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ABSTRACT We study the 2D super-resolution multi-reference alignment (SR-MRA) problem: estimating an image
from its down-sampled, circularly translated, and noisy copies. The SR-MRA problem serves as a mathematical abstrac-
tion of the structure determination problem for biological molecules. Since the SR-MRA problem is ill-posed without
prior knowledge, accurate image estimation relies on designing priors that describe the statistics of the images of interest.
In this work, we build on recent advances in image processing and harness the power of denoisers as priors for images. To
estimate an image, we propose utilizing denoisers as projections and using them within two computational frameworks
that we propose: projected expectation-maximization and projected method of moments. We provide an efficient GPU
implementation and demonstrate the effectiveness of these algorithms through extensive numerical experiments on a

wide range of parameters and images.

INDEX TERMS Method of momented, projected gradient descent, expectation minimization, MRA.

I. INTRODUCTION

2D super-resolution multi-reference alignment (SR-MRA) entails
estimating an image x € Riven*Inieh from its N circularly-translated,
down-sampled, noisy copies:

yi=PRx+¢, i=1,...,N, 1)

where R, denotes a 2D circular translation, P denotes a down-
sampling operator that collects Loy X Liow equally-spaced samples
of Ryx, and &; € RFov*low i a noise matrix whose entries are drawn
i.i.d. from A(0, 0%). The 2D translation s is composed of a hori-
zontal translation s' and a vertical translation s, which are drawn
i.i.d. from unknown distributions, p; and p,, respectively. Explicitly,
each observation y; € Rbow*Liow takes the form y;[n;, no] = x[m K —
shymK — 5?1+ &ilny, nal, where ny, ny =0, ..., Loy — 1, the shifts
should be considered modulo Ly;g, and K := i}:::: is assumed to be
an integer. Our goal is to estimate x (the high resolution image)
from N low-resolution observations yi, ..., yy, when the transla-
tions sy, ..., sy are unknown.

The SR-MRA model, first studied for 1-D signals [1], is a special
case of the multi-reference alignment (MRA) model: The problem
of estimating a signal from its noisy copies, each acted upon by a
random element of some group; see for example [2], [3], [4], [5], [6],

[71, [8]. The MRA model is mainly motivated by the single-particle
cryo-electron microscopy (cryo-EM) technology: an increasingly
popular technique to construct 3-D molecular structures [9]. In
Section VI, we introduce the mathematical model of cryo-EM in
detail and discuss how the techniques proposed in this paper have
the potential to make a significant impact on the molecular recon-
struction problem of cryo-EM. The MRA model is also motivated
by a variety of applications in biology [10], robotics [11], radar [12],
and image processing [13].

The two leading computational techniques for solving MRA
problems are the method of moments (MoM) and expectation-
maximization (EM) [4], [5S]. MoM is a classical parameter estimation
technique, aiming to recover the parameters of interest from the ob-
served moments. MoM requires a single pass over the observations,
making it an efficient technique for large data sets (large N) but
is not statistically efficient. The EM algorithm aims to maximize
the likelihood function (or the posterior distribution in a Bayesian
framework) [14]. As Theorem 2.1 shows, it is impossible to uniquely
identify the image x only from the SR-MRA observations (1) as
many different images result in the same likelihood function. Thus,
to estimate the image accurately, we need to incorporate a prior. In
this work, we harness a recent line of works that use denoisers as
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priors and show how to incorporate them into the MoM and EM in
the context of SR-MRA.

Utilizing existing state-of-the-art denoisers was proposed as part
of the Plug-and-Play technique [15] and was proven highly effective
for many imaging inverse problems [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Es-
sentially, the underlying idea is exploiting the impressive capabilities
of existing denoising algorithms to replace explicit, traditional pri-
ors. Indeed, these methods are especially useful for natural images,
whose statistics are too complicated to be described explicitly, but for
which excellent denoisers have been devised. A natural question is
why not just use the standard plug-and-play framework for SR-MRA
instead of developing a dedicated strategy for EM and MoM as we do
in this work. The simple answer is that, despite intensive efforts, we
could not combine the plug-and-play approach with MoM and EM
in a stable way. Therefore, we found that it is necessary to develop a
dedicated strategy as we do in this work.

Our proposed computational framework, presented in Section
III, uses denoisers as projection operators. Specifically, every few
iterations of either MoM or EM, we apply a denoiser to the cur-
rent estimate. This stage can be interpreted as projecting the image
estimate onto the implicit space spanned by the denoiser. Section
IV provides convergence analysis, and Section V demonstrates the
effectiveness of our method by extensive numerical experiments on
images.

