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ABSTRACT

Graph Anomaly Detection (GAD) is a technique used to identify

abnormal nodes within graphs, �nding applications in network

security, fraud detection, social media spam detection, and vari-

ous other domains. A common method for GAD is Graph Auto-

Encoders (GAEs), which encode graph data into node representa-

tions and identify anomalies by assessing the reconstruction quality

of the graphs based on these representations. However, existing

GAE models are primarily optimized for direct link reconstruc-

tion, resulting in nodes connected in the graph being clustered in

the latent space. As a result, they excel at detecting cluster-type

structural anomalies but struggle with more complex structural

anomalies that do not conform to clusters. To address this limita-

tion, we propose a novel solution called GAD-NR, a new variant

of GAE that incorporates neighborhood reconstruction for graph

anomaly detection. GAD-NR aims to reconstruct the entire neigh-

borhood of a node, encompassing the local structure, self-attributes,

and neighbor attributes, based on the corresponding node rep-

resentation. By comparing the neighborhood reconstruction loss

between anomalous nodes and normal nodes, GAD-NR can e�ec-

tively detect any anomalies. Extensive experimentation conducted

on six real-world datasets validates the e�ectiveness of GAD-NR,

showcasing signi�cant improvements (by up to 30%↑ in AUC) over

state-of-the-art competitors. The source code for GAD-NR is openly

available. Importantly, the comparative analysis reveals that the

existing methods perform well only in detecting one or two types

of anomalies out of the three types studied. In contrast, GAD-NR

excels at detecting all three types of anomalies across the datasets,

demonstrating its comprehensive anomaly detection capabilities.
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1 INTRODUCTION

Anomaly Detection aims to identify entities that deviate signi�-

cantly from the norm, which has been used for a variety of ap-

plications, such as revealing fraudulent or spam activity in social

networks [26, 59, 68, 72, 79, 80] and �nancial transactions net-

works [10, 18, 19, 53, 62, 65, 70].

Unlike anomaly detection methods for tabular and time-series

data, Graph Anomaly Detection (GAD) [3, 48, 64] poses additional

challenges. Graph data is oftenmulti-modal, containing information

from both node/edge attributes and topological structures. This

complexity makes it di�cult to �nd a uni�ed de�nition of anomalies

for graph-structured data and to design a principled algorithm for

detecting them.

Due to the inherent multi-modality of graph-structured data,

anomalies on graphs can be grouped into three categories: contex-

tual, structural, and joint-type, as illustrated in Fig. 1. Contextual

anomalies refer to nodes whose attributes are vastly di�erent from

those of regular nodes, such as spammers or fake account holders

in social media networks [29, 32, 75]. Structural anomalies refer

to nodes with di�erent connectivity patterns compared to other

nodes, such as a group of malicious sellers exchanging fake reviews

with super dense connections [69] or bots retweeting the same

tweet forming a densely connected co-retweet network [21, 28].
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Figure 1: Contextual anomalies are feature-wise di�erent, struc-

tural anomalies form dense subgraphs in the network and joint-type

anomalies connect with many nodes with di�erent features.

Joint-type anomalies are those that can only be identi�ed by con-

sidering both attributes and connectivity patterns, such as a node

that is sending a large number of phishing emails to users across

di�erent communities in an email network [35, 52]. To identify all

these types of anomalies, we need a powerful model to capture

attribute information, connectivity patterns, and most importantly

the correlation between them.

However, current GAD approaches [3, 44, 48] only perform well

to detect one or two types of these anomalies but not all of them.

Some GAD approaches only leverage network structure, which

cannot detect contextual anomalies. Examples include the methods

to check centrality measures or clustering coe�cients [49, 60],

based on factorization of the adjacency matrix [67], and performing

network clustering [77]. Some approaches check the distribution

of node features to detect anomalies [5, 42], such as using the :-

nearest neighbor algorithm on node features, to detect nodes that

are isolated from others. These approaches fail to detect anomalies

other than contextual anomalies.

Recently, autoencoders have been widely employed for anomaly

detection [7, 15, 20, 36, 58]. The rationale is that autoencoders lever-

age neural networks to reduce the dimension of the data. Anomalies

are often sparse in the data and hence such a data compression

process tends to record only the principal part of the data and

automatically exclude sparse anomalies. Therefore, one can use

the obtained compressed data representations to approximately

reconstruct the normal data but not the anomalies. Monitoring

the reconstruction loss can thus identify those anomalies from the

normal data. For GAD, Graph Auto-Encoders (GAEs) have been

proposed to leverage Graph Neural Networks (GNNs) [25, 38, 76]

to encode both graph structure and node attributes, which have

recently been used to detect anomalies on graphs [15, 20, 36].

However, current GAE-based methods [15, 20, 36] often adopt

a strategy of reconstructing direct links between nodes based on

their representations, which brings the nodes close to each other in

the latent space that are originally connected in the graph structure.

Such a proximity-driven loss to reconstruct graph structures may

be e�ective to detect structural anomalies that are inherently clus-

tered together in the graph. However, they fail to detect joint-type

anomalies that are not naturally clustered. Intuitively, joint-type

anomalies rely on the entire neighborhoods for correct detection,

because the information of which nodes are connected and the

attributes on these neighboring nodes is useful for the detection.

In this paper, we address the current limitation and propose a

novel framework Graph Anomaly Detection via Neighborhood

Approach
Contextual

Anomaly

Structural

Anomaly

Joint-type

Anomaly

Structure-based

SCAN [77] and others [49, 60, 67]
× ✓ ×

Feature-based

LOF [5], IF [42], MLPAE [58]
✓ × ×

GAE with proximity driven loss

AnomalyDAE [20] , GCNAE [36]

DOMINANT [15]

✓ ✓ ×

GAD-NR (ours) ✓ ✓ ✓

Table 1: SOTAmethods performwell either on contextual or densely

connected structural anomalies whereas GAD-NR with its entire

neighborhood reconstruction principle �nds advantages for detect-

ing both types of anomalies along with joint-type anomalies which

are the nodes that connect a large number of nodes with di�erent

features.

Reconstruction (GAD-NR). GAD-NR extends a recently-proposed

neighborhood reconstruction-based GAE model, namely NWR-

GAE [66] to address fundamental problems in GAD. Speci�cally,

rather than using a proximity-driven loss to recover direct links,

GAD-NR imposes the dimension-reduced node representations to

reconstruct the entire neighborhoods, i.e., the receptive �elds that

are encoded/compressed by GNNs into the node representations.

Speci�cally, GAD-NR aims to reconstruct the information of one’s

own attributes, its connectivity pattern, and the attributes of its

neighboring nodes. By checking di�erent types of reconstruction

losses, GAD-NR can detect all three types of anomalies.

