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ABSTRACT

Biological networks are commonly used in biomedical and health-
care domains to e�ectively model the structure of complex biologi-
cal systems with interactions linking biological entities. However,
due to their characteristics of high dimensionality and low sample
size, directly applying deep learning models on biological networks
usually faces severe over�tting. In this work, we propose R-Mixup,
a Mixup-based data augmentation technique that suits the sym-
metric positive de�nite (SPD) property of adjacency matrices from
biological networks with optimized training e�ciency. The inter-
polation process in R-Mixup leverages the log-Euclidean distance
metrics from the Riemannian manifold, e�ectively addressing the
swelling e�ect and arbitrarily incorrect label issues of vanilla Mixup.
We demonstrate the e�ectiveness of R-Mixup with �ve real-world
biological network datasets on both regression and classi�cation
tasks. Besides, we derive a commonly ignored necessary condition
for identifying the SPD matrices of biological networks and em-
pirically study its in�uence on the model performance. The code
implementation can be found in Appendix D.

CCS CONCEPTS

• Computing methodologies → Regularization; • Applied
computing → Biological networks.
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1 INTRODUCTION

As a ubiquitous type of data in biomedical studies, biological net-
works are used to depict a complex system with a set of interactions
between various biological entities. For example, in a brain network,
the correlations extracted from functional Magnetic Resonance
Imaging (fMRI) are modeled as interactions among human-divided
brain regions [16, 44, 45, 51, 62, 75, 76, 83]. Meanwhile, in a co-
expression gene-protein network, interactions are built to discover
disease genes and potential modules for clinical intervention [66].
There are diverse ways to de�ne the connections among entities
in biological networks, such as interactions [60, 97], reactions [23],
and relations [25–27, 52, 89]. One of the most widespread practices
is calculating the covariance and correlation among entities to sum-
marize and quantify interactions [8, 32, 75, 81, 82, 96]. Therefore,
developing powerful computational methods to predict disease out-
comes based on pro�ling datasets from such correlation matrices
has attracted great interest from biologists [1, 58, 59, 61, 90, 91, 98].

Deep learning methods have achieved state-of-the-art perfor-
mance in various downstream applications [21, 54], especially when
the training sample size is large enough. However, biological net-
work datasets often su�er from limited samples due to the compli-
cated and expensive collection and annotation processes of scien-
ti�c data [13, 88, 102]. Another key property of biological networks
is that the dimension of such networks is typically very high, i.e.,



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xuan Kan et al.

(a) (b) (c)

Figure 1: Train/Test performance of a Transformer on the

biological network dataset PNC with 503 samples. Each sam-

ple is represented as a 120 × 120 adjacency matrix. V-Mixup

is the vanilla Mixup and R-Mixup is our proposed method.

$(=2) correlation edges among = entities. Therefore, directly ap-
plying Deep Neural Networks (DNNs) to such biological network
datasets can easily cause severe over�tting [2, 29, 87, 92, 99].

Mixup is a widely used data augmentation technique that can im-
prove the model performance by linearly interpolating new samples
from pairs of existing instances [101]. In the scenario of biological
network analysis, since the node identities and their corresponding
order are usually �xed across network samples within the same
dataset [53], the Mixup technique can be easily applied via linear in-
terpolation. Empirically, Figure 1 (a) and (b) compare the processes
of training a transformer model [53] without Mixup and with the
vanilla Mixup (V-Mixup) [101] technique on the brain network
dataset from the PNC studies [73] to perform binary classi�cation.
In Figure 1 (a), the training loss without the Mixup technique di-
minishes quickly while the test loss continues to increase, which
apparently indicates a severe over�tting problem. In contrast, in
Figure 1 (b) with V-Mixup, the training process becomes more sta-
ble, and the model achieves higher performance with a lower test
loss, even though the training loss is relatively high.

Although the vanilla Mixup can mitigate the over�tting issue
for biological networks, there are two critical limitations in exist-
ing Mixup methods. The �rst noticeable issue is that the linear
Mixup of correlation matrices in the Euclidean space would cause
a swelling e�ect, where the determinant of the interpolated matrix
is larger than any of the original ones. The in�ated determinant,
which equals the product of eigenvalues, also indicates an increase
in eigenvalues. This can be interpreted as exaggerated variances
of the data points in the principal eigen-directions. As a result, an
unphysical augmentation from original data is generated, which
may change the characteristics, e.g., the correlations of di�erent
brain functional areas, of the original dataset and violate the intu-
ition of linear interpolations that the determinant from a mixed
sample should be intuitively between the original pair of samples
[15, 31, 33, 69]. On the other hand, the vanilla Mixup cannot prop-
erly handle regression tasks due to arbitrarily incorrect label [93],
which means that linearly interpolating a pair of examples and their
corresponding labels cannot ensure that the synthetic sample is
paired with the correct label. Although several existing works like
RegMix [47] and C-Mixup [93] have attempted to avoid this issue
by restricting the mixing process only to samples with a similar
label, their practice leads to less various sample generation and
weakens the ability of Mixup towards improving the robustness
and generalization of deep neural network models.

Figure 2: The swelling e�ect of Mixing up with di�erent

metrics. (̃ is the augmented sample mixed by samples (8
and ( 9 , where det (8 = 5.40 and det ( 9 = 6.46. Ideally, the de-

terminant of the mixed sample (̃ should be between det (8
and det ( 9 . The results indicate that mixing samples with Eu-

clidean (widely used in existing Mixup methods), Cholesky,

andBures-Wassersteinmetrics leads to unphysical in�ations.

Recently, investigating covariance and correlationmatrices in the
view of symmetric positive de�nite matrices (SPD) with Riemann-
ian manifold has demonstrated impressive advantages in biological
domains [4, 67, 95], which helps to improve the model performance
and capture informative sample features. Inspired by these studies,
we pinpoint a promising direction to mitigate these two identi�ed
issues when adapting the Mixup technique for biological networks
from the perspective of SPD analysis. However, existing works
that leverage the Riemannian manifold for SPD analysis of bio-
logical networks often directly treat covariance and correlation
matrices as SPD matrices without rigorous veri�cation. We clar-
ify that covariance and correlation matrices are not equal to SPD
matrices: a necessary condition for the covariance and correlation
matrices generated from a sample - ∈ R=×C to be positive de�-
nite is that the sequence length C is no less than the sample variable

number =. We provide theoretical proof for this condition in Appen-
dix B. The collection of positive de�nite matrices mathematically
forms a unique geometric structure called the Riemannian mani-

fold, which generalizes curves and surfaces to higher dimensional
objects [35, 57, 72]. From a mathematical perspective, augmenting
samples along geodesics on the manifold of SPDs with the log-
Euclidean metric e�ectively (a) preserves the intrinsic geometric
structure of the original data and eases the arbitrarily incorrect label
and (b) eliminates the swelling e�ect as is shown in Figure 2. The
advantages are further proved theoretically in Section 3.

