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ABSTRACT

Graph Anomaly Detection (GAD) is a technique used to identify
abnormal nodes within graphs, finding applications in network
security, fraud detection, social media spam detection, and vari-
ous other domains. A common method for GAD is Graph Auto-
Encoders (GAEs), which encode graph data into node representa-
tions and identify anomalies by assessing the reconstruction quality
of the graphs based on these representations. However, existing
GAE models are primarily optimized for direct link reconstruc-
tion, resulting in nodes connected in the graph being clustered in
the latent space. As a result, they excel at detecting cluster-type
structural anomalies but struggle with more complex structural
anomalies that do not conform to clusters. To address this limita-
tion, we propose a novel solution called GAD-NR, a new variant
of GAE that incorporates neighborhood reconstruction for graph
anomaly detection. GAD-NR aims to reconstruct the entire neigh-
borhood of a node, encompassing the local structure, self-attributes,
and neighbor attributes, based on the corresponding node rep-
resentation. By comparing the neighborhood reconstruction loss
between anomalous nodes and normal nodes, GAD-NR can effec-
tively detect any anomalies. Extensive experimentation conducted
on six real-world datasets validates the effectiveness of GAD-NR,
showcasing significant improvements (by up to 30%7 in AUC) over
state-of-the-art competitors. The source code for GAD-NR is openly
available. Importantly, the comparative analysis reveals that the
existing methods perform well only in detecting one or two types
of anomalies out of the three types studied. In contrast, GAD-NR
excels at detecting all three types of anomalies across the datasets,
demonstrating its comprehensive anomaly detection capabilities.
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1 INTRODUCTION

Anomaly Detection aims to identify entities that deviate signifi-
cantly from the norm, which has been used for a variety of ap-
plications, such as revealing fraudulent or spam activity in social
networks [26, 59, 68, 72, 79, 80] and financial transactions net-
works [10, 18, 19, 53, 62, 65, 70].

Unlike anomaly detection methods for tabular and time-series
data, Graph Anomaly Detection (GAD) [3, 48, 64] poses additional
challenges. Graph data is often multi-modal, containing information
from both node/edge attributes and topological structures. This
complexity makes it difficult to find a unified definition of anomalies
for graph-structured data and to design a principled algorithm for
detecting them.

Due to the inherent multi-modality of graph-structured data,
anomalies on graphs can be grouped into three categories: contex-
tual, structural, and joint-type, as illustrated in Fig. 1. Contextual
anomalies refer to nodes whose attributes are vastly different from
those of regular nodes, such as spammers or fake account holders
in social media networks [29, 32, 75]. Structural anomalies refer
to nodes with different connectivity patterns compared to other
nodes, such as a group of malicious sellers exchanging fake reviews
with super dense connections [69] or bots retweeting the same
tweet forming a densely connected co-retweet network [21, 28].
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Figure 1: Contextual anomalies are feature-wise different, struc-
tural anomalies form dense subgraphs in the network and joint-type
anomalies connect with many nodes with different features.
Joint-type anomalies are those that can only be identified by con-
sidering both attributes and connectivity patterns, such as a node
that is sending a large number of phishing emails to users across
different communities in an email network [35, 52]. To identify all
these types of anomalies, we need a powerful model to capture
attribute information, connectivity patterns, and most importantly
the correlation between them.

However, current GAD approaches [3, 44, 48] only perform well
to detect one or two types of these anomalies but not all of them.
Some GAD approaches only leverage network structure, which
cannot detect contextual anomalies. Examples include the methods
to check centrality measures or clustering coefficients [49, 60],
based on factorization of the adjacency matrix [67], and performing
network clustering [77]. Some approaches check the distribution
of node features to detect anomalies [5, 42], such as using the k-
nearest neighbor algorithm on node features, to detect nodes that
are isolated from others. These approaches fail to detect anomalies
other than contextual anomalies.

Recently, autoencoders have been widely employed for anomaly
detection [7, 15, 20, 36, 58]. The rationale is that autoencoders lever-
age neural networks to reduce the dimension of the data. Anomalies
are often sparse in the data and hence such a data compression
process tends to record only the principal part of the data and
automatically exclude sparse anomalies. Therefore, one can use
the obtained compressed data representations to approximately
reconstruct the normal data but not the anomalies. Monitoring
the reconstruction loss can thus identify those anomalies from the
normal data. For GAD, Graph Auto-Encoders (GAEs) have been
proposed to leverage Graph Neural Networks (GNNs) [25, 38, 76]
to encode both graph structure and node attributes, which have
recently been used to detect anomalies on graphs [15, 20, 36].

However, current GAE-based methods [15, 20, 36] often adopt
a strategy of reconstructing direct links between nodes based on
their representations, which brings the nodes close to each other in
the latent space that are originally connected in the graph structure.
Such a proximity-driven loss to reconstruct graph structures may
be effective to detect structural anomalies that are inherently clus-
tered together in the graph. However, they fail to detect joint-type
anomalies that are not naturally clustered. Intuitively, joint-type
anomalies rely on the entire neighborhoods for correct detection,
because the information of which nodes are connected and the
attributes on these neighboring nodes is useful for the detection.

In this paper, we address the current limitation and propose a
novel framework Graph Anomaly Detection via Neighborhood
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Contextual | Structural | Joint-type
Approach Anomaly | Anomaly JAnomZ})y
Structure-based
SCAN [77] and others [49, 60, 67] x v x
Feature-based
v X X

LOF [5], IF [42], MLPAE [58]
GAE with proximity driven loss
AnomalyDAE [20] , GCNAE [36] v v X
DOMINANT [15]

GAD-NR (ours) v v v

Table 1: SOTA methods perform well either on contextual or densely
connected structural anomalies whereas GAD-NR with its entire
neighborhood reconstruction principle finds advantages for detect-
ing both types of anomalies along with joint-type anomalies which
are the nodes that connect a large number of nodes with different
features.

Reconstruction (GAD-NR). GAD-NR extends a recently-proposed
neighborhood reconstruction-based GAE model, namely NWR-
GAE [66] to address fundamental problems in GAD. Specifically,
rather than using a proximity-driven loss to recover direct links,
GAD-NR imposes the dimension-reduced node representations to
reconstruct the entire neighborhoods, i.e., the receptive fields that
are encoded/compressed by GNNs into the node representations.
Specifically, GAD-NR aims to reconstruct the information of one’s
own attributes, its connectivity pattern, and the attributes of its
neighboring nodes. By checking different types of reconstruction
losses, GAD-NR can detect all three types of anomalies.

