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Detection and Recovery of Hidden Submatrices
Marom Dadon , Wasim Huleihel , Member, IEEE, and Tamir Bendory , Senior Member, IEEE

Abstract—In this paper, we study the problems of detection and
recovery of hidden submatrices with elevated means inside a large
Gaussian random matrix. We consider two different structures for
the planted submatrices. In the first model, the planted matrices
are disjoint, and their row and column indices can be arbitrary.
Inspired by scientific applications, the second model restricts the
row and column indices to be consecutive. In the detection problem,
under the null hypothesis, the observed matrix is a realization of
independent and identically distributed standard normal entries.
Under the alternative, there exists a set of hidden submatrices
with elevated means inside the same standard normal matrix.
Recovery refers to the task of locating the hidden submatrices. For
both problems, and for both models, we characterize the statisti-
cal and computational barriers by deriving information-theoretic
lower bounds, designing and analyzing algorithms matching those
bounds, and proving computational lower bounds based on the
low-degree polynomials conjecture. In particular, we show that the
space of the model parameters (i.e., number of planted submatrices,
their dimensions, and elevated mean) can be partitioned into three
regions: the impossible regime, where all algorithms fail; the hard
regime, where while detection or recovery are statistically possible,
we give some evidence that polynomial-time algorithm do not exist;
and finally the easy regime, where polynomial-time algorithms
exist.

Index Terms—Hidden structures, random matrices, statistical
and computational limits, statistical inference.

I. INTRODUCTION

THIS paper studies the detection and recovery problems
of hidden submatrices inside a large Gaussian random

matrix. In the detection problem, under the null hypothesis, the
observed matrix is a realization of an independent and identically
distributed random matrix with standard normal entries. Under
the alternative, there exists a set of hidden submatrices with
elevated means inside the same standard normal matrix. Our
task is to design a statistical test (i.e., an algorithm) to decide
which hypothesis is correct. The recovery task is the problem
of locating the hidden submatrices. In this case, the devised
algorithm estimates the location of the submatrices.

We consider two statistical models for the planted subma-
trices. In the first model, the planted matrices are disjoint, and
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their row and column indices can be arbitrary. The detection and
recovery variants of this model are well-known as the submatrix
detection and submatrix recovery (or localization) problems, re-
spectively, and received significant attention in the last few years,
e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [15], [16], [17], and references therein. Specifically,
for the case of a single planted submatrix, the task is to detect the
presence of a small k × k submatrix with entries sampled from a
distribution P in an n× n matrix of samples from a distribution
Q. In the special case where P and Q are Gaussians, the
statistical and computational barriers, i.e., information-theoretic
lower bounds, algorithms, and computational lower bounds,
were studied in great detail and were characterized in [1], [2],
[3], [4], [7], [9], [17]. When P and Q are Bernoulli random
variables, the detection task is well-known as the planted dense
subgraph problem, which has also been studied extensively in the
literature, e.g., [4], [5], [6], [8], [16]. Most notably, for both the
Gaussian and Bernoulli problems, it is well understood by now
that there appears to be a statistical-computational gap between
the minimum value of k at which detection can be solved, and
the minimum value of k at which detection can be solved in
polynomial time (i.e., with an efficient algorithm). The statistical
and computational barriers to the recovery problem have also
received significant attention in the literature, e.g., [13], [14],
[16], [18], [19], [20], [21], covering several types of distribu-
tions, as well as single and (non-overlapping) multiple planted
submatrices.

The submatrix model above, where the planted column and
row indices are arbitrary, might be less realistic in certain
scientific and engineering applications. Accordingly, we also
analyze a second model that restricts the row and column indices
to be consecutive. One important motivation for this model
stems from single-particle cryo-electron microscopy (cryo-EM):
a leading technology to elucidate the three-dimensional atomic
structure of macromolecules, such as proteins [22], [23]. At the
beginning of the algorithmic pipeline of cryo-EM, it is required
to locate multiple particle images (tomographic projections of
randomly oriented copies of the sought molecular structure) in a
highly noisy, large image [24], [25]. This task is dubbed particle
picking. While many particle picking algorithms were designed,
e.g., [26], [27], [28], [29], this work can be seen as a first attempt
to unveil the statistical and computational properties of this task
that were not analyzed heretofore.

a) Main contributions: To present our results, let us introduce
a few notations. In our models, we have m disjoint k × k
submatrices planted in an n× nmatrix. We denote the observed
matrix byX. We consider the Gaussian setting, where the entries
of the planted submatrices are independent Gaussian random
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TABLE I
STATISTICAL AND COMPUTATIONAL THRESHOLDS FOR SUBMATRIX DETECTION (SD), SUBMATRIX RECOVERY (SR), CONSECUTIVE SUBMATRIX DETECTION

(CSD), AND CONSECUTIVE SUBMATRIX RECOVERY (CSR), UP TO POLY-LOG FACTORS

variables with mean λ > 0 and unit variance, while the entries
of the other entries inX are independent standard normal random
variables. This falls under the general “signal+noise” model, in
the sense that X = λ · S+ Z, with S being the signal of interest,
Z is a standard normal noise matrix, and λ parameterize the
signal-to-noise ratio (SNR) of the problem. We consider two
models for S; in the first, the placement of the m planted
submatrices is arbitrary, while in the second each of the m
planted submatrices have consecutive row and column indices.
We will refer to the detection/recovery of the former model as
submatrix detection/recovery, and for the later as consecutive
submatrix detection/recovery.

The submatrix detection and recovery problems received
significant attention in the literature. The recovery task was
analyzed in [13], [14], for any number m ≥ 1 of planted sub-
matrices, while the detection task [4], [9] was analyzed for
m = 1 only; our contribution to this literature is the analysis
of the detection task of any (possibly growing) number of
planted submatrices. Our consecutive model is completely new.
In current literature, the elements of the structure/submatrix are
typically unconstrained, while in our consecutive model, they
must appear in a specific form. This changes both the statistical
and computational aspects of the inference problems.

We now discuss our contributions in more detail. We study the
computational and statistical boundaries and derive information-
theoretic lower bounds, algorithmic upper bounds, and compu-
tational lower bounds. In particular, we show that the space of
the model parameters (k,m, λ) can be partitioned into different
disjoint regions: the impossible regime, where all algorithms
fail; the hard regime, where while detection or recovery are
statistically possible, we give some evidence that polynomial-
time algorithms do not exist; and finally the easy regime, where
polynomial-time algorithms exist. Table I summarizes the statis-
tical and computational thresholds for the detection and recovery
problems discussed above. Note that the bounds in the second
row of Table I (submatrix recovery), as well as the first row
(submatrix detection) form = 1, are known results as mentioned
above.

Interestingly, while it is well-known that the number of
planted submatrices m does not play any significant role in
the statistical and computational barriers in the submatrix re-
covery problem, it can be seen that this is not the case for
the submatrix detection problem. Similarly to the submatrix
recovery problem, the submatrix detection problem undergoes
a statistical-computational gap. To provide evidence for this
phenomenon, we follow a recent line of work [30], [31], [32],

[33], [34], and show that the class of low-degree polynomials fail
to solve the detection problem in this conjecturally hard regime.
Furthermore, it can be seen that the consecutive submatrix
detection and recovery problems are either impossible or easy to
solve, namely, there is no hard regime. Here, for both the detec-
tion and recovery problems, the number of planted submatrices
m does not play an inherent role. We note that there is a statistical
gap between consecutive detection and recovery; the former is
statistically easier. This is true as long as exact recovery is the
performance criterion. We also analyze the correlated recovery
(also known as weak recovery) criterion, where recovery is
successful if only a fraction of planted entries are recovered.
For this weaker criterion, we show that recovery and detection
are asymptotically equivalent.

b) Notation: Given a distribution P, let P⊗n denote the distri-
bution of the n-dimensional random vector (X1, X2, . . . , Xn),
where the Xi are i.i.d. according to P. Similarly, P⊗m×n de-
notes the distribution on Rm×n with i.i.d. entries distributed as
P. Given a measurable set X, let Unif[X] denote the uniform
distribution on X. The relation X ⊥⊥ Y means that the random
variables X and Y are statistically independent. The Hadamard
and inner product between two n× n matrices A and B are
denoted, respectively, by A� B and 〈A,B〉 = trace(ATB). For
x ∈ R, we define [x]+ = max(x, 0). The nuclear norm of a sym-
metric matrix A is denoted by ‖A‖�, and equals the summation
of the absolute values of the eigenvalues of A. We let I and J
denote the identity and all-one matrices, respectively.

Let N(μ, σ2) denote a normal random variable with mean μ
and variance σ2, when μ ∈ R and σ ∈ R≥0. LetN(μ,Σ) denote
a multivariate normal random vector with mean μ ∈ Rd and
covariance matrix Σ, where Σ is a d× d positive semidefinite
matrix. Let Φ denote the cumulative distribution of a stan-
dard normal random variable with Φ(x) = 1√

2π

∫ x

−∞ e−t
2/2dt.

