
Received 23 January 2024; revised 14 April 2024; accepted 14 April 2024. Date of publication 26 April 2024;
date of current version 17 May 2024. The review of this article was arranged by Associate Editor Shuai Wan.

Digital Object Identifier 10.1109/OJSP.2024.3394369

Short Paper

Denoiser-Based Projections for 2D Super-Resolution MRA
JONATHAN SHANI1, TOM TIRER 2, RAJA GIRYES 1 (Senior Member, IEEE),

AND TAMIR BENDORY 1 (Senior Member, IEEE)
1Tel Aviv University, Tel Aviv 69978, Israel

2Bar Ilan University, Ramat Gan 5290002, Israel

CORRESPONDING AUTHOR: TAMIR BENDORY (email: bendory@tauex.tau.ac.il).

The work of Tom Tirer was supported by ISF under Grant 1940/23. The work of Raja Giryes was supported in part by the ERC-StG under Grant 757497 and in part

by KLA grants. The work of Tamir Bendory was supported in part by BSF under Grant 2020159, in part by NSF-BSF under Grant 2019752, and in part by ISF

under Grant 1924/21.

ABSTRACT We study the 2D super-resolution multi-reference alignment (SR-MRA) problem: estimating an image

from its down-sampled, circularly translated, and noisy copies. The SR-MRA problem serves as a mathematical abstrac-

tion of the structure determination problem for biological molecules. Since the SR-MRA problem is ill-posed without

prior knowledge, accurate image estimation relies on designing priors that describe the statistics of the images of interest.

In this work, we build on recent advances in image processing and harness the power of denoisers as priors for images. To

estimate an image, we propose utilizing denoisers as projections and using them within two computational frameworks

that we propose: projected expectation-maximization and projected method of moments. We provide an efficient GPU

implementation and demonstrate the effectiveness of these algorithms through extensive numerical experiments on a

wide range of parameters and images.

INDEX TERMS Method of momented, projected gradient descent, expectation minimization, MRA.

I. INTRODUCTION

2D super-resolution multi-reference alignment (SR-MRA) entails

estimating an image x ∈ R
Lhigh×Lhigh from its N circularly-translated,

down-sampled, noisy copies:

yi = PRsi
x + εi, i = 1, . . . , N, (1)

where Rs denotes a 2D circular translation, P denotes a down-

sampling operator that collects Llow × Llow equally-spaced samples

of Rsx, and εi ∈ R
Llow×Llow is a noise matrix whose entries are drawn

i.i.d. from N (0, σ 2). The 2D translation s is composed of a hori-

zontal translation s1 and a vertical translation s2, which are drawn

i.i.d. from unknown distributions, ρ1 and ρ2, respectively. Explicitly,

each observation yi ∈ R
Llow×Llow takes the form yi[n1, n2] = x[n1K −

s1
i , n2K − s2

i ] + εi[n1, n2], where n1, n2 = 0, . . . , Llow − 1, the shifts

should be considered modulo Lhigh, and K :=
Lhigh

Llow
is assumed to be

an integer. Our goal is to estimate x (the high resolution image)

from N low-resolution observations y1, . . . , yN , when the transla-

tions s1, . . . , sN are unknown.

The SR-MRA model, first studied for 1-D signals [1], is a special

case of the multi-reference alignment (MRA) model: The problem

of estimating a signal from its noisy copies, each acted upon by a

random element of some group; see for example [2], [3], [4], [5], [6],

[7], [8]. The MRA model is mainly motivated by the single-particle

cryo-electron microscopy (cryo-EM) technology: an increasingly

popular technique to construct 3-D molecular structures [9]. In

Section VI, we introduce the mathematical model of cryo-EM in

detail and discuss how the techniques proposed in this paper have

the potential to make a significant impact on the molecular recon-

struction problem of cryo-EM. The MRA model is also motivated

by a variety of applications in biology [10], robotics [11], radar [12],

and image processing [13].

The two leading computational techniques for solving MRA

problems are the method of moments (MoM) and expectation-

maximization (EM) [4], [5]. MoM is a classical parameter estimation

technique, aiming to recover the parameters of interest from the ob-

served moments. MoM requires a single pass over the observations,

making it an efficient technique for large data sets (large N) but

is not statistically efficient. The EM algorithm aims to maximize

the likelihood function (or the posterior distribution in a Bayesian

framework) [14]. As Theorem 2.1 shows, it is impossible to uniquely

identify the image x only from the SR-MRA observations (1) as

many different images result in the same likelihood function. Thus,

to estimate the image accurately, we need to incorporate a prior. In

this work, we harness a recent line of works that use denoisers as
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priors and show how to incorporate them into the MoM and EM in

the context of SR-MRA.

