THE ROTATION NUMBER FOR ALMOST PERIODIC POTENTIALS

WITH JUMP DISCONTINUITIES AND /-INTERACTIONS
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ABSTRACT. We consider one-dimensional Schrodinger operators with generalized almost
periodic potentials with jump discontinuities and d-interactions. For operators of this kind
we introduce a rotation number in the spirit of Johnson and Moser. To do this, we introduce
the concept of almost periodicity at a rather general level, and then the almost periodic
function with jump discontinuities and J-interactions as an application.

CONTENTS
1. Introduction
2. Almost Periodicity
2.1.  Almost Periodic Point
2.2. Compact Abelian Topological Group
3. Almost Periodic Functions with Jump Discontinuities and J-Interactions
3.1. Point Sets
3.2.  Uniform Topology
3.3. Functions With Jump Discontinuities and J-Interactions
3.4. Mean Value
4. Reduction to Skew-Product Dynamical Systems
4.1. Homotopy and Argument
4.2. Skew-Products
5. Rotation Number
5.1. Existence
5.2.  Continuity
Acknowledgments
References

Date: November 29, 2023.
* Corresponding author.
D. D. was supported by Simons Fellowship #669836 and NSF grants DMS-1700131 and DMS-2054752.
M. Z. was supported by the National Natural Science Foundation of China (Grant No. 11790273).
Z. 7. was supported by the National Natural Science Foundation of China (Grant No. 12090014).

1

BSOS

10
10
12
14
21
23
24
28
30
31
32
33
33



2 D. DAMANIK, M. ZHANG, AND Z. ZHOU

1. INTRODUCTION

The study of the spectral properties of Schrodinger operators with almost periodic po-
tentials has been an active research area for roughly half a century. Some of the exciting
features that have been exhibited are nowhere dense (i.e., Cantor) spectra and the possibility
for any of the standard spectral types (i.e., pure point, singular continuous, and absolutely
continuous) to occur within this class of models. This shows that the spectral phenomena
are richer than in the classical subclass of periodic potentials, which have been studied much
longer.

Our understanding of these issues is much more complete in one space dimension, although
some exciting progress has been made in higher dimensions as well; the reader may start
exploring the existing theory by consulting, for example, [3, 5, 15, 24] and references therein.
The key difference between the one-dimensional case and the higher-dimensional case is the
fact that the former admits a generalized eigenvalue equation that is a linear second-order
ordinary differential equation, and hence has a two-dimensional solution space for any given
energy. This should be contrasted with the fact that in space dimensions at least two,
the generalized eigenvalue equation is a partial differential equation and the solution space
is infinite-dimensional. This distinction is important because the spectral questions one is
interested in can be related to the behavior of the solutions of the generalized eigenvalue
equation.

Thus, in the case of one space dimension, it is a worthwhile goal to understand the behavior
of these solutions v, and the two-dimensionality then leads one to study their dependence on
the space variable, x € R, in the plane, (¢/(x), ¢ (z))” € R2. Choosing polar-type coordinates,
which are usually referred to as Priifer variables, one can study the growth and the rotation
of the vector ('(x),1(x)) around the origin of R? as = grows. The almost periodicity of
the potential is well known to yield a uniquely ergodic dynamical system, namely the hull,
which is the uniform closure of the set of translates and which turns out to be a compact
abelian group, together with the R translation action and the normalized Haar measure. As
a consequence, the average amount of rotation per unit step can be defined as the limit of
Birkhoff-type averages, which exists uniformly on the hull due to unique ergodicity. The
resulting limit is called the rotation number, p(E), at the energy E in question. It turns
out that p(-) is constant in a suitable neighborhood of FE if and only if E belongs to the
complement of the spectrum. In particular, each gap of the spectrum can then be labeled by
the constant value p takes on it. Additionally, the possible labels that can in principle occur
are completely determined by the hull, either via K-theory or the Schwartzman asymptotic
cycle. This realization is crucial in the study of the topological structure of the spectrum,
and in particular when proving that the spectrum is generically nowhere dense. We refer the
reader to the landmark papers by Johnson-Moser [14] and Johnson [13] for the definition and
study of the rotation number for one-dimensional almost periodic Schrodinger operators and
its application to gap labeling.

This paper is motivated by the desire to generalize almost periodic potentials by adding
suitable almost periodic local point interactions. The discussion above then suggests that
an important first step in the analysis of the resulting operators is the definition and study
of the rotation number p(E) for E € R. This is precisely what we carry out in the present
paper. The application of the rotation number we define here to the spectral analysis of these
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generalized almost periodic Schrodinger operators in one space dimension will be presented
in a forthcoming paper.

Let us describe the models we will be interested in. Following and extending the papers
[14, 32, 7], we consider the Schrédinger operator Hy v in L?(R) given by

(1.1) Hyyri(z) == —"(z) + <Q(fﬂ) + ) vid(z — xi)> Y(z),  zeR,

1€EZ
where ¢(x) € PC,(R) is a piecewise continuous almost periodic function, V' = {wv; };ez €
(>*(Z) is an almost periodic bi-sequence, and I' = {x;};cz € L(Z) is an almost periodic
point set, while §(z — x;) denotes the Dirac d-function at z;. In such a setting, ¢(z) and
> icz Vid(x — x;) can be regarded as the absolutely continuous part and the pure point part
of the potential in the measure sense, respectively. Let I£ € R. The eigenvalue equation

Hq,V,Fw = E"L/f
can be written as
d [ 0 ql@)—E\ (¢
— = ) e R\ T,
TG e
Y(zit) 0 1 Y(zi—) ) '

The system (1.2) can be regarded as an impulsive differential equation. There is a large
number of works on systems with impulses in which the behavior of solutions is studied, such
as periodicity, almost-periodicity, stability and so on; see the monograph by Samoilenko and
Perestyuk with a supplement by Trofimchuk [26] and references therein. Different from those

works, we will focus on the long time behavior of solutions of (1.2), and introduce the rotation
number in the spirit of Johnson and Moser [14] for (1.1).

The paper is organized as follows. We begin in Section 2 with general considerations cen-
tered around the concept of almost periodicity. The presentation is at a rather general level,
but as a primary application we have the construction and discussion of the hull associated
with our generalized almost periodic potential in mind. The latter application appears in
Section 3. The next step is to discuss the solutions of (1.2) from a Priifer variable perspective
that is amenable to unique ergodicity considerations; this is carried out in Section 4. Finally,
our discussion culminates in Section 5 in the definition and discussion of the rotation number
for the models we consider in this paper.

Throughout this paper, we adopt the following notations:

Np:=NU{0}; Rj :=RTU{0};
e denotes the Euler number; i denotes the imaginary unit that is different from the
index 1;

K denotes either R or C, depending on the setting. All functions and bi-sequences
are K-valued unless stated otherwise;

L(Z): the set of all discrete point sets in the real axis;

¢>(Z): the space of all bounded bi-sequences;
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e C(R): the space of all continuous functions;
e Cp(R): the subspace of C'(R) consisting of all bounded functions;
e Cy(R): the subspace of Cy(R) consisting of all uniformly continuous functions;

e PC(R): the space of all piecewise continuous functions with jump discontinuities at
a discrete point set I' € L(Z);

o PCy(R): the subspace of PC(R) consisting of all bounded functions;

e PC,(R): the subspace of PCy(R) consisting of all functions that are uniformly con-
tinuous on R\ T, i.e., for any € > 0, there exists . > 0 such that |f(x1) — f(x2)| <&
when |z1 — x| < 0 and x1, x2 belong to the same interval from R \ T’

2. ALMOST PERIODICITY

In [7], we used a unified approach to introduce almost periodicity in which the isometry
of shift actions is crucial. Here we will improve this approach by using a weaker condition

than isometry and establish further properties of almost periodicity. Some related ideas can
be founded in [31].

2.1. Almost Periodic Point. Let (Y,dist) be a complete metric space. We consider a Z
action on Y by shifts and denote for y € Y and 7 € Z the corresponding shifted element in
Y by y - 7. This shift action satisfies the following conditions:

e group structure:
(2.1) y-0=y, andy- (11 +72) = (y-71) - T2, VyeY, n, m €7
e equicontinuity:
for any € > 0, there exists d; > 0 such that
(2.2) if dist(y1,y2) < de, then dist(y1 - 7,y2 - 7) < € for all 7 € Z.
For y € Y, denote the orbit of y by
Orb(y) :={y-7:7€Z} CY,
and the hull of y by

H(y) := Orb(y)
A set A C Z is said to be relatively dense (with window size /) if there exists £ € N such that

ANnfa,a+ 0 #0, VaeN.

(Y,dist)

Definition 2.1. We say that y € Y is almost periodic if one of the following conditions
holds:

i): for any e >0, P(y,e) :={r € Z: dist(y - 7,y) < e} is relatively dense in Z;

ii): the hull of y is compact;

iii): for any sequence {7y }ren C Z, one can extract a subsequence {1} C {7x} such that
{y -} is convergent in (Y, dist), i.e., Orb(y) is relatively compact.
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The concept of almost periodic points has been introduced for a topological action of a
topological semigroup on a locally compact topological space; see [11, 4]. The difference
is that here we do not assume that Y is locally compact, but require that the shift action
satisfies the equicontinuity. Under conditions (2.1) and (2.2), we can show the equivalence of
these definitions.

Theorem 2.2. The conditions 1), ii) and iii) in Definition 2.1 are equivalent.

Proof. The argument to show the equivalence between ii) and iii) is the same as in the proof
of [7, Theorem 2.4]. We only consider the equivalence between 1) and ii).

