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Fifty years of Wilsonian renormalization  
and counting

Philip W. Phillips

Renormalization began as a tool to eliminate 
divergences in quantum electrodynamics, 
but it is now the basis of our understanding 
of physics at different energy scales. Here, 
I review its evolution with an eye towards 
physics beyond the Wilsonian paradigm.

Despite their microscopic differences, all simple fluids undergo a 
transition to the gas phase with identical universal characteristics. By 
systematizing the underpinnings of this universality, Kenneth Wilson 
formulated a far-reaching renormalization group (RG) principle1, and in 
so doing established the tools for the modern understanding of phase 
transitions, critical phenomena and quantum field theory.

Pre-Wilson field theory
Before Wilson tackled the question of universality1, quantum field 
theory had been developed through efforts to combine quantum phys-
ics with special relativity. However, this introduced the problem of 
vacuum polarization.

Since the 1930s2 it had been known that the interaction of electro-
magnetic fields with the continuous distribution of ‘negative energy’ 
states (positrons) amends Coulomb’s law with a logarithmic divergence 
to linear order in the fine-structure constant. At short distances, the 
divergence obtains r ≪ ℏ/mec = 3.86 × 10–13me, where me is the electron 
mass and c the speed of light.

Fortunately, this divergence can be eliminated by defining a new 
effective charge, which will depend on the energy scale. It is from this 
dependence that the idea of a ‘running’ coupling constant emerges. 
Murray Gell-Mann and Francis Low showed3 that to all orders in the 
fine-structure constant, the vacuum polarization at energy scales μ 
that are large relative to the mass of an electron, modifies the coupling 
constant g(μ) in accordance with the scale-invariant form:

ψ (g(μ)) = ψ(g(μ′))( μμ′ )
a
, (1)

where a is a number and ψ is some function; neither are important for 
this discussion. This result shows that as the energy scale is varied, the 
new coupling constant is related to the original one by a scale-invariant 
or self-similar scale factor, (μ/μ′)a. Considering μ and μ′ as infinitesi-
mally separated leads to a differential equation that in its modern form  
is written:

dg
dlnμ

= β(g). (2)

Years before this equation was derived, Heisenberg noted that 
the fine-structure constant α ≈ 1/137 ≈ 2-43-3 π to an accuracy of 10-4. 
The essence of Eq. (2) is that it is pointless to ruminate over any par-
ticular value for α. Instead, because of the charge renormalization, 
the fine-structure constant depends on the energy scale at which it 
is measured, typically represented by the momentum transferred by 
the interaction.

In pure quantum electrodynamics (QED) consisting of a single 
photon field and an electron, the solution to Eq. (2) predicts that the 
effective fine-structure constant,

αeff =
α

1 − α
3π
ln −q2

e5/3m2
e

, (3)

depends explicitly on the transferred momentum, q, where -q2 > 0 is 
an increasing function of energy. This behaviour was directly observed 
in the Large Electron-Positron (LEP) collider in 1994. Although a full 
treatment with all the leptons and quarks is necessary to obtain the 
complete flow of αeff from αeff(M2

W) = 1/128 (MW the mass of the W-boson) 
to its low-energy value of approximately 1/137, Eq. (3) is sufficient to 
capture the deviation from the naive expectation that the local 
quasi-instantaneous physics and hence only the bare parameters in 
the Lagrangian should matter in the high-energy limit. This is not borne 
out in QED. Fig. 1 depicts that quantum chromodynamics (QCD) — the 
theory of strong interactions between gluons and quarks — stands in 
contradistinction to QED. This is one of the great triumphs of Wilson’s 
renormalization approach4.

Although a theory with photon fields is naturally scale-invariant, 
QED tells us that once matter is included, such scale invariance is lost by 
virtue of the running of the charge manifested in Eq. (3). Nonetheless, 
the presence of a logarithm in the β function reflects, to quote Wilson, 
“a problem lacking a characteristic scale”1. In fact, a similar logarithm 
arises in the theory for the ground-state energy of an electron gas, 
which features a Fermi sea of positive-energy electron states rather 
than the negative-energy positrons of the vacuum.

How are these two features of QED compatible? In QED and ele-
mentary particle theory in general, the only discernible energy scale 
is set by the rest mass of the constituents. Integrals of the form

∫
∞

mec2

dE
E (4)

are logarithmically divergent precisely because all energy scales above 
mec2 contribute equally. Consider a scale E′ > mc2. The contribution to 
the integral from E′ to 2E′ is simply ln2, independent of the scale E′.

