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Abstract. We consider one-dimensional Schrödinger operators with generalized almost

periodic potentials with jump discontinuities and δ-interactions. For operators of this kind

we introduce a rotation number in the spirit of Johnson and Moser. To do this, we introduce

the concept of almost periodicity at a rather general level, and then the almost periodic

function with jump discontinuities and δ-interactions as an application.
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1. Introduction

The study of the spectral properties of Schrödinger operators with almost periodic po-

tentials has been an active research area for roughly half a century. Some of the exciting

features that have been exhibited are nowhere dense (i.e., Cantor) spectra and the possibility

for any of the standard spectral types (i.e., pure point, singular continuous, and absolutely

continuous) to occur within this class of models. This shows that the spectral phenomena

are richer than in the classical subclass of periodic potentials, which have been studied much

longer.

Our understanding of these issues is much more complete in one space dimension, although

some exciting progress has been made in higher dimensions as well; the reader may start

exploring the existing theory by consulting, for example, [3, 5, 15, 24] and references therein.

The key difference between the one-dimensional case and the higher-dimensional case is the

fact that the former admits a generalized eigenvalue equation that is a linear second-order

ordinary differential equation, and hence has a two-dimensional solution space for any given

energy. This should be contrasted with the fact that in space dimensions at least two,

the generalized eigenvalue equation is a partial differential equation and the solution space

is infinite-dimensional. This distinction is important because the spectral questions one is

interested in can be related to the behavior of the solutions of the generalized eigenvalue

equation.

Thus, in the case of one space dimension, it is a worthwhile goal to understand the behavior

of these solutions ψ, and the two-dimensionality then leads one to study their dependence on

the space variable, x ∈ R, in the plane, (ψ′(x), ψ(x))T ∈ R2. Choosing polar-type coordinates,

which are usually referred to as Prüfer variables, one can study the growth and the rotation

of the vector (ψ′(x), ψ(x)) around the origin of R2 as x grows. The almost periodicity of

the potential is well known to yield a uniquely ergodic dynamical system, namely the hull,

which is the uniform closure of the set of translates and which turns out to be a compact

abelian group, together with the R translation action and the normalized Haar measure. As

a consequence, the average amount of rotation per unit step can be defined as the limit of

Birkhoff-type averages, which exists uniformly on the hull due to unique ergodicity. The

resulting limit is called the rotation number, ρ(E), at the energy E in question. It turns

out that ρ(·) is constant in a suitable neighborhood of E if and only if E belongs to the

complement of the spectrum. In particular, each gap of the spectrum can then be labeled by

the constant value ρ takes on it. Additionally, the possible labels that can in principle occur

are completely determined by the hull, either via K-theory or the Schwartzman asymptotic

cycle. This realization is crucial in the study of the topological structure of the spectrum,

and in particular when proving that the spectrum is generically nowhere dense. We refer the

reader to the landmark papers by Johnson-Moser [14] and Johnson [13] for the definition and

study of the rotation number for one-dimensional almost periodic Schrödinger operators and

its application to gap labeling.

This paper is motivated by the desire to generalize almost periodic potentials by adding

suitable almost periodic local point interactions. The discussion above then suggests that

an important first step in the analysis of the resulting operators is the definition and study

of the rotation number ρ(E) for E ∈ R. This is precisely what we carry out in the present

paper. The application of the rotation number we define here to the spectral analysis of these
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generalized almost periodic Schrödinger operators in one space dimension will be presented

in a forthcoming paper.

Let us describe the models we will be interested in. Following and extending the papers

[14, 32, 7], we consider the Schrödinger operator Hq,V,Γ in L2(R) given by

(1.1) Hq,V,Γψ(x) := −ψ′′(x) +

(
q(x) +

∑
i∈Z

viδ(x− xi)

)
ψ(x), x ∈ R,

where q(x) ∈ PCu(R) is a piecewise continuous almost periodic function, V = {vi}i∈Z ∈
ℓ∞(Z) is an almost periodic bi-sequence, and Γ = {xi}i∈Z ∈ L(Z) is an almost periodic

point set, while δ(x − xi) denotes the Dirac δ-function at xi. In such a setting, q(x) and∑
i∈Z viδ(x− xi) can be regarded as the absolutely continuous part and the pure point part

of the potential in the measure sense, respectively. Let E ∈ R. The eigenvalue equation

Hq,V,Γψ = Eψ

can be written as

(1.2)


d

dx

(
ψ′

ψ

)
=

(
0 q(x)− E

1 0

)(
ψ′

ψ

)
, x ∈ R \ Γ,(

ψ′(xi+)

ψ(xi+)

)
=

(
1 vi
0 1

)(
ψ′(xi−)

ψ(xi−)

)
, xi ∈ Γ.

The system (1.2) can be regarded as an impulsive differential equation. There is a large

number of works on systems with impulses in which the behavior of solutions is studied, such

as periodicity, almost-periodicity, stability and so on; see the monograph by Samoilenko and

Perestyuk with a supplement by Trofimchuk [26] and references therein. Different from those

works, we will focus on the long time behavior of solutions of (1.2), and introduce the rotation

number in the spirit of Johnson and Moser [14] for (1.1).

The paper is organized as follows. We begin in Section 2 with general considerations cen-

tered around the concept of almost periodicity. The presentation is at a rather general level,

but as a primary application we have the construction and discussion of the hull associated

with our generalized almost periodic potential in mind. The latter application appears in

Section 3. The next step is to discuss the solutions of (1.2) from a Prüfer variable perspective

that is amenable to unique ergodicity considerations; this is carried out in Section 4. Finally,

our discussion culminates in Section 5 in the definition and discussion of the rotation number

for the models we consider in this paper.

Throughout this paper, we adopt the following notations:

• N0 := N ∪ {0}; R+
0 := R+ ∪ {0};

• e denotes the Euler number; i denotes the imaginary unit that is different from the

index i;

• K denotes either R or C, depending on the setting. All functions and bi-sequences

are K-valued unless stated otherwise;

• L(Z): the set of all discrete point sets in the real axis;

• ℓ∞(Z): the space of all bounded bi-sequences;
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• C(R): the space of all continuous functions;

• Cb(R): the subspace of C(R) consisting of all bounded functions;

• Cu(R): the subspace of Cb(R) consisting of all uniformly continuous functions;

• PC(R): the space of all piecewise continuous functions with jump discontinuities at

a discrete point set Γ ∈ L(Z);
• PCb(R): the subspace of PC(R) consisting of all bounded functions;

• PCu(R): the subspace of PCb(R) consisting of all functions that are uniformly con-

tinuous on R \Γ, i.e., for any ε > 0, there exists δε > 0 such that |f(x1)− f(x2)| < ε

when |x1 − x2| < δε and x1, x2 belong to the same interval from R \ Γ;

2. Almost Periodicity

In [7], we used a unified approach to introduce almost periodicity in which the isometry

of shift actions is crucial. Here we will improve this approach by using a weaker condition

than isometry and establish further properties of almost periodicity. Some related ideas can

be founded in [31].

2.1. Almost Periodic Point. Let (Y, dist) be a complete metric space. We consider a Z
action on Y by shifts and denote for y ∈ Y and τ ∈ Z the corresponding shifted element in

Y by y · τ . This shift action satisfies the following conditions:

• group structure:

(2.1) y · 0 = y, and y · (τ1 + τ2) = (y · τ1) · τ2, ∀ y ∈ Y, τ1, τ2 ∈ Z;

• equicontinuity:

for any ε > 0, there exists δε > 0 such that

if dist(y1, y2) < δε, then dist(y1 · τ, y2 · τ) < ε for all τ ∈ Z.(2.2)

For y ∈ Y , denote the orbit of y by

Orb(y) := {y · τ : τ ∈ Z} ⊂ Y,

and the hull of y by

H(y) := Orb(y)
(Y,dist)

.

A set A ⊂ Z is said to be relatively dense (with window size ℓ) if there exists ℓ ∈ N such that

A ∩ [a, a+ ℓ] ̸= ∅, ∀ a ∈ N.

Definition 2.1. We say that y ∈ Y is almost periodic if one of the following conditions

holds:

i): for any ε > 0, P(y, ε) := {τ ∈ Z : dist(y · τ, y) < ε} is relatively dense in Z;
ii): the hull of y is compact;

iii): for any sequence {τ̃k}k∈N ⊂ Z, one can extract a subsequence {τk} ⊂ {τ̃k} such that

{y · τk} is convergent in (Y, dist), i.e., Orb(y) is relatively compact.
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The concept of almost periodic points has been introduced for a topological action of a

topological semigroup on a locally compact topological space; see [11, 4]. The difference

is that here we do not assume that Y is locally compact, but require that the shift action

satisfies the equicontinuity. Under conditions (2.1) and (2.2), we can show the equivalence of

these definitions.

Theorem 2.2. The conditions i), ii) and iii) in Definition 2.1 are equivalent.

Proof. The argument to show the equivalence between ii) and iii) is the same as in the proof

of [7, Theorem 2.4]. We only consider the equivalence between i) and ii).

i) =⇒ ii) : By [8, Therem 3.16.1] it suffices to show that (H(y), dist) is complete and

totally bounded. Since H(y) is closed in the complete space (Y, dist), (H(y), dist) is complete

as well. Hence we need only to prove that (H(y), dist) is totally bounded. It suffices to show

that Orb(y) is totally bounded. For any ε > 0, there exists δε > 0 such that condition (2.2)

holds. By Definition 2.1 i), for such δε, P(y, δε) is relatively dense in Z. Thus there exists

ℓε ∈ N such that for any a ∈ Z, we have

P(y, δε) ∩ [−a,−a+ ℓε] ̸= ∅.

Let −a+ ba,ε ∈ P(y, δε) ∩ [−a,−a+ ℓε], where ba,ε ∈ [0, ℓε] ∩ Z depends on the parameters a

and ε. Since

dist(y · (−a+ ba,ε), y) < δε,

it follows from (2.1) and (2.2) that

(2.3) dist(y · ba,ε, y · a) < ε, ∀ a ∈ Z.

We construct a finite set Aε ⊂ Orb(y) by

Aε := {y · i : i = 0, 1, · · · , ℓε}.

By (2.3), we obtain that Orb(y) is totally bounded.

ii) =⇒ i) : Since H(y) is compact, by [8, Therem 3.16.1] it follows that Orb(y) is totally

bounded. Again by using δε in (2.2), we know that there exists a finite subset, denoted by

Iε := {τi ∈ Z : i = 1, 2, · · · , nε} such that

(2.4) dist(y · a, y · τia) < δε, ∀ a ∈ Z,

where τia ∈ Iε depends on the parameter a. It follows from (2.1), (2.2) and (2.4) that

(2.5) dist(y, y · (−a+ τia)) < ε, ∀ a ∈ Z.

Let us denote Lε := max1≤i≤nε |τi|. Then

−a− Lε ≤ −a+ τia ≤ −a+ Lε, ∀ a ∈ Z.

Combining this with (2.5), we have

P(y, ε) ∩ [−a− Lε,−a+ Lε] ̸= ∅.

Thus P(y, ε) is relatively dense with the choice of ℓε = 2Lε. □
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Remark 2.3. The equivalence between conditions i) and iii) in Definition 2.1 is similar

to a theorem of Gottschalk. Due to [10, Theorem 1], that result states that when Y is a

uniform space, the total boundedness of Orb(y) is equivalent to the almost periodicity of y

under the equicontinuity condition. Since we have assumed that Y is a metric space, the

equivalence between total boundedness and relative compactness holds automatically, and

we may characterize the convergence by sequences instead of some uniformity.

We say that y ∈ Y is an equicontinuous point if the shift action restricted on Orb(y)

satisfies condition (2.2). Denote the subset of Y consisting of all equicontinuous points by

Yec.