: By [8, Therem 3.16.1] it suffices to show that (H(y),dist) is complete and
totally bounded. Since H(y) is closed in the complete space (Y, dist), (H(y), dist) is complete
as well. Hence we need only to prove that (H(y),dist) is totally bounded. It suffices to show
that Orb(y) is totally bounded. For any £ > 0, there exists J; > 0 such that condition (2.2)
holds. By Definition 2.1 i), for such d., P(y,d.) is relatively dense in Z. Thus there exists
f. € N such that for any a € Z, we have

P(y,d:) N[—a,—a+ L] # 0.

Let —a + bg . € P(y,d:) N [—a, —a + {.], where b, € [0,£.] N Z depends on the parameters a
and e. Since

dist(y - (—a +bae),y) < e,
it follows from (2.1) and (2.2) that

(2.3) dist(y - bae,y - a) < &, VaeZ
We construct a finite set A. C Orb(y) by

Ac:={y-i:i=0,1,--- L.}
By (2.3), we obtain that Orb(y) is totally bounded.

ii) = 1) |: Since H(y) is compact, by [8, Therem 3.16.1] it follows that Orb(y) is totally
bounded. Again by using J. in (2.2), we know that there exists a finite subset, denoted by
I.:.={r,€Z:i=1,2,--- ,n.} such that

(2.4) dist(y - a,y - 7i,) < O, VacZ,
where 7;, € I. depends on the parameter a. It follows from (2.1), (2.2) and (2.4) that
(2.5) dist(y,y - (—a+m7,)) <e, VaeZ.
Let us denote L. := maxj<j<p, |7i|. Then

—a— L. <L —a+71, < —a+ L, VaclZ
Combining this with (2.5), we have

P(y,e)N[—a— L., —a+ L] # 0.

Thus P(y, ¢) is relatively dense with the choice of ¢, = 2L.. [l
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Remark 2.3. The equivalence between conditions i) and iii) in Definition 2.1 is similar
to a theorem of Gottschalk. Due to [10, Theorem 1], that result states that when Y is a
uniform space, the total boundedness of Orb(y) is equivalent to the almost periodicity of y
under the equicontinuity condition. Since we have assumed that Y is a metric space, the
equivalence between total boundedness and relative compactness holds automatically, and
we may characterize the convergence by sequences instead of some uniformity.

We say that y € Y is an equicontinuous point if the shift action restricted on Orb(y)
satisfies condition (2.2). Denote the subset of Y consisting of all equicontinuous points by
Yec.

Remark 2.4. Recalling the proof of Theorem 2.2, we only use the equicontinuity of the shift
action on Orb(y). Once we do not have the equicontinuity condition (2.2) on the whole space
Y, we may define the almost periodicity for y € Y. instead of y € Y.

We say that y € Y is a complete point if (H(y),dist) is a complete subspace. Denote the
subset of Y consisting of all complete points by Y.

Remark 2.5. Again recalling the proof of Theorem 2.2, we only use the completeness of
H(y). This means that even if the whole space Y is not complete, we may still define the
almost periodicity for y € Y, instead of y € Y.

Denote the subset of Y consisting of all almost periodic points by Y.

Lemma 2.6. (Y,,,dist) is a complete metric space.

Proof. Let {y;}ien C Yg, be a Cauchy sequence. Since Y is complete, there exists yo € Y
such that

(2.6) lim dist(y;,y0) = 0.

i——+00

We assert that yg € Yg,. Indeed, since y; € Y, we know by Definition 2.1 iii) that for
any sequence {7 }ren C Z, there exists a subsequence {7}} C {7} such that {y1 - 7} }ren
is convergent in (Y, dist). For y;11 € Yoy and {7{}, i € N, repeating the process we have a
subsequence {7;"'} C {7} such that {y;+1 - 7,7 Jen is convergent in (Y,dist). It follows
from the diagonalization process that there exists a subsequence {7} C {7} such that

(2.7) {yz . T/:}keN is convergent in (Y, dist) for all i € N.

Replacing € by /3 in (2.2), we take a number d. /3. By (2.6) there exists i. € N such that
dist(yi, yo) < 673, for i > ie.

This implies that

(2.8) dist(y; - 7, yo - 7) < ¢/3, fori>i. and 7 € Z.

Let i = i. in (2.7). We know that for any € > 0, there exists k. € N such that

(2.9) dist (yz T Vi T,’jj) <e/3, for ki, ko> k.
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Then by (2.8) and (2.9) we have
dist (yo : 7',];1 LYo - 7',522)
< dist (yis . T,fll , Y0 T,’jll) + dist (yis . T,fj, Yo - T,i?) + dist (yiE . 7',?11 s Yie - 7'5;)
<e/3+4+¢/3+¢/3=¢.
Thus {yg . Tl]:}keN is convergent in (Y, dist). By Definition 2.1 iii) we have the assertion. O
Remark 2.7. Although we may define the almost periodicity for y € Y. N Y,,, we do not

know whether Lemma 2.6 is still correct in the absence of condition (2.2) and the completeness
of Y.

2.2. Compact Abelian Topological Group. We focus on the hull of y € Y, and equip
H(y) with a group operation as follows. Let

(2.10) yp = lim y-7F € H(y), k=1,2.

i—+00
Then we define the group operation by
= i - (rk 2
(2.11) yixyz:= lim oy (7 4 77).
The element y; x y is well defined. Indeed, for d,/, in (2.2), by (2.10) there exists a common
i € N such that

(2.12) dist(y - Till,y . 7'212) < dc/2 and dist(y - Ti,y . 7122) < 0gp9, foriy, iz > ie.
By (2.1), (2.2) and (2.12), we know that when i1, i > i., we have
dist (y . (Tll1 + TZ%), R (7'212 + 71-22))
<dist((y-72) - 7 (- 72) -7 ) dist (e ) 7R (o) 72
<e/2+¢/2=¢.
This implies that {y (T + TlZ)}iGN is a Cauchy sequence in the complete space (Y, dist).

Then the limit (2.11) exists. Moreover, y; X y2 is independent of the choice of the sequences
{7F}ien in (2.10). In fact, suppose that there exist other sequences {7F};cn such that

(2.13) ye = lim y-7F, k=12
1—+00
Again for d. /5 in (2.2), by (2.10) and (2.13) there exists a common i. € N such that
(2.14) dist(y - 7%,y - 7F) < 0esay fori>ig, k=1,2.
By (2.1), (2.2) and (2.14), we know that when i > i., one has
dist <y ’ (Til + 7—22)’ Y- (7:21 + 7212))
<dist((y- ) 72 (- 7 7 )+ dist (- 7D) - 7L (- 7))
<e/24¢e/2=¢.

Since € is arbitrary, we have the desired assertion.
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These considerations also suggest that the inverse of y; will be given by

(2.15) () "= iy (=7

Indeed, using a similar argument as above, we conclude that (y;)~! is independent of the

choice of the sequence {7 };cn, and hence is well defined. Moreover, (y1)~! is inverse to ;.
Denote the time-one shift ¢ - 1 by T'(g), where g = 'liin y-7; € H(y). Then we have the
1—+00

following results.

Lemma 2.8. Fory € Y,,, one has

i): H(g) = H(y) for each j € H(y);
ii): (H(y), x,”') is a compact abelian topological group;
iii): T : H(y) — H(y) is uniquely ergodic with the Haar measure, denoted by v, being the
only tnvariant measure; and

iv): for any continuous function f: H(y) — K,

1 na—1
2.16 li y-T) = d
( ) n2—n11IE>+OO n2 —n1 7—211:1 f(y T) /H(y) / .

uniformly for all y € H(y).

Proof. : For 0. in (2.2), there exists i. € N such that
(2.17) dist(y - 71, §) < 0., for i > ic.
For all 7 € Z, by (2.1) and (2.2) we have
(2.18) dist(y - (i +7),9y-7) <e, fori>i..
This implies that Orb(g) C H(y). Because H(y) is closed, we obtain H(y) C H(y). Conversely,
from (2.1), (2.2) and (2.17) we get
dist(g - (—7),y) <e, fori>i..

This implies that y € H(y). Using the argument above, we obtain H(y) C H(g). The proof
of 1) is completed.

: It is obvious by (2.11) that H(y) is an abelian group with the identity element y. One

needs to show that the group operations x and ~! are continuous. We make the following

claim:
for any € > 0, there exists d; > 0 such that
(2.19) if dist(y1,y2) < 0, then dist(y; X ys3,y2 X y3) < € for y € H(y).
Indeed, by (2.10) and the continuity of metric, we have
(2.20) 12?00 dist(y - 7,y - 77) = dist(y1, y2)-

Replacing € by €/2 in (2.2), we take d./o. When dist(y1,y2) < d./2, by (2.20) there exists
i¢ € N such that

dist(y - Tz-l,y . TZ-Q) < 0/, fori > ie.
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This implies that

dist (y )y (R Tf’)) <e/2.
By (2.11) and the continuity of the metric, the claim (2.19) is deduced and d,/, is the desired
number.

Let yg, gk € H(y), k = 1,2. We take d./p in (2.19). When dist(y1,%1) < dc/2 and
dist(y2, J2) < d./2, it follows from (2.19) that
dist(91 X 72,91 X y2)
< dist(g1 X J2,y1 X §2) + dist(y1 X F2, y1 X y2)
<e/24¢e/2=¢.
This proves the continuity of the operation x. Similarly, we can obtain the continuity of the
operation ~!. The proof of ii) is completed.

: By (2.1) and (2.18) we have
T"(g) =g-7= lim y- (7 +71), V1eL.

i—+00
By (2.11) we have T'(g) = (y-1) x g. This implies that 7" is a rotation on the compact abelian
topological group H(y). Furthermore, due to (2.1) and i), 7" is a minimal rotation. Thus the
proof of iii) is completed by [30, Theorem 6.20].