For probability measures P and Q, let dTV(P,Q) = 1
2

∫ |dP−
dQ|, χ2(P||Q) =

∫ (dP−dQ)2

dQ , and dKL(P||Q) = EP log
dP
dQ , de-

note the total variation distance, the χ2-divergence, and the
Kullback-Leibler (KL) divergence, respectively. Let Bern(p)
and Binomial(n, p) denote the Bernoulli and Binomial distri-
butions with parameters p and n, respectively. We denote by
Hypergeometric(n, k,m) the Hypergeometric distribution with
parameters (n, k,m).

We use standard asymptotic notation. For two positive se-
quences {an} and {bn}, we write an = O(bn) if an ≤ Cbn,
for some absolute constant C and for all n; an = Ω(bn), if
bn = O(an); an = Θ(bn), if an = O(bn) and an = Ω(bn),
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Fig. 1. Illustration of the models considered in this paper: Kk,m,n of Definition 1 (left) and Kcon
k,m,n of Definition 2 (right), for k = 4, m = 2, and n = 16.

an = o(bn) or bn = ω(an), if an/bn → 0, as n→∞. Finally,
for a, b ∈ R, we let a ∨ b � max{a, b} and a ∧ b � min{a, b}.
Throughout the paper, C refers to any constant independent
of the parameters of the problem at hand and will be reused
for different constants. The notation � refers to polynomi-
ally less than in n, namely, an � bn if lim infn→∞ logn an <
lim infn→∞ logn bn, e.g., n� n2, but n �� n log2 n. For n ∈
N, we let [n] = {1, 2, . . . , n}. For a subset S ⊆ R, we let 1{S}
denote the indicator function of the set S.

c) Paper organization: The rest of the paper is organized as
follows. In Section II, we formulate the submatrix and con-
secutive submatrix detection and recovery problems. Our main
results are presented in Section III; for both the detection and
recovery problems we derive asymptotically tight statistical and
computational lower and upper bounds. The proofs of some of
our main results appear in Section IV; due to page limitation
we relegate leftover proofs to an auxiliary file [35]. Finally, our
conclusions and outlook appear in Section V.

II. PROBLEM FORMULATION

In this section, we present our model and define the detection
and recovery problems we investigate, starting with the former.
For simplicity of notations, we denote Q = N(0, 1) and P =
N(λ, 1), for some λ > 0, which can be interpreted as the signal-
to-noise ratio (SNR) parameter of the underlying model.

A. The Detection Problem

Let (m, k, n) be three natural numbers, satisfying m · k ≤ n.
We emphasize that the values of m, k, and λ, are allowed to be
functions of n—the dimension of the observation. Let Kk,m,n

denote all possible sets that can be represented as a union of m
disjoint subsets of [n], each of sizek; see Fig. 1 for an illustration.
Formally,

Kk,m,n �
{
Kk,m =

m⋃
i=1

Si × Ti : Si,Ti ⊂ Ck, ∀i ∈ [m],

(Si × Ti) ∩ (Sj × Tj) = ∅, ∀i �= j ∈ [m]

}
, (1)

where Ck � {S ⊂ [n] : |S| = k}, namely, it is the set of all
subsets of [n] of sizek. We next formulate two different detection

problems that we wish to investigate, starting with the following
one, a generalization of the Gaussian planted clique problem (or,
bi-clustering, see, e.g., [9]) to multiple hidden submatrices (or,
clusters).

Definition 1 (Submatrix Detection): Let (P,Q) be a
pair of distributions over a measurable space (R,B). Let
SD(n, k,m,P,Q) denote the hypothesis testing problem with
observation X ∈ Rn×n and hypotheses

H0 : X ∼ Q⊗n×n vs. H1 : X ∼ D(n, k,m,P,Q), (2)

where D(n, k,m,P,Q) is the distribution of matrices X with
entries Xij ∼ P if i, j ∈ Kk,m and Xij ∼ Q otherwise that are
conditionally independent given Kk,m, which is chosen uni-
formly at random over all subsets of Kk,m,n.

To wit, under H0 the elements of X are all distributed i.i.d.
according to Q, while under H1, there are m planted disjoint
submatrices Kk,m in X with entries distributed according to P,
and the other entries (outside of Kk,m) are distributed according
to Q.

Note that the columns and row indices of the planted sub-
matrices in (1) can appear everywhere; in particular, they are
not necessarily consecutive. In some applications, however, we
would like those submatrices to be defined by a set of consec-
utive rows and a set of consecutive columns (e.g., when those
submatrices model images like in cryo-EM). Accordingly, we
consider the following set:

Kcon
k,m,n �

{
Kk,m =

m⋃
i=1

Si × Ti : Si,Ti ⊂ Cconk , ∀i ∈ [m],

(Si × Ti) ∩ (Sj × Tj) = ∅, ∀i �= j ∈ [m]

}
, (3)

where Cconk � {S ⊂ [n] : |S| = k, S is consecutive}, namely, it
is the set of all subsets of [n] of size k with consecutive elements.
For example, for n = 4, we have Ccon3 = {1, 2, 3} ∪ {2, 3, 4}.
The difference betweenKk,m,n andKcon

k,m,n is depicted in Fig. 1;
it is evident that the submatrices in Kk,m,n can appear every-
where, while those in Kcon

k,m,n are consecutive. Consider the
following detection problem.

Definition 2 (Consecutive Submatrix Detection): Let (P,Q)
be a pair of distributions over a measurable space (R,B). Let
CSD(n, k,m,P,Q) denote the hypothesis testing problem with
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observation X ∈ Rn×n and hypotheses

H0 : X ∼ Q⊗n×n vs. H1 : X ∼ D̃(n, k,m,P,Q), (4)

where D̃(n, k,m,P,Q) is the distribution of matrices X with
entries Xij ∼ P if i, j ∈ Kk,m and Xij ∼ Q otherwise that are
conditionally independent given Kk,m, which is chosen uni-
formly at random over all subsets of Kcon

k,m,n.
ObservingX, a detection algorithmAn for the problems above

is tasked with outputting a decision in {0, 1}. We define the risk
of a detection algorithmAn as the sum of its Type-I and Type-II
errors probabilities, namely,

R(An) = PH0
(An(X) = 1) + PH1

(An(X) = 0), (5)

where PH0
and PH1

denote the probability distributions under
the null hypothesis and the alternative hypothesis, respectively.
If R(An)→ 0 as n→∞, then we say that An solves the
detection problem. The algorithms we consider here are either
unconstrained (and thus might be computationally expensive)
or run in polynomial time (computationally efficient). Typically,
unconstrained algorithms are considered in order to show that
information-theoretic lower bounds are asymptotically tight. An
algorithm that runs in polynomial time must run in poly(n) time,
wheren is the size of the input. As mentioned in the introduction,
our goal is to derive necessary and sufficient conditions for
when it is impossible and possible to detect the underlying
submatrices, with and without computational constraints, for
both the SD and CSD models.

B. The Recovery Problem

Next, we consider the recovery variant of the problem in
Definition 2. Note that the submatrix recovery problem that
corresponds to the problem in Definition 1, where the entries of
the submatrices are not necessarily consecutive, was investigated
in [13]. In the recovery problem, we assume that the data follow
the distribution underH1 in Definition 2, and the inference task
is to recover the location of the planted submatrices. This is
the analog of the particle picking problem in cryo-EM that was
introduced in Section I. Consider the following definition.

Definition 3 (Consecutive Submatrix Recovery): Let (P,Q)
be a pair of distributions over a measurable space (R,B). Assume
that X ∈ Rn×n ∼ D̃(n, k,m,P,Q), where D̃(n, k,m,P,Q) is
the distribution of matrices X with entries Xij ∼ P if i, j ∈ K�

andXij ∼ Q otherwise that are conditionally independent given
K� ∈ Kcon

k,m,n. The goal is to recover the hidden submatrices K�,
up to a permutation of the submatrices indices, given the matrix
X. We let CSR(n, k,m,P,Q) denote this recovery problem.

Several metrics of reconstruction accuracy are possible, and
we will focus on two: exact and correlated recovery criteria.
Our estimation procedures produce a set K̂ = K̂(X) aimed to

estimate at best the underlying true submatrices K�. Consider
the following definitions.

Definition 4 (Exact Recovery): We say that K̂ achieves exact
recovery of K�, if, as n→∞, supK�∈Kcon

k,m,n
P(K̂ �= K�)→ 0.

Definition 5 (Correlated Recovery): The overlap of K� and
K̂ is defined as the expected size of their intersection, i.e.,

overlap(K�, K̂) � E〈K�, K̂〉 =
n∑

i=1

P(i ∈ K� ∩ K̂). (6)

We say that K̂ achieves correlated recovery of K�

if there exists a fixed constant ε > 0, such that

limn→∞ supK�∈Kcon
k,m,n

overlap(K�,K̂)
mk2 ≥ ε.

Similarly to the detection problem, also here we will care
about both unconstrained and polynomial time algorithms, and
we aim to derive necessary and sufficient conditions for when it
is impossible and possible to recover the underlying submatrices.

III. MAIN RESULTS

In this section, we present our main results for the detection
and recovery problems, starting with the former. For both prob-
lems, we derive the statistical and computational bounds for the
two models we presented in the previous section.