Utilizing existing state-of-the-art denoisers was proposed as part

of the Plug-and-Play technique [15] and was proven highly effective

for many imaging inverse problems [16], [17], [18], [19], [20], [21],

[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Es-

sentially, the underlying idea is exploiting the impressive capabilities

of existing denoising algorithms to replace explicit, traditional pri-

ors. Indeed, these methods are especially useful for natural images,

whose statistics are too complicated to be described explicitly, but for

which excellent denoisers have been devised. A natural question is

why not just use the standard plug-and-play framework for SR-MRA

instead of developing a dedicated strategy for EM and MoM as we do

in this work. The simple answer is that, despite intensive efforts, we

could not combine the plug-and-play approach with MoM and EM

in a stable way. Therefore, we found that it is necessary to develop a

dedicated strategy as we do in this work.

Our proposed computational framework, presented in Section

III, uses denoisers as projection operators. Specifically, every few

iterations of either MoM or EM, we apply a denoiser to the cur-

rent estimate. This stage can be interpreted as projecting the image

estimate onto the implicit space spanned by the denoiser. Section

IV provides convergence analysis, and Section V demonstrates the

effectiveness of our method by extensive numerical experiments on

images.

The contribution of this paper may be summarized as follows:

(i) We propose a novel framework for the SR-MRA problem that

relies on using denoisers as priors throughout the optimization; (ii)

we show that the method is generic by applying it to two popular

methods for SR-MRA, namely MoM and EM; (iii) we provide an

initial analysis for the convergence of our proposed algorithms; (iv)

we open-source the code of our approach that efficiently implements

our strategy on a GPU for getting efficient parallel processing.

II. BACKGROUND

Before introducing our framework, we elaborate on four pillars of

this work: the non-uniqueness of the SR-MRA model (1), MoM,

EM, and denoiser-based priors. Hereafter, we let ρ := [ρ1, ρ2]T , and

define the set of sought parameters as θ := (x, ρ ). With a slight abuse

of notation, we treat the image x and a measurement yi as vectors in

R
L2

high and R
L2

low , respectively. We also define � = R
L2

high × �Lhigh
×

�Lhigh
, where �Lhigh

is the Lhigh-dimensional simplex, so that θ ∈ �.

SR-MRA observations do not identify the image x uniquely: The

following theorem states that the likelihood function of (1) does not

determine the image x uniquely. This, in turn, implies that a prior is

necessary for accurate estimation of the sought image.

Theorem 2.1: The likelihood function p(y1, . . . , yN |x, ρ ) does not

determine uniquely the sought parameters x and ρ.

Proof: We follow the proof of [1, Theorem 3.1]. Recall that y =

PRsx + ε, and that K :=
Lhigh

Llow
is an integer. Let us define a set of K2

sub-images, indexed by n1, n2 = 0, . . . , K − 1:

xn1,n2
[�1, �2] := x[n1 + �1 K, n2 + �2K],

for �1, �2 = 0, . . . , Llow − 1. Then, the SR-MRA model reads

y = Rt xn1,n2
+ ε, (2)

where Rt is a translation over the low-resolution grid of size Llow ×

Llow. We denote the distribution of choosing the sub-image xn1,n2
and

translating it by t as ρ[n1, n2, t]. Thus, the likelihood function of (1),

FIGURE 1. The first and third rows present recoveries using projected
MoM and projected EM. Second and fourth rows present recoveries using
MoM and EM, without projection. As Theorem 2.1 indicates, the projection
is vital for accurate recovery. Images are of size Lhigh = 128 with a
down-sampling factor of K = 2. MoM used the exact moments, and EM
was applied with noise level σ = 1/8 and number of observations N = 104.
In the projected versions, we set F = 5 (see Section III).

for a single observation y, can be written, up to a constant, as

p(y; x, ρ ) =

K−1∑

n1,n2=0

∑

t

ρ[n1, n2, t]e
− 1

2σ2 ‖y−Rt xn1 ,n2
‖2

2 .

Note that the likelihood function is invariant under any permutation

of the sub-images (overall K2! permutations), and under any trans-

lation of each of them (overall (L2
low)K2

possible translations). This

implies that there are K2!(L2
low)K2

different images with the same

likelihood function. �

Fig. 1 compares image recovery using projected MoM and

projected EM, which are our proposed algorithms (see Section

III). Specifically, the first and third rows show recoveries using

Algorithm 1 and Algorithm 2, respectively, while the second and

fourth rows show the outputs of the standard MoM and EM, with

no prior. Evidently, in light of Theorem 2.1, the latter results are of

low quality.

The method of moments (MoM) aims to estimate the parameters of

interest from the observable moments. Recall that the d-th observable

moment is given by

M̂d :=
1

N

N∑

i=1

y
⊗

d

i , (3)
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where y
⊗

d is a tensor with (L2
low)d entries, and the entry indexed by

� = (�1, . . . , �d ) is given by
∏d

j=1 y[� j]. Computing the observable

moments requires a single pass over the observations and results in

a concise summary of the data. By the law of large numbers, for

sufficiently large N , we have

M̂d ≈ Ey
⊗

d := Md (θ ), (4)

where the expectation is taken against the distribution of the trans-

lations and the noise. Finding the optimal parameters θ that fit the

observable moments is usually performed by minimizing a least

squares objective,

min
θ∈�

D∑

d=1

λd‖M̂d − Md (θ )‖2, (5)

where λ1, . . . , λD are some predefined weights.