In practice, all field theories are defined up to a high-energy cutoff 
or equivalently a short-distance scale. Precisely the role played by the 
high-energy (short-distance) cutoff in an analysis of field theories lies at 
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spins are normalized by a rescaling factor to maintain the up-down or 
Z2 Ising symmetry.

The major conceptual leap in this approach is the assumption 
that the blocks, like the underlying spins, only have nearest-neighbour 
interactions. An initial system of N spins has Nb-d effective spins after 
blocking, each separated by ba. The correlation length ξ can be repre-
sented either in units of the initial lengthscale ξ = ξ1 × a or the blocked 
lengthscale ξ = ξb × ba. The rescaled correlation length ξb is smaller than 
the correlation length at the initial scale ξ1:

ξ = ξb × (ba) = ξ1 × a ⇒ ξb =
ξ1
b
. (6)

Consequently, the corresponding rescaled Hamiltonian for the bth 
iteration Hb lies further away from a critical point — where the correla-
tion length diverges — than the initial Hamiltonian H1.

This is reflected by the rescaled temperature and magnetic field 
parameters in the model, tb and hb, respectively. Let t and h, be the bare 
values of the temperature and magnetic field, respectively. A key 
assumption in the renormalization group procedure is that after rescal-
ing, these quantities satisfy power-law scaling laws, tb = tbyt  and 
hb = hbyh where yt and yh are both positive and can only be determined 
from the full renormalization transformations. This leads to a series 
of recursion equations that ultimately make it possible to sample the 
infinite hierarchy of fluctuations with only a finite number of degrees 
of freedom at each step.

Power counting
A revolution came with Wilson’s momentum-space translation1 of the 
Kadanoff real-space coarse graining7. It represented the degrees of 
freedom in the Ising model as fields in continuous space. This approach 
brought the physics of critical phenomena into quantum field theory, 
and through renormalization established what field theory looks like 
in the statistical continuum limit.

The notion of renormalizabilty is in general ill-posed as normally 
stated, as one must mention the space of operators within which a 
theory is renormalizable. More explicitly, consider a certain theory 
described by a classically local action S(ϕi) of some fields ϕ1,⋯ ,ϕn. 
Suppose the field theory is valid up to some energy scale E0 and we seek 
a theory valid for energies below this scale, E < E0. To do this, one intro-
duces a cutoff scale Λ < E0 and ‘integrates out’ fields whose energy is 
higher than Λ to obtain an effective action SΛ that depends only on 
low-energy degrees of freedom. This is the energy- and 
momentum-space equivalent process to the blocking step of Kadanoff’s 
procedure.

Operationally, this is done by splitting the field into high and 
low-energy components

ϕ (ω) = {
ϕL (ω) , ω < Λ

ϕH (ω) , ω > Λ

,

where ω is the energy, and performing an integration over the 
high-energy (H) modes in the partition function to obtain the effec-
tive low-energy (L) theory:

∫DϕeiS(ϕ) = ∫DϕLeiSΛ(ϕL) (7)

the heart of Wilson’s approach to renormalization. As we will show, what 
Wilson clarified is that low-energy theories depend on short-distance 
physics through operators classified as relevant, marginal and, in some 
cases, irrelevant depending on the energy scale being probed. It is from 
this dependence that universality arises.

To set this up, we note that in field theory it is not the value of a field 
at any point that matters, but rather correlation functions of the under-
lying fields. A key precursor to Wilson’s work was the Callan-Symanzik5,6 
equation,

[μ ∂
∂μ

+ β(g) ∂
∂g

+ nγ(g)]Gn(μ, g, γ) = 0, (5)

which established that any n-point correlation function G is independ-
ent of the cutoff through two universal functions that communicate 
the shift in the coupling constant, β(g), and the field strength, γ(g), in 
such a way to counteract the shift made in the energy scale, μ.

Block renormalization
The story of renormalization thus far, prior to 1971, is more tied to 
removing infinities that arise in computing Feynman graphs than it 
is to some universal physical principle involving collective degrees 
of freedom. Wilson provided1 this missing link by focusing on how 
systems with fluctuations on all length scales, such as a boiling pot of 
water, can be studied without forgoing locality.

