above, we need to re-estimate only C.

Lemma 4.1. If the initial Fourier coefficients satisfy the polynomial decay estimate (1.9), 
then

|C(k,γ(k))(n(k))| ≤ Aσ(γ(k))
σ(γ(k))∏

j=1

(
1 + |(n(k))j |

)−r
, ∀k ≥ 1. (4.1)

Proof. We first prove the following equality: for all k ≥ 1 and n(k) = (nj)1≤j≤σ(γ(k)) ∈
N(k,γ(k)),

C(k,γ(k))(n(k)) =
σ(γ(k))∏

j=1
c(nj). (4.2)

It is not difficult to see that (4.2) holds for 0 = γ(k) ∈ ♠(k), k ≥ 1, and 1 = γ(1) ∈ ♠(1).
Let k ≥ 2. Assume that it holds for 1, · · · , k − 1. For k, (γ(k−1)

1 , γ(k−1)
2 ) =

γ(k) ∈ (♠(k−1))2 and (n(k−1)
1 , n(k−1)

2 ) = n(k) ∈
∏2

j=1 N
(k−1,γ

(k−1)
j ), where n

(k−1)
1 =

(nj)1≤j≤σ(γ
(k−1)
1 ) and n

(k−1)
2 = (n

σ(γ
(k−1)
1 )+j

)1≤j≤σ(γ
(k−1)
1 ), by the definition of C, one 

can derive that

C(k,γ(k))(n(k)) = C(k−1,γ
(k−1)
1 )(n(k−1)

1 ) · C(k−1,γ
(k−1)
2 )(n(k−1)

2 )

=
σ(γ

(k−1)
1 )∏
j=1

c(nj) ·
σ(γ

(k−1)
2 )∏
j=1

c(n
σ(γ

(k−1)
1 )+j

)

=
σ(γ(k))∏

j=1
c(nj).

By induction, (4.2) holds for all k ≥ 1. It follows from polynomial decay (1.9) for c that
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|C(k,γ(k))(n(k))| =
σ(γ(k))∏

j=1
|c((n(k))j)|

≤
σ(γ(k))∏

j=1
A(1 + |(n(k))j |)−r

= Aσ(γ(k))
σ(γ(k))∏

j=1
(1 + |(n(k))j |)−r.

This completes the proof of Lemma 4.1. �
In addition, we need the following basic statements:

Lemma 4.2.

(1) (Mean value inequality)

n∏
j=1

aj ≤

⎛
⎝ 1

n

n∑
j=1

aj

⎞
⎠n

, aj > 0, j = 1, · · · , n ∈ N. (4.3)

(2) (Bound for the Riemann zeta function on R)

∞∑
n=1

1
ns =: ζ(s) ≤ 1 + 1

s − 1 , s > 1. (4.4)

(3) Set

∑
n∈Zν

1
(1 + |n|)s := H (s; ν). (4.5)

If 2 ≤ ν < s, then

H (s; ν) ≤ b(s; ν) � 1 +
ν∑

j0=1

(
ν
j0

)
2j0j−s

0

{
ζ

(
s
j0

)}j0

. (4.6)

(4) (Generalized Bernoulli inequality)

m∏
j=1

(1 + xj) ≥ 1 +
m∑

j=1
xj , (4.7)

where 2 ≤ m ∈ N, x1, · · · , xr are real numbers, all greater than −1, and all with the 
same sign.
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Proof. (1) This is just the Arithmetic Mean-Geometric Mean inequality, so the proof is 
omitted.

(2) Let g(x) = x−s, s > 1. Notice that g is monotonically decreasing on [1, ∞). Thus, 
we have

g(n + 1) ≤
n+1∫
n

g(τ)dτ, ∀n ≥ 1. (4.8)

For all N ≥ 2, the summation of (4.8) over n = 1, . . . , N − 1 yields

N∑
n=1

g(n) ≤ g(1) +
N∫

1

g(τ) dτ,

that is,

N∑
n=1

1
ns ≤ 1 + 1

s − 1 , uniformly for N, provided that s > 1.

