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Abstract. Multireference alignment (MRA) is the problem of recovering a signal from its multiple noisy copies,
each acted upon by a random group element. MRA is mainly motivated by single-particle cryo—
electron microscopy (cryo-EM) that has recently joined X-ray crystallography as one of the two
leading technologies to reconstruct biological molecular structures. Previous papers have shown
that, in the high-noise regime, the sample complexity of MRA and cryo-EM is n = w(an), where n
is the number of observations, o is the variance of the noise, and d is the lowest-order moment of the
observations that uniquely determines the signal. In particular, it was shown that, in many cases,
d =3 for generic signals, and thus, the sample complexity is n = w(oﬁ). In this paper, we analyze the
second moment of the MRA and cryo-EM models. First, we show that, in both models, the second
moment determines the signal up to a set of unitary matrices whose dimension is governed by the
decomposition of the space of signals into irreducible representations of the group. Second, we derive
sparsity conditions under which a signal can be recovered from the second moment, implying sample
complexity of n = w(c*). Notably, we show that the sample complexity of cryo-EM is n = w(c?) if
at most one-third of the coefficients representing the molecular structure are nonzero; this bound
is near-optimal. The analysis is based on tools from representation theory and algebraic geometry.
We also derive bounds on recovering a sparse signal from its power spectrum, which is the main
computational problem of X-ray crystallography.

Key words. sparsity, cryo-EM, multireference alignment, signal processing, representation theory, X-ray
crystallography

MSC codes. 94A12, 20C35, 68U10

DOI. 10.1137/23M155685X

1. Introduction. This paper studies the multireference alignment (MRA) model of esti-
mating a signal from its multiple noisy copies, each acted upon by a random group element.
Let V be an orthogonal or unitary representation of a compact group G. Each MRA obser-
vation y € V' is drawn from

(1.1) y=g-f+e,

where g € G, € ~ N(0,02%I) is a Gaussian noise vector independent of g; - denotes the group
action; and f € V. We assume that the distribution of the random element g € G is uniform
(Haar). The goal is to estimate the signal f € V from n realizations

*Received by the editors March 6, 2023; accepted for publication (in revised form) December 18, 2023; published
electronically April 4, 2024.
https://doi.org/10.1137 /23M155685X
Funding: This research is supported by the BSF grant 2020159. The first author is also supported in part by
the NSF-BSF grant 2019752 and the ISF grant 1924 /21, and the second author was also supported by NSF-DMS
grant 1906725 and NSF-DMS grant 2205626.
fThe School of Electrical Engineering, Tel Aviv University, Tel Aviv 6997801 Israel (bendory®@tauex.tau.ac.il).
#Mathematics, University of Misssouri, Columbia, MO 65211 USA (edidind@missouri.edu).

254

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/24 to 192.114.23.221 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

THE SAMPLE COMPLEXITY OF SPARSE MRA AND CRYO-EM 255

Figure 1. An example of the one-dimensional MRA setup, where a signal in RY is acted upon by random
elements of the group of circular shifts Zn. The left column shows three shifted copies of the signal, corre-
sponding to noiseless measurements (i.e., o =0). In this case, all three observations are admissible solutions
because the signal can be estimated only up to a group action. The middle and right columns present the same
observations, with low noise level of 0 = 0.2 and high noise level of o0 = 1.2. This paper focuses on the extremely
high noise level o — oo when the signal is swamped by noise. Figure credit: [13].

(12) yi=¢gi-f+e i=1,...,n.

Evidently, given a set of observations yi,...,y, and with no prior knowledge on f, it is
impossible to distinguish between f and g- f for any g € G. Thus, we can only hope to recover
the orbit of f € V under G.

A wide range of MRA models have been studied in recent years. The simplest and most
studied model is when a signal in V = RY is estimated from its multiple circularly shifted,
noisy copies, namely, G =Zy [8, 17, 2, 10, 70]. Figure 1 illustrates observations drawn from
this model. Additional MRA models include the dihedral group acting on R [20], the group
of two-dimensional rotations SO(2) acting on bandlimited images [9, 63, 51|, the group of
three-dimensional rotations SO(3) acting on bandlimited signals on the sphere [7, 62], and
additional setups [71, 49, 21]. The results of this paper hold for any MRA model when a
compact group G is acting on a finite-dimensional space V'; specific examples are provided in
section 2.4.

The MRA model is mainly motivated by single-particle cryo-electron microscopy
(cryo-EM), an increasingly popular technology that has joined X-ray crystallography as one
of the two leading technologies to reconstruct molecular structures [45, 68]. Under some
simplified assumptions, the cryo-EM generative model reads

(1.3) y=T(g9-f)+e, ge€@q,

where G is the group of three-dimensional rotations SO(3) and T is a tomographic projection
acting by

(1.4) Tf(.%'l,itg):/Rf(.ﬁl,l‘%xg)dxg.
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(a) EMPTAR-10028. (b) EMPTAR-10073.

() EMPTAR-10081. (d) EMPTAR-10061.

Figure 2. A collection of cryo-EM experimental images, taken from the Electron Microscopy Public Im-
age Archive (EMPIAR) https://www.ebi.ac.uk/empiar/. The corresponding molecular structures are avail-
able at the Electron Microscopy Data Bank (EMDB) hitps://www.ebi.ac.uk/emdb. (a) EMPTAR-10028 (corre-
sponding entry EMD-2660): Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine
[91]; (b) EMPIAR-10073 (corresponding entry EMD-8012): yeast spliceosomal U4/U6.U5 tri-snRNP [67]; (c)
EMPIAR-10081 (corresponding entry EMD-8511): human HCN1 hyperpolarization-activated cyclic nucleotide-
gated ion channel [59]; (d) EMPIAR-10061 (corresponding entry EMD-2984): beta-galactosidase in complex with
a cell-permeant inhibitor [11].

The celebrated Fourier slice theorem states that the 2-D Fourier transform of a tomographic
projection is equal to a 2-D slice of the volume’s 3-D Fourier transform [66]. This motivates
analyzing the cryo-EM model in Fourier space, which is indeed the common practice. Notably,
the noise level in cryo-EM images is very high; Figure 2 shows several experimental cryo-EM
images. We refer the reader to recent surveys on the mathematical and algorithmic aspects
of cryo-EM [82, 13, 85].