Based on this insight, we propose R-Mixup, a Mixup-based
data augmentation approach for SPD matrices of biological net-
works, which augments samples based on Riemannian geodesics
(i.e., Eq.(2)) instead of straight lines ( i.e., Eq.(1)). We theoretically
analyze the advantages of R-Mixup by incorporating tools from
di�erential geometry, probability and information theory. Besides,
a simple and e�cient preprocess optimization is proposed to re-
duce the actual training time of R-Mixup considering the costly
eigenvalue decomposition operation. Su�cient experiments on �ve
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datasets spanning both regression and classi�cation tasks demon-
strate the superior performance and generalization ability of R-
Mixup. For regression tasks, R-Mixup can achieve the best per-
formance based on the same random sampling strategy as vanilla
Mixup, demonstrating its ability to overcome the arbitrarily incor-

rect label issue by adequately leveraging the intrinsic geometric
structure of SPD. Furthermore, we observe that the performance
gain of R-Mixup over existing methods is especially prominent
when the annotated samples are extremely scarce, verifying its
practical advantage under the low-resource settings.

We summarize the contributions of this work as three folds:
• We propose R-Mixup, a data augmentation method for SPD ma-
trices in biological networks, which leverages the intrinsic geo-
metric structure of the dataset and resolves the swelling e�ect and
arbitrarily incorrect label issues. Di�erent Riemannian metrics
on manifold are compared, and the e�ectiveness of R-Mixup is
theoretically proved from the perspective of statistics. We also
proposed a pre-computing optimization step to reduce the burden
from eigenvalue decomposition.

• Thorough empirical studies are conducted on �ve real-world
biological network datasets, demonstrating the superior perfor-
mance of R-Mixup on both regression and classi�cation tasks.
Experiments on low-resource settings further stress its practical
bene�ts for biological applications often with limited annotation.

• We emphasize a commonly ignored necessary condition for view-
ing covariance and correlation matrices as SPD matrices. We
believe the clari�cation of this pre-requirement for applying SPD
analysis can enhance the rigor of future studies.

2 RELATEDWORK

2.1 Mixup for Data Augmentation

Mixup is a simple but e�ective principle to construct new training
samples for image data by linear interpolating input pairs and forc-
ing theDNNs to behave linearly in-between training examples [101].
Many follow-up works extend Mixup from di�erent perspectives.
For example, [79, 80] interpolate training data in the feature space,
[20, 37] learn the mixing ratio for Mixup to alleviate the under-
con�dence issue for predictions. Besides, [28, 48, 93, 104] strate-
gically select the sample pairs for Mixup to prevent low-quality
mixing examples and produce more reasonable augmented data.
To further improve the quality of the augmented data, [42, 56, 100]
create mixed examples by only interpolating a speci�c region (often
most salient ones) of examples. Mixup has also been extended to
other data modalities such as text [17, 103] and audio [63]. There
are several attempts to study Mixup on non-Euclidean data, graphs,
like NodeMixup [84], GraphMixup [85] and G-Mixup [39]. How-
ever, less attention has been paid to adapting Mixup for graphs
from a manifold perspective, which is the focus of this study.

2.2 Geometric Deep Learning

Geometric deep learning aims to adapt commonly used deep net-
work architectures from euclidean data to non-euclidean data, such
as graphs andmanifolds, with a broad spectrum of applications from
the domains of radar data processing [10], graph analysis [3, 64],
image and video processing [14, 41, 46, 64], and Brain-Computer
Interfaces [67, 77]. For example, SPDNet [46] builds a Riemannian

neural network architecture with special convolution-like layers,
recti�ed linear units (ReLU)-like layers, and modi�ed backprop-
agation operations for the non-linear learning of SPD matrices.
ManifoldNet [14] de�nes the analog of convolution operations for
manifold-valued data. MoNet [64] generalizes CNN architectures
to the non-Euclidean domain with pseudo-coordinates and weight
functions. [10] designs a Riemannian batch normalization for SPD
matrices by leveraging geometric operations on the Riemannian
manifold. MAtt [67] proposes the manifold attention mechanism
to represent spatiotemporal representations of EEG data. Though
widely recognized as being e�ective for images, tabular and graph
data, to the best of our knowledge, data augmentation methods in
geometric deep learning have rarely been explored.

3 R-MIXUP

In this section, we �rst provide some preliminary facts, including a
necessary condition for treating covariance and correlation matri-
ces as SPD matrices. Next, we elaborate on the detailed process of
applying R-Mixup for data augmentation, compare possible mathe-
matical metrics designs, and �nally provide the theoretical analysis
of the advantages of using R-Mixup.

3.1 Notations and Preliminary Results

Given = variables of biological entities, we extract a C length se-
quence for each variable and compose the input sequences - ∈

R
=×C . The correlation matrix or biological network ( = Cor(- ) ∈
R
=×= is obtained by taking the pairwise correlation among each

pair of the biological variables. The value ~ is the network-level
prediction label for the prediction task.

De�nition 3.1. A symmetric =×= matrix ( is positive semi-de�nite

if for any vector D ∈ R= , D) (D g 0. Equivalently, this means that
the eigenvalues of ( are all nonnegative. If the inequality holds
strictly, ( is said to be positive de�nite, or symmetric positive de�nite,
or SPD for short.

Let Sym(=) be the collection of all positive semi-de�nite matrices,
and Sym+(=) denotes the collection of all SPDs. The collection
Sym(=) can be seen as an 1

2=(= − 1)-dimensional Euclidean space,

but Sym+(=) ¢ R=×= admits a more general structure call manifold

in di�erential geometry which resembles the Euclidean space in
its local regions. To set up the modeling on the manifold Sym+(=),
the covariance matrix Cor(- ) for the input - should be positive
de�nite. However, it is worth mentioning that previous studies that
use the Riemannian manifold for analyzing biological networks
often treat covariance and correlation matrices as SPD without
proper validation. Towards this common negligence, we bring out
the following basic fact:

Proposition 3.2. Covariance and correlation matrices are positive

semi-de�nite. A necessary condition for them to be positive de�nite is

that the sample length is no less than the variable number, i.e., C g =.