Hence (4.4) holds for all s > 1.
(3) Set ℘ := {0, · · · , ν − 1, ν}. For every j0 ∈ ℘, define

Sj0 := {n = (n1, · · · , nν) ∈ Zν : exactly ν − j0 components are equal to zero}.

Hence we have the following decomposition,

H (s; ν) = 1 +
∑

n∈
⋃

j0∈℘\{0} Sj0

(1 + |n|)−s � 1 + (IV )

On the one hand, for all j0 ∈ ℘\{0}, we have

∑
n∈Sj0

(1 + |n|)−s =
(

ν
j0

) ∑
n=(n1,··· ,nj0 ,0,··· ,0)∈Zν

n1,··· ,nj0 ∈Z\{0}

(1 + |n|)−s

=
(

ν
j0

) ∑
n1,··· ,nj0 ∈Z\{0}

⎛
⎝1 +

j0∑
j=1

|nj |

⎞
⎠−s

≤
(

ν
j0

) ∑
n1,··· ,nj0 ∈Z\{0}

⎛
⎝ j0∑

j=1
|nj |

⎞
⎠−s

(4.3)
≤

(
ν
j0

)
j−s

0

∑ j0∏
j=1

|nj |−
s

j0
n1,··· ,nj0 ∈Z\{0}
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=
(

ν
j0

)
j−s

0

j0∏
j=1

∑
nj∈Z\{0}

|nj |−
s

j0

=
(

ν
j0

)
2j0j−s

0

j0∏
j=1

∞∑
nj=1

n
− s

j0
j

=
(

ν
j0

)
2j0j−s

0

j0∏
j=1

ζ

(
s
j0

)

=
(

ν
j0

)
2j0j−s

0

{
ζ

(
s
j0

)}j0

.

Hence we have

(IV ) =
∑

n∈
⋃

j0∈℘\{0} Sj0

(1 + |n|)−s

=
∑

j0∈℘\{0}

∑
n∈Sj0

(1 + |n|)−s

=
ν∑

j0=1

(
ν
j0

)
2j0j−s

0

{
ζ

(
s
j0

)}j0

.

Combining these estimates, we arrive at the following inequality,

H (s; ν) ≤ 1 +
ν∑

j0=1

(
ν
j0

)
2j0j−s

0

{
ζ

(
s
j0

)}j0

� b(s; ν).

It follows from (4.4) that H (s; ν) is a bounded positive number for any fixed s and 
ν for which 2 ≤ ν < s.

(4) Clearly, for m = 2, it follows from the same sign condition of x1 and x2 that

(1 + x1)(1 + x2) = 1 + x1 + x2 + x1x2 ≥ 1 + x1 + x2.

Let m ≥ 3. Assume that (4.7) holds for all 2 < m′ < m. For m, by the induction 
hypothesis, xm > −1 and the same sign condition, we have

m∏
j=1

(1 + xj) =
m−1∏
j=1

(1 + xj) × (1 + xm)

≥ (1 + x1 + · · · + xm−1)(1 + xm)

= 1 + x1 + · · · + xm−1 + xm +
m−1∑
j=1

xjxm

≥ 1 + x1 + · · · + xm−1 + xm.
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By induction, (4.7) holds for all 2 ≤ m ∈ N. �
In what follows we will prove that the Picard sequence satisfies a uniform polynomial 

decay estimate (Lemma 4.3) and is fundamental (i.e., a Cauchy sequence; Lemma 4.4).

Lemma 4.3. If 0 ≤ t ≤ 1
Ab

( r
2 ;ν

) � L′
2 and 2 ≤ ν < r

2 , then

|ck(t, n)| ≤ B2(1 + |n|)− r
2 , for all N � k ≥ 1, where B2 � 2Ab

(r
2 ; ν

)
. (4.9)

Proof. We first have

|ck(t, n)|
(2.7)
≤

∑
γ(k)∈♠(k)

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

|C(k,γ(k))(n(k))||I(k,γ(k))(t, n(k))||F(k,γ(k))(n(k))|

(4.1),(2.12)−(2.14)
≤ A

∑
γ(k)∈♠(k)

(4−1At)�(γ(k))

