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Abstract: We consider perturbations of quasi-periodic Schrodinger operators on the
integer lattice with analytic sampling functions by decaying potentials and seek decay
conditions under which various spectral properties are preserved. In the (almost) re-
ducibility regime we prove that for perturbations with finite first moment, the essential
spectrum remains purely absolutely continuous and the newly created discrete spec-
trum must be finite in each gap of the unperturbed spectrum. We also prove that for
fixed phase, Anderson localization occurring for almost all frequencies in the regime of
positive Lyapunov exponents is preserved under exponentially decaying perturbations.
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1. Introduction

1.1. Background. Let Hp denote the one dimensional Schrodinger operator acting on
(),

Hy = A +vo(n)é,,, (1.1)
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where A denotes the discrete Laplacian

Al 'y = 1 if|n—.n/|:1,
0  otherwise.

and vg is assumed to be real and bounded, so that Hy is bounded and self-adjoint, and
its spectrum, o (Hp), is a compact subset of R.

In physics, the operator (1.1) describes a charged particle, such as an electron, in the
electric field vy. It is of interest to determine which of the spectral properties of Hy are
preserved if the operator is perturbed by a suitably decaying potential. Problems of this
nature have been extensively studied dating back to 1910s. We give a short review and
refer the curious reader to [27].

Consider the following perturbed one-dimensional Schrédinger operators acting on
0%(7) or £2(N) (with Dirichlet boundary condition),

Hy = Ho + g(n)d, (1.2)

where g is a real perturbation decaying at infinity. We say that g : Z — C is decaying
if
lim g(n)=0
|n|—o00

and denote the space of all decaying g : Z — R by ¢y. For the discussion below, it is
also convenient to consider

Ek’P:{g:Z%R:(nkg(n)) Zeﬁp}, k>0, p>1,
ne
P(y):{g:Z—)R:(an(n))nezeﬁoo}, y >0,
p(y):{g:ZﬁR:(an(n))nezeco}, y >0

to capture weighted ¢” and power-law decay.

There are two main stability aspects. One is the preservation of the essential spectrum,
which holds in complete generality. That is, the essential spectra of Hy and H, coincide
for all g € cq by the classical Weyl criterion. In fact, in the case vy = 0, the converse is
known to hold as well, that is, the addition of any (real) g € £°°\c( generates essential
spectrum outside oess (Hp) = [—2, 2] [23].

The other is the preservation of the absolutely continuous spectrum. The (essential
support of the) absolutely continuous spectrum of the original operator Hy is preserved
under ¢! perturbations by the Birman—Rosenblum—Kato theory (cf. Chapter 10 in [42],
Chapter XI in [55]). However, this does not include the statement that the spectral type
remains purely absolutely continuous if the unperturbed operator has purely absolutely
continuous spectrum, it is feasible that the common essential spectrum may support some
singular spectrum, even for £! perturbations. In the “Appendix” we make this explicit for
vo = 0 and a suitable g € ¢! based on an observation which we learned from Milivoje
Lukic. It can happen that the boundary of the essential spectrum contains an eigenvalue.
The example we give belongs to P(2), and this is actually optimal on the power scale
since it is also known that g € 281 ensures the absence of singular spectrum in [—2, 2];
compare, for example, Teschl [63, Section 7.5]. On the other hand, if vg = 0and g € 2
it follows quickly via Priifer variables that the interior of the essential spectrum remains
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purely absolutely continuous since for those energies, the Priifer radius must remain
bounded. Indeed, when vy = 0, the absence of singular spectrum in the interior of the
essential spectrum will be true under the somewhat weaker assumption g € p(1), as
shown by Remling [56].

If g ¢ p(1), the absence of singular spectrum in the interior of the essential spectrum
may also fail, as demonstrated by the celebrated Wigner—von Neumann example [55,
64], which perturbs v9 = 0 with a g € P(1) and admits an embedded eigenvalue.
Any slower decay may allow for embedded singular continuous spectrum, as shown by
Kiselev [46]. On the other hand, Deift and Killip [25,43] have shown (see also Christ—
Kiselev—Remling [19,20,56] and Kiselev—Last—Simon [47] for related work) that if
vo = 0 or vy periodic, the addition of g € ¢> will preserve the essential support of the
absolutely continuous spectrum, and this result is optimal in the sense of £”-type decay.
It is conjectured that this stability result holds for any vg. Further important related
developments, which often are referred to as Killip—Simon-type problems or theorems,
are contained in [24,44,45,66]. Almost all the results and conjectures above (Yuditskii’s
result for finite-gap Jacobi matrices [66] being a notable exception) have continuum
analogs, and these results apply to both the half-line and whole-line settings.

On the other hand, both point spectrum and singular continuous spectrum are in
general sensitive to decaying perturbations. Although it is known that for the Anderson
model, Anderson localization (pure point spectrum with exponentially decaying eigen-
functions) holds on an interval with probability one (cf. [18,49]), this is highly unstable
and can be destroyed and turned into purely singular continuous spectrum by generic
rank one perturbations (cf. [26,35,58]), which then provide examples that are arbitrarily
small and arbitrarily fast decaying.

1.2. Decaying perturbations of quasi-periodic potentials. In this paper, we investigate
the stability problem for perturbations of quasi-periodic Schrodinger operators by de-
caying potentials.

Let H, 4 ¢ be a quasi-periodic discrete Schrodinger operator acting on £2(Z) defined
as follows,

Hy g0 = A+vna+60)8,,, (1.3)

where v is real analytic on T and o, 0 € R? are parameters called the frequency
and phase, respectively. This operator, especially the famous almost Mathieu operator
(AMO), which arises when d = 1, v(-) = 2X cos27(-), and @ € R\Q, has received a
lot of attention because of its relevance in physics and also because it provides fruitful
examples in spectral theory. It is known that the spectrum and the spectral type of (1.3) are
deeply influenced by the arithmetic properties of «, 6 and the largeness of v, that spectral
types may coexist (cf. [12]), and that exact mobility edges can occur (c.f. [65]). One may
consult [2,5,6,10,16,28,32,37,38,40] and references therein for further information.

We are interested in the spectral type of perturbations of quasi-periodic Schrédinger
operators by decaying potentials, that is, we consider the following discrete Schrodinger
operator on ¢>(Z),

Hyoo = Hyop + 8080 (1.4)

with a decaying g. The results we obtain can naturally be grouped according to whether
d = 1 (the one-frequency case) or d > 2 (the multi-frequency case), as the same
distinction applies in the unperturbed case.
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1.2.1. Local results in the multi-frequency case. We begin with a discussion of results
that hold for all d > 1, and hence apply in particular in the multi-frequency case. For the
sake of simplicity, in this subsection, we fix v € C® (']I‘d, R), and replace v by Av, where
A € Ris called the coupling constant. We denote the operators (1.3) and (1.4) by Hj, «.9
and H, 4,¢, respectively. The spectrum and the essential spectrum of an operator H are
denoted by o (H) and o.s(H), respectively. It is known that for any (1, o) rationally
independent, o (Hj ,§) = Oess(Hy,0,9) = X« does not depend on 6, and by Weyl’s
criterion, Oess(H). 0.0) = Ocss(H). o.0). In the following, we will always assume « to be
Diophantine. Recall that « is said to be Diophantine if there existy > O0and 7 > d — 1
such that o € DCy(y, t), where

DCu(y, 1) = {x Rz inf |(n,x) - j| = Y 0#n eZd}.
JE

“nl?
The set DCy := Uy>07,>d_1 DC,4(y, 1) has full Lebesgue measure.

Preservation of purely absolutely continuous spectrum. When 1 is sufficiently small
and « is Diophantine, the spectrum of H) ¢ is purely absolutely continuous [2,6,28].
Our stability result for the operator (1.4) in the small coupling regime now reads as
follows:

Theorem 1.1. Suppose that « € DCy and v € C®(T¢,R). Then there exists hg =
Mo(a, d, v) > 0 such that for every A € (0, Ag) and g € b1 we have the following:

(1) The restriction of the canonical spectral measure of ﬁk,a,g toY = Gess(ﬁk,a,é) is
purely absolutely continuous for every 0 € T¢.

(2) There are at most finitely many eigenvalues in each spectral gap of the unperturbed
operator.

Remark 1.1. For d = 1, we can choose A in a nonperturbative way, that is, uniformly
iny,r.

Remark 1.2. The condition g € 211 is same as in the periodic case (cf. [33,54,57,62])
and it is essentially optimal as the example given in the “Appendix” (which belongs to
P(2)) shows.

Our result can be viewed as the stability of purely absolutely continuous spectral
measures on the unperturbed spectrum. A similar setting was also considered in the
continuum case by Kriiger in the paper [48], which mainly focused on the complement
of the unperturbed spectrum.

Preservation of Anderson localization. When 1 is sufficiently large, then the Lyapunov
exponent is positive in the spectrum [14,16,61], and the spectrum of (1.3) is typically
pure point [21,29]. Furthermore, it displays Anderson localization (AL), that is, pure
point spectrum with exponentially decaying eigenfunctions. Anderson localization is an
interesting phenomenon in the research of spectral theory and has been widely studied
because of its importance in solid state physics.

We give a brief review here. When v is fixed, the operators (1.3) are a family of
operators parameterized by (0, «), thus there are mainly two directions to prove AL. For
d = 1, Frohlich-Spencer—Wittwer [30] and Sinai [60] proved that for fixed Diophantine
a, if v is cosine-like, then (1.3) has AL for a.e. # and large enough A. Fix v(x) =
2 cos 2w (x) specially, for any fixed Diophantine «, Jitomirskaya [40] showed that AL
holds for A > 1 except a Lebesgue zero f-set ®, which has a concrete arithmetic
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description. This work is generalized to Liouvillean « in the measure setting by Avila—
You—Zhou [10], and in the arithmetic setting by Jitomirskaya—Liu [37]. On the other
hand, for fixed 6, Bourgain—Goldstein [16] proved that (1.3) has AL in the positive
Lyapunov exponent regime, and a.e. Diophantine «. This work is extended to d arbitrary
[14], and higher space dimensions [15,17], by Bourgain, Goldstein and Schlag. Recently,
the results in [15] have been largely extended by Jitomirskaya—Liu—Shi [39].

