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Abstract
Fractional Leibniz rules are reminiscent of the product rule learned in calculus classes,
offering estimates in the Lebesgue norm for fractional derivatives of a product of func-
tions in terms of the Lebesgue norms of each function and its fractional derivatives.
We prove such estimates for Coifman–Meyer multiplier operators in the setting of
Triebel–Lizorkin and Besov spaces based on quasi-Banach function spaces. In par-
ticular, these include rearrangement invariant quasi-Banach function spaces such as
weighted Lebesgue spaces, weighted Lorentz spaces and generalizations, and Orlicz
spaces. The method used also yields results in weighted mixed Lebesgue spaces and
Morrey spaces, where we present applications to the specific case of power weights,
as well as in variable Lebesgue spaces.
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1 Introduction andMain Results

Fractional Leibniz rules in the setting of Lebesgue spaces state that, for 1 ≤
p1, p2, p̃1, p̃2 ≤ ∞, 1/2 ≤ p ≤ ∞ such that 1/p = 1/p1 + 1/p2 = 1/ p̃1 + 1/ p̃2,
and s > max{0, n(1/p − 1)} or s ∈ 2N, the inequality

∥

∥Es( f g)
∥

∥

L p �
∥

∥Es f
∥

∥

L p1 ‖g‖L p2 + ‖ f ‖L p̃1

∥

∥Es g
∥

∥

L p̃2 (1.1)

holds truewith Es = Ds or Es = J s , where Ds and J s are the homogeneous and inho-
mogeneous fractional differentiation operators of order s, respectively, defined through
the Fourier transform by D̂s f (ξ) = |ξ |s ̂f (ξ) and Ĵ s( f )(ξ) = (1 + |ξ |2)s/2

̂f (ξ),

ξ ∈ R
n .

The inequality (1.1) and related commutator estimates have emerged as essential
tools to study a number of nonlinear PDEs, including Euler and Navier-Stokes equa-
tions (see Kato–Ponce [34]) and Korteweg–de Vries equations (see Christ–Weinstein
[13] and Kenig–Ponce–Vega [35]), as well as the study of smoothing properties of
Schrödinger semigroups (see Gulisashvili–Kon [29]). The range 1 < p < ∞ is
addressed in the mentioned works and the case 1

2 < p ≤ 1 is treated in Grafakos–Oh
[28] and Muscalu–Schlag [45] (see also Koezuka–Tomita [36] and Naibo–Thomson
[48]); for the endpoints p = ∞ and p = 1

2 , the reader is referred to Bourgain–Li [9]
(see also Grafakos–Maldonado–Naibo [27]) and Oh–Wu [50], respectively.

The estimate (1.1) is a particular instance of inequalities in a variety of function
spaces where the product f g is replaced by Tσ ( f , g); here, Tσ is a bilinear pseudo-
differential operator associated to σ = σ(x, ξ, η), x, ξ, η ∈ R

n , (called a symbol, or
a multiplier if independent of x) and defined by

Tσ ( f , g)(x) =
∫

R2n
σ(x, ξ, η)̂f (ξ)ĝ(η)e2π i x ·(ξ+η)dξdη. (1.2)

Note that for σ ≡ 1, we recover the product f g. Estimates using Tσ have the form

∥

∥Es(Tσ ( f , g))
∥

∥

Z �
∥

∥Es f
∥

∥

Z1
‖g‖Z2

+ ‖ f ‖
˜Z1

∥

∥Es g
∥

∥

˜Z2
(1.3)

for function spaces Z , Z1, Z2,˜Z1, and ˜Z2. For example, variants of these estimates in
weighted Lebesgue spaces associated to Muckenhoupt weights are given in [48] for
Coifman–Meyer multiplier operators and in Cruz–Uribe–Naibo [16, 17] for σ ≡ 1;
Hart–Torres–Wu [30] proved estimates for multiplier operators in the context of
Lebesgue and mixed Lebesgue spaces using minimal assumptions on the smooth-
ness of the multipliers; Oh–Wu [51] obtained results with σ ≡ 1 in the setting of
Lebesgue and mixed Lebesgue spaces associated to power weights; the works [36]
and [48] include estimates in the context of local Hardy spaces and weighted Hardy
spaces, respectively. The estimates (1.3) have also been studied in the scale of Besov
and Triebel–Lizorkin spaces for operators with symbols belonging to bilinear Hör-
mander classes; see, for instance, the works Bényi [5] and Naibo–Thomson [47]
in the scale of Besov spaces, Bényi–Nahmod–Torres [6] in the context of Sobolev
spaces, and Naibo [46] and [36] for Besov and Triebel–Lizorkin spaces. For bilinear
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pseudo-differential operators with symbols closely related to the Hörmander classes,
Brummer–Naibo [10] proved estimates in the setting of function spaces that admit a
molecular decomposition and a ϕ-transform in the sense of Frazier–Jawerth [24, 25],
and for Coifman–Meyer multiplier operators, [48] worked in the context of weighted
Besov and Triebel–Lizorkin spaces withweights in theMuckenhoupt classes.We refer
the reader to the survey in Torres [56] for other considerations.

In this article, we prove fractional Leibniz rules of the type (1.3) for Coifman–
Meyer multiplier operators in the setting of Triebel–Lizorkin and Besov spaces based
on quasi-Banach function spaces. A Coifman–Meyer multiplier operator of order
m ∈ R is an operator of the type (1.2) given by a smooth, complex-valued multiplier
σ(ξ, η), ξ, η ∈ R

n, that verifies

∣

∣

∣∂
α
ξ ∂β

η σ (ξ, η)

∣

∣

∣ ≤ Cα,β(|ξ | + |η|)m−(|α|+|β|), ∀(ξ, η) ∈ R
2n \ {(0, 0)} ,

(1.4)

for all multi-indices α, β ∈ N
n
0 and some constant Cα,β > 0. We will also consider an

inhomogeneous analog where σ is such that (1.4) holds with 1 + |ξ | + |η| instead of
|ξ | + |η|.

Quasi-Banach function spaces include a diverse family of function spaces such
as weighted mixed Lebesgue spaces, Morrey spaces (after an adjustment), variable
Lebesgue spaces, as well as the large class of rearrangement invariant quasi-Banach
function spaces, of which weighted Lebesgue spaces, generalized versions of Lorentz
spaces, andOrlicz spaces are specific examples. By proving the identification of quasi-
Banach function spaces with spaces in the scale of the associated Triebel–Lizorkin
spaces, our main results imply a plethora of fractional Leibniz rules in quasi-Banach
function spaces, recovering in a unifiedwaymany results in the literature and providing
new ones. For instance, we recover the following estimates proved in [48]:

∥

∥Ds(Tσ ( f , g))
∥

∥

H p �
∥

∥Ds f
∥

∥

H p1 ‖g‖H p2 + ‖ f ‖H p̃1

∥

∥Ds g
∥

∥

H p̃2 , (1.5)

for a Coifman–Meyer multiplier σ of order zero, 0 < p1, p̃2 < ∞, 0 < p2, p̃1 ≤ ∞,

0 < p < ∞ such that 1/p = 1/p1 +1/p2 = 1/ p̃1 +1/ p̃2, s > max{0, n(1/p −1)},
and where Hq = Hq(Rn) denotes a Hardy space for 0 < q < ∞ (recall that
Hq(Rn) = Lq(Rn) for 1 < q < ∞) and Hq(Rn) is replaced by L∞(Rn) if q = ∞.

Notice that, when σ ≡ 1, the estimate (1.5) improves (1.1) by allowing all indices to
be in the wider range (0,∞] and by admitting the larger H p-norm on the left hand
side. A weighted version of (1.5) also holds with Hardy spaces associated to weights
in the Muckenhoupt class A∞(Rn).

More generally, our main results lead to the following novel version of (1.3) in
the setting of Hardy spaces based on weighted rearrangement invariant quasi-Banach
function spaces,

∥

∥Ds(Tσ ( f , g))
∥

∥

H X p
(w)

�
∥

∥Ds f
∥

∥

H X
p1
1 (w1)

‖g‖
H X

p2
2 (w2)

+ ‖ f ‖
H X

p1
1 (w1)

∥

∥Ds g
∥

∥

H X
p2
2 (w2)

, (1.6)
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where for a weight v and 0 < q < ∞, H Xq
(v) denotes the Hardy space based on the

weighted rearrangement invariant quasi-Banach function spaces Xq(v), w, w1, and
w2 are weights in the Muckenhoupt class A∞(Rn), the parameters s, p, p1, and p2
satisfy appropriate conditions, and σ is a Coifman–Meyer multiplier of order zero. In
turn, (1.6) implies

∥

∥Ds(Tσ ( f , g))
∥

∥

X p(w)
�
∥

∥Ds f
∥

∥

X
p1
1 (w1)

‖g‖X
p2
2 (w2)

+ ‖ f ‖X
p1
1 (w1)

∥

∥Ds g
∥

∥

X
p2
2 (w2)

,

(1.7)

for appropriate indices and weights in the Muckenhoupt classes. We refer the reader
to Sect. 4 for more details.

Our main results also provide new estimates in the setting of weighted mixed
Lebesgue spaces; for instance, if σ is a Coifman–Meyer multiplier of order zero, we
obtain

∥

∥Ds(Tσ ( f , g))
∥

∥

L p(Lq (w))
�
∥

∥Ds f
∥

∥

L p1 (Lq1 (w1))
‖g‖L p2 (Lq2 (w2))

+‖ f ‖L p1 (Lq1 (w1))

∥

∥Ds g
∥

∥

L p2 (Lq2 (w2))
, (1.8)

for 1 < p, p1, p2, q, q1, q2 < ∞, 1/p = 1/p1 + 1/p2, 1/q = 1/q1 + 1/q2, s > 0,
and appropriate weights w, w1, and w2 in ‘mixed’ versions of Muckenhoupt classes.
See details in Sect. 5.

Other concrete examples implied by our main results include Leibniz rules in set-
tings associated to weighted Lorentz and Orlicz spaces, as well as weighted Morrey
and variable Lebesgue spaces. Details can be found in Sects. 4.3, 6, and 7, respectively.

Some particular cases of (1.3) can be recast as

‖Tσ ( f , g)‖Y � ‖ f ‖Y ‖g‖L∞ + ‖ f ‖L∞ ‖g‖Y , (1.9)

where Y is some function space associated to a smoothness parameter (for instance, a
Sobolev space, or more generally a Besov or Triebel–Lizorkin space). Such estimates,
in particular when σ ≡ 1, have played a fundamental role in the study of partial
differential equations (see, for instance, [2, 10, 40, 48] and the references therein), and
they imply that Y ∩ L∞(Rn) is an algebra under pointwise multiplication. Our main
results give that (1.9) holds for Besov or Triebel–Lizorkin spaces based on a quasi-
Banach function space; as a byproduct, the intersection of such spaces with L∞(Rn)

is an algebra under pointwise multiplication.
Multiple approaches (which are based on Coifman–Meyer multiplier operators

and the bilinear Calderón-Zygmund theory, square-function estimates, vector-valued
multiplier theorems, among others) have been put forward to prove fractional Leibniz
rules in the spirit of (1.3). In this article, we employed an alternative unifying approach
used in [48], where results in the weighted Lebesgue, Lorentz and Morrey spaces, as
well as variable Lebesgue spaces were obtained. This method is based on Nikol’skiı̆
representations for function spaces andwas pioneered for classical spaces in Bourdaud
[8], Meyer [42], Nikol’skiı̆ [49], Triebel [57], and Yamazaki [58]. We prove such
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representations for the general setting of Besov and Triebel–Lizorkin spaces based on
quasi-Banach function spaces (Theorem 3.4).

This article is organized as follows. Notation, definitions, and properties of function
spaces are given in Sect. 2. The statement of the main result on fractional Leibniz rules
in Triebel–Lizorkin and Besov spaces based on quasi-Banach function spaces, as well
as its corollaries and proof, are given in Sect. 3. In Sect. 4, we strengthen the main
result for the particular case of rearrangement invariant quasi-Banach function spaces,
and present specific examples in weighted Lebesgue spaces, weighted Lorentz spaces
and Orlicz spaces. Other particular applications of the general theory in the setting of
quasi-Banach function spaces that are not rearrangement invariant are given in Sect. 5
for weighted mixed Lebesgue spaces, in Sect. 6 for weighted Morrey spaces, and
in Sect. 7 for variable Lebesgue spaces. Finally, Appendix A contains extrapolation
theorems,AppendixBproves identifications of function spaceswith spaces in the scale
ofTriebel–Lizorkin spaces,AppendixC shows results pertaining to the boundedness of
the Hardy-Littlewood maximal operator on the function spaces used, and Appendix D
gives the proof of Nikol’skiı̆ representations in the context of quasi-Banach function
spaces.

2 Preliminaries

In this section, we give some definitions and notation for quasi-Banach function spaces
(QBFS), weights, and QBFS-based Triebel–Lizorkin, Besov, and Hardy spaces.

Let S(Rn) denote the Schwartz class of smooth, rapidly decreasing functions and
S ′(Rn) denote its dual space of tempered distributions. We use S0(R

n) to indicate
the subspace of functions in S(Rn) with vanishing moments of all orders. That is,
for f ∈ S(Rn), we have f ∈ S0(R

n), if, and only if, for any multi-index α ∈ N
n
0,∫

Rn xα f (x)dx = 0. Its dual space will be denoted by S ′
0(R

n), which is the class of
tempered distributions modulo polynomials, S ′(Rn)/P(Rn).

Many of our results will be in quasi-Banach function spaces, which we define
following Bennett and Sharpley [4] and Cruz-Uribe et al. [19]. Let (Rn, μ) be a
totally σ -finite, nonatomic measure space and M denote the collection of measurable
functions on (Rn, μ). A mapping ρ : M → [0,∞] is a Banach function norm if it
satisfies the following properties for all f and g in M:

P1. ρ( f ) = ρ(| f |) and ρ( f ) = 0 if, and only if, f = 0 μ-a.e.;
P2. ρ( f + g) ≤ ρ( f ) + ρ(g);
P3. ρ(a f ) = |a| ρ( f ), for all a ∈ R;
P4. | f | ≤ |g| μ-a.e. implies ρ( f ) ≤ ρ(g);
P5. If

{

f j
}

j∈Z is a sequence of measurable functions such that
∣

∣ f j
∣

∣ increases to | f |
μ-a.e., then ρ( f j ) increases to ρ( f );

P6. If E ⊂ R
n is measurable and μ(E) < ∞, then

i. ρ(χE ) < ∞,
ii. there exists 0 < CE < ∞, depending only on E and ρ, such that

∫

E | f | dμ ≤
CE ρ( f ).
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Given ρ, we define the function space

X = {

f ∈ M : ‖ f ‖X < ∞}

,

where ‖ f ‖X = ρ( f ). Using properties P4 and P5, it can be shown that (X , ‖·‖X ) is
a Banach space (see [4, Chap. 1, Theorem 1.6]). We call X a Banach function space
(BFS).

The associate space of X , denoted X ′, is defined through the Banach function
norm

ρ′( f ) = sup

{∫

Rn
| f (x)g(x)| dμ : g ∈ X , ‖g‖X ≤ 1

}

.

Given 0 < p < ∞, we define

X p = {

f ∈ M : | f |p ∈ X
}

,

and set ‖ f ‖X p = ‖| f |p‖1/p
X .

In the case that property P2 is replaced by

ρ( f + g) ≤ Cρ(ρ( f ) + ρ(g)),

for some constant 0 < Cρ < ∞, and property P6ii is omitted, we call X a quasi-
Banach function space (QBFS). A QBFS is also complete (see Caetano et al. [11,
Lemma 3.6]), and the definitions of X p and X ′ extend to this setting. We note that if
X is a BFS, then X p for 1 ≤ p < ∞ and X ′ are BFSs, while X p for 0 < p < 1 can
only be guaranteed to be a QBFS.

For most of our results, it will be required that a QBFS X is such that X p0 is a
Banach function space for some 1 ≤ p0 < ∞. That is, defining

p(X) = inf
{

p0 ≥ 1 : X p0 is BFS
}

,

we require that p(X) < ∞.
We note that if p(X) < ∞ and 0 < p, p1, p2 ≤ ∞ are such that 1/p = 1/p1 +

1/p2, then the following Hölder’s inequality holds:

‖ f g‖X p ≤ ‖ f ‖X p1 ‖g‖X p2 . (2.1)

We next discuss boundedness properties of the Hardy-Littlewoodmaximal operator
on a QBFS X . We define the Hardy-Littlewood maximal operator by

M f (x) = sup
B
x

1

|B|
∫

B
| f (y)|dy, x ∈ R

n,

where f is a locally integrable function on R
n, the supremum is taken over all

Euclidean balls B ⊂ R
n containing x , and |B| denotes the Lebesgue measure of
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B. For h > 0,

Mh f (x) =
(

M
(

| f |h
)) 1

h
(x) = sup

B
x

(

1

|B|
∫

B
| f (y)|hdy

) 1
h

.