: Applying a standard consequence of unique ergodicity, [30, Theorem 6.19], to T :
g — g - 1, the statement iv) follows readily. O

Definition 2.9. For any y € Y,, and any continuous function f : H(y) — K, we call
fH(y) fdvy the mean value of y with respect to f, and denote it by My(y).

Remark 2.10. Similar to Remark 2.5, Lemma 2.8 may be established for y € Y, in the
absence of completeness of Y.

We consider the case Y := ¢>°(Z) and define a metric £*°(Z) x (*(Z) — R} by
(2.21) dist(Vi, Vo) == ||[V1 — Valleo = sup |v} — v?],
1€Z
where Vj, := {vF},ez € £°(Z), k = 1,2. The following is well known.
Lemma 2.11. ({*°(Z),dist) is a complete metric space.

For V = {v;}icz € £°°(Z) and 7 € Z, the shift of V is defined by

(2.22) V1= {vitr biez.
Obviously for Vi, € £>°(Z), k = 1,2, we have
(2.23) dist(Vy - 7, Vo - 7) = dist(V4, Va), Vr1el

This means that (¢°°(Z), dist) satisfies the isometry condition. Then Definition 2.1 defines al-
most periodic bi-sequences. We denote by {4, (Z) the space of all almost periodic bi-sequences.
By Lemma 2.6, we know that ({4,(Z), dist) is a complete space.

Introduce the function fy : £,,(Z) — K by
fD(V) = 9, for V = {Ui}iel S fap(Z).

It is easy to see that fy is continuous. Then by Definition 2.9, we have the following result.
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Lemma 2.12. Let V = {v;}icz € Lop(Z). Then the limit

no—1 no—1

. 1 - !
My, (V) = n2_71111n_1>+oo p— T;I fo(V-7) = 712_7111112%O S T;; vy

exists. We call it the mean value of V' and denote it by M(V).

3. ALMOST PERIODIC FUNCTIONS WITH JUMP DISCONTINUITIES AND O-INTERACTIONS

The concept of an almost periodic function is well known; see the monographs [1, 2,
21]. In this section we introduce almost periodic functions with jump discontinuities and
d-interactions denoted by

(3.1) F@)+> vid(z — a),

1EL

f@)+> vid(x — ;) € PCsap(R)
1€EZ

where I' = {z;}icz € L(Z), f(z) € PCy(R) is a function with jump discontinuities at
points of I" and V' = {w; }icz € €°°(Z), while 6(x — z;) is the Dirac o-function at z;. In [26]
the authors introduced piecewise continuous almost periodic (for short, p.c.a.p.) functions
with first kind of discontinuities at the (possible) points of I' = {z;};cz C R in which the
family of sequences {x;1; — x;}icz is equipotentially almost periodic for all j € Z. Under the
separation condition inf;cz(z;+1 — 2;) > 0 such a point set is a so-called Wexler sequence; see
[25, Definition 2.11]. If R is regarded as a locally compact abelian group, this is a modulated
lattice as introduced in [18, Definition 2] because of [26, p.377, Corollary 5]. However we do
not intend to repeat the statement in [26], and choose a somewhat different way to introduce
almost periodic functions with jump discontinuities and §-interactions. The first difference is
to take into account the effect of J-interactions. The second one is to restrict the locations
of the (possible) discontinuity points and J-interactions to almost periodic point sets, which
have already been defined in [32, 7]. The third one is to choose a discrete framework to define
the almost periodic functions with d-interactions from the point of view of topology, where a
base for some uniformity will be constructed and the validity of compactness statements will
be used; see [17].

3.1. Point Sets. We restrict to point sets in one dimensional case, and then recall the notion
of almost periodic point sets defined in [32, 7]. It should be mentioned that in order to describe
Delone dynamical systems, Lenz and Stollmann [19] introduced the notion of almost periodic
point sets in R?. For the general case that is defined on locally compact abelian groups, see
[16, 20].
We assume that I' = {x;},cz € L(Z) satisfies the following requirements
x9g=0 and 0 < inf Ax; < sup Az; < oo, where Ax; := x; — T;_1.
1€EZ icZ

Note that the first requirement is natural because we may translate point sets such that the
zero point is included. The second one is an indispensable condition in order to introduce
the recurrence property of point sets encoded in the notion of almost periodicity, because we
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need exclude point sets with finite limit points. Denote by Lg(Z) the space of such all point
sets in R. It can be equipped with the metric

(3.2) dist(D'1, Ta) := max {&Ts“t(rl,rg), dist(Ds, Fl)} :

where

dist(I'y, ') := sup min |z} — x§|, for Ty = {aF}iez € Lo(Z), k= 1,2.
i€z JEL

The metric dist(+, -) may be regarded as the Hausdorff metric. Note that the space (Ly(Z), dist)
is not complete. However, given any 0 < m < M < oo, the set

(3.3) Lnat(Z) = {r — {21Yiez € Lo(Z) : Ax; € [m,M], Vi € Z}
is a closed subset of Ly(Z) and it is obvious that
Lz)= |J Lnu®@
O<m<M<oo

Furthermore we have
Lemma 3.1. [32, 7] (L, m(Z),dist) is a complete space.
Lemma 3.2. [32, 7] For Ty = {2¥} € L, mu(Z),k = 1,2, we have:
i): dist('1,T2) < M/2; and
ii): of dist(I'1,T'2) < m/2, then

(3.4) dist(T'y, T'y) = sup |z} — 2?|.
1EZL

By (3.4), the convergence in (L, p(Z), dist) can be characterized in the following way.
Lemma 3.3. [32, 7] Let Ty, = {2¥}icz € Lini(Z), k € Ng. Then
lim dist(I'g,I'g) =0
k—1>I-iI—100 . ( o 0)

if and only if

lim sup |z — 20| = 0.

We define the shift on Ly(Z) as in [7]. For I € Lo(Z) and 7 € Z, the shift of T" is
(3.5) I-m:=A{&i}iez € Lo(Z), & = Titr — @7
The family of shifts {I"-7},¢z yields a dynamical system on Lg(Z) with the following property:
(3.6) L (rm+m)=0-7) 1 form,nclZ.

Note that this is not an isometric system. But we have the equicontinuity condition (2.2),
because we have

Lemma 3.4. [7, Lemma 2.13] Let I'y € Ly, m(Z), k = 1,2, and dist(I'1,T'2) < m/2. Then
for oll T € Z, we have

diSt(Fl - T, FQ . ’7') < 2diSt(F1,F2).
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Obviously, by Lemma 3.4 and Lemma 3.1, we have
(Lo(@) = Lont(@), and  (Loni(Z)) = Lon(Z).

Cco
Take (Y, dist) := (Ly,,m(Z),dist). Then Definition 2.1 gives a characterization of almost
periodic point sets. Denote by Ly, aqp(Z) the space of all almost periodic point sets in
Ly m(Z). An example of an almost periodic point set is

ec

Iy :={i+asini}iez,
where |a| < 1; see [32, 7].

Remark 3.5. The definition of almost periodic point sets is equivalent to that of almost
periodic lattices as defined in [32] in which the parameter 7 runs over the real axis and a R
action on L, y/(Z) is involved.

By Lemma 2.6 we have
Lemma 3.6. (L, arr,ap(Z),dist) is a complete space.

Similar to the mean values of almost periodic points, we may introduce the following
quantity for almost periodic point sets.

Lemma 3.7. [32, 7] Let I' € Ly, pmap(Z). Then the limit

#(fﬂ [Z1,22)) =:[ITe []\14’ nlz]

lim

22—21—=>+00 29 — 2

exists uniformly for allT € H(T"), where #(-) is the function counting the number of elements
in a set. We call [I'] the density of I".

3.2. Uniform Topology. Based on the results above, we consider the subspace of PCy(R)
consisting of functions with jump discontinuities at points of I' € Ly(Z), and denote it by
PCyo(R). We use the pair (f,I') to represent an element in PCo(R). Similarly, PC, o(R)
denotes the subspace of PCho(R) consisting of functions that are uniformly continuous on
R\ T, where I" € Lo(Z). Let f be an even function and

x, x € (0,1),
f(z):=<{ 0, ze(i,i+1- 5],
(i+D)(z—i-1)+1, zeli+l—g7,i+1),

where i € N. Then f € PCyo(R) and f is uniformly continuous on each interval of continuity
from R\ Z, but f ¢ PC,o(R). This example also shows that f is uniformly continuous on
R\ F,(Z), for all r > 0, where F,(Z) is defined by (3.7). When the effect of d-interactions
is taken into account, we denote by PCj,50(R) the space of all bounded and piecewise con-
tinuous functions with jump discontinuities and J-interactions at points of I' € Lo(Z). Here
boundedness means that a piecewise continuous function with no Jd-interaction is bounded on
R. Similarly PC, 50(R) denotes the subspace of PC} 50(R) consisting of all functions that are
uniformly continuous on R\ I', where I' € Lo(Z). The triple (f,V,I') represents an element
(3.1) in PC, 50(R). For simplicity, we adopt the notation

Vf = (f, VD).
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If the point set is restricted in Ly, pr(Z), then we denote the subspace by PC. sm a(R).
Obviously we have

PCuso®R)= |J PCusmu(R).

O<m<M<oo
We equip PCy5m v (R) with the uniform topology as follows. For r > 0, a closed r-
neighborhood of a subset A C R is denoted by

(3.7) F.(A) ={x eR: |z —y| <r for some y € A}.