Remark 2.4. Recalling the proof of Theorem 2.2, we only use the equicontinuity of the shift

action on Orb(y). Once we do not have the equicontinuity condition (2.2) on the whole space

Y , we may define the almost periodicity for y ∈ Yec instead of y ∈ Y .

We say that y ∈ Y is a complete point if (H(y), dist) is a complete subspace. Denote the

subset of Y consisting of all complete points by Yco.

Remark 2.5. Again recalling the proof of Theorem 2.2, we only use the completeness of

H(y). This means that even if the whole space Y is not complete, we may still define the

almost periodicity for y ∈ Yco instead of y ∈ Y .

Denote the subset of Y consisting of all almost periodic points by Yap.

Lemma 2.6. (Yap, dist) is a complete metric space.

Proof. Let {yi}i∈N ⊂ Yap be a Cauchy sequence. Since Y is complete, there exists y0 ∈ Y

such that

(2.6) lim
i→+∞

dist(yi, y0) = 0.

We assert that y0 ∈ Yap. Indeed, since y1 ∈ Yap, we know by Definition 2.1 iii) that for

any sequence {τ̃k}k∈N ⊂ Z, there exists a subsequence {τ1k} ⊂ {τ̃k} such that {y1 · τ1k}k∈N
is convergent in (Y, dist). For yi+1 ∈ Yap and {τ ik}, i ∈ N, repeating the process we have a

subsequence {τ i+1
k } ⊂ {τ ik} such that {yi+1 · τ i+1

k }k∈N is convergent in (Y, dist). It follows

from the diagonalization process that there exists a subsequence {τkk } ⊂ {τ̃k} such that

(2.7)
{
yi · τkk

}
k∈N

is convergent in (Y, dist) for all i ∈ N.

Replacing ε by ε/3 in (2.2), we take a number δε/3. By (2.6) there exists iε ∈ N such that

dist(yi, y0) < δε/3, for i ≥ iε.

This implies that

(2.8) dist(yi · τ, y0 · τ) < ε/3, for i ≥ iε and τ ∈ Z.

Let i = iε in (2.7). We know that for any ε > 0, there exists kε ∈ N such that

(2.9) dist
(
yiε · τ

k1
k1
, yiε · τ

k2
k2

)
< ε/3, for k1, k2 ≥ kε.
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Then by (2.8) and (2.9) we have

dist
(
y0 · τk1k1 , y0 · τ

k2
k2

)
≤ dist

(
yiε · τ

k1
k1
, y0 · τk1k1

)
+ dist

(
yiε · τ

k2
k2
, y0 · τk2k2

)
+ dist

(
yiε · τ

k1
k1
, yiε · τ

k2
k2

)
< ε/3 + ε/3 + ε/3 = ε.

Thus
{
y0 · τkk

}
k∈N

is convergent in (Y, dist). By Definition 2.1 iii) we have the assertion. □

Remark 2.7. Although we may define the almost periodicity for y ∈ Yec ∩ Yco, we do not

know whether Lemma 2.6 is still correct in the absence of condition (2.2) and the completeness

of Y .

2.2. Compact Abelian Topological Group. We focus on the hull of y ∈ Yap and equip

H(y) with a group operation as follows. Let

(2.10) yk := lim
i→+∞

y · τki ∈ H(y), k = 1, 2.

Then we define the group operation by

(2.11) y1 × y2 := lim
i→+∞

y · (τ1i + τ2i ).

The element y1× y2 is well defined. Indeed, for δε/2 in (2.2), by (2.10) there exists a common

iε ∈ N such that

(2.12) dist(y · τ1i1 , y · τ
1
i2) < δε/2 and dist(y · τ2i1 , y · τ

2
i2) < δε/2, for i1, i2 ≥ iε.

By (2.1), (2.2) and (2.12), we know that when i1, i2 ≥ iε, we have

dist
(
y · (τ1i1 + τ2i1), y · (τ

1
i2 + τ2i2)

)
≤ dist

(
(y · τ2i1) · τ

1
i1 , (y · τ

2
i2) · τ

1
i1

)
+ dist

(
(y · τ1i1) · τ

2
i2 , (y · τ

1
i2) · τ

2
i2

)
< ε/2 + ε/2 = ε.

This implies that
{
y · (τ1i + τ2i )

}
i∈N

is a Cauchy sequence in the complete space (Y, dist).

Then the limit (2.11) exists. Moreover, y1 × y2 is independent of the choice of the sequences

{τki }i∈N in (2.10). In fact, suppose that there exist other sequences {τ̃ki }i∈N such that

(2.13) yk = lim
i→+∞

y · τ̃ki , k = 1, 2.

Again for δε/2 in (2.2), by (2.10) and (2.13) there exists a common iε ∈ N such that

(2.14) dist(y · τki , y · τ̃ki ) < δε/2, for i ≥ iε, k = 1, 2.

By (2.1), (2.2) and (2.14), we know that when i ≥ iε, one has

dist
(
y · (τ1i + τ2i ), y · (τ̃1i + τ̃2i )

)
≤ dist

(
(y · τ1i ) · τ2i , (y · τ̃1i ) · τ2i

)
+ dist

(
(y · τ2i ) · τ̃1i , (y · τ̃2i ) · τ̃1i

)
< ε/2 + ε/2 = ε.

Since ε is arbitrary, we have the desired assertion.



8 D. DAMANIK, M. ZHANG, AND Z. ZHOU

These considerations also suggest that the inverse of y1 will be given by

(2.15) (y1)
−1 := lim

i→+∞
y · (−τ1i ).

Indeed, using a similar argument as above, we conclude that (y1)
−1 is independent of the

choice of the sequence {τ1i }i∈N, and hence is well defined. Moreover, (y1)
−1 is inverse to y1.

Denote the time-one shift ỹ · 1 by T (ỹ), where ỹ = lim
i→+∞

y · τ̃i ∈ H(y). Then we have the

following results.

Lemma 2.8. For y ∈ Yap, one has

i): H(ỹ) = H(y) for each ỹ ∈ H(y);

ii): (H(y),×,−1 ) is a compact abelian topological group;

iii): T : H(y) → H(y) is uniquely ergodic with the Haar measure, denoted by νy, being the

only invariant measure; and

iv): for any continuous function f : H(y) → K,

(2.16) lim
n2−n1→+∞

1

n2 − n1

n2−1∑
τ=n1

f(ỹ · τ) =
∫
H(y)

fdνy,

uniformly for all ỹ ∈ H(y).

Proof. i) : For δε in (2.2), there exists iε ∈ N such that

(2.17) dist(y · τ̃i, ỹ) < δε, for i ≥ iε.

For all τ ∈ Z, by (2.1) and (2.2) we have

(2.18) dist(y · (τ̃i + τ), ỹ · τ) < ε, for i ≥ iε.

This implies that Orb(ỹ) ⊂ H(y). Because H(y) is closed, we obtain H(ỹ) ⊂ H(y). Conversely,

from (2.1), (2.2) and (2.17) we get

dist(ỹ · (−τ̃i), y) < ε, for i ≥ iε.

This implies that y ∈ H(ỹ). Using the argument above, we obtain H(y) ⊂ H(ỹ). The proof

of i) is completed.

ii) : It is obvious by (2.11) that H(y) is an abelian group with the identity element y. One

needs to show that the group operations × and −1 are continuous. We make the following

claim:

for any ε > 0, there exists δε > 0 such that

if dist(y1, y2) < δε, then dist(y1 × y3, y2 × y3) < ε for yk ∈ H(y).(2.19)

Indeed, by (2.10) and the continuity of metric, we have

(2.20) lim
i→+∞

dist(y · τ1i , y · τ2i ) = dist(y1, y2).

Replacing ε by ε/2 in (2.2), we take δε/2. When dist(y1, y2) < δε/2, by (2.20) there exists

iε ∈ N such that

dist(y · τ1i , y · τ2i ) < δε/2, for i ≥ iε.
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This implies that

dist
(
y · (τ1i + τ3i ), y · (τ2i + τ3i )

)
< ε/2.

By (2.11) and the continuity of the metric, the claim (2.19) is deduced and δε/2 is the desired

number.

Let yk, ỹk ∈ H(y), k = 1, 2. We take δε/2 in (2.19). When dist(y1, ỹ1) < δε/2 and

dist(y2, ỹ2) < δε/2, it follows from (2.19) that

dist(ỹ1 × ỹ2, y1 × y2)

≤ dist(ỹ1 × ỹ2, y1 × ỹ2) + dist(y1 × ỹ2, y1 × y2)

< ε/2 + ε/2 = ε.

This proves the continuity of the operation ×. Similarly, we can obtain the continuity of the

operation −1. The proof of ii) is completed.

iii) : By (2.1) and (2.18) we have

T τ (ỹ) = ỹ · τ = lim
i→+∞

y · (τ̃i + τ), ∀ τ ∈ Z.

By (2.11) we have T (ỹ) = (y ·1)× ỹ. This implies that T is a rotation on the compact abelian

topological group H(y). Furthermore, due to (2.1) and i), T is a minimal rotation. Thus the

proof of iii) is completed by [30, Theorem 6.20].

iv) : Applying a standard consequence of unique ergodicity, [30, Theorem 6.19], to T :

ỹ 7→ ỹ · 1, the statement iv) follows readily. □

Definition 2.9. For any y ∈ Yap and any continuous function f : H(y) → K, we call∫
H(y) fdνy the mean value of y with respect to f , and denote it by Mf (y).

Remark 2.10. Similar to Remark 2.5, Lemma 2.8 may be established for y ∈ Yco in the

absence of completeness of Y .

We consider the case Y := ℓ∞(Z) and define a metric ℓ∞(Z)× ℓ∞(Z) → R+
0 by

(2.21) dist(V1, V2) := ∥V1 − V2∥∞ = sup
i∈Z

|v1i − v2i |,

where Vk := {vki }i∈Z ∈ ℓ∞(Z), k = 1, 2. The following is well known.

Lemma 2.11. (ℓ∞(Z), dist) is a complete metric space.

For V = {vi}i∈Z ∈ ℓ∞(Z) and τ ∈ Z, the shift of V is defined by

(2.22) V · τ := {vi+τ}i∈Z.

Obviously for Vk ∈ ℓ∞(Z), k = 1, 2, we have

(2.23) dist(V1 · τ, V2 · τ) = dist(V1, V2), ∀ τ ∈ Z.

This means that (ℓ∞(Z), dist) satisfies the isometry condition. Then Definition 2.1 defines al-

most periodic bi-sequences. We denote by ℓap(Z) the space of all almost periodic bi-sequences.

By Lemma 2.6, we know that (ℓap(Z), dist) is a complete space.

Introduce the function f0 : ℓap(Z) → K by

f0(V ) := v0, for V = {vi}i∈Z ∈ ℓap(Z).

It is easy to see that f0 is continuous. Then by Definition 2.9, we have the following result.
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Lemma 2.12. Let V = {vi}i∈Z ∈ ℓap(Z). Then the limit

Mf0(V ) = lim
n2−n1→+∞

1

n2 − n1

n2−1∑
τ=n1

f0(V · τ) = lim
n2−n1→+∞

1

n2 − n1

n2−1∑
τ=n1

vτ

exists. We call it the mean value of V and denote it by M(V ).