The key novelty of GAD-NR is that it is the first work that
identifies neighborhood reconstruction as a powerful metric for
GAD, which fundamentally differs from previous GAE models that
adopt the metric of link reconstruction/prediction. Moreover, GAD-
NR also advances technical aspects of the backbone model NWR-
GAE [66] directly for GAD tasks, which yields substantial improve-
ments in stability, scalability, and accuracy. Specifically, GAD-NR
adopts Gaussian approximation of neighbors’ features distributions,
which not only substantially reduces the computation cost of NWR-
GAE but also avoids learning a too expressive model that risks
overfitting the anomalous behaviors in the data. This non-trivial
change improves NWR-GAE originally proposed for the unique
purpose of dimension reduction now suitable for GAD tasks.

We extensively compare GAD-NR with state-of-the-art (SOTA)
models on six real-world graph anomaly detection datasets that
have been benchmarked recently [44]. GAD-NR outperforms all
baselines significantly (by up to 30%7 in AUC) over five among
these six datasets by following the settings in [44]. We also evaluate
and demonstrate the capability of GAD-NR on detecting each of
the three types of anomalies.

Note that in real-world applications, the types of anomalies are
often unknown. The significance of GAD-NR is that it allows de-
tecting the real-world anomalies across different datasets (in [44])
with one fixed hyperparameter configuration, which illustrates the
robustness of GAD-NR. Further ablation studies also justify the
effectiveness and computational efficiency of Gaussian approxi-
mation adopted by GAD-NR for GAD when being compared with
NWR-GAE [66].

The contributions of this paper can be summarized as follows:

o We designed a novel framework GAD-NR for graph anomaly de-
tection. GAD-NR leverages the reconstruction loss of the entire
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neighborhood of a node from the node representation, which in
principle can detect all three types of anomalies in Fig. 1.

e Technically, GAD-NR adopts a Gaussian approximation of the
distribution of neighbors’ representations and computes a closed-
form KL divergence as the reconstruction loss, which substan-
tially improves the scalability and effectiveness of the approach.

o Extensive experiments on six real-world networks demonstrate
the effectiveness of GAD-NR compared to SOTA baselines, and
the rationale of the design specifics of GAD-NR.

2 RELATED WORKS

We put previous methods for GAD into three categories as follows.
Structure-only-based methods: Traditional graph anomaly
detection focuses on detecting only structural anomalies. Many
works in this category leverage spectral analysis of the adjacency
matrix and its variants [31, 50]. Recent methods define structural
similarity measures for anomalies and then perform clustering
approaches for detection [54, 77]. Statistical features computed
based on the graph structure such as in/out degrees, total weights
of edges, number of neighbors of a node, or dense subgraphs can
be utilized for GAD [2, 17, 28]. However, these structure-based
methods are only able to detect structural anomalies. They may
detect some joint-type anomalies but they tend to make a slot of
false alarms as they miss the information from node attributes.

Traditional methods for GAD over attributed networks: In
real-world applications, most of the graphs have node attributes
(features). Nodes with inconsistent attributes have a high chance
to be an anomaly node. Moreover, considering the information
on node attributes along with structure helps to locate anomalies
more accurately. Detecting anomalies in attributed networks can
be achieved by clustering methods [9, 56], interaction with human
experts [16], group merging techniques [83]. Network embedding
methods [23, 57, 63] can also be applied to GAD on attributed
graphs [6, 8]. Network embeddings can be paired with anomaly
detection techniques for tabular data such as density-based ap-
proaches [5], and distance-based techniques [1, 42] to find node
anomalies on graphs. However, these approaches, since they pro-
cess graph structure separately with node attributes, often fail to
capture the synergy of graph structure and node attributes and may
be suboptimal for GAD in some cases.

Deep learning based GAD approaches: Auto-Encoder frame-
work that focuses on extracting principal components from the
data via deep learning has been extensively applied in anomaly
detection [7, 15, 20, 36, 47]. Applying traditional autoencoders to
node attributes [58] can only detect contextual anomalies. GAE
built upon GNNs can combine node attributes and graph structure
properly and can detect anomalies based on checking the recon-
struction loss of node attributes or links [15, 20, 36]. But these
works do not reconstruct the entire neighborhood for GAD. Rather,
they use reconstruction error, and estimating Gaussian mixture
density is also applied for GAD [41]. Some works view nodes with
multiple views and a node may or may not be considered an anom-
aly in different views. These nodes hold attributes from multiple
views of the identity. To capture such multi-view information, mul-
tiple GNNs are often applied [46, 55, 61, 73, 74] for anomaly detec-
tion. GNNs have also been applied to detect anomalies in multiple
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scales [24], and to detect anomalies and solve recommendation
tasks simultaneouly [71, 81]. More involved techniques such as
self-supervised learning [13, 30, 33, 45, 78, 82] and reinforcement
learning [16, 39, 51] have also been recently applied to GAD.

3 NOTATIONS AND PROBLEM FORMULATION

In this work, we focus on detecting anomalous nodes over attributed
static graphs. An attributed graph G = (V,E, X) € G consists of a
vertexset V ={1,2,--- ,N}andanedgeset E. X = [---x} ---]T €
RIVIXK collect all node attributes and x4 € R¥ is the attribute for
node u. The degree of node u is denoted as d,. This work focuses on
unsupervised anomaly detection. Each node u has an anomaly label
y, where y,, = 0 or y,, = 1 implies node u is normal or anomalous
respectively. The goal is to design a detection method f(G) : G —
{0, 1}N that associates each nodes with a label. However, these
node labels are assumed to be unknown when designing f.

Let N, be the set of 1-hop neighbor nodes of node u. Let Ny, be
an augmented set of 1-hop neighborhood of node u that includes
the attribute of node u, the set of the attributes of its neighbors,
ie, Ny = (xy, {xp|v € Ny, }). Our assumption to detect anomalous
nodes is that given the label y,,, the distribution P(N,|y,,) are dif-
ferent across norms and anomalies. Here, we consider just one-hop
neighborhood as a proof of concept, which is also often adequate
for use cases in practice [4]. The neighborhoods considered can be
extended to the multi-hop case, while extra computation costs need
to be paid in that scenario.