Introduce the family {S; },~¢ of subsets of the product space X := PC,, 5 a (R) X PCy 5m, 1 (R)
by

(3.8) S, = {(Efl,‘r’gfz) € X : dist(Ty,Ta) < 7, |Vi — Va]leo < 7 and
1(2) = fol@)| <7,V € R\ F(T1 UT2) } C X.

The set of all pairs Gf f,¥ f) for ¥ f € PCys5mm(R) is called the diagonal, and is denoted
by A(PC’U,(;,m,M(R)). For r; > 0, ¢ = 1,2, the composition Sy, o Sy, denotes the set of
all pairs (‘F/i 11, ¥§f3) such that one has G% fl,}/zfg) € Sy, and (¥§ f2, ¥§f3) € S;, for some
12 fa € PCysmu(R). Let

(3.9) Up:=X, Uy :=854-n, neN, and % :={Up}nen,-

Then we have

Lemma 3.8. For the subfamily % , we have

1

for all n € No, A(PCymu(R)) C Up;

):

i (‘F/ifl,l‘fzfg) € Uy, then (I‘fzfg,‘éfl) € Up;
iii): if n1 < ng, then Uy, C Uy, ;
):
)

11

v

Nuett Un = A(PCusmar(R)); and

v): for any U,, there exists some Uy such that Uz o Uz C Up.

Proof. ’i), ii), iii) and iv) ‘ : These statements are obvious.

: It suffices to show that for any r < m/2, we have S,/5 0 5,/5 C S,. Indeed, let

G{i f1, ¥§f2) € S, /2 and <¥if27¥§f3) € S, /2. Due to Lemma 3.2 ii) and (3.8), we have
Fpp(TiUls) € F () and  F5p(I2UTs) C Fr(I's).
This implies that
F,5(T1 UT2) U F, (o UT3) C Fp(T'y) U Fy(Ts) = F,(T' UTy).
Then for z € R\ F,.(I'; UT3), we have
|fi(z) = f3(z)| < |fi(z) — folz)] + [folz) — f3(2)] <7

Thus we have the desired result (}/1 f1, ¥Z f3> € S,. O
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By [17, p.177, Theorem 2|, we know that % is a base for some uniformity for PCy 5m 1 (R).
Then PC, sm, m(R) can be equipped with the uniform topology denoted by .7 that is gener-
ated from % .

Theorem 3.9. (Alexandroff-Urysohn) [17, p.186, Theorem 13| A wuniform space (Y, .7)
is metrizable if and only if it is Hausdorff and its uniformity % has a countable base. Fur-
thermore, let % = {Up}nen, be the base and dist : Y XY — ]R(J)r be the induced metric. Then
we have

(3.10) Up C{(z,y) €Y xY : dist(z,y) <27"} C Up_1, VneN
Lemma 3.10. The uniform space (PCy5m v (R), T) is metrizable.

Proof. By Lemma 3.8 iv), we know that (PCy5m,m(R),.7) is Hausdorff. By construction
(3.9), the uniformity % has a countable base. Due to Theorem 3.9, we have the desired
result. ]

Then we may construct a metric dist : PCl 5m.n(R) X PCysm(R) — R{ such that
(3.11) (PCusm,m (R), dist) = (PCysmam(R), 7).

The convergence in (PCy sm, m(R),dist) can be characterized in the following way.

Lemma 3.11. Let {*fi € PCupmar(R), k € No. Then lim dist (5;1 fiotl fo) — 0 if and
—+o00
only if for any € > 0 there exists k. € N such that for all k > k., we have
dist(T'g, To) < &, |[Vik — Wlloo <&, and |fr(x) — fo(z)| <e, Vx € R\ F.(I'y UTy).
Proof. Due to (3.10), (3.9) and (3.8), it is easy to check the characterization. O
Remark 3.12. F,(I'y UT) can be replaced by F.(I'g). Since F.(I'g) C Fz(I'y UTy), we only
need to show this implication =. Indeed, assume that
Jm (o) =0
For any € > 0, there exists k. € N such that
diSt(Fk,Fo) < 6/2, Vk> ]{75/2.
Without loss of generality, let ¢ < m. It follows from (3.4) that
FE/Z(Fk U FO) = FE/Z(Fk) U Fs/Q(FU) - FE(FO)) VEk> k€/2'
Thus we have the desired assertion.
3.3. Functions With Jump Discontinuities and J-Interactions. In this subsection, we
introduce the almost periodic functions with jump discontinuities and J-interactions. We

consider a Z action on PC,, s, a(R) by shifts. Let f : R — K be a piecewise continuous
function and 7 € R. The shift of f is

[ore= 4.

Then denote for FV f € PCysmm(R) and 7 € Z the corresponding shifted element in
PCu,é,m,M(R) by

(3.12) 1= LIS ),
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where I' - 7 and V' - 7 are defined by (3.5) and (2.22), respectively. Obviously we have
Orb(¥f) € PCypom i (R).

Due to (3.3) and (3.6), the family of shifts {¥f . 7'} ; yields a dynamical system on
TE

PCy.5m,m(R) with the following property

(3.13) Vi (r+m)= (}/f . 7'1) T, for 1,10 € Z.

This is not an isometric system because of shifts of point sets. However we have

Lemma 3.13. The shift action on (PCy 5m m(R), dist) satisfies the equicontinuity condition
(2.2).

Proof. Let ¥’;fk € PCys5mm(R), k=1,2. It suffices to show that for any n € N, there exists
k, € N such that if dist (E i, 2 f2) < 27Fn_ then we have

(3.14) dist (E from gy T> <2 VreZ

Denote Ty := {2¥}icz € Linm(Z), k= 1,2. Due to (3.10), (3.9), (3.8) and (3.12), it suffices
to prove that

(3.15) dist(Ty - 7,Ty-7) <4™™, V7€,

(3.16) Vi-T—=Vo 7|leo <477, VT1ez,

and

(3.17) \fi-xl(z) — fo - 22(x)| <4 for z € R\ Fy-n(ly-7UTy-7), V7TELZ

Since I‘{zfg € PCy5m,m(R), for any n € N, there exists k, € N such that
(818)  1fa(@) — fo(@)] <47,
for |z — | < 47Fn and Z, @ belong to the same interval from R\ T's.
Without loss of generality, assume that kn > n. We assert that
(3.19) kp o= ky +2>n+2

is the desired number such that (3.14) holds. Indeed, if dist (E i, 2 fg) < 2% then from
(3.10), (3.9) and (3.8) we find

(3.20) dist(T'y, Ty) < 4~ Fnt1

(3.21) Vi = Valloo < 47FntL)

and

(3.22) ’fl(l‘) — fg(x)‘ < 4_k"+1 forx e R \ F47kn+1(F1 U Fg).

By Lemma 3.4, (3.20) and (3.19), we have the desired result (3.15). By (2.23), (3.21) and
(3.19), we have the desired result (3.16). Denote d, := 22 — !, 7 € Z. From (3.4) and (3.20)

T
we see that

(3.23) 6, <47 FH vrez
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This implies that
(3.24) Fy-rnn1 ({533 - ini}iez) = F4*kn+1({$7,2+'r - x? +0rtiez) C Fy-rnr2(D2 - 7).

We make the following claims.

: for any 7 € Z, we have

(3.25) \f1-xl(zx) — fo-al(z)| <4771, Ve eR\ Fy-n(ly-7Uly - 7).
In fact, by (3.24) and (3.19), we have
(3.26) Fymnn({z) —2lliczU{a? —2llicz) C Fyn (D1 -7UTy - 7).

For any x € R\ Fy—n(T'y - 7UT9 - 7), (3.26) yields
xr 4+ 1'71_ eR \ F47kn+1 (Fl U Fg)
The claim (3.25) is deduced by (3.22) and (3.19).

: for any 7 € Z, we have

(3.27) |fo - 2l(x) — fo-22(x)] <4771, VaoeR\ Fy-n(ly-7).
In fact, by (3.24) and (3.19) we have
(3.28) Fpintr ({27 = 22}icz U {2 — 27 }ien) C Fyn(T2 - 7)

For any x € R\ Fy-n(I'y - 7), (3.28) yields
c+azl x4+ 22 €R\ Fykn1(T2) CR\Ty.

It follows from (3.23) that x +z}, =+ 22 necessarily belong to the same interval from R\ T's.

The claim (3.27) is deduced by (3.19) and (3.18).
We obtain the desired result (3.17) by the two claims above, completing the proof. [l

Remark 3.14. As anatural consequence of Lemma 3.13, we see that each }f f e PCysmm(R)

is an equicontinuous point, i.e.,

(Pcu,é,m,M(R)> = PCysmm(R).

€ec

Furthermore we obtain

Lemma 3.15. For any ¥f € PCys5mm(R), V£ is a complete point in PCys5mm(R). That

is,
(PCU75,m,M(R)>CO = PCu,&,m,M(R)'
Proof. It suffices to show that each Cauchy sequence in (H (}/ f) , dist) converges to a point
in H(¥f) Let {}/’; fk}k: N C H(}/f) be a Cauchy sequence. Then for each }/i fr, there exists
€

¥:ank — ¥f ny € Orb<¥f> such that

. Vi
(3.29) dist (¥’; frort fnk) < 1/k.
Note that by (3.12), we have
(3.30) fop =f-an, and Iy, =T-ng,
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where I' = {z;}icz. It follows from (3.10), (3.9) and (3.8) that both {I',, } and {V},, } are
Cauchy sequences in (L, p(Z),dist) and (£°°(Z), dist), respectively. Due to Lemma 3.1 and
Lemma 2.11, there exist g = {20}icz € Lin v (Z) and Vy € £°°(Z) such that

. li dist(T'y,,.,T'g) =

(3.31) k—1>rfoo ist(I'y,, o) =0,

and

(3.32) lim ||V, — Wolleo = 0.
k—+o0

Again by (3.10), (3.9) and (3.8), we know that for any £ > 0, there exists k. € N such that
(3.33) ’fnkl (x) — fr, (x)| <e, forallz € R\ Fg(Fnk1 U F,%) and ki1, ko > k..