3. Almost Periodic Functions with Jump Discontinuities and δ-Interactions

The concept of an almost periodic function is well known; see the monographs [1, 2,

21]. In this section we introduce almost periodic functions with jump discontinuities and

δ-interactions denoted by

(3.1) f(x) +
∑
i∈Z

viδ(x− xi),

f(x) +
∑
i∈Z

viδ(x− xi) ∈ PCδ,ap(R)

where Γ = {xi}i∈Z ∈ L(Z), f(x) ∈ PCu(R) is a function with jump discontinuities at

points of Γ and V = {vi}i∈Z ∈ ℓ∞(Z), while δ(x − xi) is the Dirac δ-function at xi. In [26]

the authors introduced piecewise continuous almost periodic (for short, p.c.a.p.) functions

with first kind of discontinuities at the (possible) points of Γ = {xi}i∈Z ⊂ R in which the

family of sequences {xi+j − xi}i∈Z is equipotentially almost periodic for all j ∈ Z. Under the

separation condition inf i∈Z(xi+1−xi) > 0 such a point set is a so-called Wexler sequence; see

[25, Definition 2.11]. If R is regarded as a locally compact abelian group, this is a modulated

lattice as introduced in [18, Definition 2] because of [26, p.377, Corollary 5]. However we do

not intend to repeat the statement in [26], and choose a somewhat different way to introduce

almost periodic functions with jump discontinuities and δ-interactions. The first difference is

to take into account the effect of δ-interactions. The second one is to restrict the locations

of the (possible) discontinuity points and δ-interactions to almost periodic point sets, which

have already been defined in [32, 7]. The third one is to choose a discrete framework to define

the almost periodic functions with δ-interactions from the point of view of topology, where a

base for some uniformity will be constructed and the validity of compactness statements will

be used; see [17].

3.1. Point Sets. We restrict to point sets in one dimensional case, and then recall the notion

of almost periodic point sets defined in [32, 7]. It should be mentioned that in order to describe

Delone dynamical systems, Lenz and Stollmann [19] introduced the notion of almost periodic

point sets in Rd. For the general case that is defined on locally compact abelian groups, see

[16, 20].

We assume that Γ = {xi}i∈Z ∈ L(Z) satisfies the following requirements

x0 = 0 and 0 < inf
i∈Z

∆xi ≤ sup
i∈Z

∆xi <∞, where ∆xi := xi − xi−1.

Note that the first requirement is natural because we may translate point sets such that the

zero point is included. The second one is an indispensable condition in order to introduce

the recurrence property of point sets encoded in the notion of almost periodicity, because we
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need exclude point sets with finite limit points. Denote by L0(Z) the space of such all point

sets in R. It can be equipped with the metric

(3.2) dist(Γ1,Γ2) := max
{
d̃ist(Γ1,Γ2), d̃ist(Γ2,Γ1)

}
,

where

d̃ist(Γ1,Γ2) := sup
i∈Z

min
j∈Z

|x1i − x2j |, for Γk = {xki }i∈Z ∈ L0(Z), k = 1, 2.

The metric dist(·, ·) may be regarded as the Hausdorff metric. Note that the space (L0(Z), dist)
is not complete. However, given any 0 < m ≤M <∞, the set

(3.3) Lm,M (Z) :=
{
Γ = {xi}i∈Z ∈ L0(Z) : ∆xi ∈ [m,M ], ∀ i ∈ Z

}
is a closed subset of L0(Z) and it is obvious that

L0(Z) =
⋃

0<m≤M<∞
Lm,M (Z).

Furthermore we have

Lemma 3.1. [32, 7] (Lm,M (Z), dist) is a complete space.

Lemma 3.2. [32, 7] For Γk = {xki } ∈ Lm,M (Z), k = 1, 2, we have:

i): dist(Γ1,Γ2) ≤M/2; and

ii): if dist(Γ1,Γ2) < m/2, then

(3.4) dist(Γ1,Γ2) = sup
i∈Z

|x1i − x2i |.

By (3.4), the convergence in (Lm,M (Z), dist) can be characterized in the following way.

Lemma 3.3. [32, 7] Let Γk = {xki }i∈Z ∈ Lm,M (Z), k ∈ N0. Then

lim
k→+∞

dist(Γk,Γ0) = 0

if and only if

lim
k→∞

sup
i∈Z

|xki − x0i | = 0.

We define the shift on L0(Z) as in [7]. For Γ ∈ L0(Z) and τ ∈ Z, the shift of Γ is

(3.5) Γ · τ := {x̂i}i∈Z ∈ L0(Z), x̂i := xi+τ − xτ .

The family of shifts {Γ·τ}τ∈Z yields a dynamical system on L0(Z) with the following property:

(3.6) Γ · (τ1 + τ2) = (Γ · τ1) · τ2 for τ1, τ2 ∈ Z.

Note that this is not an isometric system. But we have the equicontinuity condition (2.2),

because we have

Lemma 3.4. [7, Lemma 2.13] Let Γk ∈ Lm,M (Z), k = 1, 2, and dist(Γ1,Γ2) < m/2. Then

for all τ ∈ Z, we have

dist(Γ1 · τ,Γ2 · τ) ≤ 2 dist(Γ1,Γ2).
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Obviously, by Lemma 3.4 and Lemma 3.1, we have(
Lm,M (Z)

)
ec

= Lm,M (Z), and
(
Lm,M (Z)

)
co

= Lm,M (Z).

Take (Y, dist) := (Lm,M (Z), dist). Then Definition 2.1 gives a characterization of almost

periodic point sets. Denote by Lm,M,ap(Z) the space of all almost periodic point sets in

Lm,M (Z). An example of an almost periodic point set is

Γa := {i+ a sin i}i∈Z,

where |a| < 1; see [32, 7].

Remark 3.5. The definition of almost periodic point sets is equivalent to that of almost

periodic lattices as defined in [32] in which the parameter τ runs over the real axis and a R
action on Lm,M (Z) is involved.

By Lemma 2.6 we have

Lemma 3.6. (Lm,M,ap(Z), dist) is a complete space.

Similar to the mean values of almost periodic points, we may introduce the following

quantity for almost periodic point sets.

Lemma 3.7. [32, 7] Let Γ ∈ Lm,M,ap(Z). Then the limit

lim
z2−z1→+∞

1

z2 − z1
#
(
Γ̃ ∩ [z1, z2)

)
=: [Γ] ∈

[
1

M
,
1

m

]
exists uniformly for all Γ̃ ∈ H(Γ), where #(·) is the function counting the number of elements

in a set. We call [Γ] the density of Γ.

3.2. Uniform Topology. Based on the results above, we consider the subspace of PCb(R)
consisting of functions with jump discontinuities at points of Γ ∈ L0(Z), and denote it by

PCb,0(R). We use the pair (f,Γ) to represent an element in PCb,0(R). Similarly, PCu,0(R)
denotes the subspace of PCb,0(R) consisting of functions that are uniformly continuous on

R \ Γ, where Γ ∈ L0(Z). Let f be an even function and

f(x) :=


x, x ∈ (0, 1),

0, x ∈ (i, i+ 1− 1
i+1 ],

(i+ 1)(x− i− 1) + 1, x ∈ [i+ 1− 1
i+1 , i+ 1),

where i ∈ N. Then f ∈ PCb,0(R) and f is uniformly continuous on each interval of continuity

from R \ Z, but f ̸∈ PCu,0(R). This example also shows that f is uniformly continuous on

R \ Fr(Z), for all r > 0, where Fr(Z) is defined by (3.7). When the effect of δ-interactions

is taken into account, we denote by PCb,δ,0(R) the space of all bounded and piecewise con-

tinuous functions with jump discontinuities and δ-interactions at points of Γ ∈ L0(Z). Here

boundedness means that a piecewise continuous function with no δ-interaction is bounded on

R. Similarly PCu,δ,0(R) denotes the subspace of PCb,δ,0(R) consisting of all functions that are

uniformly continuous on R \ Γ, where Γ ∈ L0(Z). The triple (f, V,Γ) represents an element

(3.1) in PCu,δ,0(R). For simplicity, we adopt the notation

V
Γ f := (f, V,Γ).
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If the point set is restricted in Lm,M (Z), then we denote the subspace by PCu,δ,m,M (R).
Obviously we have

PCu,δ,0(R) =
⋃

0<m≤M<∞
PCu,δ,m,M (R).

We equip PCu,δ,m,M (R) with the uniform topology as follows. For r > 0, a closed r-

neighborhood of a subset A ⊂ R is denoted by

(3.7) Fr(A) := {x ∈ R : |x− y| ≤ r for some y ∈ A}.

Introduce the family {Sr}r>0 of subsets of the product spaceX := PCu,δ,m,M (R)×PCu,δ,m,M (R)
by

Sr :=
{(

V1
Γ1
f1,

V2
Γ2
f2

)
∈ X : dist(Γ1,Γ2) < r, ∥V1 − V2∥∞ < r and(3.8)

|f1(x)− f2(x)| < r, ∀x ∈ R \ Fr(Γ1 ∪ Γ2)
}
⊂ X.

The set of all pairs
(
V
Γ f,

V
Γ f
)
for V

Γ f ∈ PCu,δ,m,M (R) is called the diagonal, and is denoted

by ∆
(
PCu,δ,m,M (R)

)
. For ri > 0, i = 1, 2, the composition Sr1 ◦ Sr2 denotes the set of

all pairs
(
V1
Γ1
f1,

V3
Γ3
f3

)
such that one has

(
V1
Γ1
f1,

V2
Γ2
f2

)
∈ Sr1 and

(
V2
Γ2
f2,

V3
Γ3
f3

)
∈ Sr2 for some

V2
Γ2
f2 ∈ PCu,δ,m,M (R). Let

(3.9) U0 := X, Un := S4−n , n ∈ N, and U := {Un}n∈N0 .

Then we have

Lemma 3.8. For the subfamily U , we have

i): for all n ∈ N0, ∆
(
PCu,δ,m,M (R)

)
⊂ Un;

ii): if
(
V1
Γ1
f1,

V2
Γ2
f2

)
∈ Un, then

(
V2
Γ2
f2,

V1
Γ1
f1

)
∈ Un;

iii): if n1 < n2, then Un2 ⊂ Un1;

iv):
⋂

n∈N0
Un = ∆

(
PCu,δ,m,M (R)

)
; and

v): for any Un, there exists some Uñ such that Uñ ◦ Uñ ⊂ Un.

Proof. i), ii), iii) and iv) : These statements are obvious.

v) : It suffices to show that for any r < m/2, we have Sr/2 ◦ Sr/2 ⊂ Sr. Indeed, let(
V1
Γ1
f1,

V2
Γ2
f2

)
∈ Sr/2 and

(
V2
Γ2
f2,

V3
Γ3
f3

)
∈ Sr/2. Due to Lemma 3.2 ii) and (3.8), we have

Fr/2(Γ1 ∪ Γ2) ⊂ Fr(Γ1) and Fr/2(Γ2 ∪ Γ3) ⊂ Fr(Γ3).

This implies that

Fr/2(Γ1 ∪ Γ2) ∪ Fr/2(Γ2 ∪ Γ3) ⊂ Fr(Γ1) ∪ Fr(Γ3) = Fr(Γ1 ∪ Γ3).

Then for x ∈ R \ Fr(Γ1 ∪ Γ3), we have

|f1(x)− f3(x)| ≤ |f1(x)− f2(x)|+ |f2(x)− f3(x)| < r.

Thus we have the desired result
(
V1
Γ1
f1,

V3
Γ3
f3

)
∈ Sr. □
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By [17, p.177, Theorem 2], we know that U is a base for some uniformity for PCu,δ,m,M (R).
Then PCu,δ,m,M (R) can be equipped with the uniform topology denoted by T that is gener-

ated from U .

Theorem 3.9. (Alexandroff-Urysohn) [17, p.186, Theorem 13] A uniform space (Y,T )

is metrizable if and only if it is Hausdorff and its uniformity U has a countable base. Fur-

thermore, let U = {Un}n∈N0 be the base and dist : Y ×Y → R+
0 be the induced metric. Then

we have

(3.10) Un ⊂ {(x, y) ∈ Y × Y : dist(x, y) < 2−n} ⊂ Un−1, ∀ n ∈ N.