This proposition indicates that covariance and correlation matri-
ces only have the opportunity to be positive de�nite when C g =.
The detailed proof can be found in Appendix B. This is the case for
the datasets involved in this study, where most of the correlation
matrices are SPD. The few exceptions would have very few zero
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eigenvalues, which we manually set as 10−6 to eliminate their in-
�uence. More discussions on adjusting correlation matrices to be
SPDs can be found in [22, 43].

3.2 R-Mixup Deduction

In this section, we explain on the detailed process of R-Mixup

for SPD matrices augmentation. Let (8 , ( 9 represent two di�erent
correlation matrices constructed based on -8 , - 9 . In the vanilla

Mixup [101], the augmented samples ((̃, ~̃) are created through the
straight line connecting (8 , ( 9 and ~8 , ~ 9 ,

(̃ = (1 − _)(8 + _( 9 ,

~̃ = (1 − _)~8 + _~ 9 ,
(1)

where _ ∼ Beta(U, U), Beta is the Beta distribution, given U ∈ (0,∞).
To facilitate the illustration of R-Mixup in geometry notions,

we brie�y introduce the main concepts here while more detailed
explanations can be found in [35, 57]. To de�ne R-Mixup, we re-
place Eq.(1) by a certain Riemannian geodesics. Geodesics are the
generalization of straight lines in the Euclidean space, which is
intuitively the shortest path between two given points on Rie-
mannian manifolds. Riemannian manifolds (",6) are manifolds
" equipped with Riemannian metrics 6 which measure distances
between points in the manifold and induces geodesic equations
[35, 57]. It is generally hard to solve geodesics equations in the
simple analytical form as straight lines, however, for Sym+(=), there
are lots of well-de�ned choices of Riemannian metrics with known
geodesics [31, 35, 50, 69], and we employ the log-Euclidean metric

with the following geodesic:

(̃ = exp
(

(1 − _) log (8 + _ log ( 9
)

, (2)

where exp, log are matrix exponential and logarithm. Figure 3
sketches the geodesic as the purple dotted curve and a rigorous
deduction of Eq.(2) can be found in [35]. Implementation of the
matrix exponential for positive de�nite matrix ( is straightforward:
by basic linear algebra,

( = $diag(`1, ..., `=)$
) , (3)

where $ is an orthogonal matrix with `8 being eigenvalues of ( .
Then by de�nition,

exp ( = $diag(exp `1, ..., exp `=)$
) ,

log ( = $diag(log `1, ..., log `=)$
) .

(4)

3.3 Comparison with Other Metrics

There are various choices of Riemannianmetrics and hence di�erent
geodesics on Sym+(=) [7, 31, 35, 50, 69], such as the Cholesky metric
de�ned by Cholesky decompositions !8 of positive de�nite matrices
(8 , the well-known A�ne-invariant metrics on Sym+(=) [78], and
the Bures-Wasserstein studied in statistics and information theory
[6, 7]. We compare the most popular ones with the proposed log-
Euclidean for mixing up biological networks on prediction tasks.
The comparisons are summarized in Table 1. To be speci�c, di�er-
ent geodesics are analyzed from two perspectives: (0) whether it
causes the swelling e�ect, (1) whether it is numerically stable on
our dataset.

���S

���S ���

1 2 � ���� + �����

�*

�

�

�

�

Figure 3: The process of R-Mixup generating sample (̃ , where

the blue surface" represents the Riemannian manifold and

the yellow plane is the tangent plane of " at the origin � .

(8 , ( 9 are the original samples in " , and log (8 , log ( 9 are tan-

gent vectors. R-Mixup creates the augmented sample (̃ by

combining the initial tangent vectors of both trajectories

connecting � with (8 , ( 9 , i.e., (1 − _) log (8 + _ log ( 9 , and push it

back to the Riemannian manifold " via exponential map.

Swelling E�ect. The detailed de�nition and rigorous proof of the
swelling e�ect can be found in Section 3.4 and Appendix B. As
exempli�ed by the motivation in Figure 2, Euclidean, Cholesky, and
Bures-Wasserstein metrics evidently su�er from the swelling e�ect.
Numerical Stability.Augmenting matrices from the geodesic with

the A�ne-invariant metric requires the computation of (−1/28 and
hence the calculation of the inverse square root of its eigenvalues
as we de�ne matrix exponential and logarithm in Eq.(4). For SPDs
with small eigenvalues `, such computations may not be numeri-

cally stable since `−1/2 → ∞. Furthermore, with awareness to the
following limit relation:

lim
`→0

log `

`−1/2
= 0, (5)

which indicates that log ` j `−1/2 for small `, we know that com-
puting matrix logarithmwhen using log-Euclideanmetric should be
more stable. Similarly, for Bures-Wasserstein geodesics, to compute

((8( 9 )
1/2, we notice the following fact:

(8( 9 = (
1/2
8

(

(
−1/2
8 ((8( 9 )(

1/2
8

)

(
−1/2
8 = (

1/2
8

(

(
1/2
8 ( 9(

1/2
8

)

(
−1/2
8 . (6)

Thus,

((8( 9 )
1/2 = (

1/2
8

(

(
1/2
8 ( 9(

1/2
8

)1/2
(
−1/2
8 , (7)

where the undesirable `−1/2 appears again in the calculation.
Considering these two points, we stick with log-Euclideanmetric.

Experimental results in Section 4.2 further showcase the e�ective-
ness of this choice.

3.4 R-Mixup Theoretical Justi�cation

Using geodesics when conducting data augmentation demonstrates
unique advantages over straight lines. The �rst advantage is that
R-Mixup will not cause the swelling e�ect which exaggerates the
determinant and certain eigenvectors of the samples as discussed
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Table 1: Comparison of Di�erent Metrics Choices

Metric Geodesics Swelling E�ect Numerical Stability

Euclidean (1 − _)(ğ + _( Ġ Yes Stable

Cholesky ((1 − _)!ğ + _!Ġ )((1 − _)!ğ + _!Ġ )
Đ Yes Stable

Bures-Wasserstein (1 − _)2(ğ + _2( Ġ + _(1 − _)(((ğ( Ġ )
1/2 + (( Ġ(ğ )

1/2 ) Yes Unstable

A�ne-invariant (
1/2
ğ

((
−1/2
ğ

( Ġ(
−1/2
ğ

)Č(
1/2
ğ

No Unstable

Log-Euclidean exp((1 − _) log(ğ + _ log( Ġ ) No Stable

in Section 1 and 3.3. Mathematically, suppose det (8 f det ( 9 , then

the determinant of (̃ de�ned by Eq.(2) satis�es:

det (8 f det (̃ f det ( 9 . (8)

Detailed proof can be found in Appendix B.
The second advantage is that, by leveraging the manifold struc-

ture, we can �t better estimators compared with linear interpolation
in the Euclidean space. To be precise, as illustrated after Proposition
3.2, our samples are distributed over Sym+(=) rather than the whole
ambient Euclidean space R=×= , which is accepted as a prior knowl-
edge in the sense of Bayesian modeling �tting. Then the purpose
of implementing R-Mixup becomes clear: we augment the non-
trivial geometric information for the learning architectures later
used in our experiments as an analogy to transforming images to
enhance the translation and rotational invariance before a train-
ing of image identi�cation [18]. We theoretically justify this point
from the perspective of both statistics on Riemannian manifolds
[9, 30, 49, 50, 55] and information theory [12, 65, 70].