Let X be a QBFS over (Rn, μ). Assume that given 0 < r ≤ ∞ there exists h > 0
such that the Fefferman-Stein inequality holds; that is,

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣Mh( f j )
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣ f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X

, (2.2)

for all sequences
{

f j
}

j∈Z of locally integrable functions defined on R
n , with the

corresponding changes when r = ∞. Then for such a QBFS X , we define

h X = sup {h > 0 : Mh is bounded on X} and h X ,r = sup {h > 0 : (2.2) holds } .

We also define

τ(X) = n

(

1

min(h X , 1)
− 1

)

and τr (X) = n

(

1

min(h X ,r , 1)
− 1

)

.

We note that h X ≥ h X ,r and τr (X) ≥ τ(X).
A weight on R

n is a nonnegative, locally integrable function defined on R
n . Given

a weight w on R
n and 0 < p ≤ ∞, define the weighted Lebesgue space L p(w) to be

the collection of measurable functions f on R
n such that

‖ f ‖L p(w) =
(∫

Rn
| f (x)|pw(x)dx

) 1
p

< ∞,

with the usual change when p = ∞.
For 1 < p < ∞, the Muckenhoupt class of weights Ap(R

n) is the collection of
weights w on R

n such that

[w]Ap(Rn) = sup
Q

(

−
∫

Q
w(x)dx

)(

−
∫

Q
w(x)1−p′

dx

)p−1

< ∞, (2.3)

where the supremum is taken over all cubes Q ⊂ R
n and−

∫

Q f (x)dx = 1
|Q|
∫

Q f (x)dx
for a locally integrable function f . Recall that if 1 < p < ∞, the Hardy-Littlewood
maximal operator is bounded on L p(w) if, and only if,w ∈ Ap(R

n) (seeMuckenhoupt
[44]). We also define

A∞(Rn) =
⋃

p>1

Ap(R
n),
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and, for w ∈ A∞(Rn),

τw = inf{τ ≥ 1 : w ∈ Aτ (R
n)}.

We denote the Fourier transform of f ∈ S ′(Rn) by ̂f or F f . In particular, for
f ∈ L1(Rn), we have

̂f (ξ) =
∫

Rn
f (x)e−2π i x ·ξ dx, ∀ξ ∈ R

n .

For j ∈ Z, φ ∈ S(Rn), f ∈ S ′(Rn), and ξ ∈ R
n , define Pφ

j such that ̂
Pφ

j f (ξ) =
̂φ(2− jξ)̂f (ξ). Ifφ is supported in an annulus centered at the origin, we use the notation
�

φ
j instead of Pφ

j , and if ̂φ is supported in a ball centered at the origin with ̂φ(0) �= 0,

we use the notation Sφ
j instead of Pφ

j . For a ∈ R
n , we indicate translation by a with

τa ; that is, τaφ(x) = φ(x + a) for x ∈ R
n .

2.1 Function Spaces

We now define the Triebel–Lizorkin and Besov spaces we will be working with.
Let ψ, ϕ ∈ S(Rn) be such that

supp(ϕ̂) ⊂ {

ξ ∈ R
n : |ξ | < 2

}

, (2.4)

supp(̂ψ) ⊂ {ξ ∈ R
n : 1

2 < |ξ | < 2}. (2.5)

We define Ȧ(Rn) as the class of ψ ∈ S(Rn) such that ψ satisfies (2.5) and

∑

j∈Z
̂ψ(2− jξ) = 1, ∀ξ ∈ R

n \ {0}.

We denote by A(Rn) the class of pairs (ϕ, ψ) such that ϕ,ψ ∈ S(Rn), ϕ satisfies
(2.4), ψ satisfies (2.5), and

ϕ̂(ξ) +
∑

j∈N
̂ψ(2− jξ) = 1, ∀ξ ∈ R

n .

Let X be a QBFS, 0 < r ≤ ∞, and s ∈ R. For ψ ∈ Ȧ(Rn), the homogeneous
Triebel–Lizorkin space Ḟs

X ,r is the collection of all f ∈ S ′
0(R

n) such that

‖ f ‖Ḟs
X ,r

=

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

(

2s j |�ψ
j f |

)r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X

< ∞,
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and the homogeneous Besov space Ḃs
X ,r is the collection of f ∈ S ′

0(R
n) such that

‖ f ‖Ḃs
X ,r

=
⎛

⎝

∑

j∈Z

(

2s j
∥

∥

∥�
ψ
j f
∥

∥

∥

X

)r

⎞

⎠

1
r

< ∞.

For (ϕ, ψ) ∈ A(Rn), the inhomogeneous Triebel–Lizorkin space Fs
X ,r is the class of

all f ∈ S ′(Rn) such that

‖ f ‖Fs
X ,r

= ∥

∥Sϕ
0 f
∥

∥

X +

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈N

(

2 js
∣

∣

∣�
ψ
j f
∣

∣

∣

)r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X

< ∞,

and the inhomogeneous Besov space Bs
X ,r is the collection of f ∈ S ′(Rn) such that

‖ f ‖Bs
X ,r

= ∥

∥Sϕ
0 f
∥

∥

X +
⎛

⎝

∑

j∈N

(

2 js
∥

∥

∥�
ψ
j f
∥

∥

∥

X

)r

⎞

⎠

1
r

< ∞.

In all four definitions, in the case that r = ∞, the summation in j is replaced with the
supremum in j .

If h X ,r > 0 for the Triebel–Lizorkin space and h X > 0 for the Besov space, these
definitions are independent of ϕ andψ ; this follows from an application of Lemma 3.5
(see Sect. 3). Moreover, the following lifting property holds:

‖ f ‖Ḟs
X ,r

∼ ∥

∥Ds f
∥

∥

Ḟ0
X ,r

and ‖ f ‖Fs
X ,r

∼ ∥

∥J s f
∥

∥

F0
X ,r

, (2.6)

with a corresponding statement in the Besov setting. The proofs of these facts are
similar to those for analogous results in the classical Triebel–Lizorkin and Besov
spaces based on Lebesgue spaces (see [57, Sects. 2.3.8 and 5.2.3]).

We will also consider the following properties for a QBFS X , with s ∈ R and
0 < r ≤ ∞:

P7. S0(R
n) ↪→ Ḟ s

X ,r ↪→ S ′
0(R

n) and S0(R
n) ↪→ Ḃs

X ,r ↪→ S ′
0(R

n);
P8. S(Rn) ↪→ Fs

X ,r ↪→ S ′(Rn) and S(Rn) ↪→ Bs
X ,r ↪→ S ′(Rn);

P9. Ḃs
X ,r and Bs

X ,r are complete.

Remark 2.1 The completeness of Ḟ s
X ,r and Fs

X ,r follows from the continuous inclu-

sions Ḟ s
X ,r ↪→ S ′

0(R
n) and Fs

X ,r ↪→ S ′(Rn), respectively. The same is true for Ḃs
X ,r

and Bs
X ,r if X ↪→ S ′(Rn). All these inclusions hold true if (1 + |x |)−N ∈ X ′ for

some N > 0. Moreover, the inclusions S0(R
n) ↪→ Ḟ s

X ,r and S0(R
n) ↪→ Ḃs

X ,r , their

inhomogeneous counterparts, and the inclusion S(Rn) ↪→ X hold if (1+|x |)−N ∈ X
for some N > 0. These claims can be proved using arguments similar to those used
for corresponding results in the classical setting (see [57]; see also Liang et al. [39]).
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Let φ ∈ S(Rn) be such that
∫

Rn φ(x)dx �= 0. Given a QBFS X , the Hardy space
H X is defined as the class of tempered distributions such that

‖ f ‖H X =
∥

∥

∥

∥

sup
0<t<∞

∣

∣

∣t−nφ(t−1·) ∗ f
∣

∣

∣

∥

∥

∥

∥

X

< ∞,

while the local Hardy space h X is given by the collection of tempered distributions
such that

‖ f ‖h X =
∥

∥

∥

∥

sup
0<t<1

∣

∣

∣t−nφ(t−1·) ∗ f
∣

∣

∣

∥

∥

∥

∥

X

< ∞.

Note that we have

‖ f ‖X ≤ ‖ f ‖h X ≤ ‖ f ‖H X , ∀ f ∈ S(Rn), (2.7)

due to property P4 of X and the fact that

| f (x)| ≤ sup
0<t<1

∣

∣

∣t−n(φ(t−1·) ∗ f )(x)

∣

∣

∣ ≤ sup
0<t<∞

∣

∣

∣t−n(φ(t−1·) ∗ f )(x)

∣

∣

∣ . (2.8)

We remark that if X is a BFS over (Rn, dx) such that theHardy-Littlewoodmaximal
operator is bounded on X ′, then for 1 < p < ∞

Ḟ0
X p,2 = F0

X p,2 = H X p = h X p = X p, (2.9)

with equivalent norms (see Appendix B for further details).

3 Fractional Leibniz Rules in Quasi-Banach Function Spaces

We next discuss fractional Leibniz rules in the setting of Triebel–Lizorkin and Besov
spaces based on QBFSs.

The main result of this section is the following theorem.

Theorem 3.1 Let m ∈ R, 0 < r ≤ ∞, 0 < p, p1, p2 < ∞, and σ(ξ, η), ξ, η ∈ R
n,

be a Coifman–Meyer multiplier of order m. Suppose X , X1, and X2 are QBFSs over
(Rn, μ), (Rn, μ1), and (Rn, μ2), respectively, such that p(X), p(X1), p(X2) < ∞,
properties P7, P8, and P9 are satisfied by X p with r as given and s as below, and the
following Hölder’s inequality holds true:

‖ f g‖X p � ‖ f ‖X
p1
1

‖g‖X
p2
2

, ∀ f ∈ X p1
1 , g ∈ X p2

2 . (3.1)

i) If h X p,r , h X
p1
1 ,r , h X

p2
2 ,r > 0 and s > τr (X p), then

‖Tσ ( f , g)‖Ḟs
X p ,r

� ‖ f ‖Ḟs+m

X
p1
1 ,r

‖g‖
H X

p2
2

+ ‖ f ‖
H X

p1
1

‖g‖Ḟs+m

X
p2
2 ,r

. (3.2)
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ii) If h X p , h X
p1
1

, h X
p2
2

> 0 and s > τ(X p), then

‖Tσ ( f , g)‖Ḃs
X p ,r

� ‖ f ‖Ḃs+m

X
p1
1 ,r

‖g‖
H X

p2
2

+ ‖ f ‖
H X

p1
1

‖g‖Ḃs+m

X
p2
2 ,r

. (3.3)

Moreover, if h X p,r > 0 and s > τr (X p),

‖Tσ ( f , g)‖Ḟs
X p ,r

� ‖ f ‖Ḟs+m
X p ,r

‖g‖L∞ + ‖ f ‖L∞ ‖g‖Ḟs+m
X p ,r

, (3.4)

with an analogous statement for the Besov spaces if h X > 0 and s > τ(X p).

We note that applying the lifting property (see (2.6)), (3.2) and (3.3) can be respec-
tively written as

∥

∥Ds(Tσ ( f , g))
∥

∥

Ḟ0
X p ,r

�
∥

∥Ds f
∥

∥

Ḟm
X

p1
1 ,r

‖g‖
H X

p2
2

+ ‖ f ‖
H X

p1
1

∥

∥Ds g
∥

∥

Ḟm
X

p2
2 ,r

, (3.5)

∥

∥Ds(Tσ ( f , g))
∥

∥

Ḃ0
X p ,r

�
∥

∥Ds f
∥

∥

Ḃm
X

p1
1 ,r

‖g‖
H X

p2
2

+ ‖ f ‖
H X

p1
1

∥

∥Ds g
∥

∥

Ḃm
X

p2
2 ,r

. (3.6)

Analogous estimates hold for (3.4) and its Besov counterpart.
In view of (2.9), if X , X1, and X2 are BFSs over (Rn, dx) such that the Hardy-

Littlewoodmaximal operator is bounded on X ′, X ′
1, and X ′

2, (3.5) and (3.4) with r = 2
can be written for symbols of order zero as

∥

∥Ds(Tσ ( f , g))
∥

∥

X p �
∥

∥Ds f
∥

∥

X
p1
1

‖g‖X
p2
2

+ ‖ f ‖X
p1
1

∥

∥Ds g
∥

∥

X
p2
2

, (3.7)
∥

∥Ds(Tσ ( f , g))
∥

∥

X p �
∥

∥Ds f
∥

∥

X p ‖g‖L∞ + ‖ f ‖L∞
∥

∥Ds g
∥

∥

X p , (3.8)

for 1 < p, p1, p2 < ∞. In the particular case when σ ≡ 1, (3.7) and (3.8) give the
following fractional Leibniz rules:

∥

∥Ds( f g)
∥

∥

X p �
∥

∥Ds f
∥

∥

X
p1
1

‖g‖X
p2
2

+ ‖ f ‖X
p1
1

∥

∥Ds g
∥

∥

X
p2
2

, (3.9)
∥

∥Ds( f g)
∥

∥

X p �
∥

∥Ds f
∥

∥

X p ‖g‖L∞ + ‖ f ‖L∞
∥

∥Ds g
∥

∥

X p . (3.10)

Moreover, a version of Theorem 3.1 along with the corresponding estimates (3.5)–
(3.10) hold in the inhomogeneous setting with an inhomogeneous Coifman–Meyer
multiplier and J s instead of Ds .

Remark 3.2 In view of (2.1), if X is a QBFS over (Rn, μ) such that p(X) < ∞
and properties P7, P8, and P9 are satisfied for X p, then Theorem 3.1 holds true with
X1 = X2 = X and 1/p = 1/p1 + 1/p2 if the assumptions in Items i) and ii) are
satisfied.

Remark 3.3 We note that the proof of Theorem 3.1 shows that different pairs of p1
and p2 and X1 and X2 can be used on the right hand side of (3.2) and (3.3) as long as
the corresponding Hölder inequality (3.1) holds for both pairs.
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3.1 Proof of Theorem 3.1

We now prove Theorem 3.1; the proof of the corresponding result for the inhomoge-
neous case is similar. The proof follows ideas contained in [48], with modifications to
extend the logic to the more general QBFS setting.

We need two supporting results to prove Theorem 3.1. First, we have Nikol’skiı̆
representations for the QBFS-based Triebel–Lizorkin and Besov spaces.

Theorem 3.4 (Nikol’skiı̆ representations) For D > 0, let
{

u j
}

j∈Z ⊂ S ′(Rn) be such
that

supp(̂u j ) ⊂ B(0, D2 j ), j ∈ Z.

Suppose X is a QBFS over (Rn, μ) that satisfies properties P7, P8, and P9 for r and
s as given below.

i) Let 0 < r ≤ ∞. If h X ,r > 0, s > τr (X), and

∥

∥

∥

∥

(

∑

j∈Z
∣

∣2 jsu j
∣

∣

r
) 1

r

∥

∥

∥

∥

X
< ∞, then

the series
∑

j∈Z u j converges in S ′
0(R

n) to an element in Ḟs
X ,r and

∥

∥

∥

∥

∥

∥

∑

j∈Z
u j

∥

∥

∥

∥

∥

∥

Ḟs
X ,r

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣

∣2 jsu j

∣

∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X

, (3.11)

where the implicit constant depends only on n, D, s, r , X, and the function ψ used
in the definition of Ḟs

X ,r . An analogous statement with j ∈ N0 holds true for Fs
X ,r

(where convergence is in S ′(Rn)).

ii) Let 0 < r ≤ ∞. If h X > 0, s > τ(X), and
(

∑

j∈Z
∥

∥2 jsu j
∥

∥

r
X

) 1
r

< ∞, then the

series
∑

j∈Z u j converges in Ḃs
X ,r (in S ′

0(R
n) if r = ∞) and

∥

∥

∥

∥

∥

∥

∑

j∈Z
u j

∥

∥

∥

∥

∥

∥

Ḃs
X ,r

�

⎛

⎝

∑

j∈Z

∥

∥

∥2 jsu j

∥

∥

∥

r

X

⎞

⎠

1
r

, (3.12)

where the implicit constant depends only on n, D, s, r , X, and the function ψ used
in the definition of Ḃs

X ,r . An analogous statement with j ∈ N0 holds true for Bs
X ,q

(when r = ∞, the convergence is in S ′(Rn)).

We remark that if a dominated convergence theorem holds in X , then the conver-
gence in Item i) is in Ḟ s

X ,r and Fs
X ,r when 0 < r < ∞. The proof of Theorem 3.4

follows the same ideas as those for the weighted Lebesgue spaces (see [48, Theorem
3.2]) with some modifications due to the fact that a dominated convergence theo-
rem may not hold in X . For completeness, we include the proof of Theorem 3.4 in
Appendix D.