While the random linear action of 3-D rotation followed by a tomographic projection does
not constitute a group action, we will show that the results of this paper apply to the cryo-EM
model as well. The emerging molecular reconstruction technology of X-ray free-electron lasers
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(XFELs) also obeys (1.3) with one important distinction: The phases in Fourier space are
unavailable [87, 64].

MRA analysis in the high- and low-noise regimes. In the low-noise regime, when the signal
dominates the noise, the group elements g1,...,g9, € G can be usually estimated accurately
from the observations; see, for example, [81, 27, 32,74, 61]. If we denote the estimated group
elements by g1,...,g, € G, then an estimator f can be constructed by applying the inverse
group elements and averaging

In cryo-EM, while the statistical model is more involved (1.3), the group elements can be
estimated as well based on the common-lines geometrical property [84, 79], and thus, recov-
ering the molecular structure reduces to a linear inverse problem, for which many effective
techniques exist [66].

Motivated by cryo-EM, this work focuses on the high-noise regime when the signal is
swamped by noise, and thus, the group elements cannot be accurately estimated [16, 4, 73].
Consequently, one needs to develop methods to estimate the signal f directly, without es-
timating the group elements as an intermediate step. In particular, two main estimation
methods dominate the MRA literature. The first is based on optimizing the marginalized like-
lihood function, using methods such as expectation maximization [17, 63, 22, 20, 51, 57, 24].
While these techniques are highly successful and are the state-of-the-art methods in cryo-EM
[80, 76, 72], their properties are currently not well understood [44, 55, 29, 43]. The second
approach is based on the method of moments, a classical parameter estimation technique
tracing back to the seminal paper of Pearson [69]. In the method of moments, the idea is
to find a signal that is consistent with the empirical moments (which are estimates of the
population moments). The method of moments was applied to a wide range of MRA models
(17,7, 70,2, 31, 28,63, 71, 5, 49, 62, 22, 20, 24, 46, 1], as well as to construct ab initio models
in cryo-EM [25, 26, 60, 77, 16, 58, 50] and XFELs [75, 34]. In this work, we focus on the
method of moments due to its appealing statistical properties that are introduced next.

Sample complexity. In the high-noise regime ¢ — oo, when the dimension of the signal is
finite, it was shown that a necessary condition for recovery is n = w(o??) (namely, n/o?? — oo
as n,0 — o0), where d is the lowest-order moment that determines the orbit of the signal
uniquely' [10, 3, 70]. Therefore, determining the sample complexity in the high-noise regime
reduces to analyzing moment equations. In [7, 38], it was shown that, in many cases, if the
distribution of the group elements is uniform (as we assume in this paper), d = 3 suffices to
determine almost all signals, implying sample complexity of n = w(c%); this is also true for
cryo-EM. Moreover, in some cases, an efficient algorithm to recover the signal at the optimal
estimation rate was devised. For example, if V € RY and G = Zy, a generic signal can be
recovered efficiently from the third moment, called the bispectrum, using a variety of efficient
algorithms [17, 70]; see also [62].

LThis is not necessarily true when the dimension of the signal grows with the noise level and the number
of observations [73, 36].
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We mention that, when the distribution of the group elements is nonuniform, the MRA
problem is usually easier, and signal recovery may be possible from the second moment
[2, 20, 77]. In fact, uniform distribution can be thought of as the worst-case scenario of
the MRA model (1.1) since, no matter what the original distribution over the group elements
is, one can force a uniform distribution by generating a new set of observations:

(1.5) 2 =Gi i = (9i9:) - [+ §i - €,

where g; is drawn from a uniform distribution (and thus, the distribution of gg is also uniform).
This is not necessarily true for the cryo-EM model.

Main contributions: Signal recovery from the second moment. This work studies signal
recovery from the second moment of the MRA observations:

(1.6) Eyy*=:/£(9'17(9‘17*d9+-021.
Since we assume that we know o2, we henceforth omit the effect of the noise. If we view g - f
as a column vector, then (g- f)(g- f)* is a rank-one matrix, and thus, the second moment is an
integral over rank-one Hermitian matrices. Recall that the second moment can be estimated
from samples

* 1 g *
(1.7) My%néﬂﬁ-
1=

When n = w(o?), %Z?:l y;y? almost surely converges to Eyy*. In this paper, we identify a
class of signals that are determined uniquely by Eyy*. This, in turn, implies that the sample
complexity of the problem, for this class of signals, is n = w(c?), and not n = w(c®) as for
generic signals [7, 17, 70].

The first contribution of this paper, introduced in section 2, is a precise characterization
of the set of signals having the same second moment. Through the lens of representation
theory, we show in Theorem 2.3 that the second moment determines the signal up to a set
of unitary matrices whose dimension is governed by the decomposition of the space of signals
into irreducible representations of the group. While the unitary matrix ambiguities have been
identified before in some special cases [54, 25], we show that the same pattern of ambiguities
governs all MRA models. Section 2.4 provides specific examples.

To resolve these ambiguities, we suggest assuming that the signal is sparse under some
basis. This is a common assumption in many problems in signal processing and machine
learning, such as regression [88, 47|, compressed sensing [35, 30, 41|, and various image pro-
cessing applications [40]. Note that the representations of compact groups that we consider
are typically spaces of L? functions on a domain such as R?. As such, they do not come
equipped with a canonical basis, so the assumption we make is that our signal is sparse with
respect to a generic basis. The notion of a generic basis comes from algebraic geometry and
makes use of the fact that the set of all possible bases of a vector space is an algebraic variety.
When we say that a result holds for a generic basis, it means that there is a Zariski open
set of bases for which the statement of the result holds. In particular, it holds for almost all
bases. For more detail, see section 3.1.
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Our second contribution, presented in section 3 and summarized in Theorem 3.1, describes
the sparsity level under which the orbit of a generic sparse signal can be recovered from the
second moment; that is, the sparsity level that allows resolving the unknown unitary matrices.
This implies that merely n = w(o?) observations are required for accurate signal recovery.
The sparsity level is bounded by a factor that depends on the dimensions of the irreducible
representations and their multiplicities. The proof of Theorem 3.1 relies on tools from algebraic
geometry and representation theory. Specific results are provided in section 3.3.

Implications for cryo-EM. In section 4, we show that the second moment of the cryo-EM
model (1.3) is the same as that of the MRA model (1.1) when G is the group of three-
dimensional rotations SO(3) and V is the space of bandlimited functions on the ball. Namely,
the tomographic projection operator (1.4) does not change the second moment of the obser-
vations. We introduce this model in detail in section 4 and particularize the main result of
this paper to cryo-EM in Theorem 4.3. We now state this result informally.