4 METHODOLOGY

In this section, we first provide the motivation of our method by
narrating the potential drawbacks of previous graph auto-encoder
methods. Then, we introduce GAD-NR which is based on neigh-
borhood reconstruction.

4.1 Motivations

AutoEncoder (AE) is an easy-to-use and effective framework for
anomaly detection. The motivation of AE is to perform dimen-
sion reduction by compressing the high dimensional input data
into a low dimensional latent representation [27] via an encoder
and reconstructing the original input with the help of a decoder.
AE can be used for anomaly detection because such dimension
reduction is expected to capture the principal properties of the data
mostly corresponding to the normal data points. The data points
that cannot be properly reconstructed via the decoder, i.e., with
larger reconstruction losses tend to be anomalies.

Graph AutoEncoder (GAE) is used to perform dimension re-
duction of graph data via a Graph Neural Network (GNN) as the
encoder [37]. Given a graph G = (V, E), GAE encodes graph data
into node representations {hy|v € V}. The decoder of current GAE
methods is to reconstruct the graph structure and node attributes
from these node representations. Regarding graph-structure recon-
struction, it typically relies on a mapping from the representations
of two nodes to 0 or 1 that indicates whether there is an edge be-
tween them [15, 20], e.g., comparing h,l— h, with some threshold
0 to reconstruct the edge. However, this procedure can only pre-
serve proximity information of nodes in the graph, i.e., pushing
node representations close if the corresponding nodes are directly
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Flgure 2: Model architecture of GAD-NR. The encoder (left) per-
forms dimension reduction with an MLP followed by a message
passing GNN to obtain the hidden representation of a node. The
decoder (right) reconstructs the self features and the node degree
via MLPs and estimates the neighbor feature distribution with an
MLP-predicted re-parameterized Gaussian distribution. Reconstruc-
tions of the self features and the node degree are optimized with
MSE-loss whereas the KL-divergence between the ground truth and
the learned neighbors’ feature distribution is used for the optimiza-
tion of the distribution estimation.

connected in the graph, which may miss useful information for
detecting anomalies. Moreover, by checking the reconstruction loss,
one may only tell whether an edge is an anomaly. To detect node
anomalies that are often more useful in practice, one needs to ag-
gregate the reconstruction losses of edges into the node level, and
how to properly aggregate these losses is not a trivial problem by
itself and often depends on heuristics.

4.2 GAE via Neighborhood Reconstruction

Our strategy to overcome the drawback of traditional GAEs lies
in the first-principle idea of autoencoders. Autoencoders aim to
perform dimension reduction of the data with the least loss to
recover the original data. GAE encodes each node’s attributes and
the attributes of the nodes in its one-or-several-hop neighborhood
into a node representation. Therefore, the node representation
should be able to reconstruct the neighborhood and its attributes
with the least loss. This idea leads to the design of GAE in this work.
The model architecture is illustrated by Fig. 2 and describes the
pseudocode in Algorithm 1.

4.2.1 The encoder. The encoder ®(-) follows the common pipeline
of message passing GNN [22] e.g. GCN [38] or GraphSAGE [25].
A GNN will further iteratively aggregate the representations from
the neighbors and combine them with one’s own representation
to update the representation. Specifically, let hl(to) = xy. Forl =
0,1,...L-1,

h1<41+1)

= UPDATE (h\", AGG ({hV : v € Ny }), 1)

The AGG function aggregates messages from the neighbors and
the UPDATE function updates the node representations. Note that
in practice, if the node attribute x;, is extremely high dimensional
and sparse, a random linear projection is used to encode them into

= &(xw).

4.2.2  The decoder. Our decoder is designed based on the first prin-
ciple of designing an autoencoder [27]. We are supposed to reverse

a dense low-dimensional representation hl(lo)

the procedure of Eq. (1) by using hy‘) to reconstruct all the in-
formation within the L-hop neighborhood of u. In practice, it is
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Algorithm 1 GAD-NR : Graph Anomaly Detection via Neighbor-
hood Reconstruction

1: Input: Graph G(V, E), Input Feature X, Anomaly Label Y

2: Encoder:

3. foru e V do

s by =)

s Y = UPDATE (h{”, AGG ({h") : v e Ny}

6: end for

7. Decoder:

8: foru e Vdo

s R = ge(BD)du = g (hi)

10: My = stop—gradient(dL 2veN, h(o))

= Spen, (0 = ) (b = ) ™)

2 = gulhy)). Sy = diag(exp(go(hi)))
13: fori=1toqgdo > Reparameterization

11: >y = stop- gradlent( a.

14: hi = FNN(z;), zi ~ N (fi, 3u)

15: end for

16: flu = %12 hi, Sy = d Z? 1(h — ) (hi = i) T

17: Weighted Loss Functlon

18 L=k 3 D(WED) 42y T D (deda) + KL Ga TN G 20))
19: end for

computationally heavy for large L. In this work, we focus on recon-
structing the information within just the one-hop neighborhood as
a proof of concept, which we find is practically sufficient for GAD.

The information within just the one-hop neighborhood A, con-
sists of the attributes of the center node h,so) and the set of attributes
of the direct neighbors of the center H,, = {hz(,o) lo € Ny}

Self reconstruction: In order to reconstruct the attributes of
the center node, we design a simple decoder that takes hy‘) as
input and reconstructs h(o) by a multi-layer perception (MLP)

(0) t#x(h(l)) Then, the self-reconstruction loss for node u can

be calculated as:
.4

where D(, ) is a distance function such as L2-distance that mea-
sures the discrepancy between the original attributes and the re-
constructed attributes.

Neighborhood reconstruction: It is far from trivial to decode

LX=D )

the set H,, from the compressed hl(]“). The difficulties come from
two aspects. Firstly, the size of the set might vary acrossnode u € V.
Secondly, the elements in the set do not have an order. Using an
MLP to decode a set of a variable size from h,(AL) is impossible.