We will also need the following lemma from [48].



Journal of Fourier Analysis and Applications            (2023) 29:64 Page 13 of 46    64 

Lemma 3.5 (Lemma 3.1 from [48]) Let φ1, φ2 ∈ S(Rn) be such that ̂φ1 and ̂φ2 have
compact supports and ̂φ1̂φ2 = ̂φ1. If 0 < h ≤ 1 and ε > 0, it holds that

∣

∣

∣P
τaφ1
j f (x)

∣

∣

∣ � (1 + |a|)ε+n/hMh

(

Pφ2
j f

)

(x), ∀x, a ∈ R
n, j ∈ Z, f ∈ S ′(Rn).

We are now ready to show Theorem 3.1.

Proof of Theorem 3.1 As in [48], we begin with a decomposition of Tσ due to the work
of Coifman and Meyer in [14].

Fix � ∈ Ȧ(Rn) and let � ∈ S(Rn) be such that

̂�(0) = 1, ̂�(ξ) =
∑

j≤0

̂�(2− jξ), ∀ξ ∈ R
n \ {0}.

Given N sufficiently large, we write Tσ = T 1
σ + T 2

σ where, for f , g ∈ S0(R
n),

T 1
σ ( f , g)(x) =

∑

a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑

j∈Z
C j (a, b)(�

τa�
j f )(x)(Sτb�

j g)(x).

(3.13)

The coefficients C j (a, b) are such that

|C j (a, b)| � 2 jm, ∀a, b ∈ Z
n, j ∈ Z,

with implicit constant depending on σ . A formula analogous to (3.13) holds for T 2
σ

with the roles of f and g interchanged.
It suffices to work with T 1

σ and show that

∥

∥

∥T 1
σ ( f , g)(x)

∥

∥

∥

Ḟs
X p ,r

� ‖ f ‖Ḟs+m

X
p1
1 ,r

‖g‖
H X

p2
2

and
∥

∥

∥T 1
σ ( f , g)(x)

∥

∥

∥

Ḃs
X p ,r

� ‖ f ‖Ḃs+m

X
p1
1 ,r

‖g‖
H X

p2
2

,

with corresponding estimates for (3.4) and its Besov counterpart. Moreover, since

it holds that
∥

∥

∥

∑

j∈Z f j

∥

∥

∥

p/p0

Ḟs
X p ,r

≤ ∑

j∈Z
∥

∥ f j
∥

∥

p/p0
Ḟs

X p ,q
where p0 > max(p(X), p, p/r)

(similarly for Ḃs
X p,r ), it suffices to prove that given ε > 0, there exist 0 < h1, h2 ≤ 1

such that for any f , g ∈ S0(R
n), it holds that

∥

∥

∥T a,b( f , g)

∥

∥

∥

Ḟs
X p ,r

� (1 + |a|)ε+n/h1(1 + |b|)ε+n/h2 ‖ f ‖Ḟs+m

X
p1
1 ,r

‖g‖
H X

p2
2

, (3.14)

∥

∥

∥T a,b( f , g)

∥

∥

∥

Ḃs
X p ,r

� (1 + |a|)ε+n/h1(1 + |b|)ε+n/h2 ‖ f ‖Ḃs+m

X
p1
1 ,r

‖g‖
H X

p2
2

, (3.15)
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where

T a,b( f , g) =
∑

j∈Z
C j (a, b)

(

�
τa�
j f

) (

Sτb�
j g

)

and the implicit constants are independent of a and b. Corresponding estimates to
(3.14) and (3.15) suffice for (3.4) and its Besov counterpart.

Assume that r is finite; the usual changes apply when r = ∞. Let ϕ ∈ S(Rn) be
such that ϕ̂ has compact support and ϕ̂ ≡ 1 on supp(̂�). Let � ∈ Ȧ(Rn) and define
ψ such that ̂ψ = ∑1

�=−1
̂�(2−�ξ); then ̂ψ ≡ 1 on supp(̂�).

Due to the supports of � and �, we have that

supp
(

F
[

C j (a, b)
(

�
τa�
j f

) (

Sτb�
j g

)])

⊂
{

ξ ∈ R
n : |ξ | � 2 j

}

,

for all j ∈ Z and a, b ∈ Z
n .

We start with the proof of (3.14). Applying Theorem 3.4, the bound on the coeffi-
cients C j (a, b), and (3.1), we obtain

∥

∥

∥T a,b( f , g)

∥

∥

∥

Ḟs
X p ,r

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

[

2s j C j (a, b)
(

�
τa�
j f

) (

Sτb�
j g

)]r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X p

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
2(s+m) jr

∣

∣

∣

(

�
τa�
j f

) (

Sτb�
j g

)∣

∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X p

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
2(s+m) jr

∣

∣

∣�
τa�
j f

∣

∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X
p1
1

∥

∥

∥

∥

∥

sup
j∈Z

∣

∣

∣Sτb�
j g

∣

∣

∣

∥

∥

∥

∥

∥

X
p2
2

.

(3.16)

Let 0 < h1 < min(h X
p1
1 ,r , 1). By Lemma 3.5 and the Fefferman–Stein inequality, we

have that

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
2(s+m) jr

∣

∣

∣�
τa�
j f

∣

∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X
p1
1

� (1 + |a|)ε+n/h1

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
2(s+m) jr

∣

∣

∣Mh1

(

�
ψ
j f
)∣

∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X
p1
1

� (1 + |a|)ε+n/h1

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
2(s+m) jr

∣

∣

∣�
ψ
j f
∣

∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X
p1
1

∼ (1 + |a|)ε+n/h1 ‖ f ‖Ḟs+m

X
p1
1 ,r

,

where the implicit constants are independent of a and f .
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Now let 0 < h2 < min(h X
p2
2

, 1). Applying Lemma 3.5 and the boundedness of

Mh2 on X p2
2 , we have

∥

∥

∥

∥

∥

sup
j∈Z

∣

∣

∣S
τb�
j g

∣

∣

∣

∥

∥

∥

∥

∥

X
p2
2

� (1 + |b|)ε+n/h2

∥

∥

∥

∥

∥

Mh2

(

sup
j∈Z

∣

∣

∣S
ϕ
j g
∣

∣

∣

)∥

∥

∥

∥

∥

X
p2
2

� (1 + |b|)ε+n/h2

∥

∥

∥

∥

∥

sup
j∈Z

∣

∣

∣S
ϕ
j g
∣

∣

∣

∥

∥

∥

∥

∥

X
p2
2

∼ (1 + |b|)ε+n/h2 ‖g‖
H X

p2
2

,

(3.17)

where the constants are independent of b and g. All together, this gives (3.14).
For (3.15), again applying Theorem 3.4, the bound on |C j (a, b)| and (3.1), we have

∥

∥

∥T a,b( f , g)

∥

∥

∥

Ḃs
X p ,r

�

⎛

⎝

∑

j∈Z

∥

∥

∥2s j C j (a, b)
(

�
τa�
j f

) (

Sτb�
j g

)∥

∥

∥

r

X p

⎞

⎠

1
r

�

⎛

⎝

∑

j∈Z
2(s+m) jr

∥

∥

∥

(

�
τa�
j f

) (

Sτb�
j g

)∥

∥

∥

r

X p

⎞

⎠

1
r

�

⎛

⎝

∑

j∈Z
2(s+m) jr

∥

∥

∥

(

�
τa�
j f

)∥

∥

∥

r

X
p1
1

⎞

⎠

1
r ∥
∥

∥

∥

∥

sup
j∈Z

∣

∣

∣Sτb�
j g

∣

∣

∣

∥

∥

∥

∥

∥

X
p2
2

.

(3.18)

Setting 0 < h1 < min(h X
p1
1

, 1) and applying Lemma 3.5 and the boundedness of

Mh1 on X p1
1 , we have

∥

∥

∥�
τa�
j f

∥

∥

∥

X
p1
1

� (1 + |a|)ε+n/h1
∥

∥

∥Mh1

(

�
ψ
j f
)∥

∥

∥

X
p1
1

� (1 + |a|)ε+n/h1
∥

∥

∥�
ψ
j f
∥

∥

∥

X
p1
1

,

where the implicit constant is independent of a and f .
Therefore,

⎛

⎝

∑

j∈Z
2(s+m) jr

∥

∥

∥�
τa�
j f

∥

∥

∥

r

X
p1
1

⎞

⎠

1
r

�

⎛

⎝

∑

j∈Z
2(s+m) jr (1 + |a|)(ε+n/h1)r

∥

∥

∥�
ψ
j f
∥

∥

∥

r

X
p1
1

⎞

⎠

1
r

∼ (1 + |a|)ε+n/h1 ‖ f ‖Ḃs+m

X
p1
1 ,r

.

The factor

∥

∥

∥

∥

∥

sup
j∈Z

∣

∣

∣S
τbφ
j g

∣

∣

∣

∥

∥

∥

∥

∥

X
p2
2

is treated as in (3.17).
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This gives the desired inequality (3.15).
For (3.4) and its Besov counterpart, we proceed as in (3.16) and (3.18) with X p

instead of X p1
1 and sup j∈Z

∥

∥

∥Sτbφ
j g

∥

∥

∥

L∞ instead of
∥

∥

∥sup j∈Z
∣

∣

∣S
τbφ
j g

∣

∣

∣

∥

∥

∥

X
p2
2

. ��

4 Fractional Leibniz Rules in Rearrangement Invariant Quasi-Banach
Function Spaces

We turn our attention to a specific class of QBFSs, those that are rearrangement invari-
ant.Workingwithin rearrangement invariant quasi-Banach function spaces (r.i.QBFS),
we invoke extrapolation to deduce necessary tools such as the Fefferman–Stein
inequality and equivalences between norms to obtain fractional Leibniz rules within
these spaces.We first discuss some definitions and relationships, then state the Leibniz
rules in this setting. We also include examples of applications in weighted Lebesgue
spaces, Orlicz spaces, classical Lorentz spaces, and general Lorentz spaces.

4.1 Preliminaries

We begin with some background on rearrangement invariant quasi-Banach function
spaces; for further details, we refer the reader to [4] and [19].

Let (Rn, μ) be a measure space as in Sect. 2 and such that μ(Rn) = ∞. The
distribution function μ f of a measurable function f on R

n is given by

μ f (λ) = μ
({

x ∈ R
n : | f (x)| > λ

})

.

For a measurable function f in (Rn, μ) and a measurable function g in (Rd , ν), we
say that f and g are equimeasurable if μ f = νg . A BFS X over (Rn, μ) is said to be
rearrangement invariant if ‖ f ‖X = ‖g‖X whenever f and g in X are equimeasurable.

The decreasing rearrangement of f is the function f ∗
μ on [0,∞) given by

f ∗
μ(t) = inf

{

λ ≥ 0 : μ f (λ) ≤ t
}

.

Note that f ∗
μ is equimeasurable with f . If X is a r.i.BFS, this yields a representation of

X over the measure space (R+, dt). Indeed, by the Luxemburg representation theorem
(see [4]), there exists a r.i.BFS X over (R+, dt) such that f ∈ X if, and only if, f ∗

μ ∈ X ,
and ‖ f ‖X = ∥

∥ f ∗
μ

∥

∥

X
.

We use the Luxemburg representation theorem to define the Boyd indices of a
r.i.BFS X . For f ∈ X , the dilation operator Dt , 0 < t < ∞, is given by Dt f (x) =
f (x/t), and we let

aX (t) = ‖Dt‖B(X) ,
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where ‖Dt‖B(X) denotes the norm of the operator Dt . The lower and upper Boyd
indices are respectively given by

pX = lim
t→∞

log t

log aX (t)
= sup

1<t<∞
log t

log aX (t)
,

qX = lim
t→0+

log t

log aX (t)
= inf

0<t<1

log t

log aX (t)
.

It holds that 1 ≤ pX ≤ qX ≤ ∞, pX ′ = (qX )′, and qX ′ = (pX )′.
We next introduce weighted versions of a r.i.BFS X over the measure space

(Rn, dx). Given w ∈ A∞(Rn), define

X(w) = {

f ∈ M : ∥∥ f ∗
w

∥

∥

X < ∞}

,

with norm ‖ f ‖X = ∥

∥ f ∗
w

∥

∥

X . We note that X(w) is a r.i.BFS over (Rn, w(x)dx) and
we have (X(w))′ = X ′(w).

The above definitions can be extended to a r.i.QBFS X with p(X) < ∞. In this
setting, 0 < pX ≤ qX ≤ ∞, and if 0 < r < ∞, then pXr = r pX , qXr = rqX , and
(X(w))r = Xr (w) for w ∈ A∞(Rn).

For 0 < r ≤ ∞, s ∈ R, and X(w), we denote the corresponding homogeneous
and inhomogeneous Triebel–Lizorkin spaces as Ḟ s

X ,r (w) and Fs
X ,r (w), respectively;

an analogous notation applies to the Besov setting. Finally, the weighted Hardy space
will be denoted by H X (w) and the weighted local Hardy space will be denoted by
h X (w).

Given w ∈ A∞(Rn) and a r.i.QBFS X over (Rn, dx) with finite Boyd indices and
p(X) < ∞, we have

H X (w) = Ḟ0
X ,2(w) and h X (w) = F0

X ,2(w), (4.1)

with equivalent quasi-norms. Also, if X is a r.i.BFS with Boyd indices 1 < pX ≤
qX < ∞ and w ∈ ApX (Rn), then

Ḟ0
X ,2(w) = X(w) and F0

X ,2(w) = X(w), (4.2)

with equivalent norms. See Appendix B for further details.
Regarding the Fefferman–Stein inequality, if X is r.i.QBFS over (Rn, dx) with

0 < pX ≤ qX < ∞ and p(X) < ∞, 0 < r ≤ ∞, w ∈ A∞(Rn), and 0 < h <

min(pX/τw, 1/p(X), r), we have

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣Mh( f j )
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X(w)

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣ f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X(w)

, (4.3)
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with the summation in j replaced by the supremum in j if r = ∞. This also gives
that for 0 < h < min(pX/τw, 1/p(X)), we have

‖Mh( f )‖X(w) � ‖ f ‖X(w) .

See Appendix C for further details. Note that the results above imply that

h X(w) ≥ min(pX/τw, 1/p(X)) (4.4)

and

h X(w),r ≥ min(pX/τw, 1/p(X), r), (4.5)

which also gives

τ(X(w)) ≤ n

(

1

min(pX/τw, 1/p(X))
− 1

)

(4.6)

and

τr (X(w)) ≤ n

(

1

min(pX/τw, 1/p(X), r)
− 1

)

. (4.7)

We note that [4, p. 77, Theorem 6.6] gives that if X is a r.i.BFS, then

L1(w) ∩ L∞ ↪→ X(w) ↪→ L1(w) + L∞. (4.8)

Therefore, if X is a r.i.QBFS with p(X) < ∞ and p > p(X), (4.8) implies
that (1 + |x |)−N ∈ X p(w) for some N > 0; the same holds for (X p(w))′ since
(X p(w))′ = (X p)′(w). As a consequence, in view of Remark 2.1, properties P7, P8,
and P9 hold for X p(w) with 0 < r ≤ ∞ and s ∈ R.

4.2 Leibniz Rules in Rearrangement Invariant Quasi-Banach Function Spaces

We now present our results for fractional Leibniz rules in the r.i.QBFS setting. While
we show only the results in the homogeneous case, corresponding results hold as well
in the inhomogeneous setting with an inhomogeneous Coifman–Meyer multiplier and
the operator J s .

Corollary 4.1 Let m ∈ R, 0 < r ≤ ∞, 0 < p, p1, p2 < ∞, σ(ξ, η), ξ, η ∈ R
n,

be a Coifman–Meyer multiplier of order m, and w,w1, w2 ∈ A∞(Rn). Suppose
X , X1, and X2 are r.i.QBFSs over (Rn, dx) with finite Boyd indices such that
p(X), p(X1), p(X2) < ∞, properties P7, P8, and P9 are satisfied by X p(w) with r
as given and s as below, and the following Hölder inequality holds:

‖ f g‖X p(w) � ‖ f ‖X
p1
1 (w1)

‖g‖X
p2
2 (w2)

, ∀ f ∈ X p1
1 (w1), g ∈ X p2

2 (w2).
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(i) If s > n
(

1
min(ppX /τw,1/p(X p),r)

− 1
)

, then

‖Tσ ( f , g)‖Ḟs
X p ,r (w) � ‖ f ‖Ḟs+m

X
p1
1 ,r

(w1)
‖g‖

H X
p2
2 (w2)

+ ‖ f ‖
H X

p1
1 (w1)

‖g‖Ḟs+m

X
p2
2 ,r

(w2)
.