The key novelty of GAD-NR is that it is the �rst work that

identi�es neighborhood reconstruction as a powerful metric for

GAD, which fundamentally di�ers from previous GAE models that

adopt the metric of link reconstruction/prediction. Moreover, GAD-

NR also advances technical aspects of the backbone model NWR-

GAE [66] directly for GAD tasks, which yields substantial improve-

ments in stability, scalability, and accuracy. Speci�cally, GAD-NR

adopts Gaussian approximation of neighbors’ features distributions,

which not only substantially reduces the computation cost of NWR-

GAE but also avoids learning a too expressive model that risks

over�tting the anomalous behaviors in the data. This non-trivial

change improves NWR-GAE originally proposed for the unique

purpose of dimension reduction now suitable for GAD tasks.

We extensively compare GAD-NR with state-of-the-art (SOTA)

models on six real-world graph anomaly detection datasets that

have been benchmarked recently [44]. GAD-NR outperforms all

baselines signi�cantly (by up to 30%↑ in AUC) over �ve among

these six datasets by following the settings in [44]. We also evaluate

and demonstrate the capability of GAD-NR on detecting each of

the three types of anomalies.

Note that in real-world applications, the types of anomalies are

often unknown. The signi�cance of GAD-NR is that it allows de-

tecting the real-world anomalies across di�erent datasets (in [44])

with one �xed hyperparameter con�guration, which illustrates the

robustness of GAD-NR. Further ablation studies also justify the

e�ectiveness and computational e�ciency of Gaussian approxi-

mation adopted by GAD-NR for GAD when being compared with

NWR-GAE [66].

The contributions of this paper can be summarized as follows:

• We designed a novel framework GAD-NR for graph anomaly de-

tection. GAD-NR leverages the reconstruction loss of the entire
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neighborhood of a node from the node representation, which in

principle can detect all three types of anomalies in Fig. 1.

• Technically, GAD-NR adopts a Gaussian approximation of the

distribution of neighbors’ representations and computes a closed-

form KL divergence as the reconstruction loss, which substan-

tially improves the scalability and e�ectiveness of the approach.

• Extensive experiments on six real-world networks demonstrate

the e�ectiveness of GAD-NR compared to SOTA baselines, and

the rationale of the design speci�cs of GAD-NR.

2 RELATEDWORKS

We put previous methods for GAD into three categories as follows.

Structure-only-based methods: Traditional graph anomaly

detection focuses on detecting only structural anomalies. Many

works in this category leverage spectral analysis of the adjacency

matrix and its variants [31, 50]. Recent methods de�ne structural

similarity measures for anomalies and then perform clustering

approaches for detection [54, 77]. Statistical features computed

based on the graph structure such as in/out degrees, total weights

of edges, number of neighbors of a node, or dense subgraphs can

be utilized for GAD [2, 17, 28]. However, these structure-based

methods are only able to detect structural anomalies. They may

detect some joint-type anomalies but they tend to make a slot of

false alarms as they miss the information from node attributes.

Traditional methods for GAD over attributed networks: In

real-world applications, most of the graphs have node attributes

(features). Nodes with inconsistent attributes have a high chance

to be an anomaly node. Moreover, considering the information

on node attributes along with structure helps to locate anomalies

more accurately. Detecting anomalies in attributed networks can

be achieved by clustering methods [9, 56], interaction with human

experts [16], group merging techniques [83]. Network embedding

methods [23, 57, 63] can also be applied to GAD on attributed

graphs [6, 8]. Network embeddings can be paired with anomaly

detection techniques for tabular data such as density-based ap-

proaches [5], and distance-based techniques [1, 42] to �nd node

anomalies on graphs. However, these approaches, since they pro-

cess graph structure separately with node attributes, often fail to

capture the synergy of graph structure and node attributes and may

be suboptimal for GAD in some cases.

Deep learning based GAD approaches: Auto-Encoder frame-

work that focuses on extracting principal components from the

data via deep learning has been extensively applied in anomaly

detection [7, 15, 20, 36, 47]. Applying traditional autoencoders to

node attributes [58] can only detect contextual anomalies. GAE

built upon GNNs can combine node attributes and graph structure

properly and can detect anomalies based on checking the recon-

struction loss of node attributes or links [15, 20, 36]. But these

works do not reconstruct the entire neighborhood for GAD. Rather,

they use reconstruction error, and estimating Gaussian mixture

density is also applied for GAD [41]. Some works view nodes with

multiple views and a node may or may not be considered an anom-

aly in di�erent views. These nodes hold attributes from multiple

views of the identity. To capture such multi-view information, mul-

tiple GNNs are often applied [46, 55, 61, 73, 74] for anomaly detec-

tion. GNNs have also been applied to detect anomalies in multiple

scales [24], and to detect anomalies and solve recommendation

tasks simultaneouly [71, 81]. More involved techniques such as

self-supervised learning [13, 30, 33, 45, 78, 82] and reinforcement

learning [16, 39, 51] have also been recently applied to GAD.

3 NOTATIONS AND PROBLEM FORMULATION

In this work, we focus on detecting anomalous nodes over attributed

static graphs. An attributed graph � = (+ , �, - ) ∈ G consists of a

vertex set+ = {1, 2, · · · , # } and an edge set �. - = [· · · G¦ī · · · ]
¦ ∈

R
|Ē |×ġ collect all node attributes and Gī ∈ R

ġ is the attribute for

nodeD. The degree of nodeD is denoted as 3ī . This work focuses on

unsupervised anomaly detection. Each nodeD has an anomaly label

~ī where ~ī = 0 or ~ī = 1 implies node D is normal or anomalous

respectively. The goal is to design a detection method 5 (�) : G →

{0, 1}Ċ that associates each nodes with a label. However, these

node labels are assumed to be unknown when designing 5 .

Let Nī be the set of 1-hop neighbor nodes of node D. Let N̄ī be

an augmented set of 1-hop neighborhood of node D that includes

the attribute of node D, the set of the attributes of its neighbors,

i.e., N̄ī ≜ (Gī , {GĬ |E ∈ Nī }). Our assumption to detect anomalous

nodes is that given the label ~ī , the distribution P(N̄ī |~ī ) are dif-

ferent across norms and anomalies. Here, we consider just one-hop

neighborhood as a proof of concept, which is also often adequate

for use cases in practice [4]. The neighborhoods considered can be

extended to the multi-hop case, while extra computation costs need

to be paid in that scenario.

4 METHODOLOGY

In this section, we �rst provide the motivation of our method by

narrating the potential drawbacks of previous graph auto-encoder

methods. Then, we introduce GAD-NR which is based on neigh-

borhood reconstruction.

4.1 Motivations

AutoEncoder (AE) is an easy-to-use and e�ective framework for

anomaly detection. The motivation of AE is to perform dimen-

sion reduction by compressing the high dimensional input data

into a low dimensional latent representation [27] via an encoder

and reconstructing the original input with the help of a decoder.

AE can be used for anomaly detection because such dimension

reduction is expected to capture the principal properties of the data

mostly corresponding to the normal data points. The data points

that cannot be properly reconstructed via the decoder, i.e., with

larger reconstruction losses tend to be anomalies.

