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Abstract

Fractional Leibniz rules are reminiscent of the product rule learned in calculus classes,
offering estimates in the Lebesgue norm for fractional derivatives of a product of func-
tions in terms of the Lebesgue norms of each function and its fractional derivatives.
We prove such estimates for Coifman—Meyer multiplier operators in the setting of
Triebel-Lizorkin and Besov spaces based on quasi-Banach function spaces. In par-
ticular, these include rearrangement invariant quasi-Banach function spaces such as
weighted Lebesgue spaces, weighted Lorentz spaces and generalizations, and Orlicz
spaces. The method used also yields results in weighted mixed Lebesgue spaces and
Morrey spaces, where we present applications to the specific case of power weights,
as well as in variable Lebesgue spaces.
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1 Introduction and Main Results

Fractional Leibniz rules in the setting of Lebesgue spaces state that, for 1 <
P1. P2, P1, P2 £ 00,1/2 < p < ocosuchthat 1/p = 1/p1 + 1/p> = 1/p1 + 1/p2,
and s > max{0, n(1/p — 1)} or s € 2N, the inequality

VESCE | Lo S NES Fll o Nglir + 1 £Le |ESg 5 (1.1)

holds true with ES = D or E* = J*, where D* and J* are the homogeneous and inho-
mogeneous fractional differentiation operators of order s, respectively, defined through
the Fourier transform by D* /() = [§[° f(§) and T (1)) = (1 + [E)*/? F(©).
& eR".

The inequality (1.1) and related commutator estimates have emerged as essential
tools to study a number of nonlinear PDEs, including Euler and Navier-Stokes equa-
tions (see Kato—Ponce [34]) and Korteweg—de Vries equations (see Christ—Weinstein
[13] and Kenig—Ponce—Vega [35]), as well as the study of smoothing properties of
Schrodinger semigroups (see Gulisashvili-Kon [29]). The range 1 < p < oo is
addressed in the mentioned works and the case % < p < listreated in Grafakos—Oh
[28] and Muscalu—Schlag [45] (see also Koezuka—Tomita [36] and Naibo—Thomson
[48]); for the endpoints p = co and p = %, the reader is referred to Bourgain-Li [9]
(see also Grafakos—Maldonado—Naibo [27]) and Oh—Wu [50], respectively.

The estimate (1.1) is a particular instance of inequalities in a variety of function
spaces where the product fg is replaced by T, (f, g); here, T, is a bilinear pseudo-
differential operator associated to 0 = o (x, &, n), x, &, n € R", (called a symbol, or
a multiplier if independent of x) and defined by

To(f. )(x) = /R L o & FEgme ™ E M dgdy, (12)
Note that for o = 1, we recover the product fg. Estimates using 7, have the form
VB (T (foonl, S TE Fz Nglz, +1£12, [ E%8 7, (1.3)

for function spaces Z, Z1, Z», 4 1, and Zz. For example, variants of these estimates in
weighted Lebesgue spaces associated to Muckenhoupt weights are given in [48] for
Coifman—Meyer multiplier operators and in Cruz—Uribe-Naibo [16, 17] for o = 1;
Hart-Torres—Wu [30] proved estimates for multiplier operators in the context of
Lebesgue and mixed Lebesgue spaces using minimal assumptions on the smooth-
ness of the multipliers; Oh—Wu [51] obtained results with ¢ = 1 in the setting of
Lebesgue and mixed Lebesgue spaces associated to power weights; the works [36]
and [48] include estimates in the context of local Hardy spaces and weighted Hardy
spaces, respectively. The estimates (1.3) have also been studied in the scale of Besov
and Triebel-Lizorkin spaces for operators with symbols belonging to bilinear Hor-
mander classes; see, for instance, the works Bényi [5] and Naibo—Thomson [47]
in the scale of Besov spaces, Bényi—-Nahmod-Torres [6] in the context of Sobolev
spaces, and Naibo [46] and [36] for Besov and Triebel-Lizorkin spaces. For bilinear
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pseudo-differential operators with symbols closely related to the Hormander classes,
Brummer—Naibo [10] proved estimates in the setting of function spaces that admit a
molecular decomposition and a ¢-transform in the sense of Frazier—Jawerth [24, 25],
and for Coifman—Meyer multiplier operators, [48] worked in the context of weighted
Besov and Triebel-Lizorkin spaces with weights in the Muckenhoupt classes. We refer
the reader to the survey in Torres [56] for other considerations.

In this article, we prove fractional Leibniz rules of the type (1.3) for Coifman—
Meyer multiplier operators in the setting of Triebel-Lizorkin and Besov spaces based
on quasi-Banach function spaces. A Coifman—Meyer multiplier operator of order
m € R is an operator of the type (1.2) given by a smooth, complex-valued multiplier
o(&,n), &, neR", that verifies

oo (&, n)\ < Cap(€] + In))"~1HID  v(E ) e R\ {(0,0)},
(1.4)

for all multi-indices «, 8 € N’& and some constant Cy, g > 0. We will also consider an
inhomogeneous analog where o is such that (1.4) holds with 1 + |£] 4 || instead of
1E1 =+ [nl.

Quasi-Banach function spaces include a diverse family of function spaces such
as weighted mixed Lebesgue spaces, Morrey spaces (after an adjustment), variable
Lebesgue spaces, as well as the large class of rearrangement invariant quasi-Banach
function spaces, of which weighted Lebesgue spaces, generalized versions of Lorentz
spaces, and Orlicz spaces are specific examples. By proving the identification of quasi-
Banach function spaces with spaces in the scale of the associated Triebel-Lizorkin
spaces, our main results imply a plethora of fractional Leibniz rules in quasi-Banach
function spaces, recovering in a unified way many results in the literature and providing
new ones. For instance, we recover the following estimates proved in [48]:

1D (o (fo ) | o S NP f gy N8lare + U f i [ D8] - (1.5)

for a Coifman—Meyer multiplier o of order zero, 0 < p1, p2 < 00,0 < p2, p1 < 00,
0 <p<oosuchthatl/p=1/p1+1/py =1/p1+1/p2, s > max{0,n(1/p—1)},
and where H? = HY(R") denotes a Hardy space for 0 < ¢ < oo (recall that
H?1(R") = L4(R") for 1 < g < co) and H?(R") is replaced by L*°(R") if ¢ = o0.
Notice that, when o = 1, the estimate (1.5) improves (1.1) by allowing all indices to
be in the wider range (0, oc] and by admitting the larger H”-norm on the left hand
side. A weighted version of (1.5) also holds with Hardy spaces associated to weights
in the Muckenhoupt class A (R"?).

More generally, our main results lead to the following novel version of (1.3) in
the setting of Hardy spaces based on weighted rearrangement invariant quasi-Banach
function spaces,

| D°(Ts (f ) | e
S

2)+||f||HX{’1( IDg| X2 (1.6)

P1 P2
|HX1 (w) ”g”HXz (w wr) H
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where for a weight v and 0 < ¢ < oo, HX” (v) denotes the Hardy space based on the
weighted rearrangement invariant quasi-Banach function spaces X4 (v), w, wy, and
wy are weights in the Muckenhoupt class Ay (R"), the parameters s, p, pi, and p;
satisfy appropriate conditions, and o is a Coifman—Meyer multiplier of order zero. In
turn, (1.6) implies

“DS(T(,(f, g))”XP(w) < || DSf”Xf’l (w1) ||g||x§2(w2) + ”f”lel (wy) “ Dsglix;n(wzy
(1.7)

for appropriate indices and weights in the Muckenhoupt classes. We refer the reader
to Sect. 4 for more details.

Our main results also provide new estimates in the setting of weighted mixed
Lebesgue spaces; for instance, if o is a Coifman—Meyer multiplier of order zero, we
obtain

| D (T, (1 g))”L"(L‘l(w)) <D f] o @iy 18M1Lr2 e wy))
FU ooy [P°8ll Lm oy - (18

forl < p,p1.p2.q.91,q2 <00, 1/p=1/p1+1/p2, 1/g =1/q1 + 1/q2, s > 0,
and appropriate weights w, w1, and w; in ‘mixed’ versions of Muckenhoupt classes.
See details in Sect. 5.

Other concrete examples implied by our main results include Leibniz rules in set-
tings associated to weighted Lorentz and Orlicz spaces, as well as weighted Morrey
and variable Lebesgue spaces. Details can be found in Sects. 4.3, 6, and 7, respectively.

Some particular cases of (1.3) can be recast as

175 (f lly S WF Ny liglizee + 1 f 1z ligly (1.9)

where Y is some function space associated to a smoothness parameter (for instance, a
Sobolev space, or more generally a Besov or Triebel-Lizorkin space). Such estimates,
in particular when o = 1, have played a fundamental role in the study of partial
differential equations (see, for instance, [2, 10, 40, 48] and the references therein), and
they imply that ¥ N L°°(R") is an algebra under pointwise multiplication. Our main
results give that (1.9) holds for Besov or Triebel-Lizorkin spaces based on a quasi-
Banach function space; as a byproduct, the intersection of such spaces with L (R")
is an algebra under pointwise multiplication.

Multiple approaches (which are based on Coifman—Meyer multiplier operators
and the bilinear Calderén-Zygmund theory, square-function estimates, vector-valued
multiplier theorems, among others) have been put forward to prove fractional Leibniz
rules in the spirit of (1.3). In this article, we employed an alternative unifying approach
used in [48], where results in the weighted Lebesgue, Lorentz and Morrey spaces, as
well as variable Lebesgue spaces were obtained. This method is based on Nikol’skif
representations for function spaces and was pioneered for classical spaces in Bourdaud
[8], Meyer [42], Nikol’skii [49], Triebel [57], and Yamazaki [58]. We prove such
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representations for the general setting of Besov and Triebel-Lizorkin spaces based on
quasi-Banach function spaces (Theorem 3.4).

This article is organized as follows. Notation, definitions, and properties of function
spaces are given in Sect. 2. The statement of the main result on fractional Leibniz rules
in Triebel-Lizorkin and Besov spaces based on quasi-Banach function spaces, as well
as its corollaries and proof, are given in Sect. 3. In Sect. 4, we strengthen the main
result for the particular case of rearrangement invariant quasi-Banach function spaces,
and present specific examples in weighted Lebesgue spaces, weighted Lorentz spaces
and Orlicz spaces. Other particular applications of the general theory in the setting of
quasi-Banach function spaces that are not rearrangement invariant are given in Sect. 5
for weighted mixed Lebesgue spaces, in Sect. 6 for weighted Morrey spaces, and
in Sect. 7 for variable Lebesgue spaces. Finally, Appendix A contains extrapolation
theorems, Appendix B proves identifications of function spaces with spaces in the scale
of Triebel-Lizorkin spaces, Appendix C shows results pertaining to the boundedness of
the Hardy-Littlewood maximal operator on the function spaces used, and Appendix D
gives the proof of Nikol’skil representations in the context of quasi-Banach function
spaces.

2 Preliminaries

In this section, we give some definitions and notation for quasi-Banach function spaces
(QBFS), weights, and QBFS-based Triebel-Lizorkin, Besov, and Hardy spaces.

Let S(R™) denote the Schwartz class of smooth, rapidly decreasing functions and
S’(R™) denote its dual space of tempered distributions. We use So(R") to indicate
the subspace of functions in S(R") with vanishing moments of all orders. That is,
for f € S(R"), we have f € So(R"), if, and only if, for any multi-index o € N,
fRn x¥ f(x)dx = 0. Its dual space will be denoted by S)(R"), which is the class of
tempered distributions modulo polynomials, S’ (R")/P(R").