The contribution of this paper may be summarized as follows:
(i) We propose a novel framework for the SR-MRA problem that
relies on using denoisers as priors throughout the optimization; (ii)
we show that the method is generic by applying it to two popular
methods for SR-MRA, namely MoM and EM; (iii) we provide an
initial analysis for the convergence of our proposed algorithms; (iv)
we open-source the code of our approach that efficiently implements
our strategy on a GPU for getting efficient parallel processing.

Il. BACKGROUND
Before introducing our framework, we elaborate on four pillars of
this work: the non-uniqueness of the SR-MRA model (1), MoM,
EM, and denoiser-based priors. Hereafter, we let p := [p1, p2]7, and
define the set of sought parameters as 6 := (x, p). With a slight abuse
of notation, we treat the image x and a measurement y; as vectors in
Rbin and Rliow, respectively. We also define © = Rhbien Al X
A Liigh> where ALhigh is the Ly;gn-dimensional simplex, so that § € ©.

SR-MRA observations do not identify the image x uniquely: The
following theorem states that the likelihood function of (1) does not
determine the image x uniquely. This, in turn, implies that a prior is
necessary for accurate estimation of the sought image.

Theorem 2.1: The likelihood function p(yy, ..., yy|x, p) does not
determine uniquely the sought parameters x and p.

Proof: We follow the proof of [1, Theorem 3.1]. Recall that y =
PRx + ¢, and that K := LL}]‘%; is an integer. Let us define a set of K>
sub-images, indexed by n;,n, =0, ..., K — 1:

Xy L1, €] = x[ny + £1 K, ny + 6,K],
for¢,,¢, =0, ..., Ly — 1. Then, the SR-MRA model reads
Y =RiXy . + &, 2

where R, is a translation over the low-resolution grid of size Ly X
Lioy. We denote the distribution of choosing the sub-image x,,, ,, and
translating it by ¢ as p[n, ny, t]. Thus, the likelihood function of (1),
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FIGURE 1. The first and third rows present recoveries using projected
MoM and projected EM. Second and fourth rows present recoveries using
MoM and EM, without projection. As Theorem 2.1 indicates, the projection
is vital for accurate recovery. Images are of size Ly;g, = 128 with a
down-sampling factor of K = 2. MoM used the exact moments, and EM
was applied with noise level ¢ = 1/8 and number of observations N = 10°.
In the projected versions, we set F = 5 (see Section II).

for a single observation y, can be written, up to a constant, as

K—1
_ 1 L, 2
poix.p) = D Y plnymatle w7 Ml
np,np=0 t

Note that the likelihood function is invariant under any permutation
of the sub-images (overall K?! permutations), and under any trans-
lation of each of them (overall (L2 )K2 possible translations). This
implies that there are Kz!(LIZOW)K2 different images with the same
likelihood function. O

Fig. 1 compares image recovery using projected MoM and
projected EM, which are our proposed algorithms (see Section
II). Specifically, the first and third rows show recoveries using
Algorithm 1 and Algorithm 2, respectively, while the second and
fourth rows show the outputs of the standard MoM and EM, with
no prior. Evidently, in light of Theorem 2.1, the latter results are of
low quality.

The method of moments (MoM) aims to estimate the parameters of
interest from the observable moments. Recall that the d-th observable
moment is given by

low

1 N

T ®d

My == y®7 3
¢ Ni=ly' @
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2 )¢ entries, and the entry indexed by

= (l,...,Ly)1s given by 1_[7:1 y[¢;]. Computing the observable
moments requires a single pass over the observations and results in
a concise summary of the data. By the law of large numbers, for
sufficiently large N, we have

My~ Ey®? = My(0), 4)

where y®4 is a tensor with (L

where the expectation is taken against the distribution of the trans-
lations and the noise. Finding the optimal parameters 6 that fit the
observable moments is usually performed by minimizing a least
squares objective,

D
. v 2
min d}f} ralMy — My (0)], (&)

where Aq, ..., Ap are some predefined weights.

Model (1) was studied in [5] when P is the identity operator
(no down-sampling).! In particular, it was shown that if the discrete
Fourier transform of the signal is non-vanishing, and p is almost any
non-uniform distribution, then the signal and distribution are deter-
mined uniquely, up to an unavoidable translation symmetry, from the
second moment of the observations. While this is not necessarily true
when P is a down-sampling operator, we keep using the first two
moments in this work (namely, D = 2).

Specifically, the first two moments of the SR-MRA model (1) are
given by [34]:

M, = PC,p, (0)
M, = PC,D,C'P" 4 o*PP, @)

where C, € ]RLﬁighXLgizh is a block circulant with circulant blocks
(BCCB) matrix of the form:

Co cLhigh*I N C Cq
C| Co CLhigh—l . Co

C = , (¢))
L‘Lhigh*I CLhighfz N (&) Co

where the block ¢; e Rinish*Ihish represents a circulant matrix of the
i-th column of the image x. Each column of C, contains a copy of
the image after 2D translation and vectorization. The matrix D, €
R *Lieh i a diagonal matrix, whose diagonal is a vectorization of
the matrix p;pl. Therefore, the least squares objective (5) can be
explicitly written as

renig [|PC.D,CT P + ¢*PP" — M]3
1 |

+A[PCyx — M3 ©)

In this paper, we set A = as suggested in [5].