We make the following claims.

: for any z € R\ I'g, the sequence {f,, (z)} converges to a point in R denoted
by fo(z). Indeed, let d := min;ez |z — 29| > 0. Without loss of generality, assume that

(3.34) e <d.

By (3.31) and (3.33), for any ¢ > 0, there exists a common k. € N such that
(3.35) dist(Tp,,To) < /4, YV k> ke,

and

(3.36) | o, () = fup,, ()] < /4, for all 2 € R\ FLpy(Tp,, UTy,,) and ki, ko > k.

When z € R\ I'g and k1, k2 > ke, by (3.34) and (3.35), we have z € R\ F_/4(I'y,, Uy, ).
This implies from (3.36) that {f,, (x)} is a Cauchy sequence. Thus we have the desired result.

: fo(z) is bounded on R\ I'g. Indeed, because of (3.30) and the boundedness
of fon R\ T, the family {f,, : R\ T, — K}rey is uniformly bounded. Due to the claim
above, we have

kggloo fr(2) = fo(z), VxeR\Ty.

This implies the boundedness of fo(z) on R\ I'y.

: for any € > 0, there exists k. € N such that for all k¥ > k., we have
(3.37) | fri (2) — fo(2)] < e, VaeR\ F (T, Uly).
Indeed, by (3.35) and (3.36), for ki, ko > k., we have
Fyy(Tny, Uy, ) C Fa(To).

This implies that

[y (2) = foiy (@) < /4, V& € R\ Fj5(To).
Let ky " 4o00. For k1 > k., we have
(3.38) [frey (@) = fo(z)| < /4, Ve R\ F, ().
Claim (3.37) is deduced by Remark 3.12 and (3.38).

: fo(z) is uniformly continuous on R\ I'y. Indeed, denote
di :=dist(I'y,,T), and A : =R\ Faq, (o).
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By (3.31), we know that dj, is monotonically decreasing to zero, and

(3.39) Ap C Apyr, and [ J A =R\ Ty,
keN

Since  f € PCy5mm(R) and ‘F/:Z fnp € Orb <¥f), we know that

S§ = {(fnka Fnk)}kEN C PCu,mM(R)

is equicontinuous, i.e., for any € > 0, there exists a common d. such that for any (fy,,I'n,) € &,
we have

(3.40) | fri(@1) = foi(22)] < e/3,
for |x1 — wo| < dc and x1, w2 belong to the same interval from R\ T'),,.

Assume that z1, z belong to the same interval from R\ I'g. Then by (3.39) there exists
kg 2o € N such that x1, zo that belong to the same interval from Ay for any & > ki 4.
Restricting = € Ag we know from (3.38) that for any € > 0, there exists k. € N such
that we have

(3.41) | fu, (2) = folz)| < &/3, fori> k..

Note that k. also depends on the choice of =1, x3. If |1 — z2| < ¢, then from (3.40) and
(3.41) it follows that

| fo(z1) = fol(z2)]
< | fol@1) = fu, (@) +
<e/3+¢/3+¢c/3=c¢.

Tq,x9 )

frr, (x2) = fo(x2)

Fon (1) = fo, (22)] +

This means that the claim is deduced.

Based on this claim, it is easy to conclude that fy has jump discontinuities at points of
I'y. Then we have }/gfo € PCys5m,m(R). Due to (3.31), (3.32), (3.37) and Lemma 3.11, we
obtain

(342) kEI—&I—loo dist (1"711c fnkvrofo = 0.
It follows from (3.29) and (3.42) that ¥gf0 € H(I‘{f), and
: Vi Vi _
kkrfoo dist (F’; fro 1y fo) =0.

The proof is completed. (]

Remark 3.16. As a byproduct of Claim 2 in the proof of Lemma 3.15, we may deduce that
for all ‘Fff € H(‘F/f), there exists B > 0 such that

(3.43) 1F @)lloc + V]l < B.

Remark 3.17. In the proof of Claim 3 in the proof of Lemma 3.15, the equicontinuity of
§ is crucial. A fundamental question is whether the uniform space (PC, s5m a(R), dist) is a
complete metric space. We leave it to the reader. However each uniform space is uniformly
isomorphic to a dense subspace of a complete uniform space, then we may make a completion
of a uniform space.
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In case there is no d-interaction, we denote by PC,, o(R) the subspace of PC,(R) consisting
of all functions with jump discontinuities at points of I' € Lo(Z). Similarly PCy m m(R)
denotes the subspace of PC, o(R) with jump discontinuities at I' € L, p/(Z). Then we have

PCo®) = | J PCyumum(R).
Oo<m<M<oo
Remark 3.18. All results above can be established for PC, p, p(R) in a similar way. In
detail, removing the effect of d-interactions in (3.8), we first construct a family still denoted
by % := {Uy}nen, of subsets of the product space PCy m v (R) X PCypm v (R). Then the
uniform space (PCym v (R),.7) is metrizable where the topology .7 is generated from % .
Moreover we have

(Pcu,m,M(R)> = PCypms(R), and (Pcu,m,M(R)) = PClypmar(R).

ec co

Before introducing the main concept in this section, we recall the class of Bohr almost
periodic functions.

Definition 3.19. [9, 7] We say that f € Cy(R) is Bohr almost periodic if one of the following
conditions holds:

i): [Bohr’s definition] for any ¢ > 0, Pr(f,e) :={r € R:||f -7 — flloo < €} is relatively
dense in R;
ii): the hull of f running over R, defined by

He(f) i= {f -7 : 7 e R} B lH),

is a compact subset in Cp(R);

iii): [Bochner’s definition] for any sequence {7} C R, one can extract a subsequence
{1} C {7x} such that {f -1} is convergent in (Cp(R), || - ||oc), i-€., {f-7:7 € R} is
relatively compact.

Remark 3.20. The equivalence between conditions i) and iii) in Definition 3.19 may be
regarded as the Arzela-Ascoli theorem for Bohr almost periodic functions. That is, the family
of functions {f - 7 : 7 € R} is relatively compact in (Cy(R), | - ||s) if and only if Pr(f,¢)
is relatively dense for any € > 0. Note that the condition of relative denseness implies that
f € Cy(R). The classical Arzela-Ascoli theorem requires that the domain of the functions is
a compact Hausdorfl space. Here the condition of relative denseness is to compensate for the
non-compactness of R.

The difference between this definition and Definition 2.1 is that the parameter 7 in this
definition is required to run over the real axis. We denote the space of all Bohr almost
periodic functions by Cgp,(R). It is well known that (Cyp(R), || - ||oc) is a Banach algebra [9].
By Definition 2.1, Remark 2.5, Lemma 3.13 and Lemma 3.15, we are now in a position to
introduce almost periodic functions with jump discontinuities and J-interactions.

Definition 3.21. X f € PCy5mum(R) is called an almost periodic function with jump dis-
continuities and d-interactions if one of the following conditions holds:

i): [Bohr-type definition] for any ¢ > 0, P<¥f, 5) = {7‘ € 7 : dist (I‘{f T, Vf) < 8} is

relatively dense in Z, where dist is the metric introduced in Lemma 3.10;
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ii): the hull of ¥ f, defined by

H(¥f):{¥f-k:kez}

(Pcu,é,m,]\/[ (R) 7diSt)

18 compact;
iii): [Bochner-type definition]| for any sequence {7x}ren C Z, one can extract a subse-

quence {1} C {7} such that {}/f : Tk} is convergent in (PCy. 5m v (R),dist).

We denote the space of all almost periodic functions with jump discontinuities and 9-
interactions at points of I' € Ly, pm(Z) by PCspmnap(R). As we stated in Remark 3.18,
Definition 2.1 can also give the characterization of almost periodic functions with jump dis-
continuities. Denote the space of all almost periodic functions with only jump discontinuities
at points of I' € Ly, p(Z) by PChyat,ap(R). An example of PCyp, ar,0p(R) is

(344) f|(xi,azi+1) = uiv
where I' = {@;} € Ly m,ap(Z) and {u;} € Lop(Z). An example of PCjs p1.0p(R) is
rf=rf+or,

where ) f is given by (3.44).

Introduce the following notation:

(3.45) PCsoap®R) = |  PCsmmap(R),
0<m<M<oo
and
PCoap@®):= | J PCarap(®).
0<m<M<oo

Lemma 3.22. We have:

0): PCruttap(R) C PComrt.ap(R); PCoap(R) C PClg.ap(R);
ii): Cop(R) C PChqop(R) N C(R); and
iii): if K f € PCsmarap(R), then Lf € PCpyarap(R), V € Lop(Z), and T € Loy p1,ap(Z).

Proof. : Because we may regard (f,I') € PCymm(R) as an element in PCy 5 0 (R)
with no d-interaction, i) is obvious.

: We assume that f € C,,(R). By Definition 3.19 ii), we know that

CuR)[[-lloc)

H(f)={f-7:7 € Z} C Ha(f)

is compact in (Cy(R), | - ||oc). We regard f as an element in PCy v (R) with no jump
discontinuities and no d-interaction. Because

(Cu(R), [ lloo) = (PCum n(R), dist),
we have f € PCpqp(R). The proof of ii) is completed.
: We assume that [ f € PCs a1.ap(R). Due to (3.10), (3.9) and (3.8), we have

P(¥f,e) cP(%f,g).
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This implies that P(% 1 5) is relatively dense for any ¢ > 0. Thus f € PCparap(R).