Many of our results will be in quasi-Banach function spaces, which we define
following Bennett and Sharpley [4] and Cruz-Uribe et al. [19]. Let (R", u) be a
totally o-finite, nonatomic measure space and M denote the collection of measurable
functions on (R”, u). A mapping p : M — [0, oo] is a Banach function norm if it
satisfies the following properties for all f and g in M:

Pl. o(f) = p(|f]) and p(f) = 01if, and only if, f = 0 u-a.e.;
P2, p(f+8) < p(f)+r(g):;
P3. p(af) = lal p(f), foralla € R;

P4. | f| = |gl w-a.e.implies p(f) = p(8);
P5. If { fi }j <7, 18 a sequence of measurable functions such that | f j| increases to | f|

p-a.e., then p(f;) increases to p(f);
P6. If E C R” is measurable and u(E) < oo, then

i p(xg) < o0,
ii. there exists 0 < Cg < oo, depending only on E and p, such that fE | fldu <

Cep(f).
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Given p, we define the function space
X={feM:|flly <oo},

where || fllx = p(f). Using properties P4 and P5, it can be shown that (X, ||-||x) is
a Banach space (see [4, Chap. 1, Theorem 1.6]). We call X a Banach function space
(BES).

The associate space of X, denoted X', is defined through the Banach function
norm

p'(f) = Sup{/ﬂén lf(x)g)ldu:ge X, gl < 1}.

Given 0 < p < oo, we define

XP={feM:|fI” X},

1
and set || fll» = II1/1711Y".
In the case that property P2 is replaced by

p(f+8) < Colp(f)+ p(g),

for some constant 0 < C, < oo, and property P6ii is omitted, we call X a qguasi-
Banach function space (QBFS). A QBFES is also complete (see Caetano et al. [11,
Lemma 3.6]), and the definitions of X? and X’ extend to this setting. We note that if
X is a BFS, then X? for 1 < p < oo and X’ are BFSs, while X? for0 < p < 1 can
only be guaranteed to be a QBFS.

For most of our results, it will be required that a QBFS X is such that X7 is a
Banach function space for some 1 < py < oo. That is, defining

p(X) =inf {pg > 1: X7 is BFS},
we require that p(X) < oo.

We note that if p(X) < coand 0 < p, p1, pop < ocoaresuchthatl/p =1/p; +
1/ pa2, then the following Holder’s inequality holds:

fellxr < Ifllxp lIgllxe - 2.1

We next discuss boundedness properties of the Hardy-Littlewood maximal operator
on a QBFS X. We define the Hardy-Littlewood maximal operator by

1
Mf(x) = SUP—/ [fOW)ldy, xeR",
Bsx |Bl JB

where f is a locally integrable function on R”, the supremum is taken over all
Euclidean balls B C R" containing x, and |B| denotes the Lebesgue measure of
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B.Forh > 0,

Mif () = (M (|f|h))’l‘(x)=sup< 1 f3|f<y)|’1dy>'l’.

B>x |B|

Let X be a QBFS over (R”, ). Assume that given 0 < r < oo there exists 7 > 0
such that the Fefferman-Stein inequality holds; that is,

> M) S 1A : 2.2)
JEZ ¥ JEZL ¥

~
<

for all sequences { f j}jeZ of locally integrable functions defined on R”, with the
corresponding changes when r = oco. Then for such a QBFS X, we define

hx =sup{h > 0: My isbounded on X} and hx , =sup{h > 0 : (2.2) holds } .

We also define

T(X)=n (; - 1) and 7, (X) =n <; - 1) .
min(hy, 1) min(/x -, 1)

We note that hxy > hx , and 7, (X) > 7(X).

A weight on R” is a nonnegative, locally integrable function defined on R”. Given
aweight w on R” and 0 < p < oo, define the weighted Lebesgue space L” (w) to be
the collection of measurable functions f on R” such that

1

Il fllLrw) = (/Rn If(x)l”w(x)dx) " 00,

with the usual change when p = oo.
For 1 < p < oo, the Muckenhoupt class of weights A,(R") is the collection of
weights w on R” such that

p—1
[w]a, @ = sup (][ w(x)dx> <][ w(x)l_p/dx> < 00, (2.3)
o Vo 0

where the supremum is taken over all cubes O C R" and fQ fx)dx = ﬁ f 0 f(x)dx
for a locally integrable function f. Recall thatif | < p < oo, the Hardy-Littlewood
maximal operator is bounded on L? (w) if, and only if, w € A, (R") (see Muckenhoupt
[44]). We also define

A ®") = | 4,®R",
p>1
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and, for w € Ay (R"),
Ty, =inf{r > 1:w € A;(R")}.

We denote the Fourier transform of f € S'(R") by for % f. In particular, for
f e LY(R"), we have

f($)=/ fx)e ¥ gx, Ve e R
Rn

For j € Z, ¢ € S(R"), f € S'(R"), and § € R", define P! such that P{ f (£) =
5 Q& )f(E ). If ¢ is supported in an annulus centered at the origin, we use the notation
Aj.b instead of PJ‘.”, and if $ is supported in a ball centered at the origin with 3(0) # 0,

we use the notation S? instead of P?. For a € R", we indicate translation by a with
T4 that is, 7,0 (x) = ¢(x + a) for x € R".

2.1 Function Spaces

We now define the Triebel-Lizorkin and Besov spaces we will be working with.
Let ¥, ¢ € S(R") be such that

supp(@) C {& e R" : [§] < 2}, (2.4)
supp(¥) C (£ e R": 1 < g <2} (2.5)

We define A(R") as the class of ¥ € S(R") such that ¥ satisfies (2.5) and

YN P =1, VEeR"\{0).

JEZ

We denote by A(IR") the class of pairs (¢, ¥) such that ¢, v € S(R"), ¢ satisfies
(2.4), i satisfies (2.5), and

PE+Y Y =1, VEeR"

jeN

Let X be a QBFS, 0 <r = o0, and s € R. For ¢ € A(R"), the homogeneous
Triebel-Lizorkin space Fy , is the collection of all f € Sy(R™) such that

17, = [ {8l r) | | <o
JEZL ¥
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and the homogeneous Besov space B;U is the collection of f € Sj(IR") such that

r

A ) <

10y, = 22 (27

JEL

For (¢, ¥) € AR"), the inhomogeneous Triebel-Lizorkin space Fy . is the class of
all f € §’'(R") such that

<

I, = IS5l + || o (@ [aTs]) ) | <o

jeN
/ X

and the inhomogeneous Besov space By , is the collection of f € S’ (R™) such that

1
7

lp_ r
Affo) = o

10y, = I5r0 + | 22 (27

jeN

In all four definitions, in the case that r = oo, the summation in j is replaced with the
supremum in j.

If Ay , > O for the Triebel-Lizorkin space and hx > 0 for the Besov space, these
definitions are independent of ¢ and ; this follows from an application of Lemma 3.5
(see Sect. 3). Moreover, the following lifting property holds:

Iy, ~ D fllzo - and W fly, ~ 19 f g 2.6)

with a corresponding statement in the Besov setting. The proofs of these facts are
similar to those for analogous results in the classical Triebel-Lizorkin and Besov
spaces based on Lebesgue spaces (see [57, Sects. 2.3.8 and 5.2.3]).

We will also consider the following properties for a QBFS X, with s € R and
0<r <oc:
P7. SYR") = Fy , < SHR") and Sy(R") < B, — SH(R");
P8. SR") < Fy, = S'(R") and S(R") — By, = S'(R™);
Po. B;J and By, are complete.

Remark 2.1 The completeness of F ., and Fy  follows from the continuous inclu-
sions F;‘(’r — Sy(R") and F;{,r < S'(R™), respectively. The same is true for B;(,r
and By , if X — S’(R™). All these inclusions hold true if (1 + |x])™" e X’ for
some N > 0. Moreover, the inclusions So(R") < F )S(’r and Sp(R") — Bj'”, their

inhomogeneous counterparts, and the inclusion S(R”) < X holdif (1+[x|)™" € X
for some N > 0. These claims can be proved using arguments similar to those used
for corresponding results in the classical setting (see [57]; see also Liang et al. [39]).
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Let ¢ € S(R") be such that j]R" ¢ (x)dx # 0. Given a QBFS X, the Hardy space
HX is defined as the class of tempered distributions such that

I fllx =

sup |1+ |

< 00,
O<t<oo X

while the local Hardy space hX is given by the collection of tempered distributions
such that

I fll,x = | sup t_"¢(t_1~) * f‘ < 00.
O<r<1 X
Note that we have
Iflx < Wfllpx < fllgx.  YfeSRY, 2.7

due to property P4 of X and the fact that

[F@) =< sup TGO E HW| = swp [TeET x N[ @)

O<t< O<t<oo

We remark thatif X is a BFS over (R", dx) such that the Hardy-Littlewood maximal
operator is bounded on X’, then for I < p < 0o

P

Egps = Fypp=HY =" =X, 2.9)

with equivalent norms (see Appendix B for further details).

3 Fractional Leibniz Rules in Quasi-Banach Function Spaces

We next discuss fractional Leibniz rules in the setting of Triebel-Lizorkin and Besov
spaces based on QBFSs.
The main result of this section is the following theorem.

Theorem3.1 Letm e R,0 <r < 00,0 < p, p1, p2 < o0, ando(&,n),&,n € R,
be a Coifman—Meyer multiplier of order m. Suppose X, X1, and X, are QBFSs over
R™, ), (R", w1), and (R", uy), respectively, such that p(X), p(X1), p(X2) < 09,
properties P7, P8, and P9 are satisfied by XP with r as given and s as below, and the
following Holder’s inequality holds true:

Ifelxr SUSFlgri lgliye,  YfeX{', ge X5 (3.D
1 2

i) If hxr ,, hxlpl,r’ thpz,r > 0ands > t,(XP), then

s < s +m s+mo . .
IToF- D, S 1 i 18lae + 101 Ll - B2
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ii) If hxp, hxl’l,hXPZ > 0ands > t(XP), then
1 2
DS < nS+m pS+m . .
ITo (£ ), , S WM Nl 1S gl - G

Moreover, if hxp , > 0 and s > t.(XP?),
175 (f, g)llp;(p’r S IIfIIF;;{nr lgllpoo + 1/l oo IIgIIF)s(m , (3.4)

with an analogous statement for the Besov spaces if hx > 0 and s > t(XP).

We note that applying the lifting property (see (2.6)), (3.2) and (3.3) can be respec-
tively written as

[0 (f ol o, S D7 o, gl x> + 171 | D8] i (3.5)

1°Ta f 80y, , SUD°F Ly, Vel + 100 o |27 (3.6)

Bm
szz.r

Analogous estimates hold for (3.4) and its Besov counterpart.

In view of (2.9), if X, X, and X, are BFSs over (R", dx) such that the Hardy-
Littlewood maximal operator is bounded on X', X|,and X}, (3.5) and (3.4) withr = 2
can be written for symbols of order zero as

|0 (To (F D)o S ND° | Nsllyze + 1 f Iy [ gl BD)
| D5 (To (£ ) |l xp S D o lglloe + 1 £l | D8 50 - (3.8)

for 1 < p, p1, p2 < oo. In the particular case when o = 1, (3.7) and (3.8) give the
following fractional Leibniz rules:

1D o S 107 £l Iglixe + 1 fllxer [ Dz (3.9)
ID ()] 5o SND°f o llglizoe + 1 f oo [ D8] 4 - (3.10)

Moreover, a version of Theorem 3.1 along with the corresponding estimates (3.5)—
(3.10) hold in the inhomogeneous setting with an inhomogeneous Coifman—-Meyer
multiplier and J* instead of D*.