1
(oD’

Expectation-maximization (EM): The log-likelihood of (1) is
given by

Lhigh

Ly — 2
§ ,0[5]672072”)’ PRYXHZ.

sls2=1

N
10g Pyt -, yni ) = Y log (10)
i=1

A popular way to maximize the likelihood function is using the
EM algorithm [14]. EM can also be used to maximize the posterior
distribution when an analytical prior is available.

I'The results of [5] concern 1-D, but they can be readily extended to 2-D.
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EM is an iterative algorithm, where each iteration consists of two
steps. The first, called the E-step, computes the expected value of
the log-likelihood function with respect to the translations, given the
current estimate of 6 := (x, p). In the (r + 1)-th iteration, it reads

O(x, plxi, pr)
N Lhigh o 1 ) (11)
=y > w:*ﬁ(logp[s] =il PRsan),
i=1 gl $2=1
where
wi = Ciplsle” =z M PRIE, (12)

and C! is a normalization factor so that " w;* = 1. The next step,
called the M-step, maximizes (11) with respect to x and p:

(Xry1, pr41) = argmax Q(x, plx;, o). (13)

x,p

In our case, the maximum is attained by solving the linear system of
equations:

Ax, | = b, (14)
where
N
A= wr R 'P'PR,,
=1 s
N
b= 2wk,
=1 s
and
N i,s
. w
prails] = i1 i (15)

N is' "
Zi:l Z.i’ w]’{,Y

The EM algorithm iterates between the E and the M steps. While
each EM iteration does not decrease the likelihood, for the SR-
MRA model, the likelihood function is not convex, and thus the
EM algorithm is not guaranteed to achieve its maximum. A common
practice to improve estimation accuracy is either to initialize the EM
iterations in the vicinity of the solution (if such an initial estimate is
available) or to run it multiple times from different initializations, and
choose the estimate corresponding to the maximal likelihood value.
As we show in Section V, our projected EM algorithm (described
in the next section) provides consistent results even with a single
initialization.

Denoiser-based priors: Using denoisers as priors was proposed
in the Plug-and-Play approach [15]. It aims to maximize a posterior
distribution p(@|y, ..., y,), which is equivalent to the optimization
problem:

argmin [(0) + p(60),

0O

(16)

where [(0) := —log p(yi, ..., yal0), p(0) := —log p(09), p(@) is a
prior on 6, and recall that & = (x, p). This work only considers a
prior on the image x, but a prior on the distribution might be learned
as well [35].

Plug-and-Play proceeds by variable splitting,

argmin /(0) + Bp(v)

0,ve®

subjectto 0 = v, (17)

where B is a parameter that is manually tuned. The problem in (17)
can be solved using ADMM by iteratively applying the following
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three steps:

by
6" = argmin1(9) + =110 — (v* — u")|3,
0e® 2

A
v = argmin — ||60* ! 4+ uF — U||§ +pv),
ve® /3

W = ik (O R,

(18)

where X is the ADMM penalty parameter. The main insight here is
that the second step aims to solve a Gaussian denoising problem, with

a prior p(v) and standard deviation of \/g . Instead of solving this
problem for an analytical explicit prior, one can apply off-the-shelf
denoisers, such as BM3D or neural nets.

While Plug-and-Play was used in many tasks, it requires tun-
ing the parameters A, 8 and the number of iterations for the first
step; these parameters significantly impact its performance. In our
setup, we did not find a set of parameters that yields accurate es-
timates for the SR-MRA problem in a wide range of scenarios.
As an alternative, we propose a projection-based approach for EM
and MoM.

1il. DENOISER-BASED PROJECTED ALGORITHMS

This section introduces the main contribution of this work: incorpo-
rating a projection-based denoiser into the MoM and EM, and their
implementation for SR-MRA. Importantly, there is no agreed way
of including a prior into MoM, nor a standard way of incorporating
natural images prior to EM. Projected MoM algorithm is presented
in Algorithm 1, and projected EM in Algorithm 2.

The main idea is rather simple: every few iterations of either
MoM or EM, we apply a predefined denoiser that acts on the current
estimate of the image. Specifically, for MoM, we apply the denoiser
every few steps of BFGS (with line-search) that minimizes the least
squares objective (9); BFGS can be replaced by alternative gradient-
based methods. For EM, we apply the denoiser every few EM steps.