Let us state our stability result concerning Anderson localization for the operator
(1.4) in the positive Lyapunov exponent regime:

Theorem 1.2. Assume that v € C®(T9, R) and the Lyapunov exponent of Hy o ¢ satis-

fies
Lo, E)>cy>0

foralla € DCyand E € (Ey, E2). Fixt € T9. Then, for any g decaying exponentially,
H, 0, exhibits Anderson localization in (Ey, E2) for almost all @ € DCy.

Remark 1.3. Our result shows that for a fixed perturbation, most operators in the quasi-
periodic family continue to have pure point spectrum. This should be contrasted with
what rank-one perturbation theory (cf., e.g., [26,35]) provides, namely for a fixed oper-
ator and a family of perturbations, a generic but zero measure set of perturbations may
destroy the pure point spectrum (if it occurs on some interval) and turn it into singular
continuous spectrum. Thus, these are two different and complementary perspectives and
phenomena.

1.2.2. Global picture in the one-frequency case. Letus now turn our attention to the case
d = 1. The spectral analysis of the one-frequency case is more complete, and indeed
more “global”, thanks in large part to Avila’s global theory for one-frequency analytic
quasi-periodic Schrodinger cocycles [4]. Indeed, Avila’s global theory [4] shows that
all analytic SL(2, C) cocycles («, A) that are not uniformly hyperbolic can be classified
into three regimes:

(1) Subcritical, if there exists 6 > 0 such that the holomorphic extension of (¢, A),
(o, Az), with L(«, A;) = 0 through some strip |3z| < 6,

(2) Supercritical, or nonuniformly hyperbolic, if L(«, A) > 0, but (¢, A) is not uni-
formly hyperbolic,

(3) Critical, otherwise.

Applying this classification to Schrodinger operators H, 49, we can also partition
the energy axis into four regimes according to the classification of the corresponding
Schrodinger cocycle: energies in the complement of the spectrum can be characterized
as uniformly hyperbolic, and energies in the spectrum can be classified as subcriti-
cal, supercritical, and critical, respectively. The main result in [4] is the following: for
(measure-theoretically) typical v € C®(T,R), H, ¢ is acritical, that is, no energy
E € X is critical, where X denotes its spectrum. An interesting consequence is that
acritical operators have the following spectrum bifurcation: There are k > 1 and points
ay < by < ... < ar < by in the reslovent set such that X C Ule[ai, b;] and ener-
gies alternate between supercritical and subcritical along the sequence {X N[a;, b,-]}f-‘zl.

Then, Avila’s Almost Reducibility Conjecture (ARC),! which says that any subcriti-
cal cocycle is almost reducible, implies that the subcritical regime can only support

I'A proof of the ARC was announced in [4], to appear in [1,3]. Indeed, the result was already stated as the
Almost Reducibility Theorem (ART) in [7].
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absolutely continuous spectrum [1], and the supercritical regime supports pure point
spectrum typically [16], which allows us to conclude the typical absence of singular
continuous spectrum.

Our aim is to show that under an exponential decay assumption, this behavior is
preserved under the perturbation by g, where g is said to decay exponentially if there is
x > 0 such that e<I"lg(n) € £°(Z).

In order to facilitate the formulation of the result we obtain, we consider a v €
C®(T, R) for which the spectral description above holds and split {1, ..., k} = I, u I,
where /1 denotes the largest set such that for any i € I, the energies in £ N [a;, b;] are
subcritical. Let 540 := Uie,] (X Na;, bi]), and TP ;= Uie[z(Z N [a;, b;i]).

We can now state our stability result in the one-frequency case.

Theorem 1.3. For (measure-theoretically) typical v € C* (T, R) and exponentially de-
caying g, we have the following: For every 6 € T and Lebesgue almost every a € T,
the following holds for H, 4.0:

(1) There is no singular continuous spectrum. N

(2) The restriction of the canonical spectral measure of Hy 4.9 to X° ub is purely absolutely
continuous.

(3) There are at most finitely many eigenvalues in the restriction of each gap of Hy 4.9
to Uiell [a;, b;]. _

@ Th{z restriction of the cano'nical spectral measure of Hy a6 to |J; ch [ai, b;] is pure
point and every eigenfunction decays exponentially.

Remark 1.4. (a) It is possible that 3P does not contain all eigenvalues of ﬁv,aﬁ inside
Uie plai, bi] because a decaying perturbation may (and usually does) produce eigen-
values in spectral gaps of the unperturbed operator. However, the accumulation points
of the discrete eigenvalues of Hy 4 in Uiel2 [a;, b;] must be in X547,

(b) On the other hand, since the perturbation preserves the essential spectrum and
the discrete spectrum consists of discrete simple eigenvalues for which it is known that
the associated eigenfunction decays exponentially, an equivalent formulation of item (3)
is the following: The restriction of the canonical spectral measure of H, 4.9 to £°“7 is
pure point and every eigenfunction decays exponentially.

Remark 1.5. Let us comment on the difficulty and novelty aspects of the proofs, espe-
cially the proof of the persistence of purely absolutely continuous spectrum. It is not
difficult to obtain the result if the perturbation decays fast enough. However, it is a del-
icate issue to push the proof to obtain the result under the optimal decay assumption.
Our method is based on ideas from dynamical systems, especially those developed by
Avila in [3]. In this approach, one needs to prove that the set of spectral parameters
with unbounded solutions has zero weight with respect to the spectral measure, which
in turn relies on a measure estimate for the set of spectral parameters for which the
corresponding cocycles have a given growth rate, and one seeks to establish suitable
almost reducibility results (where one can conjugate into an arbitrarily small neighbor-
hood of a constant) to control the growth of the cocycles. The usual method [3,51,65] is
a Gronwall-type estimate (first developed in Avila—Krikorian [8, Lemma 3.1] and also
Avila—Fayad—Krikorian [9, Claim 4.6]). However, using this traditional method, one can
only prove the result for g € £>! (even this is not direct, one still needs to strengthen the
estimates). Our method is different and explained in Lemma 5.1 (see also Remark 5.1).
Also our method to deal with the gap edges under the optimal decay condition is new
(see Lemma 5.2). The traditional way is to use the M-function, this argument is also
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important to prove the result concerning finitely many eigenvalues in each of the gaps. To
prove the latter result, the key issues here are Proposition 6.1 (positive ground state) and
Proposition 6.2 (continuity of the Weyl solution). These two results were both proved
quite recently, they depend on a recently developed new almost reducibility scheme
[50,51].

The remainder of the paper is organized as follows. Section 2 collects some important
and well-known notions and results, which will be used in subsequent sections. Section 3
establishes some growth and deviation estimates for perturbed transfer matrices. The-
orem 1.2 is proved in Sect.4. Section5 contains the proofs of part (1) of Theorem 1.1
and part (2) of Theorem 1.3. Part (2) of Theorem 1.1 and part (3) of Theorem 1.3 are
proved in Sect. 6. Finally, parts (1) and (4) of Theorem 1.3 are proved in Sect. 7.

2. Preliminaries

2.1. Quasi-periodic cocycles, Lyapunov exponent, and fibered rotation number. Let
o € R with (1, &) rationally independent. A quasi-periodic cocycle (o, A) € RY x
C®(T¢, SL(2,R)) is a linear skew-product:

(@, A) : T x R? > T¢ x R?
0,v) > O +a, A®) - v).

Recall that a sequence (u, ),z is a formal solution of the eigenvalue equation

Hyoou = Eu
if and only if it satisfies Untl) _ Sh(a,6,n) - “n , where
Up Un—1

SU(a, 6, n) = (E - ”(19 +na) _01> € SL(2. R).

The map (o, S}) is called a Schrodinger cocycle.
Denote the transfer matrix by

Mi(e,0,E,n) = Sp(e,0,n+k —1)--- Sg(c, 6, n),

and M_i(, 0, E, n) = My(a, 0, E,n — k)~!. Define

1 1
Li(a, E) = %/0 log|| Mk(e, 0, E, 0)]| d6.

It is well-known that the Lyapunov exponent
L(a, E) = lim Li(a, E) =inf Ly(a, E) >0
k—00 k
is well-defined.

Assume A € C%(T¢, SL(2,R)) is homotopic to the identity. Then there exist ¥ :
T¢xT— Randu : T¢ x T — R, such that

cos2mwy\ cos2m(y + ¥ (x,y))
A - (sinZJTy) = u(x,y) (sin2n(y +Y(x, y))) :
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The function v is called a lift of A. Let u be any probability measure on T x R which
is invariant by the continuous map 7 : (x,y) — (x +«, y + ¥ (x, y)), projecting over
Lebesgue measure on the first coordinate. Then the fibered rotation number of («, A) is
defined by

pla, A) = / Y du mod Z,

which does not depend on the choices of 1 and w. It is easy to see that o (e, Sp;) admits
a determination p, o (E) € [0, 1/2]. The integrated density of states (IDS) Ny o: R —
[0, 1] of Hy o0 is defined as

Nv,oz(E) = f]l‘d Mu,a,e(—OO, E]do,

where 1y o0 15 the spectral measure of H, o9 (and §p). One can check that Ny o (E) =
1 —2py.a(E); see [5,11,41].

Recall that the spectrum of H, ¢, denoted by %, o, is a compact subset of R,
independent of 0 if (1, «) is rationally independent. Any bounded connected component
of R\ X, 4 is called a spectral gap.

2.2. Semi-algebraic sets. A set S C R”" is called a semi-algebraic set if it is a finite
union of sets defined by a finite number of polynomial equalities and inequalities. More
precisely, let {P,---, P} C R[xy,---,x,] be a family of real polynomials whose
degrees are bounded by d. A (closed) semi-algebraic set S is given by an expression

s=J ﬂ {x € R" : Py(x)s;0}, 2.1)
j Ze[,j
where £; C {1,---,s}ands;, € {<, >, =} are arbitrary. Then we say that S has degree

at most sd, and its degree is the infimum of sd over all representations as in (2.1).
We introduce some useful facts about semi-algebraic sets; see, for example, Bourgain
[13].

Lemma 2.1 ([13] Tarski—Seidenberg principle). If S C R”" is semi-algebraic of degree

B, then any projection of S is also semi-algebraic and of degree at most B€, where C
only depends on n.