Model (1) was studied in [5] when P is the identity operator

(no down-sampling).1 In particular, it was shown that if the discrete

Fourier transform of the signal is non-vanishing, and ρ is almost any

non-uniform distribution, then the signal and distribution are deter-

mined uniquely, up to an unavoidable translation symmetry, from the

second moment of the observations. While this is not necessarily true

when P is a down-sampling operator, we keep using the first two

moments in this work (namely, D = 2).

Specifically, the first two moments of the SR-MRA model (1) are

given by [34]:

M1 = PCxρ, (6)

M2 = PCxDρCT
x PT + σ 2PPT , (7)

where Cx ∈ R
L2

high
×L2

high is a block circulant with circulant blocks

(BCCB) matrix of the form:

Cx =

»
¼¼¼¼¼¼½

c0 cLhigh−1 . . . c2 c1

c1 c0 cLhigh−1 . . . c2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

cLhigh−1 cLhigh−2 . . . c1 c0

¾
¿¿¿¿¿¿À

, (8)

where the block ci ∈ R
Lhigh×Lhigh represents a circulant matrix of the

i-th column of the image x. Each column of Cx contains a copy of

the image after 2D translation and vectorization. The matrix Dρ ∈

R
L2

high
×L2

high is a diagonal matrix, whose diagonal is a vectorization of

the matrix ρ1ρ
T
2 . Therefore, the least squares objective (5) can be

explicitly written as

min
θ∈�

||PCxDρCT
x PT + σ 2PPT − M̂2||

2
F

+λ||PCρx − M̂1||
2
2. (9)

In this paper, we set λ = 1

L2
high

(1+σ 2 )
, as suggested in [5].

Expectation-maximization (EM): The log-likelihood of (1) is

given by

log p(y1, . . . , yn; θ ) =

N∑

i=1

log

Lhigh∑

s1,s2=1

ρ[s]e
− 1

2σ2 ‖yi−PRsx‖2
2 . (10)

A popular way to maximize the likelihood function is using the

EM algorithm [14]. EM can also be used to maximize the posterior

distribution when an analytical prior is available.

1The results of [5] concern 1-D, but they can be readily extended to 2-D.

EM is an iterative algorithm, where each iteration consists of two

steps. The first, called the E-step, computes the expected value of

the log-likelihood function with respect to the translations, given the

current estimate of θ := (x, ρ ). In the (t + 1)-th iteration, it reads

Q(x, ρ|xt , ρt )

=

N∑

i=1

Lhigh∑

s1,s2=1

w
i,s
t

(
log ρ[s] −

1

2σ 2
||yi − PRsx||

2
F

)
,

(11)

where

w
i,s
t = Ci

t ρt [s]e
− 1

2σ2 ||yi−PRsx||2F , (12)

and Ci
t is a normalization factor so that

∑
s w

i,s
t = 1. The next step,

called the M-step, maximizes (11) with respect to x and ρ:

(xt+1, ρt+1) = argmax
x,ρ

Q(x, ρ|xt , ρt ). (13)

In our case, the maximum is attained by solving the linear system of

equations:

Axt+1 = b, (14)

where

A =

N∑

i=1

∑

s

w
i,s
t R−1

s P−1PRs,

b =

N∑

i=1

∑

s

w
i,s
t R−1

s P−1yi,

and

ρt+1[s] =

∑N

i=1 w
i,s
k∑N

i=1

∑
s′ w

i,s′

k

. (15)

The EM algorithm iterates between the E and the M steps. While

each EM iteration does not decrease the likelihood, for the SR-

MRA model, the likelihood function is not convex, and thus the

EM algorithm is not guaranteed to achieve its maximum. A common

practice to improve estimation accuracy is either to initialize the EM

iterations in the vicinity of the solution (if such an initial estimate is

available) or to run it multiple times from different initializations, and

choose the estimate corresponding to the maximal likelihood value.

As we show in Section V, our projected EM algorithm (described

in the next section) provides consistent results even with a single

initialization.

Denoiser-based priors: Using denoisers as priors was proposed

in the Plug-and-Play approach [15]. It aims to maximize a posterior

distribution p(θ |y1, . . . , yn), which is equivalent to the optimization

problem:

argmin
θ∈�

l (θ ) + p(θ ), (16)

where l (θ ) := − log p(y1, . . . , yn|θ ), p(θ ) := − log p(θ ), p(θ ) is a

prior on θ , and recall that θ = (x, ρ ). This work only considers a

prior on the image x, but a prior on the distribution might be learned

as well [35].