Speci�cally, we treat the data augmentation process as a re-
gression conducted on the manifold Sym+(=) which is explicitly
constrained by its geometric structure and based on the distribution

of the dataset as the prior knowledge. Given any (̃ , let <̃((̃) denote
the estimator/prediction function of the regression whose analytical
form depends on the concrete regressionmethods.We take geodesic
regression and kernel regression [9, 34, 74] on Sym+(=) to address
the problem. Roughly speaking, geodesic regression generalizes
multi-linear regression on Euclidean space to manifold with the
Euclidean distance being replaced by Riemannian metric. Kernel
regression embeds data into higher dimensional feature space with
kernel functions  to grasp more non-linear relationship of the
dataset. Since the exact distribution of augmented data is unknown,
we follow the common practice [19, 40, 74] and apply Gauss kernel

 � ((8 , (̃) =
1

(2cf2)
Ĥ
2

exp

(

−
1

2f2
∥(8 − (̂ ∥

2

)

, (9)

which possess the universal property to approximate any continuous
bounded function in principle. However, the Gauss kernel  � is
de�ned on the Euclidean space which unreasonably implies non-
zero density of samples outside Sym+(=) contradicting the prior
knowledge. To remedy the problem, we introduce a method from
the heat kernel theory in di�erential geometry [5, 35] to generalize
 � to

 ' ((8 , (̂) =
1

(2cf2)
Ĥ(Ĥ−1)

4

exp

(

−
1

2f2
3((8 , (̂)

2

)

, (10)

with

3((8 , ( 9 ) = ∥log (8 − log ( 9 ∥ (11)

being the Riemannian distances function on Sym+(=). Then we prove
in details in the Appendix B.

Theorem 3.3. For Sym+(=) with log-Euclidean metric, comparing

R-Mixup with estimators <̃ obtained by regressions with respect to

the manifold structure, the square loss for augmented data (̃ from

Riemannian geodesics Eq.(2) is no more than those (̃ ′ from straight

lines Eq.(1):
∑

(<̃((̃) − ~̃)2 f (<̃((̃ ′) − ~̃)2 . (12)

A less empirical loss from regression on manifold is recognized
as an evidence that R-Mixup captures some geometric features of
Sym+(=), thereby providing the learning algorithm an opportunity
to learn this feature. Finally, the proposed R-Mixup is formally
de�ned as

(̃ = exp
(

(1 − _) log (8 + _ log ( 9
)

,

~̃ = (1 − _)~8 + _~ 9 ,
(13)

where _ ∼ Beta(U, U), for U ∈ (0,∞).

3.5 Time Complexity and Optimization

One potential concern of the proposed R-Mixup lies in its time-
consuming operations of the eigenvalue decomposition and matrix
multiplication (with the time complexity of O(=3)), which dominate
the overall running time of R-Mixup. In practice, we �nd that most
common modern deep learning frameworks such as PyTorch [68]
have been optimized for accelerating matrix multiplication. Thus,
the main extra time consumption of the R-Mixup is the exp and
log operations of the three eigenvalue decompositions. We pro-
pose a sample strategy to optimize the running time of R-Mixup

by precomputing the eigenvalue decomposition and saving the
orthogonal matrix $ and eigenvalues {`1, ..., `=} of each sample.
This precomputing process can reduce the three computations of
eigenvalue decomposition to once for each sample. Formally,

(̃ = exp
(

(1 − _)$8diag(log `1, ..., log `=)$
)
8

+_$ 9diag(loga1, ..., loga=)$
)
9

)

,
(14)

where $8diag(`1, ..., `=)$
)
8 and ( 9 = $ 9diag(a1, ..., a=)$

)
9 are the

eigenvalue decompositions of (8 and ( 9 , respectively. The e�ciency
of this optimization is further discussed in Section 4.4.

4 EXPERIMENTS

We evaluate the performance of R-Mixup comprehensively on
real-world biological network datasets with �ve tasks spanning
classi�cation and regression. The dataset statistics are summarized
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Table 2: Dataset Summary.

Dataset Sample Size Variance Number (=) Sequence Length (C ) Task Class Number

ABCD-BioGender 7901 360 Variable Length Classi�cation 2

ABCD-Cog 7749 360 Variable Length Regression -

PNC 503 120 120 Classi�cation 2

ABIDE 1009 100 100 Classi�cation 2

TCGA-Cancer 240 50 50 Classi�cation 24

in Table 2. The empirical studies aim to answer the following three
research questions:
• RQ1: How does R-Mixup perform compared with existing data
augmentation strategies on biological networks with various
sample sizes on di�erent downstream tasks?

• RQ2: How does the sequence length of each sample a�ect the
characteristics of correlationmatrices and consequently the choice
of augmentation strategies?

• RQ3: Is R-Mixup e�cient in the training process and robust to
hyperparameter changes?