Graph AutoEncoder (GAE) is used to perform dimension re-

duction of graph data via a Graph Neural Network (GNN) as the

encoder [37]. Given a graph � = (+ , �), GAE encodes graph data

into node representations {ℎĬ |E ∈ + }. The decoder of current GAE

methods is to reconstruct the graph structure and node attributes

from these node representations. Regarding graph-structure recon-

struction, it typically relies on a mapping from the representations

of two nodes to 0 or 1 that indicates whether there is an edge be-

tween them [15, 20], e.g., comparing ℎ¦ī ℎĬ with some threshold

\ to reconstruct the edge. However, this procedure can only pre-

serve proximity information of nodes in the graph, i.e., pushing

node representations close if the corresponding nodes are directly



WSDM ’24, May 4th–8th, 2024, Mérida, Yucatán, Mexico Amit Roy et al.

!"

UPDATE(/"
(+)
,+")

/"
(+)

/(!")

/01
(+)

ï

+"

/03
(+)

/045
(+) /"

(6)

78(/"
(6)
)
9:; <( 9:;, :;)

7=(/"
(6)
)
/"
(+) <(>/"

(+)
, /"

(+)
)

?(@", £")
BC(D)

+

F8

F=

FG

Encoder Decoder

;

ï ï

ï

H6

H8"

HI

JK(/"
(6)
)

JL(/"
(6)
)
>£"

�@"

Loss

stop-gradient
?( �@", O£")

Reparameterization

Figure 2: Model architecture of GAD-NR. The encoder (left) per-

forms dimension reduction with an MLP followed by a message

passing GNN to obtain the hidden representation of a node. The

decoder (right) reconstructs the self features and the node degree

via MLPs and estimates the neighbor feature distribution with an

MLP-predicted re-parameterized Gaussian distribution. Reconstruc-

tions of the self features and the node degree are optimized with

MSE-loss whereas the KL-divergence between the ground truth and

the learned neighbors’ feature distribution is used for the optimiza-

tion of the distribution estimation.

connected in the graph, which may miss useful information for

detecting anomalies. Moreover, by checking the reconstruction loss,

one may only tell whether an edge is an anomaly. To detect node

anomalies that are often more useful in practice, one needs to ag-

gregate the reconstruction losses of edges into the node level, and

how to properly aggregate these losses is not a trivial problem by

itself and often depends on heuristics.

4.2 GAE via Neighborhood Reconstruction

Our strategy to overcome the drawback of traditional GAEs lies

in the �rst-principle idea of autoencoders. Autoencoders aim to

perform dimension reduction of the data with the least loss to

recover the original data. GAE encodes each node’s attributes and

the attributes of the nodes in its one-or-several-hop neighborhood

into a node representation. Therefore, the node representation

should be able to reconstruct the neighborhood and its attributes

with the least loss. This idea leads to the design of GAE in this work.

The model architecture is illustrated by Fig. 2 and describes the

pseudocode in Algorithm 1.

4.2.1 The encoder. The encoder ¨(·) follows the common pipeline

of message passing GNN [22] e.g. GCN [38] or GraphSAGE [25].

A GNN will further iteratively aggregate the representations from

the neighbors and combine them with one’s own representation

to update the representation. Speci�cally, let ℎ
(0)
ī = Gī . For ; =

0, 1, ..., ! − 1,

ℎ
(Ģ+1)
ī = UPDATE (ℎ

(Ģ )
ī ,AGG ({ℎ

(Ģ )
Ĭ : E ∈ Nī }), (1)

The AGG function aggregates messages from the neighbors and

the UPDATE function updates the node representations. Note that

in practice, if the node attribute Gī is extremely high dimensional

and sparse, a random linear projection is used to encode them into

a dense low-dimensional representation ℎ
(0)
ī = b (Gī ).

4.2.2 The decoder. Our decoder is designed based on the �rst prin-

ciple of designing an autoencoder [27]. We are supposed to reverse

the procedure of Eq. (1) by using ℎ
(Ĉ)
ī to reconstruct all the in-

formation within the !-hop neighborhood of D. In practice, it is

Algorithm 1 GAD-NR : Graph Anomaly Detection via Neighbor-

hood Reconstruction

1: Input: Graph � (+ , �), Input Feature - , Anomaly Label .

2: Encoder:

3: for D ∈ + do

4: ℎ
(0)
ī = b (Gī )

5: ℎ
(1)
ī = UPDATE (ℎ

(0)
ī ,AGG ({ℎ

(0)
Ĭ : E ∈ Nī })

6: end for

7: Decoder:

8: for D ∈ + do

9: ℎ̂
(0)
ī = kĮ (ℎ

(1)
ī ), 3̂ī = kĚ (ℎ

(1)
ī )

10: `ī = stop-gradient( 1
Ěī

∑

Ĭ∈Nī
ℎ
(0)
Ĭ )

11: Σī = stop-gradient( 1
Ěī−1

∑

Ĭ∈Nī
(ℎ
(0)
Ĭ − `ī ) (ℎ

(0)
Ĭ − `ī )

¦)

12: ˆ̀ī = qč (ℎ
(1)
ī ), Σ̂ī = diag(exp(qĂ (ℎ

(1)
ī )))

13: for 8 = 1 to @ do ² Reparameterization

14: ℎ̄ğ = FNN(Iğ ), Iğ ∼ N( ˆ̀ī , Σ̂ī )

15: end for

16: ¯̀ī =
1
ħ

∑ħ
ğ=1 ℎ̄ğ , Σ̄ī =

1
Ěī−1

∑ħ
ğ=1 (ℎ̄ğ − ¯̀ī ) (ℎ̄ğ − ¯̀ī )

¦

17: Weighted Loss Function

18: L = _Į
∑

ī∈Ē
D

(

ℎ
(0)
ī , ℎ̂

(0)
ī

)

+ _Ě
∑

ī∈Ē
D

(

3ī , 3̂ī

)

+ _ĤKL(N (`ī , �ī ) | |N ( ¯̀ī , Σ̄ī ))

19: end for

computationally heavy for large !. In this work, we focus on recon-

structing the information within just the one-hop neighborhood as

a proof of concept, which we �nd is practically su�cient for GAD.

The information within just the one-hop neighborhood N̄ī con-

sists of the attributes of the center nodeℎ
(0)
ī and the set of attributes

of the direct neighbors of the centerHī = {ℎ
(0)
Ĭ |E ∈ Nī }.

Self reconstruction: In order to reconstruct the attributes of

the center node, we design a simple decoder that takes ℎ
(Ĉ)
ī as

input and reconstructs ℎ
(0)
ī by a multi-layer perception (MLP)

ℎ̂
(0)
ī = kĮ (ℎ

(1)
ī ). Then, the self-reconstruction loss for node D can

be calculated as:

LĮ
ī = D

(

ℎ
(0)
ī , ℎ̂

(0)
ī

)

(2)

where D(·, ·) is a distance function such as L2-distance that mea-

sures the discrepancy between the original attributes and the re-

constructed attributes.