D(γ(k))
∑

n(k)∈N
(k,γ(k))

μ(n(k))=n

σ(γ(k))∏
j=1

(1 + |(n(k))j |)−r. (4.10)

The main difference, compared to the proof in the exponential decay case, is to deal with 
the term

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

σ(γ(k))∏
j=1

(1 + |(n(k))j |)−r

=
∑

n(k)∈N
(k,γ(k))

μ(n(k))=n

σ(γ(k))∏
j=1

(1 + |(n(k))j |)− r
2 ·

σ(γ(k))∏
j=1

(1 + |(n(k))j |)− r
2

︸ ︷︷ ︸
�

. (4.11)

It follows from the generalized Bernoulli inequality (4.7) and μ(n(k)) = n that

� =
σ(γ(k))∏

j=1
(1 + |(n(k))j |)− r

2

=

⎛
⎝σ(γ(k))∏

j=1
(1 + |(n(k))j |)

⎞
⎠

− r
2

(4.7)
≤

⎛
⎝1 +

σ(γ(k))∑
j=1

|(n(k))j |

⎞
⎠

− r
2
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= (1 + |n(k)|)− r
2

≤ (1 + |n|)− r
2 . (4.12)

Inserting (4.12) into (4.11) yields

∑
n(k)∈N

(k,γ(k))

μ(n(k))=n

σ(γ(k))∏
j=1

(1 + |(n(k))j |)−r ≤
∑

n(k)∈N(k,γ(k))

σ(γ(k))∏
j=1

(1 + |(n(k))j |)− r
2 · (1 + |n|)− r

2

≤
∑

n1,··· ,n
σ(γ(k))∈Zν

σ(γ(k))∏
j=1

(1 + |nj |)− r
2 · (1 + |n|)− r

2

=
σ(γ(k))∏

j=1

∑
nj∈Zν

(1 + |nj |)− r
2

︸ ︷︷ ︸
=H

( r
2 ;ν

)
≤b

( r
2 ;ν

)
by (4.6)

·(1 + |n|)− r
2

≤
{
b

(r
2 ; ν

)}σ(γ(k))
(1 + |n|)− r

2 . (4.13)

Inserting (4.13) into (4.10), by (2.14), we obtain

|ck(t, n)| ≤ Ab
(r

2 ; ν
) ∑

γ(k)∈♠(k)

{
4−1Ab

( r
2 ; ν

)
t
}�(γ(k))

D(γ(k))
· (1 + |n|)− r

2 .

It follows from (2.17) that

|ck(t, n)| ≤ B2(1 + |n|)− r
2 , where B2 � 2Ab

(r
2 ; ν

)
,

provided that

0 ≤ t ≤ L′
2 = 1

Ab
( r

2 ; ν
) .

This completes the proof of Lemma 4.3. �
Lemma 4.4. If 2 ≤ ν < r

4 , then for all k ≥ 1,

|ck(t, n) − ck−1(t, n)| ≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

⎧⎨
⎩

k+1∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
2

(4.14)

≤
B2b

( r
4 ; ν

)
2 ·

{
2−1B2b

( r
4 ; ν

)
t
}k

k! · {1 + |n|}− r
4 . (4.15)
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This implies that {ck(t, n)} is a Cauchy sequence on (t, n) ∈ [0, L′
2] × Zν .

Proof. For k = 1 one has

|c1(t, n) − c0(t, n)| ≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

|c0(s, nj)| dτ

= 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

|c(nj)| dτ

≤ B2
2t

4
∑

n1,n2∈Zν

n1+n2=n

⎧⎨
⎩

2∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
2

.

