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Fifty years of Wilsonian renormalization

and counting

Philip W. Phillips

R Check for updates

Renormalization began as a tool to eliminate
divergencesin quantum electrodynamics,
butitis now the basis of our understanding
of physics at different energy scales. Here,
Ireview its evolution with an eye towards
physics beyond the Wilsonian paradigm.

Despite their microscopic differences, all simple fluids undergo a
transition to the gas phase with identical universal characteristics. By
systematizing the underpinnings of this universality, Kenneth Wilson
formulated afar-reaching renormalization group (RG) principle’, and in
sodoingestablished thetools for the modern understanding of phase
transitions, critical phenomena and quantum field theory.

Pre-Wilsonfield theory

Before Wilson tackled the question of universality', quantum field
theory had been developed through efforts to combine quantum phys-
ics with special relativity. However, this introduced the problem of
vacuum polarization.

Since the1930s”it had been known that the interaction of electro-
magnetic fields with the continuous distribution of ‘negative energy’
states (positrons) amends Coulomb’s law with alogarithmic divergence
to linear order in the fine-structure constant. At short distances, the
divergence obtains r <« fifm.c=3.86 x10*m,, where m, is the electron
mass and c the speed of light.

Fortunately, this divergence can be eliminated by defining a new
effective charge, which will depend on the energy scale. It is from this
dependence that the idea of a ‘running’ coupling constant emerges.
Murray Gell-Mann and Francis Low showed? that to all orders in the
fine-structure constant, the vacuum polarization at energy scales u
thatarelargerelative to the mass of an electron, modifies the coupling
constant g(u) in accordance with the scale-invariant form:

u a
¥ e = v 5 . M

where ais anumber and ¢ is some function; neither are important for
this discussion. This result shows that asthe energy scaleis varied, the
new coupling constantisrelated to the original one by ascale-invariant
or self-similar scale factor, (u/u’)?. Considering y and ¢’ as infinitesi-
mally separated leads to a differential equation thatinits modernform
iswritten:

dg
m = B(g). (2)

Years before this equation was derived, Heisenberg noted that
the fine-structure constant o = 1/137 = 2*3 it to an accuracy of 10™.
The essence of Eq. (2) is that it is pointless to ruminate over any par-
ticular value for a. Instead, because of the charge renormalization,
the fine-structure constant depends on the energy scale at which it
is measured, typically represented by the momentum transferred by
theinteraction.

In pure quantum electrodynamics (QED) consisting of a single
photon field and an electron, the solution to Eq. (2) predicts that the
effective fine-structure constant,

_ a
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depends explicitly on the transferred momentum, g, where -g>> O is
anincreasing function of energy. This behaviour was directly observed
in the Large Electron-Positron (LEP) collider in 1994. Although a full
treatment with all the leptons and quarks is necessary to obtain the
complete flow of a.zfrom aeﬂ(Mﬁ,) = 1/128 (M, the mass of the W-boson)
toits low-energy value of approximately 1/137, Eq. (3) is sufficient to
capture the deviation from the naive expectation that the local
quasi-instantaneous physics and hence only the bare parameters in
theLagrangianshould matter in the high-energy limit. Thisisnot borne
outin QED.Fig.1depictsthat quantum chromodynamics (QCD) —the
theory of strong interactions between gluons and quarks — stands in
contradistinctionto QED. This is one of the great triumphs of Wilson’s
renormalization approach®.

Although atheory with photon fields is naturally scale-invariant,
QEDtellsus that once matterisincluded, such scaleinvarianceislost by
virtue of the running of the charge manifestedin Eq. (3). Nonetheless,
the presence of alogarithmin the S functionreflects, to quote Wilson,
“aproblem lacking a characteristic scale”. In fact, a similar logarithm
arises in the theory for the ground-state energy of an electron gas,
which features a Fermi sea of positive-energy electron states rather
than the negative-energy positrons of the vacuum.

How are these two features of QED compatible? In QED and ele-
mentary particle theory in general, the only discernible energy scale
is set by the rest mass of the constituents. Integrals of the form

*® dE
f F )

are logarithmically divergent precisely because all energy scales above
m.c? contribute equally. Consider a scale £>mc?. The contribution to
theintegral from £’ to 2F’ is simply In2, independent of the scale E’.
Inpractice, allfield theories are defined up to a high-energy cutoff
orequivalently a short-distance scale. Precisely the role played by the
high-energy (short-distance) cutoffin ananalysis of field theories lies at
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Fig.1|Running of the coupling constants. lllustrative plot of the functions
for the coupling constants in QED, Eq. (3),and QCD, Eq. (13), as a function of the
energy scale, t. While both flow under renormalization, they do so in opposite
directions. QED becomes more strongly coupled at high energy while QCD does
justthe opposite. At high energy, QCD is asymptotically free as the coupling
constant vanishes. Confinement of the basic constituents, quarks and gluons,
obtains atlow energy in QCD.

the heart of Wilson’s approach to renormalization. As we will show, what
Wilson clarified is that low-energy theories depend on short-distance
physicsthrough operators classified as relevant, marginal and, in some
cases, irrelevant depending on the energy scale being probed. Itis from
this dependence that universality arises.