Plug-and-Play proceeds by variable splitting,

argmin
θ,v∈�

l (θ ) + βp(v) subject to θ = v, (17)

where β is a parameter that is manually tuned. The problem in (17)

can be solved using ADMM by iteratively applying the following

VOLUME 5, 2024 623
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three steps:

θ k+1 = argmin
θ∈�

l (θ ) +
λ

2
||θ − (vk − uk )||22,

v
k+1 = argmin

v∈�

λ

2β
||θ k+1 + uk − v||22 + p(v),

uk+1 = uk + (θ k+1 − v
k+1), (18)

where λ is the ADMM penalty parameter. The main insight here is

that the second step aims to solve a Gaussian denoising problem, with

a prior p(v) and standard deviation of

√
β

λ
. Instead of solving this

problem for an analytical explicit prior, one can apply off-the-shelf

denoisers, such as BM3D or neural nets.

While Plug-and-Play was used in many tasks, it requires tun-

ing the parameters λ, β and the number of iterations for the first

step; these parameters significantly impact its performance. In our

setup, we did not find a set of parameters that yields accurate es-

timates for the SR-MRA problem in a wide range of scenarios.

As an alternative, we propose a projection-based approach for EM

and MoM.

III. DENOISER-BASED PROJECTED ALGORITHMS

This section introduces the main contribution of this work: incorpo-

rating a projection-based denoiser into the MoM and EM, and their

implementation for SR-MRA. Importantly, there is no agreed way

of including a prior into MoM, nor a standard way of incorporating

natural images prior to EM. Projected MoM algorithm is presented

in Algorithm 1, and projected EM in Algorithm 2.

The main idea is rather simple: every few iterations of either

MoM or EM, we apply a predefined denoiser that acts on the current

estimate of the image. Specifically, for MoM, we apply the denoiser

every few steps of BFGS (with line-search) that minimizes the least

squares objective (9); BFGS can be replaced by alternative gradient-

based methods. For EM, we apply the denoiser every few EM steps.

As a denoiser, we chose to work with the celebrated BM3D de-

noiser [36] because of its simplicity and effectiveness for denoising

natural images. However, replacing BM3D with alternative denoisers

is straightforward. This might be especially relevant when dealing

with specific applications, where a data-driven deep neural net may

take the role of the denoiser. In Section VI, we discuss such potential

applications for cryo-EM data processing.

Our algorithm requires only two parameters to be adjusted. The

first parameter is the noise level of the denoiser, denoted hereafter

by σ BM3D. A low noise level increases the weight of the data (either

likelihood or observed moments), while increasing the noise level

strengthens the effect of the denoiser. In particular, we found that

starting from a high noise level and gradually decreasing it with

iterations leads to consistent and accurate estimations. Specifically,

in the experiments of Section V, we set the noise level to

σ BM3D
t = 2−1/10σ BM3D

t−1 , σ BM3D
1 = 1, (19)

where σ BM3D
t is the noise level of the t-th application of BM3D.

The second parameter, which we denote by F , determines the

number of EM iterations or BFGS iterations (or other gradient-based

algorithms) for MoM between consecutive applications of the de-

noiser. Small or large F may put too much or too little weight on

the prior (rather than on the data). Empirically, projected MoM is

quite sensitive to this parameter and requires carefully tuning F , as

presented in Section V, whereas EM is less sensitive. In contrast to

Plug-and-Play, which was very sensitive to parameter tuning in our

Algorithm 1: Projected MoM.

Input: Measurements y1, . . . , yN , denoiser D, and the

parameter F

Output: An estimate of the target image and distribution

1) Compute the empirical moments M̂1, M̂2 according to (3)

2) Until a stopping criterion is met:

a) Run F BFGS (or alternative gradient-based algorithm) steps

to minimize (9)

b) Apply the denoiser x ← D(x, σ BM3D)

c) Update σ BM3D according to (19)

Algorithm 2: Projected EM.

Input: Measurements y1, . . . , yN , denoiser D, and the

parameter F

Output: An estimate of the target image and distribution

Until a stopping criterion is met:

1) Run F EM steps according to (12), (14), and (15).

2) Apply the denoiser x ← D(x, σ BM3D)

3) Update σ BM3D according to (19)

tests and did not converge well, we found it to be quite easy to tune

the parameters F and σ and get consistent results for a wide range of

images and parameters. The simplicity of parameter tuning, perhaps,

stems from the fact that each parameter affects only one term (F the

fidelity, and σ BM3D the prior), whereas tuning the λ parameter in the

Plug-and-Play approach (18) affects both terms.

IV. CONVERGENCE ANALYSIS

We turn to analyze the convergence of the proposed algorithms. We

start with a couple of definitions and assumptions that will be used

throughout the analysis. Then, we provide convergence analysis for

projected MoM in a somewhat modified scheme, where the (noncon-

vex) MoM objective is minimized by a gradient descent step rather

than BFGS iterations (which are essentially preconditioned gradient

steps). Lastly, to tackle frameworks that are not based on any gradient

method, we present a more general operator-based analysis. While

some assumptions in this analysis are not guaranteed for EM, it

provides mathematical reasoning for the convergence of frameworks

that are composed of two “black-box” operators that generate con-

vergent sequences, each on its own, which is relevant to EM.