This shows that (4.14) is true for k = 1. Let k ≥ 2 and suppose that it holds for 
1, · · · , k − 1. For k, one can derive that

|ck(t, n) − ck−1(t, n)| ≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

|ck−1(τ, n1)||ck−1(τ, n2) − ck−2(τ, n2)| dτ � (I ′)

+ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

|ck−1(τ, n1) − ck−2(τ, n1)||ck−2(τ, n2)| dτ � (II ′),

where

(I ′) ≤ 1
4

t∫
0

∑
n1,n2∈Zν

n1+n2=n

B2(1 + |n1|)− r
2 · 2k−2Bk

2τk−1

4k−1 · (k − 1)!
∑

m1,··· ,mk∈Zν

m1+···+mk=n2

⎧⎨
⎩

k∏
j=1

(1 + |mj |)

⎫⎬
⎭

− r
2

dτ

= 2k−2Bk+1
2 tk

4k · k!
∑

n1,n2∈Zν

n1+n2=n

∑
m1,··· ,mk∈Zν

m1+···+mk=n2

(1 + |n1|)− r
2

⎧⎨
⎩

k∏
j=1

(1 + |mj |)

⎫⎬
⎭

− r
2

= 2k−2Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

⎧⎨
⎩

k+1∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
2

,

and analogously
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(II ′) ≤2k−2Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

⎧⎨
⎩

k+1∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
2

.

Hence, according to (4.7), we have

|ck(t, n) − ck−1(t, n)|

≤ (I ′) + (II ′)

≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

⎧⎨
⎩

k+1∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
2

≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

n1+···+nk+1=n

⎧⎨
⎩

k+1∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
4

·

⎧⎨
⎩

k+1∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
4

≤ 2k−1Bk+1
2 tk

4k · k!
∑

n1,··· ,nk+1∈Zν

⎧⎨
⎩

k+1∏
j=1

(1 + |nj |)

⎫⎬
⎭

− r
4

·

⎧⎨
⎩1 +

k+1∑
j=1

|nj |

⎫⎬
⎭

− r
4

≤ 2k−1Bk+1
2 tk

4k · k!

k+1∏
j=1

∑
nj∈Zν

{(1 + |nj |)}− r
4

︸ ︷︷ ︸
=H

(
r
4 ;ν

)
≤b

(
r
4 ;ν

)
by (4.6)

· {1 + |n|}− r
4

=
B2b

( r
4 ; ν

)
2 ·

{
2−1B2b

( r
4 ; ν

)
t
}k

k! · {1 + |n|}− r
4 .

This completes the proof of Lemma 4.4. �
We are now in a position to prove our second main result, Theorem B.

Proof of Theorem B. The existence proof is similar to the case of exponential decay. The 
uniqueness proof is analogous to proving that the Picard sequence is a Cauchy sequence. 
We mainly give a convergence analysis to show that the solution we construct is in the 
classical sense. In fact, for # = 0, 1, 2, one can derive that

∑
n∈Zν

|n|#|c(t, n)| �
∑

n∈Zν

|n|#(1 + |n|)− r
2

≤
∑

n∈Zν

(1 + |n|)#− r
2

= H
(r − #; ν

)

2
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and

∑
n∈Zν

|n|#
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

|c(t, nj)|

�
∑

n∈Zν

|n|#
∑

n1,n2∈Zν

n1+n2=n

2∏
j=1

(1 + |nj |)− r
2

(4.7)
≤

∑
n∈Zν

∑
n1,n2∈Zν

n1+n2=n

(|n1| + |n2|)#
2∏

j=1
(1 + |nj |)− r

4 · (1 + |n|)− r
4

≤
∑

n∈Zν

(1 + |n|)− r
4

∑
n1,n2∈Zν

n1+n2=n

((1 + |n1|)(1 + |n2|))#

2∏
j=1

(1 + |nj |)− r
4

=
∑

n∈Zν

(1 + |n|)− r
4

∑
n1,n2∈Zν

n1+n2=n

2∏
j=1

(1 + |nj |)#− r
4

≤
∑

n∈Zν

(1 + |n|)− r
4

∑
n1,n2∈Zν

2∏
j=1

(1 + |nj |)#− r
4

≤
∑

n∈Zν

(1 + |n|)− r
4

2∏
j=1

∑
nj∈Zν

(1 + |nj |)#− r
4

= H
(r

4 ; ν
){

H
(r

4 − #; ν
)}2

.

It follows from (4.5) that the convergence needed can be guaranteed if

2 ≤ ν <
r
4 − 2.

This completes the proof of Theorem B. �
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