A. The Detection Problem

a) Upper bounds: We start by presenting our upper bounds.
To that end, we propose three algorithms and analyze their
performance. Define the statistics,

Tsum(X) �
∑

i,j∈[n]
Xij , (7)

TSD
scan(X) � max

K∈Kk,1,n

∑
i,j∈K

Xij , (8)

TCSD
scan (X) � max

K∈Kcon
k,1,n

∑
i,j∈K

Xij . (9)

The statistics in (7) amounts to adding up all the elements of X,
while (8) and (9) enumerate all k × k submatrices ofX inKk,1,n

and Kcon
k,1,n, and take the submatrix with the maximal sum of

entries, respectively. Fix δ > 0. Then, our tests are defined as,

Asum(X) � 1 {Tsum(X) ≥ τsum} , (10)

ASD
scan(X) � 1

{
TSD
scan(X) ≥ τSDscan

}
, (11)

ACSD
scan (X) � 1

{
TCSD
scan (X) ≥ τCSDscan

}
, (12)

where the thresholds are given by τsum � mk2λ
2 , τSDscan �√

(4 + δ)k2 log
(
n
k

)
, and τCSDscan �

√
(4 + δ)k2 log n, and corre-

spond roughly to the average between the expected values of
each of the statistics in (7)–(9) under the null and alternative
hypotheses. It should be emphasized that the tests in (10)–(11)
were proposed in, e.g., [2], [4], [9], for the special case of a
single planted submatrix detection problem (m = 1).

A few important remarks are in order. First, note that in the
scan test, we search for a single planted matrix rather thanm such
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matrices. Second, the sum test exhibits polynomial computa-
tional complexity, of O(n2) operations, and hence efficient. The
scan test in (11), however, exhibits an exponential computational
complexity, and thus is inefficient. Indeed, the search space in
(11) is of cardinality |Kk,1,n| =

(
n
k

)2
; we will discuss this in

detail later on (see, paragraph (c) below). On the other hand, the
scan test ACSD

scan for the consecutive setting is efficient because
|Kcon

k,1,n| ≤ n2.
The following result provides sufficient conditions under

which the risk of each of the above tests is asymptotically small.
Theorem 1 (Detection Upper Bounds): Consider the detec-

tion problems in Definitions 1 and 2. Then, we have the following
bounds:

1) (Efficient SD) There exists an efficient algorithmAsum in
(10), such that if

λ = ω
( n

mk2

)
, (13)

then R(Asum)→ 0, as n→∞, for the problems in Defi-
nitions 1 and 2.

2) (Exhaustive SD) There exists an algorithm ASD
scan in (11),

such that if

λ = ω

(√
log n

k

k

)
, (14)

then R(ASD
scan)→ 0, as n→∞, for the problem in Defi-

nition 1.
3) (Efficient CSD) There exists an efficient algorithm ACSD

scan

in (12), such that if

λ = ω

(√
log n

k

k

)
, (15)

then R(ACSD
scan )→ 0, as n→∞, for the problem in Defi-

nition 2.
As can be seen from Theorem 1, only the sum test performance

barrier exhibits dependency on m. The scan test is, for both
SD and CSD, inherently independent of m. This makes sense
because when summing all the elements of X, as m gets larger
the mean (the “signal”) under the alternative hypothesis gets
larger as well. On the other hand, since the scan test searches for
a single planted submatrix, the number of planted submatrices
does not play a role. One could argue that it might be beneficial
to search for them planted submatrices in the scan test, however,
as we show below, this is not needed, and the bounds above are
asymptotically tight.

b) Lower bounds: To present our lower bounds, we first recall
that the optimal testing error probability is determined by the
total variation distance between the distributions under the null
and the alternative hypotheses as follows (see, e.g., [36, Lemma
2.1]),

min
An:R

n×n→{0,1}
PH0

(An(X) = 1) + PH1
(An(X) = 0)

= 1− dTV(PH0
,PH1

). (16)

The following result shows that under certain conditions the
total variation between the null and alternative distributions is

asymptotically small, and thus, there exists no test which can
solve the above detection problems reliably.

Theorem 2 (Information-Theoretic Lower Bounds): We have
the following results.

1) Consider the detection problem in Definition 1. If,

λ = o

(
n

mk2
∧ 1√

k

)
, (17)

then dTV(PH0
,PH1

) = o(1).
2) Consider the detection problem in Definition 2. If λ =

o(k−1), then dTV(PH0
,PH1

) = o(1).
Theorem 2 above shows that our upper bounds in Theorem 1

are tight up to poly-log factors. Indeed, item 1 in Theorem 2
complements Items 1-2 in Theorem 1, for the SD problem, while
item 2 in Theorem 2 complements Item 3 in Theorem 1, for the
CSD problem. In the sequel, we illustrate our results using phase
diagrams that show the tradeoff between k and λ as a function
of n. We mention here that our results in Theorems 1 and 2
for submatrix detection coincide with [4], [9], where the special
case of m = 1 was analyzed.

One evident and important observation here is that the statis-
tical limit for the CSD problem is attained using an efficient test.
Thus, there is no statistical computational gap in the detection
problem in Definition 2, and accordingly, it is either statistically
impossible to solve the detection problem or it can be solved
in polynomial time. This is not the case for the SD problem.
Note that both the efficient sum and the exhaustive scan tests
are needed to attain the information-theoretic lower bound (up
to poly-log factors). As discussed above, however, here the scan
test is not efficient. We next give evidence that, based on the
low-degree polynomial conjecture, efficient algorithms that run
in polynomial-time do not exist in the regime where the scan
test succeeds while the sum test fails.

c) Computational lower bounds: Note that the problem in
Definition 1 exhibits a gap in terms of what can be achieved by
the proposed polynomial-time algorithm and the computation-
ally expensive scan test algorithm. In particular, it can be seen
that in the regime where 1√

k
� λ� n

mk2 , while the problem
can be solved by an exhaustive search using the scan test, we do
not have a polynomial-time algorithm. Next, we give evidence
that, in fact, an efficient algorithm does not exist in this region.
To that end, we start with a brief introduction to the method of
low-degree polynomials.

The premise of this method is to take low-degree multivariate
polynomials in the entries of the observations as a proxy for
efficiently-computable functions. The ideas below were first
developed in a sequence of works in the sum-of-squares op-
timization literature [30], [31], [37], [38].

In the following, we follow the notations and definitions
of [31], [39]. Any distribution PH0

on Ωn = Rn×n induces an
inner product of measurable functions f, g : Ωn → R given by
〈f, g〉H0

= EH0
[f(X)g(X)], and norm ‖f‖H0

= 〈f, f〉1/2H0
. We

Let L2(PH0
) denote the Hilbert space consisting of functions f

for which ‖f‖H0
<∞, endowed with the above inner product

and norm. In the computationally-unbounded case, the Neyman-
Pearson lemma shows that the likelihood ratio test achieves the
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optimal tradeoff between Type-I and Type-II error probabilities.
Furthermore, it is well-known that the same test optimally distin-
guishes PH0

from PH1
in the L2 sense. Specifically, denoting by

Ln � PH1
/PH0

the likelihood ratio, the second-moment method
for contiguity1 (see, e.g., [39, Lemma 2]) shows that if ‖Ln‖2H0

remains bounded as n→∞, then PH1
is contiguous to PH0

.
This implies thatPH1

andPH0
are statistically indistinguishable,

i.e., no test can have both Type-I and Type-II error probabilities
tending to zero.

We now describe the low-degree method. The idea is to find
the low-degree polynomial that best distinguishes PH0

from
PH1

in the L2 sense. To that end, we let Vn,≤D ⊂ L2(PH0
)

denote the linear subspace of polynomials Ωn → R of degree
at most D ∈ N. We further define P≤D : L2(PH0

)→ Vn,≤D the
orthogonal projection operator. Then, the D-low-degree likeli-
hood ratio L≤Dn is the projection of a function Ln to the span of
coordinate-degree-D functions, where the projection is orthogo-
nal with respect to the inner product 〈·, ·〉H0

. As discussed above,
the likelihood ratio optimally distinguishes PH0

from PH1
in the

L2 sense. The next lemma shows that over the set of low-degree
polynomials, the D-low-degree likelihood ratio have exhibit the
same property.

Lemma 1 (Optimally of L≤Dn [30], [38], [39]): Consider the
following optimization problem:

max EH1
f(X) s.t. EH0

f2(X) = 1, f ∈ Vn,≤D. (18)

Then, the unique solution f� for (18) is the D-low degree
likelihood ratio f� = L≤Dn /‖L≤Dn ‖H0

, and the value of the opti-
mization problem is ‖L≤Dn ‖H0

.
As was mentioned above, in the computationally-unbounded

regime, an important property of the likelihood ratio is that if
‖Ln‖H0

is bounded, then PH0
and PH1

are statistically indistin-
guishable. The following conjecture states that a computational
analog of this property holds, with L≤Dn playing the role of the
likelihood ratio. In fact, it also postulates that polynomials of
degree≈ log n are a proxy for polynomial-time algorithms. The
conjecture below is based on [30], [31], [38], and [31, Conj.
2.2.4]. We give an informal statement of this conjecture, which
appears in [39, Conj. 1]. For a precise statement, we refer the
reader to [31, Conj. 2.2.4] and [39, Sec. 4].