4.1 Experimental Setup

4.1.1 Datasets and Tasks.

Adolescent Brain Cognitive Development Study (ABCD). The
dataset used in this study is one of the largest publicly available
fMRI datasets, with access restricted by a strict data requesting
process [13]. From this dataset, we de�ne two tasks: BioGender Pre-
diction and Cognition Summary Score Prediction. The data used in
the experiments are fully anonymized brain networks based on the
HCP 360 ROI atlas [36] with only biological sex labels or cognition
summary scores. BioGender Prediction is a binary classi�cation
problem, which includes 7901 subjects after the quality control pro-
cess, with 3961 (50.1%) females among them. Cognition Summary
Score Prediction is a regression task whose label is Cognition Total
Composite Score containing seven computer-based instruments
assessing �ve cognitive sub-domains: Language, Executive Func-
tion, Episodic Memory, Processing Speed, and Working Memory,
ranging from 44.0 to 117.0.
Autism Brain Imaging Data Exchange (ABIDE). The dataset
includes anonymous resting-state functional magnetic resonance
imaging (rs-fMRI) data from 17 international sites [11]. It includes
brain networks from 1009 subjects, with a majority of 516 (51.14%)
being patients diagnosed with Autism Spectrum Disorder (ASD).
The task is to perform the binary classi�cation for ASD diagnosis.
The region de�nition is based on Craddock 200 atlas [24]. Given the
blood-oxygen-level-dependent (BOLD) signal length of the samples
in this dataset is 100, which re�ects whether neurons are active
or reactive, we randomly select 100 nodes to satisfy the necessary
condition discussed in Proposition 3.2 for SPD matrices.
Philadelphia Neuroimaging Cohort (PNC). The dataset is a
collaborative project from the Brain Behavior Laboratory at the
University of Pennsylvania and the Children’s Hospital of Philadel-
phia. It includes a population-based sample of individuals aged 8–21
years [73]. After the quality control, 503 subjects were included
in our analysis. Among these subjects, 289 (57.46%) are female.
In the resulting data, each sample contains 264 nodes with time
series data collected through 120 timesteps. Hence, we randomly

select 120 nodes to satisfy the necessary condition mentioned in
Proposition 3.2 for treating generated correlation matrices as SPD.
BioGender Prediction is used as the downstream task.
TCGA-Cancer Transcriptome. The Cancer GenomeAtlas (TCGA)
dataset is a large-scale collection of multi-omics data from over
20,000 primary cancer and matched normal bio-samples spanning
33 cancer types. In this study, we select non-redundant cancer sub-
jects with gene expression data and valid clinical information. The
gene expression data is normalized, and the top 50 highly variable
genes (HVG) are selected as the nodes for network construction.
The subjects are then assigned to di�erent samples based on their
cancer subtype. The �nal dataset consists of 459 subjects from 66
cancer subtypes. We extract 240 correlation matrices from these
subjects with 24 cancer types, each type includes ten samples, and
each sample contains 50 nodes. The downstream task of this study
is to predict cancer subtypes based on the HVG expression network.

4.1.2 Metrics. For binary classi�cation tasks on datasets ABCD-
BioGender, PNC, and ABIDE, we adopt AUROC and accuracy for a
fair performance comparison. The classi�cation threshold is set as
0.5. For the regression task on ABCD-Cog, the mean square error
(MSE) is used to re�ect model performance. For the multiple class
classi�cation task on TCGA-Cancer, since it contains 24 classes and
each class has a balanced sample size, we take the macro Precision
and macro Recall so that all classes are treated equally to re�ect
the overall performance. All the reported results are based on the
average of �ve runs using di�erent random seeds.

4.1.3 Implementation Details. We equip the proposed R-Mixup

with two most popular deep backbone models for biological net-
works, Transformer [53] and GIN [86], to verify its universal e�ec-
tiveness with di�erent models. For the architecture of Transformer,
the number of transformer layers is set to 2, followed by an MLP
function to make the prediction. For each transformer layer, the
hidden dimension is set to be the same as the number of nodes =,
and the number of heads is set to 4. Regarding the GCN backbone,
we set the number of GCN layers as 3. The graph representation is
obtained with a sum readout function to make the �nal prediction.
We randomly select 70% of the datasets for training, 10% for vali-
dation, and the remaining for testing. In the training process, we
use the Adam optimizer with an initial learning rate of 10−4 and a
weight decay of 10−4. The batch size is set as 16. All the models are
trained for 200 epochs, and the epoch with the best performance
on the validation set is selected for the �nal report.

4.1.4 Baselines. We include a variety of Mixup approaches as base-
lines. Given Λ ∈ [0, 1]E×E , U ∈ (0,∞), c ∈ (0, 1), · is the dot product.
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Table 3: Overall performance comparison based on the Transformer backbone. The best results are in bold, and the second best

results are underlined. The ↑ indicates a higher metric value is better and ³ indicates a lower one is better.

Method
ABCD-BioGender ABCD-Cog PNC ABIDE TCGA-Cancer

AUROC↑ Accuracy↑ MSE³ AUROC↑ Accuracy↑ AUROC↑ Accuracy↑ Precision↑ Recall↑

w/o Mixup 95.28±0.32 87.68±1.31 60.21±1.53 74.85±4.93 66.57±6.29 73.32±4.11 66.00±3.66 35.33±11.52 45.00±10.79

V-Mixup 95.85±0.63 87.86±1.45 60.43±2.67 76.02±2.54 65.88±7.89 75.03±5.04 66.80±5.40 69.58±9.39 77.50±6.97

D-Mixup 94.55±2.84 87.17±3.45 60.96±1.82 76.15±4.58 68.82±6.29 72.92±4.93 67.40±5.64 70.28±12.30 75.83±12.98

DropNode 95.65±0.35 88.07±0.76 65.35±2.97 75.47±4.27 67.45±4.35 73.49±4.09 66.00±3.16 53.96±11.34 61.67±10.79

DropEdge 95.28±0.39 87.54±0.60 76.44±1.82 72.89±5.70 66.27±5.31 70.68±6.14 64.20±5.12 67.57±5.14 75.00±5.10

G-Mixup 95.24±0.92 88.16±0.63 62.16±2.04 76.01±3.04 69.41±3.21 73.68±5.67 65.60±4.56 59.72±7.77 69.44±6.27

C-Mixup 96.01±0.48 88.40±1.44 59.68±1.15 75.29±2.52 69.02±5.48 74.69±4.40 66.40±3.36 67.50±6.90 76.67±6.32

R-Mixup 96.20±0.33 89.44±1.06 56.89±1.66 77.01±2.59 69.80±3.63 74.79±4.90 68.20±4.19 71.39±9.59 78.33±9.03

V-Mixup [101] is the vanilla Mixup by the linear combination of
two random samples,

(̃ = (1 − _)(8 + _( 9 , ~̃ = (1 − _)~8 + _~ 9 ,

_ ∼ Beta(U, U).
(15)

D-Mixup is the discrete Mixup, a naive baseline designed by our-
selves. Given two randomly selected samples, a synthetic sample is
generated by obtaining parts of the edges from one sample and the
rest from the other,