As a denoiser, we chose to work with the celebrated BM3D de-
noiser [36] because of its simplicity and effectiveness for denoising
natural images. However, replacing BM3D with alternative denoisers
is straightforward. This might be especially relevant when dealing
with specific applications, where a data-driven deep neural net may
take the role of the denoiser. In Section VI, we discuss such potential
applications for cryo-EM data processing.

Our algorithm requires only two parameters to be adjusted. The
first parameter is the noise level of the denoiser, denoted hereafter
by o®M3P_ A low noise level increases the weight of the data (either
likelihood or observed moments), while increasing the noise level
strengthens the effect of the denoiser. In particular, we found that
starting from a high noise level and gradually decreasing it with
iterations leads to consistent and accurate estimations. Specifically,
in the experiments of Section V, we set the noise level to

BM3D —1/10 _BM3D
' =27Y S/

o O,BM3D — 1,

] (19)

where oM3P is the noise level of the ¢-th application of BM3D.

The second parameter, which we denote by F, determines the
number of EM iterations or BFGS iterations (or other gradient-based
algorithms) for MoM between consecutive applications of the de-
noiser. Small or large F' may put too much or too little weight on
the prior (rather than on the data). Empirically, projected MoM is
quite sensitive to this parameter and requires carefully tuning F, as
presented in Section V, whereas EM is less sensitive. In contrast to
Plug-and-Play, which was very sensitive to parameter tuning in our
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Algorithm 1: Projected MoM.

Input: Measurements y, ...
parameter F'
Qutput: An estimate of the target image and distribution

1) Compute the empirical moments My, M, according to (3)

2) Until a stopping criterion is met:

a) Run F BFGS (or alternative gradient-based algorithm) steps
to minimize (9)

b) Apply the denoiser x <— D(x, o
¢) Update oBM3P according to (19)

, Vv, denoiser D, and the

BMSD)

Algorithm 2: Projected EM.

Input: Measurements yy, . ..
parameter F
Output: An estimate of the target image and distribution
Until a stopping criterion is met:

1) Run F EM steps according to (12), (14), and (15).

2) Apply the denoiser x <— D(x, oBMD)

3) Update oBM3P according to (19)

, Vv, denoiser D, and the

tests and did not converge well, we found it to be quite easy to tune
the parameters F' and o and get consistent results for a wide range of
images and parameters. The simplicity of parameter tuning, perhaps,
stems from the fact that each parameter affects only one term (F the
fidelity, and o BM3P the prior), whereas tuning the A parameter in the
Plug-and-Play approach (18) affects both terms.

IV. CONVERGENCE ANALYSIS
We turn to analyze the convergence of the proposed algorithms. We
start with a couple of definitions and assumptions that will be used
throughout the analysis. Then, we provide convergence analysis for
projected MoM in a somewhat modified scheme, where the (noncon-
vex) MoM objective is minimized by a gradient descent step rather
than BFGS iterations (which are essentially preconditioned gradient
steps). Lastly, to tackle frameworks that are not based on any gradient
method, we present a more general operator-based analysis. While
some assumptions in this analysis are not guaranteed for EM, it
provides mathematical reasoning for the convergence of frameworks
that are composed of two “black-box” operators that generate con-
vergent sequences, each on its own, which is relevant to EM.
Definition 4.1: We say that the map M : X — X is C-Lipschitz
in X if for all x, z € X we have

M) = M@z = Clix — z]l2.

In particular, if C =1 then M is nonexpansive in X and if C < 1
then M is a contraction in X.

Definition 4.2: The proximal operator associated with a function
p(-) is defined by

1
Prox, (x) := argmin 3 lx — zl3 + p(2).

Observe the tight connection between the proximal operator and
Gaussian denoising. Specifically, Gaussian denoiser D(-; o) that is
associated (perhaps implicitly) with a prior function p(-) is typically
obtained by an optimization problem similar to Prox,2, (x).

The proximal operator has been originally explored under the
assumption that p is a lower semi-continuous (l.s.c.) convex func-
tion [37], for which it has been shown [38, Prop. 1] that: 1) it
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is a subdifferential of a convex function and 2) it is 1-Lipschitz,
i.e., nonexpansive. These properties are important for guaranteeing
the convergence of algorithms that use it. A recent work [38] has
extended the analysis to nonconvex p (which may be more similar to
practical denoisers), but these results do not imply nonexpansiveness
without additional assumptions on the proximal operator.

Throughout this section, we make the following assumptions.

Assumption Al: p (the distribution parameters) is fixed.

Assumption A2: D is a proximal operator associated with some
proper l.s.c. convex function.