(4.9)

(ii) If s > n
(

1
min(ppX /τw,1/p(X p))

− 1
)

, then

‖Tσ ( f , g)‖Ḃs
X p ,r (w) � ‖ f ‖Ḃs+m

X
p1
1 ,r

(w1)
‖g‖

H X
p2
2 (w2)

+ ‖ f ‖
H X

p1
1 (w1)

‖g‖Ḃs+m

X
p2
2 ,r

(w2)
.

(4.10)

Moreover, if s > n
(

1
min(ppX /τw,1/p(X p),r)

− 1
)

,

‖Tσ ( f , g)‖Ḟs
X p ,r (w) � ‖ f ‖Ḟs+m

X p ,r (w) ‖g‖L∞ + ‖ f ‖L∞ ‖g‖Ḟs
X p ,r (w) , (4.11)

with a corresponding estimate for the Besov spaces if s > n
(

1
min(ppX /τw,1/p(X p))

− 1
)

.

Proof This follows by applying Theorem 3.1 with the r.i.QBFSs X(w), X1(w1), and
X2(w2). Indeed, since (X(w))p0 = X p0(w), whenever X p0 is a BFS, (X(w))p0 is
as well, giving that p(X(w)) ≤ p(X) < ∞; similarly, p(X1(w1)), p(X2(w2)) <

∞. Moreover, (4.5) applied to X p, X p1
1 , and X p2

2 implies that h X p(w),r , h X
p1
1 (w1),r

,

h X
p2
2 (w2),r

> 0, while (4.7) applied to X p implies s > τr (X p(w)). The argument for
(4.10) is similar. ��

Applying the lifting property, we obtain the following versions of (4.9) and (4.10):

∥

∥Ds(Tσ ( f , g))
∥

∥

Ḟ0
X p ,r (w)

�
∥

∥Ds f
∥

∥

Ḟm
X

p1
1 ,r

(w1)
‖g‖

H X
p2
2 (w2)

+ ‖ f ‖
H X

p1
1 (w1)

∥

∥Ds g
∥

∥

Ḟm
X

p2
2 ,r

(w2)
,

(4.12)
∥

∥Ds(Tσ ( f , g))
∥

∥

Ḃ0
X p ,r (w)

�
∥

∥Ds f
∥

∥

Ḃm
X

p1
1 ,r

(w1)
‖g‖

H X
p2
2 (w2)

+ ‖ f ‖
H X

p1
1 (w1)

∥

∥Ds g
∥

∥

Ḃm
X

p2
2 ,r

(w2)
.

(4.13)

By (4.1) and (4.12), we obtain the following estimates for symbols of order zero:

∥

∥Ds(Tσ ( f , g)
) ‖H X p

(w) �
∥

∥Ds f
∥

∥

H X
p1
1 (w1)

‖g‖
H X

p2
2 (w2)

+ ‖ f ‖
H X

p1
1 (w1)

∥

∥Ds g
∥

∥

H X
p2
2 (w2)

.

(4.14)

In particular, for σ ≡ 1, we have

∥

∥Ds( f g)
∥

∥

H X p
(w)

�
∥

∥Ds f
∥

∥

H X
p1
1 (w1)

‖g‖
H X

p2
2 (w2)

+ ‖ f ‖
H X

p1
1 (w1)

∥

∥Ds g
∥

∥

H X
p2
2 (w2)

.

(4.15)

Estimates analogous to (4.12)–(4.15) hold for (4.11) and its Besov counterpart.
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Finally, we have Leibniz rules in weighted r.i.QBFS as a consequence of (4.14),
(4.1), (4.2), and (2.7).

Corollary 4.2 Let σ(ξ, η), ξ, η ∈ R
n, be a Coifman–Meyer multiplier of order zero

and w ∈ A∞(Rn). Suppose X, X1, and X2 are r.i.QBFSs over (Rn, dx) with finite
Boyd indices, p(X), p(X1), p(X2) < ∞, and properties P7, P8, and P9 are satisfied
by X p(w) with r = 2 and s as given below. Assume 0 < p < ∞, p(X1) < p1 < ∞,
p(X2) < p2 < ∞, w1 ∈ Ap1 pX1

(Rn), w2 ∈ Ap2 pX2
(Rn), and

‖ f g‖X p(w) � ‖ f ‖X
p1
1 (w1)

‖g‖X
p2
2 (w2)

, ∀ f ∈ X p1
1 (w1), g ∈ X p2

2 (w2).

Then if s > n
(

1
min(ppX /τw,1/p(X p))

− 1
)

,

∥

∥Ds(Tσ ( f , g))
∥

∥

X p(w)
�
∥

∥Ds f
∥

∥

X
p1
1 (w1)

‖g‖X
p2
2 (w2)

+ ‖ f ‖X
p1
1 (w1)

∥

∥Ds g
∥

∥

X
p2
2 (w2)

.

In particular,

∥

∥Ds( f g)
∥

∥

X p(w)
�
∥

∥Ds f
∥

∥

X
p1
1 (w1)

‖g‖X
p2
2 (w2)

+ ‖ f ‖X
p1
1 (w1)

∥

∥Ds g
∥

∥

X
p2
2 (w2)

.

Moreover, if p(X) < p < ∞, w ∈ AppX (Rn), and s > n
(

1
min(ppX /τw,1/p(X p))

− 1
)

,

∥

∥Ds(Tσ ( f , g))
∥

∥

X p(w)
�
∥

∥Ds f
∥

∥

X p(w)
‖g‖L∞ + ‖ f ‖L∞

∥

∥Ds g
∥

∥

X p(w)
, (4.16)

and in particular,

∥

∥Ds( f g)
∥

∥

X p(w)
�
∥

∥Ds f
∥

∥

X p(w)
‖g‖L∞ + ‖ f ‖L∞

∥

∥Ds g
∥

∥

X p(w)
. (4.17)

Remark 4.3 As a consequence of Remark 3.2, Corollary 4.1 holds in particular if X
is r.i.QBFS over (Rn, dx) with finite Boyd indices, p(X) < ∞, X1 = X2 = X ,
w = w1 = w2, w ∈ A∞(Rn), 0 < p, p1, p2 < ∞ are such that 1/p = 1/p1 + 1/p2,
and X p(w) satisfies properties P7, P8, and P9 for 0 < r ≤ ∞ and s as given in the
statement of Corollary 4.1.

Remark 4.4 As a consequence of Remark 3.3, different pairs of X1, X2 and p1, p2 can
be used on the right hand side of (4.9) and (4.10).

4.3 Examples

We now give explicit examples of r.i.QBFSs where the results in Sect. 4.2 may be
applied.
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4.3.1 Weighted Lebesgue Spaces

Corollary 4.1 gives as a particular case the already known fractional Leibniz rules
in Triebel–Lizorkin and Besov spaces based on weighted Lebesgue spaces proved in
[48], including (1.5) and its weighted version. In this case, we have X = X1 = X2 =
L1(Rn), 0 < p, p1, p2 < ∞ such that 1/p = 1/p1 + 1/p2, w1, w2 ∈ A∞(Rn),
and w = w

p/p1
1 w

p/p2
2 . Therefore, p(X) = p(X1) = p(X2) = 1, pX = qX = 1,

X p(w) = L p(w), X p1(w1) = L p1(w1), and X p2(w2) = L p2(w2); the lower bounds

for s are n
(

1
min(p/τw,r ,1) − 1

)

in the Triebel–Lizorkin case and n
(

1
min(p/τw,1) − 1

)

in the Besov setting.
Corollary 4.2 then gives the fractional Leibniz rules in the weighted Lebesgue

spaces for 1 < p1, p2 < ∞, 1/p = 1/p1 + 1/p2, w1 ∈ Ap1(R
n), w2 ∈ Ap2(R

n),

and s > n
(

1
min(p/τw,1) − 1

)

and versions with L∞ for p > 1, w ∈ Ap(R
n), and s >

n
(

1
min(p/τw,1) − 1

)

; in particular, we recover the unweighted version (1.1) presented
in the introduction.

4.3.2 Classical Weighted Lorentz Spaces

Given 0 < p, q < ∞, the classical Lorentz spaces L p,q(Rn) are r.i.QBFSs defined
through the quasi-norm given by

‖ f ‖L p,q =
(∫ ∞

0
( f ∗(s)s

1
p )q ds

s

) 1
q

, (4.18)

where f ∗ = f ∗
w withw ≡ 1, extending the scale of Lebesgue spaces since L p,p(Rn) =

L p(Rn).
The Boyd indices for L p,q(Rn) are pX = qX = p. We note that if 1 ≤

p, q < ∞, L p,q(Rn) is a r.i.BFS, and since (L p,q(Rn))p0 = L pp0,qp0(Rn), we have
p(L p,q(Rn)) = 1/min(p, q, 1). If X = L p,q(Rn), then X(w) is given by (4.18)
by replacing f ∗ with f ∗

w. Corollary 4.1 gives fractional Leibniz rules for Triebel–
Lizorkin and Besov spaces based on weighted Lorentz spaces (see also [48]). In this
case, we have 0 < p, p1, p2, q, q1, q2 < ∞ satisfying 1/p = 1/p1 + 1/p2 and
1/q = 1/q1 + 1/q2, X = L1,q/p(Rn), X1 = L1,q1/p1(Rn), X2 = L1,q2/p2(Rn),
and w = w1 = w2 with w ∈ A∞(Rn). Therefore, pX = qX = 1, X p(w) =
L p,q(w), X p1

1 (w) = L p1,q1(w), and X p2
2 (w) = L p2,q2(w) (see Hunt [31, Theo-

rem 4.5] for Hölder’s inequality between these spaces). The lower bound for s is

n
(

1
min(p/τw,q,r ,1) − 1

)

for the Triebel–Lizorkin case and n
(

1
min(p/τw,q,1) − 1

)

for

the Besov setting.
Corollary 4.2 then gives the following fractional Leibniz rules for weighted Lorentz

spaces:

∥

∥Ds(Tσ ( f , g))
∥

∥

L p,q (w)
�
∥

∥Ds f
∥

∥

L p1,q1 (w)
‖g‖L p2,q2 (w)

+‖ f ‖L p1,q1 (w)

∥

∥Ds g
∥

∥

L p2,q2 (w)
,
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with w ∈ Amin(p1,p2)(R
n), 1 < p1, p2, q1, q2 < ∞, 1/p = 1/p1 + 1/p2, 1/q =

1/q1 + 1/q2, and s > n
(

1
min(p/τw,q,1) − 1

)

, with corresponding counterparts for

(4.16) and (4.17) if 1 < p, q < ∞ and w ∈ Ap(R
n). See also [16, 17] for the case

σ ≡ 1.

4.3.3 Lorentz3-Spaces

The Lorentz �-spaces �
q
v are defined to be the collection of measurable functions f

defined on R
n such that

‖ f ‖�
q
v

=
(∫ ∞

0
f ∗(s)qv(s)ds

) 1
q

< ∞,

where 0 < q < ∞ and v is a weight on (0,∞) (see Carro et al. [12]).
The classical Lorentz spaces presented in Sect. 4.3.2 are a specific case of the

Lorentz-� spaces, since �
q
v = L p,q(Rn) for v(s) = sq/p−1. Choosing v(s) =

sq/p−1(1+ log+(1/s))α , we obtain the Lorentz-Zygmund spaces�
q
v = L p,q(log L)α

(see Bennett–Rudnick [3]). Alternatively, if v(s) = sq/p−1(1 + log+(1/s))α(1 +
log+ log+(1/s))β , then �

q
v = L p,q(log L)α(log log L)β are the generalized Lorentz-

Zygmund spaces (see Evans et al. [23]).
As shown in Curbera et al. [20], X = �

q
v has upper Boyd index qX < ∞whenever

1

t

∫ t

0
v(x)dx � v(t), t > 0.

Moreover, if v satisfies

∫ ∞

t
v(x)x−p0dx � 1

t p0

∫ t

0
v(x)dx, t > 0,

for large enough p0, (�
q
v )p0 is a Banach space, so p(�

q
v ) < ∞ (see Sawyer [55] and

[12]).

4.3.4 Orlicz Spaces

Let φ be a Young function; that is, φ : [0,∞) → [0,∞) is continuous, convex, strictly
increasing, and

lim
t→0+

φ(t)

t
= 0 and lim

t→∞
φ(t)

t
= ∞.

The Orlicz space Lφ is the collection of measurable functions f defined on R
n such

that

‖ f ‖Lφ = inf

{

λ > 0 :
∫

Rn
φ

( | f (x)|
λ

)

dx ≤ 1

}

< ∞. (4.19)
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It can be shown that Orlicz spaces are r.i.BFSs. For X = Lφ and w a weight in R
n ,

X(w) is given by replacing dx with w(x)dx in (4.19) (see [4, 19, 20]).
In the case that φ(x) = x p, 1 < p < ∞, we obtain the Lebesgue space L p(Rn).

Also, the Zygmund spaces L p(log L)α for 1 < p < ∞ and α ∈ R, a particular case
of the Lorentz–Zygmund spaces of Sect. 4.3.3, result when φ(t) = t p(1 + log+ t)α.

These spaces have Boyd indices pX = qX = p, and (L p(log L)α)p0 = L pp0(log L)α .
Other examples of Orlicz spaces include L p + Lq and L p ∩ Lq , which are associated
with φ(t) ∼ max(t p, tq) and φ(t) = min(t p, tq), respectively, and have Boyd indices
pX = min(p, q) and qX = max(p, q).

5 Fractional Leibniz Rules inWeightedMixed Lebesgue Spaces

There are also many applications of Theorem 3.1 in QBFSs that are not rearrangement
invariant. In this section, we obtain fractional Leibniz rules in Triebel–Lizorkin and
Besov spaces based onweightedmixed Lebesgue spaces as corollaries of Theorem 3.1
and show that particular cases of these estimates include fractional Leibniz rules in
weighted mixed Lebesgue spaces.We then analyze these results for spaces with power
weights.

5.1 Preliminaries

Let n = n1 + n2, n1, n2 ∈ N, and x = (x1, x2) ∈ R
n with x1 ∈ R

n1 and x2 ∈ R
n2 .

For 0 < p, q < ∞ and a weight w on R
n , we define the weighted mixed Lebesgue

space L p(Lq(w)) to be the collection of all measurable functions f defined on R
n

such that

‖ f ‖L p(Lq (w)) =
(

∫

R
n1

(∫

R
n2

| f (x1, x2)|qw(x1, x2)dx2

)
p
q

dx1

)
1
p

< ∞.

Note that L p(L p(w)) = L p(w).
In this setting, we consider a ‘mixed’ version of the Ap condition, which we denote

Ap(Aq). Following the work of Kurtz in [38], we define

[w]Ap(Aq ) = sup
Q1,Q2

(

−
∫

Q1

(

−
∫

Q2

w(x1, x2)dx2

)
p
q

dx1

)

⎛

⎝−
∫

Q1

(

−
∫

Q2

w(x1, x2)
1−q ′

dx2

)
p′
q′

dx1

⎞

⎠

p−1

,

where the supremum is taken over all cubes Q1 ⊂ R
n1 and Q2 ⊂ R

n2 .
The collection of weights Ap(Aq) is given by

Ap(Aq) = {w : w is a weight on R
n and [w]Ap(Aq ) < ∞}.

We note the following relationship between product weights in Ap(Aq) and the tradi-
tional Muckenhoupt classes:
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Lemma 5.1 (Lemma 3 from [38]) The weight w(x1, x2) = u(x1)v(x2) is in Ap(Aq) if,
and only if, u p/q ∈ Ap(R

n1) and v ∈ Aq(Rn2). Moreover, [u p/q ]Ap(Rn1 ) ≤ [w]Ap(Aq ),

[v]Aq (Rn2 ) ≤ [w]q/p
Ap(Aq ), and [w]Ap(Aq ) ≤ [u p/q ]Ap(Rn1 )[v]p/q

Aq (Rn2 )
.

In the case p = q, we denote the associated collection of weights by Ap,R(Rn). This
class coincides with that when the supremum in (2.3) is taken over the collection of
rectanglesR = {Q1 × Q2 : Q1 and Q2 are cubes in R

n1 and R
n2 , respectively}. Set

A∞,R(Rn) = ∪p>1Ap,R(Rn).
Let 0 < r ≤ ∞, s ∈ R, w be a weight on R

n , and 0 < p, q < ∞. When
X = L p(Lq(w)), we denote the weighted homogeneous Triebel–Lizorkin space
Ḟ s

X ,r as Ḟ s
p,q,r (w) and the weighted inhomogeneous Triebel–Lizorkin space Fs

X ,r
as Fs

p,q,r (w). Analogous notation applies to the scale of Besov spaces. The weighted
Hardy space H X is denoted by H p,q(w) and the weighted local Hardy space h X is
denoted by h p,q(w).