(̃ = (1 − Λ) · (8 + Λ · ( 9 , ~̃ = (1 − _)~8 + _~ 9 ,

Λ8, 9 ∼ B(_), _ ∼ Beta(U, U).
(16)

DropNode [38] randomly selects nodes given a sample and sets all
edge weights related to these selected nodes as zero,

(̃ = Λ · (,Λ?,: = Λ:,? = I, I ∼ Bernoulli(c ). (17)

DropEdge [71] randomly selects edges given a sample and assigns
their weights as zero,

(̃ = Λ · (,Λ?,@ ∼ Bernoulli(c ). (18)

G-Mixup [39] is originally proposed for classi�cation tasks, which
augments graphs by interpolating the generator of di�erent classes
of graphs. Since each cell in a covariance and correlation matrix
represents a speci�c edge in a graph, we can convert a graph gen-
erator into a group of generator for each edge. We model each
edge generator as a conditional multivariate normal distribution
% ((?,@ | ~). The augmentation process can be formulated as,

(̃?,@ ∼ (1 − _)% ((?,@ | ~8 ) + _% ((
?,@ | ~ 9 ), ~̃ = (1 − _)~8 + _~ 9 ,

_ ∼ Beta(U, U).
(19)

For the setting of classi�cation,

% ((?,@ | ~ = 2) ∼ N
(

`
?,@
2 , (f

?,@
2 )2

)

, (20)

To extend G-Mixup for regression, we slightly modify the augmen-
tation process to adapt it for regression tasks as

% ((?,@ | ~) ∼ N

(

`?,@ +
f?,@

f~
d?,@

(

~ − `~
)

,
(

1 − (d?,@)2
)

(f?,@)2
)

,

(21)

where ` and f are the mean and standard deviation of the weight
for each edge, d is the correlation coe�cient between (?,@ and ~.

C-Mixup [93] shares the same process with the V-Mixup. Instead of
randomly selecting two samples, C-Mixup picks samples based on
label distance to ensure the mixed pairs are more likely to share sim-
ilar labels (( 9 , ~ 9 ) ∼ % (· | ((8 , ~8 )), where % is a sampling function
which can sample closer pairs of examples with higher probability.
For classi�cation tasks, it degenerates into the intra-class V-Mixup.

4.2 RQ1: Performance Comparison

Overall Performance. The overall comparison based on the Trans-
former and GCN backbone are presented in Table 3 and Table 5 re-
spectively, where ABCD-BioGender, PNC, ABIDE, and TCGA-Cancer
focus on classi�cation tasks, while ABCD-Cog is a regression task.
Since the performance of the two backbones demonstrates similar
patterns, we focus on the result discussion of the Transformer due
to the space limit. Speci�cally, for classi�cation tasks, incorporat-
ing the Mixup technique can constantly improve the performance,
especially on the TCGA-Cancer dataset, which features a small
sample size with high dimensional matrices. Among the various
Mixup techniques, our proposed R-Mixup performs the best across
datasets and tasks, indicating the further advantage of using log-
Euclidean metrics instead of Euclidean metrics for SPD matrices
mixture. Besides, for datasets with a relatively smaller sample size,
such as PNC, ABIDE, and TCGA-Cancer, R-Mixup can further re-
duce training variance and stabilize the �nal performance compared
with other data augmentation methods.

Compared with the improvements on classi�cation tasks, R-
Mixup demonstrates a more signi�cant advantage on the regression
task. It is shown that R-Mixup can signi�cantly reduce the MSE
compared with the baseline without Mixup (5.5% with the trans-
former backbone) and archive a large advantage over the second
runner (4.8% with the transformer backbone). It is also noted that
other Mixup approaches sometimes hurt the model performance, in-
dicating the Euclidean space cannot measure the distance between
SPD matrices very well, and the mixed samples may not be paired
with the correct labels. In contrast, our proposed log-Euclidean
metric can correctly represent the distance among SPD matrices
and therefore address the problem of arbitrarily incorrect label.
Performance with Di�erent Sample Sizes. As collecting labeled
data can be extremely expensive for biological networks in prac-
tice, we adopt R-Mixup for the challenging low-resource setting
to justify its e�cacy with limited labeled data only. For this set of
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Table 4: Detailed performance comparison of di�erent sample sizes with Transformer as the backbone.

Percentage (in %)
Dataset: ABCD-BioGender (AUROC↑) Dataset: ABCD-Cog (MSE³)

w/o Mixup V-Mixup C-Mixup R-Mixup w/o Mixup V-Mixup C-Mixup R-Mixup

10 87.14±1.15 88.99±0.75 88.72±1.13 90.21±0.64 73.07±2.75 77.00±4.58 71.22±1.68 70.69±1.06

20 90.60±0.91 91.11±0.54 91.49±0.89 92.72±0.64 69.70±2.75 69.80±2.42 69.30±3.21 66.50±2.50

30 92.60±0.51 93.45±0.35 93.33±0.78 93.93±0.55 65.97±2.48 65.84±1.11 64.31±0.57 63.50±1.61

40 92.84±0.40 94.06±0.48 93.95±0.53 94.12±0.21 63.91±4.07 63.14±1.08 61.88±2.93 61.15±1.80

50 94.18±0.51 95.20±0.39 95.03±0.57 94.78±0.98 61.89±3.85 63.45±1.65 61.26±1.31 60.82±2.71

60 94.22±0.44 95.19±0.54 95.17±0.32 95.65±0.37 59.47±1.59 60.32±0.94 60.20±1.58 58.75±1.65

70 94.18±0.40 95.51±0.18 95.49±0.28 95.07±0.18 62.35±2.28 61.15±1.51 60.54±3.57 60.17±0.50

80 95.18±0.31 95.60±0.42 95.73±0.51 95.94±0.31 59.85±1.47 60.31±1.07 60.85±3.84 56.78±2.05

90 95.55±0.86 95.92±0.34 95.49±0.73 95.24±0.65 61.17±3.36 61.51±0.78 60.35±0.93 57.45±3.39

100 95.28±0.32 95.85±0.63 96.01±0.48 96.20±0.33 60.21±1.53 60.43±2.67 59.68±1.15 56.89±1.66

(a) (b)

Figure 4: (a) The in�uence of time-series sequence length C on the percentage of the positive eigenvalues (%). (b) The in�uence

of the sequence length C or SPD-ness (%) on the prediction performance of classi�cation and regression tasks.

experiments, we vary the training sample size from 10% to 100%
of the full datasets to show the performance of R-Mixup based on
transformers with di�erent sample sizes. Speci�cally, the ABCD
dataset is adopted in this detailed analysis due to its relatively large
sample size and supports for both classi�cation and regression
tasks. The selected comparing methods are the strongest baselines,
namely V-Mixup and C-Mixup, from the overall performance in
Table 3. Results are presented in Table 4.