Lemma 2.2 [13]. Suppose that S C [0, 1]" is semi-algebraic of degree B and mes,, S <
n. Let a € T" satisfy a DC and N be a large integer,

1
log B < logN < log —.
n

Then for any 6y € T"
#{k=1,---,N|0+ka € S(modl)} < N'7¢ (2.2)

for some § = §(w).
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Lemma 2.3 [13]. Ler S C [0, 11" be a semi-algebraic set of degree B and mes, S < 1,

1
log B < log % We denote (w, x) € [0, 117" x [0, 1]" the product variable. Fix ¢ > n2n.
Then there is a decomposition

S=5US
with S| satisfying
mes, (Proj,, 1) < B¢

and Sy satisfying the transversality property
1
mes, (S, NL) < B¢We1ym
for any n-dimensional hyperplane s.t.

_ 1
Jmax [Proj; (e)| < T00°

0<j

where we denote by eq, - - - , e,—1 the w-coordinate vectors.

2.3. Renormalized oscillation theory. Let H be the Jacobi operator:
(Hu)(n) =a(m)u(n+1)+an — Du(n — 1) — b(n)u(n),

where a(n) < 0, b(n) € R, n € Z. Let u be a solution of Hu = Au. A pointn € Z is
called a node of solution u if either

u(n) =0ora(m)u(m)u(n+1) > 0.

Denote by fi(u) the total number of nodes of u and by f(, ,)(u) the number of nodes
of u between m and n. More precisely, we shall say that a node ng of u lies between m
and n if either m < ng < n or if ng = m but u(m) # 0. Let u; 2 be two solutions of
Huy 2 = Xi1,2u1,2, respectively. The Wronskian of u1, us is denoted by

Wuy, uz)(n) = a(n) (w1 (muz(n +1) —ui(n+ Duz(n)) .
A point n € Z is called a node of W (i1, u) if either
Wuy, uz)(n) =0or W(uy, up)(m)Wuy, uz)(n+1) < 0.

Denote by W (u1, u3) the total number of nodes of #W (u1, uz) and by £, ) W (u1, u2)
the number of nodes of W (u1, uy) between m and n. More precisely, we shall say that
a node ng of W(uy, up) lies between m and n if either m < ng < norifng = m
but W(uy, uz)(m) # 0. Let dim Ran P, ;,)(H) denote the dimension of the range of
the spectral projection P, 3,)(H). Then dimRan P, »,)(H) < oo means there are
at most finitely many eigenvalues in (A1, A2). Then the central results of renormalized
oscillation theory are the following.
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Theorem 2.1 [62,63]. We have that
dimRanP(_s0, ) (H) < 00

if and only if one solution of Hu = \u satisfies: u(n) has a finite number of nodes; and
we have

dimRan P o) (H) < 00
if and only if one solution of Hu = Au satisfies: (—1)"u(n) has a finite number of nodes.
Theorem 2.2 [62,63]. Let A1 < Ay and suppose u1 2 satisfy Hu12 = A1 auj 2, then
gW(u1, uz) < 0o < dimRanPy, ,)(H) < oo.
Theorem 2.3 [62,63]. Let A1 < Ay and suppose u1 2 satisfy Huy 2 = L1 2u1.2, then

m(n,m)W(ul, uz) — (Ij(n,m)(MZ) - ﬁ(n,m)(ul)” <2

For any A ¢ o(H), there exist two linearly independent solutions #4()) that are
square-summable at oo, respectively. If (A1, A2) ¢ o (H) with A1 or A € o(H), then
we can define u (A1 2) by a limit process. These solutions are called Weyl solutions at
Fo0, respectively. Then we have the following precise formula:

Theorem 2.4 [62,63]. Let A1 < Xy and suppose [A1, k2] N Cess(H) C {A1, A2}. Let
u+ (M), ust(Aa) be the Weyl solutions of H at A1, L respectively, then

gW (ux (A1), us+(Az)) = dimRanP;, »,)(H).

3. Upper Bound and Deviation Estimates

For the perturbed operator, we consider its corresponding eigenvalue equation,

~

Hyqou = Eu.

We have (u”“) = §}§(cx, 0,n) - ( thn ) where
u u

n n—1

$Y (.0, n) = (E — v +f“) —&) _01> € SL(2, R). 3.1)

For any v, E, o fixed, denoting A0, n) = S} («,6,n) and B0, n) = §}’5(a, 6,n),
we consider for any k > 1 the (unperturbed and perturbed) transfer matrices given by

My(a,0,E,n) =A@, n+k—1)---A(0,n), 3.2)

My(a,0,E,n)=B@®,n+k—1)---B®,n). (3.3)

We also denote M_y(at, 0, E, n) = My(at, 0, E,n—k)~', M_i(, 0, E, n) = My(, 6,

E . n— k)_l. In the following subsections, we establish estimates for My («, 0, E, n),
which will be the starting point of the proof of our main results.
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3.1. Telescoping arguments. By a telescoping argument, or the method of variation of
constants, we first establish a relationship between My (¢, 6, E, n) and My (o, 0, E, n).

Lemma 3.1. We have the following:

M (, 0, E, n) (3.1a)
k-1 5o
:Mk(a,O,E,n)+ZMk_i_1(a,9,E,n+i+l)<ag(n+l) O)Mi(a,Q,E,n)
i=0

k—1 .
= M(@.0.E.n)+ Y Mi_i_1(ct.0, E,n+i+]1) (‘g(” i) 0) M;(«, 6, E, n)

0 0
i=0
(3.1b)
M, (a,0, E, n) (3.2a)
k—1 0 0
- ,;l(a,e,E,n)+ZM;1(a,9,E,n)(0 _g(n+l.)> M (0, Esn+i+1)
i=0
k—1 0 0
= M; ' (a,6, E,n)+ZMi_1(a,9, E.n) (0 _g(n+l.)) M7 (6, E,n+i+1)
i=0

(3.2b)

Proof. We only prove (3.1a), the proofs of the other formulas are similar. By the tele-
scoping argument, we have

My(o,0,E,n) =A@, n+k—1)---A@,n)

_ (E—-vO@+m+k—Da)—ghn+k—-1) -1 E—v(@+na)—gn) -1
- 1 o) " 1 0

k—1
=A(9,n+k—1).-.A(9,n)+22(9,n+k—1).-.K(e,n+i+1)-
i=0
x (AO,n+i)— A@,n+)) AO,n+i—1)--- A, n)

k—1
i . —gn+i) O
:Mk(a’e’E’n)"'z(;Mkfifl(Ol,@,E,I’l+l+1) (g(o ) 0)

1=

x Mi(a,0, E, n),
and the result follows. -

3.2. Upper bound. In this subsection, we establish a uniform upper bound for 1\711( (a, 0,
E, n).

Lemma 3.2. For any s > 0, any g satisfying
lg(n)] < Ce™M",
any E in a compact set I C R, and any € > 0, there exists k:; (C, s, €, &) such that
| My (e, 6, E, n)|| < @Bk
forallk >k (C,s, €, ), all 6, all n.
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Proof. First, we need to show that (4.1) can be bounded uniformly in 6, n, and E in a
compact set /. We have the following lemma, which is essentially contained in [10]. We
give a proof for completeness.

Lemma 3.3. For any € > 0, there exist ky(e, ®) < 0o, such that for any |k| > ky (€, @),
we have

1
I log||[My (e, 0, E,n)|| < L(a, E) + €

uniformly in 6 and E in a compact set I.

Proof. We only consider the case where 7 is positive, the case of negative n is similar. By
Furman’s result [31], for every E € I, and given € > 0, there exists K = K (¢, a, E) >
0, such that for any k > K, we have

1
sup — log||My(e, 6, E. n)|| < L(a, E) + <.
9eTd |k| 3

By the continuity of the Lyapunov exponent (cf. [14]), there exists § = § (€, «, E) such
thatif |E — E’| < 8, then

1 2
sup — log|| My (e, 6, E'.n)|| < L(ev, E') + —, (3.4)
peTd Ik 3

holds forany K (¢, o, E) < k < 2K (¢, , E) + 1. By subadditivity, therefore (3.4) holds
for every k > K (€, @, E). Since I is compact, by a compactness argument, one can
choose k, = ky (€, ) < oo such that for any |k| > k, (€, o), we have

1
sup — log||My(a, 0, E,n)|| < L(«, E) +¢,
pura 1K
for all £ € I, which completes the proof. O
By (3.1b), we have
| Mi(er, 0, E.n)|| <|| My, 0. E, )|
k—1
+ Z lg(n + DI Mg—i—1(a, 0, E,n+ i+ D|[|M;(a, 0, E,n)].

i=0
(3.5)

By Lemma 3.3, for every E in a compact set I, € > 0, there exists & (€, @) such that
| Mic(e, 0, B, m)| < (BN
holds for all 0, all n. Thus,

1My (e, 6, E,n)|| < elH@EIOkrO6)
k—1
+ ) 1g(n+i) | EIROE==DRO®) 47 (0 0, E, ).
i=0
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Denoting

c = e—(L(a,E)+e)+0(kv)’
yi = " LE@EOR=0®) A1 (o, 0, E, )],

the bound (3.5) can be rewritten as

k—1

WS+ clgn+i)lyi. (3.6)
i=0

By Gronwall’s inequality,

k—1
< 1+Y clgn +i>|exp( > c|g(n+5)|) <C(C,s),

i=0 i<t<k
that is
My (a, 0, E,n)|| < C(C, s)eL@Er k0t
Thus there exists &/, (C, s, €, &) such that
| Mi(a, 0, E, n)|| < eL@E)+ok

forall k > k(C, s, €, ), all 0, all n. O

3.3. Deviation estimates. As a consequence, we can obtain the following deviation
estimates between My («, 6, E, n) and My (a, 0, E, n).