Note that the data-terms that we consider (namely, the log-
likelihood and the MoM objectives) are challenging nonconvex
functions. They remain nonconvex even if p, which parameterizes
the signal’s distribution, is known or fixed. Similarly, the opti-
mization problems remain nonconvex even when making the above
simplifying assumption on the denoiser. Nevertheless, note that our
approach can be readily applied with denoisers that are based on TV
regularization or on £;-norm prior, which satisfy A2.

The two iterative estimation schemes in this paper can be ex-
pressed as x;4; = D(T (x;)), where the denoiser D follows an
operation 7 that reduces some nonconvex data-fidelity term: the first
scheme reduces the MoM objective with a gradient-based method
and the second scheme reduces the negative log-likelihood via the
EM method. We now turn to analyze two such schemes.

A. CONVERGENCE OF PROJECTED MOM
Under A1 and A2, let us provide convergence results for the iterative
scheme

Xir1 = Dy — uV f(x)), (20)

where f denotes the MoM objective and u is the step-size. Notice
that f is smooth but nonconvex. Compared to Algorithm 1, the main
difference is merely replacing the BEGS steps with gradient steps.

To establish a convergence statement for (20), we will exploit
convergence results of the proximal gradient method [39], [40]. To
invoke them, we show that the MoM has a Lipschitz gradient. The
following theorem shows that this is the case when the optimization
is restricted to a closed domain &’. This assumption is reasonable
when x is an image, as typically its pixels are restricted to the range
[0, 255].

Theorem 4.3: Assume that X is a closed convex set. Let p satisfy
Al and D satisty A2 with respect to a function up(-), with © € R
and domain &X'. Consider the nonconvex MoM objective

f(x) = |PC.D,CTP" + o*PP" — M; |3

+ AIPC,x — My |2, @21

Then, there exists ;& > 0 such that the sequence {x;} in (20) obeys:
(1) the sequence |lx; — D(xx — nVf(x:))|l» converges to zero, and
(2) any limit of {x;} is a stationary point of f + p.

Proof: We need to show that, restricted to X, V f is C-Lipschitz.
Then by setting u € (0, %) statements (1) and (2) in the theorem
follow from [40, Theorem 10.15].

Note that f(x) is infinitely differentiable. The Lagrange remainder
(a consequence of the mean value theorem) of first-order Taylor’s
series of V f implies that for any x, z € X there exists £ on the line
that connects x and z for which Vf(x) = Vf(z) + VZf(&)(x — 7).
Therefore,

V&) = V@l = max IV2£ ) llopllx = zll2,
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where || - ||, is the operator norm. As f is a polynomial of order 4,
the entries of V2f are polynomials of order 2 and are bounded on
the closed set X'. Thus, the operator norm (magnitude of the largest
eigenvalue of V2f) is bounded on X due to the Gershgorin circle
theorem. Denoting this finite value by C, we get that Vf(x) is C-
Lipschitz on X. U

Note that our statement ensures that the limit is only a stationary
point of the objective f + p, and not to a global minimum. This is
inevitable, as f is a nonconvex function. Extensions to backtracking
line search, instead of fixed step size, can be adopted from [39], [40].

B. COMPOSITION OF CONVERGENCE INDUCING
OPERATORS

Unlike projected MoM, in projected EM the data-fidelity step is not
a gradient step. It is well known that, on its own, the EM algo-
rithm x; = 7 (xx) converges to a local minimum of the negative
log-likelihood function. However, to the best of our knowledge, EM
convergence behavior is not well understood, besides a few simple
models. This motivates us to consider a framework of a composition
of two “black-box™ operators that generate convergent sequences
when being applied alone. Indeed, it is also known that the sequence
Xk+1 = D(x;), under A2, converges to a minimizer of its associated
function p (as a special case of the proximal gradient method on
0+ p [39], [40]). Furthermore, a gradient-step operator with a suffi-
ciently small step size on the MoM objective also yields a convergent
sequence. Therefore, the analysis we provide for EM may also apply
to the MoM.

Denote by Fix(M) the set of fixed points of an operator M,
i.e., Fix(M) = {x : M(x) = x}. As discussed above, both the data-
fidelity operator 7 and the denoising operator D have fixed points
associated with stationary points of a data-fidelity term f and an
implicit prior term p, respectively.

Let us now define a class of operators that strictly attract points
towards their set of fixed points, as done in [41].

Definition 4.4: We say that the map M : X — X is y-strongly
quasi-nonexpansive in X with y > Oif forall x € A and z € Fix(M)
we have

M) —zll3 < llx —zll3 — y M) —x]3.

Note that this class includes the set of proximal operators (see
[41, Fact 1c]). Thus, it is a weaker assumption. Even though it is
not guaranteed that the data-fidelity operator 7 that is used in EM
falls into this class for the entire domain, it might be reasonable to
restrict the domain, where it holds to be a small set X" around a fixed
point. The following theorem shows how this property implies the
convergence of the sequence x;; = D(7 (x;)) to a fixed point.