Meanwhile, by Definition 3.21 iii), Definition 2.1 iii) and Lemma 3.11, we deduce that V €
lop(Z) and T € Ly, a1,ap(Z). The proof of iii) is completed. O

Remark 3.23. A natural question is whether (PCs ., 11.4p(R),dist) is a complete metric
space. We leave it to the interested reader. Note that in case that (PCy5m a(R), dist) is
complete, we would obtain this result by Lemma 2.6.

3.4. Mean Value. We use Lemma 2.8 to introduce the mean value of \ f € PCp g qp(R).

Lemma 3.24. Let \ f € PCsqp(R). Then the limit

(3.46) M(¥f) = lim ! /[ Z )(f(x) +3 vid(a — azi))dx eC

22—21—+00 29 — 27 P
exists uniformly for all z1, zo € R. We call it the mean value of ¥f

Proof. By (3.45), there exist m, M > 0 such that {{ f € PCs ., 11.0p(R). Denote I' = {z;};ez €
Ly, m(Z). Then for any 21, 22 € R, there exist n1, ny € Z such that

(3.47) Tpy < 21 < Tpy41 and Tp, < 20 < Tpyy1.

We make the following claims.

: the following relation holds:

. 1
zz—grgﬂx; Z9 — 21 /[Zl,zz) (f(l') + Z 1)#5(37 B .%'Z)>d.%'

1€EZ

(3.48) = lim 15'3n1 /[IW%Q) <f(a:) + Z v;d(x — xz))dx

ng—mni—-+00 Tpy — -
i

That is, if one of limits exists, then the other one exists as well and they are equal. Indeed,
suppose that there exists B > 0 such that

(3.49) sup [f(2)| + [[V]leo = [/ (@)[lcc + [[V]leo < B.
z€R\T

Then by (3.47), (3.49) and (3.3), we have

| /[ RECES /[ K

<|[ Freal ][ Freal
[Tny,22) [Tnq,21)
<2(M +1)B < +o0.




22 D. DAMANIK, M. ZHANG, AND Z. ZHOU

It follows that

. 1
zzfgrngoo Z2 — 21 /[31722) <f($) + Z vld(m B x2)>dx

1€EZ

[ ¥rwde- [ ¥pedes [ Frad
_ lim Tpy — Tpy J[21,22) [Tny ,Tny) [@ny,Tng)

Z22—212+00 29 — 21 Tny — Tny
=
= lm ————— x) + vid(x — x4 )dm
n2—n1—+00 Ty, — Tn, [Tn ,Tny) ) zeZZ ’ ( 1)
provided one of limits exists. The claim (3.48) is deduced.

: introduce the function F' : H(¥f> — K by
F(gf) = /[0 ~ )(f(x) + Zf}id(x — ici)>dx, for ‘gf € H<¥f)
X1 i€Z

We assert that F' is continuous. Indeed, assume that

(3.50) . dist (rkfkargf()) =0,

where ¥’Z fr € H(¥ f), k € Ng. By a direct computation, we have

(3.51) F ‘:/f :/ f(z)dx 4 0y, for ‘:/feH Yr).
(5= /., £ en(tr)
Denote I'y = {2F}icz € L (Z) and Vi, = {vF}icz € £°°(Z). For any ¢ > 0, denote
5
.52 - -
(3:52) CTUB+ MU

where B and M are introduced in (3.43) and (3.3), respectively. It follows from (3.50),
Lemma 3.11, Remark 3.12, Lemma 3.3 and (2.21) that there exists k. € N such that when
k > k., we have

(3.53) ]vg — vg\ <€, \x’f — x(f] <€,
and
(3.54) |fe(z) — fo(z)] <€, for x € R\ Fc(Iy).

Then we obtain

F(5s) - P ()

< [ 1) = e [ )~ o

+‘/ d:c—/ foly)dy| + |vg — v
29 —e.a}) 29 —€,29)
<2Be+ Me+2Be+ e =¢,

where (3.51), (3.43), (3.54), (3.53) and (3.52) are used. The claim is deduced.
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Claim 3 |: the following relation holds:
1
li — ( E 0(x — x5 )d
n2_nlllg+00 xng - -'En1 ‘/[xnl,fl‘ng) f(x) + o ('/L‘ xZ) !

i€EZ
1 no—1
3.55 — ] i F(V : )
(3.55) 0, B0y 2 PRS0

where [I'] is introduced in Lemma 3.7. That is, if one of the limits exists, then the other one
exists as well and they are equal. Indeed, we have

/[x ) )(f(:v) + 2%‘5(56 fxi))dx

1€EZ
na—1
= Z / f() —i—Zvi(S(x —xi)>dx
r=ny 7 [Pr:741) i€Z
no—1
= Z / d:z:-l—v.r)
T=n1 xT,xT+1)
no—1
=Y F(frer),

T=n1

where (3.12) and (3.51) are used. The relation (3.55) is deduced by Lemma 3.7.

The uniform convergence of the limit (3.46) is obtained by Lemma 2.8 iv) and Remark 2.10.
O

Remark 3.25. If there are no d-interactions, then the mean value of 2f € PCy qp(R) may
be defined by

1
M(%f) = i de.
<Ff) zg—zigﬁ-oo Z9 — 21 /[21,z2) f(x) x

Note that the value of the integral is the same if [21, z3) is replaced by [z, 22].

Remark 3.26. For | f € PCsq,(R), we have a decomposition formula:

(3.56) M(Fr) =M(Rf) + DMV,

where Lemma 3.22 iii), Lemma 2.12 and Lemma 3.7 are used.

4. REDUCTION TO SKEW-PRODUCT DYNAMICAL SYSTEMS

For autonomous ODEs, the family of solutions with different initial values generates a
flow due to the existence and uniqueness of solutions of ODEs. For non-autonomous ODEs,
when the hull of the vector field of ODEs is involved, we may construct a skew-product flow
provided the existence and uniqueness of solutions of ODEs hold as well; see [28, 29] for the
detailed idea. In this section, we will use this idea to construct a skew-product dynamical
system from (1.2). There are two crucial issues in this setting. One is to overcome the
difficulty that is caused by impulses at points of I', and the other one is to show that the
dynamical system is continuous on the phase space under the uniform topology.
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4.1. Homotopy and Argument. We recall some necessary results from [22, 7]. Denote by
M(2,2) the space of all 2 x 2 real matrices. Let J be the standard symplectic matrix

0 -1
().
We say that D € M(2,2) is symplectic if and only if DT.JD = J, where D' is the transpose
matrix of D. It is well known that the collection of all 2 x 2 real symplectic matrices forms a

group with respect to matrix multiplication. Let us denote this group by Sp(2,R). It is well
known that

Sp(2,R) = SLy(R) = {D € M(2,2) : det(D) = 1} .

Lemma 4.1. [22] For any D € Sp(2,R), there exists a unique decomposition such that
D = AU, where A € Sp(2,R) is a symmetric and positive-definite matriz and U € Sp(2,R)
is an orthogonal matriz. Fxplicitly, we have:

rooz costy —sind
(4.1) b= < z # ) ( sind  cosd )’
where (r,9,z) € RY x R/(27Z — 7) X R is uniquely determined by D.

This implies the following result.

Lemma 4.2. [22] There exists a one-to-one correspondence from Sp(2,R) to {(x,y,z) €
R3\ {z-azis}} as
g: D (rcosd,rsind, z),

where (1,9, z) is defined above. Moreover, g is a homeomorphism.

Due to the expression of (1.2), we only consider the following group denoted by

Trig(2,R) := {Rc = < (1] i ) ce R} C Sp(2,R).

For R, € Trig(2,R), the unique decomposition can be calculated as

W~

242 c 2 c
R ( VEii Ve ) ( VA Vax )
¢ c 2 c 2 :
Vertd Ve 44 24 2+
Construct a continuous path P.(-) : [0,1] — Sp(2,R) as

W~

(1e)?+2 TC 2 e
(42) Pc(T) = \/(7:22+4 \/(T§)2+4 _\/(Tclz+4 \/(Tg)2+4 _ ( (1) 7'16 ) .
VP /(re?+a VEer+a \f(ro2+a

P.(-) connects Is and R.. The homotopy class of P.(-) is denoted by [P.]. Then the jump
of arguments on I' can be well defined when the homotopy class is fixed by the construction
[P.]; see [7, Figure 1]. In detail, denote by V(R?) the set of all vectors starting from the
origin in R2. The equivalence ~ on V(R?) is defined by

U1 ~ Ty <= Uy = ki, for some k € RT.

It is well known that
L(R) = V(R?)/ ~
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is an orientable compact manifold of dimension one, and may be regarded as a two-covering of

the real projective line RP!. Topologically, L(R) is homeomorphic to the circle So, := R/277Z.
Let Z € R. Then we have
Pu(1)(cos E,sin 2)T = (cos E + 7esinZ, sin 2) 7.

Since the homotopy class of P.(-) is fixed and arg(-) is understood as a continuous branch,
the argument function

F(e,7,2) = arg(cos ZE + Tcsin =2 4 isin E)

is continuous with respect to (¢,7,Z) € R x [0,1] x R. In particular, we may choose one
continuous branch of F'(c, 7, =) such that when 7 = 0, we have

arg(cos=Z 4+ isin=) = E.

Then we define the jump of arguments by

(4.3) J(¢,E) = F(c,1,Z) — F(c,0,E).

Lemma 4.3. [7] J : R? — R is continuous with respect to (c¢,Z) € R2. Moreover,
J(e,E+2m) = J(c,E).