Theorem 1.1 (informal theorem for cryo-EM). In the cryo-EM model (1.3) (described in
detail in section 4.1), a generic K-sparse function f € V' is uniquely determined by the second
moment for K 5 N/3, where N =dimV.

Theorem 1.1 implies that sparse structures can be recovered in the high-noise regime
with only n = w(o?) observations, improving upon n = w(c%) for generic structures [7].
Figure 3 shows the distribution of wavelet coefficients (a standard choice of basis in many
signal processing applications [65]) of a few molecular structures. Evidently, less than one-
third of the coefficients capture almost all the energy of the volumes, suggesting that the
bound of Theorem 1.1 is reasonable for typical molecular structures.

A recent paper [23] showed that a structure composed of ideal point masses (possibly
convolved with a kernel with a nonvanishing Fourier transform) can be recovered from the
second moment. However, the technique of [23] is tailored for this specific model. The
same paper also suggests recovering a 3-D structure from the second moment based on a
sparse expansion in a wavelet basis. While our results hold for generic bases, and thus not
necessarily for any wavelet basis, they provide theoretical support for the numerical results
of [23]. Moreover, for a given basis, there is, in principle, a computational technique to test
whether Theorem 1.1 holds for that basis. See Remarks 3.2 and 3.3 for more detail.

Crystallographic phase retrieval. The second moment of the MRA model, where random
elements of the group of circular shifts Zy act on real signals in RY, is equivalent to the
squared absolute values of the Fourier transform of the signal, known as the power spectrum.
Recovering a signal from its power spectrum is called the phase retrieval problem, and it
has numerous applications in signal processing; see recent surveys and references therein
[78, 14, 48, 19].

Crystals are often modeled as functions on a finite abelian group (typically Zy), which
corresponds to the regular representation of the group. For this representation, there is
a natural notion of sparsity, which corresponds to requiring that the function is nonzero
only on a small subset of elements of the group. Real-valued functions on Zy are identified
with RY, and this notion of sparsity corresponds to sparsity in the standard basis of RY.
Recovering a sparse signal from the power spectrum is the main computational challenge in
X-ray crystallography, a leading method for elucidating the atomic structure of molecules.
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Figure 3. The sorted wavelet coefficients of cryo-EM structures whose experimental images are presented
in Figure 2. The structures were downloaded from the EMDB hitps://wwuw.ebi.ac.uk/emdb. The structures
were expanded using Haar wavelets, where the number of coefficients is approximately the same as the number
of voxels. Besides EMD-8012, all the volume energy (i.e., the squared norm of the coefficients) is captured by
less than one-third of the coefficients, which is the bound of Theorem 1.1. For EMD-8012, the same fraction of
wavelet coefficients captures more than 91% of its energy.

This is by far the most important phase retrieval application. We discuss this problem in
detail in section 5 and explain how the techniques of this paper can be used to prove that
a K-sparse signal f € RY, under a generic basis, can be recovered from its power spectrum
provided that K < N/2.

Organization of the paper. The rest of the paper is organized as follows. Section 2 formu-
lates the second moment of the MRA model (1.1) and shows that it determines the signal
up to a set of unitary matrices. The section also provides several examples. Section 3 de-
rives a bound on the sparsity level that allows for unique recovery from the second moment
(Theorem 3.1) in terms of the dimension and multiplicity of the irreducible representations
and provides examples. Section 4 focuses on cryo-EM, which is the main motivation of this
paper. We formulate the cryo-EM model in detail, derive explicitly the ambiguities of the
second moment, and deduce sparsity conditions allowing unique recovery (Theorem 4.3).
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Section 5 discusses the crystallographic phase retrieval problem. Section 6 concludes this
work and delineates future research directions. The supplementary material (supplement.pdf
[local/web 225KB]) provides the necessary background in representation theory.

2. The second moment and symmetries. This section lays out the mathematical back-
ground for the second moments of the MRA model (1.1) for a compact group G acting on an
N-dimensional real or complex vector space V. Following standard terminology, we refer to a
vector space V equipped with an action of a group G as a representation of G. Our goal is to
use classical methods from the representation theory of compact groups to understand the in-
formation obtained from the second moment. In the supplementary material (supplement.pdf
[local/web 225KB]), we provide a necessary background in representation theory.

Any representation of a compact group is unitary. This means that elements of G act on
V' as unitary transformations. In particular, the action preserves a Hermitian inner product.
By Weyl’s unitarian trick, this inner product can be obtained by averaging any chosen inner
product on V over the group. If V is a real vector space, then the action of G is orthogonal,
meaning that elements of G act by orthogonal transformations.

Let K =R or K = C be the field. Assuming that the distribution on the group G is
uniform (Haar), then a choice of basis for an N-dimensional representation V =K~ expresses
the second moment as a function K — KN given by the formula

(2.1) fos /G (9 F)g- f)*dg,

where KV = Hom(V, V) is the vector space of linear transformations V' — V. The vector f is
viewed as a column vector, so (g- f)(g- f)* is an N x N, rank-one Hermitian matrix.

The second moment can also be defined without the use of coordinates, using tensor
notation, as a map V —V @ V*:

(2.2) fos /G (g-f)® (g Ddg.

We will use both (2.1) and (2.2) interchangeably. The reason that these formulations are
equivalent is that there is an isomorphism of representations V ® V* — Hom(V,V) as dis-
cussed in the supplementary material (supplement.pdf [local/web 225KB]). If we choose an
orthonormal basis for V, then the tensor f; ® fo corresponds to the matrix fi f3.

Ultimately, we will view elements of V' as functions D — C, where D is some domain on
which G acts. For example, in cryo-EM, G = SO(3), and V is the subspace of L?(C?) consisting
of the Fourier transforms of real-valued functions in L?(R?); this problem is discussed in detail
in section 4. The second moment of a function f : D — C can be viewed as the function
m?c: D x D — C, where

(2.3) m (1, 2) = /G (9 F@1)(g- (@) dg.

where g- f: D — C is defined by gf(z) = f(g~'z).
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2.1. The second moment of an irreducible representation of GG. Recall that a repre-
sentation is ¢rreducible if it has no nonzero proper G-invariant subspaces. Examples of reduc-
ible and irreducible representations are given in the supplementary material (supplement.pdf
[local/web 225KB]). If the representation V is irreducible, then the following proposition
shows that the second moment gives very little information about a vector f € V.