Our idea is inspired by the recent work NWR-GAE [66]. We
regard the set H;, = {hz(,o) |o € Ny} as dy, many LLD. samples from
a distribution Py,. In fact, the empirical distribution of the elements
in Hy is ™ (h) = L Sye, 8(h—h) where 5(-) is the dirac
delta function. In thisusense, we can decompose the neighborhood
information into two parts, namely the number of neighbors (i.e. the
node degree) dy, and the distribution of neighbor’s representations
Py,. The reconstruction procedure should reconstruct these two
parts of information properly.
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Node degree reconstruction. To reconstruct node degree d,,, we
use another MLP that follows d,, = ¢d(h£,L)).
Then the node degree reconstruction loss for node u is:
d_ .
£ =D (dudu) 3
Here, we just use £;-loss as the metric D, though as node degrees

are non-negative integers, we can also adopt discrete distributions
such as Poisson distribution to model it.

Neighbors’ representation distribution reconstruction. To recon-
struct the distribution P, from the node representation h,SL) , we
first map h,(AL) to an estimation of the distribution P,,. As we do not
know Py, in the population level, the first direct idea is to recon-
struct the empirical distribution P}, © by following NWR-GAE [66].
The Wasserstein distance between P, and P;, * is adopted as the
reconstruction loss in NWR-GAE [66]. However, the computation
of such a loss has a huge overhead, because it needs to solve a
matching problem based on the Hungarian algorithm [34], which
is of complexity O(d>). Moreover, empirically, we observe that re-
constructing such an empirical distribution is likely to overfit the
anomalies, which actually does harm to anomaly detection tasks.

Therefore, we propose to reconstruct a multi-variate Gaussian
approximation of Py. Specifically, given H,, = {hl(,o)|v € MNu},
we estimate the mean and covariance matrix of the neighbors’
representations by following:

- o 5y __1 © _ 4 y(p© _ 43T
= ZN hy ,zu—du_lv; (hy” = fu) (h” ~ o)™ (4)

Then, we map h,(lL) to a multi-variate Gaussian distribution P,
through the following procedure. We sample g neighborhood fea-
tures Ay, - - - ,flq by transforming samples z1, - - - , z4 from the dis-
tribution A (fi, 3,,) via a fully-connected neural network (FNN).
Here the parameters [l,,, 3, are determined by

fu = du(hE), 3, = diag(exp(¢o (h{H))), )

where ¢, (-) is an MLP, and each entry of ¢g(h,(lL>) is non-negative,
which includes an MLP followed by exp(-). Then, we estimate
the mean and the covariance matrix of reconstructed neighbors’
features based on i, = é Z?zl hjand3, = du;—l Z?zl(f_li—ﬁu)(fli—
fiy) ", respectively.

Given the two groups of parameters (i, %) and (i, 3,,) for
multi-variate Gaussian distributions, we adopt the KL divergence
between these two distributions to measure the reconstruction loss:

L7 = KLN (s Z)l [N (i ) =
Y _ U
o :2 : (5 5 + () 52 G — )]

where p is the dimension of representation. Note that y;, and Xy,
should not allow the gradient to pass through as they provide
supervision signals. In practice, we may encounter the case when
dy, is smaller than p, which makes X, in Eq. (4) not full-ranked and
causes a numerical problem. Therefore, we add an identity matrix
to the covariance matrices, Xy, «— Xy +cl, £, « X, + cl for some
constant ¢ > 0 to compute Eq. (6).
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Note that the complexity of the above computation including
Egs. (4),(5) and (6) is O(dy), which significantly reduces the com-
plexity of the pipeline in [66].

The remaining challenge is that since node degrees vary across
different nodes, the computation of Eq. (4) is irregular. For this, we
extend the package adopted in principal neighborhood aggrega-
tion [14] to implement Eq. (4) efficiently in parallel across different
nodes.

4.2.3 The overall reconstruction loss. The overall reconstruction
loss is a combination of the losses to reconstruct node self attributes
in Eq. (2), node degrees in Eq. (3), and neighbors’ representation
distributions in Eq. (6):

L= Z L], where £, £ A L3+ 2 LL + 1, L7,

ueV

™)

and where Ay, A4, and A, are the hyper-parameters that control the
weights of different types of reconstruction losses.

4.3 Anomaly Detection

We may adopt £, in Eq. (7) as the score to characterize how anoma-
lous each node u is to be. The greater score means the encoded in-
formation is harder to be reconstructed, and thus the corresponding
node is more likely to be an anomaly. We may also adopt different
hyperparameters A%, A, and A}, if we have different confidence or
some prior knowledge about the type of anomaly to be detected.
For example, if we tend to detect contextual anomalies, we can
increase A. To encode such flexibility, we define the anomaly score
Jy in the following general form

Gu = Ly (N Ny A0 = Ao L3+ 2, L3+ 2, L0, (®)

ranking which tells the nodes that are more likely to be anomalies.
Although different weights here emphasize the detection of different
types of anomalies, in Sec. 5, we show that GAD-NR is robust to the
selection of these weights, where a fixed choice of these weights is
sufficient to outperform baselines to detect real-world anomalies
across different datasets.

4.4 Improvements over NWR-GAE

Here, we would like to provide a more direct explanation how GAD-
NR advances the idea of neighborhood reconstruction (previously
proposed in NWR-GAE [65] for the purpose of dimension reduction
instead of GAD) to better fit GAD tasks. NWR-GAE is built upon an
optimal transport loss and needs to run a complicated Hungarian
matching algorithm [34] for each node to reconstruct its neighbors’
attributes to compute the loss function. Such complexity is O(d>)
for a node of degree d. GAD-NR regards the representations of
neighbors’ attributes as samples from a Gaussian distribution and
adopts KL divergence [12] between Gaussian distributions as the
reconstruction loss, which has a closed form and has complexity
O(d). This approximation is crucial for GAD tasks:

NWR-GAE did not adopt such approximation because NWR-
GAE aims to perform dimension reduction. Achieving a low reduc-
tion error is the ultimate goal of NWR-GAE. Therefore, NWR-GAE
should be sufficiently expressive to make low-dimensional represen-
tations recover high-dimensional data. However, GAD tasks have
different goals. A model for GAD should not be too expressive, and
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otherwise risks overfitting the anomalies. GAD-NR just adopts the
correct trade-off, where Gaussian approximation (by just checking
the first and second moments of the distributions) is adopted, which
not only improves anomaly detection accuracy but also substan-
tially reduces computational complexity. Moreover, NWR-GAE also
supports reconstructing multi-hop neighbors. However, we found
that multi-hop reconstruction did not get obvious improvement in
the task of GAD while introducing much computational overhead,
so GAD-NR only considers the first hop in practice.