We revisit now the system (1.2). Let ¥.g € PCs . 01,0p(R). We need to embed it in a family
of systems as follows:

d (4" \ _ (0 q¢x)-FE g =
(4.4) dx(w>_(1 " v e
' @bl(in‘i‘) _ 1 o, 1/’/@71_) r=3 € f
w(in‘i‘) B 0 1 ¢(3~3n_) 7 - 7
where g(j €eH (¥ q) . For definiteness, the solution of (4.4) is understood to be right-continuous
with respect to = € R, that is, (¢ (z+),¥(z+))T = (¢'(z),¥(x))T. In this sense, ¥'(x) and

(x) are well defined on R. Suppose that ¥(z) := ¥p (w;g(j) is the fundamental matrix
solution of (4.4) with the initial value ¥(0) = I5. Then we have the following result.

Lemma 4.4. [7] For any x € R, ¥(z) € Sp(2,R).
If (¢/(x),%(x))T has the initial value (¢/(0),(0))” = (o, B)T, we have
(W' (2), ¥(@)" = U(z)(a, B)".
Introduce the so-called Priifer transformation as
(4.5) W +iy =r el
Then the argument 6 = (x) may be denoted by

0(x) = arg(¢'(z) +1iv(x)),
where (¢/(z),1(z))T is any non-trivial solution of (4.4). When the system (4.4) is restricted

on R\ T, we understand arg(-) as a continuous branch on [Z,, Z,41), where I' = {Z,, }nez. It
is easy to obtain that the differential equation for 6 is

0'(x) = cos? 0 — (4(z) — E)sin? 0, zeR\T.
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But it is crucial to deal with the jump of arguments on I' via a reasonable approach, because
the vector field of (4.4) on I is singular. To overcome this difficulty, we use the homology that
is defined by (4.2). Thus via the Priifer transformation (4.5), the evolution of the arguments
is found to be

(4.6) { 0'(x) = cos? 0(x) — (4(z) — B) sin* (), reR\T,

O(Zp+) — 0(2n—) = J(0p, 0(Zn,—)), r=2a,€l.

Denote by 0g(z) = 0 (a:—l—;g(j, E) the solution of (4.6) with the initial value 0g(0) = = €
R. By the uniqueness of solutions of ODEs and the boundedness of piecewise continuous
functions, it is easy to deduce the following result.

Lemma 4.5. Let ‘g(j € H(‘{q) and E € R be fixed. Then
o for= e R, x €R and k € Z, we have
(4.7) Or (m; gtj, =+ 2k7r> — (E+2km) =0g (:):;

[1]

I

i<

(17 E) -
o for x € R, we have
(4.8) O (x;qu, E.l) < 0g (x;‘f/(j, EQ), when =1 < =g,

o forE€R, ki,ko €Z and T = {Zn}nez, we have

(4'9) 0r (‘fi‘k1+k2; f‘vqa E) =0 (-i'k1+k2 — Thy; I:/Cj ke, 0p <i'k2; %/67 E)) )
where }Z(j - ko is defined by (3.12);
o for T' = {&n}nez, we have
0p(2:03,5) - = 0 (70: V3. 2) — 2
(4.10) lim = lim - ,
r——+00 x n——+oo Tn

that is, if one of limits exists, then the other one exists as well and they are equal.

The proof of Lemma 4.5 is omitted. For details, see [7]. However since the uniform topology
is weaker than the one considered in [7], we will give the proof of the following result.

Lemma 4.6. For [’ = {@,}pez, let k € Z be fived. Then 0 (:ck vg, E) : H(Vq> xR — R is

continuous.

Proof. Without loss of generality, we only check the case k = 1. For the general case, we may
obtain the result by induction. Assume that

(4.11) lim dist(giqi,gzq[,) =0 and lim |5 —Eo| =0,

i—>+00 i—+o0
where (%(j"’ga € H<¥q> X R, © € Ng. Then for any € > 0, there exists i. € N such that
Remark 3.12 holds and meanwhile |=; — Z¢| < € when ¢ > i.. Let
0i(x) :=0p <~T§¥Zq~i75i)>
where I'; = {Z! }pcz. Then we have

() = cos? 0;(x) — (G;(z) — F)sin? 0;(x x 7
(4.12) {ZEO)):E 0i(x) — (Gi(x) — E) sin® (), € (0,7),
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For € > 0 given in Remark 3.12 and x € [, 7} — €], this implies that

i(r) = &; cos? 0;(t) — (Gi(t) — E) sin? 6;(7)dr.
(o) ’+<Lﬂ+ﬁm> ()~ @(r) — B)sin® ()

Denote D(x) := 0;(z) — (), = € [g,7) — ¢]. We have
D(.%') = (Ez — Eo) + D1 + DQ(:C)

where

Dy := /(0 ](c052 0i(7) — (G(7) — E)sin® 6;(7)) — (cos® 6o(7) — (Go(7) — E) sin® 6y (7))dr

Dy(x) := /[ }(COSQ 0;(1) — (qi(1) — E) sin? Oi(T)) — (cos2 Oo(1) — (Go(7) — E) sin? 90(7))d7'.

By the uniform boundedness of (g;,I';), we know that there exists C7 > 0 such that
(4.13) |D1| < Cie.

Now we consider the term Do(x). When z is fixed, we can regard 6y(x) and 6;(x) as two
real numbers. By the mean value theorem, there exist ((z), n(z) which belong to the interval
with endpoints 6y(x) and 60;(x) such that

cos0;(x) — cosOy(x) = —sin ((z)(0;(x) — Oo(x)),
sin 0;(z) — sin Oy (z) = cosn(z)(0;(z) — Op(x)).
Then we have
D(x) = (5 — Zo) + Dy + / A(r)D(r) + B(r)dr,

[e,2]

where
(4.14) A(7) := —sin((7)(cos 0;(1) + cos Oy(7)) — (Go(7) — E) cosn(7)(sin 6;(7) + sin Oy(7)),
and

(4.15) B(7) = (qo(7) — Gi(7)) sin” 0:(7).
It follows that

D@) <2 - =i+ 01|+ |

[£.2]

|B(r)|dr +/ A()||D(r)|dr, e<z<i—e
e,2]

Denote C(z) := |29 — Z1| + |D1] + f[e 2] |B(7)|d7. Note that 7} = AZ{ < M. Then there

exists Cy > 0 such that

(4.16) C(z) < |22 —E1]| + |D1| + Me < Cae,, when i > i,

where (4.11), (4.13), (4.15) and Lemma 3.11 are used. By the generalized Gronwall inequality
[12, Lemma 6.2 in Chapter I|, we obtain

|mwscm+/

&,z]

|A(T)||C(7)] (exp/ \A(u)\du) dr, e<z<z?—ec.

)
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Taking z = 7 — ¢, we have

D@ — £)| < Coe <1+/ 21 + G () — EI) <exp/ 2(1+\(jo(u)—E\)du) d7>,
0.0 0.1

)

where (4.14) and (4.16) are used. Since gy is bounded, there exists C3 > 0 such that
10:(39 — &) — 0p(3Y — )| = |D(2Y —¢)| < C3e, when i > i..

Again by (4.12), we have
91(5511—) = 91(.%(1) — 8) + / 0082 0,(7') — (QZ(T) — E) sin2 Qi(T)dT,
[51*5@%)
Bo(0—) = B0(20 — <) + / cos2 0(7) — (Go(7) — ) sin® fo(7)dr.
(29 —.29)

By Lemma 3.11, we know that 7% € [#{ — &,7 + ¢]. Then there exists Cy > 0 such that
10;(%% —) — 0p(39—)| < Cue,, when i > i..

Furthermore, we have

0:(31) = 0:(#1—) + J (01, 0m(F1 -)).
By Lemma 4.3, we obtain the continuity of 0 <:El; g(], E) with respect to qu and =, finishing
the proof. 0

4.2. Skew-Products. Following the idea in [28, 29, 7], we may construct a skew-product
dynamical system from (4.6). The difference from [7] is that we must show the continuity of
skew-products under the uniform topology.

Let Sor := R/27Z and Z := H<¥ q) X Sor. We introduce a distance on the product space
7 as

(4.17) dist((}fi i, 191), (¥§ o, 192)) = max{dist (g i, ¥§q~2), 9 — 19218%}

where (1?%’19’) € Z, i = 1,2, and dist in the right-hand side is constructed by (3.11).
It follows from Definition 3.21 ii) that (Z,dist) is a compact metric space. The family of

skew-product transformations @’% s on 7 is constructed by
€
(4.18) ok (IZ(;, q9> — (IZQ k05 (:z«k;qu, E) mod 277),

where k € Z, <¥(’j, 19) € Z, and there exists = € R satisfying ¥ = = mod 2. By (4.7), ®% is
well defined for each k € Z. Moreover, we have

Lemma 4.7. {@%}k ; s a continuous skew-product dynamical system on Z.
€
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Proof. First we assert that {@%} possesses a group structure. In fact, assume that GZ q, 19) €
Z and there exists Z € R satisfying ¥ = = mod 27. By (4.18), (3.13) and (4.9), we have

oft ool (£g,9)
—(I)kl VN-k‘G s Vo= d2
— *E f‘q 2,VE xkgana‘—‘ mo ™

@'k2,9E(95k2;

e<i
<

g, E)) mod 277)

= foi ko - ki1,0p <£k1+k2 = Ty
= phithe (gq, 19).

Now we aim to prove that for each k € Z, @% : Z — 7 is continuous. We make the following
claims.

:

: O (ik; g(j, E) mod 27 : Z — S, is continuous. This is obvious from Lemma
4.6.
Due to Claim 1 and Claim 2, we obtain the desired result. O

i<

q-k: H(¥ q) — H<¥q) is continuous. This is obvious from Lemma 3.13.