Proposition 2.1. Let V' be an N -dimensional irreducible unitary representation of a compact
group G, and identify V with CN wia a choice of orthonormal basis f1,...,fx of V. Then, as
N N2 . .
a map CV — C™ | the second moment is given by the formula

2
NN

(2.4) !

where Iy is the N x N identity matriz. In tensor notation, the second moment is the map
ViV @V* given by

|f|2
(2.5) Zf@ ® fi.

Proof. If we identify the Hermitian matrix m?c = fG(g - f)(g - f)*dg as giving a linear
transformation V' — V| then the second moment defines a map V — Hom(V,V), where
Hom(V, V) is the group of linear transformations V' — V. Since the second moment is by
definition 1nvar1ant under the action of G on V (i.e., f and g- f both yield the matrix m f) the
matrix m? ¥ defines a G-invariant linear transformation on V. However, since V is irreducible,
by Schur’s lemma, any G-invariant linear transformation V' — V is a scalar multiple of the
identity. Since G acts by unitary transformations, trace((g- f)(g- f)*) = trace(ff*) = | f|? for
any g € G. Thus,

tracem = [ twace((g- )la- £)°) dg = |1

The formula (2.5) is equivalent to the first formula because, under the identification of
V ®V* with Hom(V, V) =K~ the tensor Zf\il fi ® fi corresponds to the identity matrix. B

2.2. The second moment for multiple copies of an irreducible representation. The
following discussion is motivated by the situation in cryo-EM, where we view R? as a collection
of spherical shells. In other words, we model SO(3) acting on L?(R?) by taking a number of
copies of L%(S?). This is a standard model in cryo-EM and is introduced in detail in section 4.

Consider the case where the representation V' decomposes as the direct sum of R copies of
a single irreducible representation Vj. In other words, there is a G-invariant isomorphism V ~
VO@R. This means that any vector f € V can be decomposed uniquely as f = f[1]+---+ f[R],
with f[r] in the rth copy of Vp. The summands are invariant under the action of G, so

(g-Nlrl=g- flr].
Since V' decomposes as the sum V@R the tensor product V ® V* decomposes as the
sum of tensor products & 1Vo[ ] ® VO (7 ], where Vp[r| indicates the rth copy of Vj in the

decomposition of V. In partlcular, using tensor notation for the second moment, we can
decompose
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- R
(2.6) m? = /G <g-f)@(g-f)dgzmzlm%[i,ﬂ,
where
(2.7) m3fi, ] = /G (9 F1i)) ® g~ T dg € Vol ® Vg 1

is the component in the (7, 7)th summand of the tensor product V®@V*. Each of the summands
in (2.7) defines a G-invariant linear transformation Vy[i] — Vp[j].

Let Ny = dim Vj. For suitable orthonormal bases fi[i],..., fx,[i] and fi[j],..., fn,[j] of
Voli] and Vp[j], respectively, Schur’s lemma implies that

. . No
wilid)= [ (o110 @ a7l dy = LS (ka[ﬂ@fk[ﬂ) .
k=1

To put this more directly, if we view an element of V = VO@R as an R-tuple f[1],..., f[R] of
elements of Vp, then the second moment determines all pairwise inner products (f[i], f[J])-
Equivalently, if we consider the vectors f[1],..., f[R] as the column vectors of an Ny x R
matrix A, then the second moment determines the R x R Hermitian matrix A*A. There-
fore, the vectors f[1],..., f[R] € Vi are determined from their pairwise inner products up to
the action of the unitary group U(Ny), parameterizing the isometries of Vj. If, as will be
the case for cryo-EM, we know that each f[r] lies in a conjugation invariant subspace of V'
(for example, it is the Fourier transform of a real vector), then we can determine each f[r] up
to the action of a subgroup of U(Np) isomorphic to the real orthogonal group O(Ny).

2.3. The second moment of a general finite-dimensional representation and its group
of ambiguities. A general finite-dimensional representation of a compact group can be de-
composed as

(2.8) V=ap, V2R,

where the V; are distinct (nonisomorphic) irreducible representations of G of dimension Np.
An element of f €V has a unique G-invariant decomposition as a sum

L R,

(2.9) F=_ L,

(=1 i=1

where fy[i] is in the ith copy of the irreducible representation V5. In this case, the second
moment decomposes as a sum of tensors [ (g - fi[i]) ® (g- fmlj])dg. Each of these tensors
determines a G-invariant map Vy[i] — V,[j]. Since V;[i] and V},,[j] are nonisomorphic irre-
ducible representations, Schur’s lemma implies that there are no nonzero G-invariant linear
transformations Vy[i] — Vi, [j] for £ # m. In other words, we have a generalized orthogonality
relation that the tensors [(g- fe[i]) ® (g- fmlj]) dg are zero if £ m for all i, j.
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Hence, the second moment decomposes as a sum

2 o s (Sl feli]) fe
(2.10) —ZZ kae ® freld]
0=14,j=1

where the vectors fi ¢[i],..., fn,[i] form an orthonormal basis for the ith copy of the (th
irreducible representation V.

Remark 2.2. The second moment is a map V — Homg(V,V). As noted by a referee,
Homg(V,V) is the endomorphism ring of the G-module V. A result from classical representa-
tion theory, which follows from Schur’s lemma, states that this ring decomposes into a sum of
matrix algebras EszlMat(Rg), and our description of the second moment can also be derived
using this decomposition.

2.3.1. Functional representation of the second moment. If, as will be the case for
our model of cryo-EM, we view the elements of V' as functions f: D — C, then we can
reformulate (2.10) as follows. Suppose that fi ¢[i],..., fn, ¢[i] are functions D — C that form
an orthonormal basis for the ith copy of the fth irreducible representation V. If we expand
feli] = Z%‘Z 1 A7) fmoelt], then the second moment realized as a function D x D — C is
expanded as

L R,

(2.11) 2(21,22) ZZ(ZA”L [{J A5 )(qu (1) freli] (= )>,

{=11,j=1

where 1,9 are, respectively, the variables on the first and second copies of D, respectively.

2.3.2. The group of ambiguities. The main result of this section is a characterization of
the group of ambiguities of the second moment. Later on, we provide a few explicit examples.