5 EXPERIMENT

In this section, we extensively compare GAD-NR with several base-
line methods for graph anomaly detection. Specifically, we aim to
answer the following questions:

e How does neighborhood reconstruction facilitate in the perfor-
mance improvement of GAD-NR for GAD?

e Which part of the GAD-NR is important for different types of
anomaly detection?

e How do important hyperparameters such as the size of hid-
den representations, and the weights before different types of
reconstruction losses affect the performance of GAD-NR?

e How does the adopted Gaussian approximations of neighbor-
hood feature distributions improve the running time efficiency
of GAD-NR?

5.1 Datasets and Baselines

We incorporate six real-world datasets (Cora, Weibo, Reddit, Disney,
Books, and Enron) and fourteen baseline anomaly detection models
for our comparison following the BOND [43] paper. Among the
baseline models, we included feature-based models LOF [5], IF [42],
MLPAE [58] and structure-based AD models, SCAN [77]. Also, we
performed comparisons of GAD-NR with models that focus on
both structures and attributes via residual reconstruction error
Radar [40] and ANOMALOUS [54]. Lastly, we incorporated some
popular generative models for GAD, which include autoencoder
architecture GCNAE [36], DOMINANT [15], DONE and AdONE [7],
AnomalyDAE [20], adversarial learning-based method GAAN [11]
and also contrastive learning-based methods CONAD ([78].

5.2 Experimental Settings

Our first experimental setting follows the benchmark paper BOND [44].

Note that among the datasets, Weibo, Reddit, Disney, Books, and
Enron have real-world anomaly labels. For the Cora dataset, there
are no real benchmark anomaly labels, so we follow the bench-
mark paper BOND where the union of contextual and structural
anomalies are considered anomaly labels for evaluation in the Cora
dataset. The results are reported in Table 2. We call this setting
the benchmark anomaly detection. Moreover, we attempt to study
the performance to detect each type of anomalies separately, so
for each dataset including those with real-world labels, we also in-
ject contextual, structural, and joint-type anomalies for evaluation,
which give the later results in Table 4. Due to the page limitation,
we present contextual and merged the structural and joint-type
anomaly detection results together in this work.

Contextual anomalies are nodes whose attributes are signifi-
cantly different from their neighboring nodes. Hence, to generate
this type of anomaly for a target node u, its feature x,, is replaced

581

Amit Roy et al.

with another randomly sampled node v’s feature x, that has the
largest Euclidean distance with x;,. Let n denote the number of con-
textual anomaly nodes and g denote the number of candidate nodes
randomly sampled in the above procedure. Structural anomalies are
nodes that are densely connected in contrast to sparsely connected
normal nodes. To inject structural outliers, we consider m nodes
at random and then make them fully connected and this process
will be repeated for n times to generate n such cliques of size m.
Following the BOND paper, we approximately set g and m as twice
the avg. degree for most datasets. To add joint-type anomalies in
different datasets, we choose n nodes randomly as anomalies. Then,
we connect each of these n nodes with randomly sampled m other
nodes. Therefore, those anomalous nodes can be treated as nodes
with high degrees and connected to neighbors with different types
of features. We utilized the PyGOD library [44] for the injection of
contextual and structural anomalies and for running the baseline
anomaly detection models.

Hyperparameter Tuning: In practice, we often do not know
the anomaly labels to tune the parameters. Typically, the way to
choose hyperparameters is based on some expert experiences and
a good model should be robust by using such a set of hyperpa-
rameters. Hence, we fix GAD-NR’s encoder as GCN with hidden
dimension 16 (expect for Cora, where 128 is used) and fix the hyper-
parameters of the decoder as A, = 0.8, 1; = 0.5, and A, = 0.001 to
run the experiments for all datasets five times and report the aver-
aged performance with standard deviation. We compare GAD-NR’s
performance obtained via this fixed hyperparameter setting with
the averaged performance of baselines proposed in the benchmark
work [43]. Our experiments demonstrate that our model GAD-NR
can outperform the baselines by setting a set of hyperparameters
that are not sensitive to the datasets, which makes the most practical
sense.

To compare with the best performance of baselines reported
in [43], we also performed a grid search of the hyperparameters of
GAD-NR for each dataset as follows: 1) Self-attribute reconstruction
weight, A, € {0.1,0.5,0.8,0.9} and A} € {0.25,0.5,0.75,1.0,1.25, 1.5,
1.75, 2.0}, 2) Degree reconstruction weight, 15 € {0.1,0.5,0.8} and
)L;i € {0.25,0.5,0.75,1.0,1.25, 1.5, 1.75, 2.0}, 3) Neighborhood recon-
struction weight A, € {0.001,0.5, 0.8} and A, € {0.25, 0.5, 0.75,1.0,
1.25, 1.5, 1.75, 2.0}, 4) The number of dimension of the hidden layer,

d € {8,16,32, 64,128}, 5) Encoder GNN, ® € {GCN, GraphSAGE, GIN}.

Hardware: All the experiments are performed on a Linux server
with a 2.99GHz AMD EPYC 7313 16-Core Processor and 1 NVIDIA
A10 GPU with 24GB memory.