Remark 3.2 In view of (2.1), if X is a QBFS over (R”, i) such that p(X) < oo
and properties P7, P8, and P9 are satisfied for X7, then Theorem 3.1 holds true with
X1 = Xo = Xand 1/p = 1/py + 1/p; if the assumptions in Items i) and ii) are
satisfied.

Remark 3.3 We note that the proof of Theorem 3.1 shows that different pairs of p;
and p, and X and X3 can be used on the right hand side of (3.2) and (3.3) as long as
the corresponding Holder inequality (3.1) holds for both pairs.
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3.1 Proof of Theorem 3.1

We now prove Theorem 3.1; the proof of the corresponding result for the inhomoge-
neous case is similar. The proof follows ideas contained in [48], with modifications to
extend the logic to the more general QBFS setting.

We need two supporting results to prove Theorem 3.1. First, we have Nikol’skif
representations for the QBFS-based Triebel-Lizorkin and Besov spaces.

Theorem 3.4 (Nikol’skii representations) For D > 0, let { uj }j ez C S'(R") be such
that

supp(@j) C B(0, D27), jeZ.

Suppose X is a QBFS over (R", w) that satisfies properties P7, P8, and P9 for r and
s as given below.

1
i) Let 0 <r <oco.Ifhx, > 0,5 > 1.(X), and '(Z}.ez ‘stuj|r>r ” < 00, then
X

the series ZjeZ u; converges in S(’)(R") to an element in F;(r and

< (Z\zfsu,-(") , G.11)
e IV

X

~I—

dou

JjeZ

where the implicit constant depends only onn, D, s, r, X, and the function \r used
in the definition of Fy .. An analogous statement with j € No holds true for Fy ,
(where convergence is in S’ (R")).

1
ii) Let 0 < r <o00. Ifhx >0, s > t(X), and (Z}.GZ szsuj”;)’ < 00, then the

series ZjeZ u; converges in B; . (in S(’)(]R”) if r = 00)and

1
-

doujl 5 ZHZJ’SMJ-H; : (.12)

j€Z, A j€Z
J B;{J J

where the implicit constant depends only onn, D, s, r, X, and the function \r used
in the definition of B, .. An analogous statement with j € Ng holds true for By q

(when r = 00, the convergence is in S'(R")).

We remark that if a dominated convergence theorem holds in X, then the conver-
gence in Item i) is in F}‘“ and F)S(J when 0 < r < oo. The proof of Theorem 3.4
follows the same ideas as those for the weighted Lebesgue spaces (see [48, Theorem
3.2]) with some modifications due to the fact that a dominated convergence theo-
rem may not hold in X. For completeness, we include the proof of Theorem 3.4 in
Appendix D.

We will also need the following lemma from [48].
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Lemma 3.5 (Lemma 3. 1 from [48]) Let ¢, o € S(R™) be such that ¢1 and ¢>2 have
compact supports and ¢1¢>2 = qbl If0 < h <lande >0, it holds that

‘Pj?a‘f’lf(x)’ < (14 la)*" M, (P]‘.”zf) (x), Vx,aeR" jeZ feS®RY.

We are now ready to show Theorem 3.1.

Proof of Theorem 3.1 As in [48], we begin with a decomposition of 7,, due to the work
of Coifman apd Meyer in [14].
Fix ¥ € A(R") and let ® € S(R") be such that

dO) =1, D& =) W2, VEeR"\ {0}

Jj=0

Given N sufficiently large, we write 7, = Tg1 + Tg2 where, for f, g € So(R"),

1 _ 1 ¥ )P
Tg(f’g)(X)_a;:Z" (1+|a|2+|b|2)N§CJ(a DA™ ST ).

(3.13)
The coefficients C(a, b) are such that
ICj(a,b)| 2™, Va,bel' jel,
with implicit constant depending on o. A formula analogous to (3.13) holds for TU2

with the roles of f and g interchanged.
It suffices to work with 7.} and show that

S Hf N gsm NGl yr
F X
XP.,r ~ Xfl-" H™2

and

with corresponding estimates for (3.4) and its Besov counterpart. Moreover, since
p/po
it holds that | Y,z 7" < ¥jez | £ill%

(similarly for BS Xr.r ), it sufﬁces to prove that given ¢ > 0, there exist 0 < hy, hy <1
such that for any f g € So(R™), it holds that

S N gstm Ngl g
. B X, £
By, ~ xPt, H*2

where po > max(p(X), p, p/r)
P.q

[rer o, S A lap i D f s gl s (B14)
Fx/’ X, H*2

T TR e e WA P Py VAR RE)
Bxp Xfl,r H"2
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where

T"(f,8) =Y _Cja,b) (Na f)( i )

J€EZ

and the implicit constants are independent of a and b. Corresponding estimates to
(3.14) and (3.15) suffice for (3.4) and its Besov counterpart.

Assume that 7 is finite; the usual changes apply when r = oo. Let ¢ € S(R™) be
such that @ has compact support and 9 = 1 on supp(CD) Let® € A(R™) and define
¥ such that 1// ZZ——I @(2 Cg); then 1[/ =1lon supp(\IJ)

Due to the supports of ¥ and @, we have that

supp (7 [ Cj(a. b (A7 1) (87%8)]) < f& e R* 111 5 27},

forall j € Zanda, b € Z".
We start with the proof of (3.14). Applying Theorem 3.4, the bound on the coeffi-
cients Cj(a, b), and (3.1), we obtain

1
-
[revcrof,, s [27ci@n (a7 r) (57%)]
By, Jez
Xp
1
< 22(s+m)jr ( T f) (S;’“‘Dg)) (3.16)
JEZL
XpP
1
S| o o] el
. jeZ
JEL Xfl /€ ng
LetO < h; < min(hyri ., 1). By Lemma 3.5 and the Fefferman-Stein inequality, we
1 ’

have that

A;a\l’f’r) S (l + |a|)£+n/h1 (Z 2(s+m)jr

JEL

1
G

(Z 2(s+m)jr

JEL

M, (A}”f)r)

e+n/h (s+m)jr | AV |
< (L4 fa)/m (Zz J Ajf{)
JEL

X{Jl X{)l

X7
3 h
~ A LaD Y fl
X] N

where the implicit constants are independent of a and f.
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Now let 0 < hy < min(h X0 1). Applying Lemma 3.5 and the boundedness of

My, on X3?, we have

sup SP¥g|[ S (L 1B | My, ( sup %]
JEL X2 JEZ e
3.17
S (L+ bt/ sup\sj’g] G17
JEZL X2

~ e+n/hy )
A+ 16D gl e

where the constants are independent of b and g. All together, this gives (3.14).
For (3.15), again applying Theorem 3.4, the bound on |C | (a, b)| and (3.1), we have

1
-

. r
v, S| X Rrcian (a7 r) (s7%))
BXpr : ’ X7
’ JEZ
< (s+m)jr ¥ )( 7 ® )‘r 3.18
< Zz (AJ. ) (s7%)],, (3.18)
JEZ
1
. r
< Zz(&+m)]r (Afalﬂf)‘ , sup S'L:bq>g‘
. J Xll €7 / 223
JEZL J X5

Setting 0 < h; < min(h 1) and applying Lemma 3.5 and the boundedness of

Xfl )
My, on X{', we have

A
a3

+n/h ¥
X7 S (L4 lah)® "/ HMhl (AJ f)‘ X/
1 1

< (1 + |a)s/m

v
N

9
X

where the implicit constant is independent of a and f.
Therefore,

~ =

r

(s+m)jr 7Y r (s+m)jr (e+n/hy)r 2
>2 A f)Xfl S DIER(ER ) SE
JEZ JjEZ
~ (L 1a) Ml g
Xfl,r
The factor ||sup S;“pg’ is treated as in (3.17).
JEL X2
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This gives the desired inequality (3.15).
For (3.4) and its Besov counterpart, we proceed as in (3.16) and (3.18) with X7

instead of X" and sup ;. HS;”"’gHLOO instead of Hsupjez ‘S]T.hd’gH |

P2’
X

4 Fractional Leibniz Rules in Rearrangement Invariant Quasi-Banach
Function Spaces

We turn our attention to a specific class of QBFSs, those that are rearrangement invari-
ant. Working within rearrangement invariant quasi-Banach function spaces (1.i. QBFS),
we invoke extrapolation to deduce necessary tools such as the Fefferman—Stein
inequality and equivalences between norms to obtain fractional Leibniz rules within
these spaces. We first discuss some definitions and relationships, then state the Leibniz
rules in this setting. We also include examples of applications in weighted Lebesgue
spaces, Orlicz spaces, classical Lorentz spaces, and general Lorentz spaces.

4.1 Preliminaries

We begin with some background on rearrangement invariant quasi-Banach function
spaces; for further details, we refer the reader to [4] and [19].

Let (R”, 1) be a measure space as in Sect. 2 and such that u(R") = oo. The
distribution function i ¢ of a measurable function f on R”" is given by

nro) = ({x e R F(0)] = 2}).

For a measurable function f in (R”, 1) and a measurable function g in (RY, v), we

say that f and g are equimeasurable if 1y = ve. A BFS X over (R", u) is said to be

rearrangement invariant if || f ||y = |lg|lx whenever f and g in X are equimeasurable.
The decreasing rearrangement of f is the function f,; on [0, c0) given by

i@y =inf {A=0:pp() <t}.

Note that f; is equimeasurable with f. If X is ar.i.BFS, this yields a representation of

X over the measure space (R*,_d 7). Indeed, by the Luxemburg representation theorem
(see [4]), there exists ar.i.BFS X over (R™, df) such that f € X if, and only if], fl’j e X,

and || fllx = | /] +

We use the Luxemburg representation theorem to define the Boyd indices of a
r.i.BFS X. For f € X, the dilation operator D;, 0 < t < 00, is given by D; f(x) =
f(x/t), and we let

ax(t) = 1Dyl px, -
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where || D | px, denotes the norm of the operator D;. The lower and upper Boyd
indices are respectively given by

log ¢ log ¢
px = lim ————— = sup ————,
5 Togax (1) 1105 logax (1)
. logt . logt
gx = lim ———— =

t—0t logax(t) T 0<i<l logax(t)'

It holds that 1 < py < gx < 00, px' = (gx), and gx = (px)’.
We next introduce weighted versions of a r.i.BFS X over the measure space
(R™, dx). Given w € Ao (R"), define

X = {1 e M: | £y < oo

with norm || fllx = || i ”Y We note that X (w) is a r.i.BFS over (R”, w(x)dx) and
we have (X (w)) = X' (w).

The above definitions can be extended to a r.i.QBFS X with p(X) < oo. In this
setting, 0 < py < gx < oo,and if 0 < r < oo, then pxr = rpx, gxr = rqx, and
(X(w))" = X" (w) for w € Ao (R?).

For0 < r < o0,s € R, and X(w), we denote the corresponding homogeneous
and inhomogeneous Triebel-Lizorkin spaces as F y.(w) and Fy (w), respectively;
an analogous notation applies to the Besov setting. Finally, the weighted Hardy space
will be denoted by H* (w) and the weighted local Hardy space will be denoted by
hX (w).

Given w € A5 (R") and a r.i.QBFS X over (R”, dx) with finite Boyd indices and
p(X) < oo, we have

HX(w) = F{,(w) and h*w)=Fy,(w), 4.1

with equivalent quasi-norms. Also, if X is a r.i.BFS with Boyd indices 1 < px <
gx <ocand w € A,y (R"), then

F,‘?,z(w) = X(w) and Fg,z(w) = X(w), 4.2)

with equivalent norms. See Appendix B for further details.