Suppose that V' decomposes as a sum of irreducible representations V = @KLZIVER‘, where
dimVy, = Ny, and let H = HgL:1 U(Ng). The group H acts on V as follows. If f € V is
represented by an L-tuple of (Ay,...,Ar) with Ay an Ny x Ry, matrix and h = (Uy,...,Uyr)
with U, € U(Ng), then h- f = (UlAl, cee ULAL).

Theorem 2.3. With the notation as above, a vector f € V is determined from the second
moment up to the action of the ambiguity group H = Hé;:l U(Ny). That is, mf mf, if and
only f="h-f' for some he H.

Proof. If we decompose a vector f € V as in (2.9), then the second moment (2.10) deter-
mines the inner products (fy[i], f¢[j]) for all £=1,...,L and ¢,j €1,..., Ry.

For a general representation, an element of V' can be represented by an L-tuple (44, ...,
Ar), where Ay is an Ny x Ry complex matrix corresponding to an element in the sum-
mand VK@RE. The second moment determines the L-tuple of Ry, x R, Hermitian matrices
(ATA4, ..., A7 AL). Thus, if Uy,...,Ur are unitary matrices, then an L-tuple of Ny x Ry-
matrices (Ui A1, ...,UrLAr) has the same second moment because (UpAg)*(UpAy) = A} Ay for
each /. In particular, a vector f is determined from the second moment up to the action of
the product of unitary groups H2L:1 U(Nyp). [ ]
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Remark 2.4 (parameter counting). Since each unitary matrix is determined by N, 42 real
parameters, the ambiguity group is of dimension Ny = Zle Ng. If the ambiguity group
is isomorphic to the real orthogonal groups, as in cryo-EM, then the ambiguity group is of
dimension Ny = Zszl Ny¢(Ny—1)/2.

Remark 2.5. Note that the total dimension of the ambiguity group of the second moment
does not depend on the multiplicities R,. In particular, the ratio of the dimensions is

L
Ny _ SN}
N ok RN,

This implies that, as the number of multiplicities increases, the proportional amount of infor-
mation about the signal contained in the second moment increases as well.

2.4. Examples.

2.4.1. The power spectrum. Consider the group G = Zy acting on KV by cyclic shifts,
where K =R or K= C. In the Fourier domain, the cyclic group G = Zy acts by multiplication
by roots of unity. In particular, we identify Zy = pn, where ppn is the Nth root of unity. If
w € py, then

(2.12) @ (f10], - SIN = 1) = (FIOL wf1].- ...~ [N = 1),

The vector space CV with this action of ux decomposes as a sum of one-dimensional irreduc-
ible representations (namely, Ny = Ry =1 for all k so that N =L) Vo & --- ® Vy_1, where
w € py acts on V; by w - f[i] = w'f[i]. The second moment of a vector f € CY in the Fourier
domain is the power spectrum (f|[0]|2,...,|f[N — 1]|?). This determines the vector up to the
action of the group (S')" since U(1) = S'. Figure 4 shows an example of two different images
with the same power spectrum.

Recall that the image of R"Y under the discrete Fourier transform is the real subspace of

C given by the condition f[N —i] = f[i]. Thus, if f is the Fourier transform of a real vector,

a) Einstein. b) Einstein with random phases.
P

Figure 4. The left panel shows an image of Albert Einstein. To generate the image of the right panel, we
combined the absolute values of the Fourier transform of Finstein’s image with random phases and computed
the inverse Fourier transform. This example underscores that two images with the same power spectrum may
be very different. More generally, two signals that are equal up to a set of unitary matrices (e.g., have the same
second moment) may differ significantly.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/24 to 192.114.23.221 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

266 TAMIR BENDORY AND DAN EDIDIN
the ambiguity group must preserve the condition that f[N —i] = f[i] and is therefore the
subgroup of

(2.13) {0y AN_1 AN = A1 C (SHY.

Recovering a signal from its power spectrum is called the phase retrieval problem [78, 14,
48, 19]; see section 5 for further discussion.

2.4.2. Dihedral MRA. Consider the action of the dihedral group G = Dyy acting K,
where the rotation r € Doy acts by cyclic shift and the reflection s € Doy acts by (s- f)[i] =
fIN —i]. In the Fourier domain, (s- f)[i] = f[N —i] and (r - f)[i] = w'f[i] as in (2.12). In
[20], it was shown that the orbit of a generic signal is determined uniquely from the second
moment if the group elements are drawn from a nonuniform distribution over the dihedral
group. Here, we consider a uniform (Haar) distribution of the group elements.

The vector space CV with this action of Doy decomposes into a sum of one- and two-
dimensional irreducible representations, depending on the parity of N (with multiplicity
Ry=1). If N is even, then

cN=VoeWn @ Vo1 @ Vo,

where Vj is the one-dimensional subspace spanned by the vector eg = (1,0,...,0), Vg is
spanned by the vector ey (No = Nyjp = 1), and, for 1 < £ < N/2 -1, V; is the subspace
spanned by {eg,en_¢} (Np=2). Similarly, if N is odd, then

CN:%@W"'@V(NA)/%

where again, Vp is spanned by ey and, for £>1, V; is spanned by {es, en_¢}.
Therefore, the second moment of a vector f in the Fourier domain determines the N/2+1
real numbers

(O P+ [FIN =212, LFIN/2 = 1P [F[N/2 + 107, [ F[N/2])
if N is even and the (N + 1)/2 real numbers

(O PP+ [FIN = 112, PN = 1)/2 + [ (N +1)/2]1%)

if N is odd. When K = C, this is less information than the power spectrum. When N is
even, the ambiguity group is S x U (2)N/ 2 x S', and when N is odd, the ambiguity group
is S* x U(2)(N=D/2. However, if K =R, then the second moment gives the power spectrum
because, if f is the Fourier transform of a real vector, then we have |f[i]| = |f[N —i]|. In
this case, the ambiguity group is +1 x O(2)N/2 x £1 if N is even, and if N is odd, then it
is +1 x O(2)(N=1/2_ These groups are isomorphic to the subgroups of (S)N considered in
(2.13).
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2.4.3. MRA with rotated images. In this model, the Fourier transform of an image is
represented as a radially discretized bandlimited function on C2. That is, our function f is
expressed as f = (f[1],..., f[R]), where