5.3 Evaluation Metric

We adopt the area under the ROC curve as the evaluation metric.
The ROC curve is created by plotting the true positive rate against
the false positive rate at various threshold settings. In the experi-
ment, we regard the anomaly nodes as positive classes and compute
AUC for it. AUC equals 1 means that the model makes a perfect
prediction, and AUC equals 0.5 means that the model has no distin-
guishing ability. AUC is better than accuracy when evaluating the
anomaly detection task since it is not sensitive to the imbalanced
class distribution of the data.
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Algorithm Cora Weibo Reddit Disney Books Enron
LOF 69.9 £ 0.0 (69.9) 565 % 0.0 (56.5) 57.2% 0.0 (57.2) 47.9% 0.0 (47.9) 365 0.0 (36.5) 46.4 £ 0.0 (46.4)
F 64.4 1.5 (67.4) 53.5 % 2.8 (57.5) 452+ 17 (47.5) 57.6 % 2.9 (63.1) 43.0 £ 1.8 (47.5) 40.1 % 1.4 (43.1)
MLPAE 709 £ 0.0 (70.9) 82.1% 3.6 (86.1) 50.6 + 0.0 (50.6) 492+ 5.7 (64.1) 42.5 + 5.6 (52.6) 731+ 0.0 (73.1)
SCAN 62.8 + 4.5 (72.6) 63.7 % 5.6 (70.8) 49.9 £ 03 (50.0) 50.5 + 4.0 (56.1) 49.8 = 1.7 (52.4) 52.8 + 3.4 (58.1)
Radar 65.0 + 1.3 (66.0) 98.9 0.1 (99.0) 54.9 + 1.2 (56.9) 51.8 0.0 (51.8) 52.8 £ 0.0 (52.8) 80.8 £ 0.0 (80.8)
ANOMALOUS 55.0 £ 10.3 (68.0) 98.9 0.1 (99.0) 54.9 £ 5.6 (60.4) 51.8 % 0.0 (51.8) 52.8 £ 0.0 (52.8) 80.8 £ 0.0 (80.8)
GCNAE 70.9 + 0.0 (70.9) 90.8 1.2 (92.5) 50.6 £ 0.0 (50.6) 42.2+7.9 (52.7) 50.0 £ 4.5 (57.9) 66.6 + 7.8 (80.1)
DOMINANT 82.7 +5.6 (34.3) 85.0 + 14.6 (92.5) 56.0 + 0.2 (56.4) 47.1+ 45 (54.9) 50.1 5.0 (58.1) 73.1+ 8.9 (85.0)
DONE 82.4 £ 5.6 (87.9) 85.3 % 4.1 (88.7) 53.9 £ 2.9 (59.7) 41.7 £ 6.2 (50.6) 43.2 £ 4.0 (52.6) 46.7 6.1 (67.1)
AdONE 815 + 4.5 (87.4) 84.6 + 2.2 (87.6) 50.4 £ 4.5 (58.1) 48.8 + 5.1 (59.2) 53.6 + 2.0 (56.1) 445 + 2.9 (53.6)
AnomalyDAE 834+ 23 (85.3) 915+ 1.2 (92.8) 55.7 £ 0.4 (56.3) 48.8 + 2.2 (55.4) 622+ 8.1(73.2) 543+ 11.2 (69.1)
GAAN 742 %09 (76.1) 925+ 0.0 (92.5) 55.4 £ 0.4 (56.0) 480+ 0.0 (48.0) 549 £5.0 (61.9) 73.1% 0.0 (73.1)
GUIDE 747 £ 13 (77.5) OOM_C OOM_C 38.8 + 8.9 (52.5) 48.4  4.6(63.5) 0OM_C
CONAD 78.8 + 9.6 (84.3) 85.4 = 14.3 (92.7) 56.1 0.1 (56.4) 48.0 £ 35 (53.1) 52.2 £ 6.9 (62.9) 71.9 + 4.9 (84.9)
GAD-NR (w/o feat. recon.) 8341 % 2.18 (85.41) | 69.64 £ 0.75 (70.44) | 50.00 £ 0.4 (50.88) | 74.11%0.18(76.17) | 62.32 +3.41(6543) | 70.20 % 116 (71.72)
GAD-NR (w/o degree recon.) | 8225 + 1.37 (83.04) | 70.09 £ 1.20 (71.50) | 49.01 0.29 (50.05) | 76.25 % 0.37 (79.09) | 64.08 & 3.13 (68.94) | 72.44  1.33 (75.81)
GAD-NR (w/o neighbor recon.) | 76.47 + 3.57 (80.47) | 69.10 + 110 (70.25) | 48.67 + 2.04 (50.67) | 60.69 + 1.24 (63.69) | 49.46 + 2.09 (52.46) | 56.01 % 3.00 (59.01)
GAD-NR 87.55 + 2.56 (88.40) | 87.71 £ 5.39 (92.09) | 57.99 + 1.67 (59.90) | 76.76 + 2.75 (80.03) | 65.71 + 4.98 (69.79) | 80.87 + 2.95 (82.92)

Table 2: Performance comparison (ROC-AUC) of GAD-NR in benchmark anomaly detection for six different real-world datasets (injected
anomaly for Cora dataset). For the results of baseline methods, we followed the BOND [43] paper where the avg performance + the STD of perf.
(max perf.) is reported. For our model GAD-NR, we fix hyperparameters A, = 0.8, ; = 0.5 and A,, = 0.001 and report the avg performance + the
STD of perf. for all datasets including the best performance in each dataset with tuned hyperparameters. The best and second best performances
are mentioned in bold and underlined respectively and OOM_C indicates out of memory with regard to GPU.

C"",‘r‘;;'e‘s"“ Algorithm Cora Weibo Reddit Disney Books Enron
Performance NWR-GAE | 84.28 £ 0.06 | 73.68 + 3.13 5120 £ 1.16 | 75.56 £ 1.65 | 79.75 + 2.48 | 80.24 £ 2.43
Comparison GAD-NR | 87.55 +2.56 | 87.71%5.39 | 57.99 + 1.67 | 76.76 + 2.75 | 65.71+4.98 | 80.87 + 2.9
Running time NWR-GAE 51.270 48.312 55.379 0.603 7.288 65.152
Seconds per epoch GAD-NR 2.35 0.544 0.095 0.035 0.0874 0.0109