Neighborhood reconstruction: It is far from trivial to decode

the setHī from the compressed ℎ
(Ĉ)
ī . The di�culties come from

two aspects. Firstly, the size of the set might vary across nodeD ∈ + .

Secondly, the elements in the set do not have an order. Using an

MLP to decode a set of a variable size from ℎ
(Ĉ)
ī is impossible.

Our idea is inspired by the recent work NWR-GAE [66]. We

regard the setHī = {ℎ
(0)
Ĭ |E ∈ Nī } as 3ī many I.I.D. samples from

a distribution Pī . In fact, the empirical distribution of the elements

inHī is P
emp
ī (ℎ) = 1

Ěī

∑

Ĭ∈Nī
X (ℎ − ℎ

(0)
Ĭ ) where X (·) is the dirac

delta function. In this sense, we can decompose the neighborhood

information into two parts, namely the number of neighbors (i.e. the

node degree) 3ī and the distribution of neighbor’s representations

Pī . The reconstruction procedure should reconstruct these two

parts of information properly.
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Node degree reconstruction. To reconstruct node degree 3ī , we

use another MLP that follows 3̂ī = kĚ (ℎ
(Ĉ)
ī ).

Then the node degree reconstruction loss for node D is:

LĚī = D
(

3ī , 3̂ī

)

(3)

Here, we just use ℓ2-loss as the metric D, though as node degrees

are non-negative integers, we can also adopt discrete distributions

such as Poisson distribution to model it.

Neighbors’ representation distribution reconstruction. To recon-

struct the distribution Pī from the node representation ℎ
(Ĉ)
ī , we

�rst map ℎ
(Ĉ)
ī to an estimation of the distribution P̂ī . As we do not

know Pī in the population level, the �rst direct idea is to recon-

struct the empirical distribution P
emp
ī by following NWR-GAE [66].

The Wasserstein distance between P̂ī and P
emp
ī is adopted as the

reconstruction loss in NWR-GAE [66]. However, the computation

of such a loss has a huge overhead, because it needs to solve a

matching problem based on the Hungarian algorithm [34], which

is of complexity $ (33ī ). Moreover, empirically, we observe that re-

constructing such an empirical distribution is likely to over�t the

anomalies, which actually does harm to anomaly detection tasks.

Therefore, we propose to reconstruct a multi-variate Gaussian

approximation of Pī . Speci�cally, given Hī = {ℎ
(0)
Ĭ |E ∈ Nī },

we estimate the mean and covariance matrix of the neighbors’

representations by following:

čī =

1

Ěī

∑

Ĭ∈Nī

ℎ
(0)
Ĭ , �ī =

1

Ěī − 1

∑

Ĭ∈Nī

(ℎ
(0)
Ĭ − č̂ī ) (ℎ

(0)
Ĭ − č̂ī )

¦ (4)

Then, we map ℎ
(Ĉ)
ī to a multi-variate Gaussian distribution P̂ī

through the following procedure. We sample @ neighborhood fea-

tures ℎ̄1, · · · , ℎ̄ħ by transforming samples I1, · · · , Iħ from the dis-

tribution N( ˆ̀ī , Σ̂ī ) via a fully-connected neural network (FNN).

Here the parameters ˆ̀ī , Σ̂ī are determined by

ˆ̀ī = qč (ℎ
(Ĉ)
ī ), �̂ī = diag(exp(qĂ (ℎ

(Ĉ)
ī ))), (5)

where qč (·) is an MLP, and each entry of qĂ (ℎ
(Ĉ)
ī ) is non-negative,

which includes an MLP followed by exp(·). Then, we estimate

the mean and the covariance matrix of reconstructed neighbors’

features based on ¯̀ī =
1
ħ

∑ħ
ğ=1 ℎ̄ğ and Σ̄ī =

1
Ěī−1

∑ħ
ğ=1 (ℎ̄ğ− ¯̀ī ) (ℎ̄ğ−

¯̀ī )
¦, respectively.

Given the two groups of parameters (`ī , Σī ) and ( ¯̀ī , Σ̄ī ) for

multi-variate Gaussian distributions, we adopt the KL divergence

between these two distributions to measure the reconstruction loss:

LĤ
ī = KL(N (`ī , Σī ) | |N ( ¯̀ī , Σ̄ī )) =

1

2
[log
|Σī |

|Σ̄ī |
− ? + tr(Σ̄−1ī Σī ) + (`ī − ¯̀ī )

¦
Σ̄
−1
ī (`ī − ¯̀ī ).]

(6)

where ? is the dimension of representation. Note that `ī and �ī

should not allow the gradient to pass through as they provide

supervision signals. In practice, we may encounter the case when

3ī is smaller than ? , which makes Σī in Eq. (4) not full-ranked and

causes a numerical problem. Therefore, we add an identity matrix

to the covariance matrices, �ī ← �ī + 2�, �̄ī ← �̄ī + 2� for some

constant 2 > 0 to compute Eq. (6).

Note that the complexity of the above computation including

Eqs. (4),(5) and (6) is $ (3ī ), which signi�cantly reduces the com-

plexity of the pipeline in [66].

The remaining challenge is that since node degrees vary across

di�erent nodes, the computation of Eq. (4) is irregular. For this, we

extend the package adopted in principal neighborhood aggrega-

tion [14] to implement Eq. (4) e�ciently in parallel across di�erent

nodes.

4.2.3 The overall reconstruction loss. The overall reconstruction

loss is a combination of the losses to reconstruct node self attributes

in Eq. (2), node degrees in Eq. (3), and neighbors’ representation

distributions in Eq. (6):

L =

∑

ī∈Ē

L′ī , where L
′
ī ≜ _ĮL

Į
ī + _ĚL

Ě
ī + _ĤL

Ĥ
ī , (7)

and where _Į , _Ě , and _Ĥ are the hyper-parameters that control the

weights of di�erent types of reconstruction losses.

4.3 Anomaly Detection

Wemay adopt Lī in Eq. (7) as the score to characterize how anoma-

lous each node D is to be. The greater score means the encoded in-

formation is harder to be reconstructed, and thus the corresponding

node is more likely to be an anomaly. We may also adopt di�erent

hyperparameters _′Į , _
′
Ě
, and _′Ĥ if we have di�erent con�dence or

some prior knowledge about the type of anomaly to be detected.

For example, if we tend to detect contextual anomalies, we can

increase _′Į . To encode such �exibility, we de�ne the anomaly score

~̂ī in the following general form

~̂ī = L′ī (_
′
Į , _
′
Ě
, _′Ĥ) = _′ĮL

Į
ī + _

′
Ě
LĚī + _

′
ĤL

Ĥ
ī , (8)

ranking which tells the nodes that are more likely to be anomalies.

Although di�erentweights here emphasize the detection of di�erent

types of anomalies, in Sec. 5, we show that GAD-NR is robust to the

selection of these weights, where a �xed choice of these weights is

su�cient to outperform baselines to detect real-world anomalies

across di�erent datasets.