One of the simplest models featuring a phase transition is the Ising 
model for the onset of ferromagnetism. In this model, spins with either 
an up or down degree of freedom occupy sites with a separation of a 
on a d-dimensional lattice and interact with nearest-neighbour interac-
tions. In this context, Leo Kadanoff introduced a block coarse-graining 
renormalization scheme7 for the Ising model in which the entire system 
is divided into cells of edge length ba (b > 1). This approach provides an 
operational way to build in fluctuations smaller than the correlation 
length, ξ.

A new coarse-grained spin variable is introduced to represent the 
average of the bd  spins in each block. The Hamiltonian can then be 
rewritten to take the same form at each iteration as long as the block 
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Fig. 1 | Running of the coupling constants. Illustrative plot of the β functions 
for the coupling constants in QED, Eq. (3), and QCD, Eq. (13), as a function of the 
energy scale, t . While both flow under renormalization, they do so in opposite 
directions. QED becomes more strongly coupled at high energy while QCD does 
just the opposite. At high energy, QCD is asymptotically free as the coupling 
constant vanishes. Confinement of the basic constituents, quarks and gluons, 
obtains at low energy in QCD.
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where

SΛ(ϕL) = −i log(∫DϕHeiS(ϕL ,ϕH)) (8)

is the outcome of the integration.
In the analysis of running coupling constants there are special 

values known as fixed points for which β = 0 in Eq. (2). Defining S∗  
as the action at a particular fixed point, one can write the action for a 
different set of parameters as

SΛ = S∗ +∫ddx∑
i
gi𝒪𝒪i (9)

for some set of field operators 𝒪𝒪i that are local despite the integration 
of high-frequency fields, because we focus on fields with ω < Λ.

As with the block renormalization approach, we can consider the 
behaviour of the model under length rescaling,

xμ → λ−1xμ. (10)

If, under such a transformation, an operator 𝒪𝒪(x) can be written as

𝒪𝒪(x) = λd𝒪𝒪𝒪𝒪(λ−1x), (11)

we interpret d𝒪𝒪 as the dimension of 𝒪𝒪.
Under a rescaling, the action can be organized based on the expo-

nent of λ in each term, a procedure known as power counting. In the 
λ→∞ limit, each operator will either remain invariant, vanish or diverge. 
The rule is as follows. Because of the d-dimensional spacetime measure 
in the action, operators with d𝒪𝒪 − d > 0 are irrelevant and do not influ-
ence the low-energy physics. Relevant operators correspond to 
d𝒪𝒪 − d < 0.

Operators with d𝒪𝒪 − d = 0 are marginal. In these cases, all scales 
are important and such operators are the origin of logarithms in the  
β function.

The core of renormalization is in the observation that there is a 
dimension D above which the operators are irrelevant. Furthermore, 
the number of local operators Oi whose dimension is less than (or equal) 
to D is finite. This obtains because classically local operators are poly-
nomials in the fields ϕ and their derivatives. Since there are finitely 
many of these, one can make sense of such theories. Wilsonian renor-
malization rests on the simple principle that the low-energy physics is 
determined only by the relevant or marginal interactions, or in rare 
cases, irrelevant couplings but only at low enough scales. That the 
details of renormalization are determined by the dimension of opera-
tors rather than the nature of the microscopic features of the interac-
tions or the cutoff is the origin of universality in the Wilsonian approach.

There are subtleties8 in evaluating SΛ, which typically has to be 
performed perturbatively. However, these can be overcome by a slight 
recasting8 of the problem set forth by Wilson. We can imagine integrat-
ing out high-energy modes one small energy slice at a time. First we 
remove the modes with energies in the range Λ > ω > Λ − dΛ, then 
Λ − dΛ > ω > Λ − 2dΛ and so on. At each stage the effective action SΛ 
changes, which is described by the Wilson equation,

∂SΛ
∂Λ

= F(SΛ), (12)

where F  is a well-defined functional that can be calculated.