Theorem 4.5: Let D satisfy A2 with domain X and let 7 be y-
strongly quasi-nonexpansive in X’ such that Fix(D) N Fix(7) # .
Then, the sequence x;,; = D(T (x;)) converges to a fixed point x, =
D(T(x:)).

Proof: As a proximal operator associated with a convex func-
tion, D is 1/2-average of a nonexpansive operator [40, Theorem
6.42], [42, Lemma 2.1]. Thus, from [41, Fact Ic], it is strongly
quasi-nonexpansive. From [41, Prop. 1d] the composition of strongly
quasi-nonexpansive operators M = D o T with Fix(D) N Fix(T) is
strongly quasi-nonexpansive in X" with some y > 0 and Fix(M) =
Fix(D) NFix(7T). Let %, € Fix(M), then

=12 =2 2
[err = Zelly < Nl = Zullz = ¥ e — Xl

1 = -
= I =Xl < 5 (e = Tll3 = e — Tll3).
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Summing over k from 0 to K we have

XK:IIX R a2 =2
e =4l < = (v — Tl = lhxsr — 2112
k=0 Y
< Lo - %2

By taking K to infinity, we see that {x;} is a Cauchy sequence, and
thus it converges to some limit point x,, i.e., x; — x,. Consequently,
this limit point is a fixed-point: x, = D(T (x,)). O

The above result, despite including assumptions that are not
guaranteed for EM on the entire domain, provides mathematical
reasoning for the convergence of composition of a denoiser and a
data-fitting operator, when each obeys convergence properties alone
and both can agree on a fixed point (potentially, out of many fixed
points that fit the measurements but can badly estimate the true
signal). Note that the theorem assumption Fix(D) NFix(7) # @ is
reasonable, as we empirically show that projected EM converges to
a noiseless point that agrees with the measurements.

V. NUMERICAL EXPERIMENTS

We applied the proposed algorithms to the 68 “natural” images of the
CBSD-68 dataset and a cryo-EM image of the E. coli 70S ribosome,
available at the Electron Microscopy Data Bank.> We set Lpjgn = 128,
and the images were down-sampled to Ly, = 64, 32, 16, 8 (namely,
down-sampling factors of K = 2, 4, 6, 8, respectively).

For all experiments, we used the BM3D denoiser [36], where the
noise level decays as in (19). Unless specified otherwise, we set
F =5 for both algorithms. For the MoM, we minimized the least
squares objective (5) using the BFGS algorithm with line-search
[43], [44]. The distributions p;, p, and their initial guesses were
drawn from a uniform distribution on [0, 1], and normalized so that
o1, p» € Abeh The pixel values of all images are in [0, 1]. Each pixel
in the initialization of the image estimate, for both algorithms, was
drawn i.i.d. from a uniform distribution on [0, 1], which was then
normalized to include the entire [0, 1] range. The algorithms were
initialized with a single initial guess; considering more initializations
did not make a significant effect on the results.

Due to the shift-invariance of (1), we measure the error by:

[IR:% — x||p

error(f) = min ——————,
s [x[|r

(22)
where % is the estimated image, and R, denotes a 2D translation. We

define SNR as

2
g JHE

. 23
Ligo? @)
Our algorithms were implemented in Torch. The recovery of a
high-dimensional signal requires an efficient implementation of the
algorithms over GPUs. Actually, without this implementation, we
were unable to recover images of size Lyjgn > 32 within a reasonable
running time, where reducing the resolution beyond that adversely
affects denoising performance. The code to reproduce all exper-
iments is available at https://github.com/JonathanShani/Denoiser_
projection.
Visual examples: Fig. 2 presents a collection of visual recoveries
from the CBSD-68 dataset using both algorithms, with a down-
sampling factor of K = 2. For projected MoM, we assumed to have

2 [Online]. Available: https://www.ebi.ac.uk/emdb/
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Projected EM

Original images

Projected method of moments

FIGURE 2. A gallery of 6 examples from the CBSD-68 dataset, and the
corresponding recoveries using projected EM in a high-SNR regime

(o0 = 1/8) and projected MoM with accurate moments (N > ¢*); the images
were down-sampled by a factor of K = 2. It can be seen that projected EM
outperforms projected MoM. However, as we show in Table 1, the
computational load of projected EM is much heavier.