4.4 Improvements over NWR-GAE

Here, we would like to provide a more direct explanation how GAD-

NR advances the idea of neighborhood reconstruction (previously

proposed in NWR-GAE [65] for the purpose of dimension reduction

instead of GAD) to better �t GAD tasks. NWR-GAE is built upon an

optimal transport loss and needs to run a complicated Hungarian

matching algorithm [34] for each node to reconstruct its neighbors’

attributes to compute the loss function. Such complexity is $ (33)

for a node of degree 3 . GAD-NR regards the representations of

neighbors’ attributes as samples from a Gaussian distribution and

adopts KL divergence [12] between Gaussian distributions as the

reconstruction loss, which has a closed form and has complexity

$ (3). This approximation is crucial for GAD tasks:

NWR-GAE did not adopt such approximation because NWR-

GAE aims to perform dimension reduction. Achieving a low reduc-

tion error is the ultimate goal of NWR-GAE. Therefore, NWR-GAE

should be su�ciently expressive to make low-dimensional represen-

tations recover high-dimensional data. However, GAD tasks have

di�erent goals. A model for GAD should not be too expressive, and
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otherwise risks over�tting the anomalies. GAD-NR just adopts the

correct trade-o�, where Gaussian approximation (by just checking

the �rst and second moments of the distributions) is adopted, which

not only improves anomaly detection accuracy but also substan-

tially reduces computational complexity. Moreover, NWR-GAE also

supports reconstructing multi-hop neighbors. However, we found

that multi-hop reconstruction did not get obvious improvement in

the task of GAD while introducing much computational overhead,

so GAD-NR only considers the �rst hop in practice.

5 EXPERIMENT

In this section, we extensively compare GAD-NR with several base-

line methods for graph anomaly detection. Speci�cally, we aim to

answer the following questions:

• How does neighborhood reconstruction facilitate in the perfor-

mance improvement of GAD-NR for GAD?

• Which part of the GAD-NR is important for di�erent types of

anomaly detection?

• How do important hyperparameters such as the size of hid-

den representations, and the weights before di�erent types of

reconstruction losses a�ect the performance of GAD-NR?

• How does the adopted Gaussian approximations of neighbor-

hood feature distributions improve the running time e�ciency

of GAD-NR?

5.1 Datasets and Baselines

We incorporate six real-world datasets (Cora, Weibo, Reddit, Disney,

Books, and Enron) and fourteen baseline anomaly detection models

for our comparison following the BOND [43] paper. Among the

baseline models, we included feature-based models LOF [5], IF [42],

MLPAE [58] and structure-based AD models, SCAN [77]. Also, we

performed comparisons of GAD-NR with models that focus on

both structures and attributes via residual reconstruction error

Radar [40] and ANOMALOUS [54]. Lastly, we incorporated some

popular generative models for GAD, which include autoencoder

architecture GCNAE [36], DOMINANT [15], DONE and AdONE [7],

AnomalyDAE [20], adversarial learning-based method GAAN [11]

and also contrastive learning-based methods CONAD [78].

5.2 Experimental Settings

Our �rst experimental setting follows the benchmark paper BOND [44].

Note that among the datasets, Weibo, Reddit, Disney, Books, and

Enron have real-world anomaly labels. For the Cora dataset, there

are no real benchmark anomaly labels, so we follow the bench-

mark paper BOND where the union of contextual and structural

anomalies are considered anomaly labels for evaluation in the Cora

dataset. The results are reported in Table 2. We call this setting

the benchmark anomaly detection. Moreover, we attempt to study

the performance to detect each type of anomalies separately, so

for each dataset including those with real-world labels, we also in-

ject contextual, structural, and joint-type anomalies for evaluation,

which give the later results in Table 4. Due to the page limitation,

we present contextual and merged the structural and joint-type

anomaly detection results together in this work.

Contextual anomalies are nodes whose attributes are signi�-

cantly di�erent from their neighboring nodes. Hence, to generate

this type of anomaly for a target node D, its feature Gī is replaced

with another randomly sampled node E ’s feature GĬ that has the

largest Euclidean distance with Gī . Let = denote the number of con-

textual anomaly nodes and @ denote the number of candidate nodes

randomly sampled in the above procedure. Structural anomalies are

nodes that are densely connected in contrast to sparsely connected

normal nodes. To inject structural outliers, we consider< nodes

at random and then make them fully connected and this process

will be repeated for = times to generate = such cliques of size<.

Following the BOND paper, we approximately set @ and< as twice

the avg. degree for most datasets. To add joint-type anomalies in

di�erent datasets, we choose = nodes randomly as anomalies. Then,

we connect each of these = nodes with randomly sampled< other

nodes. Therefore, those anomalous nodes can be treated as nodes

with high degrees and connected to neighbors with di�erent types

of features. We utilized the PyGOD library [44] for the injection of

contextual and structural anomalies and for running the baseline

anomaly detection models.

Hyperparameter Tuning: In practice, we often do not know

the anomaly labels to tune the parameters. Typically, the way to

choose hyperparameters is based on some expert experiences and

a good model should be robust by using such a set of hyperpa-

rameters. Hence, we �x GAD-NR’s encoder as GCN with hidden

dimension 16 (expect for Cora, where 128 is used) and �x the hyper-

parameters of the decoder as _Į = 0.8, _Ě = 0.5, and _Ĥ = 0.001 to

run the experiments for all datasets �ve times and report the aver-

aged performance with standard deviation. We compare GAD-NR’s

performance obtained via this �xed hyperparameter setting with

the averaged performance of baselines proposed in the benchmark

work [43]. Our experiments demonstrate that our model GAD-NR

can outperform the baselines by setting a set of hyperparameters

that are not sensitive to the datasets, whichmakes themost practical

sense.

To compare with the best performance of baselines reported

in [43], we also performed a grid search of the hyperparameters of

GAD-NR for each dataset as follows: 1) Self-attribute reconstruction

weight, _Į ∈ {0.1, 0.5, 0.8, 0.9} and _
′
Į ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5,

1.75, 2.0}, 2) Degree reconstruction weight, _Ě ∈ {0.1, 0.5, 0.8} and

_′
Ě
∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}, 3) Neighborhood recon-

struction weight _Ĥ ∈ {0.001, 0.5, 0.8} and _
′
Ĥ ∈ {0.25, 0.5, 0.75,1.0,

1.25, 1.5, 1.75, 2.0}, 4) The number of dimension of the hidden layer,

3 ∈ {8, 16, 32, 64, 128}, 5) Encoder GNN,¨ ∈ {GCN, GraphSAGE, GIN}.

Hardware: All the experiments are performed on a Linux server

with a 2.99GHz AMD EPYC 7313 16-Core Processor and 1 NVIDIA

A10 GPU with 24GB memory.

5.3 Evaluation Metric

We adopt the area under the ROC curve as the evaluation metric.