Lemma 3.4. Assume that g is as in Lemma 3.2. For every E € R, € > 0, there exists
kJ(C,s, €, &), such that for all 0 and any k > k|, we have

| Mi(et, 0, E,n) — Mi(a, 0, E, n)|| < LUV tek=sn, forn >0, (3.4a)
| My (e, 0, E,n) — My (e, 0, E, )| < eLEIktsnrk=1) forn+k—1<0, (3.4b)
1M _k (. 0, E,n) — M_p (e, 0, E, n)|| < eEHE k=520, forn —k >0, (3.4¢)
M _g (e, 0, E,n) — M_g (e, 0, E, n)|| < e LEV+Okts(1=1), forn—1<0. (3.4d)

ﬁroof. We only prove (3.4a), the proofs of the other estimates are similar. By (3.1b), we
ave

k—1
1M (@, 0, E,n) = My(e, 6, E,m)[| < D |g(n+DIIMi—i—1 (@, 6, E,n+i+ DM (a6, E,n)
i=0
k—1
<> lgn+DIIMg—i—1(e. 0, E.n+i+ || Mi (e, 0, E,n) — Mi (e, 0, E,n)|
i=0

k—1
+ Y g+ D M—i—1(e, 0, E,n+i+ DI[|Mi(, 0, E, n)|.
i=0

(3.7)
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Similar to the proof of the previous lemma, for all 6, all n, if we denote
c= ef(L(a,E)+e)+O(k,j)’

yi = e L@EOk=00) A1, (0. 0, E, n) — My (a, 6, E, n)|,

then (3.7) can be rewritten as

k—1 k—1
e lgn+dl+ clgtn+ilyi. (3.8)
i=0 i=0

By Gronwall’s inequality, we have

k=1 k-1
Yk = CZ lg(n+1)| +C(C,S)Zc|g(n+i)|exp< Z C|g(n+£)|) < C/(C,S)E_m,

i=0 i=0 i<l<k

that is
| Mi(, 0, E, n) — Mi(at, 0, E, n)|| < C'(C, s)e " e L@ Ey+)k+0ky)
Thus there exists k], (C, s, €, o) such that
| My (e, 6, E,n) — My(at, 6, E, n)|| < e-@E)re)k=sn

forallk > k)(C, s, €, ), all 6, all n. O

4. Anderson Localization

In this section, we will prove the following Anderson localization result for the perturbed
operator (1.4). Denote

Lo(co) i ={E : L(a, E) > ¢¢ > 0}.

By Shndl’s Theorem, it is enough to show for almost all @ € DCy, all generalized
eigenvalues of Hy o.¢, in L4(co), have exponentially decaying eigenfunctions.

The proof mainly follow the proof in [13], we first introduce some useful notation.
Denote

v(0 + na) 1
1 v@+(n+Da) 1
Di(e,0.n) = . ,
lv@+nm+k—1a)

and

g(n)

- gn+1)
Dy(a,0,n) = Di(a,0,n) + )

' gn+k—1)
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Then we denote
Pi(a, 0, E,n) = det[E — Dy (e, 0, n)], fork > 1,

and set Py(a, 6, E,n) = 1 and P_;(a, 0, E, n) = 0.

The unperturbed operator, which corresponds to the case g = 0, plays an important
role in our argument. We denote the determinant that arises in this particular case by
Py(a, 6, E, n). Then it is easy to check that the transfer-matrix can be rewritten as

. Pi(a,0, E, n) —P_1(x,0,E,n+1)
Miclor 0, ) = <Pk_1(a, 0.E.n) —Pia(.0. En+ 1)) @D
and
= _( Pe.0.E;n)  —Pei(e,0.E.n+1)
M@, 0, E,n) = (Pkl(a,e, E.n) —Peae 6. E.n+ 1)) - @2

We use the notation ﬁ[ N1.N,1(0) for the operator Iilvv,a,e restricted to the interval
[N1, N2] with zero boundary conditions at N — 1 and N, + 1. Then we denote its
Green’s function as

Gin ., vy (E,0)(ny, n2) = (ﬁ[Nl,Nz](Q) — E) Yn1, ny),

and Cramer’s rule shows that for any Ny, N2 = Ny + N — 1, N; < nj < nz < N>, and
E ¢ o (Hn, N,](0)), we have

I
|GNy, Ny (1, 12)| = A 4.3)

where
I = |1}]7N1 (.0, E. N1)Py,_n, (.0, E.ny + 1), )
I, = |Py(a, 0, E, N1)|.

The following formula plays an elementary role in our proof:

Lemma 4.1. Suppose n € [Ny, N2] C Z and u is a solution of I-NIv,a’gu = Eu. If
E ¢ o (Hn, N, (0)), then

um) = =Gy N, (E, 0)(n, NDu(Ny — 1) — Gy, 3y (B, 0)(n, No)u(Np + 1).

4.1. Green’s function estimates. All constants in what follows will depend on v, but
unless noted explicitly, we will leave this dependence implicit for simplicity. The main
result of this section is the following:

Proposition 4.1. Suppose I C R is compact. Then, for any E € L4 (co) N1, there exists
No = No(co,C, s, €, @) >0

such that if @ € DCy(y, T), then for any N > Ny and any N' > N2, the following
holds:
There is a set @ = Q(a, E, N') C T, satisfying

_ o
mes Q2 < e~ N , for some o (o) > 0, ¢ > 0,
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such that for any 0 outside Q, for any g satisfying |g(n)| < Ce "1, one of the intervals
AR =1, NI+ N [I,N =11+ N';[2, N]+ N';[2,N — 1]+ N’
and one of the intervals
AY =[-N,-1]=N;[-N+1,—-1]= N";[-N,=2] = N; [-N +1, =2] = N’
with both choices being independent of g, will satisfy

max |G i (E, 0)(n1, no)| < e~ MO DImmmieel,
ie{L,R}

Proof. We consider the case AR first. For any € > 0, by Lemma 3.2, for any interval
A =[m+1,m+ N] with length N >k (C, s, €, o), we have

e(N—=In1=n2|)L(«t, E)+2¢ N+O (k)

|Py(a, 0, E,m+1)]

|GA(E, 0)(n1,n2)| < (4.5)

for any g satisfying |g(n)| < Ce™1"l.
To get a lower bound for the denominator, we need the following Large Deviation
Theorem (LDT) from Bourgain [13]:
Theorem 4.1 [13]. Assume that & € T¢ satisfies the Diophantine condition DCy(y, 1)
14
|k|*

Let v be real analytic on T%. Fixing a small € > 0 and taking N > Ny(€, &), we have

|k, &)1 > —— for k € Z\{0}.

1
mes {e € T4; | < logl| My (@, 6, E.0)]| — Ly (@ E)

> e} <e N (4.6)

for some constants 0 = o (1) > 0,c =c(E) > 0.

Remark 4.1. ¢ = c(E) could be uniform for £ in abounded range, such as |E| < C|v]o.
Thus one can drop the dependence on E.

From (4.6) and translation invariance, it follows that if N > Ny(e, o),

1
mes {9 e T¢, NlogHMN(a, 6,E,N +1)| — Ly(a, E)

> e} <e N @)

Denote this set, which depends on «, E, N’, by QR By Corollary 3.4, we have if N >
k) (C, s, €, ), and large enough (depends on s but does not depend on E in a compact
set), we have

1My (.6, E, N+ DIl = [ My (e, 0, E, N' + D[] < @B NN < 1 (4.8)
for any g satisfying |g(n)| < Ce™*""!. Thus for any 6 ¢ QR if N > ¢!, then we have
My (e, 0, E, N+ 1)]| > eIN@E—ON _ % > (L@E)=2e)N

Clearly, the choice of AR can be made independently of g.
Now we fix this AX. Let No > max{No, k>, k”, e~} and large enough, for any

vty

N > Ny, then for any g satisfying |g(n)| < Ce*!"|, the denominator in (4.5) will be
bounded from below by e E)=2N ‘Thys we have

|GAR(E,9)(I’1],I’12)| < e—L(a,E)\nl—nz|+4eN+O(k,’)) < e—L(a,E)lnl—n2|+6eN.

The AL case can be handled in a similar way by excluding a set Q. Letting Q@ =
QL U QR we may conclude the proof. O
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4.2. Proof of Theorem 1.2.

Proof. Lete = 16%. Fix 6y € T?, g, and a generalized eigenvalue E of ﬁv,a,go with a

normalized generalized eigenfunction u = (u,),cz, that is,2

~

Hy o004 = Eu, with |u,| < Cg(1 +|n|) and |ug| = 1.
First, we have the following lemma:
Lemma 4.2. For any Ny sufficiently large, there is some jo, |jo| < 2N1 = 2NOC where
C a sufficiently large constant, such that
0 < dist(E, specH|_ jos1.jg-11(00)) < e~ 4 N0, (4.9)

Proof. The proof of this lemma will be given in three steps.
Step 1:

The properties of semialgebraic sets play a role in the Bourgain’s approach [13].
First, we need to show that the exceptional set could also be assumed semialgebraic.
Following Bourgain’s idea, one can shrink the exceptional set such that it is seen to be
semialgebraic. O

Claim 1. Fixingowand N > Ny sufficiently large, the exceptional set € in Proposition 4.1
may be assumed to be semialgebraic of degree < N and still independent of the choice
of g satisfying |g(n)| < Ce™s!"l.

Proof. Fix A = Al = [a, b] withi € {L, R} and g, we say that the pair (6, E) has the
property “g-P ” if

IGA(E, 0)(n1,n2)| < e Olm=—ml+eN "o allng, ny € A. (4.10)
Rewrite (4.10) as

2Ol [det(Hy — E)p,ny]* < e2©M[det(Hy — E))?, forall ny, ny € A,

“4.11)
where A, ,, denotes the (n, n2)-minor of the matrix A.
Observing that
|det(Ha = E)nyms| = 1Pay—a(@, 0, E, @) Py (@, 6, E, na + 1)
< My —ale, 0, E, @)l - |Mp—n, (e, 0, E, nz + DI,
one can replace (4.11) by the slightly stronger condition
o, (e, 0, E,a) || Mp-ny(. 0, E.ny + D]
ni,n€N
< 20N [det(Hp — E)] . (4.12)

Since v is analytic, we have v(f) = Zkezd b(k)et®?) 15(k)| < e Pl and we may
substitute v by vi = Y -c,n d(k)e'*?) where C; = C;(v) is a sufficiently large

constant if we regard the deviation of v and v; as a perturbation. In fact, since |[v —
villco < e~ C1PN choose C; sufficiently large such that

CipN > C'(v, E).