We observe that since L p(L p(w)) = L p(w), Ḟ s
p,p,r (w) yields the classical

weighted homogeneous Triebel–Lizorkin space, and analogous associations apply
for Fs

p,p,r (w), Ḃs
p,p,r (w), Bs

p,p,r (w), H p,p(w), and h p,p(w).

Moreover, for 1 < p, q < ∞ and w(x1, x2) = u(x1)v(x2) ∈ Ap(Aq), we have

Ḟ0
p,q,2(w) = F0

p,q,2(w) = H p,q(w) = h p,q(w) = L p(Lq(w)), (5.1)

with equivalent norms. We refer the reader to Appendix B for further details on these
relationships.

5.2 Leibniz Rules in Lp(Lq(w))

We first state a corollary of Theorem 3.1 in Triebel–Lizorkin and Besov spaces based
onweightedmixed Lebesgue spaces.We then present Leibniz rules in weightedmixed
Lebesgue spaces.

In this section, we restrict our attention to product weights: if 0 < p, q < ∞, we
consider w(x1, x2) = u(x1)v(x2), where u p/q ∈ A∞(Rn1) and v ∈ A∞(Rn2).

In general, the mixed Lebesgue spaces L p(Lq(w)) are not necessarily rearrange-
ment invariant (see Blozinski [7]); however, it easily follows that L p(Lq(w)) is a
QBFS over (Rn, u p/q × v). In this setting, property P6i is only required for measur-
able sets E ⊂ R

n such that E ⊂ I1 × I2 where I1 and I2 are measurable sets in R
n1

and R
n2 with finite measures with respect to u p/q(x1)dx1 and v(x2)dx2, respectively

(see [7]). In the case that 1 ≤ p, q < ∞, L p(Lq(w)) also fulfills properties P2 and
P6ii, where the same change made for P6i is implemented for P6ii. We next note that
(L p(Lq(w)))p0 = L pp0(Lqp0(w)), and therefore p(L p(Lq(w))) = 1/min(p, q, 1).

Given 0 < r ≤ ∞ and 0 < h < min(p/τu p/q , q/τv, r), the following Fefferman–
Stein inequality holds (see Theorem C.1):

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣Mh( f j )
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣ f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

,
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for all sequences
{

f j
}

j∈Z of locally integrable functions on R
n . This also gives the

boundedness of Mh on L p(Lq(w)): if 0 < h < min(p/τu p/q , q/τv), we have

‖Mh( f )‖L p(Lq (w)) � ‖ f ‖L p(Lq (w)) .

We then define

τp,q,r (w) = n

(

1

min(p/τu p/q , q/τv, r , 1)
− 1

)

,

τp,q(w) = n

(

1

min(p/τu p/q , q/τv, 1)
− 1

)

.

This implies that for X = L p(Lq(w)),

h X ,r ≥ min

(

p

τu p/q
,

q

τv

, r

)

and h X ≥ min

(

p

τu p/q
,

q

τv

)

,

as well as

τr (X) ≤ τp,q,r (w) and τ(X) ≤ τp,q(w).

Therefore, we obtain the following corollary to Theorem 3.1:

Corollary 5.2 Let m ∈ R, σ(ξ, η), ξ, η ∈ R
n, be a Coifman–Meyer multiplier of

order m, 0 < r ≤ ∞, and 0 < p, p1, p2, q, q1, q2 < ∞ be such that 1/p =
1/p1 + 1/p2 and 1/q = 1/q1 + 1/q2. Suppose w1(x1, x2) = u1(x1)v1(x2) and
w2(x1, x2) = u2(x1)v2(x2) with u p1/q1

1 , u p2/q2
2 ∈ A∞(Rn1) and v1, v2 ∈ A∞(Rn2);

set w(x1, x2) = (w1(x1, x2))q/q1(w2(x1, x2))q/q2 and assume L p(Lq(w)) satisfies
properties P7, P8, and P9 with r as given and s as below.

(i) If s > τp,q,r (w), then

‖Tσ ( f , g)‖Ḟs
p,q,r (w) � ‖ f ‖Ḟs+m

p1,q1,r (w1)
‖g‖H p2,q2 (w2) + ‖ f ‖H p1,q1 (w1)‖g‖Ḟs+m

p2,q2,r (w2)
.

(5.2)

(ii) If s > τp,q(w), then

‖Tσ ( f , g)‖Ḃs
p,q,r (w) � ‖ f ‖Ḃs+m

p1,q1,r (w1)
‖g‖H p2,q2 (w2) + ‖ f ‖H p1,q1 (w1)‖g‖Ḃs+m

p2,q2,r (w2)
.

(5.3)

In particular, (5.2) and (5.3) hold for u = u1 = u2, v = v1 = v2 with u p1/q1 , u p2/q2 ∈
A∞(Rn1) and v ∈ A∞(Rn2), in which case w = w1 = w2. Moreover, if s > τp,q,r (w),
then

‖Tσ ( f , g)‖Ḟs
p,q,r (w) � ‖ f ‖Ḟs+m

p,q,r (w) ‖g‖L∞ + ‖ f ‖L∞ ‖g‖Ḟs+m
p,q,r (w) , (5.4)
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with analogous estimates for the Besov spaces if s > τp,q(w).

Proof We first note that w(x1, x2) = u(x1)v(x2) where u(x1) = (u1(x1))q/q1(u2
(x1))q/q2 and v(x2) = (v1(x2))q/q1(v2(x2))q/q2 . We then have that u p/q =
(u p1/q1

1 )p/p1(u p2/q2
2 )p/p2 belongs to A∞(Rn1) since u p1/q1

1 , u p2/q2
2 ∈ A∞(Rn1)

and p/p1 + p/p2 = 1; similarly, v ∈ A∞(Rn2) since v1, v2 ∈ A∞(Rn2) and
q/q1 + q/q2 = 1. Moreover, a simple computation shows that

‖ f g‖L p(Lq (w)) ≤ ‖ f ‖L p1 (Lq1 (w1))
‖g‖L p2 (Lq2 (w2))

.

Wenext applyTheorem3.1with the spaces X = L1(Lq/p(w)), X1 = L1(Lq1/p1(w1)),
and X2 = L1(Lq2/p2(w2)), which verify all assumptions required. Therefore, (5.2),
(5.3), and (5.4) with its Besov counterpart follow. ��

Remark 5.3 Corollary 5.2 requires L p(Lq(w)) to satisfy P7, P8, and P9 for r and
s as stated. We first note that if 0 < p, q < ∞, w(x1, x2) = u(x1)v(x2) with
u p/q ∈ A∞(Rn1) and v ∈ A∞(Rn2), 0 < r ≤ ∞, and s ∈ R, then the inclusions
S0(R

n) ↪→ Ḟ s
p,q,r (w), S0(R

n) ↪→ Ḃs
p,q,r (w), and their inhomogeneous counterparts

hold since it can be proved that there exists N > 0 such that (1 + |x1| + |x2|)−N ∈
L p(Lq(w)) (see Remark 2.1). Moreover, under the same assumptions on the weights
and indices, the inclusions Ḟ s

p,q,r (w) ↪→ S ′
0(R

n), Ḃs
p,q,r (w) ↪→ S ′

0(R
n), and their

inhomogeneous counterparts, as well as the completeness of the spaces hold in the
following cases:

(1) If 1 ≤ p, q < ∞, it can be proved that (1 + |x1| + |x2|)−N ∈ (L p(Lq(w)))′. By
Remark 2.1, the desired inclusions and completeness follow.

(2) Suppose 0 < p, q < ∞ and u and v satisfy

∫

|x1−y1|≤t
u p/q(y1)dy1 ≥ td1 and

∫

|x2−y2|≤t
v(y2)dy2 ≥ td2 , (5.5)

for all t > 0, x1 ∈ R
n1 , x2 ∈ R

n2 , and some d1, d2 > 0. In this case, it can be
proved that if f ∈ L p(Lq(w)) ∩ S ′(Rn) is such that supp(̂f ) ⊂ [−a, a]n for
some a > 0, then

‖ f ‖L∞ � a
d1
p + d2

q ‖ f ‖L p(Lq (w)) , (5.6)

where the implicit constant is independent of f and a. With the estimate (5.6),
the proofs of the desired inclusions and completeness follow similar ideas as
in the ones for the classical settings (see [57, Sect. 2.3.3]). A proof of (5.6)
can be obtained using analogous steps to those in Qui [52, Lemma 2.5]; the
unweighted case of (5.6) was treated in Johnsen [33]. For later use, we note that
if u(x1) = |x1|a and v(x2) = |x2|b with a ≥ 0 and b ≥ 0, then u and v satisfy
(5.5) with d1 = n1 + ap/q and d2 = n2 + b (see Grafakos [26, pp. 505–506]).
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Applying the lifting property (see (2.6)), the estimates (5.2) and (5.3) can be recast
as

‖Ds(Tσ ( f , g))‖Ḟ0
p,q,r (w) �‖Ds f ‖Ḟm

p1,q1,r (w1)
‖g‖H p2,q2 (w2)

+ ‖ f ‖H p1,q1 (w1)‖Ds g‖Ḟm
p2,q2,r (w2)

,
(5.7)

‖Ds(Tσ ( f , g))‖Ḃ0
p,q,r (w) �‖Ds f ‖Ḃm

p1,q1,r (w1)
‖g‖H p2,q2 (w2)

+ ‖ f ‖H p1,q1 (w1)‖Ds g‖Ḃm
p2,q2,r (w2)

.
(5.8)

Using (5.1) and Remark 5.3 and noting that τp,q,2(w) = 0 for 1 < p, q < ∞ and
w(x1, x2) = u(x1)v(x2) ∈ Ap(Aq), we obtain the following Leibniz rules inweighted
mixed Lebesgue spaces.

Corollary 5.4 Let σ(ξ, η), ξ, η ∈ R
n, be a Coifman–Meyer multiplier of order

zero and 1 < p, p1, p2, q, q1, q2 < ∞ be such that 1/p = 1/p1 + 1/p2 and
1/q = 1/q1 + 1/q2. Suppose w1(x1, x2) = u1(x1)v1(x2) ∈ Ap1(Aq1), w2(x1, x2) =
u2(x1)v2(x2) ∈ Ap2(Aq2), and w(x1, x2) = (w1(x1, x2))q/q1(w2(x1, x2))q/q2 ∈
Ap(Aq). If s > 0, then

‖Ds(Tσ ( f , g))‖L p(Lq (w)) �‖Ds f ‖L p1 (Lq1 (w1))‖g‖L p2 (Lq2 (w2))

+ ‖ f ‖L p1 (Lq1 (w1))‖Ds g‖L p2 (Lq2 (w2)).
(5.9)

Versions of Corollaries 5.2 and 5.4 and the corresponding estimates for (5.7) and
(5.8) also hold in the inhomogeneous setting with an inhomogeneous Coifman–Meyer
multiplier and the operator J s .

5.3 Example: PowerWeights

Of particular interest are power weights, or weights of the form |x1|a |x2|b in the
homogeneous setting and 〈x1〉a 〈x2〉b in the inhomogeneous setting, where 〈x〉a =
(1 + |x |2)a/2. In this section, we present examples of fractional Leibniz rules for
weighted mixed Lebesgue spaces associated to power weights.

Recall that for 1 < τ < ∞, a power weight |x |a , x ∈ R
n , is in Aτ (R

n) if, and only
if, −n < a < n(τ −1). Therefore, for u j (x1) = |x1|a j and v j (x2) = |x2|b j , j = 1, 2,

to meet the conditions in Corollary 5.2 that u
p j /q j
j ∈ A∞(Rn1) and v j ∈ A∞(Rn2),

we require that

−n1
q j

p j
< a j < ∞ and − n2 < b j < ∞.

With these conditions on a j and b j , j = 1, 2, Corollary 5.2 holds with w1(x1, x2) =
|x1|a1 |x2|b1 , w2(x1, x2) = |x1|a2 |x2|b2 , and w(x1, x2) = |x1|a |x2|b where

a

q
= a1

q1
+ a2

q2
and

b

q
= b1

q1
+ b2

q2
, (5.10)
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if L p(Lq(w)) satisfies P7, P8, and P9 for r and s as needed, in particular, if 1 ≤ p, q <

∞ or, if 0 < p < 1 or 0 < q < 1 and a, b ≥ 0 (see Remark 5.3).
To obtain Leibniz rules in mixed Lebesgue spaces with power weights we use

Corollary 5.4, which requires w1 ∈ Ap1(Aq1), w2 ∈ Ap2(Aq2), and w ∈ Ap(Aq).
Therefore, we impose further conditions on the exponents a1, a2, b1, and b2. Using
Lemma 5.1, we require, for j = 1, 2,

−n1
q j

p j
< a j <

q j n1

p′
j

and − n2 < b j < n2(q j − 1),

−n1

p
<

a1
q1

+ a2
q2

<
n1

p′ and − n2

q
<

b1
q1

+ b2
q2

<
n2

q ′ .
(5.11)

In particular, in the case σ ≡ 1 and for those values of a, a1, a2, b, b1, and b2 as in
(5.10) and (5.11), Corollary 5.4 gives

‖Ds( f g)‖L p(Lq (|x1|a |x2|b)) � ‖Ds f ‖L p1 (Lq1 (|x1|a1 |x2|b1 ))‖g‖L p2 (Lq2 (|x1|a2 |x2|b2 ))

+ ‖ f ‖L p1 (Lq1 (|x1|a1 |x2|b1 ))‖Ds g‖L p2 (Lq2 (|x1|a2 |x2|b2 )).

(5.12)

An analogous result also holds in the inhomogeneous settings.
We note that when a1 = a2 and b1 = b2 (therefore, a = a1 = a2 and b = b1 = b2),

the conditions (5.11) translate to

−n1 min

(

q1
p1

,
q2
p2

,
q

p

)

< a < n1 min

(

q1
p′
1
,

q2
p′
2
,

q

p′

)

and − n2 < b < n2(q − 1).

Using different methods of proof, fractional Leibniz rules in weighted mixed
Lebesgue spaces with power weights were also proved in [51, Theorem 1.6]. In this
work, using our notation, they let 1/2 ≤ p, q ≤ ∞, 1 ≤ p1, p2, q1, q2 ≤ ∞, and
0 ≤ a, a1, a2, b, b1, b2 < ∞ be such that 1/p = 1/p1 + 1/p2, 1/q = 1/q1 + 1/q2,

and satisfy (5.10). For s > max
(

n
(

1
min(p,q,1) − 1

)

, 0
)

or s a positive even integer,

they obtain

‖J s( f g)‖L p(Lq (〈x1〉a〈x2〉b)) � ‖J s f ‖L p1 (Lq1 (〈x1〉a1 〈x2〉b1 ))‖g‖L p2 (Lq2 (〈x1〉a2 〈x2〉b2 ))

+ ‖ f ‖L p1 (Lq1 (〈x1〉a1 〈x2〉b1 ))‖J s g‖L p2 (Lq2 (〈x1〉a2 〈x2〉b2 )).

(5.13)

6 Fractional Leibniz Rules inWeightedMorrey Spaces

In this section, we present Leibniz rules in weighted Morrey spaces. For 0 < p ≤ t <

∞ and w ∈ A∞, the weighted Morrey space Mt
p(w) consists of measurable functions
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on R
n such that

‖ f ‖Mt
p(w) = sup

B⊂Rn
w(B)

1
t − 1

p

(∫

B
| f (x)|p w(x)dx

) 1
p

< ∞,

where the supremum is taken over all balls B contained in R
n . It is easy to see that for

t = p, we recover the traditional weighted Lebesgue space, L p(w). In this setting,
we denote the homogeneous Triebel–Lizorkin and Besov spaces as Ḟ s[p,t],r (w) and

Ḃs[p,t],r (w), respectively, and the Hardy space as H [p,t](w). We refer the reader to
Rosenthal-Schmeisser [53] for more details about weighted Morrey spaces and to
the works of Kozono-Yamazaki [37], Mazzucato [41], and Izuki et al. [32] regarding
Morrey-based Triebel–Lizorkin and Besov spaces.

Morrey spaces fail to be QBFSs as they lack property P6ii (see Sawano–Tanaka
[54]). However, applying the same argument as that in Theorem 3.1, we obtain the
following result.

Theorem 6.1 (Theorem 6.2 from [48]) Let m ∈ R and suppose σ(ξ, η), ξ, η ∈ R
n, is

a Coifman–Meyer multiplier of order m.