On the classi�cation task of BioGender prediction, impressively,
the proposed R-Mixup can already achieve a decent performance
with only 10% percent of full datasets and demonstrates a large
margin over other compared methods. As the sample size becomes
larger, the performance of di�erent data augmentation methods
tends to be close, while the proposed R-Mixup reaches the best
performance for most of the cases (7 out of 10 setups). On the more
challenging regression task of Cognition Summary Score prediction,
R-Mixup consistently outperforms the other two baselines under
di�erent portions of the training data, which stresses the absolute
advantages of our proposed R-Mixup in its �exible and e�ective
adaption for the regression settings. Note that when equipped with
an inappropriate augmentation method (i.e., V-Mixup), the regres-
sion performance can always deteriorate under di�erent volumes
of training data. This implies the necessity of proposing appropri-
ate Mixup techniques tailored for biological networks to address
speci�c challenges for regression tasks.

4.3 RQ2: The Relations of Sequence Length,
SPD-ness and Model Performance

To quantitatively verify the necessary conditions of SPD matrices
in Proposition 3.2, we vary the length of sequences whose pair-
wise correlations compose the network matrices and observe its
in�uence on the percentage of positive eigenvalues and the �nal
prediction performance. For better illustration, we de�ne a new
terminology SPD-ness to re�ect the percentage of positive values
among all eigenvalues. The higher the percentage of positive eigen-
values, the higher SPD-ness, and a full SPD matrice requires all the
eigenvalues to be positive. Speci�cally, we choose the dataset with
the longest time sequence, namely ABCD, to facilitate this study.
Since samples in the ABCD dataset are of di�erent sequence lengths,
we simply select those with sequence length longer than 1024 and
truncate them to 1024 to form a length-uni�ed dataset ABCD-1024,
leading to 4613 samples for the ABCD-BioGender classi�cation task
and 4533 samples for the ABCD-Cog regression task.

First, we investigate the relationship between the length of bio-
logical sequences C and the SPD-ness of the corresponding network
matrix. The results are shown in Figure 4(a), where the value of
sequence length C is varied from 90 to 900 with a step size of 90.
For each given C , we construct the correlation matrices based on
each pair of the truncated sequences with only the �rst C elements
from the original sequences. Then the eigenvalue decomposition is
applied to each obtained correlation matrix, and the percentage of
positive (> 10−6) eigenvalues are calculated. The reported results
are the average over all the correlation matrices. From this curve,
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Figure 5: The in�uence of the key hyperparameter (U) value

on the performance of classi�cation and regression tasks.

we observe that the percentage of positive eigenvalues grows gradu-
ally as the time-series length increases. The growth trend gradually
slows down, reaching a percentage point saturation at about the
length of 540, where the full percentage indicates full SPD-ness.
Note that the number of variables = for the ABCD dataset is 360.
This aligns with our conclusion in Proposition 3.2 that a necessary
condition for correlation matrices satisfying SPD matrices is C g =.

Second, with the veri�ed relation between the sequence length
C and SPD-ness, we study the in�uence of sequence length C or
SPD-ness on the prediction performance. We observe that directly
truncating the time series to length C will lose a huge amount of
task-relevant signals, resulting in a signi�cant prediction perfor-
mance drop. As an alternative, we reduce the original sequence to
length C by taking the average of each 1024/C consecutive sequence
unit. Results on the classi�cation task ABCD-BioGender and the
regression task ABCD-Cognition with the input of di�erent time-
series length C are demonstrated in Figure 4(b). It shows that for the
classi�cation task, although V-Mixup and C-Mixup demonstrate
an advantage when the percentage of positive eigenvalues is low,
the performance of the proposed R-Mixup continuously improves
as the sequence length C increases and �nally beats the other base-
lines. For the regression task, our proposed R-Mixup consistently
performs the best regardless of the SPD-ness of the correlation ma-
trices. The gain is more observed when the dataset matrices are full
SPD. Combining these observations from both classi�cation and re-
gression tasks, we prove that the proposed R-Mixup demonstrates
superior advantages for mixing up SPD matrices and facilitating
biological network analysis that satis�es full SPD-ness.

4.4 RQ3: Hyperparameter and E�ciency Study

The In�uence ofKeyHyperparameterU .We study the in�uence
of the key hyperparameter U in R-Mixup, which correspondingly
changes the Beta distribution of _ in Equation (13). Speci�cally,
the value of U is adjusted from 0.1 to 1.0, and the corresponding
prediction performance under the speci�c values is demonstrated
in Figure 5. We observe that the prediction performance of both
classi�cation and regression tasks are relatively stable as the value
of U varies, indicating that the proposed R-Mixup is not sensitive
to the key hyperparameter U .
E�ciency Study. To further investigate the e�ciency of di�erent
Mixup methods, we compare the training time of di�erent data

Figure 6: Training Time of di�erent Mixup methods on the

large ABCD dataset. R-Mixup is the original model while

R-Mix(Opt) is time-optimized as discussed in Section 3.5.

augmentation methods on the large-scale dataset, ABCD, to high-
light the di�erence. The results are shown in Figure 6. Besides, the
running time comparison on three smaller datasets, ABIDE, PNC,
and TCGA-Cancer are also included in appendix C for reference.
All the compared methods are trained with the same backbone
model [53]. It is observed that with the precomputed eigenvalue
decomposition, the training speed of the optimized R-Mixup on
the large ABCD dataset can be 2.5 times faster than the original
model without optimization. Besides, on the smaller datasets such
as PNC, ABIDE, and TCGA-Cancer, there is no signi�cant di�erence
in elapsed time between di�erent methods.

5 CONCLUSION

In this paper, we present R-Mixup, an e�ective data augmenta-
tion method tailored for biological networks that leverage the log-
Euclidean distance metrics from the Riemannian manifold. We
further propose an optimized strategy to improve the training e�-
ciency of R-Mixup. Empirical results on �ve real-world biological
network datasets spanning both classi�cation and regression tasks
demonstrate the superior performance of R-Mixup over existing
commonly used data augmentation methods under various data
scales and downstream applications. Besides, we theoretically ver-
ify a necessary condition overlooked by prior works to determine
whether a correlation matrix is SPD and empirically demonstrate
how it a�ects the prediction performance, which we expect to guide
future applications spreading the biological networks.
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A GCN BACKBONE PERFORMANCE

The performance with the GCN backbones can be found in Table 5.