2 If the polynomially bounded solution happens to vanish at 0, one can use 1 as a reference site.
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If we use %7 to denote quantities arising after this Fourier truncation, then by (3.1a), a
direct calculation shows that forany n € A,and k < N,

k—1
|P(e 6, E,n) — PL(@.0,E.m)| <Y (e—CIPN +ce—S<N2+f>) €' BNk
j=0
< eC’(v,E)kN(e—Cl,oN +Ce—sN2)
< ¢~ 3C1PN ,C' (. E)k
< e—%(rle
for any g satisfies |g(n)| < Ce™sI".
Thus one can deduce the following estimates easily:
[det( — E)I? — [det(H] — E)?| < e 4C1PN,
My, —a(e. 0, E.a)|*| My_ny(t. 6. E.ny + 1)
— 1ML _ (. 0. E. ) |* 1ML, (0,0, E ny + ||

< e_%cle.

Lemma 4.3. Suppose that ||a| — |a’|| <€ and ||b| — |b/|| <e.lf
la'| < N|b'| — Nex — ey,
then |a| < N|b|.
Proof. This is easy to verify. O

Let N = ¢26M and €] = €2 = e 1C1PN By Lemma 4.3, it is easy to see that for
any g satisfying |g(n)| < Ce™*"l, one can replace (4.12) by the stronger condition

Z e2cg|n]fn2|”MT

ni—a

(@0, E, )2 ML, (@0, E n+D|*

ni, €N

2
< 2(6eN) [det(HAT _ E)] -1 (4.13)

Clearly, (4.13) is of the form
P(cosa, sina, cosf,sinf, E) >0 4.14)

where P is a polynomial of degree at most 2Cy N>.

Based on the same reasoning, one may again (assuming 6 bounded) truncate the
power series for “cos” and “sin” and similarly replace (4.13) by the stronger condition
(we use %7 to denote the corresponding quantities after the second truncation)

Y amm iy T (w0, E.a0)|PIME,, (@ 0. E. ny+ )|
ni,n2€N

, 2
< 20N [qeH] - B)] -1, 4.15)
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which is of the form
P(x,0,E)>0 (4.16)

of degree at most N°. Denote (4.15) by the property «07".p~.
Now we explain why the exceptional set 2 in Proposition 4.1 may also be assumed
semialgebraic of degree at most N°. Fix E. Clearly, we have

{6 : 07"-P holds for one of the A} C ﬂ {6 : g-P holds for one of the A}
lg(n)|<Cesn]

When 6 ¢ 2, which is defined in Proposition 4.1, then there exists A such that

Z eZcolnl—nz\ ”MT/

ni—a

(.0, E,a)|*IML,, (.0, E ny+ D)
ni,ny€N

< Y EMTRNMy (a6, E, )P | My, (@, 0, E,ny+ D> + eV
ny,np€AN
< N22(5eN) 2(L(@. E)=26)N | ,~cIN _ |

< N226N) [det(Hy — E)]” — %
< 20N [qey(r — E)]2 1
that is, (4.15) holds. Thus,
T\Q c {6 : 07"-P holds for one of the A'}.
Denote
Q) = T\{6 : 07"-P holds for A'}.
It follows that

mes U U {0 : g-P does not hold for Ai} < mes(Qf U Qf) <mesQ < e N,
i€{L. R} |g(n)| <Cesl

Thus we can shrink the exceptional set to be QIL U Qf , which is semialgebraic of degree
< N°. |
Step 2:

Fix N = Ny, N' = Ng sufficiently large and let @ = Q(«, E, N’) be the set provided
by Proposition 4.1. Consider the orbit {0y + jo : 0 < j < N1}, N| = NOC, where C is a
sufficiently large constant. Applying Lemma 2.2 with S = @, B = Ng, n=e NG and
N = Ny, it follows that except for at most NII_S values of 0 < j < Ny, 6p + ja will not
belong to 2. For these j, consider g = 0, we have one of the intervals (which depends
onby+ jo)

AR =11, Nol+ N§; [1, No — 11+ N3; [2, Nol + N§; [2, No — 11+ N3 (4.17)
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satisfies (by the shift condition)

o omTRlMy, (6. a+ )P Mp-ny (B0, n2 + 1+ )]

ny,npeAR+j

< 20N [det(Hyr,; — E)].
By (3.1a), for any n, we have

My (o, 6, E,n) = My(a, 6, E, n)
k—1
~ . —gn+1)0
+ Y Mi—ii(@. 6. E,n+z+1)< g(o )o>
i=0
X My—i(a,0, E,n+i)"!
“Mi—i(, 0, E,n+i)M;(a, 0, E, n).
Thus we have for any k < Ny, for any g (satisfying |g(n)| < Ce™I"l),

| Mi(a, 6, E, N3 + 1+ j) — Mi(a, 6, E, N3 + 1+ j)]|
k—1

< 3 CHCeN || My(ar, 6, E. NG + 1+ )
i=0

< e‘%Nglle(a, 0,E,N; +1+ ),

since the AR + j we have chosen satisfies
2|det(Hpr,; — E)| = [My(e, 0, E, Ng +1+ ).
Thus

~ _ s a2
I[det(Hyr, ; — E) = [det(Hy g, ; — E)P| < ¢ 3V0 | det(Hy v, ; — EDI,
WMy —a(@. 0. E.a+ j)*| Mp_p, (@ 0, E.ny+ 1+ )|
— | My —a(@.0, E.a+ DI Mp_ny (.0, E.np + 1+ j)|?|

—3N2 2 2
<e 370 Mpy—a(e, 0, E,a+ I7IMp—p,(, 0, E,np + 1+ j)|I°.
Thus for any g, one of intervals AR+ Jj, where AR is defined as in (4.17), satisfies

S oM, (o 00, E.a+ )P Mpny (e, 0. E.ny+ 1+ )|

ny,na€AR+j
< 2eNo) [det(ﬁAR+j - E)]2 ,
which implies
|G pryj (E, 00)(n1, np)| < e~ O =7217€No for any ¢ ( satisfying |g(n)| < Ce™*1"]).
Recall that if for some g fixed,

~

Hy a0t = Eu, |up| < Cep(1+n)),
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then for any n € AR + j, writing AR + j = [n1, n»], we have

lun| < |G ary(E, 00)(n, n)l|up, 1] + |G zryj (E, 00) (1, n2)||tpy1]

< CN1 max e—co\n—ni|+76N0.
ie{l,2}

Taking in particular n = Ng + % + j, then we have min; ¢y 2) [n — n;| > %, thus

_ €0 N,
NZ No | <e 4 0
2+ L+

|u
holds for all 0 < j < Np except N 11 =8 many. Similarly, we have

_ 0 N,
u | <e 30
| 7N§7%71|

holds for all 0 < j < Np except N 11_‘3 many. By the pigeonhole principle, one can find
0 < jo < 2Ny, such that

_
lutj] <e 3 No,

Step 3:
Let I =[—jo+ 1, jo — 1], notice that?

I =ug| < |G(E,00)(0, —jo+ Dllu—j| +1G(E, 60)(0, jo — D|ujl
_a
< IG=jos1.jo-11(E, 00) use™ 2 No.

We may conclude that

0}
G —jor1.jo—11(E, 00)llus > e 4 N0,

which is equivalent to

0 < dist(E, SpCCﬁ[_j(H_],jO_]](eo)) < e_CTONO.
, O
Next, let N, = NOC , where C’ is a sufficiently large constant, and denote
£ = &y = Uj<an,specHi_ 1, j—11(60).
Suppose one can ensure that
1
0o + na (mod 1) ¢ U Q(a, Ng, E’) for all N5 < |n| <2N;. (4.18)

E'e&y

3 We denote the Hilbert-Schmidt norm of a matrix B as

2
IBllns = (Z&ﬂz) :
i,j
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1
Then for any E’ € &, and any N22 < n < 2N, there is an interval

A&, € {11, Nol+ N§. [1, No — 11+ N§. [2. Nol + Ng. [2, No — 1] + N}
such that
(E/, 60) (11, n2)| < e—L(a,E’)|n1—n2|+7eN0 < e—colnl—n2|+7eNo.

Gk
| A<n)+n

Recall that L(«, E) is uniformly continuous in a compact set. We can therefore choose
Ny sufficiently large such that for any |E — E’| < e’TONU, we have

L(e, E) < L(a, E') + €.
Then by Lemma 4.2 and a telescoping argument we see that there is an interval
AS, € {1, Nol+ Ng, [1, No — 11+ Ng, [2, Nol + Ng, [2, No — 11+ N}
such that

’ . _
|GA(R)+n(E,90)(n1,n2)| < e*L(Ol,E)|n]7n2|+8€No < e*L()\I’L] n2|+8€N0.
n

Define the interval

>1
|

R R 3

= |J @& +m oINS .2N]
1
N7 <n<2N,

and use the well-known “paving property” (Lemma 10.33 in [13]) to find

y 1
|GRr(E, o)1, m)| < e~ T if |y —na| > o,

and therefore
—(co—)J ! ;
luj| <e forEszijz.

The negative side is similar, thus we obtain the exponential decay.
The last step is to exclude an «-set R with mes R = 0 to ensure (4.18), which is
rather standard, thus Anderson localization holds. We refer to [13] for details. O

5. Absolutely Continuous Spectrum

As we explained in the introduction, £! perturbations are enough to preserve the ac
spectrum ¥ = X, ,. In our setting, it just means that if («, S}) is bounded, then (e, S%)
is also bounded in the case of ¢! perturbations. To prove that the perturbed operator
has purely absolutely continuous spectrum in X, our method is to further explore the
proof that the initial operator Hj o ¢ is purely ac, and reduce the desired statement to
the following two statements:

@1): ITIA,a’g has no eigenvalues at the end of the gaps;
(ii): the energies E € X for which (a, S}) is almost-reducible do not support any

singular continuous spectrum of Hj 4.¢.
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Recall that a quasi-periodic cocycle (o, A) is analytically conjugated to (c, A) if

there exists B € C*(T¢, PSL(2, R)) such that
B(-+a)'AC)B() = A().