(i) If w ∈ A∞(Rn), 0 < p ≤ t < ∞, 0 < p1 ≤ t1 < ∞, 0 < p2 ≤ t2 < ∞
are such that 1/p = 1/p1 + 1/p2 and 1/t = 1/t1 + 1/t2, 0 < r ≤ ∞, and

s > n
(

1
min(p/τw,r ,1) − 1

)

, then

‖Tσ ( f , g)‖Ḟs[p,t],r (w) � ‖ f ‖Ḟs+m
[p1,t1],r (w)‖g‖H [p2,t2](w) + ‖ f ‖H [p1,t1](w)‖g‖Ḟs+m

[p2,t2],r (w),

(6.1)

where different pairs of p1, p2 and t1, t2 can be used on the right hand side of the
inequality above. Moreover,

‖Tσ ( f , g)‖Ḟs[p,t],r (w) � ‖ f ‖Ḟs+m
[p,t],r (w)‖g‖L∞ + ‖ f ‖L∞‖g‖Ḟs+m

[p,t],r (w). (6.2)

(ii) If w1, w2 ∈ A∞(Rn), w = w
p/p1
1 w

p/p2
2 , 0 < p ≤ t < ∞, 0 < p1, p2 < ∞ are

such that 1/p = 1/p1 + 1/p2 and s > n
(

1
min(p/τw,r ,1) − 1

)

, then

‖Tσ ( f , g)‖Ḟs[p,t],r (w) � ‖ f ‖Ḟs+m
[p1,p1 t/p],r (w1)

‖g‖H [p2,p2 t/p](w2)

+ ‖ f ‖H [p1,p1 t/p](w1)
‖g‖Ḟs+m

[p2,p2 t/p],r (w2)
.

(6.3)

Estimates analogous to (6.1)–(6.3) hold in the Besov setting when s > n
(

1
min(p/τw,1) − 1

)

.

From Theorem 6.1, we deduce Leibniz rules in weighted Morrey spaces and Hardy
spaces based onweightedMorrey spaces. Through an extrapolation theorem inMorrey
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spaces given in Duoandikoetxea–Rosenthal [22, Corollary 4.3], for 0 < p ≤ t < ∞
and w ∈ A∞(Rn), we obtain

H [p,t](w) = Ḟ0[p,t],2(w) and h[p,t](w) = F0[p,t],2(w), (6.4)

with equivalent quasi-norms.
These equivalences and (6.1) combined with the lifting property, which holds

for Triebel–Lizorkin and Besov spaces based on Morrey spaces, give that under the
hypotheses of Theorem 6.1 with m = 0,

‖Ds(Tσ ( f , g))‖H [p,t](w) � ‖Ds f ‖H [p1,t1](w)‖g‖H [p2,t2](w)

+‖ f ‖H [p1,t1](w)‖Ds g‖H [p2,t2](w). (6.5)

From (6.2) and (6.3) we also have

‖Ds(Tσ ( f , g))‖H [p,t](w) � ‖Ds f ‖H [p,t](w)‖g‖L∞ + ‖ f ‖L∞‖Ds g‖H [p,t](w)

(6.6)

and
∥

∥Ds(Tσ ( f , g))
∥

∥

H [p,t](w)
�
∥

∥Ds f
∥

∥

H [p1,p1 t/p](w1)
‖g‖H [p2,p2 t/p](w2)

+ ‖ f ‖H [p1,p1 t/p](w1)

∥

∥Ds g
∥

∥

H [p2,p2 t/p](w2)
.

(6.7)

Similarly, for 1 < p ≤ t̄ < ∞ and w ∈ Ap(R
n), we have that, through extrapola-

tion [22, Theorem 4.1],

Ḟ0
[p,t̄],2(w) = Mt̄

p(w) and F0
[p,t̄],2(w) = Mt̄

p(w).

Using this, (6.4), (6.5), and the fact that ‖·‖Mt
p(w) ≤ ‖·‖H [p,t](w) for 0 < p ≤ t < ∞,

under the hypotheses of Theorem 6.1 with 1 < p1, p2 < ∞, w ∈ Amin(p1,p2)(R
n),

and m = 0, we have

‖Ds(Tσ ( f , g))‖Mt
p(w) � ‖Ds f ‖

M
t1
p1 (w)

‖g‖
M

t2
p2 (w)

+ ‖ f ‖
M

t1
p1 (w)

‖Ds g‖
M

t2
p2 (w)

.

as well as an analog to (6.6):

‖Ds(Tσ ( f , g))‖Mt
p(w) � ‖Ds f ‖Mt

p(w)‖g‖L∞ + ‖ f ‖L∞‖Ds g‖Mt
p(w).

Moreover, if 0 < p ≤ t < ∞ and 1 < p1, p2 < ∞ are such that 1/p = 1/p1+1/p2,
w1 ∈ Ap1(R

n), w2 ∈ Ap2(R
n), and w = w

p/p1
1 w

p/p2
2 , then

‖Ds(Tσ ( f , g))‖Mt
p(w) � ‖Ds f ‖

M
p1 t/p
p1 (w1)

‖g‖
M

p2 t/p
p2 (w2)

+‖ f ‖
M

p1 t/p
p1 (w1)

‖Ds g‖
M

p2 t/p
p2 (w2)

.
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We can apply these results with power weights as a specific example. For 1 <

p1, p2 < ∞ and w(x) = |x |a , we require that w ∈ Amin(p1,p2)(R
n), and therefore

−n < a < n(min(p1, p2) − 1).

Thus for 1
2 < p ≤ t < ∞, 1 < p1 ≤ t1 < ∞, and 1 < p2 ≤ t2 < ∞ such that

1/p = 1/p1 + 1/p2, 1/t = 1/t1 + 1/t2, and w(x) = |x |a , with a as above,

‖Ds(Tσ ( f , g))‖Mt
p(|x |a) � ‖Ds f ‖

M
t1
p1 (|x |a)

‖g‖
M

t2
p2 (|x |a)

+ ‖ f ‖
M

t1
p1 (|x |a)

‖Ds g‖
M

t2
p2 (|x |a)

,

where s > n
(

1
min(p,1) − 1

)

if a ≤ 0 and s > n

(

1

min
(

p
a/n+1 ,1

) − 1

)

if a > 0.

Similarly, we have

‖Ds(Tσ ( f , g))‖Mt
p(|x |a) � ‖Ds f ‖Mt

p(|x |a)‖g‖L∞ + ‖ f ‖L∞‖Ds g‖Mt
p(|x |a).

Further, suppose 0 < p ≤ t < ∞ and 1 < p1, p2 < ∞ are such that 1/p =
1/p1 + 1/p2; also let w1(w) = |x |a1 and w2(x) = |x |a2 with

−n < a j < n(p j − 1), j = 1, 2,

and w = w
p/p1
1 w

p/p2
2 = |x |b, where b = p(a1/p1 + a2/p2). Then we have

∥

∥Ds(Tσ ( f , g))
∥

∥

Mt
p(|x |b)

�
∥

∥Ds f
∥

∥

M
p1 t/p
p1 (|x |a1 )

‖g‖
M

p2 t/p
p2 (|x |a2 )

+ ‖ f ‖
M

p1 t/p
p1 (|x |a1 )

∥

∥Ds g
∥

∥

M
p2 t/p
p2 (|x |a2 )

,
(6.8)

with s > n
(

1
min(p,1) − 1

)

if b ≤ 0 and s > n

(

1
min( p

b/n+1 ,1)
− 1

)

if b > 0.

Moreover, corresponding versions of Corollary 6.1 and (6.5)–(6.8) also hold in the
inhomogeneous setting with an inhomogeneous Coifman–Meyer multiplier and the
operator J s .

7 Fractional Leibniz Rules in Variable Lebesgue Spaces

Wenowdiscuss applications of Theorem3.1 in the setting of variable Lebesgue spaces.
We begin with some definitions and notation followed by results for variable Lebesgue
spaces.

Let P0 be the collection of measurable functions p(·) : R
n → (0,∞) such that

p− = ess inf
x∈Rn

p(x) > 0 and p+ = ess sup
x∈Rn

p(x) < ∞.
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For p(·) ∈ P0, the variable Lebesgue space L p(·) is the class of all measurable
functions such that

‖ f ‖L p(·) = inf

{

λ > 0 :
∫

Rn

∣

∣

∣

∣

f (x)

λ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

< ∞.

With this quasi-norm, L p(·) is a QBFS (BFS when p− ≥ 1). Note that if p(x) = p0,
0 < p0 < ∞, then L p(·) coincideswith L p0(Rn)with equality of quasi-norms. Similar
to the traditional Lebesgue spaces,

∥

∥| f |r∥∥L p(·) = ‖ f ‖r
Lrp(·) , (7.1)

and, if p− ≥ 1, (L p(·))′ = L p′(·), where p′(·) is defined to be the conjugate exponent
of p(·); that is,

1

p(x)
+ 1

p′(x)
= 1, ∀x ∈ R

n .

Let D be the collection of p(·) ∈ P0 such that the Hardy-Littlewood operator M
is bounded on L p(·). A necessary condition for p(·) ∈ D is p− > 1, while log-Hölder
continuity conditions are sufficient. Moreover, it can be proved that the following
conditions are equivalent for p(·) ∈ P0 such that p− > 1:

a) p(·) ∈ D;
b) p′(·) ∈ D;
c) p(·)/q ∈ D for some 1 < q < p−;
d) (p(·)/q)′ ∈ D for some 1 < q < p−.

See Cruz-Uribe et al. [15] and references therein.
A version of Hölder’s inequality holds for variable Lebesgue spaces: if p(·), p1(·),

p2(·) ∈ P0 such that 1/p(·) = 1/p1(·) + 1/p2(·), then

‖ f g‖L p(·) � ‖ f ‖L p1(·) ‖g‖L p2(·) , ∀ f ∈ L p1(·), g ∈ L p2(·).

The case for exponents in P0 such that p− ≥ 1 is given in [18]; the general case
follows from the latter case and (7.1).

Jensen’s inequality combined with (7.1) give that if p(·) ∈ P0 and 0 < τ0 < ∞
is such that p(·)/τ0 ∈ D, then p(·)/τ ∈ D for 0 < τ < τ0. Therefore, we define P∗

0
to be the collection of p(·) ∈ P0 such that p(·)/τ0 ∈ D for some τ0 > 0 and, for
p(·) ∈ P∗

0 , we set

τp(·) = sup {τ > 0 : p(·)/τ ∈ D} .

We observe that τp(·) ≤ p−. The following version of the Fefferman–Stein inequality
follows using [18, Sect. 5.6.8] and (7.1). For p(·) ∈ P∗

0 , 0 < r ≤ ∞, and 0 < h <
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min(τp(·), r),

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣Mh( f j )
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(·)

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣ f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(·)

.

In particular, for 0 < h < τp(·), Mh is bounded on L p(·), i.e.,

‖Mh( f )‖L p(·) � ‖ f ‖L p(·) .

As a consequence, if X = L p(·) and p(·) ∈ P∗
0 , we have h X ,r ≥ min(τp(·), r) and

h X ≥ τp(·), as well as

τr (X) ≤ n

(

1

min(τp(·) , r , 1)
− 1

)

and τ(X) ≤ n

(

1

min(τp(·) , 1)
− 1

)

.

For s ∈ R, 0 < r ≤ ∞, and p(·) ∈ P0, we denote the homogeneous Triebel–
Lizorkin and Besov spaces in this setting as Ḟ s

p(·),r and Ḃs
p(·),r , respectively. More

general variable exponent Triebel–Lizorkin and Besov spaces, where r and s are
replaced with functions are considered in Diening et al. [21] and Almeida–Hästö
[1]. The Hardy space with variable exponent p(·) ∈ P0 will be denoted H p(·). The
corresponding inhomogeneous spaces are denoted analogously.

We then obtain the following fractional Leibniz rules in variable exponent Triebel–
Lizorkin and Besov spaces as a corollary to Theorem 3.1. This result was also proven
directly in [48, Theorem 6.4] using methods similar to those for Theorem 3.1.

Corollary 7.1 Let m ∈ R, σ (ξ, η), ξ, η ∈ R
n, be a Coifman–Meyer multiplier of order

m, 0 < r ≤ ∞, p(·), p1(·), p2(·) ∈ P∗
0 be such that 1/p(·) = 1/p1(·)+ 1/p2(·), and

assume L p(·) satisfies properties P7, P8, and P9.

(i) If s > n
(

1
min(τp(·),r ,1) − 1

)

, it holds that

‖Tσ ( f , g)‖Ḟs
p(·),r

� ‖ f ‖Ḟs+m
p1(·),r

‖g‖H p2(·) + ‖ f ‖H p1(·) ‖g‖Ḟs+m
p2(·),r

; (7.2)

(ii) if s > n
(

1
min(τp(·),1) − 1

)

, it holds that

‖Tσ ( f , g)‖Ḃs
p(·),r

� ‖ f ‖Ḃs+m
p1(·),r

‖g‖H p2(·) + ‖ f ‖H p1(·) ‖g‖Ḃs+m
p2(·),r

, (7.3)

where different pairs of p1(·) and p2(·) can be used on the right hand sides of
(7.2) and (7.3).

Moreover, if s > n
(

1
min(τp(·),r ,1) − 1

)

, then

‖Tσ ( f , g)‖Ḟs
p(·),r

� ‖ f ‖Ḟs
p(·),r

‖g‖L∞ + ‖ f ‖L∞ ‖g‖Ḟs
p(·),r

, (7.4)
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with a corresponding estimate holding in the Besov setting if s > n
(

1
min(τp(·),1) − 1

)

.

Proof We apply Theorem 3.1 with X = L p(·), X1 = L p1(·), X2 = L p2(·), and p =
p1 = p2 = 1. Then X p = L p(·), X p1

1 = L p1(·), and X p2
2 = L p2(·) fulfill all conditions

of Theorem 3.1 and (7.2), (7.3), and (7.4) with its Besov space counterpart follow.
Finally, Remark 3.3 implies that different pairs of p1(·) and p2(·) can be used on
the right hand sides of (7.2) and (7.3), provided that both pairs satisfy the Hölder
relationship with p(·). ��

As in Sects. 5 and 6, we can apply the lifting property (2.6) (see also [21, Lemma
4.4]) and write the estimates (7.2) and (7.3) as

∥

∥Ds(Tσ ( f , g))
∥

∥

Ḟ0
p(·),r

�
∥

∥Ds f
∥

∥

Ḟm
p1(·),r

‖g‖H p2(·) + ‖ f ‖H p1(·)
∥

∥Ds g
∥

∥

Ḟm
p2(·),r

, (7.5)
∥

∥Ds(Tσ ( f , g))
∥

∥

Ḃ0
p(·),r

�
∥

∥Ds f
∥

∥

Ḃm
p1(·),r

‖g‖H p2(·) + ‖ f ‖H p1(·)
∥

∥Ds g
∥

∥

Ḃm
p2(·),r

; (7.6)

(7.4) and its Besov counterpart can be also be rewritten in a similar manner.
Now, by using [15, Theorem 1.3], an extrapolation theorem that allows to deduce

inequalities in variable Lebesgue spaces from weighted inequalities in Lebesgue
spaces, it follows that if p(·) ∈ P∗

0 , then

Ḟ0
p(·),2 = H p(·) and F0

p(·),2 = h p(·). (7.7)

With this in mind, using (7.5) and (7.7), when σ is a Coifman–Meyer multiplier of
order zero, Corollary 7.1 gives

∥

∥Ds(Tσ ( f , g))
∥

∥

H p(·) �
∥

∥Ds f
∥

∥

H p1(·) ‖g‖H p2(·) + ‖ f ‖H p1(·)
∥

∥Ds g
∥

∥

H p2(·) ; (7.8)

in particular,

∥

∥Ds( f g)
∥

∥

H p(·) �
∥

∥Ds f
∥

∥

H p1(·) ‖g‖H p2(·) + ‖ f ‖H p1(·)
∥

∥Ds g
∥

∥

H p2(·) . (7.9)

Moreover, for p(·) ∈ D, by (2.9) applied with power q to X = L p(·)/q , where q is as
in Item c), we have

Ḟ0
p(·),2 = F0

p(·),2 = H p(·) = h p(·) = L p(·), (7.10)

with equivalence in norm (see also [21, Theorem 4.2]).
Thus, when p1(·), p2(·) ∈ D, using (7.8), (7.10), and (2.7), we obtain

∥

∥Ds(Tσ ( f , g))
∥

∥

L p(·) �
∥

∥Ds f
∥

∥

L p1(·) ‖g‖L p2(·) + ‖ f ‖L p1(·)
∥

∥Ds g
∥

∥

L p2(·) , (7.11)

and, in particular,

∥

∥Ds( f g)
∥

∥

L p(·) �
∥

∥Ds f
∥

∥

L p1(·) ‖g‖L p2(·) + ‖ f ‖L p1(·)
∥

∥Ds g
∥

∥

L p2(·) .
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Corresponding estimates for (7.4) also hold.
We note that (7.11) was proved in [17, Theorem 3.1] using bilinear extrapolation

techniques.
Versions of Corollary 7.1, (7.5), (7.6), (7.8), (7.9), and (7.11) hold in the inhomo-

geneous setting with an inhomogeneous Coifman–Meyer multiplier and the operator
J s .