Conjecture 1 (Low-Degree Conjecture, Informal): Given a
sequence of probability measures PH0

and PH1
, if there exists

ε > 0 and D = D(n) ≥ (log n)1+ε, such that ‖L≤Dn ‖H0
remains

bounded as n→∞, then there is no polynomial-time algorithm
that distinguishes PH0

and PH1
.

In the sequel, we will rely on Conjecture 1 to give evidence
for the statistical-computational gap observed for the problem
in Definition 1 in the regime where 1√

k
� λ� n

mk2 . At this
point we would like to mention [31, Hypothesis 2.1.5], which
states a more general form of Conjecture 1 in the sense that it

1A sequence (Pn)n∈N of probability measures is contiguous to a se-
quence (Qn)n∈N, if whenever An ∈ Fn with Qn(An)→ 0, as n→∞,
then Pn(An)→ 0 as well, over a common sequence of measurable spaces
{(Ωn,Fn)}n∈N.

postulates that degree-D polynomials are a proxy for nO(D)-
time algorithms. Note that if ‖L≤Dn ‖H0

= O(1), then we expect
detection in time T(n) = eD(n) to be impossible.

Theorem 3 (Computational Lower Bound): Consider the de-
tection problem in Definition 1. Then, if λ is such that 1√

k
�

λ� n
mk2 , then ‖L≤Dn ‖H0

≤ O(1), for anyD = Ω(log n). On the
other hand, if λ is such that λ� n

mk2 , then ‖L≤Dn ‖H0
≥ ω(1).

Together with Conjecture 1, Theorem 3 implies that if we take
degree-log n polynomials as a proxy for all efficient algorithms,
our calculations predict that annO(logn) algorithm does not exist
when 1√

k
� λ� n

mk2 . This is summarized in the following
corollary.

Corollary 4: Consider the detection problem in Definition 1,
and assume that Conjecture 1 holds. An nO(logn) algorithm that
achieves strong detection does not exist if λ is such that 1√

k
�

λ� n
mk2 .

These predictions agree precisely with the previously estab-
lished statistical-computational tradeoffs in the previous sub-
sections. A more explicit formula for the computational barrier
which exhibits dependency on D and λ can be deduced from the
proof of Theorem 3; to keep the exposition simple we opted to
present the refined result above. For the special case of m = 1,
the same computational lower bound but based on the planted
clique conjecture, was proved in [9], [16], [17].

We note that numerical and theoretical evidence for the exis-
tence of computational-statistical gaps were observed in other
statistical models that are also inspired by cryo-EM, including
heterogeneous multi-reference alignment [40], [41] and sparse
multi-reference alignment [42].

d) Phase diagrams: Using Theorems 1–3 we are now in a
position to draw the obtained phase diagrams for our detection
problems. Specifically, treating k and λ as polynomials in n,
i.e., k = Θ(nβ) and λ = Θ(n−α), for some α ∈ (0, 1) and β ∈
(0, 1), we obtain the phase diagrams in Fig. 2(a), for a fixed
number of submatrices m = O(1). Specifically,

1) Computationally easy regime (blue region): there is a
polynomial-time algorithm for the detection task when
α < 2β − 1.

2) Computationally hard regime (red region): there is an
inefficient algorithm for detection when α < β/2 and
α > 2β − 1, but the problem is computationally hard (no
polynomial-time algorithm exists) in the sense that the
class of low-degree polynomials fails in this region.

3) Statistically impossible regime: detection is statistically
impossible when α > β

2 ∨ (2β − 1).
When the number of submatrices grows with n = ω(1), we

get different phase diagrams depending on its value. For exam-
ple, if m = Θ(n1/4), we get Fig. 2(b). Specifically,

1) Computationally easy regime (blue region): there is a
polynomial-time algorithm for the detection task when
α < 2β − 3

4 .
2) Computationally hard regime (red region): there is an

inefficient algorithm for detection when α < β/2 and
α > 2β − 3

4 , but the problem is computationally hard (no
polynomial-time algorithm exists) in the sense that the
class of low-degree polynomials fails in this region.
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Fig. 2. Phase diagrams for submatrix detection as a function of k = Θ(nβ), and λ = Θ(n−α), for m = O(1) and m = Θ(n1/4).

Fig. 3. Phase diagram for consecutive submatrix detection, as a function of
k = Θ(nβ), and λ = Θ(n−α), for any m.

3) Statistically impossible regime: detection is statistically
impossible when α > β

2 ∨ (2β − 3/4).
Finally, for the consecutive problem, we get the phase diagram

in Fig. 3, independently of the value of m. Here, there are only
two regions where the problem is either statistically impossible
or easy to solve.

B. The Recovery Problem

a) Upper bounds: We start by presenting our upper bounds for
both exact and correlated types of recovery for the consecutive
problem in Definition 3. To that end, we propose the follow-
ing recovery algorithm. It can be shown that the maximum-
likelihood (ML) estimator, minimizing the error probability, is
given by (see [35, Section 4.4] for a complete derivation),

K̂ML(X) = arg maxK∈Kcon
k,m,n

∑
(i,j)∈K

Xij . (19)

The computational complexity of the exhaustive search in (19)
is of order n2m. Thus, for m = O(1), the ML estimator runs in
polynomial time, and thus, is efficient. However, if m = ω(1)
then the exhaustive search is not efficient anymore. Nonetheless,
the following straightforward modification of (19) provably

achieves the same asymptotic performance of the ML estimator
above, and at the same time computationally efficient.

Before we present this algorithm, we make a simplifying
technical assumption on the possible set of planted submatrices,
and then explain how this assumption can be removed. We
assume that each pair of submatrices in the underlying planted
submatricesK� are at least k columns and rows far way. In other
words, there are at least k columns and k rows separating any
pair of submatrices in K�. Similar assumptions are frequently
taken when analyzing statistical models inspired by cryo-EM,
see, for example [43]. We will refer to the above as the separation
assumption.

Our recovery algorithm works as follows: in the 
 ∈ [m] step,
we find the ML estimate of a single submatrix using,

K̂�(X
(�)) = arg maxK∈Kcon

k,1,n

∑
(i,j)∈K

X
(�)
ij , (20)

where X(�) is defined recursively as follows: X(1) � X, and for

 ≥ 2,

X(�) = X(�−1) � E(K̂�−1), (21)

whereE(K̂�−1) is ann× nmatrix such that [E(K̂�−1)]ij = −∞,
for (i, j) ∈ K̂�−1, and [E(K̂�−1)]ij = 1, otherwise. To wit, in
each step of the algorithm we “peel” the set of estimated indices
(or, estimated submatrices) in previous steps from the search
space. This is done by setting the corresponding entries of X to
−∞ so that the sum in (20) will not be maximized by previously
chosen sets of indices. We denote by K̂peel(X) = {K̂�}m�=1 the
output of the above algorithm.

Remark 1: Without the assumption above, the fact that the
peeling algorithm succeeds is not trivial. If, for example, the
chosen planted matrices are such that they include a pair of
adjacent matrices, then it could be the case that at some step of
the peeling algorithm, the estimated set of indices corresponds
to a certain submatrix of the union of those adjacent matrices.
However, one can easily modify the peeling algorithm, drop the
assumption above, and obtain the same statistical guarantees
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Algorithm 1: Modified Peeling.

1)Initialize flag← 0, 
← 1, K ← ∅, A = 0n×n.
2)while flag = 0

a) K̂�(X)← arg maxK∈Kcon
k,1,n\K

∑
(i,j)∈K Xij .

b) Aij ← 1, for (i, j) ∈ K̂�(X), and Aij ← 0, otherwise.
c) K ← K ∪ K̂�(X).
d)if 〈J,A〉 = mk2

flag← 1.
e)else


← 
+ 1.
3)Output A.

stated below. Indeed, consider the following modification to the
peeling routine in Algorithm 1.

The key idea is as follows. In the first step, we find the k × k
submatrix in X with the maximum sum of entries. We denote
this submatrix by K̂1. This is exactly the same first step of the
peeling algorithm. In the second step, we again search for the
k × k submatrix in X with the maximum sum of entries, but of
course, remove K̂1 from the search space. More generally, in
the 
-th step, we again search for the k × k submatrix in X with
maximum sum of entries, but remove K = ∪�−1i=1K̂i from the
search space (we will not iterate over these specific submatrices
anymore, but other submatrices which might intersect with those
submatrices are acceptable and might still be in the search space).
We terminate this process once∪�i=1K̂i ∈ Kcon

k,m,n, i.e., the union
of the estimated sets of matrices can cast as a proper set of planted
submatrices. This can easily be checked by forming the matrix
A in Step 2(b), and checking the conditions in Step 2(d). If the
actually planted submatrices are not adjacent, then this will be
the case (under the conditions in the theorem below) after 
 = m
steps, with high probability. Otherwise, if at least two planted
submatrices are adjacent, then while 
 might be larger than m it
is bounded by n2, and it is guaranteed that such a union exists.
Once we find such a union, it is easy to revert the set of m
consecutive k × k submatrices from A.