Regarding the Fefferman—Stein inequality, if X is r.i.QBFS over (R”, dx) with
0<px <gx <ooand p(X) < 00,0 <r <00, w € Axc(R"),and 0 < h <
min(px /Ty, 1/p(X), r), we have

oM ST : (4.3)
JEL j€Z
X(w) X (w)
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with the summation in j replaced by the supremum in j if r = oo. This also gives
that for 0 < & < min(pyx /7y, 1/p(X)), we have

IMu () xwy S M xw) -

See Appendix C for further details. Note that the results above imply that

hxw) = min(px /Ty, 1/p(X)) (4.4)
and
hx(w),r = min(px /Ty, 1/p(X), 1), 4.5)
which also gives
1
Xy =n <min<px/rw, 1/p(X) 1) (40

and

1
T (X(w)) <n <min(px/tw, o). 1) — 1) . 4.7)

We note that [4, p. 77, Theorem 6.6] gives that if X is a r.i.BFS, then
L'(w)NL® < X(w) — L'(w)+ L™. (4.8)

Therefore, if X is a r.i.QBFS with p(X) < oo and p > p(X), (4.8) implies
that (1 + |x])™" € XP?(w) for some N > 0; the same holds for (X”(w))’ since
(XP(w)) = (XP)'(w). As a consequence, in view of Remark 2.1, properties P7, P8,
and P9 hold for X?(w) withO <r <ooands € R.

4.2 Leibniz Rules in Rearrangement Invariant Quasi-Banach Function Spaces

We now present our results for fractional Leibniz rules in the 1.i.QBFS setting. While
we show only the results in the homogeneous case, corresponding results hold as well
in the inhomogeneous setting with an inhomogeneous Coifman—Meyer multiplier and
the operator J*.

Corollary4.1 Letm € R, 0 <r < 00,0 < p,p1,p2 < 00, 0(&,1n), &,n € R",
be a Coifman—Meyer multiplier of order m, and w, wi, wy € As(R"). Suppose
X, X1, and X, are ri.QBFSs over (R",dx) with finite Boyd indices such that
p(X), p(X1), p(X2) < oo, properties P7, P8, and P9 are satisfied by X (w) with r
as given and s as below, and the following Holder inequality holds:

”fg”XP(w) 5 ”f”X{)I(wl) ”g”szz(wz) s Vfe X{’l(wl)a g € ng(w2)~
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. 1
(i) Ifs>n (miH(PPX/Tw,l/p(Xp)J) - 1>’ then

. < .
170 CF- Dl S e o I8l g+ 10ap  Es -

(4.9)
.. 1
(ii) If s > n <min(ppx/fw,1/P(Xp)) 1)’ then
1T (f, g)llg;(p.r(w) b ||f||3;‘(-*1[-};1/(u)1) ||g||HX2PZ (w2) + ||f||fo1 W) ”g”[};?zn’r(wz) .
(4.10)

. 1
Moreover, if s > n (min(ppx/rw,l/p(xm,m - 1)’

1o (F g, S 0Ny N8l + 1S gy, e (1D)

. . . . 1 _
with a corresponding estimate for the Besov spacesifs > n (min TRV 1).

Proof This follows by applying Theorem 3.1 with the r.i.QBFSs X (w), X (w1), and
X5 (wy). Indeed, since (X (w))P° = XPO(w), whenever X”° is a BFS, (X (w))?0 is
as well, giving that p(X(w)) < p(X) < oo; similarly, p(Xi(w1)), p(X2(w2)) <
0. Moreover, (4.5) applied to X7, X{', and X4 implies that hxp () r,

x{ ),
h X2 (wy)r > 0, while (4.7) applied to X? implies s > 7,(X?”(w)). The argument for
(4.10) is similar. O

Applying the lifting property, we obtain the following versions of (4.9) and (4.10):

|0 T (f o900, oy S D7 f||le Ll

P2
HY2" (wp)

A, 1271 P o)
(4.12)
|D* (15 (£, g))”B“p (w) ~ <|ptf

g D
|BX{’1J,(WI) ”g”Hng (w2) + ”fH[-[le] wn) H

B,y (w2)
sz.r

4.13)

By (4.1) and (4.12), we obtain the following estimates for symbols of order zero:

1" T (Fe ) sr g S DI, WM ) + 0N, 128

(w)) D) w)
(4.14)
In particular, for o = 1, we have
”Dx(fg) HHXp(w) N H DsfHHX{)l (wr) el X272( + ”f”HX{)l (w1) ” D‘YgH szpz(wz) ’
4.15)

Estimates analogous to (4.12)—(4.15) hold for (4.11) and its Besov counterpart.
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Finally, we have Leibniz rules in weighted r.i.QBFS as a consequence of (4.14),
(4.1), (4.2), and (2.7).

Corollary 4.2 Let o (&, 1), &, n € R", be a Coifman—Meyer multiplier of order zero
and w € Axx(R"). Suppose X, X1, and X, are ri.QBFSs over (R", dx) with finite
Boyd indices, p(X), p(X1), p(X2) < oo, and properties P7, PS, and P9 are satisfied
by XP(w) withr = 2 and s as given below. Assume 0 < p < 0o, p(X1) < p1 < 0,
p(X2) < p2 <00, wy € APIPXI (R™), wy € Apszz (R™), and

”fg”XP(w) 5 ”f”X{)I(wl) ”g”szz(wz) B Vfe X{’l(wl)a g € ng(w2)~

. 1
Then ifs > n (min(ppx/fw,l/P(Xp)) B 1)’

| DT (F ) xny S NP 01 oy 1822 gy + 1 Wt ) 108 02 -
In particular,

1D° G xoy S 12 F e oy 18022 iy + 1F Ut gy 128l 522,y -

Moreover, if p(X) < p <00, w € Appy(R"), ands > n (min(ppx/r,lu,l/p(xp)) — 1),

||DS(TU(f1 g))“Xl’(w) 5 ||Dsf||Xp(w) ||g”L°° + ||f||L°° || Dsg“Xp(w) s (416)

and in particular,

||Ds(fg) ||XP(w) S “Dsf“XP(w) lglpoo +1F Nl oo HDSg“XP(w)' “.17)

Remark 4.3 As a consequence of Remark 3.2, Corollary 4.1 holds in particular if X
is r.i.QBFS over (R", dx) with finite Boyd indices, p(X) < oo, X1 = X» = X,
w=w; =wy,w e Asc(R"),0 < p, p1, p2 <ocaresuchthat1/p =1/p; + 1/pa2,
and X? (w) satisfies properties P7, P8, and P9 for 0 < r < oo and s as given in the
statement of Corollary 4.1.

Remark 4.4 As a consequence of Remark 3.3, different pairs of X, X» and pj, ps can
be used on the right hand side of (4.9) and (4.10).

4.3 Examples

We now give explicit examples of 1.i.QBFSs where the results in Sect. 4.2 may be
applied.
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4.3.1 Weighted Lebesgue Spaces

Corollary 4.1 gives as a particular case the already known fractional Leibniz rules
in Triebel-Lizorkin and Besov spaces based on weighted Lebesgue spaces proved in
[48], including (1.5) and its weighted version. In this case, we have X = X = X, =
LYRM), 0 < P, P1,p2 < oosuchthat 1/p = 1/p1 + 1/p2, wi, w2 € Axx(R"),
and w = w?/?' WP Therefore, p(X) = p(X1) = p(X2) = 1, px = gx = 1,
XP(w) = LP(w), XP1(w1) = LP'(wy), and XP2(wy) = LP2(w,); the lower bounds

for s are n 1) in the Triebel-Lizorkin case and n (—min( pl/Tw’ D~ 1)

1

min(p/ty,r, 1)

in the Besov setting.
Corollary 4.2 then gives the fractional Leibniz rules in the weighted Lebesgue

spaces for 1 < py, pp <00, 1/p =1/p1+1/p2, w1 € Ap(R"), wa € A, (R"),

and s > n ( — 1) and versions with L> for p > 1, w € A,(R"), and 5 >

1
min(p/ty,1)
n (m — l) ; in particular, we recover the unweighted version (1.1) presented
in the introduction.

4.3.2 Classical Weighted Lorentz Spaces

Given 0 < p, g < o0, the classical Lorentz spaces LP-1(R") are r.i.QBFSs defined
through the quasi-norm given by

. L ds 7
I fllLpa = </ f (S)S")"-) , (4.18)
0 N

where f* = f withw = 1, extending the scale of Lebesgue spaces since L”? (R") =
LP(R").

The Boyd indices for LP9(R") are px = gx = p. We note that if 1 <
p,q < oo, LP4(R") is a r.i.BFS, and since (L79(R™))P0 = LPP0-9P0(R"™), we have
p(LP4(R")) = 1/min(p,q,1). If X = LP9(R"), then X (w) is given by (4.18)
by replacing f* with f%. Corollary 4.1 gives fractional Leibniz rules for Triebel—
Lizorkin and Besov spaces based on weighted Lorentz spaces (see also [48]). In this
case, we have 0 < p, p1, p2,9,q1,q2 < oo satistying 1/p = 1/p1 + 1/p> and
l/g = 1/q1 + 1/q2, X = LY/P(R"), X, = LM/PLRY), Xy = LM42/P2 R,
and w = w; = wy with w € Ax(R"). Therefore, py = gx = 1, XP(w) =
LP4(w), X' (w) = LPr91(w), and X)?(w) = LP2%(w) (see Hunt [31, Theo-
rem 4.5] for Holder’s inequality between these spaces). The lower bound for s is
n (W — 1) for the Triebel-Lizorkin case and n (W — 1) for
the Besov setting.

Corollary 4.2 then gives the following fractional Leibniz rules for weighted Lorentz
spaces:

| D°(To (F D | Lraquy S NP F Lovar ay 1811 L2020

A0S lprrar | Dsg”L!’%‘ﬂ(uJ) ’
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Wlth w e Amin(pl,pz)(Rn)’ 1 < pla sz C]l’ q2 < OO’ 1/p = 1/p1 + 1/p2’ l/q =
/g1 +1/q2, and s > n (m — 1), with corresponding counterparts for

(4.16) and (4.17)if 1 < p,q < oo and w € A,(R"). See also [16, 17] for the case
o=1.

4.3.3 Lorentz A-Spaces

The Lorentz A-spaces A% are defined to be the collection of measurable functions f
defined on R” such that

I fllae = (/(; f*(s)qv(s)ds>q < 00,

where 0 < g < oo and v is a weight on (0, co) (see Carro et al. [12]).

The classical Lorentz spaces presented in Sect. 4.3.2 are a specific case of the
Lorentz-A spaces, since A? = LP-4(R") for v(s) = s9/P~!. Choosing v(s) =
s7/P=1(141og™* (1/5))%, we obtain the Lorentz-Zygmund spaces AY = L9 (log L)*
(see Bennett—Rudnick [3]). Alternatively, if v(s) = s9/771(1 4+ logt(1/s)*(1 +
log™ logt(1/s))#, then AY = LP4(log L)*(loglog L)# are the generalized Lorentz-
Zygmund spaces (see Evans et al. [23]).

As shown in Curbera et al. [20], X = A? has upper Boyd index gx < oo whenever

1 1
;/ v(x)dx Swv(), t>0.
0

Moreover, if v satisfies
o0 1 t
/ v(x)x Pdx < —/ v(x)dx, t>0,
t 1pPo 0

for large enough py, (AZ)Po is a Banach space, SO p(Az) < 00 (see Sawyer [55] and

[12]).
4.3.4 Orlicz Spaces

Let ¢ be a Young function; thatis, ¢ : [0, o0) — [0, 00) is continuous, convex, strictly
increasing, and

lim M:0 and 1imwzoo

t—0t t t—o0 t

The Orlicz space L? is the collection of measurable functions f defined on R” such

that
||f||L¢=inf{A>0:/ ¢<|f;x)|>dx§1}<w. (4.19)
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It can be shown that Orlicz spaces are r.i.BFSs. For X = L? and w a weight in R”,
X (w) is given by replacing dx with w(x)dx in (4.19) (see [4, 19, 20]).