Toset thisup, wenotethatinfield theoryitis not the value of afield
atany point that matters, but rather correlation functions of the under-
lying fields. A key precursor to Wilson’s work was the Callan-Symanzik®>®
equation,

d d . B
"@ +ﬁ(g)a—g +ny@) |G (u.8,y) =0, (5)

which established that any n-point correlation function Gisindepend-
ent of the cutoff through two universal functions that communicate
the shift in the coupling constant, 5(g), and the field strength, y(g), in
such away to counteract the shift made in the energy scale, p1.

Block renormalization

The story of renormalization thus far, prior to 1971, is more tied to
removing infinities that arise in computing Feynman graphs than it
is to some universal physical principle involving collective degrees
of freedom. Wilson provided' this missing link by focusing on how
systems with fluctuations on all length scales, such as a boiling pot of
water, can be studied without forgoing locality.

One of the simplest models featuring a phase transition is the Ising
model for the onset of ferromagnetism. In this model, spins with either
an up or down degree of freedom occupy sites with a separation of a
onad-dimensionallattice and interact with nearest-neighbour interac-
tions. Inthis context, Leo Kadanoffintroduced ablock coarse-graining
renormalization scheme’ for the Ising model in which the entire system
isdividedinto cells ofedge length ba (b>1). This approach provides an
operational way to build in fluctuations smaller than the correlation
length, &.

Anew coarse-grained spin variableisintroduced torepresent the
average of the b9 spins in each block. The Hamiltonian can then be
rewritten to take the same form at each iteration as long as the block

spins are normalized by arescaling factor to maintain the up-down or
Z,Ising symmetry.

The major conceptual leap in this approach is the assumption
that theblocks, like the underlying spins, only have nearest-neighbour
interactions. An initial system of N spins has Nb“ effective spins after
blocking, each separated by ba. The correlationlength {canbe repre-
sented either in units of the initial lengthscale =& x a or the blocked
lengthscale =&, x ba. The rescaled correlationlength &, is smaller than
the correlation length at the initial scale &;:

5=fb><(ba)=f1><a=>fb=%- (6)

Consequently, the corresponding rescaled Hamiltonian for the o™
iteration H, lies further away fromacritical point — where the correla-
tionlength diverges — than the initial Hamiltonian H,.

This is reflected by the rescaled temperature and magnetic field
parametersinthe model, ¢,and h,, respectively. Let tand h, be the bare
values of the temperature and magnetic field, respectively. A key
assumptionin the renormalization group procedure is that after rescal-
ing, these quantities satisfy power-law scaling laws, ¢, = tb’: and
hy, = hB’»wherey,andy,areboth positive and can only be determined
from the full renormalization transformations. This leads to a series
of recursion equations that ultimately make it possible to sample the
infinite hierarchy of fluctuations with only a finite number of degrees
of freedom at each step.

Power counting

Arevolution came with Wilson’s momentum-space translation' of the
Kadanoff real-space coarse graining’. It represented the degrees of
freedominthelsing model asfieldsin continuous space. This approach
brought the physics of critical phenomenainto quantumfield theory,
and through renormalization established what field theory looks like
in the statistical continuum limit.

The notion of renormalizabilty isin general ill-posed as normally
stated, as one must mention the space of operators within which a
theory is renormalizable. More explicitly, consider a certain theory
described by a classically local action S(¢;) of some fields ¢, -+, @,
Supposethe field theoryis valid up to some energy scale £, and we seek
atheoryvalidforenergies below thisscale, E<E,. To do this, oneintro-
ducesacutoffscale A < Eyand ‘integrates out’ fields whose energy is
higher than A to obtain an effective action S , that depends only on
low-energy degrees of freedom. This is the energy- and
momentum-space equivalent process to the blocking step of Kadanoff’s
procedure.

Operationally, this is done by splitting the field into high and
low-energy components

O (W), w<A

¢(w)={ ,
Oy (W), w> A

where w is the energy, and performing an integration over the
high-energy (H) modes in the partition function to obtain the effec-
tive low-energy (L) theory:

f DpelS® — f Dep, €500 @)
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where

SA(0) = —i log( f DepyelS00) ®)

is the outcome of the integration.