We have the following result.
Theorem 5 (Recovery Upper Bounds): Consider the recovery

problem in Definition 3, and let C be a universal constant. Then,
we have the following set of bounds:

1) (ML Exact Recovery) Consider the ML estimator in (19).
If

lim inf
n→∞

λ√
Ck−1 log n

> 1, (22)

then exact recovery is possible.
2) (Peeling Exact Recovery) Consider the peeling estimator

in (20), and assume that the separation assumption holds.
Then, if

lim inf
n→∞

λ√
Ck−1 log n

> 1, (23)

then exact recovery is possible.
3) (Peeling Correlated Recovery) Consider the peeling esti-

mator in (20), and assume that the separation assumption

holds. If

lim inf
n→∞

λ√
Ck−2 log n

> 1, (24)

then correlated recovery is possible.
b) Lower bounds: The following result shows that under cer-

tain conditions, exact and correlated recoveries are impossible.
Theorem 6 (Information-Theoretic Recovery Lower Bounds):

Consider the recovery problem in Definition 3. Then:

1) If λ < C
√

logm
k , exact recovery is impossible, i.e.,

inf
K̂

sup
K�∈Kcon

k,m,n

P[K̂(X) �= K�] >
1

2
,

where the infimum ranges over all measurable functions
of the matrix X.

2) If λ = o(k−1), correlated recovery is impossible, i.e.,
supK�∈Kcon

k,m,n
overlap(K�, K̂) = o(mk2).

To prove the impossibility of exact recovery we use Fano’s
inequality. To that end, we construct families of distributions
with relatively large cardinality such that the distributions are
all relatively close in KL divergence. For the correlated recovery
impossibility result we use the I-MMSE formula [44] and some
arguments from [45, Subsection 3.1.3]. From Theorem 6, we see
that similarly to the detection problem, the consecutive recovery
problem is either statistically impossible or easy to solve. The
corresponding phase diagram for exact and correlated types of
recoveries is given in Fig. 4. Roughly speaking, exact recovery
is possible if λ = ω(k−1/2) and impossible if λ = o(k−1/2).
Correlated recovery is possible if λ = ω(k−1) and impossible if
λ = o(k−1).

A few remarks are in order. First, note that there is a gap
between detection and exact recovery; the barrier for λ for the
former is at k−1, while for the latter at k−1/2. In the context of
cryo-EM, this indicates a gap between the ability to detect the
existence of particle images in the data set, and the ability to
perform successful particle picking (exact recovery). Recently,
new computational methods were devised to elucidate molecular
structures without particle picking, thus bypassing the limit of
exact recovery, allowing constructing structures in very low
SNR environments, e.g., [43], [46], [47]. This in turn opens
the door to recovering small molecular structures that induce
low SNR [48]. Second, there is no gap between detection and
correlated recovery, and these different tasks are asymptotically
statistically the same. The same gap exists between correlated
and exact recoveries, implying that exact recovery is strictly
harder than correlated recovery.

IV. PROOFS

In this section, we provide proofs for Theorems 1–3, and
the peeling exact recovery bound in Theorem 5. Due to page
limitation, some details in these proofs, as well as the proofs of
Theorem 6, and the ML exact and correlated recovery bounds
in Theorem 5, are relegated to [35].
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Fig. 4. Phase diagram for consecutive submatrix exact recovery (left) and correlated recovery (right), as a function of k = Θ(nβ), and λ = Θ(n−α), for any m.

A. Proof of Theorem 1

We analyze the performance of the sum test in (10). The
analysis of the tests in (11) and (12) rely on similar arguments,
and can be found in [35]. Define τ � mk2λ

2 . Let us analyze the
corresponding error probability. On the one hand, under H0, it
is clear that Tsum(X) ∼ N(0, n2). Thus,

PH0
(Asum(X) = 1) = PH0

(Tsum(X) ≥ τ)

≤ 1

2
exp

(
− τ2

2n2

)
. (25)

On the other hand, under H1, Tsum(X) ∼ N(mk2λ, n2).
Thus,

PH1
(Asum(X) = 0) = PH1

(Tsum(X) ≤ τ)

≤ 1

2
exp

(
− (τ −mk2λ)2

2n2

)
. (26)

Substituting τ = mk2λ
2 , we obtain that

R (Asum) ≤ exp

(
−m2 k4λ2

8n2

)
. (27)

Thus, if mk2λ
n →∞, then R(Asum)→ 0, as n→∞. Note

that the analysis above holds true for both detection problems in
Definitions 1 and 2.

B. Proof of Theorem 2

1) Submatrix Detection: Recall that the optimal testA∗n that
minimizes the risk is the likelihood ratio test defined as follows,

A∗n (X) � 1 {Ln (X) ≥ 1} , (28)

where Ln(X) � PH1 (X)
PH0 (X)

. The optimal risk, denoted by R∗ =
R(A∗n), can be lower bounded using the Cauchy–Schwartz
inequality as follows,

R∗ = 1− 1

2
EH0
|Ln (X)− 1|

≥ 1− 1

2

√
EH0

[
(Ln (X))

2
]
− 1. (29)

Thus, in order to lower bound the risk, we need to upper bound
EH0

[(Ln(X))
2]. Below, we provide a lower bound that holds for

any pair of distributions P and Q.
Corollary 7: The following holds:

EH0

[
(Ln (X))

2
]
= EK⊥⊥K′

[
(1 + χ2(P||Q))|K∩K′|

]
(30)

≤ EK⊥⊥K′
[
eχ

2(P||Q)·|K∩K′|
]
, (31)

where K and K′ are two independent copies drawn uniformly at
random from Kk,m,n (or, K̄k,m,n), and

χ2(P||Q) � EX∼Q

[P(X)

Q(X)

]2
− 1. (32)

Proof of Corollary 7: First, note that the likelihood can be
written as follows:

Ln (X) =
PH1

(X)

PH0
(X)

= EK

⎛⎝ ∏
(i,j)∈K

P(Xij)

Q(Xij)

⎞⎠ , (33)

where the expectation in (33) is taken w.r.t. K ∼ Unif(Kk,m,n).
Now, note that the square of the right-hand side of (33) can be
rewritten as:⎡⎣EK

⎛⎝ ∏
(i,j)∈K

P(Xij)

Q(Xij)

⎞⎠⎤⎦2

= EK⊥⊥K′

⎛⎝ ∏
(i,j)∈K

P(Xij)

Q(Xij)

∏
(i,j)∈K′

P(Xij)

Q(Xij)

⎞⎠ . (34)

Therefore,

EH0

[
(Ln (X))

2
]
= EH0

⎡⎣EK

⎛⎝ ∏
(i,j)∈K

P(Xij)

Q(Xij)

⎞⎠⎤⎦2

(35)

= EH0

⎡⎣EK⊥⊥K′

⎛⎝ ∏
(i,j)∈K

P(Xij)

Q(Xij)

∏
(i,j)∈K′

P(Xij)

Q(Xij)

⎞⎠⎤⎦ (36)
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= EK⊥⊥K′

⎡⎣EH0

⎛⎝ ∏
(i,j)∈K

P(Xij)

Q(Xij)

∏
(i,j)∈K′

P(Xij)

Q(Xij)

⎞⎠⎤⎦ (37)

= EK⊥⊥K′

⎡⎣EH0

⎛⎝ ∏
(i,j)∈K∪K′\K∩K′

P(Xij)

Q(Xij)

∏
(i,j)∈K∩K′

(P(Xij)

Q(Xij)

)2
⎞⎠⎤⎦ (38)

= EK⊥⊥K′

⎡⎣ ∏
(i,j)∈K∪K′\K∩K′

EH0

[P(Xij)

Q(Xij)

]

∏
(i,j)∈K∩K′

EH0

[P(Xij)

Q(Xij)

]2⎤⎦ (39)

(a)
= EK⊥⊥K′

⎡⎣(EH0

[P(Xij)

Q(Xij)

]2)|K∩K′|⎤⎦ (40)

= EK⊥⊥K′
[(
1 + χ2(P||Q))|K∩K′|] (41)

(b)

≤ EK⊥⊥K′
[
eχ

2(P||Q)·|K∩K′|
]
, (42)

where (a) is because EQ
P(Xij)
Q(Xij)

= 1, and (b) is because 1 + x ≤
exp(x), for any x ∈ R. �

Based on Corollary 7, it suffices to upper bound
EK⊥⊥K′ [eχ

2(P||Q)·|K∩K′ |]. Recall that K and K′ are decomposed
as K =

⋃m
�=1 S� × T� and K′ =

⋃m
�=1 S

′
� × T′�. Thus, we note

that the intersection of K and K′ can be rewritten as

|K ∩ K′| =
m∑

�1=1

m∑
�2=1

|(S�1 ∩ S′�2)× (T�1 ∩ T′�2)| (43)

=
m∑

�1=1

m∑
�2=1

|(S�1 ∩ S′�2)| · |(T�1 ∩ T′�2)|. (44)