FIGURE 3. Recoveries using the projected EM algorithm with noise level of
o =1/8 and N = 10* observations. The down-sampling factors are K =2
(top row), K = 4 (middle row), and K = 8 (bottom row).

access to the population (exact) moments (which is the case when
N > o*), and projected EM used N = 10* observations with a noise
level of o = 1/8 (corresponding to SNR~15). Evidently, projected
EM provides more accurate recoveries, although MoM uses exact
moments. However, as we show next, the computational load of pro-
jected EM is much heavier. Fig. 3 presents recoveries of additional
images using projected EM with sampling factors of K =2,4,8,
N = 10* observations and noise level of o = 1/8. Remarkably, pro-
jected EM provides accurate estimates with K = 8, i.e., when the
number of pixels is reduced from 1282 to 162

Quantitative comparisons: We compared projected EM and pro-
jected MoM in terms of estimation error and run-time. While the
reported running times depend on implementation and hardware, the
goal is to show the general trend.

Table 1 presents the error and running time, averaged over 20
trials, for each combination of the parameters Lyign, Liow, N and o.
We used the Lena image of size Ly, = 128 with down-sampling
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TABLE 1. Comparing Projected MoM and EM for Various Target
Resolutions Ly, of the Lena Image, Observed Resolutions L,q,,,
Observations Number N and o

Model parameters Projected MoM Projected EM
Lhigh Liow N o Error Time Error Time
128 32 100 0.125|| 0.332 266.5421(/0.0991 871.6759
128 32 100 0.25 || 0.3459 207.2537|| 0.196 861.4668
128 32 100 0.5 || 0.356 120.2959|| 0.3836 837.9343
128 32 10000 0.125|| 0.339 261.8394(/0.0311 1593.9534
128 32 10000 0.25 || 0.3302 280.6154|/0.0623 1668.756
128 32 10000 0.5 || 0.3301 277.3122(/0.1387 1660.7012
128 16 100 0.125]| 0.3627 85.716 ||0.2475 919.5462
128 16 100 0.25 || 0.411 84.4553 || 0.4154 984.6871
128 16 100 0.5 [|0.3714 77.8746 || 0.7497 893.2808
128 16 10000 0.125(| 0.3874 122.5611|/0.0685 3769.9855
128 16 10000 0.25 || 0.381 113.7814|| 0.141 3179.0298
128 16 10000 0.5 || 0.3652 94.8278 ||0.3001 3148.3869
64 32 100 0.125( 0.3319 103.8799 ||0.0494 100.9239
64 32 100 0.25 || 0.3427 47.959 |/0.0988 99.215
64 32 100 0.5 || 0.3439 44.0597 ||0.2111 87.1056
64 32 10000 0.125]] 0.2562 101.4311(/0.0158 325.7816
64 32 10000 0.25 || 0.3382 100.1693(/0.0315 264.8022
64 32 10000 0.5 || 0.3349 98.7658 [|0.0647 276.1571

factors of K =4, 8, and of size Ly = 64 with K = 2; the num-
ber of observations was set to N = 10%, 10*, and the noise level to
o = 0.125, 0.25, 0.5 (corresponding to SNR~17, 4, 1, respectively).
Both algorithms were limited to 100 iterations per trial. For each trial,
we drew a fresh set of observations based on a new distribution and
initial guesses. Projected EM shows a clear advantage for almost all
values of N and o in terms of estimation error (besides some cases
when o is large and N is small). However, the computational bur-
den of EM is much heavier; there are cases (e.g., Lyjgn = 128, N =
10%, & = 0.25) where the running time of projected EM algorithm is
30 times longer than the running time of projected MoM. The reason
is that EM iterates over all observations, whereas MoM requires
only a single pass over the observations [45], while the dimension
of the variables in the least squares objective (9) is proportional to
the dimension of the image.

Error as a function of the iterations: We next examined the be-
havior of the algorithms as a function of their iterations, averaged
over all images in the CBSD-68 dataset of size Lz, = 128. Pro-
jected MoM used exact moments, and projected EM used N = 10*
observations and a noise level of o = 1/8. Fig. 4 presents results for
a variety of sampling factors. As can be seen, the algorithms with
projections significantly outperform the unprojected versions for all
down-sampling factors. Notably, the projected algorithms provide
non-trivial estimates even for K = 16 (when each measurement is
down-sampled from 128 x 128 to 8 x 8). We note that the denoiser
leads to a locally non-monotonic error.

Projected MoM performance as a function of SNR: Fig. 5 (left
panel) shows the average recovery error of projected MoM as a
function of the SNR. These experiments require averaging over
multiple trials, which makes it virtually impossible to produce re-
sults for EM in a reasonable running time. All experiments were
conducted with the Lena image of size Ly, = 32, with a sampling
factor of K = 2, and N = 103 observations. For each SNR value, we
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FIGURE 4. Error as a function of the iteration (averaged over all images in
the CBSD-68 dataset, each of size Ly;g, = 128), for different sampling
factors. Top: projected MoM and the unprojected MoM, based on the
perfect moments (corresponding to N — o). Bottom: projected and
unprojected EM, with N = 10* observations and noise level of o = 1/8.

mean error
mean error

FIGURE 5. Mean error of projected MoM as a function of SNR with
N = 10° observations (left) and number of observations with o = 1/8
(right). The image size is Ly;g, = 32 and the down-sampling factor is K = 2.

conducted 100 trials, each with a fresh distribution of translations.
As can be seen, the error decreases monotonically with the SNR.
Remarkably, the slope of the curve increases as the SNR decreases,
hinting that the sample complexity of the problem (the number of
observations required to achieve a desired accuracy) increases in the
low SNR regime; this is a known phenomenon in the MRA literature
for models with no projection [4], [5], [6].