Definition 4.1: We say that the map M : X → X is C-Lipschitz

in X if for all x, z ∈ X we have

‖M(x) − M(z)‖2 ≤ C‖x − z‖2.

In particular, if C = 1 then M is nonexpansive in X and if C < 1

then M is a contraction in X .

Definition 4.2: The proximal operator associated with a function

p(·) is defined by

Proxp(x) := argmin
z

1

2
‖x − z‖2

2 + p(z).

Observe the tight connection between the proximal operator and

Gaussian denoising. Specifically, Gaussian denoiser D(·; σ ) that is

associated (perhaps implicitly) with a prior function p(·) is typically

obtained by an optimization problem similar to Proxσ 2p(x).

The proximal operator has been originally explored under the

assumption that p is a lower semi-continuous (l.s.c.) convex func-

tion [37], for which it has been shown [38, Prop. 1] that: 1) it
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is a subdifferential of a convex function and 2) it is 1-Lipschitz,

i.e., nonexpansive. These properties are important for guaranteeing

the convergence of algorithms that use it. A recent work [38] has

extended the analysis to nonconvex p (which may be more similar to

practical denoisers), but these results do not imply nonexpansiveness

without additional assumptions on the proximal operator.

Throughout this section, we make the following assumptions.

Assumption A1: ρ (the distribution parameters) is fixed.

Assumption A2: D is a proximal operator associated with some

proper l.s.c. convex function.

Note that the data-terms that we consider (namely, the log-

likelihood and the MoM objectives) are challenging nonconvex

functions. They remain nonconvex even if ρ, which parameterizes

the signal’s distribution, is known or fixed. Similarly, the opti-

mization problems remain nonconvex even when making the above

simplifying assumption on the denoiser. Nevertheless, note that our

approach can be readily applied with denoisers that are based on TV

regularization or on �1-norm prior, which satisfy A2.

The two iterative estimation schemes in this paper can be ex-

pressed as xk+1 = D(T (xk )), where the denoiser D follows an

operation T that reduces some nonconvex data-fidelity term: the first

scheme reduces the MoM objective with a gradient-based method

and the second scheme reduces the negative log-likelihood via the

EM method. We now turn to analyze two such schemes.

A. CONVERGENCE OF PROJECTED MOM

Under A1 and A2, let us provide convergence results for the iterative

scheme

xk+1 = D(xk − μ∇ f (xk )), (20)

where f denotes the MoM objective and μ is the step-size. Notice

that f is smooth but nonconvex. Compared to Algorithm 1, the main

difference is merely replacing the BFGS steps with gradient steps.

To establish a convergence statement for (20), we will exploit

convergence results of the proximal gradient method [39], [40]. To

invoke them, we show that the MoM has a Lipschitz gradient. The

following theorem shows that this is the case when the optimization

is restricted to a closed domain X . This assumption is reasonable

when x is an image, as typically its pixels are restricted to the range

[0, 255].

Theorem 4.3: Assume that X is a closed convex set. Let ρ satisfy

A1 and D satisfy A2 with respect to a function μp(·), with μ ∈ R

and domain X . Consider the nonconvex MoM objective

f (x) = ‖PCxDρCT
x PT + σ 2PPT − M̂2‖

2
F

+ λ‖PCρx − M̂1‖
2
2. (21)

Then, there exists μ > 0 such that the sequence {xk} in (20) obeys:

(1) the sequence ‖xk − D(xk − μ∇ f (xk ))‖2 converges to zero, and

(2) any limit of {xk} is a stationary point of f + p.

Proof: We need to show that, restricted to X , ∇ f is C-Lipschitz.

Then by setting μ ∈ (0, 2

C
) statements (1) and (2) in the theorem

follow from [40, Theorem 10.15].

Note that f (x) is infinitely differentiable. The Lagrange remainder

(a consequence of the mean value theorem) of first-order Taylor’s

series of ∇ f implies that for any x, z ∈ X there exists ξ on the line

that connects x and z for which ∇ f (x) = ∇ f (z) + ∇2 f (ξ )(x − z).

Therefore,

‖∇ f (x) − ∇ f (z)‖2 ≤ max
ξ∈X

‖∇2 f (ξ )‖op‖x − z‖2,

where ‖ · ‖op is the operator norm. As f is a polynomial of order 4,

the entries of ∇2 f are polynomials of order 2 and are bounded on

the closed set X . Thus, the operator norm (magnitude of the largest

eigenvalue of ∇2 f ) is bounded on X due to the Gershgorin circle

theorem. Denoting this finite value by C, we get that ∇ f (x) is C-

Lipschitz on X . �

Note that our statement ensures that the limit is only a stationary

point of the objective f + p, and not to a global minimum. This is

inevitable, as f is a nonconvex function. Extensions to backtracking

line search, instead of fixed step size, can be adopted from [39], [40].