I
(2.14) fIrl0) = Y ap,e?, 0€(0,2m),

k=—L’

for some bandlimit L' = (L — 1)/2 and R radial samples. The action of a rotation S* on the
image is given by

el . Z e 6L(9 a)k _ Z akre—aak u9k

k==L’ k=—L’

With this action, the parameter space of two-dimensional images is the S!'-representation
V= V ‘@ ® VIR where Vj, is the one-dimensional representation of S1, where e@ € S!
acts Wlth Welght —k. Namely, N, = 1, Ry = R for all k so that N = LR. The (ry,72)
component of the second moment equals

w701, 0) = / e fr)(61)e= [T (Ba)dax

/ Z ag, e Z e da
[0}

kl 7L/ kz—*L
1(01—62)k
(215) E ag rlak ro€ 1=62)
k=—L'
L
§ : — AOk
= akﬂ“lakﬂbe
k=—L'

= m?[rl, 2] (A),

where A6 := 0, — 0. Following our previous discussion, a function f € V is determined
by an L-tuple of 1 x R matrices (A_r/,...,Ar/), where Ay = (ak71,...,ak’R)T. The second
moment computes the L-tuple of rank-one R x R matrices (A* ;, A_r/,..., A}, A"). Since each

irreducible summand in the representation V' has dimension one (namely, Ny =1 for all £), the
ambiguity group of the second moment for the rotated images problem is (S*)%. If we assume
that the function f is the Fourier transform of a real-valued function, then a;, =aZj,, and
the ambiguity group is O(2)% x £1.

2.4.4. Two-dimensional tomography from unknown random projections. The problem
of recovering a two-dimensional image from its tomographic projections is a classical problem
in computerized tomography (CT) imaging [66]. However, in some cases, the viewing angles
are unknown and may be considered random. Due to the Fourier slice theorem, this is equiv-
alent to randomly rotating the image, and then acquiring a single one-dimensional line of its
Fourier transform. While generally, an image cannot be recovered from such random projec-
tions (in contrast to the three-dimensional counterpart (1.3), where recovery is theoretically
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possible based on the common-lines property [84, 79]), it was shown that unique recovery, up
to rotation, requires rather mild conditions [12]. Different algorithms were later developed;
see, for example, [33, 86, 93].

In this model, we compute the second moment of the Fourier transform of the image after
tomographic projection to a line. In other words, we compute the integral

/S T fln](60)Te - ]G

where T is the tomographic projection to the line § =0 (the two-dimensional counterpart of
(1.4)). Because we are computing the second moment after tomographic projection, we cannot
directly determine the ambiguity group from Theorem 2.3. In this case, the tomographic
projection causes us to lose information, and we obtain a function only of ri,ry (compare
with (2.15)):

L/
2 N .
myr1,ro] = § Ao,y Oy
k=—L'

where L' = (L — 1)/2. If we view the L-tuple of 1 X R matrices (A_r/,...,Ar/) as a single
L x R-matrix A, then the projected second moment determines the Hermitian matrix A*A.
Equivalently, an element of V is determined by R vectors in C¥, and the projected second
moment determines all pairwise inner products of these vectors. In this case, the loss of
information caused by the tomographic projection means that the ambiguity group is the
bigger group U(L) (or O(L) if the image is the Fourier transform of a real-valued function)
compared to (S1)” in the unprojected case (respectively, O(2)%" x £1).

Remark 2.6. Note that, when G =SO(3), the second moment is unchanged by the tomo-
graphic projection from R® — R2. See Lemma 4.1.

3. Retrieving the unitary matrix ambiguities for sparse signals. In the previous section,
we have shown that it is generally impossible to recover a vector f in a representation V'
of a compact group G from its second moment due to the large group of ambiguities. To
resolve these ambiguities and recover the signal in either the MRA (1.1) or cryo-EM (1.3)
models, we need a prior on the sought signal. In this work, we assume that the signal is sparse
in some basis. This assumption has been studied and harnessed in the MRA [24, 46] and
cryo-EM literature [23, 89, 52, 56, 42, 92]. In this section, we derive bounds on the sparsity
level that allows retrieving the missing unitary matrices as a function of the dimensions and
multiplicities of the irreducible representations. We also provide a couple of examples and
leave more detailed discussions on cryo-EM and phase retrieval to, respectively, section 4 and
section 5.

3.1. Sparsity conditions. Let V be an N-dimensional vector space. The notion of sparsity
depends on the choice of an orthonormal basis V ={fi,..., fnv}. A vector f €V is K-sparse
with respect to this ordered basis if f is a linear combination of at most K elements of this
basis. The set of K-sparse vectors with respect to an ordered basis V is the union of (g)
linear subspaces Lg(V), where Lg(V) is the subspace spanned by the vectors {f;}ics and S is
a K-element subset of [1, N].
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Let
(3.1) V=@,V

be a representation of a compact group G, where dimV, = Ny. Let H = Hle U(Ny) be the
ambiguity group of the second moment (see Theorem 2.3).
The main result of this section is the following.

Theorem 3.1. Let V be a representation as in (3.1), let N = 25:1 N¢Ry be its total dimen-
sion, and let M = Engl min(Ny Ry, N?). Then, for a generic choice of orthonormal basis V, a
generic K-sparse vector f € V with K < N — M is uniquely determined by its second moment
up to a global phase.

We note that, as in Remark 2.5, the larger the number of irreducible representation copies
is, the easier the problem is. In particular, note that, if Ry > N, for all ¢, the sparsity bound
reads K < Zﬁ:l RyNy;= N. That is, the sparsity level is proportional to the dimension of the
representation. In Theorem 4.3, we provide an explicit example for the cryo-EM case.

Remark 3.2. The set of ordered orthornormal bases of an N-dimensional vector space V
can be identified with the real algebraic group O(N) if V' is real and U () if N is complex.
When we say that our result holds for a generic basis, we mean that there is a real Zariski open
subset of O(N) (resp., U(N)) parameterizing bases for which the conclusion of Theorem 3.1
holds. Since the complement of a Zariski open set has Lesbegue measure zero, this means
that, given an orthonormal basis V for V', then, with probability one, Theorem 3.1 holds for
that basis.