For each 
1, 
2 ∈ [m], define Z�1,�2 � |(S�1 ∩ S′�2)| and

R�1,�2 � |(T�1 ∩ T′�2)|. Note that the sequence of random
variables {Z�1,�2}�1,�2 are statistically independent of
the sequence {R�1,�2}�1,�2 . Next, it is easy to show
that Z�1,�2 ∼ Hypergeometric(n, k, k) and R�1,�2 ∼
Hypergeometric(n, k, k), for each 
1, 
2 ∈ [m], for any

1, 
2 ∈ [m]. Indeed, if we have an urn of n balls among
which k balls are red, the random variable Z�1,�2 (and R�1,�2 )
is exactly the number of red balls if we draw k balls from
the urn uniformly at random without replacement, which is
the definition of a Hypergeometric random variable. While the
random variables {Z�1,�2}�1,�2 (and similarly {R�1,�2}�1,�2 ) are
not independent, they are negatively associated. Thus,

EK⊥⊥K′
[
eχ

2(P||Q)·|K∩K′|
]

≤
m∏

�1=1

m∏
�2=1

E

[
eχ

2(P||Q)·Z�1,�2
R�1,�2

]
(45)

=
[
E

(
eχ

2(P||Q)·Z1,1R1,1

)]m2

. (46)

Next, it is well-known that Z1,1 = Hypergeometric(n, k, k)
(and similarly R1,1 = Hypergeometric(n, k, k)) is stochas-
tically dominated by B ∼ Binomial(k, k/n) =

∑k
i=1

Bern(k/n). Thus,

E

(
eχ

2(P||Q)·Z1,1R1,1

)
≤ E

(
eχ

2(P||Q)·BB′
)
, (47)

where B′ be an independent copy of B. Thus,

EK⊥⊥K′
[
eχ

2(P||Q)·|K∩K′|
]
≤
[
E

(
eχ

2(P||Q)·BB′
)]m2

. (48)

We show that, if χ2(P||Q) satisfies the condition of Theorem 2,
the term on the right-hand side of (48) is at most 1 + δ, for any
δ > 0. We have[

E

(
eχ

2(P||Q)·BB′
)]m2

=

[
E

(
1 +

k

n

(
eχ

2(P||Q)B − 1
))k

]m2

. (49)

Next, note that B ≤ k, and we assume that χ2(P||Q) ≤ 1
k , for

reasons that will become clear later on. Therefore, using the
inequality ex − 1 ≤ x+ x2, for x < 1, the following holds[

E

(
eχ

2(P||Q)·BB′
)]m2

≤
[
E

(
1 +

k

n

(
χ2(P||Q)B+ χ4(P||Q)B2

))k
]m2

(50)

≤
[
E

(
1 + 2

k

n
χ2(P||Q)B

)k
]m2

(51)

≤
[
E

(
e2

k2

n χ2(P||Q)B
)]m2

(52)

=

[
1 +

k

n

(
e2

k2

n χ2(P||Q) − 1
)]km2

. (53)

This is at most 1 + δ if

k

n

(
e2

k2

n χ2(P||Q) − 1
)
≤ (1 + δ)

1
km2 − 1. (54)

Since (1 + δ)
1

km2 − 1 ≥ log(1 + δ)/(km2), this is implied by

χ2(P||Q) ≤ n

2 k2
log

(
1 +

n log(1 + δ)

m2 k2

)
. (55)

Putting altogether, we obtained that EK⊥⊥K′ [eχ
2(P||Q)·|K∩K′|] ≤

1 + δ, if

χ2(P||Q) ≤ min

{
1

k
,

n

2 k2
log

(
1 +

n log(1 + δ)

m2 k2

)}
(56)

= min

{
1

k
,
n2 log(1 + δ)

2m2 k4

}
. (57)
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Finally, note that in the Gaussian case, χ2(N(λ, 1)||N(0, 1)) =
1
2 [exp(λ

2)− 1]. Thus, for λ = o(1), we have

χ2(N(λ, 1)||N(0, 1))→ λ2

2 , which concludes the proof.
2) Consecutive Submatrix Detection: For the consecutive

case, we notice that by using the steps as in the previous
subsection, we have

EH0

[
(Ln (X))

2
]
≤ EK⊥⊥K′

[
eχ

2(P||Q)·|K∩K′|
]
, (58)

where K and K′ are two independent copies drawn uniformly
at random from Kcon

k,m,n. The key distinction from the previous
case lies in the distribution of |K ∩ K′|. Recall that K and K′

are decomposed asK =
⋃m

�=1 S� × T� andK′ =
⋃m

�=1 S
′
� × T′�.

Thus, we note that the intersection of K and K′ can be rewritten
as

|K ∩ K′| =
m∑

�1=1

m∑
�2=1

|(S�1 ∩ S′�2)× (T�1 ∩ T′�2)| (59)

=

m∑
�1=1

m∑
�2=1

|(S�1 ∩ S′�2)| · |(T�1 ∩ T′�2)| (60)

�
m∑

�1=1

m∑
�2=1

Z�1,�2 . (61)

Note that for a given pair (
1, 
2), we have

P(|(S�1 ∩ S′�2)| = z) =

⎧⎪⎨⎪⎩
n−2k+1

n , for z = 0
2
n , for z = 1, 2, . . ., k − 1
1
n , for z = k,

(62)

and the exact same distribution for |(T�1 ∩ T′�2)|. Thus, we may

write Z�1,�2

(d)
= H · H′, where H and H′ are statistically inde-

pendent and follow the distribution given in (62). Thus, using
the fact that the random variables {Z�1,�2}�1,�2 are negatively
associated, we get,

EK⊥⊥K′
[
eχ

2(P||Q)·|K∩K′|
]
≤

m∏
�1=1

m∏
�2=1

E

[
eχ

2(P||Q)·Z�1,�2

]

=
[
E

(
eχ

2(P||Q)·H·H′
)]m2

. (63)

Now,

E

(
eχ

2(P||Q)·H·H′
)

= E

(
n− 2k + 1

n
+

2

n

k−1∑
i=1

eχ
2(P||Q)·iH′ +

eχ
2(P||Q)·kH′

n

)

≤ E

(
n− 2 k

n
+

2 k
n

eχ
2(P||Q)·kH′

)
=

n− 2 k

n
+

2 k
n

(
n− 2k + 1

n

+
2

n

k−1∑
i=1

eχ
2(P||Q)·ik +

eχ
2(P||Q)·k2

n

)

≤ n− 2 k

n
+

2 k
n

(
n− 2 k

n
+

2 k
n

eχ
2(P||Q)·k2

)
= 1 +

4 k2

n2

(
eχ

2(P||Q)·k2 − 1
)
. (64)

Therefore,

EK⊥⊥K′
[
eχ

2(P||Q)·|K∩K′|
]

≤
[
1 +

4 k2

n2

(
eχ

2(P||Q)·k2 − 1
)]m2

. (65)

This is at most 1 + δ if,

4 k2

n2

(
eχ

2(P||Q)k2 − 1
)
≤ (1 + δ)

1
m2 − 1. (66)

Since (1 + δ)
1

m2 − 1 ≥ log(1 + δ)/(m2), this is implied by

χ2(P||Q) ≤ 1

k2
log

(
1 +

n2 log(1 + δ)

4 k2 m2

)
. (67)

Finally, note that since km ≤ n, the logarithmic factor in (67)
can be lower bounded by log(1 + log(1 + δ)/4), which con-
cludes the proof.

C. Proof of Theorem 3

In order to prove Theorem 3, we use the following result [49,
Theorem 2.6].

Lemma 2: Let S be an n dimensional random vector drawn
from some distribution Dn, and let Z be an i.i.d. n dimensional
random vector with standard normal entries. Consider the de-
tection problem:

H0 : Y = Z vs. H1 : Y = S+ Z. (68)

Then,

∥∥L≤Dn

∥∥2
H0

= ES⊥⊥S′

[
D∑

d=0

1

d!
〈S,S′〉d

]
, (69)

whereS andS′ are drawn fromDn, andL≤Dn is theD-low-degree
likelihood ratio.