Lemma 3.10. The uniform space (PCu,δ,m,M (R),T ) is metrizable.

Proof. By Lemma 3.8 iv), we know that (PCu,δ,m,M (R),T ) is Hausdorff. By construction

(3.9), the uniformity U has a countable base. Due to Theorem 3.9, we have the desired

result. □

Then we may construct a metric dist : PCu,δ,m,M (R)× PCu,δ,m,M (R) → R+
0 such that

(3.11) (PCu,δ,m,M (R), dist) = (PCu,δ,m,M (R),T ).

The convergence in (PCu,δ,m,M (R), dist) can be characterized in the following way.

Lemma 3.11. Let Vk
Γk
fk ∈ PCu,δ,m,M (R), k ∈ N0. Then lim

k→+∞
dist

(
Vk
Γk
fk,

V0
Γ0
f0

)
= 0 if and

only if for any ε > 0 there exists kε ∈ N such that for all k ≥ kε, we have

dist(Γk,Γ0) < ε, ∥Vk − V0∥∞ < ε, and |fk(x)− f0(x)| < ε, ∀x ∈ R \ Fε(Γk ∪ Γ0).

Proof. Due to (3.10), (3.9) and (3.8), it is easy to check the characterization. □

Remark 3.12. Fε(Γk ∪Γ0) can be replaced by Fε(Γ0). Since Fε(Γ0) ⊂ Fε(Γk ∪Γ0), we only

need to show this implication =⇒. Indeed, assume that

lim
k→+∞

dist
(
Vk
Γk
fk,

V0
Γ0
f0

)
= 0.

For any ε > 0, there exists kε/2 ∈ N such that

dist(Γk,Γ0) < ε/2, ∀ k ≥ kε/2.

Without loss of generality, let ε < m. It follows from (3.4) that

Fε/2(Γk ∪ Γ0) = Fε/2(Γk) ∪ Fε/2(Γ0) ⊂ Fε(Γ0), ∀ k ≥ kε/2.

Thus we have the desired assertion.

3.3. Functions With Jump Discontinuities and δ-Interactions. In this subsection, we

introduce the almost periodic functions with jump discontinuities and δ-interactions. We

consider a Z action on PCu,δ,m,M (R) by shifts. Let f : R → K be a piecewise continuous

function and τ ∈ R. The shift of f is

f · τ := f(·+ τ).

Then denote for V
Γ f ∈ PCu,δ,m,M (R) and τ ∈ Z the corresponding shifted element in

PCu,δ,m,M (R) by

(3.12) V
Γ f · τ := V ·τ

Γ·τ (f · xτ ),
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where Γ · τ and V · τ are defined by (3.5) and (2.22), respectively. Obviously we have

Orb
(
V
Γ f
)
⊂ PCu,δ,m,M (R).

Due to (3.3) and (3.6), the family of shifts
{
V
Γ f · τ

}
τ∈Z

yields a dynamical system on

PCu,δ,m,M (R) with the following property

(3.13) V
Γ f · (τ1 + τ2) =

(
V
Γ f · τ1

)
· τ2, for τ1, τ2 ∈ Z.

This is not an isometric system because of shifts of point sets. However we have

Lemma 3.13. The shift action on (PCu,δ,m,M (R), dist) satisfies the equicontinuity condition

(2.2).

Proof. Let Vk
Γk
fk ∈ PCu,δ,m,M (R), k = 1, 2. It suffices to show that for any n ∈ N, there exists

kn ∈ N such that if dist
(
V1
Γ1
f1,

V2
Γ2
f2

)
< 2−kn , then we have

(3.14) dist
(
V1
Γ1
f1 · τ, V2

Γ2
f2 · τ

)
< 2−n, ∀ τ ∈ Z.

Denote Γk := {xki }i∈Z ∈ Lm,M (Z), k = 1, 2. Due to (3.10), (3.9), (3.8) and (3.12), it suffices

to prove that

(3.15) dist(Γ1 · τ,Γ2 · τ) < 4−n, ∀ τ ∈ Z,

(3.16) ∥V1 · τ − V2 · τ∥∞ < 4−n, ∀ τ ∈ Z,

and

(3.17) |f1 · x1τ (x)− f2 · x2τ (x)| < 4−n for x ∈ R \ F4−n(Γ1 · τ ∪ Γ2 · τ), ∀ τ ∈ Z.

Since V2
Γ2
f2 ∈ PCu,δ,m,M (R), for any n ∈ N, there exists k̃n ∈ N such that

|f2(x̃)− f2(x̌)| < 4−n−1,(3.18)

for |x̃− x̌| < 4−k̃n and x̃, x̌ belong to the same interval from R \ Γ2.

Without loss of generality, assume that k̃n ≥ n. We assert that

(3.19) kn := k̃n + 2 ≥ n+ 2

is the desired number such that (3.14) holds. Indeed, if dist
(
V1
Γ1
f1,

V2
Γ2
f2

)
< 2−kn , then from

(3.10), (3.9) and (3.8) we find

(3.20) dist(Γ1,Γ2) < 4−kn+1,

(3.21) ∥V1 − V2∥∞ < 4−kn+1,

and

(3.22) |f1(x)− f2(x)| < 4−kn+1 for x ∈ R \ F4−kn+1(Γ1 ∪ Γ2).

By Lemma 3.4, (3.20) and (3.19), we have the desired result (3.15). By (2.23), (3.21) and

(3.19), we have the desired result (3.16). Denote δτ := x2τ −x1τ , τ ∈ Z. From (3.4) and (3.20)

we see that

(3.23) |δτ | < 4−kn+1, ∀ τ ∈ Z.
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This implies that

(3.24) F4−kn+1({x2i − x1τ}i∈Z) = F4−kn+1({x2i+τ − x2τ + δτ}i∈Z) ⊂ F4−kn+2(Γ2 · τ).

We make the following claims.

Claim 1 : for any τ ∈ Z, we have

(3.25) |f1 · x1τ (x)− f2 · x1τ (x)| < 4−n−1, ∀ x ∈ R \ F4−n(Γ1 · τ ∪ Γ2 · τ).

In fact, by (3.24) and (3.19), we have

(3.26) F4−kn+1({x1i − x1τ}i∈Z ∪ {x2i − x1τ}i∈Z) ⊂ F4−n(Γ1 · τ ∪ Γ2 · τ).

For any x ∈ R \ F4−n(Γ1 · τ ∪ Γ2 · τ), (3.26) yields

x+ x1τ ∈ R \ F4−kn+1(Γ1 ∪ Γ2).

The claim (3.25) is deduced by (3.22) and (3.19).

Claim 2 : for any τ ∈ Z, we have

(3.27) |f2 · x1τ (x)− f2 · x2τ (x)| < 4−n−1, ∀ x ∈ R \ F4−n(Γ2 · τ).

In fact, by (3.24) and (3.19) we have

(3.28) F4−kn+1({x2i − x2τ}i∈Z ∪ {x2i − x1τ}i∈Z) ⊂ F4−n(Γ2 · τ)

For any x ∈ R \ F4−n(Γ2 · τ), (3.28) yields

x+ x1τ , x+ x2τ ∈ R \ F4−kn+1(Γ2) ⊂ R \ Γ2.

It follows from (3.23) that x+x1τ , x+x
2
τ necessarily belong to the same interval from R \Γ2.

The claim (3.27) is deduced by (3.19) and (3.18).

We obtain the desired result (3.17) by the two claims above, completing the proof. □

Remark 3.14. As a natural consequence of Lemma 3.13, we see that each V
Γ f ∈ PCu,δ,m,M (R)

is an equicontinuous point, i.e.,(
PCu,δ,m,M (R)

)
ec

= PCu,δ,m,M (R).

Furthermore we obtain

Lemma 3.15. For any V
Γ f ∈ PCu,δ,m,M (R), V

Γ f is a complete point in PCu,δ,m,M (R). That

is, (
PCu,δ,m,M (R)

)
co

= PCu,δ,m,M (R).

Proof. It suffices to show that each Cauchy sequence in
(
H
(
V
Γ f
)
, dist

)
converges to a point

in H
(
V
Γ f
)
. Let

{
Vk
Γk
fk

}
k∈N

⊂ H
(
V
Γ f
)
be a Cauchy sequence. Then for each Vk

Γk
fk, there exists

Vnk
Γnk

fnk
:= V

Γ f · nk ∈ Orb
(
V
Γ f
)
such that

(3.29) dist
(
Vk
Γk
fk,

Vnk
Γnk

fnk

)
< 1/k.

Note that by (3.12), we have

(3.30) fnk
= f · xnk

and Γnk
= Γ · nk,



ROTATION NUMBER WITH JUMP DISCONTINUITIES AND δ-INTERACTIONS 17

where Γ = {xi}i∈Z. It follows from (3.10), (3.9) and (3.8) that both {Γnk
} and {Vnk

} are

Cauchy sequences in (Lm,M (Z), dist) and (ℓ∞(Z), dist), respectively. Due to Lemma 3.1 and

Lemma 2.11, there exist Γ0 = {x0i }i∈Z ∈ Lm,M (Z) and V0 ∈ ℓ∞(Z) such that

(3.31) lim
k→+∞

dist(Γnk
,Γ0) = 0,

and

(3.32) lim
k→+∞

∥Vnk
− V0∥∞ = 0.

Again by (3.10), (3.9) and (3.8), we know that for any ε > 0, there exists kε ∈ N such that

(3.33) |fnk1
(x)− fnk2

(x)| < ε, for all x ∈ R \ Fε(Γnk1
∪ Γnk2

) and k1, k2 ≥ kε.

We make the following claims.

Claim 1 : for any x ∈ R \ Γ0, the sequence {fnk
(x)} converges to a point in R denoted

by f0(x). Indeed, let d := mini∈Z |x− x0i | > 0. Without loss of generality, assume that

(3.34) ε < d.

By (3.31) and (3.33), for any ε > 0, there exists a common k̃ε ∈ N such that

(3.35) dist(Γnk
,Γ0) < ε/4, ∀ k ≥ k̃ε,

and

(3.36) |fnk1
(x)− fnk2

(x)| < ε/4, for all x ∈ R \ Fε/4(Γnk1
∪ Γnk2

) and k1, k2 ≥ k̃ε.

When x ∈ R \ Γ0 and k1, k2 ≥ kε, by (3.34) and (3.35), we have x ∈ R \ Fε/4(Γnk1
∪ Γnk2

).

This implies from (3.36) that {fnk
(x)} is a Cauchy sequence. Thus we have the desired result.

Claim 2 : f0(x) is bounded on R \ Γ0. Indeed, because of (3.30) and the boundedness

of f on R \ Γ, the family {fnk
: R \ Γnk

→ K}k∈N is uniformly bounded. Due to the claim

above, we have

lim
k→+∞

fnk
(x) = f0(x), ∀ x ∈ R \ Γ0.

This implies the boundedness of f0(x) on R \ Γ0.

Claim 3 : for any ε > 0, there exists kε ∈ N such that for all k ≥ kε, we have

(3.37) |fnk
(x)− f0(x)| < ε, ∀ x ∈ R \ Fε(Γnk

∪ Γ0).

Indeed, by (3.35) and (3.36), for k1, k2 ≥ k̃ε, we have

Fε/4(Γnk1
∪ Γnk2

) ⊂ Fε/2(Γ0).

This implies that

|fnk1
(x)− fnk2

(x)| < ε/4, ∀ x ∈ R \ Fε/2(Γ0).