Remark 3.3. Given a basis V ={f1,..., fn} for V, we can express f € V as Zf:f:l x;i fi, and
the second moment is a collection of homogeneous quadratic functions in x1,...,xy, which
we denote by mfc (z1,...,2n). The following computational test is a simple generalization of
the test used in [18, sections 4.3.3 and 4.3.4] that can be used to decide whether V satisfies
the theorem with a sparsity level of K:

If S C[1,N]is a subset of size K, let

Is={(z1,--,an), (Y1, yn)mi (e, on) =mi(yr, -, yn)} CLs(V) x Ls(V),

where Lg()) is the subspace spanned by {f;}ics. Likewise, if S, S’ are two distinct K-element
subsets of [1, N], let

IS,S’ :{(«fﬂl,...,xN),(yl,---,yN)|m30($1,---,$N) :m?‘(yb?yN)} C]LS(V) X LS/(V)

The conclusion of Theorem 3.1 holds if Ig has dimension exactly K and degree one and
dim/lsgs < K. For small values of NV, these conditions can be checked using a computer
algebra system, but not in polynomial time [18, Appendix D].

Remark 3.4 (frames). Recall that a collection F of vectors in a finite-dimensional vector
space V is a frame if the vectors span V. The methods used to prove Theorem 3.1 can also
be used to prove a corresponding result where orthonormal bases are replaced by arbitrary
frames. The only difference between working with frames instead of bases is that the definition

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/24 to 192.114.23.221 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

270 TAMIR BENDORY AND DAN EDIDIN

of a vector being sparse with respect to an ordered frame is more subtle. The reason is that,
for a generic frame F, any N-element subset consists of linearly independent vectors, so any
f €V that has zero frame coefficients with respect to N elements in F must necessarily be
zero. In particular, if we work with frames, then the condition that a vector is K-sparse
should be replaced by the condition that at least N — K of the frame coeflicients are zero.
Otherwise, the statements and proofs remain the same.

3.1.1. Strategy and remarks on the proof. The proof of Theorem 3.1 involves a number
of steps. Suppose that V is a generic orthonormal basis, and consider the set of vectors that
are K-sparse with respect to V. The set of such vectors forms the union of (%) K-dimensional
linear subspaces of V. The strategy of the proof is to show that, with the bounds on K given
in the Theorem 3.1, the following is true: If f is a generic K-sparse vector with respect to the
orthonormal basis V, the only vectors in the H-orbit of f that are also K-sparse are of the
form e*“f.

Although the H-orbit of f is a real algebraic subvariety of V' containing {e'®f}, we know
of no general algebraic geometry result that can be used to analyze when a generic linear
subspace of V' will intersect the orbit Hf exactly in {e'*f}. To prove our result, we will
prove something stronger. Rather than consider the H-orbit of a vector f, we will consider
the linear span of its orbit and prove that the only K-sparse vectors in the linear span of the
orbit of f are scalar multiples of f. The advantage of working with the linear span is that we
can use techniques from linear algebra to understand when a linear subspace (the linear span
of our orbit) intersects the (]A([) K-dimensional linear subspaces consisting of vectors that are
K-sparse with respect to the given orthonormal basis V.

The price we pay for working with the linear span of an orbit instead of directly working
with the orbit is that, if the H orbit of f has real dimension M, then its linear span is a
complex linear subspace of complex dimension M or equivalently real dimension 2M (see
Proposition 3.5). As a result, the sparseness bound we obtain may not be optimal. However,
when dim H << dimV, as is the case in cryo-EM, this gap is not significant.

Finally, we remark that, for the general MRA problem with group G (1.1), we can at best
recover the G-orbit of a vector f from its moments. However, by imposing the prior condition
that the vector is sparse with respect to a given basis, we have the possibility of recovering a
vector up to a global phase. The reason is that, for a general orthonormal basis V of V', the
sparse vectors are not invariant under the action of G.

3.2. Proof of Theorem 3.1. Let H be a group acting on a vector space V and f €V
any vector. We denote by Ly the linear span of the H-orbit Hf. By definition, L; =
{> ai(hi- f)|lai € C,h; € H}, and it is the smallest linear subspace containing the orbit H f.

Let V = @leVéRé be a unitary representation of a compact group G, and let H =
Hle U(N¢). Given a vector f € V, we can write f = Zle Zf:‘fl felr], where fo[r] is in
the rth copy of the irreducible representation V. As above, we can view our vector f as an
L-tuple (Ay,...,AL) of Ny x Ry matrices with A, = (fe[1])T, ..., (fe[R])T). Viewing VZRE as
the vector space of N, X Ry matrices, the linear span ILy of the orbit H f is the product of the
linear spans of the U(NNy) orbits of the matrices A;, where elements of U(Ny) act on A, by
left multiplication.
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Proposition 3.5. Let V = @ZLVER‘ be a unitary representation of a compact group G, and
let H=T[L,U(Ny). If f €V is represented by an L-tuple (Ay, ..., A1) of Ny x Ry matrices,
then

L
dim(c Lf = Z(rankAg)Ng,
(=1
where dime denotes the dimension of Ly as a complex vector space. In particular,

L

dimcLy < My,
/=1

where My =min(NyRy, Nf).

Proof. Since the linear span of the H-orbit of f = (Aj,...,Ar) is the product of the linear
spans of the U(Ny)-orbits of the matrices Ay, it suffices to prove that the linear span of the
U(Ng)-orbit of the matrix Ay in VKR’Z has dimension (rankAy)Ny.

Let r, = rankA,, and, to simplify notation, assume that the first r, columns f,[1]7,...,
felre]" of A, are linearly independent. Since rankA, = ry, for 7 > ry, there are unique scalars
biy,... by, such that fo[r] =", b;, fold].

Let L4, be the r,N,-dimensional linear subspace of VZRL consisting of Ny x Ry matrices
B such that, for » > ry, B, = Z:Z: 1 birB;, where B; denotes the ith column of the matrix
B. Since U(Ny) acts linearly, the linear relations on the columns of Ay are preserved by the
action of U(Ny), so the linear span of U(N;)A, lies in the subspace Ly,. Conversely, we note
that the linear span of U(INy)A, contains the open set L, of L4,, parameterizing matrices
whose first r, columns are linearly independent. The reason this holds is that any invertible
Ny x Ny matrix is a linear combination of unitary matrices, and any element of L%, can be
obtained by applying some invertible matrix to Ay. |

Remark 3.6. Note that the real dimension of the U(Ny)-orbit of the matrix Ay considered
in the proof of Proposition 3.5 has real dimension ryNy. It follows that, for any vector f €V,

dimc Ly =dimg H f. In particular, the real dimension of s is twice the real dimension of the
orbit H f.