Our SD problem falls under the setting of Lemma 2. Specifi-
cally, let K ∼ Unif[Kk,m,n], and define S̃ to be an n× n matrix
such that [S̃]ij = λ, if i, j ∈ K, and [S̃]ij = 0, otherwise. Also,
we define S as the vectorized version of S̃. Then, it is clear that
our SD problem cast as the detection problem in Lemma 2, and
thus,

∥∥L≤Dn

∥∥2 = ES⊥⊥S′

[
D∑

d=0

1

d!
〈S,S′〉d

]
(70)

=

D∑
d=0

λ2d

d!
E |K ∩ K′|d , (71)

where we have used the fact that 〈S,S′〉 = STS′ = ‖S� S‖1 =
λ2|K ∩ K′|, and K′ is an independent copy of K.
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Using a certain stochastic dominance argument, we prove
in [35] that,

E |K ∩ K′|d ≤ B2
d max

{
m2 k4

n2
,

(
m2 k4

n2

)d
}
, (72)

where Bd is the dth Bell number. Thus,

∥∥L≤Dn

∥∥2 ≤ 1 +

D∑
d=1

λ2d

d!
B2
d max

{
m2 k4

n2
,

(
m2 k4

n2

)d
}
(73)

� 1 +
D∑

d=1

Td. (74)

If m2 k4

n2 < 1, then it is clear that for
∑D

d=1 Td = O(1), it suffices

that λ < 1. On the other hand, if m2 k4

n2 > 1, then consider the
ratio between successive terms:

Td+1

Td
=

B2
d+1

(d+ 1)B2
d

λ2 m2 k
4

n2
. (75)

Thus if λ is small enough, namely if

mk2λ

n
≤
√
d+ 1√
2

Bd

Bd+1
, (76)

then Td+1

Td
≤ 1/2, for all 1 ≤ d ≤ D. In this case, by comparing

with a geometric sum, we may bound ‖L≤Dn ‖2 ≤ O(1). To show
that the analysis above is tight, we prove in [35] that if λ =
ω(n/(mk2)), then ‖L≤Dn ‖2 = ω(1). This concludes the proof.

D. Proof of Theorem 5 for Exact Recovery

We analyze the first step of the peeling algorithm (which boils
down to the ML estimator for a single planted submatrix), and
the strategy to bound each of the other sequential steps is exactly
the same. Recall that,

K̂1(X) = arg maxK∈Kcon
k,1,n
S(K), (77)

where S(K) �∑
(i,j)∈K Xij . where S(K) �∑

(i,j)∈K Xij . We

next prove the conditions for which K̂1(X) = K�
� , with high

probability, for some 
 ∈ [m], where K� = ∪m�=1K
�
� are the m

planted submatrices. To prove the theorem it suffices to show that
S(K) > max�∈[m] S(K�

� ) is asymptotically small, for all feasible
K with K �= K�

� , for 
 ∈ [m]. Let D�(K) � S(K�
� )− S(K). Note

that

D�(K) =
∑

(i,j)∈K�
�

Xij −
∑

(i,j)∈K
Xij (78)

=
∑

(i,j)∈K�
�

EXij −
∑

(i,j)∈K
EXij +

∑
(i,j)∈K�

�

[Xij − EXij ]

−
∑

(i,j)∈K
[Xij − EXij ] (79)

= λ · (k2 − |K� ∩ K|) +
∑

(i,j)∈K�
� \K

[Xij − λ]

−
∑

(i,j)∈K\K�
�

[Xij − EXij ] (80)

= λ · (k2 − |K� ∩ K|) +W1(K) +W2(K), (81)

where W1(K) �
∑

(i,j)∈K�
� \K[Xij − λ] and W2(K) �

−∑(i,j)∈K\K�
�
[Xij − EXij ]. Because |K| = |K�

� | = k2, we

have |K�
� \ K| = |K \ K�

� | = k2 − |K�
� ∩ K|. Thus, both W1(K)

andW2(K) are composed of sum ofk2 − |K�
� ∩ K| i.i.d. centered

Gaussian random variables with unit variance. Accordingly, for
i = 1, 2, and each fixed K,

P

(
Wi(K) ≤ −λ

2
(k2 − |K� ∩ K|)

)
≤ 1

2
exp

[
−λ2

8

(k2 − |K� ∩ K|)2
k2 − |K�

� ∩ K|
]
. (82)

Therefore, by the union bound and (81),

P (D�(K) ≤ 0) ≤ exp

[
−λ2

8

(k2 − |K� ∩ K|)2
k2 − |K�

� ∩ K|
]
. (83)

Note that due to the separation assumption, it must be the case
that either |K� ∩ K| = |K�

j ∩ K| �= 0, for some j ∈ [m], or |K� ∩
K| = 0. In the later case, we have

P (D�(K) ≤ 0) ≤ exp

[
−λ2 k2

8

]
, (84)

while in the former the exists a unique j ∈ [m], such that,

min
�∈[m]

P (D�(K) ≤ 0) ≤ min
�∈[m]

exp

[
−λ2

8

(k2 − |K�
j ∩ K|)2

k2 − |K�
� ∩ K|

]

≤ exp

[
−λ2

8
(k2 − |K�

j ∩ K|)
]
≤ exp

[
−λ2 k

8

]
, (85)

where the third inequity is since K�
j ,K ∈ Kcon

k,1,n and K�
j ∩ K �=

∅, we must have that |K�
j ∩ K| ≤ k2 − k.Accordingly, using (83)

and the union bound once again, we get

P

(
K̂1(X) �= K�

� for some 
 ∈ [m]
)

= P

⎡⎣ ⋃
K �=(K�

1 ,...,K
�
m)

{
S(K) > max

�∈[m]
S(K�

� )

}⎤⎦ (86)

= P

⎡⎣ ⋃
K �=(K�

1 ,...,K
�
m)

{D1(K) ≤ 0, . . . ,Dm(K) ≤ 0}
⎤⎦ (87)

≤
∑

K �=(K�
1 ,...,K

�
m)

min
�∈[m]

P (D�(K) ≤ 0) (88)

≤
∑

K �=(K�
1 ,...,K

�
m)

exp

[
−λ2 k

8

]
≤ n2e−

1
8 λ2 k, (89)

where the last inequality is because |Kcon
k,1,n| ≤ n2. Thus, we

see that if λ2 > (24+ε) logn
k , then P(K̂1(X) �= K�

� for some 
 ∈
[m]) ≤ n−(1+ε/8). Using the same steps above, it is clear that,
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P(K̂�(X) �= K�
� ) ≤ n−(1+ε/8), for any 2 ≤ 
 ≤ m, provided that

λ2 > (24+ε) logn
k . Thus,

P

[
K̂peel �= K�

]
= P

[
m⋃
�=1

K̂� �= K�
�

]
≤ m

n(1+ε/8)
= n−ε/8,

which converges to zero as n→∞.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we study the computational and statistical
boundaries of the submatrix and consecutive submatrix de-
tection and recovery problems. For both models, we derive
asymptotically tight lower and upper bounds on the thresholds
for detection and recovery. To that end, for each problem, we
propose statistically optimal and efficient algorithms for detec-
tion and recovery and analyze their performance. Our statistical
lower bounds are based on classical techniques from information
theory. Finally, we use the framework of low-degree polynomials
to provide evidence for the statistical-computational gap in the
submatrix detection problem.

There are several exciting directions for future work. First,
it would be interesting to generalize our results to any pair of
distributions P and Q. While our information-theoretic lower
bounds hold for general distributions, it is left to construct
and analyze algorithms for this case, as well as to derive
computational lower bounds. In our paper, we assume that the
elements inside the planted submatrices are i.i.d., however, it is
of practical interest to generalize this assumption and consider
the case of dependent entries, e.g., Gaussians with a general
covariance matrix. For example, this is the typical statistical
model of cryo-EM data [25]. Finally, it will be interesting to
prove a computational lower bound for the submatrix recovery
problem using the recent framework of low-degree polynomials
for recovery [50], and well as providing other forms of evidence
to the statistical computational gaps for the submatrix detection
problem with a growing number of planted submatrices, e.g.,
using average-case reductions [16].

REFERENCES

[1] A. A. Shabalin et al., “Finding large average submatrices in high dimen-
sional data,” Ann. Appl. Statist., vol. 3, no. 3, pp. 985–1012, 2009.

[2] M. Kolar, S. Balakrishnan, A. Rinaldo, and A. Singh, “Minimax localiza-
tion of structural information in large noisy matrices,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2011, pp. 909–917.

[3] S. Balakrishnan, M. Kolar, A. Rinaldo, A. Singh, and L. Wasserman,
“Statistical and computational tradeoffs in biclustering,” in Proc. NIPS
Workshop Comput. Trade-Offs Stat. Learn., 2011, pp. 1–4.

[4] C. Butucea and Y. I. Ingster, “Detection of a sparse submatrix of a high-
dimensional noisy matrix,” Bernoulli, vol. 19, no. 5B, pp. 2652–2688,
2013.

[5] E. Arias-Castro and N. Verzelen, “Community detection in dense random
networks,” Ann. Statist., vol. 42, no. 3, pp. 940–969, 2014.

[6] B. Hajek, Y. Wu, and J. Xu, “Computational lower bounds for community
detection on random graphs,” in Proc. 28th Conf. Learn. Theory, 2015,
pp. 899–928.

[7] A. Montanari, D. Reichman, and O. Zeitouni, “On the limitation of
spectral methods: From the gaussian hidden clique problem to rank-one
perturbations of gaussian tensors,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2015, pp. 217–225.

[8] N. Verzelen and E. Arias-Castro, “Community detection in sparse random
networks,” Ann. Appl. Probability, vol. 25, no. 6, pp. 3465–3510, 2015.

[9] Z. Ma and Y. Wu, “Computational barriers in minimax submatrix detec-
tion,” Ann. Statist., vol. 43, no. 3, pp. 1089–1116, 2015.

[10] X. Sun and A. Nobel, “On the maximal size of large-average and
ANOVA-fit submatrices in a Gaussian random matrix,” Bernoulli, vol. 19,
pp. 275–294, Feb. 2013.