The ROC curve is created by plotting the true positive rate against

the false positive rate at various threshold settings. In the experi-

ment, we regard the anomaly nodes as positive classes and compute

AUC for it. AUC equals 1 means that the model makes a perfect

prediction, and AUC equals 0.5 means that the model has no distin-

guishing ability. AUC is better than accuracy when evaluating the

anomaly detection task since it is not sensitive to the imbalanced

class distribution of the data.
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Algorithm Cora Weibo Reddit Disney Books Enron

LOF 69.9 ± 0.0 (69.9) 56.5 ± 0.0 (56.5) 57.2 ± 0.0 (57.2) 47.9 ± 0.0 (47.9) 36.5 ± 0.0 (36.5) 46.4 ± 0.0 (46.4)

IF 64.4 ± 1.5 (67.4) 53.5 ± 2.8 (57.5) 45.2 ± 1.7 (47.5) 57.6 ± 2.9 (63.1) 43.0 ± 1.8 (47.5) 40.1 ± 1.4 (43.1)

MLPAE 70.9 ± 0.0 (70.9) 82.1 ± 3.6 (86.1) 50.6 ± 0.0 (50.6) 49.2 ± 5.7 (64.1) 42.5 ± 5.6 (52.6) 73.1 ± 0.0 (73.1)

SCAN 62.8 ± 4.5 (72.6) 63.7 ± 5.6 (70.8) 49.9 ± 0.3 (50.0) 50.5 ± 4.0 (56.1) 49.8 ± 1.7 (52.4) 52.8 ± 3.4 (58.1)

Radar 65.0 ± 1.3 (66.0) 98.9 ± 0.1 (99.0) 54.9 ± 1.2 (56.9) 51.8 ± 0.0 (51.8) 52.8 ± 0.0 (52.8) 80.8 ± 0.0 (80.8)

ANOMALOUS 55.0 ± 10.3 (68.0) 98.9 ± 0.1 (99.0) 54.9 ± 5.6 (60.4) 51.8 ± 0.0 (51.8) 52.8 ± 0.0 (52.8) 80.8 ± 0.0 (80.8)

GCNAE 70.9 ± 0.0 (70.9) 90.8 ± 1.2 (92.5) 50.6 ± 0.0 (50.6) 42.2 ± 7.9 (52.7) 50.0 ± 4.5 (57.9) 66.6 ± 7.8 (80.1)

DOMINANT 82.7 ± 5.6 (84.3) 85.0 ± 14.6 (92.5) 56.0 ± 0.2 (56.4) 47.1 ± 4.5 (54.9) 50.1 ± 5.0 (58.1) 73.1 ± 8.9 (85.0)

DONE 82.4 ± 5.6 (87.9) 85.3 ± 4.1 (88.7) 53.9 ± 2.9 (59.7) 41.7 ± 6.2 (50.6) 43.2 ± 4.0 (52.6) 46.7 ± 6.1 (67.1)

AdONE 81.5 ± 4.5 (87.4) 84.6 ± 2.2 (87.6) 50.4 ± 4.5 (58.1) 48.8 ± 5.1 (59.2) 53.6 ± 2.0 (56.1) 44.5 ± 2.9 (53.6)

AnomalyDAE 83.4 ± 2.3 (85.3) 91.5 ± 1.2 (92.8) 55.7 ± 0.4 (56.3) 48.8 ± 2.2 (55.4) 62.2 ± 8.1 (73.2) 54.3 ± 11.2 (69.1)

GAAN 74.2 ± 0.9 (76.1) 92.5 ± 0.0 (92.5) 55.4 ± 0.4 (56.0) 48.0 ± 0.0 (48.0) 54.9 ± 5.0 (61.9) 73.1 ± 0.0 (73.1)

GUIDE 74.7 ± 1.3 (77.5) OOM_C OOM_C 38.8 ± 8.9 (52.5) 48.4 ± 4.6(63.5) OOM_C

CONAD 78.8 ± 9.6 (84.3) 85.4 ± 14.3 (92.7) 56.1 ± 0.1 (56.4) 48.0 ± 3.5 (53.1) 52.2 ± 6.9 (62.9) 71.9 ± 4.9 (84.9)

GAD-NR (w/o feat. recon.) 83.41 ± 2.18 (85.41) 69.64 ± 0.75 (70.44) 50.00 ± 0.44 (50.88) 74.11 ± 0.18 (76.17) 62.32 ± 3.41 (65.43) 70.20 ± 1.16 (71.72)

GAD-NR (w/o degree recon.) 82.25 ± 1.37 (83.04) 70.09 ± 1.20 (71.50) 49.01 ± 0.29 (50.05) 76.25 ± 0.37 (79.09) 64.08 ± 3.13 (68.94) 72.44 ± 1.33 (75.81)

GAD-NR (w/o neighbor recon.) 76.47 ± 3.57 (80.47) 69.10 ± 1.10 (70.25) 48.67 ± 2.04 (50.67) 60.69 ± 1.24 (63.69) 49.46 ± 2.09 (52.46) 56.01 ± 3.00 (59.01)

GAD-NR 87.55 ± 2.56 (88.40) 87.71 ± 5.39 (92.09) 57.99 ± 1.67 (59.90) 76.76 ± 2.75 (80.03) 65.71 ± 4.98 (69.79) 80.87 ± 2.95 (82.92)

Table 2: Performance comparison (ROC-AUC) of GAD-NR in benchmark anomaly detection for six di�erent real-world datasets (injected

anomaly for Cora dataset). For the results of baseline methods, we followed the BOND [43] paper where the avg performance ± the STD of perf.

(max perf.) is reported. For our model GAD-NR, we �x hyperparameters ČĮ = 0.8, ČĚ = 0.5 and ČĤ = 0.001 and report the avg performance ± the

STD of perf. for all datasets including the best performance in each dataset with tuned hyperparameters. The best and second best performances

are mentioned in bold and underlined respectively andċċĉ_ÿ indicates out of memory with regard to GPU.

Comparison

Type
Algorithm Cora Weibo Reddit Disney Books Enron

Performance

Comparison

NWR-GAE 84.28 ± 0.06 73.68 ± 3.13 51.20 ± 1.16 75.56 ± 1.65 79.75 ± 2.48 80.24 ± 2.43

GAD-NR 87.55 ± 2.56 87.71 ± 5.39 57.99 ± 1.67 76.76 ± 2.75 65.71 ± 4.98 80.87 ± 2.9

Running time

Seconds per epoch

NWR-GAE 51.270 48.312 55.379 0.603 7.288 65.152

GAD-NR 2.35 0.544 0.095 0.035 0.0874 0.0109

Table 3: Direct Performance Comparison between NWR-GAE [66] and our model GAD-NR

Algorithm Cora Weibo Reddit Disney Books Enron

MLPAE 88.90 ± 0.00 90.61 ± 0.02 51.91 ± 4.55 86.36 ± 0.00 53.00 ± 13.99 68.74 ± 16.08

SCAN 49.80 ± 0.50 48.46 ± 0.00 48.59 ± 0.00 62.81 ± 0.00 50.15 ± 0.00 40.41 ± 0.00

Radar 50.20 ± 0.60 72.31 ± 0.00 49.98 ± 0.00 79.89 ± 0.00 66.30 ± 0.00 79.51 ± 0.00