Projected MoM performance as a function of the number of mea-
surements: By the law of large numbers and according to (4), for
any fixed SNR, the empirical moments almost surely converge to
the analytic moments. To assess the impact of the number of obser-
vations on the estimation error, we used the image of Lena of size
Lpigh = 32, down-sampling factor of K = 2, and noise level of 1/8,
corresponding to SNR ~ 17.

Fig. 5 (right panel) presents the average error, over 100 trials, as a
function of N. For each trial, we drew a fresh distribution. The error
indeed decreases with N, as expected, but the slope is smaller than
—1/2 (in logarithmic scale), as the law of large numbers predicts.
This is due to the effect of the prior (manifested as a denoiser in our
case), which does not depend on the observations (the data).

How frequently should we apply the denoiser? An important pa-
rameter of the proposed algorithms, denoted by F, determines after
how many gradient steps (or EM iterations for projected EM) we
apply the denoiser. For example, ' = 1 means that we apply the
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FIGURE 6. Mean error of projected MoM as a function of the iteration, for
different values of F (number of gradient steps between consecutive
denoising operations). The experiments were conducted on an image of
size Ly, = 128, assuming to have access to the population moments, and
with a down-sampling factor of K = 2. The optimal value seems to be
around F = 10; larger or smaller values of F lead to sub-optimal results.

denoiser after each gradient step, whereas F = 100 means that we
run 100 gradient steps before applying the denoiser. This is especially
important since the computational complexity of a single gradient
step is significantly heavier than a BM3D application. To study the
effect of this parameter for projected MoM, we used the image of
Lena of size Ly = 128, a down-sampling factor of K =2, and
assumed to have access to the population (perfect) moments.

Fig. 6 shows the average error (over 10 trials) of MoM for differ-
ent values of F'; each trial was conducted with a fresh distribution.
Plainly, the impact of F on the performance is significant. The opti-
mal value seems to be around ' = 10 in this case; larger and smaller
values of F' lead to sub-optimal results.

VI. CONCLUSION

Single-particle cryo-EM is an increasingly popular technology for
high-resolution structure determination of biological molecules [9],
[46]. The cryo-EM reconstruction problem is to estimate a 3-D struc-
ture (the electrostatic potential map of the molecule of interest) from
multiple observations of the formy = TR, X + ¢, where X is the 3-D
structure to be recovered, R, represents an unknown 3-D rotation by
some angle @ € SO(3), and T is a fixed, linear tomographic projec-
tion. The noise level is typically very high. The SR-MRA problem
(1) can be interpreted as a toy model of the cryo-EM problem, where
the image plays the role of the 3-D structure, and the 2-D translations
and the sampling operator P replace, respectively, the unknown 3-D
rotations and the tomographic projection.

The standard reconstruction algorithms in cryo-EM are based on
EM [47], [48], aiming to maximize the posterior distribution based
on analytical, explicit priors. Recently, techniques based on MoM
were also designed for quick ab initio modeling [49], [50]. The
techniques proposed in this paper can be readily integrated into these
schemes, which may lead to improved accuracy and acceleration. A
similar idea was recently suggested by [51], who used the regulariza-
tion by denoising technique [16], and showed recoveries of moderate
resolution with simulated data.

Current cryo-EM technology cannot be used to reconstruct small
molecular structures (below ~ 40 kDa): this is one of its main draw-
backs [52]. Recent papers suggested overcoming this barrier using
variations of the MoM and EM [53], [54], [55]. However, as the
problem is ill-conditioned, the resolution of the recovered structures
is not high enough. We hope that modifications of the algorithms
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suggested in this paper, where the denoiser is replaced with a data-
driven projection operator can be used to increase the resolution
of the reconstructions and thus will allow elucidating multiple new
structures of small biological molecules.

In our proposed scheme, the data fidelity (likelihood) term is
computationally expensive due to the large number of measurements
(N > 100) involved. A possible approach to effectively reduce the
runtime is using online strategies, such as the one used in the online
Plug-and-Play [56]. Note also that in this work we use BM3D as
prior in our proposed framework. Yet, one may replace BM3D with
a learned denoiser to further boost the performance, e.g., using a deep
neural network. We defer this extension to future work.
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