A cocycle (a, A) is said to be almost reducible if the closure of its analytic conjugacy
class contains a constant. N

It will be crucial to estimate the growth of the cocycle || My («, 8, E, 0)||. The method
we employ is based on a KAM scheme. In this way one can obtain precise estimates for
| My (e, 0, E, 0)]|, which we then parlay into a priori estimate for || My («, 0, E, 0)| in a
controllable scale. The reader may consult Remark 5.1 for more details.

5.1. Growth of the cocycle. First we apply the KAM scheme from [51,65] to the
Schrodinger cocycle (a, S7,), where we rewrite it as (a, Apef0®)), Here, Ag(E) =
( ’15 Bl) and fo = (8 8). For any €y > 0 that is small enough (this will be defined later)
and ro > 0, we inductively define

o1 _1
2 r 4" Ine,

€j =€y , rj=—2j, Nj——r .
Then we have the following:

Proposition 5.1 [51,65]. Suppose « € DCq(y, t) and

Ifollr < e0 < Do r
= ()"
' SUPe(s.41l Ao(E)[[C0 \2

where Dy = Dgo(y, t,d) and Cy are numerical constants. Then for any j > 1, there
exists Bj € Cﬁ; (2T¢, SL(2, R)) such that

B0 +a) ' Ag(E)e® P B;(0) = Ajeli®),

1

where Aj € SL(2,R), [|Aj]| < 1+€;°,, [Ifjllr; < €; and B; satisfies

_

1Bjllo <, 7, |degBjl <2N; 1.

(1) For any 0 < |n| < Nj_1, denote

1

An() ={E € Z: 12p(e, Aj1/I71@) — (n, )| < €7},
Ki= |J -

0<|n|=N;j—1

Then for any E € K, there existsnj € 72 with |nj| < 2Nj_1 such that
1
15

120(e, Age® D) — (n;, a) |1 < 25 . (5.1)

and we have
_1
sup  |M;(a,0, E,0)]o < CIIBjII% < Cejf?, (5.2)

0<|s\<Ce/_l1

A=

where C is a universal constant.
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(2) Moreover, there always exist unitary matrices U; € SL(2, C) such that
2mip;
_ . e Pj cj
Uj 1Ajef./(0)Uj = < 0 _2mp ) + F;(0). (5.3)

Then for any E € X, we have p; € R, || Fjll»; < €j, ||BjUj||%|cj| < 8||Agll, and

sup [ My (e, 6, E, 0)[lo < 2|B;U;[I5(1 +nlc;]) <2¢;° +l6||Ao|||n|

0<\n|<61?
(5.4)
As a direct consequence, we have the following:
Corollary 5.1. For any E € %, we have
My (@, 6, E, 0)llo < C'|nl, (5.5)

where C' is independent of E.
Proof. This simple observation was first obtained by Ehasson [28], we include the proof
for completeness Indeed since €; = 60 ,for any n € [eo , +00), there exists j such

1
thatn € [ 1 €] ] then by (5.4), there exists C’ > 0 such that (5.5) holds. |
Once we have this, we can control the growth of the perturbed cocycle:

Lemma 5.1. If ), |n||g(n)| < oo, then for any E € X, we have
IMi (e, 6, E, 0)|| < C"k.

Consequently, for any E € K j, we have

_ 1
sup || M. 0, E.0)] < C"e; %, (5.6)

1

0<|s|<Ce 6

where C" is independent of E.

Proof. We only consider the case where s is positive, the other case is similar. Recall
that by (3.1b), we have

k—1
My(e. 0, E.0) = My (e, 0, E.0) + Y My_;_ 1(a9El+l)(g(l)O)M(oc9E0)
i=0

Thus we have

| My (e, 6., E, 0)]|
k—1
< IMi(@. 0. E.O)| + Y 18| Mk—i—1(ct, 0, E. i + )| M (. 0, E, 0)]].
i=0

(5.7)
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By Corollary 5.1, it follows that

k—1
kK M, 0, E,0)]| < C'+C" Y ilg@)i™" | Mi(e. 0, E, 0)].
i=0

By Gronwall’s inequality this implies

k—1
| Mi (e, 0. E, 0] < <C’ epoC’i|g<i)|) k<C'k.
i=0

Consequently, forany 0 < s < C e e, © by (5.2) and (5.7), we have

1 s—1 B
sup | M,(a, 6, E, 0)]| < Ce;” % +Ce; C"ilg(n+i)| < C"e; 7,
0<s<Ce; 71 i=0

concluding the proof. O

Remark 5.1. Here the basic observation is Corollary 5.1. Itis crucial to obtain the a priori
bound on IIMk (o, 0, E, 0)]|. Otherwise, if we apply (5.3) directly to estimate the growth
of ||Mk (o, 6, E, 0)]], using traditional ways (see Avila—Krikorian [8, Lemma 3.1] and
also Avila—Fayad—Krikorian [9, Claim 4.6]), one can only obtain the result under the
stronger assumption g € 2

5.2. Proof of Theorem 1.1 (1):. Let B be the setof E € X such that («, S}) is bounded,

and let B’ be the set of E € ¥ such that («, S}’;) is bounded, by (5.7), it is easy to see
that B = B'. Recall the following well-known aspect of subordinacy theory:

Theorem 5.1 [34,59]. Let B be the set ofE € (T(Hv «.6) such that (o, Sv %) is bounded.
Then the restriction of the spectral measure [y o ¢|B is purely absolutely contmuous for
allf € R.

Thus by Theorem 5.1, it is enough to prove that for every &€ € R, [i = [iy,q.¢ is such
that £(X\B’) = 0. Denote R = {E € X : («a, S% ) is reducible}. Observe that for every
E € R\B, (a, S},) must be analytically redumble to a parabolic matrix.

Let us recall the following well-known reducibility result of Eliasson:

Theorem 5.2 [28] Let § > 0, « € DC4(y, 1), and Ag € SL(2,R). Then there is a
constant € = €(y, 1,68, || Aol|) such that if A € Cg’(Td, SL(2, R)) is real analytic with

|A — Aplls <€

and the rotation number of the cocycle (a, A) satisfies

2p(a, A) — (n, @)|T > VO#nez!

n|*

or2p(a, A) = (n,a) mod Z for some n € 74 then (o, A) is analytically reducible.
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It follows that R\ 3 is countable: indeed for any such E, the well known gap labeling
theorem ensures that there exists a k € Z9 such that 2p(«, Sp) = (k,a) mod Z. We

further prove E € R\B is not an eigenvalue of ﬁv,a,g. The following observation is
important for us, a similar idea appears in Coddington—Levinson [22, Chapter 3, Exercise
35].

Lemma 5.2. Let ¢ # 0 and suppose that
gn+1) = (A+R(n))g(n), (5.8)

where

A= <ﬂ51 j;) Y IR@)[In| < 0.

Then any non-zero solution of (5.8) does not tend to zero when n — 0o. Moreover, for
any € > 0, we can find a solution ¢+ (n) such that

lim sup ||q§i(n) — (%1> | <e.

n—+oo0

Proof. Without loss of generality, we consider A = ((1) i) Denote by @ (n) the funda-

mental matrix of ¢(n + 1) = A¢(n) and decompose

O(n—s) = (5 C(”fs)) = ((1) _55) s (8 Cf) = Bi(s) + Po(n).

It follows that

[P < Kis, s > 1,
|[®2(n)|| < Kon, n > 1.

Let @o(n) = ®(n) <(1)> = (c1n> n > 1. One has

o) < Kon.

Choose ng which is large enough such that

(K1 + K2 Y2 RO < 5,

s=no

and define the sequence

n

Vi1 (n) = (Cl”)+ Y PIERE = Dis — 1 — Y a(mR(s — DPis — 1).

s=ng+1 s=n+1

A direct computation shows that

. . K
i1 () = Pl < 557
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which means that there exists a limit function 17/(1’1) on n > ng that satisfies

I ()| < 2Kon,

n

¥ (n) = ("1”>+ Y @iORE - DY — 1= Y SR — DY (s — D).
s=ng+1 s=n+1

(5.9)

It is easy to verify that 1/7(11) is a solution of (5.8). Next we give an estimate for 17/(11).
By (5.9), we have

[vn]+1 n—1

- 1
n—lnwm)—(ﬂ”) | = 2Kk, | —= Y IRGIs+ Y. IRG)ls
s=no s=Lvnj+

+2KoK2 Y |R(s)ls
L+t

<2K0Ki— Y IRG)ls +2Ko(Ki +K2)
s=ny

> IR®)ls > 0.
s=vil+2

If we let $o(n) = d(n) (é) = (é), n > 1, we have
()| < Ko.
Following the same reasoning as above, if we choose ng such that
o
Ko(Ki+K2) Y [R()|(s+1) <e,
s=ng
we see that there exists a limit function é(n) which satisfies

()|l < 2Ko, forn > ng,

n

$(n) = ((1))+ D BIORE = Deis —1) = Y Br(mR(s — DP(s — 1),

s=ng+1 s=n+1

and which is also a solution of (5.8). A direct computation shows that

Ip(n) — (é) | <e, forn > no.

The proof of the statement on the left half line is similar. Finally, it is easy to check that
¥ (n) and ¢(n) are linearly independent. This completes the proof. O
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Suppose («, Sj) is analytically reducible to a parabolic matrix, that is, there exists
B € C®(2T¢, SL(2, R)) such that

B(O + (n+ Do)~ SE(0 +na) BO +nar) = (jgl ﬂsl) '

Then the second order difference equation

'Zn+l _ Qv . ﬂn
<ﬁ” ) B SE(a’g’n) <ﬂn_l>
can be transformed to

soen=((5 £)+ro)-aw

The assumption ), |n||g(n)| < oo implies that ) |R(n)||n| < oo. It then follows from
Lemma 5.2 that any non-zero solution H, o ¢ = EUu satisfies

inf [i41]* + [i,]* > 0,
neZ*

that is, there are no eigenvalues in R\ 5.
Thus it remains to prove that L(Z\R) = 0. To prove this, we recall the following
result of Avila [2], which is essentially the Jitomirskaya-Last inequality [36]:

Lemma 5.3. We have

[E—¢,E+e)<Ce sup |M(a6,E,0)3,

O<|s|<Ce~!

where C > 0 is a universal constant and [L is the canonical spectral measure of Hy 4.0

2
For E € K, let J,,(E) be an open 2%6315_1—neighborhood of E. By (5.6), we have

- L
sup  [|Ms(a, 0, E, 0)[lo < C"¢,,

m—1>
2

a4
0<|s|<Ce,

and therefore, by Lemma 5.3, we have
~ 4 _L
R(Jm(E)) < C"¢, 5| Im(E)|,

where | - | denotes Lebesgue measure. Take a finite subcover K, C U;-=ofm (Ej).