ANOMALOUS 51.10 ± 1.30 72.31 ± 0.00 49.65 ± 1.26 79.89 ± 0.00 66.30 ± 0.00 48.92 ± 0.85

GCNAE 88.90 ± 0.00 90.79 ± 0.35 52.02 ± 0.36 87.52 ± 2.32 40.77 ± 1.72 59.52 ± 15.23

DOMINANT 71.90 ± 6.60 57.07 ± 0.34 47.96 ± 0.39 65.62 ± 9.53 50.13 ± 5.33 63.84 ± 0.27

DONE 70.2 ± 8.30 81.75 ± 1.00 46.52 ± 1.47 69.26 ± 5.33 38.52 ± 2.08 59.90 ± 6.31

AdONE 73.90 ± 5.00 83.68 ± 0.47 46.61 ± 3.42 86.12 ± 1.83 65.00 ± 2.63 62.19 ± 5.37

AnomalyDAE 80.20 ± 2.80 79.40 ± 3.67 49.33 ± 2.28 81.02 ± 8.13 40.43 ± 18.56 68.12 ± 14.93

GAAN 88.70 ±0.10 90.68 ± 0.14 49.64 ± 1.12 86.39 ± 0.13 32.99 ± 22.38 44.78 ± 14.20

GUIDE 88.30 ± 0.80 OOM_C OOM_C 78.40 ± 0.62 57.59 ± 0.08 OOM_C

CONAD 72.50 ± 5.80 56.62 ± 0.37 47.70 ± 0.08 59.67 ± 7.00 54.04 ± 7.22 71.23 ± 0.54

GAD-NR (w/o feat. recon.) 58.52 ± 2.32 57.66 ± 3.22 49.60 ± 2.11 82.98 ± 2.60 62.11 ± 5.01 68.27 ± 2.09

GAD-NR (w/o degree recon.) 73.04 ± 2.60 64.28 ± 6.35 54.10 ± 1.96 91.10 ± 3.56 60.07 ± 1.17 75.25 ± 3.57

GAD-NR (w/o neighbor recon.) 71.52 ± 3.59 61.45 ± 4.42 53.45 ± 1.15 57.11 ± 2.50 55.36 ± 3.19 68.23 ± 3.34

GAD-NR 89.10 ± 3.10 87.53 ± 3.54 55.15 ± 2.41 85.72 ± 1.31 74.73 ± 1.50 85.79 ± 2.65

Algorithm Cora Weibo Reddit Disney Books Enron

MLPAE 51.28 ± 0.43 50.42 ± 0.00 50.10 ± 0.52 58.77 ± 0.00 52.52 ± 2.48 48.30 ± 1.21

SCAN 82.35 ± 0.00 49.86 ± 0.00 98.11 ± 0.00 64.82 ± 0.00 62.21 ± 0.00 48.08 ± 0.00

Radar 62.37 ± 0.00 60.04 ± 0.00 65.70 ± 0.00 63.77 ± 0.00 32.69 ± 0.00 53.29 ± 0.00

ANOMALOUS 45.39 ± 1.15 60.04 ± 0.00 58.08 ± 29.77 63.77 ± 0.00 32.69 ± 0.00 52.81 ± 0.23

GCNAE 51.19 ± 0.00 50.66 ± 0.06 51.30 ± 0.43 52.82 ± 0.90 31.93 ± 0.35 47.33 ± 6.84

DOMINANT 77.59 ± 0.03 49.01 ± 0.92 93.18 ± 0.00 34.84 ± 4.38 63.99 ± 0.11 62.70 ± 0.10

DONE 72.34 ± 14.02 55.56 ± 0.90 65.61 ± 10.50 71.12 ± 1.40 87.86 ± 0.42 50.88 ± 2.51

AdONE 81.32 ± 1.39 59.23 ± 0.53 80.07 ± 2.26 71.43 ± 2.76 88.30 ± 0.61 55.93 ± 2.05

AnomalyDAE 80.73 ± 0.93 49.16 ± 1.33 47.03 ± 2.66 49.93 ± 6.26 32.25 ± 9.01 49.83 ± 1.89

GAAN 53.26 ± 0.84 53.09 ± 0.18 62.78 ± 4.85 60.20 ± 0.35 78.98 ± 1.00 59.88 ± 2.35

GUIDE 52.03 ± 2.36 OOM_C OOM_C 55.20 ± 1.50 63.72 ± 0.89 OOM_C

CONAD 78.85 ± 0.02 55.48 ± 0.36 93.25 ± 0.17 34.49 ± 2.32 63.97 ± 0.31 59.98 ± 0.45

GAD-NR (w/o feat loss) 73.23 ± 0.61 50.81 ± 0.28 91.95 ± 0.03 73.23 ± 1.61 80.06 ± 5.49 79.18 ± 2.01

GAD-NR (w/o degree loss) 74.28 ± 1.67 53.33 ± 2.31 87.69 ± 6.47 66.47 ± 0.51 82.95 ± 0.30 72.19 ± 0.06

GAD-NR (w/o neigh loss) 67.51 ± 0.04 50.29 ± 1.11 91.34 ± 0.11 60.54 ± 2.06 56.28 ± 3.03 75.65 ± 1.39

GAD-NR 83.55 ± 3.03 62.35 ± 1.05 92.01 ± 0.73 74.81 ± 4.39 85.01 ± 7.90 82.22 ± 2.14

Table 4: Performance comparison (ROC-AUC) of GAD-NR in contextual (left) and structural + joint-type (right) anomaly detection for di�erent

real-world datasets. The best and second best performances are mentioned in bold and underlined respectively andċċĉ_ÿ indicates out of

memory with regard to GPU.
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Figure 3: Impacts of varying feature reconstruction weight loss Č′Į , degree reconstruction weight loss Č′
Ě
and neighbor reconstruction weight

loss Č′Ĥ in Eq. (8) on detecting di�erent types of anomalies in the Cora and Books dataset.

5.4 Detection Performance Comparison

5.4.1 GAD-NR shows the superior performance in di�erent types of

anomaly detection. In Table 2, we show the results of GAD-NR on

the benchmark anomaly detection with baseline models. In Table 4,

we present the results in injected contextual, structural and joint-

type anomaly detection. From the results, we can observe that GAD-

NR outperforms the baseline methods over most of the datasets in

detecting benchmark anomaly labels, contextual anomaly labels,

and structural + joint-type anomalies.

The key reason behind the performance improvement can be

attributed to the entire neighborhood reconstruction around a tar-

get node, which includes its self-feature reconstruction, degree

reconstruction, and neighbor-feature distribution reconstruction.

The feature-based models like MLPAE perform quite well at

detecting contextual anomalies, speci�cally in the Cora dataset as

they put emphasis on self-feature reconstruction. However, MLPAE

performs worse to detect joint-type and structural anomalies as

they ignore the graph structure. Approaches that only consider the

structure information, for example, SCAN performs exceedingly

well in detecting structural + joint-type anomalies but they are

incapable of doing well in contextual anomaly detection. In the case

of the GAE-based models, the performance is more competitive

while still worse than GAD-NR in Table 2 and Table 4.