In the case that ¢(x) = x”, 1 < p < 00, we obtain the Lebesgue space L?(R").
Also, the Zygmund spaces L”(log L)* for 1 < p < oo and @ € R, a particular case
of the Lorentz—Zygmund spaces of Sect. 4.3.3, result when ¢ (¢) = t”(1 + log™ 1)*.
These spaces have Boyd indices px = gx = p, and (L? (log L)*)?° = LPPo(log L)“.
Other examples of Orlicz spaces include L? + L7 and L? N L9, which are associated
with ¢ (r) ~ max(¢?, t7) and ¢ () = min(¢?, t9), respectively, and have Boyd indices
px =min(p, ¢) and gx = max(p, q).

5 Fractional Leibniz Rules in Weighted Mixed Lebesgue Spaces

There are also many applications of Theorem 3.1 in QBFSs that are not rearrangement
invariant. In this section, we obtain fractional Leibniz rules in Triebel-Lizorkin and
Besov spaces based on weighted mixed Lebesgue spaces as corollaries of Theorem 3.1
and show that particular cases of these estimates include fractional Leibniz rules in
weighted mixed Lebesgue spaces. We then analyze these results for spaces with power
weights.

5.1 Preliminaries
Letn = ny +no,ni,ny € N,and x = (x1, xp) € R” with x; € R" and x, € R"2,
For 0 < p,q < oo and a weight w on R”, we define the weighted mixed Lebesgue

space LP (L4 (w)) to be the collection of all measurable functions f defined on R”
such that

1
» »
q
I fllze oy = (/ (/ If(xl,xz)lun(xl,xz)dm) dxl) < 0.
r \Jrm

Note that LP (L?(w)) = L?(w).
In this setting, we consider a ‘mixed’ version of the A, condition, which we denote
Ap(Ay). Following the work of Kurtz in [38], we define

» 2 p=1
q / q’
[wla,(4,) = sup (][ (][ w(xl,Xz)dxz> dx1> (][ <][ w(xy, x2)' 74 dx2>l dxl) ;
01,02 \V 01 02 (] 053

where the supremum is taken over all cubes Q1 C R"*! and Q> C R"*2.
The collection of weights A ,(A,) is given by

Ap(Ay) = {w : wis aweight on R" and [w]Ap(Aq) < oo}.

We note the following relationship between product weights in A, (A,) and the tradi-
tional Muckenhoupt classes:
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Lemma 5.1 (Lemma 3 from [38]) The weight w(x1, x2) = u(x1)v(x2) isin A,(Ay) if,
and only if, uP/? e Ap(R")andv € Ay (R™). Moreover, [up/q]Ap(Rnl) < [wla,,)

[v]a, ®m) < [w]‘j‘/p’ZAq), and [w]a,a,) < [M”/q]A,,(Rnl)[v]%anz).

In the case p = ¢, we denote the associated collection of weights by A, % (R"). This
class coincides with that when the supremum in (2.3) is taken over the collection of
rectangles R = {Q1 x Q2 : Q1 and Q> are cubes in R"! and R"2, respectively}. Set
AOO,R(Rn) = Up>1Ap,'R(Rn)~

Let 0 < r < o00,s € R, wbe a weight on R”, and 0 < p,q < oo. When
X = LP(L%(w)), we denote the weighted homogeneous Triebel-Lizorkin space
Ffm as F* (w) and the weighted inhomogeneous Triebel-Lizorkin space Fy,

p.q.r

as F ;’ q,~(w). Analogous notation applies to the scale of Besov spaces. The weighted

Hardy space H¥ is denoted by H?-4(w) and the weighted local Hardy space A% is
denoted by A7 9 (w).

We observe that since L?(LP(w)) = LP(w), F;’p’,(w) yields the classical
weighted homogeneous Triebel-Lizorkin space, and analogous associations apply
for F3 . (w), B, , (), BS, , (w), H"P(w), and h?*P (w).

Moreover, for 1 < p, g < oo and w(xy, x2) = u(x1)v(xz) € Ap(A,), we have

Fp o) = F)  5(w) = HP(w) = hPI(w) = L (LY w)), (5.1

with equivalent norms. We refer the reader to Appendix B for further details on these
relationships.

5.2 Leibniz Rules in LP (L9(w))

We first state a corollary of Theorem 3.1 in Triebel-Lizorkin and Besov spaces based
on weighted mixed Lebesgue spaces. We then present Leibniz rules in weighted mixed
Lebesgue spaces.

In this section, we restrict our attention to product weights: if 0 < p, g < 0o, we
consider w(xy, x2) = u(x))v(x2), where u?/? € Aso(R") and v € Ago(R"2).

In general, the mixed Lebesgue spaces L” (L7 (w)) are not necessarily rearrange-
ment invariant (see Blozinski [7]); however, it easily follows that L? (L9 (w)) is a
QBFS over (R", uP/9 x v). In this setting, property P6i is only required for measur-
able sets E C R” such that E C I} x I, where I and I, are measurable sets in R™!
and R"2 with finite measures with respect to u”/4 (x1)dx; and v(x2)dx», respectively
(see [7]). In the case that 1 < p,g < oo, LP(L9(w)) also fulfills properties P2 and
P6ii, where the same change made for P6i is implemented for P6ii. We next note that
(LP(L9(w)))Po = LPPO(L9P0(w)), and therefore p(LP (L9 (w))) = 1/ min(p, g, 1).

Given 0 <r <ooand 0 < h < min(p/t,p/q, q/Tv, ), the following Fefferman—
Stein inequality holds (see Theorem C.1):

r

> Matsn] SIS AT :

JEZ jez
LP (L1 (w)) LP (L4 (w))

~ =

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:64 Page250f46 64

for all sequences { fi }j oz, Of locally integrable functions on R". This also gives the
boundedness of M, on L? (LY (w)):if 0 < h < min(p/7,p/a, q/Tv), We have

||Mh(f)||Lp(Lq(w)) ~ ||f||LP(Lq(w))

We then define

1
T,,r(w)zrl( . _1)7
P mln(p/tup/qv Q/tvs r, l)
1
= ~1).
Tral) = (nnn<p/rqu,q/rv,1> >

This implies that for X = L? (L7 (w)),

hx,rzmin< P ,i,r> and hXZmin< P ,i),
Tyr/a Ty Tyr/a Ty

as well as
T (X) < Tpgr(w)  and  T(X) < 1) 4(W).

Therefore, we obtain the following corollary to Theorem 3.1:

Corollary5.2 Let m € R, o(&,1n),&,n € R", be a Coifman—Meyer multiplier of
order m, 0 < r < oo, and 0 < p, p1, p2.9,q1,92 < 00 be such that 1/p =
1/p1 + 1/p2and 1/q = 1/q1 + 1/q2. Suppose wi(x1, x2) = ui(x1)vi(x2) and
wa(x1, x2) = uzr(x1)va(x2) with u‘m/q1 uéqu € Aso(R™) and vy, v2 € A (R™);
set w(xy, x2) = (wy(xy, Xz))q/ql(wz(m x2))9/92 and assume LP (L4 (w)) satisfies
properties P7, P8, and P9 with r as given and s as below.

@) Ifs > tpq.r(w), then

1T (F Dy, S I Vgt o I8Ny + 1 Mo on Nl s -

P1:41
5.2)
(ii) Ifs > 1p g(w), then
175 (f, g)ll[g;.w(w) S ||f||BA+m L 18l P22 () + ILf L EPr-an (w])||g||3;;gz,<w2)
5.3)

In particular, (5.2) and (5.3) hold foru = uy = uz, v = vi = vy withuP\/9 yP2/ ¢
AscR™) andv € Axo(R"), inwhichcase w = wi = wy. Moreover, ifs > t, 4 (W),
then

1T (£ )iy y S W gty I8l + 1 F e gl pgimny s 54
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with analogous estimates for the Besov spaces if s > Tp 4 (w).

Proof We first note that w(xy, x2) = u(x;)v(xz) where u(x1) = (u(x1))4/9" (us
(x))?% and v(xy) = (v1(x2))?/7 (v2(x2))9/%2. We then have that u?/4 =
(ufl/ql)P/P'(u§2/q2)p/P2 belongs to As(R™) since uf‘/q',u§2/qz € Ag@®R™M)
and p/p1 + p/p2 = 1; similarly, v € Ay (R") since vi,v2 € Ax(R™) and
q/q1 + q/q2 = 1. Moreover, a simple computation shows that

”fg”Lp(Lq(w)) < Iflize (L9 (wy)) ||g||LPz(Lq2(w2))-

We next apply Theorem 3.1 with the spaces X = L1(L9/P(w)), X| = LY (L9/P1 (wy)),
and X» = L'(L%/P2(w,)), which verify all assumptions required. Therefore, (5.2),
(5.3), and (5.4) with its Besov counterpart follow. O

Remark 5.3 Corollary 5.2 requires L?(L4(w)) to satisfy P7, P8, and P9 for r and
s as stated. We first note that if 0 < p,q < oo, w(xy,x2) = u(xp)v(xz) with
uPlh € Agg(R™) and v € Axo(R"),0 < r < 00, and s € R, then the inclusions
So(R") — F,s,’q’,(w), So(R") — B;’q’,(w), and their inhomogeneous counterparts
hold since it can be proved that there exists N > 0 such that (1 + |x{| + [x2])~" €
LP(L9(w)) (see Remark 2.1). Moreover, under the same assumptions on the weights
and indices, the inclusions F3 , (w) < S(R"), BS, , (w) < Sy(R"), and their
inhomogeneous counterparts, as well as the completeness of the spaces hold in the

following cases:

(1) If 1 < p, g < 00, it can be proved that (1 + |x1| + |x2|)~" € (LP(LY(w)))’. By
Remark 2.1, the desired inclusions and completeness follow.
(2) Suppose 0 < p, g < oo and u and v satisfy

/ uP/4(ypdy, = t4 and / v(y)dy, > 1%, (5.5)
[x1—y1|=t [x2—y2|<t

forallt > 0, x; € R™, x, € R"2, and some di,d, > 0. In glis case, it can be
proved that if f € LP?(L9(w)) NS’ (R") is such that supp(f) C [—a, a]" for
some a > 0, then

d b
Ifllpee Sav e I f Il pcraqwy) s (5.6)

where the implicit constant is independent of f and a. With the estimate (5.6),
the proofs of the desired inclusions and completeness follow similar ideas as
in the ones for the classical settings (see [57, Sect. 2.3.3]). A proof of (5.6)
can be obtained using analogous steps to those in Qui [52, Lemma 2.5]; the
unweighted case of (5.6) was treated in Johnsen [33]. For later use, we note that
if u(x1) = |x1]* and v(xp) = |x2|b with a > 0 and b > 0, then u and v satisfy
(5.5) withdy = n1 +ap/q and d» = ny + b (see Grafakos [26, pp. 505-506]).

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:64 Page 27 of 46 64

Applying the lifting property (see (2.6)), the estimates (5.2) and (5.3) can be recast
as

1D (To (£ @Dl SID" Flig I8l 200

5.7
S .
+ I fllgrra (w1)||D g||F,S"2.q2,r(w2)’
1D* (T (f, )3y, ay SID* Fllgy a8l 2oz
“ o (5.8)

s .
+ 1l ID* gy -

Using (5.1) and Remark 5.3 and noting that 7, ; 2(w) = O for 1 < p,g < oo and
w(x1, x2) = u(xv(x2) € Ap(Ay), we obtain the following Leibniz rules in weighted
mixed Lebesgue spaces.