Let k2 ↗ +∞. For k1 ≥ k̃ε, we have

(3.38) |fnk1
(x)− f0(x)| ≤ ε/4, ∀ x ∈ R \ Fε/2(Γ0).

Claim (3.37) is deduced by Remark 3.12 and (3.38).

Claim 4 : f0(x) is uniformly continuous on R \ Γ0. Indeed, denote

dk := dist(Γnk
,Γ0), and Ak := R \ F2dk(Γ0).
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By (3.31), we know that dk is monotonically decreasing to zero, and

(3.39) Ak ⊂ Ak+1, and
⋃
k∈N

Ak = R \ Γ0.

Since V
Γ f ∈ PCu,δ,m,M (R) and Vnk

Γnk
fnk

∈ Orb
(
V
Γ f
)
, we know that

F := {(fnk
,Γnk

)}k∈N ⊂ PCu,m.M (R)

is equicontinuous, i.e., for any ε > 0, there exists a common δε such that for any (fni ,Γni) ∈ F,

we have

|fni(x1)− fni(x2)| < ε/3,(3.40)

for |x1 − x2| < δε and x1, x2 belong to the same interval from R \ Γni .

Assume that x1, x2 belong to the same interval from R \ Γ0. Then by (3.39) there exists

kx1,x2 ∈ N such that x1, x2 that belong to the same interval from Ak for any k ≥ kx1,x2 .

Restricting x ∈ Akx1,x2
, we know from (3.38) that for any ε > 0, there exists kε ∈ N such

that we have

(3.41) |fni(x)− f0(x)| < ε/3, for i ≥ kε.

Note that kε also depends on the choice of x1, x2. If |x1 − x2| < δε, then from (3.40) and

(3.41) it follows that

|f0(x1)− f0(x2)|

≤
∣∣∣f0(x1)− fnkε

(x1)
∣∣∣+ ∣∣∣fnkε

(x1)− fnkε
(x2)

∣∣∣+ ∣∣∣fnkε
(x2)− f0(x2)

∣∣∣
< ε/3 + ε/3 + ε/3 = ε.

This means that the claim is deduced.

Based on this claim, it is easy to conclude that f0 has jump discontinuities at points of

Γ0. Then we have V0
Γ0
f0 ∈ PCu,δ,m,M (R). Due to (3.31), (3.32), (3.37) and Lemma 3.11, we

obtain

(3.42) lim
k→+∞

dist
(
Vnk
Γnk

fnk
, V0
Γ0
f0

)
= 0.

It follows from (3.29) and (3.42) that V0
Γ0
f0 ∈ H

(
V
Γ f
)
, and

lim
k→+∞

dist
(
Vk
Γk
fk,

V0
Γ0
f0

)
= 0.

The proof is completed. □

Remark 3.16. As a byproduct of Claim 2 in the proof of Lemma 3.15, we may deduce that

for all Ṽ
Γ̃
f̃ ∈ H

(
V
Γ f
)
, there exists B > 0 such that

(3.43) ∥f̃(x)∥∞ + ∥Ṽ ∥∞ ≤ B.

Remark 3.17. In the proof of Claim 3 in the proof of Lemma 3.15, the equicontinuity of

F is crucial. A fundamental question is whether the uniform space (PCu,δ,m,M (R), dist) is a
complete metric space. We leave it to the reader. However each uniform space is uniformly

isomorphic to a dense subspace of a complete uniform space, then we may make a completion

of a uniform space.
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In case there is no δ-interaction, we denote by PCu,0(R) the subspace of PCu(R) consisting
of all functions with jump discontinuities at points of Γ ∈ L0(Z). Similarly PCu,m,M (R)
denotes the subspace of PCu,0(R) with jump discontinuities at Γ ∈ Lm,M (Z). Then we have

PCu,0(R) =
⋃

0<m≤M<∞
PCu,m,M (R).

Remark 3.18. All results above can be established for PCu,m,M (R) in a similar way. In

detail, removing the effect of δ-interactions in (3.8), we first construct a family still denoted

by U := {Un}n∈N0 of subsets of the product space PCu,m,M (R) × PCu,m,M (R). Then the

uniform space (PCu,m,M (R),T ) is metrizable where the topology T is generated from U .

Moreover we have(
PCu,m,M (R)

)
ec

= PCu,m,M (R), and
(
PCu,m,M (R)

)
co

= PCu,m,M (R).

Before introducing the main concept in this section, we recall the class of Bohr almost

periodic functions.

Definition 3.19. [9, 7] We say that f ∈ Cb(R) is Bohr almost periodic if one of the following

conditions holds:

i): [Bohr’s definition] for any ε > 0, PR(f, ε) := {τ ∈ R : ∥f · τ − f∥∞ < ε} is relatively

dense in R;
ii): the hull of f running over R, defined by

HR(f) := {f · τ : τ ∈ R}(Cb(R),∥·∥∞)
,

is a compact subset in Cb(R);
iii): [Bochner’s definition] for any sequence {τ̃k} ⊂ R, one can extract a subsequence

{τk} ⊂ {τ̃k} such that {f · τk} is convergent in (Cb(R), ∥ · ∥∞), i.e., {f · τ : τ ∈ R} is

relatively compact.

Remark 3.20. The equivalence between conditions i) and iii) in Definition 3.19 may be

regarded as the Arzelà-Ascoli theorem for Bohr almost periodic functions. That is, the family

of functions {f · τ : τ ∈ R} is relatively compact in (Cb(R), ∥ · ∥∞) if and only if PR(f, ε)

is relatively dense for any ε > 0. Note that the condition of relative denseness implies that

f ∈ Cu(R). The classical Arzelà-Ascoli theorem requires that the domain of the functions is

a compact Hausdorff space. Here the condition of relative denseness is to compensate for the

non-compactness of R.

The difference between this definition and Definition 2.1 is that the parameter τ in this

definition is required to run over the real axis. We denote the space of all Bohr almost

periodic functions by Cap(R). It is well known that (Cap(R), ∥ · ∥∞) is a Banach algebra [9].

By Definition 2.1, Remark 2.5, Lemma 3.13 and Lemma 3.15, we are now in a position to

introduce almost periodic functions with jump discontinuities and δ-interactions.

Definition 3.21. V
Γ f ∈ PCu,δ,m,M (R) is called an almost periodic function with jump dis-

continuities and δ-interactions if one of the following conditions holds:

i): [Bohr-type definition] for any ε > 0, P
(
V
Γ f, ε

)
:=
{
τ ∈ Z : dist

(
V
Γ f · τ, VΓ f

)
< ε
}

is

relatively dense in Z, where dist is the metric introduced in Lemma 3.10;
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ii): the hull of V
Γ f , defined by

H
(
V
Γ f
)
=
{
V
Γ f · k : k ∈ Z

}(PCu,δ,m,M (R),dist)

is compact;

iii): [Bochner-type definition] for any sequence {τ̃k}k∈N ⊂ Z, one can extract a subse-

quence {τk} ⊂ {τ̃k} such that
{
V
Γ f · τk

}
is convergent in (PCu,δ,m,M (R), dist).

We denote the space of all almost periodic functions with jump discontinuities and δ-

interactions at points of Γ ∈ Lm,M (Z) by PCδ,m,M,ap(R). As we stated in Remark 3.18,

Definition 2.1 can also give the characterization of almost periodic functions with jump dis-

continuities. Denote the space of all almost periodic functions with only jump discontinuities

at points of Γ ∈ Lm,M (Z) by PCm,M,ap(R). An example of PCm,M,ap(R) is

(3.44) f |(xi,xi+1) = ui,

where Γ = {xi} ∈ Lm,M,ap(Z) and {ui} ∈ ℓap(Z). An example of PCδ,m,M,ap(R) is
1
Γf = 0

Γf + δΓ,

where 0
Γf is given by (3.44).

Introduce the following notation:

(3.45) PCδ,0,ap(R) :=
⋃

0<m≤M<∞
PCδ,m,M,ap(R),

and

PC0,ap(R) :=
⋃

0<m≤M<∞
PCm,M,ap(R).

Lemma 3.22. We have:

i): PCm,M,ap(R) ⊂ PCδ,m,M,ap(R); PC0,ap(R) ⊂ PCδ,0,ap(R);
ii): Cap(R) ⊂ PC0,ap(R) ∩ C(R); and
iii): if V

Γ f ∈ PCδ,m,M,ap(R), then 0
Γf ∈ PCm,M,ap(R), V ∈ ℓap(Z), and Γ ∈ Lm,M,ap(Z).

Proof. i) : Because we may regard (f,Γ) ∈ PCu,m,M (R) as an element in PCu,δ,m,M (R)
with no δ-interaction, i) is obvious.

ii) : We assume that f ∈ Cap(R). By Definition 3.19 ii), we know that

H(f) = {f · τ : τ ∈ Z}(Cu(R),∥·∥∞) ⊂ HR(f)

is compact in (Cu(R), ∥ · ∥∞). We regard f as an element in PCu,m,M (R) with no jump

discontinuities and no δ-interaction. Because

(Cu(R), ∥ · ∥∞) ↪→ (PCu,m,M (R), dist),

we have f ∈ PC0,ap(R). The proof of ii) is completed.

iii) : We assume that V
Γ f ∈ PCδ,m,M,ap(R). Due to (3.10), (3.9) and (3.8), we have

P
(
V
Γ f, ε

)
⊂ P

(
0
Γf, ε

)
.
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This implies that P
(
0
Γf, ε

)
is relatively dense for any ε > 0. Thus 0

Γf ∈ PCm,M,ap(R).
Meanwhile, by Definition 3.21 iii), Definition 2.1 iii) and Lemma 3.11, we deduce that V ∈
ℓap(Z) and Γ ∈ Lm,M,ap(Z). The proof of iii) is completed. □

Remark 3.23. A natural question is whether (PCδ,m,M,ap(R), dist) is a complete metric

space. We leave it to the interested reader. Note that in case that (PCu,δ,m,M (R), dist) is

complete, we would obtain this result by Lemma 2.6.

3.4. Mean Value. We use Lemma 2.8 to introduce the mean value of V
Γ f ∈ PCδ,0,ap(R).

Lemma 3.24. Let V
Γ f ∈ PCδ,0,ap(R). Then the limit

(3.46) M
(
V
Γ f
)
:= lim

z2−z1→+∞

1

z2 − z1

∫
[z1,z2)

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx ∈ C

exists uniformly for all z1, z2 ∈ R. We call it the mean value of V
Γ f .

Proof. By (3.45), there existm, M > 0 such that V
Γ f ∈ PCδ,m,M,ap(R). Denote Γ = {xi}i∈Z ∈

Lm,M (Z). Then for any z1, z2 ∈ R, there exist n1, n2 ∈ Z such that

(3.47) xn1 ≤ z1 < xn1+1 and xn2 ≤ z2 < xn2+1.

We make the following claims.

Claim 1 : the following relation holds:

lim
z2−z1→+∞

1

z2 − z1

∫
[z1,z2)

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx

= lim
n2−n1→+∞

1

xn2 − xn1

∫
[xn1 ,xn2 )

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx.(3.48)

That is, if one of limits exists, then the other one exists as well and they are equal. Indeed,

suppose that there exists B > 0 such that

(3.49) sup
x∈R\Γ

|f(x)|+ ∥V ∥∞ = ∥f(x)∥∞ + ∥V ∥∞ ≤ B.