Appendix A. Extrapolation Theorems

In this appendix, we present extrapolation theorems that will be used in Appendix B
andAppendixC to obtain relationships between the spaces X , Fs

X ,r , and H X , aswell as
Fefferman–Stein inequalities and the boundedness of the Hardy-Littlewood maximal
operator in X .

The extrapolation results presented in this section are given in terms of pairs of
functions ( f , g).Wewill useF to denote a family of pairs ofmeasurable functions that
are not identically zero. If for some 0 < p < ∞ andw ∈ Aq(Rn) (orw ∈ Aq,R(Rn)),
1 ≤ q ≤ ∞, we say that

∫

Rn
| f (x)|p w(x)dx �

∫

Rn
|g(x)|p w(x)dx, ∀( f , g) ∈ F , (A.1)

we mean that (A.1) holds for all pairs of functions ( f , g) ∈ F such that the left-
hand side is finite, and the implicit constant depends only on p and [w]Aq (Rn) (or
[w]Aq,R(Rn)). In the case that the L p(w)norm in (A.1) is replacedwith another function
space norm, the inequality should be interpreted the same way.

We first present an extrapolation theorem for weighted mixed Lebesgue spaces,
similar to [38, Theorem 2], but for pairs of functions. Its proof is the same as that of
[38, Theorem 2].

Theorem A.1 Suppose that for some 1 < p < ∞ and for all w ∈ Ap,R(Rn), we have

∫

Rn
| f (x)|pw(x)dx �

∫

Rn
|g(x)|pw(x)dx, ∀( f , g) ∈ F .

If 1 < p, q < ∞, then for every w ∈ Ap(Aq) such that w(x1, x2) = u(x1)v(x2), we
have

‖ f ‖L p(Lq (w)) � ‖g‖L p(Lq (w)) , ∀( f , g) ∈ F .

For the BFS setting, we will use the following result from [19]:

Theorem A.2 (Corollary 4.8 from [19]) Suppose that for some 1 ≤ p < ∞ and every
w ∈ Ap(R

n),

∫

Rn
| f (x)|pw(x)dx �

∫

Rn
|g(x)|pw(x)dx, ∀( f , g) ∈ F .
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If X is a BFS over (Rn, dx) such that the Hardy-Littlewood maximal function is
bounded on X ′, then for all 1 < p < ∞,

‖ f ‖X p � ‖g‖X p , ∀( f , g) ∈ F .

In the r.i.QBFS setting, we need the following extrapolation theorems from [20]
and [19]:

Theorem A.3 (Theorem 2.1 from [20]) Suppose that for some 0 < p < ∞ and all
w ∈ A∞(Rn),

∫

Rn
| f (x)|pw(x)dx �

∫

Rn
|g(x)|pw(x)dx, ∀( f , g) ∈ F .

If X is a r.i.QBFS over (Rn, dx) with Boyd indices 0 < pX ≤ qX < ∞ and p(X) <

∞, then for all w ∈ A∞(Rn), we have

‖ f ‖X(w) � ‖g‖X(w) , ∀( f , g) ∈ F .

Theorem A.4 (Theorem 4.10 from [19]) Suppose that for some 1 ≤ p < ∞ and every
w ∈ Ap(R

n),

∫

Rn
| f (x)|pw(x)dx �

∫

Rn
|g(x)|pw(x)dx, ∀( f , g) ∈ F .

If X is a r.i.BFS over (Rn, dx) such that 1 < pX ≤ qX < ∞, then for all w ∈
ApX (Rn), we have

‖ f ‖X(w) � ‖g‖X(w) , ∀( f , g) ∈ F .

Appendix B. Equivalent Spaces

With the extrapolation theorems stated in Appendix A, we are now ready to demon-
strate the relationships between the Triebel–Lizorkin spaces, Hardy spaces, and the
spaces they are based on.

Wefirst present some equivalences betweenTriebel–Lizorkin spaces,Hardy spaces,
and the weighted mixed Lebesgue spaces.

Theorem B.1 We have

i) for 0 < p < ∞ and w ∈ A∞,R(Rn),

Ḟ0
p,p,2(w) = H p,p(w) and F0

p,p,2(w) = h p,p(w),

with equivalent quasi-norms;
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ii) for 1 < p < ∞ and w ∈ Ap,R(Rn),

Ḟ0
p,p,2(w) = F0

p,p,2(w) = H p,p(w) = h p,p(w) = L p(w),

with equivalent norms;
iii) for 1 < p, q < ∞ and w(x1, x2) = u(x1)v(x2) ∈ Ap(Aq),

Ḟ0
p,q,2(w) = F0

p,q,2(w) = H p,q(w) = h p,q(w) = L p(Lq(w)),

with equivalent norms.

Proof Part i) is a direct consequence of [52, Theorem 1.4(vi)] since A∞,R(Rn) ⊂
A∞(Rn).

Part ii) follows immediately from Part i) and [52, Remark 4.5], since Ap,R(Rn) ⊂
Ap(R

n).
Part iii) follows from Part ii) and Theorem A.1. ��

We have similar results in the BFS setting. The proof uses extrapolation based on
Theorem A.2.

Theorem B.2 Let X be a BFS over (Rn, dx) such that the Hardy-Littlewood maximal
operator is bounded on X ′. Then for 1 < p < ∞,

Ḟ0
X p,2 = F0

X p,2 = H X p = h X p = X p,

with equivalent norms.

Finally, in the r.i.QBFSsettingwecanuseTheoremsA.3 andA.4 to get the following
result:

Theorem B.3 Let X be a r.i.QBFS over (Rn, dx) such that p(X) < ∞.

(i) If X has Boyd indices 0 < pX ≤ qX < ∞ and w ∈ A∞(Rn), then

Ḟ0
X ,2(w) = H X (w) and F0

X ,2(w) = h X (w),

with equivalent quasi-norms.
(ii) If X is a r.i.BFS with Boyd indices 1 < pX ≤ qX < ∞ and w ∈ ApX (Rn), then

Ḟ0
X ,2(w) = F0

X ,2(w) = X(w),

with equivalent norms.
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Appendix C. Fefferman–Stein Inequalities and Boundedness ofM on
Quasi-Banach Function Spaces

In this appendix, we discuss results regarding the Fefferman–Stein inequality and the
boundedness of the Hardy-Littlewood maximal operator in weighted mixed Lebesgue
spaces and r.i.QBFSs.

Recall that the classical Fefferman–Stein inequality on weighted Lebesgue spaces
states that if 0 < p < ∞, 0 < r ≤ ∞, 0 < h < min(p, r), and w ∈ Ap/h(Rn) (i.e.,
0 < h < min(p/τw, r)), then

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣Mh( f j )
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(w)

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣ f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(w)

, (C.1)

where the summation in j should be replaced by the supremum in j if r = ∞.
We next consider Mh in the weighted mixed Lebesgue space setting.

Theorem C.1 Let 0 < p, q < ∞, 0 < r ≤ ∞, w(x1, x2) = u(x1)v(x2) with u p/q ∈
A∞(Rn1) and v ∈ A∞(Rn2), and 0 < h < min(p/τu p/q , q/τv, r). Then for all
sequences { f j } j∈Z of locally integrable functions defined on R

n, we have

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
|Mh( f j )|r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
| f j |r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

, (C.2)

with the sum in j replaced by the supremum in j when r = ∞.

Proof We show here the case when r is finite; if r = ∞, the argument remains the
same, exchanging the sum in j for the supremum in j .

We first assume that h = 1, and therefore τu p/q < p < ∞, τv < q < ∞, and
1 < r < ∞. By definition of τu p/q and τv and Lemma 5.1, this implies w ∈ Ap(Aq).
If 1 < p < ∞ and w ∈ Ap,R(Rn) ⊂ Ap(R

n), (C.1) gives

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
|M( f j )|r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(w)

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
| f j |r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(w)

.

Therefore, Theorem A.1 gives that

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
|M( f j )|r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
| f j |r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

.
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We now let 0 < p, q < ∞, 0 < r ≤ ∞, and 0 < h < min(p/τu p/q , q/τv, r), or,

equivalently, 1 < min
(

p
hτu p/q

,
q

hτv
, r

h

)

. Therefore,

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
|Mh f j |r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

=

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
(M| f j |h)

r
h

⎞

⎠

h
r

∥

∥

∥

∥

∥

∥

∥

1
h

L
p
h (L

q
h (w))

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
(| f j |h)

r
h

⎞

⎠

h
r

∥

∥

∥

∥

∥

∥

∥

1
h

L
p
h (L

q
h (w))

=

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z
| f j |r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

L p(Lq (w))

,

where the second equality follows from the previous case. ��
Remark C.2 We note that for p = q, 0 < h < min(p, r), and w ∈ Ap/h,R(Rn), (C.1)
implies (C.2), since Ap/h,R(Rn) ⊂ Ap/h(Rn).

We immediately have the following corollary regarding the boundedness of Mh

on L p(Lq(w)).

Theorem C.3 If 0 < p, q < ∞, w(x1, x2) = u(x1)v(x2) with u p/q ∈ A∞(Rn1) and
v ∈ A∞(Rn2), and 0 < h < min(p/τu p/q , q/τv), then

‖Mh( f )‖L p(Lq (w)) � ‖ f ‖L p(Lq (w)).

We have similar results for a r.i.QBFS X over (Rn, dx), which we next present.
The boundedness ofM was given in Montgomery-Smith [43].

Theorem C.4 Let X be a r.i.QBFS over (Rn, dx). Then M is bounded on X if, and
only if, pX > 1.

This leads to the following result for the boundedness of the operator Mh on X .

Theorem C.5 Let X be a r.i.QBFS over (Rn, dx). Then Mh is bounded on X if, and
only if, 0 < h < pX .

Recall that for 1 < p < ∞,M is bounded on L p(w) if, and only if, w ∈ Ap(R
n).

By Theorem A.4, we then have that M is bounded on X(w) if X is a r.i.BFS with
1 < pX ≤ qX < ∞ and w ∈ ApX (Rn). As a consequence, we have the following:

Theorem C.6 Let X be a r.i.QBFS over (Rn, dx) such that 0 < pX ≤ qX < ∞ and
p(X) < ∞. If w ∈ A∞(Rn) and 0 < h < min(pX/τw, 1/p(X)), Mh is bounded on
X(w).
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Similarly, by (C.1) and Theorem A.4, we have a Fefferman–Stein inequality for a
weighted r.i.QBFS X(w), with w ∈ A∞(Rn).

Theorem C.7 Suppose X is a r.i.QBFS over (Rn, dx) such that 0 < pX ≤ qX < ∞
and p(X) < ∞. If w ∈ A∞(Rn), 0 < r ≤ ∞, and 0 < h < min(pX/τw, 1/p(X), r),
then for all sequences

{

f j
}

j∈Z of locally integrable functions defined on R
n, we have

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣Mh f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X(w)

�

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣ f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X(w)

,

with the sum in j replaced by the supremum in j when r = ∞.

Appendix D. Nikol’skiı̆ Representations

In this appendix, we prove Theorem 3.4. The proof is similar to that in the setting of
Triebel–Lizorkin and Besov spaces based on weighted Lebesgue spaces in [48], with
modifications due to the fact that a dominated convergence theorem may not hold in
X .

First, we introduce some notation. For a QBFS X , 0 < r ≤ ∞, and a sequence of
functions { f j } j∈Z, we denote

∥

∥

∥

{

f j
}

j∈Z
∥

∥

∥

X(�r )
=

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

j∈Z

∣

∣ f j
∣

∣

r

⎞

⎠

1
r

∥

∥

∥

∥

∥

∥

∥

X

and
∥

∥

∥

{

f j
}

j∈Z
∥

∥

∥

�r (X)
=
⎛

⎝

∑

j∈Z

∥

∥ f j
∥

∥

r
X

⎞

⎠

1
r

.

We also use the following lemmas from [48]

Lemma D.1 (LemmaA.1 from [48]) Suppose 0 < h ≤ 1, A > 0, R ≥ 1, and d > n/h.
If φ ∈ S(Rn) and f is such that supp(̂f ) ⊂ {ξ ∈ R

n : |ξ | ≤ AR}, it holds that

|φ ∗ f (x)| � R
n
(

1
h −1

)

A−n
∥

∥

∥(1 + |A · |)dφ

∥

∥

∥

L∞ Mh f (x),

where the implicit constant is independent of A, R, φ, and f .

Lemma D.2 (similar to Lemma A.2 in [48]) Suppose X is a QBFS such that h X > 0.
Let A > 0, R ≥ 1, and d > b > n/min(h X , 1). If φ ∈ S(Rn) and f is such that
supp(̂f ) ⊂ {ξ ∈ R

n : |ξ | ≤ AR}, it holds that

‖φ ∗ f ‖X � Rb−n A−n
∥

∥

∥(1 + |A · |)d φ

∥

∥

∥

L∞ ‖ f ‖X ,

where the implicit constant is independent of A, R, φ, and f .
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Lemma D.3 (Lemma A.3 from [48]) Let τ < 0, λ ∈ R, 0 < r ≤ ∞, and k0 ∈ Z.
Then for any sequence

{

d j
}

j∈Z ⊂ [0,∞), it holds that

∥

∥

∥

∥

∥

∥

⎧

⎨

⎩

∞
∑

k=k0

2τk2λ( j+k)d j+k

⎫

⎬

⎭

j∈Z

∥

∥

∥

∥

∥

∥

�r

�
∥

∥

∥

∥

{

2 jλd j

}

j∈Z

∥

∥

∥

∥

�r
,

where the implicit constant only depends on k0, τ, λ, and r.

Proof of Theorem 3.4 We begin by proving the result for finite families of functions.
Here, we show the homogeneous case, but the logic for the inhomogeneous case is
similar.

Let
{

u j
}

j∈Z be such that u j ≡ 0, except for finitely many j . Suppose D, X , r , and

s are as in the hypotheses of the theorem. Let ψ ∈ Ȧ(Rn).
We first prove (3.11). Fix 0 < h < min

(

h X ,r , 1
)

such that s > n(1/h − 1), and let
k0 ∈ Z be such that 2k0−1 < D ≤ 2k0 . Then for any � ∈ Z, we have

supp(û�) ⊂ B(0, 2� D) ⊂ B(0, 2�+k0).

Defining u = ∑

�∈Z u�, we note that

supp
(

̂ψ(2− j ·)û�

)

⊂ B(0, 2�+k0) ∩
{

2 j−1 < |ξ | < 2 j+1
}

.

This intersection is empty for any � < j − k0; therefore, we have the following
identity:

�
ψ
j u =

∑

�∈Z
�

ψ
j u� =

∞
∑

�= j−k0

�
ψ
j u� =

∞
∑

k=−k0

�
ψ
j u j+k . (D.1)

Applying Lemma D.1 with φ(x) = 2 jnψ(2 j x), f = u j+k, A = 2 j , R = 2k+k0 ,
k, j ∈ Z, k ≥ −k0, and d > n/h, we obtain

∣

∣

∣�
ψ
j u j+k(x)

∣

∣

∣ �
(

2k+k0
)n
(

1
h −1

)

(

2 j
)−n

∥

∥

∥

∥

(

1 + |2 j · |
)d

2 jnψ(2 j ·)
∥

∥

∥

∥

L∞
Mhu j+k(x)

� 2
kn
(

1
h −1

)

Mhu j+k(x),

where the implicit constant depends only on the parameters stated and ψ . This yields

2 js
∣

∣

∣�
ψ
j u j+k(x)

∣

∣

∣ � 2
kn
(

1
h −1

)

2 jsMhu j+k(x) = 2
kn
(

1
h −1− s

n

)

2s( j+k)Mhu j+k(x).
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Therefore, by (D.1), we have

2 js
∣

∣

∣�
ψ
j u(x)

∣

∣

∣ �
∞
∑

k=−k0

2
kn
(

1
h −1− s

n

)

2s( j+k)Mhu j+k(x).

We now apply Lemma D.3 with τ = n(1/h − 1 − s/n), λ = s, and d j+k =
Mhu j+k(x). Note that τ < 0 by definition. This gives

∥

∥

∥

∥

{

2 js
∣

∣

∣�
ψ
j u(x)

∣

∣

∣

}

j∈Z

∥

∥

∥

∥

�r
�

∥

∥

∥

∥

∥

∥

⎧

⎨

⎩

∞
∑

k=−k0

2
kn
(

1
h −1− s

n

)

2s( j+k)Mhu j+k(x)

⎫

⎬

⎭

j∈Z

∥

∥

∥

∥

∥

∥

�r

�
∥

∥

∥

∥

{

2 jsMhu j (x)
}

j∈Z

∥

∥

∥

∥

�r
.