5.4.2 Impacts of di�erent types of reconstruction losses. In Table 2,

Table 4 along with the performance of GAD-NR with all three types

of reconstruction loss, we have also shown results by removing each

part from the loss function of the GAD-NR’s decoder, i.e., setting

ČĮ = 0, ČĚ = 0 or ČĤ = 0 in Eq. (7). From the results in Table 4, it is

clearly visible that without the neighborhood reconstruction part

ČĤ = 0, the performance of GAD-NR drops the most in both types

of anomaly detection.
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From the results of Table 4, we can observe that without the self-

feature reconstruction loss (ČĮ = 0), the performance of GAD-NR

drops down heavily when detecting contextual anomalies. When

detecting the structural + joint-type anomalies, the performance

decay of GAD-NR is moderate, which matches the expectation. By

removing the loss for degree reconstruction (ČĚ = 0), GAD-NR also

su�ers from some performance decay. However, such decay is less

severe compared to that of removing self-feature reconstruction for

detecting contextual anomalies or that of removing neighbors’ fea-

ture distribution reconstruction for detecting structural anomalies

and joint-type anomalies.

5.4.3 Performance Comparison with NWR-GAE [66]. We compare

GAD-NR with NWR-GAE [66] in two aspects: performance and

running time. For performance, we are adding the benchmark anom-

aly detection performance comparison between NWR-GAE and

our model GAD-NR in Table 3. We can observe that the perfor-

mance of GAD-NR is signi�cantly better than NWR-GAE in all six

datasets. NWR-GAE directly tries to match the empirical distribu-

tion of neighbor representation, by which NWR-GAE may capture

neighbors’ features more precisely (also time consuming) but it

tends to over�t anomalous behaviors, compared to the Gaussian

approximation that GAD-NR adopts. For running time compari-

son, we also added the comparison between NWR-GAE and our

model GAD-NR in Table 3. Optimizing the KL-divergence leads to

a running time complexity of ċ (Ě) from the neighborhood match-

ing the Hungarian algorithm’s running time complexity of ċ (Ě3).

Therefore, GAD-NR is far more scalable on a relatively large graph

dataset compared with NWR-GAE for detecting anomalies.

5.5 Hyperparameter Analysis

5.5.1 Impacts of tuning Č′Į , Č
′
Ě
, and Č′Ĥ . We present the trend of

GAD-NR’s performance on di�erent types of anomaly detection

by varying the weights in Eq. (8) to perform detection in Figure 3.

While increasing the weight for self-feature reconstruction Č′Į in

Figure 3 left top, we have observed the performance curve of contex-

tual anomaly detection (blue) is very steep. Similar in 3 left bottom,

a growing trend has been observed on both contextual and joint-

type anomaly detection performance curve (blue and green). The

reason is intuitive. With higher weights for self-feature reconstruc-

tion, the decoder of GAD-NR tends to assign higher importance

to contextual anomalies as well as joint-type anomalies. By vary-

ing the weight for degree reconstruction, Č′
Ě
in Figure 3 middle

column, the change in performance is not that signi�cant across dif-

ferent types of anomalies. This is because contextual and structural

anomalies do not have much change in node degrees. For the joint-

type anomalies, where node degrees may provide useful signals

for detecting, only checking node degrees is often insu�cient to

determine an anomaly. This is because a normal node can also have

higher degrees. Node degree reconstruction should be paired with

neighbors’ feature distribution reconstruction together to provide

e�ective anomaly detection. Lastly, in Figure 3 right column, when

we vary the weight Č′Ĥ for neighborhood reconstruction, we notice

a signi�cant performance gain in joint-type anomaly detection and

structural + joint-type anomaly detection, which demonstrates the

e�ectiveness of neighborhood reconstruction via leveraging signals

from their neighborhoods.

Dataset Cora Reddit

Models

# Dimensions
32 64 128 256 8 16 32 64

MLPAE 71.07 71.07 71.08 70.51 47.57 52.12 51.79 51.92

GCNAE 71.47 71.52 71.63 70.84 50.88 51.29 51.81 52.10

DOMINANT 84.52 84.77 84.90 76.77 52.93 52.94 52.99 53.04

DONE 84.19 84.29 86.52 78.29 52.39 52.41 55.15 55.86

AdONE 84.01 84.43 84.87 73.42 57.78 53.64 54.85 55.14

GAAN 74.33 74.15 74.32 76.15 50.21 52.32 52.42 52.79

CONAD 84.54 84.79 84.46 76.15 52.74 52.95 53.03 53.13

GAD-NR 86.38 86.93 87.55 82.67 53.12 57.99 58.12 56.07

Table 5: Performance comparison of GAD-NR with di�erent latent

dimension sizes for detecting benchmark anomalies in Cora and

Reddit datasets.

5.5.2 Impact of the latent representation’s dimension. In Table 5,

we present the performance of GAD-NR on benchmark anomaly

detection in the Cora and Reddit datasets by varying the dimension

size of hidden representations. From the results, we can observe

that the performance of GAD-NR gradually increases as the latent

dimension increases for Cora (32 to 128) and Reddit (8 to 32) com-

pared to other GAE-based methods. We think using neighborhood

reconstruction is the reason behind the gradual performance im-

provement of GAD-NR. Other autoencoders can only increase the

capability of latent representations by increasing the latent dimen-

sion. Instead, GAD-NR can also increase the supervision strength

of neighborhood reconstruction by increasing the latent dimension.

When the dimension size increases even more e.g. 256 in Cora and

64 in Reddit, the anomaly detection performance of GAD-NR drops.

With a higher latent dimension size, the model becomes too much

expressive and it can over�t the anomalies. For anomaly detection,

we are expected to capture normal behaviors instead of making

models memorize all information in the data, especially abnormal

behaviors. Therefore, we need to strike a balance between model

expressiveness and the proportion of normal information extracted

for the best anomaly detection performance.

6 CONCLUSION

In this study, we introduce GAD-NR, for identifying anomalous

nodes in graph structures. GAD-NR is based on a graph auto-

encoder that reconstructs the neighborhood information from node

representations generated by a GNN encoder. The reconstruction

process encompasses a self-feature representation, degree recon-

struction, and the distribution of neighboring node representations,

thus allowing the detection of various anomalies including con-

textual, structural, and joint-type anomalies. Experimental results

on six real-world datasets demonstrate the e�ectiveness of neigh-

borhood reconstruction in identifying di�erent types of anomalies.

GAD-NR outperforms state-of-the-art GAD baselines in �ve out of

the six datasets in benchmark evaluations. Additionally, GAD-NR

provides �exibility and potential for detecting di�erent types of

anomalies through the combination of di�erent types of reconstruc-

tion loss with varying weights. GAD-NR also shows the robustness

of the selection of weights to detect real-world anomalies.
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