B PROOF DETAILS

Proof of Proposition 3.2
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Proof of Swelling E�ects

Proof. We�rst note one basic fact ofmatrix exponential: det(exp(�)) =
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We use Hölder’s inequality in the last step from above, which yields

det ( exp((1 − _) log (8 + _ log ( 9 ))

=(det (8 )
1−_(det ( 9 )

_ f det (((1 − _)(8 + _( 9 )).
(27)
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and �nishes the proof. □

Proof of Theorem 3.3

Proof. The representation for Riemannian geodesic is

log(W (_)) = (1 − _) log (8 + _ log ( 9 , (29)

which is a straight line connecting log (8 and log ( 9 ∈ Sym(=). As
a contrary, the coordinate representation of straight line is now
highly curved. Since Sym(=) is an Euclidean space and since we
veri�ed above that the function log is an isometry, conducting ge-
odesic regression for the samples {((8 , ~8 )|8 = 1, ..., # } is merely
solving the linear model of {(log (8 , ~8 )|8 = 1, ..., # }. Since the total
sample number # in our case is less than the dimension of the
ambient Euclidean space =2, the optimal solution is just a hyper-
plane encompassing all samples as well as those synthesized via
Eq.(2). However, curves like Eq.(1) are manifestly deviated from the
regression hyperplane which leads to large square loss.

To verify the case involving Gaussian kernel, we make use of
the following operator inequalities [12]:
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Intuitively, the logarithm is a concave function on (0, +∞), which is
generalized to hold in the setting of positive semide�nite matrices
with � g � meaning � − � is positive semide�nite. For simplicity,
we only analyze the case for a pair of samples (8 , ( 9 as an augmented

sample (̃ is coined in this way through our mixup method. In statis-
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of other samples and achieve this e�ect. With these preparation,
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Table 5: Overall performance comparison based on the GCN backbone. The best results are in bold, and the second best results

are underlined. The ↑ indicates a higher metric value is better and ³ indicates a lower one is better.

Method
ABCD-BioGender ABCD-Cog PNC ABIDE TCGA-Cancer

AUROC↑ Accuracy↑ MSE³ AUROC↑ Accuracy↑ AUROC↑ Accuracy↑ Precision↑ Recall↑

w/o Mixup 78.82±0.62 71.55±0.43 80.85±4.69 59.14±5.66 60.00±4.72 55.09±6.91 55.20±6.18 30.49±6.89 40.83±6.18

V-Mixup 81.47±0.79 73.97±0.79 80.35±3.09 63.63±3.80 61.76±3.25 58.49±6.58 56.40±3.91 38.50±9.22 46.67±11.18

D-Mixup 81.30±0.35 73.67±0.39 80.90±9.48 58.68±6.24 58.43±5.99 60.19±6.58 55.40±6.15 37.67±5.47 50.00±4.17

DropNode 80.77±2.02 73.18±2.09 88.11±10.59 63.65±5.04 61.57±5.16 59.49±4.99 56.60±5.55 29.58±7.69 39.17±10.46

DropEdge 79.98±1.54 72.23±1.37 85.98±2.31 56.61±2.72 56.67±2.89 56.58±6.78 54.80±4.76 39.44±7.72 50.00±7.80

G-Mixup 81.30±1.07 73.90±0.86 81.28±3.46 57.25±3.75 57.45±2.91 62.43±2.94 60.40±3.44 38.64±8.47 49.17±9.03

C-Mixup 81.62±1.65 73.62±1.80 78.86±3.51 60.88±7.24 58.24±7.61 60.22±9.32 57.40±5.32 34.17±11.74 46.67±15.14

R-Mixup 82.85±1.86 75.86±1.88 74.88±2.03 64.39±5.05 62.31±3.32 63.03±5.58 59.67±5.96 44.78±8.64 48.44±8.61

Figure 7: Running Time in PNC, ABIDE and TCGA-Cancer. R-

Mixup is the original version of ourmethodwhile R-Mix(Opt)

is the proposed optimized version in Section 3.5.
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are intricate as the linear combination of matrices ((1 − _)(8 − _( 9 )
does not commute with the logarithm. Despite of this di�culty, we

are still above to compare <̃((̃) and <̃((̃ ′) based on their general
expansion in Eq.(31). By (30),
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The second inequality is due to the fact that the operator norm
∥ - ∥ equals the largest eigenvalue of any positive semide�nite
operator. Similar argument also implies case with ( 9 . Together

with the concavity of <̃((̃), Eq.(31) and the range of our labels, we

conclude that

0 f <̃((̃ ′) f <̃((̃) f ~̃ =⇒
∑

(<̃((̃) − ~̃)2 f (<̃((̃ ′) − ~̃)2, (40)

which are �nally summed over the samples to show that the square
error of estimation using geodesics is no more than that using
straight lines on Sym+(=). □

C RUNNING TIME ON SMALLER DATASETS

As shown in Figure 7, on the smaller datasets, PNC, ABIDE, and
TCGA-Cancer, there is no signi�cant di�erence in elapsed time
between the di�erent methods. Notably, the proposed R-Mixup is
magically faster than C-Mixup on the TCGA-Cancer dataset. This is
mainly due to the small node size of TCGA-Cancer, which reduces
the main barrier of the eigenvalue decomposition in R-Mixup, while
the time cost of the sampling operation in the C-Mixup baseline
does not change dynamically with the node size.

D CODE IMPLEMENTATION

1 import torch

2 import numpy as np

3

4 def tensor_log(t):

5 # condition: t is symmetric.

6 s, u = torch.linalg.eigh(t)

7 s[s <= 0] = 1e-8

8 return u @ torch.diag_embed(torch.log(s)) @ u.permute

(0, 2, 1)

9

10 def tensor_exp(t):

11 # condition: t is symmetric.

12 s, u = torch.linalg.eigh(t)

13 return u @ torch.diag_embed(torch.exp(s)) @ u.permute

(0, 2, 1)

14

15 def r_mixup(x, y, alpha =1.0, device='cuda'):

16 if alpha > 0:

17 lam = np.random.beta(alpha , alpha)

18 else:

19 lam = 1

20 batch_size = y.size()[0]

21 index = torch.randperm(batch_size).to(device)

22 x = tensor_log(x)

23 x = lam * x + (1 - lam) * x[index , :]

24 y = lam * y + (1 - lam) * y[index]

25 return tensor_exp(x), y

Listing 1: Python Example
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