Corollary5.4 Let 0(&,n),&E,n € R", be a Coifman—Meyer multiplier of order
zero and 1 < p, p1, p2,4,q1,q2 < 00 be such that 1/p = 1/p; + 1/p> and
1/q = 1/q1 + 1/q2. Suppose wi(x1, x2) = u1(xp)vi(x2) € Ap (Ag)), wa(x1, x2) =
u(x)v2(x2) € Ap,(Agy), and w(xy, x2) = (wi(x1, x2))49 (o (x1, x2))4/ 2 €
Ap(Ay). If s > 0, then

I1D*(To (f, gD Lrczawyy SID* fllze o o llgllLr2 (192 (wa))

) (5.9)
+ 1 f lzer o oy 1D 8l Lr2 (292 (wy)) -

Versions of Corollaries 5.2 and 5.4 and the corresponding estimates for (5.7) and
(5.8) also hold in the inhomogeneous setting with an inhomogeneous Coifman—Meyer
multiplier and the operator J*.

5.3 Example: Power Weights

Of particular interest are power weights, or weights of the form |x{|?|x,|” in the
homogeneous setting and (x1)“ (x2)? in the inhomogeneous setting, where (x)¢ =
(1 4+ |x|*)%2. In this section, we present examples of fractional Leibniz rules for
weighted mixed Lebesgue spaces associated to power weights.

Recall that for 1 < t < 0o, a power weight |x|%, x € R",isin A;(R") if, and only
if, =n < a < n(t — 1). Therefore, for u ; (x1) = [x1|% and v (x2) = Ix21b5, j = 1,2,
to meet the conditions in Corollary 5.2 that ufj & € Axc(R") and v; € Ao (R™),
we require that

qi
—n1—1<aj<oo and —ny <bj < oo.
pj

With these conditions on a; and b;, j = 1, 2, Corollary 5.2 holds with w; (x1, x2) =
[ x2 [P, waxr, x2) = [x1]2[x2%2, and w(xy, x2) = |x1]%|x2|? where

a a @ b b b
—-=—+— and —=—+4—, (5.10)
q q1 q2 q q1 q2
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if LP (L4 (w)) satisfies P7, P8, and P9 for r and s as needed, in particular, if 1 < p,q <
ooorif0 < p<lor0<g < 1anda,b > 0 (see Remark 5.3).

To obtain Leibniz rules in mixed Lebesgue spaces with power weights we use
Corollary 5.4, which requires wy € Ay (Aq), w2 € Ap,(Ag,), and w € Ap(Ay).
Therefore, we impose further conditions on the exponents ap, az, b1, and b,. Using
Lemma 5.1, we require, for j = 1, 2,

qgjni

—nlﬂ <aj < - and —ny <bj <ny(q; —1),
Pj p;
! J - (5.11)
n a a n n n
——1<—1+—2<—1/ and ——2<—1~|——2<—%.
p q1 q2 q q1 q2 q

In particular, in the case o = 1 and for those values of a, ay, a2, b, by, and b, as in
(5.10) and (5.11), Corollary 5.4 gives

”Ds(fg)||LP(L£I(|X1|H|X2|17)) 5 ”Dsf”Ll’l (L1 (Jxp]41 ‘xZ|hl))”g||LP2(L‘12(‘X1|“2|)(2‘I’2))

+ 1 f e (L1 (x1 |91 |x2]P1)) [ Dsg”LPz (L92(|x1]92 |x2]P2))
(5.12)

An analogous result also holds in the inhomogeneous settings.
We note that when a; = ap and by = by (therefore,a = a1 = ap and b = by = by),
the conditions (5.11) translate to

. 91 92 4 . 9 92 4
—n1 min (—, —, —) < a < njpmin (—,, =, —/) and —ny <b <ny(g—1).
pr p2 p Py P P
Using different methods of proof, fractional Leibniz rules in weighted mixed
Lebesgue spaces with power weights were also proved in [51, Theorem 1.6]. In this
work, using our notation, they let 1/2 < p,q < oo, 1 < py, p2,q1,q2 < 00, and
0<a,a,az,b,b1,bp <ocobesuchthatl/p=1/p1+1/p2,1/q = 1/q1 + 1/,
and satisfy (5.10). For s > max (n (
they obtain

1 .. .
gD 1),0) or s a positive even integer,

||JS(fg)||Lp(Lq(<x,>“(X2)b)) S ||Jsf||Lm (L91 ({x1)“1 (XZ)bl))”g”Ll'z(L‘IZ((xl)“Z(x2)b2))
+ ||f||Lp1(Lq1 ((x1)?1 (xZ)bl))||Jsg||Lpz(qu((xl)ﬂz<xZ>b2))-

(5.13)
6 Fractional Leibniz Rules in Weighted Morrey Spaces

In this section, we present Leibniz rules in weighted Morrey spaces. For0 < p <t <
oo and w € Ao, the weighted Morrey space M 1t7 (w) consists of measurable functions
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on R” such that

||f||M;;(w) = Bsulg w(B)%_Tla <./z; | f(x)|P w(x)dx)p < 00,
C n

where the supremum is taken over all balls B contained in R”. It is easy to see that for
t = p, we recover the traditional weighted Lebesgue space, L”(w). In this setting,
we denote the homogeneous Triebel-Lizorkin and Besov spaces as F[;’t],r(w) and
B[Sp’t]ﬁr(w), respectively, and the Hardy space as H!”/l(w). We refer the reader to
Rosenthal-Schmeisser [53] for more details about weighted Morrey spaces and to
the works of Kozono-Yamazaki [37], Mazzucato [41], and Izuki et al. [32] regarding
Morrey-based Triebel-Lizorkin and Besov spaces.

Morrey spaces fail to be QBFSs as they lack property P6ii (see Sawano—Tanaka
[54]). However, applying the same argument as that in Theorem 3.1, we obtain the

following result.

Theorem 6.1 (Theorem 6.2 from [48]) Let m € R and suppose o (€, 1), &, n € R", is
a Coifman—Meyer multiplier of order m.

D) IfweAcc®R"), 0 < p <t <00,0<p <11 <00,0< pr <t <o0
are such that 1/p = 1/p1 + 1/paand 1/t = 1/t; + 1/t, 0 < r < 00, and

1
s>n (—min(p/rw,r,l) — 1), then

1o (ol S I et I8 tonsiy + 1S Uiy 180t -
6.1)

where different pairs of p1, p2 and t1, to can be used on the right hand side of the
inequality above. Moreover,

1T (F sy S U Ngen yllgles + 1718l pon - (6:2)

(i) Ifwi, w2 € Ao (RY), w = w?/ P Wl 0 < p <1 < 00,0 < p1, pr < coare
such that 1/p =1/py +1/pr and s > n(m — 1), then

175 (f, g)llp[sw].r(w) 5 ||f||,:~[s;?’nm’/m'r(wl) ||g||H[pzyp2t/p](wZ) ©3)

+ ”f”[-][l’lvl’]f/l’l(wl) ||g||F[Sl;;’1"p2t/p]‘r(wz) .

Estimates analogous to (6.1)—(6.3) hold in the Besov setting when s > n
1
(min(p/rw,n —1)

From Theorem 6.1, we deduce Leibniz rules in weighted Morrey spaces and Hardy
spaces based on weighted Morrey spaces. Through an extrapolation theorem in Morrey
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spaces given in Duoandikoetxea—Rosenthal [22, Corollary 4.3], for 0 < p <t < 00
and w € Ay (R"), we obtain

HPw) = ), 1 ,w)  and AP w) = K, 5 (w), (6.4)
with equivalent quasi-norms.
These equivalences and (6.1) combined with the lifting property, which holds

for Triebel-Lizorkin and Besov spaces based on Morrey spaces, give that under the
hypotheses of Theorem 6.1 withm = 0,

1D (T, (f, g))”mnﬂ(w) S ||Dsf||HI171~f11(w)||g||H[ﬁ2-f21(w)
+||f||H[p1J1](w)||Dsg||H[pz-f2](w)‘ (6.5)

From (6.2) and (6.3) we also have

1D° (T (f s e mtr iy S NP fll iy gl + 1f 1o 1 D° gl gipst )
(6.6)

and

” DS(To (fv g)) HH[p,t](w) S ” Dsf”H[mymt/p](wl) ||g||H[p2»P27/p](w2) (6 7)

+ ||f||Hlp1vmf/pJ(wl) || Dsg“]-[[ﬂzvpzt/pl(wz) .

Similarly, for 1 < p <7 <oocand w € A5(R™), we have that, through extrapola-
tion [22, Theorem 4.1],

F[%j],z(w) = M%(w) and Fom,t‘],z(w) — Mg(w).
Using this, (6.4), (6.5), and the fact that |||l ) < IIl| gtri1) for 0 < p <1 < o0,

under the hypotheses of Theorem 6.1 with 1 < py, p2 < 00, W € Amin(py, py) R"),
and m = 0, we have

S S N
ID*(T5 (f - Nty S 11D fIIMQI(w)IIgIIM;zZ(w) + ||f||M;11(w)IID gIIM;zz(w)-
as well as an analog to (6.6):

I1D*(To (f s N mat,wy S D fllag w8 llzoe + 11 1zoe 1D gl waty ) -

Moreover, if 0 < p <t <oocand1 < p1, pp <ocaresuchthatl/p = 1/p1+1/po,
w € Ap, (R"), wp € Ap, (R"), and w = wf/plwg/m,then

N < N
1D* (T (- &0ty S ID* Fllygpirn 181y

+||f||M1];1]t/p(w1) ”Dsg”MI])?zzt/p(wz).
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We can apply these results with power weights as a specific example. For 1 <
p1, p2 < o0 and w(x) = |x|%, we require that w € Apin(p,, pp) R"), and therefore

—n < a < n(min(py, p2) — 1).

Thusfor% <p<t<oo,l<p <t <oo,and1 < pr <t < oo such that
1/p=1/p1+1/p2, 1/t =1/t + 1/t2, and w(x) = |x|%, with a as above,

N a < N S
”D (T(T(f1 g))”M;,(‘Xl )~ ”D f”M;ll(lxla)”g”M;Zz(lxla) + ”f”M;ll(lxla)”D g”M;ZZ(‘xla)v

1 . 1 .
where s > n(m—l) ifa < 0Oands > n(m—l> ifa > 0.
Similarly, we have

| D° (T (f, Nlmxpy S ”Dsf”M/’,(lxl")”g”L” + ||f||L°°||Dsg||M,g(|x|a)~

Further, suppose 0 < p <t < ooand | < pj, p» < oo are such that 1/p =
1/p1 + 1/ po; also let wy(w) = |x|* and wy(x) = |x|* with

—n<aj<n(pj—1, j=12,

p/p1,, p/p2
1 W

andw = w = |x|?, where b = p(a1/p1 + a2/ p2). Then we have

| D* (T, (f, g))Hpr(\xlb) < Dsf”Mﬁ”/p(IXI"l) ”g”M,’,’z’/pqxl"z)
1 ; 2 (6.8)
1 W ygre oy 108 2t ey

with s > 1 (s = 1) if b < Oand s > n (-t = 1) if b > 0,

min( g7y, 1) B
Moreover, corresponding versions of Corollary 6.1 and (6.5)—(6.8) also hold in the
inhomogeneous setting with an inhomogeneous Coifman—Meyer multiplier and the
operator J*¥.

7 Fractional Leibniz Rules in Variable Lebesgue Spaces

We now discuss applications of Theorem 3.1 in the setting of variable Lebesgue spaces.
We begin with some definitions and notation followed by results for variable Lebesgue
spaces.