Then by (3.47), (3.49) and (3.3), we have∣∣∣∫
[z1,z2)

V
Γ f(x)dx−

∫
[xn1 ,xn2 )

V
Γ f(x)dx

∣∣∣
≤
∣∣∣∫

[xn2 ,z2)

V
Γ f(x)dx

∣∣∣+ ∣∣∣∫
[xn1 ,z1)

V
Γ f(x)dx

∣∣∣
≤ 2(M + 1)B < +∞.
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It follows that

lim
z2−z1→+∞

1

z2 − z1

∫
[z1,z2)

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx

= lim
z2−z1→+∞

xn2 − xn1

z2 − z1

∫
[z1,z2)

V
Γ f(x)dx−

∫
[xn1 ,xn2 )

V
Γ f(x)dx+

∫
[xn1 ,xn2 )

V
Γ f(x)dx

xn2 − xn1

= lim
n2−n1→+∞

1

xn2 − xn1

∫
[xn1 ,xn2 )

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx,

provided one of limits exists. The claim (3.48) is deduced.

Claim 2 : introduce the function F : H
(
V
Γ f
)
→ K by

F
(
Ṽ
Γ̃
f̃
)
:=

∫
[0,x̃1)

(
f̃(x) +

∑
i∈Z

ṽiδ(x− x̃i)
)
dx, for Ṽ

Γ̃
f̃ ∈ H

(
V
Γ f
)
.

We assert that F is continuous. Indeed, assume that

(3.50) lim
k→+∞

dist
(
Vk
Γk
fk,

V0
Γ0
f0

)
= 0,

where Vk
Γk
fk ∈ H

(
V
Γ f
)
, k ∈ N0. By a direct computation, we have

(3.51) F
(
Ṽ
Γ̃
f̃
)
=

∫
[0,x̃1)

f̃(x)dx+ ṽ0, for Ṽ
Γ̃
f̃ ∈ H

(
V
Γ f
)
.

Denote Γk = {xki }i∈Z ∈ Lm,M (Z) and Vk = {vki }i∈Z ∈ ℓ∞(Z). For any ε > 0, denote

(3.52) ϵ :=
ε

4B +M + 1
,

where B and M are introduced in (3.43) and (3.3), respectively. It follows from (3.50),

Lemma 3.11, Remark 3.12, Lemma 3.3 and (2.21) that there exists kϵ ∈ N such that when

k ≥ kϵ, we have

(3.53) |vk0 − v00| < ϵ, |xk1 − x01| < ϵ,

and

(3.54) |fk(x)− f0(x)| < ϵ, for x ∈ R \ Fϵ(Γ0).

Then we obtain ∣∣∣F(Vk
Γk
fk

)
− F

(
V0
Γ0
f0

)∣∣∣
≤
∫
[0,ϵ]

|fk(x)− f0(x)|dx+

∫
(ϵ,x0

1−ϵ)
|fk(x)− f0(x)|dx

+
∣∣∣∫

[x0
1−ϵ,xk

1)
fk(x)dx−

∫
[x0

1−ϵ,x0
1)
f0(y)dy

∣∣∣+ |vk0 − v00|

< 2Bϵ+Mϵ+ 2Bϵ+ ϵ = ε,

where (3.51), (3.43), (3.54), (3.53) and (3.52) are used. The claim is deduced.
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Claim 3 : the following relation holds:

lim
n2−n1→+∞

1

xn2 − xn1

∫
[xn1 ,xn2 )

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx

= [Γ] lim
n2−n1→+∞

1

n2 − n1

n2−1∑
τ=n1

F
(
V
Γ f · τ

)
,(3.55)

where [Γ] is introduced in Lemma 3.7. That is, if one of the limits exists, then the other one

exists as well and they are equal. Indeed, we have∫
[xn1 ,xn2 )

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx

=

n2−1∑
τ=n1

∫
[xτ ,xτ+1)

(
f(x) +

∑
i∈Z

viδ(x− xi)
)
dx

=

n2−1∑
τ=n1

(∫
[xτ ,xτ+1)

f(x)dx+ vτ

)

=

n2−1∑
τ=n1

F
(
V
Γ f · τ

)
,

where (3.12) and (3.51) are used. The relation (3.55) is deduced by Lemma 3.7.

The uniform convergence of the limit (3.46) is obtained by Lemma 2.8 iv) and Remark 2.10.

□

Remark 3.25. If there are no δ-interactions, then the mean value of 0
Γf ∈ PC0,ap(R) may

be defined by

M
(
0
Γf
)
:= lim

z2−z1→+∞

1

z2 − z1

∫
[z1,z2)

f(x)dx.

Note that the value of the integral is the same if [z1, z2) is replaced by [z1, z2].

Remark 3.26. For V
Γ f ∈ PCδ,0,ap(R), we have a decomposition formula:

(3.56) M
(
V
Γ f
)
= M

(
0
Γf
)
+ [Γ]M(V ),

where Lemma 3.22 iii), Lemma 2.12 and Lemma 3.7 are used.

4. Reduction to Skew-Product Dynamical Systems

For autonomous ODEs, the family of solutions with different initial values generates a

flow due to the existence and uniqueness of solutions of ODEs. For non-autonomous ODEs,

when the hull of the vector field of ODEs is involved, we may construct a skew-product flow

provided the existence and uniqueness of solutions of ODEs hold as well; see [28, 29] for the

detailed idea. In this section, we will use this idea to construct a skew-product dynamical

system from (1.2). There are two crucial issues in this setting. One is to overcome the

difficulty that is caused by impulses at points of Γ, and the other one is to show that the

dynamical system is continuous on the phase space under the uniform topology.
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4.1. Homotopy and Argument. We recall some necessary results from [22, 7]. Denote by

M(2, 2) the space of all 2× 2 real matrices. Let J be the standard symplectic matrix

J :=

(
0 −1

1 0

)
.

We say that D ∈ M(2, 2) is symplectic if and only if DTJD = J , where DT is the transpose

matrix of D. It is well known that the collection of all 2× 2 real symplectic matrices forms a

group with respect to matrix multiplication. Let us denote this group by Sp(2,R). It is well
known that

Sp(2,R) = SL2(R) = {D ∈ M(2, 2) : det(D) = 1} .

Lemma 4.1. [22] For any D ∈ Sp(2,R), there exists a unique decomposition such that

D = AU , where A ∈ Sp(2,R) is a symmetric and positive-definite matrix and U ∈ Sp(2,R)
is an orthogonal matrix. Explicitly, we have:

(4.1) D =

(
r z

z 1+z2

r

)(
cosϑ − sinϑ

sinϑ cosϑ

)
,

where (r, ϑ, z) ∈ R+ × R/(2πZ− π)× R is uniquely determined by D.

This implies the following result.

Lemma 4.2. [22] There exists a one-to-one correspondence from Sp(2,R) to {(x, y, z) ∈
R3 \ {z-axis}} as

g : D 7→ (r cosϑ, r sinϑ, z),

where (r, ϑ, z) is defined above. Moreover, g is a homeomorphism.

Due to the expression of (1.2), we only consider the following group denoted by

Trig(2,R) :=
{
Rc :=

(
1 c

0 1

)
: c ∈ R

}
⊂ Sp(2,R).

For Rc ∈ Trig(2,R), the unique decomposition can be calculated as

Rc =

(
c2+2√
c2+4

c√
c2+4

c√
c2+4

2√
c2+4

)(
2√
c2+4

c√
c2+4

− c√
c2+4

2√
c2+4

)
.

Construct a continuous path Pc(·) : [0, 1] → Sp(2,R) as

(4.2) Pc(τ) =

 (τc)2+2√
(τc)2+4

τc√
(τc)2+4

τc√
(τc)2+4

2√
(τc)2+4

 2√
(τc)2+4

τc√
(τc)2+4

− τc√
(τc)2+4

2√
(τc)2+4

 =

(
1 τc

0 1

)
.

Pc(·) connects I2 and Rc. The homotopy class of Pc(·) is denoted by [Pc]. Then the jump

of arguments on Γ can be well defined when the homotopy class is fixed by the construction

[Pc]; see [7, Figure 1]. In detail, denote by V(R2) the set of all vectors starting from the

origin in R2. The equivalence ∼ on V(R2) is defined by

v⃗1 ∼ v⃗2 ⇐⇒ v⃗1 = kv⃗2, for some k ∈ R+.

It is well known that

L(R) := V(R2)/ ∼
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is an orientable compact manifold of dimension one, and may be regarded as a two-covering of

the real projective line RP1. Topologically, L(R) is homeomorphic to the circle S2π := R/2πZ.
Let Ξ ∈ R. Then we have

Pc(τ)(cos Ξ, sin Ξ)
T = (cosΞ + τc sin Ξ, sin Ξ)T .

Since the homotopy class of Pc(·) is fixed and arg(·) is understood as a continuous branch,

the argument function

F (c, τ,Ξ) = arg(cos Ξ + τc sin Ξ + i sinΞ)

is continuous with respect to (c, τ,Ξ) ∈ R × [0, 1] × R. In particular, we may choose one

continuous branch of F (c, τ,Ξ) such that when τ = 0, we have

arg(cos Ξ + i sinΞ) = Ξ.

Then we define the jump of arguments by

(4.3) J(c,Ξ) = F (c, 1,Ξ)− F (c, 0,Ξ).

Lemma 4.3. [7] J : R2 → R is continuous with respect to (c,Ξ) ∈ R2. Moreover,

J(c,Ξ + 2π) = J(c,Ξ).

We revisit now the system (1.2). Let V
Γ q ∈ PCδ,m,M,ap(R). We need to embed it in a family

of systems as follows:

(4.4)


d

dx

(
ψ′

ψ

)
=

(
0 q̃(x)− E

1 0

)(
ψ′

ψ

)
, x ∈ R \ Γ̃,(

ψ′(x̃n+)

ψ(x̃n+)

)
=

(
1 ṽn
0 1

)(
ψ′(x̃n−)

ψ(x̃n−)

)
, x = x̃n ∈ Γ̃,

where Ṽ
Γ̃
q̃ ∈ H

(
V
Γ q
)
. For definiteness, the solution of (4.4) is understood to be right-continuous

with respect to x ∈ R, that is, (ψ′(x+), ψ(x+))T ≡ (ψ′(x), ψ(x))T . In this sense, ψ′(x) and

ψ(x) are well defined on R. Suppose that Ψ(x) := ΨE

(
x; Ṽ

Γ̃
q̃
)

is the fundamental matrix

solution of (4.4) with the initial value Ψ(0) = I2. Then we have the following result.

Lemma 4.4. [7] For any x ∈ R, Ψ(x) ∈ Sp(2,R).

If (ψ′(x), ψ(x))T has the initial value (ψ′(0), ψ(0))T = (α, β)T , we have

(ψ′(x), ψ(x))T = Ψ(x)(α, β)T .

Introduce the so-called Prüfer transformation as

(4.5) ψ′ + iψ = r ei θ.

Then the argument θ = θ(x) may be denoted by

θ(x) := arg(ψ′(x) + iψ(x)),

where (ψ′(x), ψ(x))T is any non-trivial solution of (4.4). When the system (4.4) is restricted

on R \ Γ̃, we understand arg(·) as a continuous branch on [x̃n, x̃n+1), where Γ̃ = {x̃n}n∈Z. It
is easy to obtain that the differential equation for θ is

θ′(x) = cos2 θ − (q̃(x)− E) sin2 θ, x ∈ R \ Γ̃.
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But it is crucial to deal with the jump of arguments on Γ via a reasonable approach, because

the vector field of (4.4) on Γ̃ is singular. To overcome this difficulty, we use the homology that

is defined by (4.2). Thus via the Prüfer transformation (4.5), the evolution of the arguments

is found to be

(4.6)

{
θ′(x) = cos2 θ(x)− (q̃(x)− E) sin2 θ(x), x ∈ R \ Γ̃,
θ(x̃n+)− θ(x̃n−) = J(ṽn, θ(x̃n−)), x = x̃n ∈ Γ̃.