As the Wilson equation represents a flow in an infinite dimensional 
space, examining its properties for a range of operators can be accom-
plished entirely from the eigenvalue spectrum. Irrelevant operators 
correspond to negative eigenvalues, which represent benign converg-
ing flows. If the functional is linearized around zero-coupling, the 
eigenvalues are precisely the numbers d𝒪𝒪 − d  obtained from power 
counting. As F(SΛ) is a smooth function of the couplings, there is no 
place8 for singularities to obtain especially since we are performing a 
path integral over a narrow range of energy with both a low- and 
high-energy cutoff. Hence, if an eigenvalue is negative in the free the-
ory, the same holds for the interacting theory. Power counting then 
rules even if the dimension can change at strong coupling, for example 
in the Thirring model; hence the claim of marginality or relevance is 
the crux of the matter.

The β function
The evolution of the action as high momentum states are integrated 
out is precisely what is described by the running of the coupling con-
stants in the β function. What Wilson added beyond the Gell-Mann/
Low flow equation, Eq. (2), is that the β  function is governed by 
power-counting, coupled with integration of the high-energy modes 
and rescaling.

In the theory of QCD, perturbative treatment of non-Abelian 
Yang-Mills gauge theories4,9 yields a β function of the form

β(g) = −bg3 → g’2 =
g20

1 + 2bg20t
, (13)

where t  is proportional to the energy transferred and b is a numerical 
constant. At high energies, t→∞, the coupling constant, g, flows to 
zero, producing the phenomenon known as asymptotic freedom 
whereby quarks and gluons become weakly interacting and treatable 
using perturbation theory. The opposite is true at low energies, where 
instead confinement of quarks and gluons takes place, producing a 
divergence of the coupling constant and the general breakdown of the 
whole perturbative scheme4,9.

Similar phenomena occur for the seemingly unrelated problem 
of a localized magnetic spin engaging in spin-flip scattering with a 
non-interacting band of conduction electrons, which is known as the 
Kondo problem. The spin-flip scattering operator is marginal, and the 
coupling strength flows from an initial value of g0 according to the  
β function

β(g) = g2 → g’ = g0
1 − g0lnE0/E

, (14)

where E0 and E  are the initial and final energy scales, respectively. If 
the initial interaction is antiferromagnetic, g0 < 0, the flow is towards 
strong coupling, yielding a divergent coupling constant signalling the 
formation of a bound state between the impurity and the conduction 
electrons.

In both QCD and the Kondo problem, the formation of new degrees 
of freedom at low energies is obtained through a cross-over rather than 
a phase transition. A key triumph of Wilson’s treatment of the Kondo 
problem is that it captured the universal scaling that transpires below 
a characteristic temperature Tk at the g→ −∞ fixed point, where the 
local moment is completely screened. As fixed points are characterized 
by scale invariance, the Kondo temperature is obtained by imposing 
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the scale-invariant condition D̃∂Tk(g)/∂D̃ = 0, where D̃ is the bandwidth 
of the conduction electrons. The universal physics of all properties 
such as resistivity, magnetism and thermodynamics below the 
cross-over scale Tk is a consequence of this scale-invariant condition 
at the strongly coupled fixed point of the theory.

Beyond Wilson
Fifty years on, it is natural to wonder if there is any physics beyond the 
Wilsonian paradigm. This could arise from a theory in which as the 
high energy is probed features emerge in the scattering matrix that 
are distinct from the poles that correspond to particles. For exam-
ple, in the case of a doped Mott insulator10 scattering matrix zeros 
describing non-propagating or incoherent degrees of freedom have 
been identified.

Before we get to the Mott problem, consider quantum gravity. As 
pointed out previously11, probing high energy in a gravitational theory 
should produce black hole information, which cannot be represented 
as simple poles in the scattering matrix. This would lead to a failure of 
the Wilsonian separation of energy scales and provide an example of 
ultraviolet/infrared (UV/IR) mixing, which is well studied in the context 
of non-commutative field theories12. Precisely how such UV/IR mixing 
plays out in a theory of quantum gravity remains an open question.

So far, our best understanding of quantum gravity stems from 
gauge–gravity duality, also known as the AdS/CFT conjecture13. But 
even this conjecture has an effective Wilsonian interpretation at its 
core arising from the locality of energy in the β function. The central 
claim of the gauge–gravity duality is that some strongly coupled con-
formally invariant field theories in d  dimensions are dual to a theory 
of gravity in a d + 1 spacetime that is asymptotically described by an 
anti de Sitter (AdS) metric parameterized by

ds2 = R2

z2
(ημνdxμdxν + dz2) , (15)

where R and z  are the radius and radial coordinates of the AdS space-
time, respectively. This spacetime is invariant under the transformation 
xμ → Λxμ and z→ zΛ and hence satisfies the requisite symmetry for 
the implementation of the gauge–gravity duality, although not the full 
symmetry of the conformal group. The conformal field theory is viewed 
as lying on the z = 0 boundary of the AdS spacetime.