Refining this subcover if necessary, we may assume that every x € K,, is contained in
at most 2 different J, (E ;).
For E € K, (5.1) implies that 2p(K,,) can be covered by 2N,,_ intervals T of
1

length 26’:75_ 1- Recall the following lower bound for the integrated density of states N (E)
of the unperturbed operator Hy ¢ ¢:

Lemma 5.4 [2]. If E € X, thenfor0 <e <1, N(E+¢) — N(E —¢€) > ce%.
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By Lemma 5.4, [N (J,n (E))| = ¢|Jw(E)|3, we have |Ty| < 120 (J,,(E))| for any s,
E € K,,. We conclude that there are at most r < (2([%] + 1) +4)N,,_ intervals T to
cover K,,,i.e.r < CN,,_1. Then

JRE— d %
AKn) = D AUn(E) < CNpr €76,
j=0

which gives ), (K,,) < oo, then by Borel-Cantelli lemma,
W(Z\R) < p(limsup K,,,) =0,

and the result follows.

5.3. Proof of Theorem 1.3 (2):. In this subsection we prove (2) of Theorem 1.3. Avila’s
almost reducibility conjecture (ARC) will play a role. The full solution of the ARC was
recently given by Avila in [1,3].

Theorem 5.3 [1,3]. Givena € R\Q and A € C®(T, SL(2, R)), if («, A) is subcritical,
then it is almost reducible.

Choose M > 0 such that ¥ C (—M, M) and let
AR ={E € (=M, M) : («, S) is almost reducible}.

As AR is open (Corollary 1.3 of [3]), we can write AR = Ujj-zl(aj, b;), where J may
be finite or countable. Take any (a;, b;) in U,I':1 (aj,bj), and denote it by (a, b). Define

S(80) = la + 80, b — ol
for any sufficiently small o > 0. Then we have the following:

Lemma 5.5 [65]. For any €y > 0, @ € R\Q, there exist h = h(a) > 0 and T’ =
I'(a, €0) > O such that for any E € S(8y), there exists ®g € C*(T, PSL(2, R)) with
|®Pell; < T such that

Pp(0+a) 'SLO)PE(O) = Re,e/E®
with || fell; < €0, |deg | < C|InT| for some constant C = C(v, a) > 0.

Proof. This is essentially contained in Lemma 4.2 of [65]. The crucial fact for this
lemma is that we can choose /(«) to be independent of E and €p, and choose I" to be
independent of E. We refer to Propositions 5.1 and 5.2 of [50] for details. O

Once we have Lemma 5.5, after a finite number of conjugation steps, which is uniform
in E € S(80), we can reduce the cocycle to the perturbative regime. Then one can apply
the KAM scheme to get precise control of the growth of the cocycle. Define

_ r\ Cot 0 r 47+ lne(;l
r=nh, SOSDO(_> s € =¢€y, rj=—, Nj:—7
2 2J r

and replace X by S(8o). Then (5.2) follows from [|®g||; < I', while (5.1) will follow
from |deg ®g| < C|InT|.
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Indeed, by Lemma 5.5 and Proposition 5.1, there exist ®¢ € C”(2T, SL(2, R)) and
Bj e Cﬂ; (2T, SL(2, R)) with | deg Bj| < 2N such that

Bi@+a) '®p@+a) 'SLdL(O)B;(0) = Bj(0 +a) ' Ag(E)e0 P B;(6) = Ajeli®,

€1 _
with A; € SL(2,R), [[Ajll < L+€;% 1, I fjll; < €jand [|Bjllo < ¢;}*. Then for any

E € K, there exists m € 74 with 0 < |m| < Nj_1 such that

L
5

20, Aj1el 1) — (m. el < 2€ 7).

Notice that
20(at, S%) =2p(at, Aj_1/i1@) 4 (deg Bj_| + deg ®f, a),

letn; =degBj | +deg®g +m, wehave |n;| <2N; 2+ N; | +C|In["| <2N;_y,
and
1

12p(at, Sg) — (nj, o)|T < 2€ . (5.10)

While (5.2) changes to

_ 1
sup  [|Ms(e, 6, E,0)]lo < CIIP£IGIIB; I < CT2%, %, (5.11)

1
0<|S|<C6j71

0\"_

where C is a universal constant. Then replace Lemma 5.4 by the following lemma, which
is contained in [65].

Lemma 5.6 [65]. For any 8o which is small enough, if E € S(8¢), then for sufficiently

smalle > 0, N(E+¢) — N(E —¢) > 0(80)6%, where c(80) > 0 is a small universal
constant.

Letting 8o > 0 be arbitrarily small, we can show that if « € DCy, the restriction of the
canonical spectral measure of H, 4,0 to AR is purely absolutely continuous, following
the same line of reasoning as in the proof of Theorem 1.1. Combining Theorem 5.3 with
»sub « AR, we prove (2) of Theorem 1.3.

6. Eigenvalues in Gaps of the Essential Spectrum

Next we prove that there are at most finitely many eigenvalues in each gap which falls
into the almost reducible regime. By the gap-labeling theorem [41], for any spectral gap
G, there exists a unique k € 74 such that Ny o(E) = (k,a) mod Z in G. That is, all
the spectral gaps can be labelled by integer vectors: we denote by Gx(v) = (E, , E})
the gap with label k # 0. When E,” = E}, we say the gap is collapsed. We also set
Ey :=inf X, o, Ej :=sup Xy o, and Go(v) := (=00, E; ) U (Ej, 00).

6.1. Proof of Theorem 1.1 (2).
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6.1.1. Unbounded gaps. We first consider the two unbounded gaps comprising G (v).
The idea is the same as in the periodic case [62,63], that is, the goal is to show that one
can find a solution u with

up (at Eg) or (—1)"u, (at Eg) > ¢’ > 0,n € Z.
The following is essentially contained in Lemma 5.1 and Corollary 5.1 of [53]:

Proposition 6.1 [53]. Suppose « € DCy(y, t) andv € C ®(T4, R) is sufficiently small.
If

pa, SE) =00r1/2,

then (a, Sg) is reducible to (:'61 :I:Cl> and Hy .0 = Eu has a quasi-periodic or anti-
quasi-periodic solution u,,. Specifically,

(D) If p(a, S}) =0, then u,, = u(6 + na) >c > 0.
Q) If p(a, S ) =1/2, then u, = (=1)"u(8 + na) with (=1)"u, > ¢ > 0.

Remark 6.1. In fact, [53] only considered the case p(c, Sg) = 0, but exactly the same
proof works in the case p(a, S;;) = 1/2, the only difference is that the cocycle is

. -1 ¢
reducible to < 0 _1>.

By the fact Ny o (E) = 1 — 2py o (E), we can deduce that

Then by Proposition 6.1, for E = EJ, H, o su = Eu has a positive quasi-periodic
solution

un(Ear, 0) =u®+na) >c > 0.
Next we need the following simple observations:

Corollary 6.1. Suppose (c, S},) is reducible to a parabolic matrix, then H, o gu = Eu
has a quasi-periodic solutton u, = u(0 + no) or an anti- quasz -periodic solution un =
(— 1)"u(9 + na). Furthermore, for any € > 0, one can find u a* satisfying HU a piit =
Ea™ such that

lim sup [|iiX — u, || < e.
n—=+oo

Proof. Suppose (a, S},) is reducible to a parabolic matrix. Then we have

—1ov _ +1 c .
BO+a)  Sp(O)BO) = ( 0 :I:l) =: C. 6.1)
Without loss of generality, we consider the case tr C = 2. Write

b11(0) b12(0)
3(9):<b21<9> b22(9)>'
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Then (6.1) implies that
(E —v(0)b11(0) — b21(0) = b11(0 + ),
b11(0) = by (6 + ),
that is
b11(6 +a) + b1y (6 — a) + v(0)b11(6) = Eb1(6).

Henceu, = by (na+60) = by ((n+1)a+0) is aquasi-periodic solution of Hy o ot = Eu.
By Lemma 5.2, for any € > 0, one can find a solution &* of Hy 4 gu = Eu, such that

lim su HB(@ +noz)_1 ( ity ) — <1> H < _c
o iy ) ~\0) I =Bl

Hence we have

limsup ||i), — up || < e.
n—oo

The proof in the case tr C = —2 is similar. O

Then means for € sufficiently small, by Corollary 6.1, there exists ﬁi(E +.0) with
Hy o oi™(ES,0) = EJaT(EL, 0)
such that

limsup @ (EY, 0) — un,(ES, 0)| < e,

n—+oo
Combining this with Theorems 2.1 and 2.3, it follows that ﬂ(ﬁi(Eg ,0)) < 00, and thus
dim RanP(Ear,oo) (Hy,a.9) < 0o. Similarly, one can show that dim RanP(_ooyEO—) (Hy,a.0)

< 00. In other words, Iilvv,a,g has at most finitely many eigenvalues in Go(v) for any 6.

6.1.2. Bounded gaps .For2p = (k,«) mod Z,k # 0, the gap-labeling theorem shows
that R; = [E, , E;]if it is a non-collapsed gap, in this case, we recall the following
result:

Proposition 6.2. Let (o, Ape/E-D) € T¢ x C®(T?, SL(2, R)) be quasi-periodic co-
cycles continuous in E. Assume that « € DCy(y,t) and f(E,-) € C;”(’]I‘d, R) is
sufficiently small. For any p > 0, we define

R; =1{E eR: p(a, Ape/ ED) = p).
If2p = (k, @) mod Z, then there exist B(E,-) € CO(R; x 2T¢,SL(2,R)), C(E) €
C%R 3, SL(2, R)) such that
B YE,0 +a)Ape! EDB(E,0) = C(E).
Moreover, we have p(a, C(E)) = 0.