Table 3: Direct Performance Comparison between NWR-GAE [66] and our model GAD-NR

Algorithm Cora ‘Weibo Reddit Disney Books Enron Algorithm Cora Weibo Reddit Disney Books Enron
MLPAE 88.90 + 0.00 90.61 £ 0.02 51.91 + 4.55 86.36 £ 0.00  53.00 + 13.99 68.74 £ 16.08 MLPAE 51.28 £ 0.43 50.42 + 0.00 50.10 + 0.52 58.77 + 0.00 52.52 + 2.48 4830 £ 1.21
SCAN 49.80 £ 0.50 4846 £ 0.00  48.59 £ 0.00  62.81 £0.00  50.15 £ 0.00 40.41 £ 0.00 SCAN 8235000 49.86%0.00 98.11£0.00 64.82+0.00 6221000 48.08 £0.00
Radar 50.20 £0.60 7231:0.00 49.98 £0.00 79.89 £0.00  66.30 £ 0.00 79.51 £ 0.00 Radar 62.37 £ 0.00 60.04 £0.00 6570 £0.00 6377 +£0.00 32.69+0.00 53.29 £ 0.00
ANOMALOUS 5110 £1.30 7231:0.00 49.65+1.26 79.89£0.00  66.30 £ 0.00 48.92 £ 0.85 ANOMALOUS 4539 £ 1.15 60.04 0 58082977 63.77+0.00 3269000 5281023
GCNAE 90.79 £+0.35 52.02+036 87.52+232 40.77+1.72 59.52+15.23 GCNAE 51.19 £ 0.00 50.66 + 0.06 51.30 £ 0.43 52.82+0.90 31.93£035 47.33+6.84
DOMINANT 57.07 £ 0.34 47.96 + 0.39 65.62 + 9.53 50.13 + 5.33 63.84 + 0.27 DOMINANT 77.59 £ 0.03 49.01 £ 0.92 93.18 + 0.00 34.84 + 438 62.70 £ 0.10
DONE 81.75 £ 1.00 46.52 + 1.47 69.26 + 5.33 38.52 + 2.08 59.90 £ 6.31 DONE 7234 £14.02 5556 £0.90  65.61 £ 10.50 71.12 £ 1.40 50.88 + 2.51
AdONE 7390 £5.00 83.68 +0.47 46.61 +3.42 86.12+1.83  65.00 £ 2.63 62.19 +5.37 AdONE 81.32 + 1.39 59.23 £ 0.53 80.07 £2.26  71.43 £2.76 X 55.93 £ 2.05
AnomalyDAE 80.20 £2.80  79.40 £+3.67 49.33 £+228 81.02+8.13 40.43+1856 68.12+14.93 AnomalyDAE 80.73+0.93 4916 £1.33 47.03£2.66 49.93+6.26 3225+9.01 49.83 189
GAAN 88.70 £0.10 90.68 £ 0.14  49.64 £ 1.12  86.39£0.13 3299+ 2238 44.78 + 14.20 GAAN 53.26 + 0.84 53.09 £ 0.18 62.78 + 4.85 60.20 £0.35 7898 +1.00 59.88 +235

GUIDE 88.30 + 0.80 OOM_C OOM_C 78.40 £ 0.62  57.59 + 0.08 OOM_C GUIDE 52.03 £ 2.36 OOM_C OOM_C 55.20 £ 1.50  63.72 £ 0.89 OOM_C
CONAD 72.50 56.62 = 0.37 47.70 £ 0.08 59.67 + 7.00 54.04 £ 7.22 71.23 £ 0.54 CONAD 78.85 £ 0.02 55.48 + 0.36 93.25 + 0.17 34.49 + 2.32 63.97 £ 0.31 59.98 + 0.45
GAD-NR (w/o feat. recon.) 5852232 57.66+322 49.60+211 8298+260 62.11%5.01 68.27 + 2.09 GAD-NR (w/o feat loss) 73.23 £ 0.61 50.81 £ 0.28 91.95 £ 0.03 7323+ 1.61 80.06+549 79.18 + 2.01
GAD-NR (w/0 degree recon.) 73.04 £2.60 6428635 54.10+196 91.10%3.56 60.07 £ 1.17 75.25 £ 3.57 GAD-NR (w/o degree loss) | 74.28 + 1.67 53.33 £ 2.31 87.69 £ 6.47 66.47 £0.51 8295030 7219 £0.06
GAD-NR (w/o0 neighbor recon.) | 7152359 61.45+4.42 5345+1.15 57.11+250 5536 +3.19 68.23 £3.34 GAD-NR (w/0 neigh loss) 67.51 £ 0.04 50.29 + 1.11 91.34 £ 0.11 60.54 £ 2.06 5628 £3.03  75.65+ 1.39
GAD-NR 89.10 £3.10 87.53+354 55.15+2.41 8572+131 74.73+1.50 85.79+2.65 GAD-NR 83.55+3.03 62.35+1.05 9201+0.73 74.81+4.39 8501+790 82.22+2.14

Table 4: Performance comparison (ROC-AUC) of GAD-NR in contextual (left) and structural + joint-type (right) anomaly detection for different
real-world datasets. The best and second best performances are mentioned in bold and underlined respectively and OOM_C indicates out of

memory with regard to GPU.
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Figure 3: Impacts of varying feature reconstruction weight loss 1/, degree reconstruction weight loss A/, and neighbor reconstruction weight
loss A}, in Eq. (8) on detecting different types of anomalies in the Cora and Books dataset.

5.4 Detection Performance Comparison

5.4.1 GAD-NR shows the superior performance in different types of
anomaly detection. In Table 2, we show the results of GAD-NR on
the benchmark anomaly detection with baseline models. In Table 4,
we present the results in injected contextual, structural and joint-
type anomaly detection. From the results, we can observe that GAD-
NR outperforms the baseline methods over most of the datasets in
detecting benchmark anomaly labels, contextual anomaly labels,
and structural + joint-type anomalies.

The key reason behind the performance improvement can be
attributed to the entire neighborhood reconstruction around a tar-
get node, which includes its self-feature reconstruction, degree
reconstruction, and neighbor-feature distribution reconstruction.

The feature-based models like MLPAE perform quite well at
detecting contextual anomalies, specifically in the Cora dataset as
they put emphasis on self-feature reconstruction. However, MLPAE
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performs worse to detect joint-type and structural anomalies as
they ignore the graph structure. Approaches that only consider the
structure information, for example, SCAN performs exceedingly
well in detecting structural + joint-type anomalies but they are
incapable of doing well in contextual anomaly detection. In the case
of the GAE-based models, the performance is more competitive
while still worse than GAD-NR in Table 2 and Table 4.