Denote by θE(x) = θE

(
x+; Ṽ

Γ̃
q̃,Ξ

)
the solution of (4.6) with the initial value θE(0) = Ξ ∈

R. By the uniqueness of solutions of ODEs and the boundedness of piecewise continuous

functions, it is easy to deduce the following result.

Lemma 4.5. Let Ṽ
Γ̃
q̃ ∈ H

(
V
Γ q
)
and E ∈ R be fixed. Then

• for Ξ ∈ R, x ∈ R and k ∈ Z, we have

(4.7) θE

(
x; Ṽ

Γ̃
q̃,Ξ + 2kπ

)
− (Ξ + 2kπ) = θE

(
x; Ṽ

Γ̃
q̃,Ξ

)
− Ξ;

• for x ∈ R, we have

(4.8) θE

(
x; Ṽ

Γ̃
q̃,Ξ1

)
< θE

(
x; Ṽ

Γ̃
q̃,Ξ2

)
, when Ξ1 < Ξ2,

• for Ξ ∈ R, k1, k2 ∈ Z and Γ̃ = {x̃n}n∈Z, we have

(4.9) θE

(
x̃k1+k2 ;

Ṽ
Γ̃
q̃,Ξ

)
= θE

(
x̃k1+k2 − x̃k2 ;

Ṽ
Γ̃
q̃ · k2, θE

(
x̃k2 ;

Ṽ
Γ̃
q̃,Ξ

))
,

where Ṽ
Γ̃
q̃ · k2 is defined by (3.12);

• for Γ̃ = {x̃n}n∈Z, we have

(4.10) lim
x→+∞

θE

(
x; Ṽ

Γ̃
q̃,Ξ

)
− Ξ

x
= lim

n→+∞

θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ

x̃n
,

that is, if one of limits exists, then the other one exists as well and they are equal.

The proof of Lemma 4.5 is omitted. For details, see [7]. However since the uniform topology

is weaker than the one considered in [7], we will give the proof of the following result.

Lemma 4.6. For Γ̃ = {x̃n}n∈Z, let k ∈ Z be fixed. Then θE

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

)
: H
(
V
Γ q
)
×R → R is

continuous.

Proof. Without loss of generality, we only check the case k = 1. For the general case, we may

obtain the result by induction. Assume that

(4.11) lim
i→+∞

dist
(
Ṽi

Γ̃i
q̃i,

Ṽ0

Γ̃0
q̃0

)
= 0 and lim

i→+∞
|Ξi − Ξ0| = 0,

where
(
Ṽi

Γ̃i
q̃i,Ξi

)
∈ H

(
V
Γ q
)
× R, i ∈ N0. Then for any ε > 0, there exists iε ∈ N such that

Remark 3.12 holds and meanwhile |Ξi − Ξ0| < ε when i ≥ iε. Let

θi(x) := θE

(
x; Ṽi

Γ̃i
q̃i,Ξi

)
,

where Γ̃i = {x̃in}n∈Z. Then we have

(4.12)

{
θ′i(x) = cos2 θi(x)− (q̃i(x)− E) sin2 θi(x), x ∈ (0, x̃i1),

θi(0) = Ξi.
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For ε > 0 given in Remark 3.12 and x ∈ [ε, x̃01 − ε], this implies that

θi(x) = Ξi +

(∫
(0,ε]

+

∫
[ε,x]

)
cos2 θi(τ)− (q̃i(τ)− E) sin2 θi(τ)dτ.

Denote D(x) := θi(x)− θ0(x), x ∈ [ε, x̃01 − ε]. We have

D(x) = (Ξi − Ξ0) +D1 +D2(x).

where

D1 :=

∫
(0,ε]

(
cos2 θi(τ)− (q̃i(τ)− E) sin2 θi(τ)

)
−
(
cos2 θ0(τ)− (q̃0(τ)− E) sin2 θ0(τ)

)
dτ

and

D2(x) :=

∫
[ε,x]

(
cos2 θi(τ)− (q̃i(τ)− E) sin2 θi(τ)

)
−
(
cos2 θ0(τ)− (q̃0(τ)− E) sin2 θ0(τ)

)
dτ.

By the uniform boundedness of (q̃i, Γ̃i), we know that there exists C1 > 0 such that

(4.13) |D1| < C1ε.

Now we consider the term D2(x). When x is fixed, we can regard θ0(x) and θi(x) as two

real numbers. By the mean value theorem, there exist ζ(x), η(x) which belong to the interval

with endpoints θ0(x) and θi(x) such that

cos θi(x)− cos θ0(x) = − sin ζ(x)(θi(x)− θ0(x)),

sin θi(x)− sin θ0(x) = cos η(x)(θi(x)− θ0(x)).

Then we have

D(x) = (Ξi − Ξ0) +D1 +

∫
[ε,x]

A(τ)D(τ) +B(τ)dτ,

where

(4.14) A(τ) := − sin ζ(τ)(cos θi(τ) + cos θ0(τ))− (q̃0(τ)− E) cos η(τ)(sin θi(τ) + sin θ0(τ)),

and

(4.15) B(τ) := (q̃0(τ)− q̃i(τ)) sin
2 θi(τ).

It follows that

|D(x)| ≤ |Ξ2 − Ξ1|+ |D1|+
∫
[ε,x]

|B(τ)|dτ +
∫
[ε,x]

|A(τ)||D(τ)|dτ, ε ≤ x ≤ x̃01 − ε.

Denote C(x) := |Ξ2 − Ξ1| + |D1| +
∫
[ε,x] |B(τ)|dτ . Note that x̃01 = ∆x̃01 ≤ M . Then there

exists C2 > 0 such that

(4.16) C(x) < |Ξ2 − Ξ1|+ |D1|+Mε < C2ε, , when i ≥ iε,

where (4.11), (4.13), (4.15) and Lemma 3.11 are used. By the generalized Gronwall inequality

[12, Lemma 6.2 in Chapter I], we obtain

|D(x)| ≤ C(x) +

∫
[ε,x]

|A(τ)||C(τ)|

(
exp

∫
[τ,x]

|A(u)|du

)
dτ, ε ≤ x ≤ x̃01 − ε.
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Taking x = x̃01 − ε, we have

|D(x̃01 − ε)| ≤ C2ε

(
1 +

∫
[0,M ]

2(1 + |q̃0(τ)− E|)

(
exp

∫
[0,M ]

2(1 + |q̃0(u)− E|)du

)
dτ

)
,

where (4.14) and (4.16) are used. Since q̃0 is bounded, there exists C3 > 0 such that

|θi(x̃01 − ε)− θ0(x̃
0
1 − ε)| = |D(x̃01 − ε)| < C3ε, when i ≥ iε.

Again by (4.12), we have

θi(x̃
i
1−) = θi(x̃

0
1 − ε) +

∫
[x̃0

1−ε,x̃i
1)
cos2 θi(τ)− (q̃i(τ)− E) sin2 θi(τ)dτ,

θ0(x̃
0
1−) = θ0(x̃

0
1 − ε) +

∫
[x̃0

1−ε,x̃0
1)
cos2 θ0(τ)− (q̃0(τ)− E) sin2 θ0(τ)dτ.

By Lemma 3.11, we know that x̃i1 ∈ [x̃01 − ε, x̃01 + ε]. Then there exists C4 > 0 such that

|θi(x̃i1−)− θ0(x̃
0
1−)| < C4ε, , when i ≥ iε.

Furthermore, we have

θi(x̃
i
1) = θi(x̃

i
1−) + J(ṽi1, θE(x̃

i
1−)).

By Lemma 4.3, we obtain the continuity of θE

(
x̃1;

Ṽ
Γ̃
q̃,Ξ

)
with respect to Ṽ

Γ̃
q̃ and Ξ, finishing

the proof. □

4.2. Skew-Products. Following the idea in [28, 29, 7], we may construct a skew-product

dynamical system from (4.6). The difference from [7] is that we must show the continuity of

skew-products under the uniform topology.

Let S2π := R/2πZ and Z := H
(
V
Γ q
)
× S2π. We introduce a distance on the product space

Z as

dist
((

Ṽ1

Γ̃1
q̃1, ϑ1

)
,
(
Ṽ2

Γ̃2
q̃2, ϑ2

))
:= max

{
dist

(
Ṽ1

Γ̃1
q̃1,

Ṽ2

Γ̃2
q̃2

)
, |ϑ1 − ϑ2|S2π

}
(4.17)

where
(
Ṽi

Γ̃i
q̃i, ϑi

)
∈ Z, i = 1, 2, and dist in the right-hand side is constructed by (3.11).

It follows from Definition 3.21 ii) that (Z, dist) is a compact metric space. The family of

skew-product transformations
{
Φk
E

}
k∈Z

on Z is constructed by

(4.18) Φk
E

(
Ṽ
Γ̃
q̃, ϑ
)
:=
(
Ṽ
Γ̃
q̃ · k, θE

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

)
mod 2π

)
,

where k ∈ Z,
(
Ṽ
Γ̃
q̃, ϑ
)
∈ Z, and there exists Ξ ∈ R satisfying ϑ = Ξ mod 2π. By (4.7), Φk

E is

well defined for each k ∈ Z. Moreover, we have

Lemma 4.7.
{
Φk
E

}
k∈Z

is a continuous skew-product dynamical system on Z.
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Proof. First we assert that
{
Φk
E

}
possesses a group structure. In fact, assume that

(
Ṽ
Γ̃
q̃, ϑ
)
∈

Z and there exists Ξ ∈ R satisfying ϑ = Ξ mod 2π. By (4.18), (3.13) and (4.9), we have

Φk1
E ◦ Φk2

E

(
Ṽ
Γ̃
q̃, ϑ
)

= Φk1
E

(
Ṽ
Γ̃
q̃ · k2, θE

(
x̃k2 ;

Ṽ
Γ̃
q̃,Ξ

)
mod 2π

)
=
(
Ṽ
Γ̃
q̃ · k2 · k1, θE

(
x̃k1+k2 − x̃k2 ;

Ṽ
Γ̃
q̃ · k2, θE

(
x̃k2 ;

Ṽ
Γ̃
q̃,Ξ

))
mod 2π

)
= Φk1+k2

E

(
Ṽ
Γ̃
q̃, ϑ
)
.

Now we aim to prove that for each k ∈ Z, Φk
E : Z → Z is continuous. We make the following

claims.

Claim 1 : Ṽ
Γ̃
q̃ · k : H

(
V
Γ q
)
→ H

(
V
Γ q
)
is continuous. This is obvious from Lemma 3.13.

Claim 2 : θE

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

)
mod 2π : Z → S2π is continuous. This is obvious from Lemma

4.6.

Due to Claim 1 and Claim 2, we obtain the desired result. □

Introduce the observable FE from Z to R as

(4.19) FE

(
Ṽ
Γ̃
q̃, ϑ
)
:= θE

(
x̃1;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ,

(
Ṽ
Γ̃
q̃, ϑ
)
∈ Z,

where Ξ ∈ R satisfies ϑ = Ξ mod 2π. By (4.7), FE

(
Ṽ
Γ̃
q̃, ϑ
)
is well defined on Z. Furthermore,

we have

Lemma 4.8. FE

(
Ṽ
Γ̃
q̃, ϑ
)
is continuous on Z.

Proof. This is obvious by Lemma 4.6. □

By (4.3), we have

FE

(
Ṽ
Γ̃
q̃, ϑ
)
= θE

(
x̃1−; Ṽ

Γ̃
q̃,Ξ

)
− Ξ + J(c̃1, θE(x̃1−)).

where Ξ ∈ R satisfies ϑ = Ξ mod 2π. By the construction above and Lemma 3.7, we reduce

the existence of rotation numbers to that of the following ergodic limit with respect to the

skew-product dynamical system
{
Φk
E

}
k∈Z

.