Let Py be the collection of measurable functions p(-) : R” — (0, co) such that

p— =essinf p(x) >0 and p4 =esssup p(x) < oo.
xeR” XeRn
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For p(-) € Py, the variable Lebesgue space LP) is the class of all measurable
functions such that

11l ro = inf {)\ =0 f

With this quasi-norm, LP®) is a QBFS (BFS when p_ > 1). Note that if p(x) = po,
0 < po < 0o, then LP®) coincides with L7 (R") with equality of quasi-norms. Similar
to the traditional Lebesgue spaces,

S &)
A

px)
dx <1; < oo.

A o = DA s - 7.1)

and, if p_ > 1, (LPV) = LP'©), where p’(+) is defined to be the conjugate exponent
of p(-); that is,

1 1

— 4+ =1, VxeR.
px)  p'x)

Let D be the collection of p(-) € Py such that the Hardy-Littlewood operator M
is bounded on L”), A necessary condition for p(-) € Dis p_ > 1, while log-Holder
continuity conditions are sufficient. Moreover, it can be proved that the following
conditions are equivalent for p(-) € Py such that p_ > 1:

a) p(-) € D;

b) p'() € D;

c) p(-)/q € Dforsome 1 < q < p_;
d) (p(-)/q) € Dforsome 1 < g < p_.

See Cruz-Uribe et al. [15] and references therein.
A version of Holder’s inequality holds for variable Lebesgue spaces: if p(-), p1(-),
p2(-) € Posuchthat 1/p(-) = 1/p1(-) + 1/pa(-), then

Lfellzoe SNFlmo llglmo . Yf e LV, ge L0,

The case for exponents in Py such that p_ > 1 is given in [18]; the general case
follows from the latter case and (7.1).

Jensen’s inequality combined with (7.1) give that if p(-) € Ppand 0 < 19 < 00
is such that p(-)/tp € D, then p(-)/7 € D for 0 < T < 7. Therefore, we define Pj
to be the collection of p(-) € Py such that p(-)/t9 € D for some 79 > 0 and, for
p() € Py, we set

Tp) =sup{t > 0: p(-)/t € D}.

We observe that 7,,) < p_. The following version of the Fefferman—Stein inequality
follows using [18, Sect. 5.6.8] and (7.1). For p(-) € 795‘, O<r<oo,and0 < h <
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min(t,,(.), r),

1 1

oML Sl

j€Z €7,
J LrO) B Lre

‘

In particular, for 0 < & < 7.y, My, is bounded on LPO e,

IMu(Hllpor S W eo -

As a consequence, if X = LP®) and p() € 73(’)", we have hx , > min(z,.),r) and
hx > Tp(), as well as

1 1
X)) <n|—— —1 and (X)<n|———1].
mln(rp(A), r,1) mm(r,,(‘), 1)

Fors € R,0 < r < oo, and p(-) € Py, we denote the homogeneous Triebel—
Lizorkin and Besov spaces in this setting as FS p()r and B® PO respectively. More
general variable exponent Triebel-Lizorkin and Besov spaces, where r and s are
replaced with functions are considered in Diening et al. [21] and Almeida—Hésto
[1]. The Hardy space with variable exponent p(-) € Py will be denoted H PO The
corresponding inhomogeneous spaces are denoted analogously.

We then obtain the following fractional Leibniz rules in variable exponent Triebel—
Lizorkin and Besov spaces as a corollary to Theorem 3.1. This result was also proven
directly in [48, Theorem 6.4] using methods similar to those for Theorem 3.1.

Corollary 7.1 Letm € R, 0 (&, n), &, n € R", be a Coifman—Meyer multiplier of order
m, 0 <r =00, p(-), p1(), p2(*) € Py be suchthar 1/p(-) = 1/pi(-) +1/pa2(-), and
assume LP©) satisfies properties P7, P8, and P9.

) Ifs>n (W — l), it holds that

1T (F s, S W Nt gl + 1 I gmer Ighgsen 5 (7.2)
p(-).r 01 ()1 2 ()1

i) ifs >n <m — 1), it holds that
1T (fs O llps S Mflgsem Nglgmo + M1 lgeo lglgstn  (7.3)
pC)r P10 pa()r

where different pairs of p1(-) and p2(-) can be used on the right hand sides of
(7.2) and (7.3).

Moreover, if s > n <+ — 1), then

min(zp(.),7, 1)
T. N S < s o) o s N 74
1T (fo )l SUFNps el + 1 e gl (7.4)
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with a corresponding estimate holding in the Besov setting if s > n (m - 1).
P

Proof We apply Theorem 3.1 with X = LPO, X; = LPO X, = LP20) and p =
p1 = p2 = 1.Then X? = LPY X' = LP1O) and XJ* = LP20) fulfill all conditions
of Theorem 3.1 and (7.2), (7.3), and (7.4) with its Besov space counterpart follow.
Finally, Remark 3.3 implies that different pairs of p;(-) and p>(-) can be used on
the right hand sides of (7.2) and (7.3), provided that both pairs satisfy the Holder
relationship with p(.). O

As in Sects. 5 and 6, we can apply the lifting property (2.6) (see also [21, Lemma
4.4]) and write the estimates (7.2) and (7.3) as

|D°Ta (ol o, SO Fljm | N8l + 1N [ D8 | T5)

[D*To(F o0l S 1D Flign | N8laro + 1 lgno |Dglgn 2 (7:6)

(7.4) and its Besov counterpart can be also be rewritten in a similar manner.

Now, by using [15, Theorem 1.3], an extrapolation theorem that allows to deduce
inequalities in variable Lebesgue spaces from weighted inequalities in Lebesgue
spaces, it follows that if p(-) € P, then

Fg(,),z =HPY  and FS(_),Q = hPO), (7.7)

With this in mind, using (7.5) and (7.7), when o is a Coifman—Meyer multiplier of
order zero, Corollary 7.1 gives

1D (To (£ )| yoir S NPl gy 181 ggmaes + 1 I ggmir [ D¢l s+ (7-8)

in particular,
1D £ yor S NP F | oo 181l gme + 1 f lgmo [Pl e - (1.9)

Moreover, for p(-) € D, by (2.9) applied with power ¢ to X = LP)/4, where g is as
in Item c¢), we have

F

0 _ 70
p2=F

N2 = HPO = PO — L.D(-)’ (7.10)

with equivalence in norm (see also [21, Theorem 4.2]).
Thus, when p1(-), p2(-) € D, using (7.8), (7.10), and (2.7), we obtain

1D (Ts (f. )| oo S|P f oo 18l Loaes + U f oo [ D8 oy - (7.11)

and, in particular,

1D oer SN f | oo N8l Lmaes + 1 Ipmes | D€ oo -
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Corresponding estimates for (7.4) also hold.

We note that (7.11) was proved in [17, Theorem 3.1] using bilinear extrapolation
techniques.

Versions of Corollary 7.1, (7.5), (7.6), (7.8), (7.9), and (7.11) hold in the inhomo-
geneous setting with an inhomogeneous Coifman—Meyer multiplier and the operator
J.

Appendix A. Extrapolation Theorems

In this appendix, we present extrapolation theorems that will be used in Appendix B
and Appendix C to obtain relationships between the spaces X, Fy ., and H X, aswell as
Fefferman—Stein inequalities and the boundedness of the Hardy-Littlewood maximal
operator in X.

The extrapolation results presented in this section are given in terms of pairs of
functions (f, g). We will use F to denote a family of pairs of measurable functions that
are notidentically zero. If forsome 0 < p < coandw € Ag(R") (orw € Az r(R")),
1 < g < oo, we say that

/R )P B < /R EPBWdx, V(f.g9) € F. (Al

we mean that (A.1) holds for all pairs of functions (f, g) € F such that the left-
hand side is finite, and the implicit constant depends only on p and [w] Ag(R™) (or

[w] A@R(R”))- In the case that the L? (w) normin (A.1)is replaced with another function
space norm, the inequality should be interpreted the same way.

We first present an extrapolation theorem for weighted mixed Lebesgue spaces,
similar to [38, Theorem 2], but for pairs of functions. Its proof is the same as that of
[38, Theorem 2].

Theorem A.1 Suppose that for some 1 < p < oo and for allw € A R (R"), we have

/R f@IPwedx < /R lg@IPw0dx, (£, 8) € F.

If1 < p,q < o0, then for every w € Ap(Ay) such that w(xy, x2) = u(x1)v(xz), we
have

e crawy) N lgllrrcraw - V(f.g) eF.
For the BFS setting, we will use the following result from [19]:

Theorem A.2 (Corollary 4.8 from [19]) Suppose that for some 1 < p < oo and every
w e Az(R"),

/R @B S /R lgWIPwdx, ([, 8) € F.
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If X is a BFS over (R", dx) such that the Hardy-Littlewood maximal function is
bounded on X', then forall 1 < p < oo,

Iflxr S Nglxr.  V(f.8) €F.

In the r.i.QBFS setting, we need the following extrapolation theorems from [20]
and [19]:

Theorem A.3 (Theorem 2.1 from [20]) Suppose that for some 0 < p < 0o and all
w € Ao (R"),

fR Lf ) Pw(x)dx < fR le)Pw(x)dx, Y(f,g) € F.

If X is a ri.QBFS over (R", dx) with Boyd indices 0 < px < gqx < o0 and p(X) <
o0, then for all w € Ax(R™), we have

I lxaw) S I8llxaw) . V(.8 €F.

Theorem A.4 (Theorem 4.10 from [19]) Suppose that for some 1 < p < oo and every
w e Az(R"),

/R f@Pw@dx < /R lg@IPw0dx, (£, 8) € F.

If X is a r.i.BFS over (R",dx) such that 1 < px < gqx < oo, then for all w €
Apy (R"), we have

||f||X(w) S ||g||x(w), V(f,g € F.

Appendix B. Equivalent Spaces

With the extrapolation theorems stated in Appendix A, we are now ready to demon-
strate the relationships between the Triebel-Lizorkin spaces, Hardy spaces, and the
spaces they are based on.

We first present some equivalences between Triebel-Lizorkin spaces, Hardy spaces,
and the weighted mixed Lebesgue spaces.

Theorem B.1 We have

i) forO < p <ooandw € Ay R (R"),
F) 2wy =H"P(w) and F) ,,(w)=h""(w),
with equivalent quasi-norms;
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ii) forl < p <ococandw € A, g(R"),
F) ,2(w)=Fp 5(w) = HPP(w) = h"P(w) = LP (w),

with equivalent norms;
iii) for 1 < p,q < 0o and w(xy, x2) = u(x1)v(x2) € Ap(Ay),

F)  2(w) = Fp  Hw) = HP(w) = k" (w) = L” (L (w)),
with equivalent norms.
Proof Part i) is a direct consequence of [52, Theorem 1.4(vi)] since Ax, R(R") C
Axo(R™).
Part ii) follows immediately from Part i) and [52, Remark 4.5], since A, g (R") C
Ap(R™).

Part iii) follows from Part ii) and Theorem A.1. O

We have similar results in the BFS setting. The proof uses extrapolation based on
Theorem A.2.

Theorem B.2 Let X be a BFS over (R", dx) such that the Hardy-Littlewood maximal
operator is bounded on X'. Then for 1 < p < oo,

0 0 g XP . XP _ up
Fxpy=Fxpp,=H" =h" =X7,
with equivalent norms.

Finally, in the r.i. QBFS setting we can use Theorems A.3 and A .4 to get the following
result:

Theorem B.3 Let X be a ri.QBFS over (R", dx) such that p(X) < oo.