In the analysis of running coupling constants there are special
values known as fixed points for which g = 0 in Eq. (2). Defining S,
as the action at a particular fixed point, one can write the action for a
different set of parameters as

SA :S*+/ddngi®i (9)
i

forsome set of field operators ©; that are local despite the integration
of high-frequency fields, because we focus on fields with w < A.

Aswiththeblockrenormalization approach, we can consider the
behaviour of the model under length rescaling,

X — ALk, (10)

If, under such atransformation, an operator ©(x) can be written as

6(x) = A% 6(A1x), (1)
we interpret dg as the dimension of 6.

Under arescaling, the action can be organized based on the expo-
nent of 1in each term, a procedure known as power counting. In the
A>limit, each operator will either remaininvariant, vanish or diverge.
Theruleisasfollows. Because of the d-dimensional spacetime measure
intheaction, operatorswith d; — d > Oareirrelevantand do notinflu-
ence the low-energy physics. Relevant operators correspond to
d@ —-d<O0.

Operators with dg — d = 0 are marginal. In these cases, all scales
are important and such operators are the origin of logarithms in the
Sfunction.

The core of renormalization is in the observation that there is a
dimension D above which the operators are irrelevant. Furthermore,
the number oflocal operators O,whose dimensionis less than (or equal)
to Disfinite. This obtains because classically local operators are poly-
nomials in the fields ¢ and their derivatives. Since there are finitely
many of these, one can make sense of such theories. Wilsonian renor-
malization rests on the simple principle that the low-energy physicsis
determined only by the relevant or marginal interactions, or in rare
cases, irrelevant couplings but only at low enough scales. That the
details of renormalization are determined by the dimension of opera-
tors rather than the nature of the microscopic features of the interac-
tions or the cutoffis the origin of universality in the Wilsonianapproach.

There are subtleties® in evaluating S,, which typically has to be
performed perturbatively. However, these can be overcome by aslight
recasting® of the problem set forth by Wilson. We canimagine integrat-
ing out high-energy modes one small energy slice at a time. First we
remove the modes with energies in the range A > w > A —dA, then
A—dA>w> A-2dAandsoon. Ateachstage the effectiveaction S ,
changes, which is described by the Wilson equation,

e F(S4),

where F is awell-defined functional that can be calculated.

(12)

Asthe Wilson equationrepresents aflow in an infinite dimensional
space, examiningits properties for arange of operators canbe accom-
plished entirely from the eigenvalue spectrum. Irrelevant operators
correspond to negative eigenvalues, which represent benign converg-
ing flows. If the functional is linearized around zero-coupling, the
eigenvalues are precisely the numbers d; — d obtained from power
counting. As F(S 4) is asmooth function of the couplings, there is no
place® for singularities to obtain especially since we are performing a
path integral over a narrow range of energy with both a low- and
high-energy cutoff. Hence, if an eigenvalue is negative in the free the-
ory, the same holds for the interacting theory. Power counting then
rules evenifthe dimension can change at strong coupling, forexample
in the Thirring model; hence the claim of marginality or relevance is
the crux of the matter.

The g function
The evolution of the action as high momentum states are integrated
outis precisely what is described by the running of the coupling con-
stants in the S function. What Wilson added beyond the Gell-Mann/
Low flow equation, Eq. (2), is that the g function is governed by
power-counting, coupled with integration of the high-energy modes
and rescaling.

In the theory of QCD, perturbative treatment of non-Abelian
Yang-Mills gauge theories"’ yields a B function of the form

o

_ 13
1+ 2bglt a3

) =-bg* ~ g’ =

where ¢t is proportional to the energy transferred and b is anumerical
constant. At high energies, ¢t — oo, the coupling constant, g, flows to
zero, producing the phenomenon known as asymptotic freedom
whereby quarks and gluons become weakly interacting and treatable
using perturbation theory. The opposite is true at low energies, where
instead confinement of quarks and gluons takes place, producing a
divergence of the coupling constant and the general breakdown of the
whole perturbative scheme*’,

Similar phenomena occur for the seemingly unrelated problem
of a localized magnetic spin engaging in spin-flip scattering with a
non-interacting band of conduction electrons, which is known as the
Kondo problem. The spin-flip scattering operator is marginal, and the
coupling strength flows from an initial value of gq according to the
Sfunction

So

- 8 14
l—golnfo/E ( )

B =g"-g

where Eyand £ are the initial and final energy scales, respectively. If
theinitialinteractionis antiferromagnetic, gy < O, the flowis towards
strong coupling, yielding a divergent coupling constant signalling the
formation of abound state between the impurity and the conduction
electrons.