Lemma 4.9. Assume that
(
Ṽ
Γ̃
q̃, ϑ
)

∈ H
(
V
Γ q
)
× S2π and Ξ ∈ R satisfies ϑ = Ξ mod 2π.

Then we have the following relation:

lim
n→+∞

θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ

x̃n
= [Γ] lim

n→+∞

1

n

n−1∑
k=0

FE

(
Φk
E

(
Ṽ
Γ̃
q̃, ϑ
))
.

That is, if one of the limits exists, then the other one exists as well and they are equal.

Proof. By Lemma 3.7, we have

lim
n→+∞

θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ

x̃n
= [Γ] lim

n→+∞

θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ

n
,
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provided one of limits exists. Furthermore,

θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ

=
n−1∑
k=0

(
θE

(
x̃k+1;

Ṽ
Γ̃
q̃,Ξ

)
− θE

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

))

=
n−1∑
k=0

(
θE

(
x̃k+1 − x̃k;

Ṽ
Γ̃
q̃ · k, θE

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

))
− θE

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

))

=

n−1∑
k=0

FE

(
Ṽ
Γ̃
q̃ · k, θE

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

)
mod 2π

)

=
n−1∑
k=0

FE

(
Φk
E

(
Ṽ
Γ̃
q̃, ϑ
))
.

The proof is completed. □

5. Rotation Number

In this section we discuss the existence of the rotation number and its continuous depen-

dence on the spectral parameter E. Much of the key preparatory work has already been

done. In particular, Lemmas 4.7–4.9 will be crucial in the discussion that follows.

We revisit again (1.2). We know about the solution that ψ ∈ C(R) and ψ′(x) = ψ′(x+) ∈
PC(R). Define the right derivative of ψ by

D+ψ(x) := lim
h→0+

ψ(x+ h)− ψ(x)

x
.

D+u in [27] is the same as u• in [23]. It follows that D+ψ(x) = ψ′(x+) and x 7→ D+ψ(x)

is right-continuous. By the choice of a suitable homotopy defined in (4.2), we have a well

defined argument as

θE(x) := arg(D+ψ(x) + iψ(x)).

The evolution of θE(x) is found to be{
θ′(x) = cos2 θ(x)− (q(x)− E) sin2 θ(x), x ∈ R \ Γ,
θ(xn)− θ(xn−) = J(vn, θ(xn−)), x = xn ∈ Γ,

where J(v, ·) is defined in (4.3). If the ergodic limit

lim
x→+∞

θE(x)− θE(0)

x

exists, then we call it the rotation number of (1.2) and denote it by ρ(E).

Our goal is to show that the rotation number indeed exists and that it depends continuously

on E. We devote a subsection to each of these two items.
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5.1. Existence. To show the existence of rotation numbers, inspired by (4.10) and Lemma

4.9, we introduce the following notation.

F ∗
E

(
Ṽ
Γ̃
q̃, ϑ
)
:= lim

n→+∞

1

n

n−1∑
k=0

FE

(
Φk
E

(
Ṽ
Γ̃
q̃, ϑ
))
,
(
Ṽ
Γ̃
q̃, ϑ
)
∈ Z,

provided the limit exists. For Ṽ
Γ̃
q̃ ∈ H

(
V
Γ q
)
and Ξ ∈ R, denote

(5.1) F ⋄
E

(
Ṽ
Γ̃
q̃,Ξ

)
:= lim

n→+∞

θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ

x̃n
,

provided the limit exists. By (4.7), we obtain the following:

Lemma 5.1. If F ⋄
E

(
Ṽ
Γ̃
q̃,Ξ0

)
exists for Ξ0 ∈ R, then F ⋄

E

(
Ṽ
Γ̃
q̃,Ξ

)
exists for all Ξ ∈ R and is

independent of the choice of Ξ ∈ R.

Proof. By (4.7), we know that F ⋄
E

(
Ṽ
Γ̃
q̃,Ξ0 + 2kπ

)
exists for all k ∈ Z. Then for any Ξ ∈ R,

there exists kΞ ∈ Z such that

Ξ0 + 2kΞπ ≤ Ξ < Ξ0 + 2(kΞ + 1)π.

By (4.7) and (4.8), for all n ∈ N, we have

θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ0 + 2kΞπ

)
≤ θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ

)
< θE

(
x̃n;

Ṽ
Γ̃
q̃,Ξ0 + 2kΞπ

)
+ 2π.

This implies that for all Ξ ∈ R, we have

F ⋄
E

(
Ṽ
Γ̃
q̃,Ξ

)
≡ F ⋄

E

(
Ṽ
Γ̃
q̃,Ξ0

)
.

The proof is completed. □

We are now in a position to obtain the main result of this paper.

Theorem 5.2. Let V
Γ q ∈ PCδ,m,M,ap(R). For any Ξ ∈ R, the limit F ⋄

E

(
V
Γ q,Ξ

)
exists and is

independent of the choice of Ξ ∈ R. Thus the rotation number ρ(E) is well defined.

Proof. By the Krylov-Bogoliubov theorem and Lemma 4.7, there exists an invariant Borel

probability measure under
{
Φk
E

}
k∈Z

, denoted by µ. Then by the Birkhoff ergodic theorem,

there exists a Borel set Zµ ⊂ Z, which depends on the measure µ, such that µ(Zµ) = 1 and

F ∗
E

(
Ṽ
Γ̃
q̃, ϑ
)
exists for all

(
Ṽ
Γ̃
q̃, ϑ
)
∈ Zµ. Furthermore, F ∗

E is integrable and satisfies

(5.2)

∫
Z
F ∗
Edµ =

∫
Z
FEdµ =: ρ(E,µ).

Due to Lemma 5.1, Zµ can be written in the form Zµ = Eµ × S2π, where Eµ is a Borel set

in H
(
V
Γ q
)
. Let ν be the Haar measure on H

(
V
Γ q
)
. Then we have ν(Eµ) = 1. By the unique

ergodicity of the Haar measure, there exists a set Êµ ⊂ Eµ such that ν(Êµ) = µ(Êµ×S2π) = 1

and F ∗
E

(
Ṽ
Γ̃
q̃, ϑ
)
is a constant function on Êµ × S2π. It follows from (5.2) that the constant

must be ρ(E,µ).
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By (5.1), we see that ρ(E,µ) in (5.2) is independent of the choice of the measure µ.

Set F̂E := FE − ρ(E). By Lemma 4.8, F̂E is continuous on Z. By (5.2), F̂E satisfies the

requirement of [14, Lemma 4.4]. Thus, as k ↗ +∞,

(5.3) lim
n→+∞

1

n

n−1∑
k=0

F̂E

(
Φk
E

(
Ṽ
Γ̃
q̃, ϑ
))

= lim
n→+∞

1

n

n−1∑
k=0

FE

(
Φk
E

(
Ṽ
Γ̃
q̃, ϑ
))

− ρ(E) = 0

uniformly for all
(
Ṽ
Γ̃
q̃, ϑ
)
∈ Z.

At last, taking Ṽ
Γ̃
q̃ = V

Γ q in (5.3), then by (4.10) and Lemma 4.9, we obtain the existence

of the desired limit (5.1). □

5.2. Continuity. The continuity of rotation numbers with respect to the spectral parameter

E is crucial in the proof of the gap labeling theorem. We state this result as follows. But the

spectrum will be discussed in a future publication.

Theorem 5.3. Let V
Γ q ∈ PCδ,m,M,ap(R) be fixed. Then ρ(E) is continuous with respect to

E ∈ R.

Proof It suffices to show that for each sequence Ei → E0 ∈ R, we have

(5.4) ρ(Ei) → ρ(E0) as i→ +∞.

For each i ∈ N0, consider the equation

(5.5)

{
θ′(x) = cos2 θ(x)− (q(x)− Ei) sin

2 θ(x), x ∈ R \ Γ,
θ(xn+)− θ(xn−) = J(vn, θ(xn−)), x = xn ∈ Γ.

Using the argument of Theorem 5.2, for each equation (5.5), we introduce the skew-product

dynamical system
{
Φk
Ei

}
k∈Z

on Z = H
(
V
Γ q
)
× S2π that is defined by

(5.6) Φk
Ei

(
Ṽ
Γ̃
q̃, ϑ
)
:=
(
Ṽ
Γ̃
q̃ · k, θEi

(
x̃k;

Ṽ
Γ̃
q̃,Ξ

)
mod 2π

)
,
(
Ṽ
Γ̃
q̃, ϑ
)
∈ Z,

where Ξ ∈ R satisfies = Ξ mod 2π. Meanwhile, the observable function FEi from Z to R is

defined by

FEi

(
Ṽ
Γ̃
q̃, ϑ
)
:= θEi

(
x̃1;

Ṽ
Γ̃
q̃,Ξ

)
− Ξ,

(
Ṽ
Γ̃
q̃, ϑ
)
∈ Z.

Then by (5.2), we have

(5.7) ρ(Ei) =

∫
Z
FEidµi for all i ∈ N0,

where µi is an invariant Borel probability measure of
{
Φk
Ei

}
k∈Z

on Z. Since Z is a compact

metric space, by [30, Theorem 6.5], we may assume that there exists a Borel probability

measure on Z denoted by µ∞ such that µi ⇀ µ∞ in the weak⋆ topology.

We assert that µ∞ is an invariant Borel probability measure of
{
Φk
E0

}
k∈Z

on Z. By [30,

Theorem 6.8], it suffices to show that for each f ∈ C(Z,R) (which denotes the space of all

continuous functions from Z to R), we have

(5.8)

∫
Z
fdµ∞ =

∫
Z
f ◦ Φ1

E0
dµ∞.
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To this end, for any f ∈ C(Z,R), denote gi := f ◦Φ1
Ei
, i ∈ N0. By Lemma 4.7, gi ∈ C(Z,R).

It follows from (5.5) and the generalized Gronwall inequality [12, Lemma 6.2 in Chapter

I] that θE

(
x̃1;

Ṽ
Γ̃
q̃,Ξ

)
is Lipschitz continuous with respect to E. Combining this with the

uniform continuity of f , we have

(5.9) lim
i→+∞

∥gi − g0∥∞ = 0.

Since µi is an invariant Borel probability measure of
{
Φk
Ei

}
k∈Z

, we then have∫
Z
fdµi =

∫
Z
f ◦ Φ1

Ei
dµi =

∫
Z
gidµi.

Taking i ↗ +∞, by (5.9), the weak⋆ convergence of µi and [33, Lemma 3.9], we obtain the

desired result (5.8).

Then again by (5.5) and the generalized Gronwall inequality [12, Lemma 6.2 in Chapter

I], we may infer that FE

(
Ṽ
Γ̃
q̃, ϑ
)
is Lipschitz continuous with respect to E as well. By [33,

Lemma 3.9] and (5.7), we have

lim
i→+∞

ρ(Ei) =

∫
Z
FE0dµ∞.

Since µ∞ is an invariant Borel probability measure of
{
Φk
E0

}
k∈Z

, we know from (5.7) that

ρ(E0) =

∫
Z
FE0dµ∞.

The desired result (5.4) is proved. □

Remark 5.4. The traditional way of establishing the continuity of the rotation number as

a function of E is via spectral theory. Specifically, one uses oscillation theory to connect the

rotation number and the integrated density of states. The latter quantity is continuous in E

because of the finite-dimensionality of the solution space. We refer the reader to the recent

survey [6], where the traditional way is discussed in detail for operators in ℓ2(Z), which are

technically easier to handle. The proof of Theorem 5.3 given above is more direct and the

discussion takes place entirely on the dynamics side of this correspondence.
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