(1) If X has Boyd indices 0 < px < qx < o0 and w € Axc(R"), then
FY,(w)=H*"w) and FY,w)=h*w),

with equivalent quasi-norms.
(ii) If X is a ri.BFS with Boyd indices 1 < px < qx < ocandw € A, (R"), then

Fy ,(w) = Fy ,(w) = X(w),
with equivalent norms.
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Appendix C. Fefferman-Stein Inequalities and Boundedness of M on
Quasi-Banach Function Spaces

In this appendix, we discuss results regarding the Fefferman—Stein inequality and the
boundedness of the Hardy-Littlewood maximal operator in weighted mixed Lebesgue
spaces and r.i.QBFSs.

Recall that the classical Fefferman—Stein inequality on weighted Lebesgue spaces
states that if 0 < p < 00,0 <r < 00,0 < h <min(p,r),and w € A,/ (R") (i.e.,
0 < h <min(p/ty,r)), then

1

> Ml s 2l : (€1
JEZ JEZL
LP(w) LP(w)
where the summation in j should be replaced by the supremum in j if r = oo.
We next consider My, in the weighted mixed Lebesgue space setting.

Theorem C.1 Let 0 < p,g < 00, 0 < r < 00, w(xy, x2) = u(x1)v(x2) with uP/4
AcocR™) and v € Axc(R™), and 0 < h < min(p/t,p/a, q/Tv, 7). Then for all
sequences { [} jez of locally integrable functions defined on R", we have

> IMu(DI S ; (C2)
JEZ JEZ
LP (L1 (w)) LP (L1 (w))

with the sum in j replaced by the supremum in j when r = 00.

Proof We show here the case when r is finite; if r = oo, the argument remains the
same, exchanging the sum in j for the supremum in j.

We first assume that 7 = 1, and therefore 7,5/ < p < 00, T, < g < 00, and
1 < r < oo. By definition of 7,,,/¢ and 7, and Lemma 5.1, this implies w € A, (A,).
If1 <P <ocoandw € A5 R(R") C A5(R"), (C.1) gives

~|—

D IMUDI S

JEZ _ JEZL _
LP(w) LP(w)

Therefore, Theorem A.1 gives that

1

r

DML S £l
JjeZ JEZ
LP(L4(w)) LP(L9(w))

~ =
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Wenow let0 < p,g < 00,0 <r <oo,and 0 < h < min(p/t,p/q,q /Ty, 1), OF,
equivalently, 1 < min (ﬁ, thv, %) Therefore,

1 hn
M Sl = D migmi
JEZL JEZ roq
LP(L(w)) Lh(Lh(w))
hyE
S armi
JEZL p g
L (L% (w))

~|—

=D 1A ,

JEZ

LP (L1 (w))
where the second equality follows from the previous case. O

Remark C.2 We note that for p = ¢,0 < h < min(p, r),andw € A,,, r(R"), (C.1)
implies (C.2), since A/, (R") C Ap/n(R").

We immediately have the following corollary regarding the boundedness of M,
on LP(L9(w)).
Theorem C.3 If0 < p,q < o0, w(xy, x2) = u(x))v(x2) with uP/? € Aso(R™) and
VEAc(R™), and 0 < h < min(p/t,p/4,q/Tv), then

IMu (e oy S NFNLrwsw))-

We have similar results for a r.i.QBFS X over (R”, dx), which we next present.
The boundedness of M was given in Montgomery-Smith [43].

Theorem C.4 Let X be a ri.QBFS over (R", dx). Then M is bounded on X if, and
only if, px > 1.
This leads to the following result for the boundedness of the operator M, on X.

Theorem C.5 Let X be a ri.QBFS over (R", dx). Then My, is bounded on X if, and
onlyif, 0 < h < px.

Recall that for 1 < p < 0o, M is bounded on L” (w) if, and only if, w € A,(R").
By Theorem A.4, we then have that M is bounded on X (w) if X is a r.i. BFS with
1 < px <gx <ocand w € A, (R"). As a consequence, we have the following:

Theorem C.6 Let X be a r.i. QBFS over (R", dx) such that 0 < px < gx < 00 and
pX) <oco. lfwe Axx(R™") and 0 < h < min(px /Ty, 1/p(X)), My, is bounded on
X(w).
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Similarly, by (C.1) and Theorem A.4, we have a Fefferman—Stein inequality for a
weighted r.i.QBFS X (w), with w € Ay (R").

Theorem C.7 Suppose X is a r.i. QBFS over (R", dx) such that 0 < px < gx < 00
and p(X) < oo. Ifw € Axc(R"),0 < r <00,and0 < h < min(px/ty, 1/p(X), r),
then for all sequences { fi }j <z, of locally integrable functions defined on R", we have

1
Z|thj|r S Z|fj|r ,
JjEZ X(w) JEL X(w)

with the sum in j replaced by the supremum in j when r = 00.

Appendix D. Nikol’skii Representations

In this appendix, we prove Theorem 3.4. The proof is similar to that in the setting of
Triebel-Lizorkin and Besov spaces based on weighted Lebesgue spaces in [48], with
modifications due to the fact that a dominated convergence theorem may not hold in
X.

First, we introduce some notation. For a QBFS X, 0 < r < 0o, and a sequence of
functions { f;} jez, we denote

1

e = {215 and |, = [ 2105 |

JEL ¥ JEZL

<

157}z

We also use the following lemmas from [48]

LemmaD.1 (LemmaA.1from [48])Su1,)pose0 <h<1A>0,R>1,andd > n/h.
If ¢ € SR™) and f is such that supp(f) C {£ € R" : |&| < AR}, it holds that

6% f( < R 4

A+14- D) Maf),

where the implicit constant is independent of A, R, ¢, and f.

Lemma D.2 (similar to Lemma A.2 in [48]) Suppose X is a QBFS such that hy > 0.
Let AA> 0O,R=>1,andd > b > n/min(hyx, 1). If p € S(R") and f is such that
supp(f) C {& e R" : |&] < AR}, it holds that

lp* fllx S RVAT"

A+1a-D%) _Iflx.
where the implicit constant is independent of A, R, ¢, and f.
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LemmaD.3 (Lemma A.3 from [48]) Lett < 0, A € R, 0 < r < o0, and kg € Z.
Then for any sequence {d } ez, C [0, 00), it holds that

)

o0
Z 21k2)»(]+k)dj+k 5 H {Zj)nd/} '
JEZ o

k=kgo

JEL I pr
where the implicit constant only depends on kg, T, A, and r.
Proof of Theorem 3.4 We begin by proving the result for finite families of functions.
Here, we show the homogeneous case, but the logic for the inhomogeneous case is
similar.

Let {uj }jeZ be such that u; = 0, except for finitely many j. Suppose D, X, r, and

s are as in the hypotheses of the theorem. Let ¢ € A®RM).
We first prove (3.11). Fix 0 < h < min (A, 1) such thats > n(1/h — 1), and let
ko € Z be such that 2ko—1 - p < 2k0_ Then for any £ € Z, we have

supp(iiz) C B(0,2°D) C B(0,2°*0).
Defining u = ), u¢, we note that
supp (@(2*1'-)@) C B(0,2)n [zH < IE] < 2j+1} '

This intersection is empty for any £ < j — ko; therefore, we have the following
identity:

Afu:ZA‘]/fug= Z A"’ue Z A Wjsk. (D.1)

LeZ =j—ko k=—ko

Applying Lemma D.1 with ¢ (x) = 2/ (2/x), f = ujx, A = 2/, R = 2k+ho,
k,je€Z, k> —ko,and d > n/h, we obtain

AV (2"“‘0)"(’“) ()" H(l + 127 |)d 2y (27

‘ Mpujip(x)
LOC

1

N an(rl)/\/lhujJrk(X),

where the implicit constant depends only on the parameters stated and . This yields

1 s .
275 | A +k(X)‘ < 27()is *Mpujir(x) = (it ">2X(/+k)Mh“j+k(x).
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Therefore, by (D.1), we have

o0
. 1_q_s ,
2 Af//.’u(x)‘ <y Fen(h-1 ")2W+">Mhuj+k(x)-

k=—ko

We now apply Lemma D.3 with t = n(1/h — 1 — s/n),A = s, and dj1 =
Mpujir(x). Note that T < O by definition. This gives

i

o0
1 _q_s .
< Z 2kn<h 1 n)zs(]+k)Mhuj+k(x)
e k=—ko

A}ﬂu(x)‘}

J€Z
JEZ or

< H{szhujm}

J€L|pr
The desired inequality follows from the monotonicity of the quasi-norm associated to
X and the Fefferman—Stein inequality.

We now prove (3.12) for finite families. We apply similar logic, but working
instead with the norm inequality from Lemma D.2. Using ¢ (x) = 2/"¢ (2/x), f =
ujtk, A =2/, R =2k jeZk>—kyd > b,and n/min(hx,1) < b <
n + s, we have

b—n —n
v k+ko J
|aTui] 5 (270) " (2))

~ 2K

(1 )" )] bl

where the implicit constants depend only on the parameters stated and /.
Setting p* such that [[|-|[| ~ [I-llx and [Ilf +glI” < [l /117 + [lgll” (Aoki-
Rolewicz Theorem), we obtain

* o0 *
. p P P
o [l £ 3 ol
iy ~ Zk JUITk|

=—ko

o0
< Z 2Jsp* ok(b=n)p* utjoi ||§(*

k=—ko
S *
*(j+k)~k(b—n—s)p* p
— ZZSP(1+)2( n—s)p k|’ -
k=—ko

Taking ¢/ " norms (quasi-norms when r/p* < 1) and applying Lemma D.3 with
T=0b-n—s)p*, A=sp*anddj = Hqu ”f:, we have the desired result.

We now show that the result holds for infinite families of functions. We first show
the homogeneous Besov space case for 0 < r < oo. Let {uj }jeZ ,X,r,and s be as
in the hypotheses.

Birkhauser



Journal of Fourier Analysis and Applications (2023) 29:64 Page430of46 64

Let Uy = Y% yuj. For M < N, {0} 1112 j < fulfills the conditions of the
theorem, and since the theorem holds for finite families of functions, we have

10Uy — Unllzy, < H {27, )

M+1<|jI<N 2 (X) ’

where the implicit constant is independent of M, N, and the family {u j }jeZ.

By the assumption that H {275u;}

<00, the value of H {275u;}

JEL| g (x) M+1=IISN [|r x)

must tend to zero as M approaches co. Therefore, {Uy} <7 is a Cauchy sequence in
BY .., and by the completeness of By, ,, the sum ) ._, u; converges in BY .

A X,r’ JEZ
Similarly, we see that

o < |[2is } ’
1NN, S ”{ Y N<jen X)

where the implicit constant is independent of N and the family {u | }j <z Therefore,

doui| S H {2”141}].52

j€Z 2
/ By,

5’(X)’

with the implicit constant independent of the family {u ; }j i
Now we consider the case of infinite families for F }S(,r with 0 < r < oo as well as
B oo+ Note that {20797u;} . and {20797u;} . belong to €' (X) for any & > 0.

J <
Indeed, we have

(s=e)j }
H{ Y20

o
= 2727 ]y

1210 SN

sleruinel

S H{2”Mj}jzo

£99(X) Xy

The final expression is finite by assumption. Similar logic shows that H [26Fe)iy )

I<0lerx)
is also finite.

Choosing ¢ > 0 such that s — & > 7(X), I?y the case when 0 < r < 00, it follows
that Z;V:o uj and 27:1_ w uj converge in By} and BY'T, respectively. Therefore,
{UN}nez converges in S, (R™). Applying the case for finite sequences for the space
Ff(’r, we have Uy € Fy , and

s

=
X

1Nl S H {27
r X

=
~N<j<N N jez
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Since F x., has the Fatou Property, we have

lim Uy =Y ujeFy,
N—oo ’

JEZ
and
. Js,, .
YO0 [ [0
=7 . X ()
/€ Fx»
. . . h Ky
Similar reasoning works for By . O
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