Remark 6.2. This result was first stated for Szego cocycles (SU(1, 1) case) in [52, Propo-
sition 5.3], but the proof works for Schrodinger cocycles (SL(2, R) case) with only
minimal changes.
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Thus, forany E € [E, E,j], p(a, C(E)) = 0. Without loss of generality we assume

that tr C(E) > 2. Then, tr C(E) = 2 if and only if £ = E,f Then one can further
assume that C (E) can be chosen as follows,

ME E
C(E)=( ) A‘(‘é)31>,

where A(E) > 1 for E € [E], E,t] and A(E) = lifand only if E = Eki To see this,
we can rewrite

b =gt () D)

e 120(E) (E) —it(E)

1 .
M= — ! ! ,
1+i\1 1

with 1(E), v(E) > 0, 0(F) € CO([E,:, Ef],R), and tr C(E) > 2 implies v(E) >
[t(E)|. If v(E) = 0, then t (E) = 0, and we are at one of the edge points Eki
For E € (E, , E,Jg), we can assume v(E) > 0. Solve

where

V(E)sin2(0(E) — ¢(E)) = —t(E). (6.2)
The solution ¢ (E) is obviously continuous in (E, , E;). Since if v(E) = 0, we can
solve (6.2) by any ¢ (E), thus we can let ¢>(Eki) = limE%Ez: ¢(E). Sowe get p(E) €
CO([Ek_, E,:'], R) as desired. Then we have

1 it el20=29),,
R_¢(E)C(E)R¢(E) = expM (6_1(29_205)1) _i (E)M

_ cos(20 —2¢)v t —sin(260 — 2¢)v
= exp (—t —5in(20 —2¢)v  —cos(20 — 2 ) (E)

ecos(20—2¢)v w
( 0 e—cos(29—2¢)v (E)

Notice that
un(E, 0) _ AME) ok -1 ((uo(E.0)
<Mn_1(E’9)> = B(E: 0 +na)< 0 /\(E)‘”> B(E;0)"" <u_01(E, 9)>.

uog(E, 0)
u-1(E, 0)

=1 [ uo(E,0) ) _ (1
s (0G%) = (0):

< un(E, 0) ) _ <X(E)"b11(E;6+noz))

One can choose ( ) suitable such that

and thus

un—1(E, 0) A(E)"by1 (E; 6 + nar)
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It follows that
un(E,0) = AME)'b11(E; 0 +na) = A(E)"+1b21(E; 0+ n+ Do)

is a solution of vaa,guE = Euf. Notice that for any £ € (E, E,j), u,(E,0) is
square-summable at —oo, thus

{MEY'D11(E; 0 +ne)tnez = {un(E, 0)}nez = u(E, 0)

is the Weyl solution at —oo. Note the Weyl solution g(E,iE, 0) = limE_)Eki u(E, 0) (see
[63, Sec 2.2] for details), then by the continuity with respect to E (Proposition 6.2),

(b11(EE; 0 +na)lnez = u(EE, 0).

If we are at a collapsed gap, we do not need to do anything, so we assume 1 (E ki) # 0.
To complete the proof, it suffices to show for every gap edge, that it cannot be an
accumulation point of discrete eigenvalues. Without loss of generality, the gap edge in
question is £, and we have [E, , E, +4d] C [E}, E,:r] with § > 0 chosen sufficiently
small. A direct computation shows that

W((E; . 0). u(E; +8.0))(n)
=ME, +8)"b11(E; +68;0 +na)by1(E; ;0 + (n+ 1a)
—AMEL +8)"+1b11(Ek_ +68;0 + (n+ Da)byi1(E; ;0 +na).

Note that the resolvent set of H, 4.9 1s independent of 6, thus by Theorem 2.4, for all
0 € T?, we have

EWu(E,,0),u(E, +4,0)) = dimRanP(Ekf’E;Jra)(Hv’a,g) =0.

This especially means that W (u(E, , 0), u(E, + 4, 0))(0) is non-vanishing for all 6 €
T4. On the other hand, if we denote

w(®) = Wu(E, ,0),u(E; +46,0))(0)
= bi1(Ef +8;0)b11(Ef ;0 +a) — MEp +8)b11(Ef +8;0 +a)bi1(Ef; 0),

again by Proposition 6.2, w(#) € C°(2T?, R), and thus by continuity we have
w®) >c >00r —w() >c >0.
By Corollary 6.1, for any € > 0 small enough, there exist i+ (E « » ) such that

lim sup ||ﬁ;l—L(Ek_,9)—b“(Ek_;9+na)|| <e, (6.3)

n—+oo

Meanwhile, while u(E, 0) is a solution of Hv’a,guE = Eu®, we can obtain an approx-
imate solution of H, ¢ with the help of the following lemma, which can seen as a
counterpart of Lemma 5.2:
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Lemma 6.1. Let |\| > 1 and suppose that
gn+1) = (A+R(n))g(n), 6.4)

where

Az(g A(il)’ S IRM)| < oo

Then for any € > 0, we can find a solution $i (n) such that

¢(n) — <)g) H <e.

Proof. Denote by ®(n) the fundamental matrix of ¢(n + 1) = A¢(n) and decompose

)Ll’l C)L”*)L:" 0 —c A.i’l_ )“n c )»717
<1><n)=(0 Ak—_xn‘>=<0 ) ) = e+ e,

It follows that

lim sup [A| ™"
n— =400

@1 < KIAI™", n =0,
[®2(m)]| < K|A]", n =<0.

Let Yo (n) = ®(n) <(1)> = ()»()") n > 1. One has

o)l < [A]".

Choose ng which is large enough such that

2K Z IR(s)| < e,

S=no

and define the sequence

n n

Jier (n) = (*0>+ > @i - $)R(s — Diisls — 1)

s=no+1
— D> ®2n—9)RG — Di(s — 1.
s=n+1

A direct computation shows that

A"

- - A
W1 () = ¥imll = 757

which means that there exists a limit function 1/_}(11) on n > ng that satisfies

I () < 2IA",
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- (%) ®y(n — $)R(s — (s — 1)
s=ng+1
— Y Oy —5)R(s — (s — 1. (6.5)
=n+1

It is easy to verify that tﬁ(n) is a solution of (6.4). Next we give an estimate for Iﬁ(n).
By (6.5), we have

A"

J(n)—( )H <2K Z A9 R () A5 "+2KZ|A|” SRS

S=n
<2K Z IR()| < e.
sS=ng
The proof of the statement on the left half line (resp. n < 0) is similar. O

Once we have this, similarly as in Corollary 6.1, there exist ui(E + 4, 6) such that

limsup |A(E, +8)"i dE(E +68,0) —bi1(E +8;0+na)| <e. (6.6)

n—+oo

By (6.3) and (6.6), we have
limsup |A(E; +8) "W @ (E,0), i (E; +8,0))(n) —w(® +na)l|| <e.

n—=+o00

Combining Theorems 2.2 and 2.3, it follows that
EW (@ (EL, 0), i (E; +8,0)) < 0.

This is equivalent to dim Ran P Ep E +s)(H) < 00, which completes the proof. O

6.2. Proof of Theorem 1.3 (3):. In the unbounded gap Go(v) case, without loss of
generality, assume E; € >5ub_ Then, (a, Sg,) is almost reducible by Theorem 5.3,

0
+1 ¢
0 +1
H, .0 = Eu has a uniformly positive quasi-periodic solution. The proof we adopt will
be different from Sect. 6.1.1, and the same as in the bounded gap case (Sect.6.1.2).
Now we look at the bounded gap case, consider [E, , E;] with E,” or Ef| € oub,
Without loss of generality, assume itis £ - Thereexisth > 0, ® E; e C¥2T, SL(2, R))

such that for any E € [E, , E,” + 6], § sufficiently small:

consequently, it is reducible to ( [6,28]. However, it is not known whether

-1 (E.0
Pp (0 +a) S}’f(@)@Ek_(e)zRE;g.f< )

with || f(E, 0)l|; small enough. Obviously, REk—ef(E’@) € CYE_, E; + §]. Notice
that 2 («, REk—ef(E’g)) = (k +deg CI>Ek—, a). Then Proposition 6.2 applies, there exists
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B(E,) € CUE;, E; +8] x 2T, SL(2,R)), C(E) € C((E; , E; +3],SL(2,R))
such that

BO+a) 'y (0 +a)” ' SEO)P ;- (0)B©) = C(E),

with p(«, C(E)) = 0. The rest proof is the same as in Sect. 6.1.2, we omit the details.

7. Completion of the Proof of Theorem 1.3

In this section we prove parts (1) and (4) of Theorem 1.3. By Avila’s global theory
[4], for typical v € C®(T, R), we have L(«, E) > c¢o > 0 for all E in any compact
interval of R\ X", thus we get part (4) of Theorem 1.3 by applying Theorem 1.2. By
Weyl’s criterion, 0egs (H) 0.0) = Oess(H)...0). As we have shown that there is no singular
continuous spectrum in X = 0egs(H), o.0), this completes the proof of (1) of Theorem
1.3.
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Appendix A. Eigenvalues at Gap Edges

We discuss the occurrence of eigenvalues at gap edges for decaying potentials. This
observation, which we learned from Milivoje Lukic, is possibly well known. In any
event, we spell it out explicitly here for the convenience of the reader.

A common trick to force certain eigenfunction behavior is to choose an appropriate
proposed eigenfunction along with an energy, and to then deduce the (asymptotic) form
of the potential from it.

Let us choose the eigenfunction u, which obeys u(n) = % for |n| > ng and is chosen
for [n| < ng so that it obeys any desired boundary condition at the origin in the half-line
case or in some arbitrary way in the whole-line case. The energy is £ = 2. Since we
need to satisfy

un+)+um—1)+Vm)un) =2u(n),
it follows that for || > ng, we must have

_ u(n+1)+u(n—1)__ 2
Vim) =2~ u(n) o2 —1

This shows the following:
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Proposition A.1. There exists a potential decaying at the rate n=2 for which 2 is an
eigenvalue. In particular, an £' potential does not necessarily ensure the purity of the
absolutely continuous spectrum on [—2, 2].
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