Our current understanding of the radial coordinate z  is that it 
represents the flow in the energy scale during renormalization. The 
scale change, xμ → Λxμ increases the radial coordinate, z→ zΛ. Con-
sequently, moving towards greater z  in the bulk of the geometry 
increases the corresponding projection onto the boundary, as depicted 
in Fig. 2. The limit of z = ∞ therefore represents the full low-energy or 
IR limit of the strongly coupled theory. The AdS/CFT conjecture thereby 
provides a complete geometrization of the renormalization group 
procedure.

The second area where a possible breakdown of the Wilsonian 
paradigm might arise is the strange metal14 phase in the cuprate super-
conductors, which all start out as Mott insulators. In the strange metal, 
the resistivity increases way beyond the limit set by a scattering length 
determined by the physics of the underlying lattice constant. As such a 
length scale determines the cutoff for particle scattering, the strange 
metal with its non-saturating resistivity requires physics beyond the 
Fermi liquid quasiparticle picture. In terms of the standard field theory 

for a Fermi surface8,15, no operator in any effective Lagrangian exists 
that can account for a non-saturating resistivity from the lowest tem-
peratures to temperature scales where the particle-picture breaks 
down. This physics ultimately arises from the incoherent part of the 
spectrum, that is, zeros of the scattering matrix, which has no Wilsonian 
formulation at present. So indeed, these two examples indicate that 
much physics possibly lies beyond the Wilsonian paradigm.

Philip W. Phillips     
Department of Physics and Institute of Condensed Matter Theory, 
University of Illinois at Urbana-Champaign, Urbana, IL, USA.  

 e-mail: dimer@illnois.edu

Published online: 9 November 2023

References
1.	 Wilson, K. G. Rev. Mod. Phys. 47, 773 (1975).
2.	 Serber, R. Phys. Rev. 48, 49 (1935).
3.	 Gell-Mann, M. & Low, F. E. Phys. Rev. 95, 1300 (1954).
4.	 Gross, D. J. & Wilczek, F. Phys. Rev. Lett. 30, 1343 (1973).
5.	 Callan, C. G. Jr Phys. Rev. D 2, 1541 (1970).
6.	 Symanzik, K. Commun. Math. Phys. 18, 227 (1970).
7.	 Kadanoff, L. P. Physics Physique Fizika 2, 263 (1966).
8.	 Polchinski, J. Preprint at https://arxiv.org/abs/hep-th/9210046 (1992).
9.	 Politzer, H. D. Phys. Rev. Lett. 30, 1346 (1973).
10.	 Dzyaloshinskii, I. Phys. Rev. B 68, 085113 (2003).
11.	 Berglund, P. et al. Preprint at https://arxiv.org/abs/2202.06890 (2022).
12.	 Seiberg, N. & Witten, E. J. High Energy Phys. 1999, 032 (1999).
13.	 Maldacena, J. Int. J. Theor. Phys. 38, 1113 (1999).
14.	 Phillips, W., Hussey, N. E. & Abbamonte, P. Science 377, eabh4273 (2022).
15.	 Shankar, R. Rev. Mod. Phys. 66, 129 (1994).

Acknowledgements
This work was funded through NSF DMR-2111379. I thank R. Leigh and G. La Nave for always 
insightful conversations and J. Zhao for help with Fig. 1.

Competing interests
The author declares no competing interests.

IR

RG

Short distances

UV

z = 0

Long distancesGravity

Fig. 2 | Geometrical representation of the key claim of the gauge–gravity 
duality. A strongly coupled field theory lives at the boundary, at the high-energy 
UV scale. The horizontal z-direction (the extra dimension in the gauge–gravity 
duality) represents the running of the renormalization scale. This is illustrated by 
the two projections at different values of z in the spacetime. Because the spacetime 
is asymptotically hyperbolic, larger values of z lead to a larger projection of the 
boundary theory and a full running of the renormalization scale amounts to the 
construction of the low-energy, IR limit of the original strongly coupled UV theory.
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