B. COMPOSITION OF CONVERGENCE INDUCING

OPERATORS

Unlike projected MoM, in projected EM the data-fidelity step is not

a gradient step. It is well known that, on its own, the EM algo-

rithm xk+1 = T (xk ) converges to a local minimum of the negative

log-likelihood function. However, to the best of our knowledge, EM

convergence behavior is not well understood, besides a few simple

models. This motivates us to consider a framework of a composition

of two “black-box” operators that generate convergent sequences

when being applied alone. Indeed, it is also known that the sequence

xk+1 = D(xk ), under A2, converges to a minimizer of its associated

function p (as a special case of the proximal gradient method on

0 + p [39], [40]). Furthermore, a gradient-step operator with a suffi-

ciently small step size on the MoM objective also yields a convergent

sequence. Therefore, the analysis we provide for EM may also apply

to the MoM.

Denote by Fix(M) the set of fixed points of an operator M,

i.e., Fix(M) = {x : M(x) = x}. As discussed above, both the data-

fidelity operator T and the denoising operator D have fixed points

associated with stationary points of a data-fidelity term f and an

implicit prior term p, respectively.

Let us now define a class of operators that strictly attract points

towards their set of fixed points, as done in [41].

Definition 4.4: We say that the map M : X → X is γ -strongly

quasi-nonexpansive in X with γ > 0 if for all x ∈ X and z ∈ Fix(M)

we have

‖M(x) − z‖2
2 ≤ ‖x − z‖2

2 − γ ‖M(x) − x‖2
2.

Note that this class includes the set of proximal operators (see

[41, Fact 1c]). Thus, it is a weaker assumption. Even though it is

not guaranteed that the data-fidelity operator T that is used in EM

falls into this class for the entire domain, it might be reasonable to

restrict the domain, where it holds to be a small set X around a fixed

point. The following theorem shows how this property implies the

convergence of the sequence xk+1 = D(T (xk )) to a fixed point.

Theorem 4.5: Let D satisfy A2 with domain X and let T be γ -

strongly quasi-nonexpansive in X such that Fix(D) ∩ Fix(T ) �= ∅.

Then, the sequence xk+1 = D(T (xk )) converges to a fixed point x∗ =

D(T (x∗)).

Proof: As a proximal operator associated with a convex func-

tion, D is 1/2-average of a nonexpansive operator [40, Theorem

6.42], [42, Lemma 2.1]. Thus, from [41, Fact 1c], it is strongly

quasi-nonexpansive. From [41, Prop. 1d] the composition of strongly

quasi-nonexpansive operators M = D ◦ T with Fix(D) ∩ Fix(T ) is

strongly quasi-nonexpansive in X with some γ̃ > 0 and Fix(M) =

Fix(D) ∩ Fix(T ). Let x̃∗ ∈ Fix(M), then

‖xk+1 − x̃∗‖
2
2 ≤ ‖xk − x̃∗‖

2
2 − γ ‖xk+1 − xk‖

2
2

⇒ ‖xk+1 − xk‖
2
2 ≤ 1

γ
(‖xk − x̃∗‖

2
2 − ‖xk+1 − x̃∗‖

2
2).
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Summing over k from 0 to K we have

K∑

k=0

‖xk+1 − xk‖
2
2 ≤

1

γ
(‖x0 − x̃∗‖

2
2 − ‖xK+1 − x̃∗‖

2
2)

≤
1

γ
‖x0 − x̃∗‖

2
2.

By taking K to infinity, we see that {xk} is a Cauchy sequence, and

thus it converges to some limit point x∗, i.e., xk → x∗. Consequently,

this limit point is a fixed-point: x∗ = D(T (x∗)). �

The above result, despite including assumptions that are not

guaranteed for EM on the entire domain, provides mathematical

reasoning for the convergence of composition of a denoiser and a

data-fitting operator, when each obeys convergence properties alone

and both can agree on a fixed point (potentially, out of many fixed

points that fit the measurements but can badly estimate the true

signal). Note that the theorem assumption Fix(D) ∩ Fix(T ) �= ∅ is

reasonable, as we empirically show that projected EM converges to

a noiseless point that agrees with the measurements.

V. NUMERICAL EXPERIMENTS

We applied the proposed algorithms to the 68 “natural” images of the

CBSD-68 dataset and a cryo-EM image of the E. coli 70S ribosome,

available at the Electron Microscopy Data Bank.2 We set Lhigh = 128,

and the images were down-sampled to Llow = 64, 32, 16, 8 (namely,

down-sampling factors of K = 2, 4, 6, 8, respectively).

For all experiments, we used the BM3D denoiser [36], where the

noise level decays as in (19). Unless specified otherwise, we set

F = 5 for both algorithms. For the MoM, we minimized the least

squares objective (5) using the BFGS algorithm with line-search

[43], [44]. The distributions ρ1, ρ2 and their initial guesses were

drawn from a uniform distribution on [0, 1], and normalized so that

ρ1, ρ2 ∈ �Lhigh . The pixel values of all images are in [0, 1]. Each pixel

in the initialization of the image estimate, for both algorithms, was

drawn i.i.d. from a uniform distribution on [0, 1], which was then

normalized to include the entire [0, 1] range. The algorithms were

initialized with a single initial guess; considering more initializations

did not make a significant effect on the results.