The desired inequality follows from the monotonicity of the quasi-norm associated to
X and the Fefferman–Stein inequality.

We now prove (3.12) for finite families. We apply similar logic, but working
instead with the norm inequality from Lemma D.2. Using φ(x) = 2 jnψ(2 j x), f =
u j+k, A = 2 j , R = 2k+k0 , k, j ∈ Z, k ≥ −k0, d > b, and n/min(h X , 1) < b <

n + s, we have

∥

∥

∥�
ψ
j u j+k

∥

∥

∥

X
�
(

2k+k0
)b−n (

2 j
)−n

∥

∥

∥

∥

(

1 +
∣

∣

∣2 j ·
∣

∣

∣

)d
2 jnψ

(

2 j ·
)

∥

∥

∥

∥

L∞

∥

∥u j+k
∥

∥

X

∼ 2k(b−n)
∥

∥u j+k
∥

∥

X ,

where the implicit constants depend only on the parameters stated and ψ .
Setting p∗ such that |‖·‖| ∼ ‖·‖X and |‖ f + g‖|p∗ ≤ |‖ f ‖|p∗ + |‖g‖|p∗

(Aoki-
Rolewicz Theorem), we obtain

2 jsp∗ ∥
∥

∥�
ψ
j u
∥

∥

∥

p∗

X
� 2 jsp∗

∞
∑

k=−k0

∥

∥

∥�
ψ
j u j+k

∥

∥

∥

p∗

X

�
∞
∑

k=−k0

2 jsp∗
2k(b−n)p∗ ∥

∥u j+k
∥

∥

p∗
X

=
∞
∑

k=−k0

2sp∗( j+k)2k(b−n−s)p∗ ∥
∥u j+k

∥

∥

p∗
X .

Taking �r/p∗
norms (quasi-norms when r/p∗ < 1) and applying Lemma D.3 with

τ = (b − n − s)p∗, λ = sp∗, and d j+k = ∥

∥u j+k
∥

∥

p∗
X , we have the desired result.

We now show that the result holds for infinite families of functions. We first show
the homogeneous Besov space case for 0 < r < ∞. Let

{

u j
}

j∈Z , X , r , and s be as
in the hypotheses.
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Let UN = ∑N
j=−N u j . For M < N ,

{

u j
}

M+1≤| j |≤N fulfills the conditions of the
theorem, and since the theorem holds for finite families of functions, we have

‖UN − UM‖Ḃs
X ,r

�
∥

∥

∥

∥

{

2 jsu j

}

M+1≤| j |≤N

∥

∥

∥

∥

�r (X)

,

where the implicit constant is independent of M, N , and the family
{

u j
}

j∈Z.
By the assumption that

∥

∥

∥

{

2 jsu j
}

j∈Z
∥

∥

∥

�r (X)
<∞, the value of

∥

∥

∥

{

2 jsu j
}

M+1≤| j |≤N

∥

∥

∥

�r (X)

must tend to zero as M approaches ∞. Therefore, {UN }N∈Z is a Cauchy sequence in
Ḃs

X ,r , and by the completeness of Ḃs
X ,r , the sum

∑

j∈Z u j converges in Ḃs
X ,r .

Similarly, we see that

‖UN ‖Ḃs
X ,r

�
∥

∥

∥

∥

{

2 jsu j

}

−N≤ j≤N

∥

∥

∥

∥

�r (X)

,

where the implicit constant is independent of N and the family
{

u j
}

j∈Z. Therefore,

∥

∥

∥

∥

∥

∥

∑

j∈Z
u j

∥

∥

∥

∥

∥

∥

Ḃs
X ,r

�
∥

∥

∥

∥

{

2 jsu j

}

j∈Z

∥

∥

∥

∥

�r (X)

,

with the implicit constant independent of the family
{

u j
}

j∈Z.
Now we consider the case of infinite families for Ḟ s

X ,r with 0 < r ≤ ∞ as well as

Ḃs
X ,∞. Note that

{

2(s−ε) j u j
}

j≥0 and
{

2(s+ε) j u j
}

j<0 belong to �1(X) for any ε > 0.
Indeed, we have

∥

∥

∥

∥

{

2(s−ε) j u j

}

j≥0

∥

∥

∥

∥

�1(X)

=
∞
∑

j=0

2 js2−ε j
∥

∥u j
∥

∥

X

�
∥

∥

∥{2 jsu j } j≥0

∥

∥

∥

�∞(X)
�
∥

∥

∥{2 jsu j } j≥0

∥

∥

∥

�r (X)
.

Thefinal expression is finite by assumption. Similar logic shows that
∥

∥

∥

{

2(s+ε) j u j
}

j<0

∥

∥

∥

�1(X)

is also finite.
Choosing ε > 0 such that s − ε > τ(X), by the case when 0 < r < ∞, it follows

that
∑N

j=0 u j and
∑−1

j=−N u j converge in Ḃs−ε
X ,1 and Ḃs+ε

X ,1 , respectively. Therefore,
{UN }N∈Z converges in S ′

0(R
n). Applying the case for finite sequences for the space

Ḟ s
X ,r , we have UN ∈ Ḟ s

X ,r and

‖UN ‖Ḟs
X ,r

�
∥

∥

∥

∥

{

2 jsu j

}

−N≤ j≤N

∥

∥

∥

∥

X(�r )

≤
∥

∥

∥

∥

{

2 jsu j

}

j∈Z

∥

∥

∥

∥

X(�r )

.
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Since Ḟ s
X ,r has the Fatou Property, we have

lim
N→∞ UN =

∑

j∈Z
u j ∈ Ḟ s

X ,r

and
∥

∥

∥

∥

∥

∥

∑

j∈Z
u j

∥

∥

∥

∥

∥

∥

Ḟs
X ,r

�
∥

∥

∥

∥

{

2 jsu j

}

j∈Z

∥

∥

∥

∥

X(�r )

.

Similar reasoning works for Ḃs
X ,∞. ��

References

1. Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5),
1628–1655 (2010)

2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equa-
tions, volume 343 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer, Heidelberg (2011)

3. Bennett, C., Rudnick, K.: On Lorentz-Zygmund spaces. Dissertationes Math. (Rozprawy Mat.) 175,
67 (1980)

4. Bennett, C., Sharpley, R.: Interpolation of Operators, volume 129 of Pure and Applied Mathematics.
Academic Press, Inc., Boston, MA (1988)

5. Bényi,A.: Bilinear pseudodifferential operatorswith forbidden symbols onLipschitz andBesov spaces.
J. Math. Anal. Appl. 284(1), 97–103 (2003)

6. Bényi, A., Nahmod, A.R., Torres, R.H.: Sobolev space estimates and symbolic calculus for bilinear
pseudodifferential operators. J. Geom. Anal. 16(3), 431–453 (2006)

7. Blozinski, A.P.: Multivariate rearrangements and Banach function spaces with mixed norms. Trans.
Am. Math. Soc. 263(1), 149–167 (1981)

8. Bourdaud, G.: L p estimates for certain nonregular pseudodifferential operators. Commun. Partial
Differ. Equ. 7(9), 1023–1033 (1982)

9. Bourgain, J., Li, D.: On an endpoint Kato-Ponce inequality. Differ. Integr. Equ. 27(11–12), 1037–1072
(2014)

10. Brummer, J., Naibo, V.: Bilinear operators with homogeneous symbols, smooth molecules, and Kato-
Ponce inequalities. Proc. Am. Math. Soc. 146(3), 1217–1230 (2018)

11. Caetano, A., Gogatishvili, A., Opic, B.: Compactness in quasi-Banach function spaces and applications
to compact embeddings of Besov-type spaces. Proc. R. Soc. Edinb. Sect. A 146(5), 905–927 (2016)

12. Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted
inequalities. Mem. Am. Math. Soc. 187(877), xii–128 (2007)

13. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg-de
Vries equation. J. Funct. Anal. 100(1), 87–109 (1991)

14. Coifman, R.R., Meyer, Y.: Au delà des Opérateurs Pseudo-différentiels, volume 57 of Astérisque.
Société Mathématique de France, Paris (1978)

15. Cruz-Uribe, D., Fiorenza, A., Martell, J.M., Pérez, C.: The boundedness of classical operators on
variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)

16. Cruz-Uribe, D., Naibo, V.: Kato-Ponce inequalities on weighted and variable Lebesgue spaces. Differ.
Integr. Equ. 29(9–10), 801–836 (2016)

17. Cruz-Uribe, D., Naibo, V.: Erratum: Kato-Ponce inequalities on weighted and variable Lebesgue
spaces. Differ. Integr. Equ. 35(7–8), 473–481 (2022)

18. Cruz-Uribe,D.V., Fiorenza,A.:Variable Lebesgue Spaces.Applied andNumericalHarmonicAnalysis,
Birkhäuser/Springer, Heidelberg (2013)



Journal of Fourier Analysis and Applications            (2023) 29:64 Page 45 of 46    64 

19. Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia,
volume 215 of Operator Theory: Advances and Applications. Birkhäuser/Springer Basel AG, Basel
(2011)

20. Curbera, G.P., García-Cuerva, J., Martell, J.M., Pérez, C.: Extrapolation with weights, rearrangement-
invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math.
203(1), 256–318 (2006)

21. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct.
Anal. 256(6), 1731–1768 (2009)

22. Duoandikoetxea, J., Rosenthal, M.: Extension and boundedness of operators on Morrey spaces from
extrapolation techniques and embeddings. J. Geom. Anal. 28(4), 3081–3108 (2018)

23. Evans, W.D., Opic, B., Pick, L.: Interpolation of operators on scales of generalized Lorentz-Zygmund
spaces. Math. Nachr. 182, 127–181 (1996)

24. Frazier,M., Jawerth, B.: Decomposition of Besov spaces. IndianaUniv.Math. J. 34(4), 777–799 (1985)
25. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct.

Anal. 93(1), 34–170 (1990)
26. Grafakos, L.: Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, third edition.

Springer, New York (2014)
27. Grafakos, L.,Maldonado, D., Naibo, V.: A remark on an endpoint Kato-Ponce inequality. Differ. Integr.

Equ. 27(5–6), 415–424 (2014)
28. Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39(6), 1128–1157

(2014)
29. Gulisashvili, A., Kon, M.A.: Exact smoothing properties of Schrödinger semigroups. Am. J. Math.

118(6), 1215–1248 (1996)
30. Hart, J., Torres, R.H., Wu, X.: Smoothing properties of bilinear operators and Leibniz-type rules in

Lebesgue and mixed Lebesgue spaces. Trans. Am. Math. Soc. 370(12), 8581–8612 (2018)
31. Hunt, R.A.: On L(p, q) spaces. Enseign. Math. 2(12), 249–276 (1966)
32. Izuki, M., Sawano, Y., Tanaka, H.: Weighted Besov-Morrey spaces and Triebel-Lizorkin spaces. In:

Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, B22,
pp. 21–60. Research Institute for Mathematical Sciences (RIMS), Kyoto (2010)

33. Johnsen, J., Sickel,W.: A direct proof of Sobolev embeddings for quasi-homogeneous Lizorkin-Triebel
spaces with mixed norms. J. Funct. Spaces Appl. 5(2), 183–198 (2007)

34. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure
Appl. Math. 41(7), 891–907 (1988)

35. Kenig, C.E., Ponce,G., Vega, L.:Well-posedness and scattering results for the generalizedKorteweg-de
Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

36. Koezuka, K., Tomita, N.: Bilinear pseudo-differential operators with symbols in BSm
1,1 on Triebel-

Lizorkin spaces. J. Fourier Anal. Appl. 24(1), 309–319 (2018)
37. Kozono,H.,Yamazaki,M.: Semilinear heat equations and theNavier-Stokes equationwith distributions

in new function spaces as initial data. Commun. Partial Differ. Equ. 19(5–6), 959–1014 (1994)
38. Kurtz, D.S.: Classical operators on mixed-normed spaces with product weights. Rocky Mt. J. Math.

37(1), 269–283 (2007)
39. Liang, Y., Yang, D., Yuan, W., Sawano, Y., Ullrich, T.: A new framework for generalized Besov-type

and Triebel-Lizorkin-type spaces. Dissertationes Math. 489, 114 (2013)
40. Ly, F.K., Naibo, V.: Fractional Leibniz rules associated to bilinear Hermite pseudo-multipliers. Int.

Math. Res. Not. IMRN 7, 5401–5437 (2023)
41. Mazzucato, A.L.: Besov-Morrey spaces: function space theory and applications to non-linear PDE.

Trans. Am. Math. Soc. 355(4), 1297–1364 (2003)
42. Meyer, Y.: Remarques sur un théorème de J.-M. Bony. Rend. Circ. Mat. Palermo (2), (suppl, suppl.

1):1–20 (1981)
43. Montgomery-Smith, S.J.: The Hardy operator and Boyd indices. In: Interaction Between Functional

Analysis, Harmonic Analysis, and Probability (Columbia, MO, 1994), volume 175 of Lecture Notes
in Pure and Applied Mathematics, pp. 359–364. Dekker, New York (1996)

44. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am.Math. Soc.
165, 207–226 (1972)

45. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis. Vol. II, volume 138 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2013)



   64 Page 46 of 46 Journal of Fourier Analysis and Applications            (2023) 29:64 

46. Naibo, V.: On the bilinear Hörmander classes in the scales of Triebel-Lizorkin and Besov spaces. J.
Fourier Anal. Appl. 21(5), 1077–1104 (2015)

47. Naibo, V., Thomson, A.: Bilinear Hörmander classes of critical order and Leibniz-type rules in Besov
and local Hardy spaces. J. Math. Anal. Appl. 473(2), 980–1001 (2019)

48. Naibo, V., Thomson, A.: Coifman-Meyer multipliers: Leibniz-type rules and applications to scattering
of solutions to PDEs. Trans. Am. Math. Soc. 372(8), 5453–5481 (2019)

49. Nikol’skiı̆, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Die
Grundlehren der mathematischen Wissenschaften, Band 205. Springer, New York (1975)

50. Oh, S., Wu, X.: On L1 endpoint Kato-Ponce inequality. Math. Res. Lett. 27(4), 1129–1163 (2020)
51. Oh, S., Xinfeng, W.: The Kato-Ponce inequality with polynomial weights. Math. Z. (2022)
52. Qui, B.H.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J.

12(3), 581–605 (1982)
53. Rosenthal, M., Schmeisser, H.-J.: The boundedness of operators in Muckenhoupt weighted Morrey

spaces via extrapolation techniques and duality. Rev. Mat. Complut. 29(3), 623–657 (2016)
54. Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22(3), 663–683

(2015)
55. Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Stud.Math. 96(2), 145–158

(1990)
56. Torres, R.H.: Almost-orthogonality in Fourier analysis: from discrete characterizations of function

spaces, to singular integrals, to Leibniz rules for fractional derivatives. Not. Am. Math. Soc. 67(8),
1105–1115 (2020)

57. Triebel, H.: Theory of Function Spaces, volume 78 ofMonographs inMathematics. Birkhäuser Verlag,
Basel (1983)

58. Yamazaki, M.: A quasihomogeneous version of paradifferential operators. I. Boundedness on spaces
of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33(1), 131–174 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Fractional Leibniz Rules in the Setting of Quasi-Banach Function Spaces
	Abstract
	1 Introduction and Main Results
	2 Preliminaries
	2.1 Function Spaces

	3 Fractional Leibniz Rules in Quasi-Banach Function Spaces
	3.1 Proof of Theorem 3.1

	4 Fractional Leibniz Rules in Rearrangement Invariant Quasi-Banach Function Spaces
	4.1 Preliminaries
	4.2 Leibniz Rules in Rearrangement Invariant Quasi-Banach Function Spaces
	4.3 Examples
	4.3.1 Weighted Lebesgue Spaces
	4.3.2 Classical Weighted Lorentz Spaces
	4.3.3 Lorentz Λ-Spaces
	4.3.4 Orlicz Spaces


	5 Fractional Leibniz Rules in Weighted Mixed Lebesgue Spaces
	5.1 Preliminaries
	5.2 Leibniz Rules in Lp(Lq(w))
	5.3 Example: Power Weights

	6 Fractional Leibniz Rules in Weighted Morrey Spaces
	7 Fractional Leibniz Rules in Variable Lebesgue Spaces
	Appendix A. Extrapolation Theorems
	Appendix B. Equivalent Spaces
	Appendix C. Fefferman–Stein Inequalities and Boundedness of mathcalM on Quasi-Banach Function Spaces
	Appendix D. Nikol'skiĭ Representations
	References