[11] E. Arias-Castro, E. Candés, and A. Durand, “Detection of an anomalous
cluster in a network,” Ann. Statist., vol. 39, pp. 278–304, Jan. 2010.

[12] S. Bhamidi, P. Dey, and A. Nobel, “Energy landscape for large
average submatrix detection problems in Gaussian random matri-
ces,” Probability Theory Related Fields, vol. 168, pp. 919–983,
Aug. 2017.

[13] Y. Chen and J. Xu, “Statistical-computational tradeoffs in planted prob-
lems and submatrix localization with a growing number of clusters and
submatrices,” J. Mach. Learn. Res., vol. 17, no. 27, pp. 1–57, 2016.

[14] T. Cai, T. Liang, and A. Rakhlin, “Computational and statistical boundaries
for submatrix localization in a large noisy matrix,” Ann. Statist., vol. 45,
no. 4, pp. 1403–1430, Aug. 2017.

[15] W. Huleihel, “Inferring hidden structures in random graphs,” IEEE Trans.
Signal Inf. Process. Netw., vol. 8, pp. 855–867, 2022.

[16] M. Brennan, G. Bresler, and W. Huleihel, “Reducibility and computational
lower bounds for problems with planted sparse structure,” in Proc. 31st
Conf. Learn. Theory, 2018, pp. 48–166.

[17] M. Brennan, G. Bresler, and W. Huleihel, “Universality of computational
lower bounds for submatrix detection,” in Proc. 32nd Conf. Learn. Theory,
2019, pp. 417–468.

[18] A. Montanari, “Finding one community in a sparse graph,” J. Stat. Phys.,
vol. 161, no. 2, pp. 273–299, 2015.

[19] U. O. Candogan and V. Chandrasekaran, “Finding planted subgraphs with
few eigenvalues using the Schur–Horn relaxation,” SIAM J. Optim., vol. 28,
no. 1, pp. 735–759, 2018.

[20] B. Hajek, Y. Wu, and J. Xu, “Achieving exact cluster recovery threshold
via semidefinite programming,” IEEE Trans. Inf. Theory, vol. 62, no. 5,
pp. 2788–2797, May 2016.

[21] B. Hajek, Y. Wu, and J. Xu, “Information limits for recovering a hidden
community,” IEEE Trans. Inf. Theory, vol. 63, no. 8, pp. 4729–4745,
Aug. 2017.

[22] X.-C. Bai, G. McMullan, and S. H. Scheres, “How cryo-EM is revolution-
izing structural biology,” Trends Biochem. Sci., vol. 40, no. 1, pp. 49–57,
2015.

[23] D. Lyumkis, “Challenges and opportunities in cryo-EM single-particle
analysis,” J. Biol. Chem., vol. 294, no. 13, pp. 5181–5197, 2019.

[24] A. Singer, “Mathematics for cryo-electron microscopy,” in Proc. Int.
Congr. Mathematicians, 2018, pp. 3995–4014.

[25] T. Bendory, A. Bartesaghi, and A. Singer, “Single-particle cryo-electron
microscopy: Mathematical theory, computational challenges, and op-
portunities,” IEEE Signal Process. Mag., vol. 37, no. 2, pp. 58–76,
Mar. 2020.

[26] F. Wang et al., “DeepPicker: A deep learning approach for fully automated
particle picking in cryo-EM,” J. Struct. Biol., vol. 195, no. 3, pp. 325–336,
2016.

[27] A. Heimowitz, J. Andén, and A. Singer, “APPLE picker: Automatic par-
ticle picking, a low-effort cryo-EM framework,” J. Struct. Biol., vol. 204,
no. 2, pp. 215–227, 2018.

[28] T. Bepler et al., “Positive-unlabeled convolutional neural networks for
particle picking in cryo-electron micrographs,” Nature Methods, vol. 16,
no. 11, pp. 1153–1160, 2019.

[29] A. Eldar, B. Landa, and Y. Shkolnisky, “KLT picker: Particle picking
using data-driven optimal templates,” J. Struct. Biol., vol. 210, no. 2, 2020,
Art. no. 107473.

[30] S. B. Hopkins and D. Steurer, “Efficient Bayesian estimation from few
samples: Community detection and related problems,” in Proc. IEEE 58th
Annu. Symp. Found. Comput. Sci., 2017, pp. 379–390.

[31] S. Hopkins, “Statistical inference and the sum of squares method,” Ph.D.
dissertation, Cornell Univ., Ithaca, NY, USA, 2018.

[32] A. S. Bandeira, D. Kunisky, and A. S. Wein, “Computational hardness
of certifying bounds on constrained PCA problems,” in Proc. 11th Innov.
Theor. Comput. Sci. Conf., 2020, pp. 78:1–78:29.

[33] Y. Cherapanamjeri, S. B. Hopkins, T. Kathuria, P. Raghavendra, and N.
Tripuraneni, “Algorithms for heavy-tailed statistics: Regression, covari-
ance estimation, and beyond,” in Proc. 52nd Annu. ACM SIGACT Symp.
Theory Comput., 2020, pp. 601–609.

[34] T. Bendory, N. Boumal, W. Leeb, E. Levin, and A. Singer, “Toward single
particle reconstruction without particle picking: Breaking the detection
limit,” SIAM J. Imag. Sci., vol. 16, no. 2, pp. 886–910, 2023.

[35] M. Dadon, W. Huleihel, and T. Bendory, “Detection and recovery of hidden
submatrices,” 2023, arXiv:2306.06643.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on July 03,2024 at 10:53:58 UTC from IEEE Xplore.  Restrictions apply. 



82 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 10, 2024

[36] A. B. Tsybakov, Introduction to Nonparametric Estimation, 1st ed. Berlin,
Germany: Springer, 2008.

[37] B. Barak, S. B. Hopkins, J. Kelner, P. Kothari, A. Moitra, and A. Potechin,
“A nearly tight sum-of-squares lower bound for the planted clique prob-
lem,” in Proc. IEEE 57th Annu. Symp. Found. Comput. Sci., 2016,
pp. 428–437.

[38] S. B. Hopkins, P. K. Kothari, A. Potechin, P. Raghavendra, T. Schramm, and
D. Steurer, “The power of sum-of-squares for detecting hidden structures,”
in Proc. IEEE 58th Found. Comput. Sci., 2017, pp. 720–731.

[39] D. Kunisky, A. S. Wein, and A. S. Bandeira, “Notes on computational
hardness of hypothesis testing: Predictions using the low-degree likeli-
hood ratio,” in Mathematical Analysis, its Applications and Computation.
Berlin, Germany: Springer, 2022, pp. 1–50.

[40] N. Boumal, T. Bendory, R. R. Lederman, and A. Singer, “Heterogeneous
multireference alignment: A single pass approach,” in Proc. IEEE 52nd
Annu. Conf. Inf. Sci. Syst., 2018, pp. 1–6.

[41] A. S. Wein, “Statistical estimation in the presence of group actions,” Ph.D.
dissertation, Massachusetts Inst. Technol., Cambridge, MA, USA, 2018.

[42] T. Bendory, O. Mickelin, and A. Singer, “Sparse multi-reference align-
ment: Sample complexity and computational hardness,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2022, pp. 8977–8981.

[43] T. Bendory, N. Boumal, W. Leeb, E. Levin, and A. Singer, “Toward single
particle reconstruction without particle picking: Breaking the detection
limit,” 2018, arXiv:1810.00226.

[44] D. Guo, S. Shamai, and S. Verdu, “Mutual information and minimum
mean-square error in Gaussian channels,” IEEE Trans. Inf. Theory, vol. 51,
no. 4, pp. 1261–1282, Apr. 2005.

[45] Y. Wu and J. Xu, “Statistical problems with planted structures:
Information-theoretical and computational limits,” in Information-
Theoretic Methods in Data Science, M. R. D. Rodrigues and Y. C. Eldar,
Eds. Cambridge, U.K.: Cambridge Univ. Press, 2020.

[46] S. Kreymer and T. Bendory, “Two-dimensional multi-target detection: An
autocorrelation analysis approach,” IEEE Trans. Signal Process., vol. 70,
pp. 835–849, 2022.

[47] S. Kreymer, A. Singer, and T. Bendory, “A stochastic approximate
expectation-maximization for structure determination directly from cryo-
EM micrographs,” 2023, arXiv:2303.02157.

[48] R. Henderson, “The potential and limitations of neutrons, electrons and X-
rays for atomic resolution microscopy of unstained biological molecules,”
Quart. Rev. Biophys., vol. 28, no. 2, pp. 171–193, 1995.

[49] A. S. Bandeira, A. Perry, and A. S. Wein, “Notes on computational-to-
statistical gaps: Predictions using statistical physics,” Portugaliae Mathe-
matica, vol. 75, no. 2, pp. 159–186, 2018.

[50] T. Schramm and S. A. Wein, “Computational barriers to estimation from
low-degree polynomials,” Ann. Statist., vol. 50, pp. 1833–1858, Sep. 2022.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on July 03,2024 at 10:53:58 UTC from IEEE Xplore.  Restrictions apply. 