Due to the shift-invariance of (1), we measure the error by:

error(x̂) = min
s

||Rsx̂ − x||F

||x||F
, (22)

where x̂ is the estimated image, and Rs denotes a 2D translation. We

define SNR as

SNR =
||x||2F

L2
highσ

2
. (23)

Our algorithms were implemented in Torch. The recovery of a

high-dimensional signal requires an efficient implementation of the

algorithms over GPUs. Actually, without this implementation, we

were unable to recover images of size Lhigh ≥ 32 within a reasonable

running time, where reducing the resolution beyond that adversely

affects denoising performance. The code to reproduce all exper-

iments is available at https://github.com/JonathanShani/Denoiser_

projection.

Visual examples: Fig. 2 presents a collection of visual recoveries

from the CBSD-68 dataset using both algorithms, with a down-

sampling factor of K = 2. For projected MoM, we assumed to have

2[Online]. Available: https://www.ebi.ac.uk/emdb/

FIGURE 2. A gallery of 6 examples from the CBSD-68 dataset, and the
corresponding recoveries using projected EM in a high-SNR regime
(σ = 1/8) and projected MoM with accurate moments (N � σ4); the images
were down-sampled by a factor of K = 2. It can be seen that projected EM
outperforms projected MoM. However, as we show in Table 1, the
computational load of projected EM is much heavier.

FIGURE 3. Recoveries using the projected EM algorithm with noise level of
σ = 1/8 and N = 104 observations. The down-sampling factors are K = 2
(top row), K = 4 (middle row), and K = 8 (bottom row).

access to the population (exact) moments (which is the case when

N � σ 4), and projected EM used N = 104 observations with a noise

level of σ = 1/8 (corresponding to SNR≈15). Evidently, projected

EM provides more accurate recoveries, although MoM uses exact

moments. However, as we show next, the computational load of pro-

jected EM is much heavier. Fig. 3 presents recoveries of additional

images using projected EM with sampling factors of K = 2, 4, 8,

N = 104 observations and noise level of σ = 1/8. Remarkably, pro-

jected EM provides accurate estimates with K = 8, i.e., when the

number of pixels is reduced from 1282 to 162.

Quantitative comparisons: We compared projected EM and pro-

jected MoM in terms of estimation error and run-time. While the

reported running times depend on implementation and hardware, the

goal is to show the general trend.

Table 1 presents the error and running time, averaged over 20

trials, for each combination of the parameters Lhigh, Llow, N and σ .

We used the Lena image of size Lhigh = 128 with down-sampling
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TABLE 1. Comparing Projected MoM and EM for Various Target
Resolutions Lhigh of the Lena Image, Observed Resolutions Llow,
Observations Number N and σ

factors of K = 4, 8, and of size Lhigh = 64 with K = 2; the num-

ber of observations was set to N = 102, 104, and the noise level to

σ = 0.125, 0.25, 0.5 (corresponding to SNR≈17, 4, 1, respectively).

Both algorithms were limited to 100 iterations per trial. For each trial,

we drew a fresh set of observations based on a new distribution and

initial guesses. Projected EM shows a clear advantage for almost all

values of N and σ in terms of estimation error (besides some cases

when σ is large and N is small). However, the computational bur-

den of EM is much heavier; there are cases (e.g., Lhigh = 128, N =

104, σ = 0.25) where the running time of projected EM algorithm is

30 times longer than the running time of projected MoM. The reason

is that EM iterates over all observations, whereas MoM requires

only a single pass over the observations [45], while the dimension

of the variables in the least squares objective (9) is proportional to

the dimension of the image.

Error as a function of the iterations: We next examined the be-

havior of the algorithms as a function of their iterations, averaged

over all images in the CBSD-68 dataset of size Lhigh = 128. Pro-

jected MoM used exact moments, and projected EM used N = 104

observations and a noise level of σ = 1/8. Fig. 4 presents results for

a variety of sampling factors. As can be seen, the algorithms with

projections significantly outperform the unprojected versions for all

down-sampling factors. Notably, the projected algorithms provide

non-trivial estimates even for K = 16 (when each measurement is

down-sampled from 128 × 128 to 8 × 8). We note that the denoiser

leads to a locally non-monotonic error.

Projected MoM performance as a function of SNR: Fig. 5 (left

panel) shows the average recovery error of projected MoM as a

function of the SNR. These experiments require averaging over

multiple trials, which makes it virtually impossible to produce re-

sults for EM in a reasonable running time. All experiments were

conducted with the Lena image of size Lhigh = 32, with a sampling

factor of K = 2, and N = 105 observations. For each SNR value, we

FIGURE 4. Error as a function of the iteration (averaged over all images in
the CBSD-68 dataset, each of size Lhigh = 128), for different sampling
factors. Top: projected MoM and the unprojected MoM, based on the
perfect moments (corresponding to N → ∞). Bottom: projected and
unprojected EM, with N = 104 observations and noise level of σ = 1/8.