5.4.2  Impacts of different types of reconstruction losses. In Table 2,
Table 4 along with the performance of GAD-NR with all three types
of reconstruction loss, we have also shown results by removing each
part from the loss function of the GAD-NR’s decoder, i.e., setting
Ax =0,A3 =0o0r A, = 0 in Eq. (7). From the results in Table 4, it is
clearly visible that without the neighborhood reconstruction part
An = 0, the performance of GAD-NR drops the most in both types
of anomaly detection.
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From the results of Table 4, we can observe that without the self-
feature reconstruction loss (15 = 0), the performance of GAD-NR
drops down heavily when detecting contextual anomalies. When
detecting the structural + joint-type anomalies, the performance
decay of GAD-NR is moderate, which matches the expectation. By
removing the loss for degree reconstruction (1; = 0), GAD-NR also
suffers from some performance decay. However, such decay is less
severe compared to that of removing self-feature reconstruction for
detecting contextual anomalies or that of removing neighbors’ fea-
ture distribution reconstruction for detecting structural anomalies
and joint-type anomalies.

5.4.3  Performance Comparison with NWR-GAE [66]. We compare
GAD-NR with NWR-GAE [66] in two aspects: performance and
running time. For performance, we are adding the benchmark anom-
aly detection performance comparison between NWR-GAE and
our model GAD-NR in Table 3. We can observe that the perfor-
mance of GAD-NR is significantly better than NWR-GAE in all six
datasets. NWR-GAE directly tries to match the empirical distribu-
tion of neighbor representation, by which NWR-GAE may capture
neighbors’ features more precisely (also time consuming) but it
tends to overfit anomalous behaviors, compared to the Gaussian
approximation that GAD-NR adopts. For running time compari-
son, we also added the comparison between NWR-GAE and our
model GAD-NR in Table 3. Optimizing the KL-divergence leads to
a running time complexity of O(d) from the neighborhood match-
ing the Hungarian algorithm’s running time complexity of O(d>).
Therefore, GAD-NR is far more scalable on a relatively large graph
dataset compared with NWR-GAE for detecting anomalies.

5.5 Hyperparameter Analysis

5.5.1 Impacts of tuning A%, A/, and ;. We present the trend of
GAD-NR’s performance on different types of anomaly detection
by varying the weights in Eq. (8) to perform detection in Figure 3.
While increasing the weight for self-feature reconstruction A}, in
Figure 3 left top, we have observed the performance curve of contex-
tual anomaly detection (blue) is very steep. Similar in 3 left bottom,
a growing trend has been observed on both contextual and joint-
type anomaly detection performance curve (blue and green). The
reason is intuitive. With higher weights for self-feature reconstruc-
tion, the decoder of GAD-NR tends to assign higher importance
to contextual anomalies as well as joint-type anomalies. By vary-
ing the weight for degree reconstruction, /1"1 in Figure 3 middle
column, the change in performance is not that significant across dif-
ferent types of anomalies. This is because contextual and structural
anomalies do not have much change in node degrees. For the joint-
type anomalies, where node degrees may provide useful signals
for detecting, only checking node degrees is often insufficient to
determine an anomaly. This is because a normal node can also have
higher degrees. Node degree reconstruction should be paired with
neighbors’ feature distribution reconstruction together to provide
effective anomaly detection. Lastly, in Figure 3 right column, when
we vary the weight A}, for neighborhood reconstruction, we notice
a significant performance gain in joint-type anomaly detection and
structural + joint-type anomaly detection, which demonstrates the
effectiveness of neighborhood reconstruction via leveraging signals
from their neighborhoods.
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Dataset
Dimensions
Models
MLPAE
GCNAE
DOMINANT

DONE
AdONE
GAAN

CONAD

GAD-NR

Table 5: Performance comparison of GAD-NR with different latent
dimension sizes for detecting benchmark anomalies in Cora and
Reddit datasets.

Cora

32 64 128 256 8 16 32 64

71.07
71.47
84.52
84.19
84.01
74.33
84.54
86.38

71.07
71.52
84.77
84.29
84.43
74.15
84.79
86.93

71.08
71.63
84.90
86.52
84.87
74.32
84.46
87.55

70.51
70.84
76.77
78.29
73.42
76.15
76.15
82.67

47.57
50.88
52.93
52.39
57.78
50.21
52.74
53.12

52.12
51.29
52.94
52.41
53.64
52.32
52.95
57.99

51.79
51.81
52.99
55.15
54.85
52.42
53.03
58.12

51.92
52.10
53.04
55.86
55.14
52.79
53.13
56.07

5.5.2  Impact of the latent representation’s dimension. In Table 5,
we present the performance of GAD-NR on benchmark anomaly
detection in the Cora and Reddit datasets by varying the dimension
size of hidden representations. From the results, we can observe
that the performance of GAD-NR gradually increases as the latent
dimension increases for Cora (32 to 128) and Reddit (8 to 32) com-
pared to other GAE-based methods. We think using neighborhood
reconstruction is the reason behind the gradual performance im-
provement of GAD-NR. Other autoencoders can only increase the
capability of latent representations by increasing the latent dimen-
sion. Instead, GAD-NR can also increase the supervision strength
of neighborhood reconstruction by increasing the latent dimension.
When the dimension size increases even more e.g. 256 in Cora and
64 in Reddit, the anomaly detection performance of GAD-NR drops.
With a higher latent dimension size, the model becomes too much
expressive and it can overfit the anomalies. For anomaly detection,
we are expected to capture normal behaviors instead of making
models memorize all information in the data, especially abnormal
behaviors. Therefore, we need to strike a balance between model
expressiveness and the proportion of normal information extracted
for the best anomaly detection performance.

6 CONCLUSION

In this study, we introduce GAD-NR, for identifying anomalous
nodes in graph structures. GAD-NR is based on a graph auto-
encoder that reconstructs the neighborhood information from node
representations generated by a GNN encoder. The reconstruction
process encompasses a self-feature representation, degree recon-
struction, and the distribution of neighboring node representations,
thus allowing the detection of various anomalies including con-
textual, structural, and joint-type anomalies. Experimental results
on six real-world datasets demonstrate the effectiveness of neigh-
borhood reconstruction in identifying different types of anomalies.
GAD-NR outperforms state-of-the-art GAD baselines in five out of
the six datasets in benchmark evaluations. Additionally, GAD-NR
provides flexibility and potential for detecting different types of
anomalies through the combination of different types of reconstruc-
tion loss with varying weights. GAD-NR also shows the robustness
of the selection of weights to detect real-world anomalies.
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