Inboth QCD and the Kondo problem, the formation of new degrees
of freedomat low energiesis obtained through a cross-over rather than
aphase transition. A key triumph of Wilson’s treatment of the Kondo
problemis thatit captured the universal scaling that transpires below
acharacteristic temperature T, at the g — —oo fixed point, where the
localmomentis completely screened. As fixed points are characterized
by scale invariance, the Kondo temperature is obtained by imposing
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thescale-invariant condition DOT,(g)/0D = 0,where Dis the bandwidth
of the conduction electrons. The universal physics of all properties
such as resistivity, magnetism and thermodynamics below the
cross-over scale Ty is a consequence of this scale-invariant condition
at the strongly coupled fixed point of the theory.

Beyond Wilson

Fifty yearson, itis naturaltowonderifthereis any physics beyond the
Wilsonian paradigm. This could arise from a theory in which as the
high energy is probed features emerge in the scattering matrix that
are distinct from the poles that correspond to particles. For exam-
ple, in the case of a doped Mott insulator'® scattering matrix zeros
describing non-propagating or incoherent degrees of freedom have
beenidentified.

Before we get to the Mott problem, consider quantum gravity. As
pointed out previously", probing high energy inagravitational theory
should produceblack hole information, which cannot be represented
assimple polesin the scattering matrix. This would lead to a failure of
the Wilsonian separation of energy scales and provide an example of
ultraviolet/infrared (UV/IR) mixing, whichis well studied in the context
of non-commutative field theories™. Precisely how such UV/IR mixing
plays outinatheory of quantum gravity remains an open question.

So far, our best understanding of quantum gravity stems from
gauge-gravity duality, also known as the AdS/CFT conjecture”. But
even this conjecture has an effective Wilsonian interpretation at its
core arising from the locality of energy in the g function. The central
claim of the gauge-gravity duality is that some strongly coupled con-
formally invariant field theories in d dimensions are dual to a theory
of gravity ina d + 1 spacetime that is asymptotically described by an
anti de Sitter (AdS) metric parameterized by

2
ds? = ’23_2 (Mudrtdy’ +dz?), (15)

where R and z are the radius and radial coordinates of the AdS space-
time, respectively. This spacetimeisinvariant under the transformation
X, = Ax, and z » zA and hence satisfies the requisite symmetry for
theimplementation of the gauge-gravity duality, although not the full
symmetry of the conformal group. The conformal field theoryis viewed
aslying onthe z = O boundary of the AdS spacetime.

Our current understanding of the radial coordinate z is that it
represents the flow in the energy scale during renormalization. The
scale change, x, — Ax,increases the radial coordinate, z — zA. Con-
sequently, moving towards greater z in the bulk of the geometry
increases the corresponding projectiononto theboundary, as depicted
inFig.2. Thelimitof z = o therefore represents the full low-energy or
IRlimitof the strongly coupled theory. The AdS/CFT conjecture thereby
provides a complete geometrization of the renormalization group
procedure.

The second area where a possible breakdown of the Wilsonian
paradigm might arise is the strange metal' phase in the cuprate super-
conductors, which all start out as Mottinsulators. In the strange metal,
theresistivity increases way beyond the limit set by ascattering length
determined by the physics of the underlying lattice constant. Assucha
length scale determines the cutoff for particle scattering, the strange
metal with its non-saturating resistivity requires physics beyond the
Fermiliquid quasiparticle picture. In terms of the standard field theory

Gravity \Long distances

Short distances

Fig.2|Geometrical representation of the key claim of the gauge-gravity
duality. A strongly coupled field theory lives at the boundary, at the high-energy
UVscale. The horizontal z-direction (the extra dimensionin the gauge-gravity
duality) represents the running of the renormalization scale. Thisis illustrated by
the two projections at different values of zin the spacetime. Because the spacetime
isasymptotically hyperbolic, larger values of zlead to a larger projection of the
boundary theory and a full running of the renormalization scale amounts to the
construction of the low-energy, IR limit of the original strongly coupled UV theory.

for a Fermi surface®”, no operator in any effective Lagrangian exists
that can account for a non-saturating resistivity from the lowest tem-
peratures to temperature scales where the particle-picture breaks
down. This physics ultimately arises from the incoherent part of the
spectrum, thatis, zeros of the scattering matrix, which has no Wilsonian
formulation at present. So indeed, these two examples indicate that
much physics possibly lies beyond the Wilsonian paradigm.
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