FIGURE 5. Mean error of projected MoM as a function of SNR with
N = 105 observations (left) and number of observations with σ = 1/8
(right). The image size is Lhigh = 32 and the down-sampling factor is K = 2.

conducted 100 trials, each with a fresh distribution of translations.

As can be seen, the error decreases monotonically with the SNR.

Remarkably, the slope of the curve increases as the SNR decreases,

hinting that the sample complexity of the problem (the number of

observations required to achieve a desired accuracy) increases in the

low SNR regime; this is a known phenomenon in the MRA literature

for models with no projection [4], [5], [6].

Projected MoM performance as a function of the number of mea-

surements: By the law of large numbers and according to (4), for

any fixed SNR, the empirical moments almost surely converge to

the analytic moments. To assess the impact of the number of obser-

vations on the estimation error, we used the image of Lena of size

Lhigh = 32, down-sampling factor of K = 2, and noise level of 1/8,

corresponding to SNR ≈ 17.

Fig. 5 (right panel) presents the average error, over 100 trials, as a

function of N . For each trial, we drew a fresh distribution. The error

indeed decreases with N , as expected, but the slope is smaller than

−1/2 (in logarithmic scale), as the law of large numbers predicts.

This is due to the effect of the prior (manifested as a denoiser in our

case), which does not depend on the observations (the data).

How frequently should we apply the denoiser? An important pa-

rameter of the proposed algorithms, denoted by F , determines after

how many gradient steps (or EM iterations for projected EM) we

apply the denoiser. For example, F = 1 means that we apply the
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FIGURE 6. Mean error of projected MoM as a function of the iteration, for
different values of F (number of gradient steps between consecutive
denoising operations). The experiments were conducted on an image of
size Lhigh = 128, assuming to have access to the population moments, and
with a down-sampling factor of K = 2. The optimal value seems to be
around F = 10; larger or smaller values of F lead to sub-optimal results.

denoiser after each gradient step, whereas F = 100 means that we

run 100 gradient steps before applying the denoiser. This is especially

important since the computational complexity of a single gradient

step is significantly heavier than a BM3D application. To study the

effect of this parameter for projected MoM, we used the image of

Lena of size Lhigh = 128, a down-sampling factor of K = 2, and

assumed to have access to the population (perfect) moments.

Fig. 6 shows the average error (over 10 trials) of MoM for differ-

ent values of F ; each trial was conducted with a fresh distribution.

Plainly, the impact of F on the performance is significant. The opti-

mal value seems to be around F = 10 in this case; larger and smaller

values of F lead to sub-optimal results.

VI. CONCLUSION

Single-particle cryo-EM is an increasingly popular technology for

high-resolution structure determination of biological molecules [9],

[46]. The cryo-EM reconstruction problem is to estimate a 3-D struc-

ture (the electrostatic potential map of the molecule of interest) from

multiple observations of the form y = T RωX + ε, where X is the 3-D

structure to be recovered, Rω represents an unknown 3-D rotation by

some angle ω ∈ SO(3), and T is a fixed, linear tomographic projec-

tion. The noise level is typically very high. The SR-MRA problem

(1) can be interpreted as a toy model of the cryo-EM problem, where

the image plays the role of the 3-D structure, and the 2-D translations

and the sampling operator P replace, respectively, the unknown 3-D

rotations and the tomographic projection.

The standard reconstruction algorithms in cryo-EM are based on

EM [47], [48], aiming to maximize the posterior distribution based

on analytical, explicit priors. Recently, techniques based on MoM

were also designed for quick ab initio modeling [49], [50]. The

techniques proposed in this paper can be readily integrated into these

schemes, which may lead to improved accuracy and acceleration. A

similar idea was recently suggested by [51], who used the regulariza-

tion by denoising technique [16], and showed recoveries of moderate

resolution with simulated data.

Current cryo-EM technology cannot be used to reconstruct small

molecular structures (below ∼ 40 kDa): this is one of its main draw-

backs [52]. Recent papers suggested overcoming this barrier using

variations of the MoM and EM [53], [54], [55]. However, as the

problem is ill-conditioned, the resolution of the recovered structures

is not high enough. We hope that modifications of the algorithms

suggested in this paper, where the denoiser is replaced with a data-

driven projection operator can be used to increase the resolution

of the reconstructions and thus will allow elucidating multiple new

structures of small biological molecules.

In our proposed scheme, the data fidelity (likelihood) term is

computationally expensive due to the large number of measurements

(N > 100) involved. A possible approach to effectively reduce the

runtime is using online strategies, such as the one used in the online

Plug-and-Play [56]. Note also that in this work we use BM3D as

prior in our proposed framework. Yet, one may replace BM3D with

a learned denoiser to further boost the performance, e.g., using a deep

neural network. We defer this extension to future work.
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