Introduce the observable Fg from Z to R as
(4.19) Fp(Lg0) = 0p(2:73.2) -2, (Lgv) ez,
where = € R satisfies = E mod 27. By (4.7), Fg (}Z(}, 19) is well defined on Z. Furthermore,
we have

Lemma 4.8. Fg G;/(j, 19) s continuous on 7.

Proof. This is obvious by Lemma 4.6. O

By (4.3), we have
Fp (qu, 19) — O (;zl—; v, E) B4 (e, 05(F-)).
where = € R satisfies ¥ = = mod 27. By the construction above and Lemma 3.7, we reduce
the existence of rotation numbers to that of the following ergodic limit with respect to the

: k
skew-product dynamical system {(I> ) }kez'

Lemma 4.9. Assume that (1; q, 29) € H(¥q) X Sor and = € R satisfies ¥ = Z mod 2.

Then we have the following relation:

OF (lin; Vg, E) —= 1! -
. r _ oL k (V-
L U e L CH )]

That is, if one of the limits exists, then the other one exists as well and they are equal.

Proof. By Lemma 3.7, we have

~ .17~ = = > V ~ = =

. 9E<xn>f‘Q7‘—‘) = . eE'(-xnafqv'—') —

lim - =[] lim ,
n—-+o00 Tn n—+-00 n
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30
provided one of limits exists. Furthermore,

n—1
= (08 (r41:53.2) — 05 (74 L0, )
k=0
n—1 B _ 5
=3 (0w (01— 30 L3 k00 (8110 2) ) — 0m(7: L. E))
k=0
n—1 _ B
- ZFE(IZQ : k,eE@k,qu, E) mod 27r)
k=0
n—1 ~
=Y Fp(eh(fav))
k=0
|

The proof is completed.

5. RoTATION NUMBER

In this section we discuss the existence of the rotation number and its continuous depen-
dence on the spectral parameter E. Much of the key preparatory work has already been

done. In particular, Lemmas 4.7-4.9 will be crucial in the discussion that follows.
We revisit again (1.2). We know about the solution that ¢ € C(R) and ¢/(z) = ¢/(z+) €

PC(R). Define the right derivative of 1 by
Y(z+h) —Y(z)

Dt in [27] is the same as u® in [23]. Tt follows that Dt (z) = ¢/'(z+) and = — DT (x)
is right-continuous. By the choice of a suitable homotopy defined in (4.2), we have a well

defined argument as
Op(z) = arg(D Y (z) + iy (x)).
The evolution of fg(x) is found to be
{ 0'(z) = cos? 0(z) — (¢(z) — E)sin? §(x), z e R\T,
O(xn) — 0(xn—) = J(vp, 0(zn—)), r=uxy €T,
where J(v,-) is defined in (4.3). If the ergodic limit
lim  2E(®) —0£(0)
x

r—r+00

exists, then we call it the rotation number of (1.2) and denote it by p(E).
Our goal is to show that the rotation number indeed exists and that it depends continuously

on E. We devote a subsection to each of these two items.
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5.1. Existence. To show the existence of rotation numbers, inspired by (4.10) and Lemma
4.9, we introduce the following notation.

_ 1 n-1 _ _
« (V ~ T k(V~ V-
Fi({4.9) = nBTmnkZ_OFE(@E(fW))’ (fa.0) €2,

provided the limit exists. For f‘}(j € H(¥ q) and = € R, denote

0 (7037 3.2) ~ 2
q,E) .= Tim ~

n—-+o00 Ty

e<i

(5.1) Fg(

provided the limit exists. By (4.7), we obtain the following:

Lemma 5.1. If F}, (I‘ZQ, E()) exists for Zg € R, then FY}, (I‘ZQ, E) exists for all 2 € R and is
independent of the choice of Z € R.

Proof. By (4.7), we know that F3, GZ(}’, Zo + 2k7r> exists for all k € Z. Then for any = € R,
there exists k= € Z such that
S0+ 2kem <E< = +2(k’5 + 1)7.
By (4.7) and (4.8), for all n € N, we have
= V= = Vo = V=
0 (T3 L4, B0 + 2b=r ) < 0 (03 L0, 2) < 0p(#n; L6, Z0 + 2k ) + 21,
This implies that for all = € R, we have
Fi(Fa.2) = Fg(£a.%0).

The proof is completed. O

We are now in a position to obtain the main result of this paper.

Theorem 5.2. Let \'q € PCsppp.ap(R). For any E € R, the limit F§, (‘F/q, E) exists and is
independent of the choice of 2 € R. Thus the rotation number p(E) is well defined.

Proof. By the Krylov-Bogoliubov theorem and Lemma 4.7, there exists an invariant Borel

probability measure under {(I)%}k . denoted by p. Then by the Birkhoff ergodic theorem,
€

there exists a Borel set Z,, C Z, which depends on the measure y, such that p(Z,) =1 and

Fp, (}f(j, 19) exists for all Gf(j, 19) € Z,,. Furthermore, F; is integrable and satisfies

(5.2) /ZFEdu—/ZFEdu =: p(E, ).

Due to Lemma 5.1, Z,, can be written in the form Z, = E, X So,, where E, is a Borel set
in H(}/q) Let v be the Haar measure on H(¥q> Then we have v(E,) = 1. By the unique
ergodicity of the Haar measure, there exists a set B, C E,, such that v(E,) = u(E, xSar) = 1
and Fp, (‘gcj, 19) is a constant function on E# X Sor. It follows from (5.2) that the constant
must be p(E, ).



32 D. DAMANIK, M. ZHANG, AND Z. ZHOU

By (5.1), we see that p(E,p) in (5.2) is independent of the choice of the measure .
Set Fp := Fp — p(E). By Lemma 4.8, Fj is continuous on Z. By (5.2), Fi satisfies the
requirement of [14, Lemma 4.4]. Thus, as k  +oo0,

6o S A(e(00)) = S (o (0.9)) -t 0

uniformly for all (V 19) SV

’11

At last, taking
of the desired limi

c—r’jx<,

G =Yqin (5.3), then by (4.10) and Lemma 4.9, we obtain the existence
(5. ) O

5.2. Continuity. The continuity of rotation numbers with respect to the spectral parameter
F is crucial in the proof of the gap labeling theorem. We state this result as follows. But the
spectrum will be discussed in a future publication.

Theorem 5.3. Let ¥q € PCsmmap(R) be fized. Then p(E) is continuous with respect to
E eR.

Proof It suffices to show that for each sequence E; — Ey € R, we have

(5.4) p(E;) — p(Eo) as i — +00.
For each i € Ny, consider the equation
(5.5) 0'(z) = cos® O(z) — (q(x) — E;)sin® §(x), x e R\T,
' O(zn+) — 0(xn—) = J(vp, 0(zn—)), r=ux, €l

Using the argument of Theorem 5.2, for each equation (5.5), we introduce the skew-product
dynamical system {@’fg }k 7 o8 7= H(Fq) X Sor that is defined by
i) ke
(5.6) ok, (gq, 79) - (gq- k, 0, (@k;gq, E) mod 27r), (IZq, 19) €7,

where = € R satisfies = = mod 27. Meanwhile, the observable function Fg, from Z to R is
defined by

i<

Then by (5.2), we have

q,ﬁ) = O, (:zl;qu, E) 5 (qu,ﬁ) c 7.

(5.7) p(E;) = / Fg,du; for all ¢ € Ny,
z

where p; is an invariant Borel probability measure of {‘IﬂfE }k on Z. Since 7 is a compact
v kel

metric space, by [30, Theorem 6.5], we may assume that there exists a Borel probability
measure on 7Z denoted by p such that p; — ps in the weak™ topology.

We assert that poo is an invariant Borel probability measure of {(I)%O}k , 0 Z. By [30,
€

Theorem 6.8], it suffices to show that for each f € C(Z,R) (which denotes the space of all
continuous functions from Z to R), we have

(5.8) / Fdpins = / f o die.
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To this end, for any f € C(Z,R), denote g; := fo <I>1Ei, i € Ng. By Lemma 4.7, g; € C(Z,R).
It follows from (5.5) and the generalized Gronwall inequality [12, Lemma 6.2 in Chapter
I] that 6g (:%g}f q, E) is Lipschitz continuous with respect to E. Combining this with the

uniform continuity of f, we have

(5.9) lim [|g; — gollee = 0.
1——+00

Since p; is an invariant Borel probability measure of {@% }k , we then have
7 GZ

/fd,ui:/fod)}gid,ui:/gidui.
Z Z Z

Taking i 400, by (5.9), the weak* convergence of u; and [33, Lemma 3.9], we obtain the
desired result (5.8).

Then again by (5.5) and the generalized Gronwall inequality [12, Lemma 6.2 in Chapter
I], we may infer that Fg (fv q, 19) is Lipschitz continuous with respect to E as well. By [33,
Lemma 3.9] and (5.7), we have

lim p(E;) :/FEOd,uoo.
z

1——+00

Since poo is an invariant Borel probability measure of {(I)%O}k p e know from (5.7) that
€

p(EO) :/FEod:U’oo-
7/
The desired result (5.4) is proved. O

Remark 5.4. The traditional way of establishing the continuity of the rotation number as
a function of F is via spectral theory. Specifically, one uses oscillation theory to connect the
rotation number and the integrated density of states. The latter quantity is continuous in E
because of the finite-dimensionality of the solution space. We refer the reader to the recent
survey [6], where the traditional way is discussed in detail for operators in ¢2(Z), which are
technically easier to handle. The proof of Theorem 5.3 given above is more direct and the
discussion takes place entirely on the dynamics side of this correspondence.
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