To prove the theorem, we need to show that the set U of orthonormal bases V such that, for
every subset S C [1, N] with |S| = K and with K <M = ZZLZI min(NyRy, N?), the following
statements hold.

1. For generic f € Lg(V),LfNLg(V) is the line spanned by f.
2. For generic f eLg(V), if |S'| =K and S’ # S, then Ly NLg(V) ={0}.

For a fixed subset S with |S| = K, let Ug be the set of orthonormal bases such that (1)
and (2) hold for S. Then, U = Ngls. Since the intersection of a finite number of Zariski open
sets is Zariski open, it suffices to prove that each Ug contains a Zariski open set. Moreover,
the proof is identical up to indexing for each subset S, so we will assume, for simplicity of
notation, that S={1,...,K}.

Given a vector f €V, let By be the set of orthonormal bases such that f € Ly xy. Note
that By is a Zariski closed subset of O(N) (resp., U(N)) defined by the equation fi A--- A
frx N f=0, where fi,..., fx are the first K vectors of an ordered basis.
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Proposition 3.7. Let f € V' be any nonzero vector, and let Iy be the linear span of its orbit
under H. Let M = ZeL:1 min(NyRy, NZ). Then, if K < N — M, for the generic orthonormal
basis V € By,

(1) Ly intersects Ly . gy (V) in the line spanned by f;

(2) LynLg(V)={0} if S#{1,...,K}.

The set of orthonormal bases V € By for which conditions (1) and (2) of Proposition 3.7 are
not satisfied is defined by polynomial equations. This means that the set of bases satisfying
(1) and (2) is Zariski open, and, to prove Proposition 3.7, we just need to show that this set is
nonempty; i.e., we just need to show that there exists a basis V € By that satisfies conditions
(1) and (2). To do this, we need to introduce some notation and prove a lemma.

Fix an orthonormal basis eq,...,en of a Hermitian vector space V of dimension N. For
S C [1,N] with |S| = K, let Lg = span{e; }ies and LG be the open subset of Lg of vectors
whose expansion with respect to the basis {e; };cs has all nonzero coordinates. In other words,
Ls=Ls\ (Ug2sLs)

For a given vector w € V', let Gr,,(M,V) be the subvariety of the Grassmannian of M-
dimensional linear subspaces of V' that contain w.

Lemma 3.8. If K <N — M, then, for any vector w € L’EL.“’K}, the generic M -dimensional
linear subspace L € Gr,,(M, V') satisfies the following conditions:
L. LNLg, . ky is the line spanned by w;
2. LNLg={0} for S#{1,...,K} and |S|=K.

Proof of Lemma 3.8. The subset of Gr,, (M, V) parameterizing linear subspaces intersect-
ing Ly xy in dimension greater than one is locally defined by a polynomial equation and
therefore a proper algebraic subset. Likewise, for any S # {1,..., K}, the subset of Gr,,(M,V)
parameterizing linear subspace L such that LNLg # {0} is also defined by a polynomial equa-
tion and thus is again a proper algebraic subset. In particular, the set of L € Gr,,(M, V') that
do not satisfy conditions (1) and (2) lie in a proper algebraic subset of Gr,,(M,V'). Therefore,
the generic subspace LL € Gr,, (M, V) satisfies conditions (1) and (2). [ ]

Proof of Proposition 3.7. Choose a fixed orthonormal basis {e1,...,en}, and let (IL,w)
be an M-dimensional linear subspace and vector satisfying the conclusions (1) and (2) of
Lemma 3.8. If we choose w so that |w| = |f|, then we can find a rotation g € U(N) such that
g- (L,w) = (Ly¢, f). The orthonormal basis {v; =g - €;}i—1,... v satisfies conditions (1) and (2)
of the proposition. [ |

Proposition 3.9. Let V be an ordered orthonormal basis for V, and assume that there is a
nonzero vector fo € Ly . xy(V) such that dimLy, NLy; gy (V) =1 and Ly, NLs(V) = {0}
for S#{1,...,K}. Then, for a generic f €Ly . gy(V), the same property holds.

Proof. Given an orthonormal basis V, the set D of f € Ly x)(V), which satisfies the
condition that dimILy NLy; g3 (V) > 1 or dimLy NLg(V) >0 for S # {1,..., K}, is defined
by polynomial equations. By hypothesis, we know that D # Ly k) since fo ¢ D, so its
complement is necessarily Zariski dense. |

At this point, we have proved the following. For a fixed vector nonzero fy € V, there is
a Zariski open set Uy, C By, such that, for every V € Uy,, the generic vector f € Ly ky
satisfies conditions (1) and (2) of Proposition 3.7.
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To complete the proof, we observe that the set of all bases is | J FocB(V) By,, and our desired
set of bases is | FocP(V) Uy,, where P(V) is the projective space of lines in V. This set is open
in O(N) (resp., U(IV)) because it is the image under the projection of the complement of the
Zariski closed set Z = {(V, f)|V € (Bf \ Uy)} in the universal frame bundle {(V, f)|f € V} C
O(N) xP(V) (resp., U(N) xP(V)), and this projection is open (meaning that it takes Zariski
open sets to Zariski open sets) because it is flat.

3.3. Examples.

3.3.1. MRA with rotated images model. Using Theorem 3.1, we can obtain sparsity
bounds for recovering a generic image from its second moment as in section 2.4.3.

Recall that, in this model, the Fourier transform of an image is represented as a radi-
ally discretized bandlimited function on €2, and the function f is determined by an L-tuple
(A_p/,...,A}) vector in C%, where L' = (L — 1)/2 is the bandlimit and R is the number of
radial samples. The ambiguity group is H = (S')2/*!. In the notation of Theorem 3.1, we
have My =1 for { = —L',...,L'. In particular, for any vector f € V, dimL; < L. Hence, by
Theorem 3.1 we can conclude that, if K <dimV — L, then, for a generic orthonormal basis,
a generic K-sparse vector can be recovered from its second moment. Since dimV = RL, if
the number of radial samples R > 2, then the sparsity level required for signal recovery is
K < %N , namely, linear in dimV. If only one radial sample is taken (R = 1), then this
problem reduces to the MRA model on the circle, which is equivalent to the Fourier phase
retrieval problem [14].

3.3.2. Sparsity bounds for two-dimensional tomography from unknown random pro-
jections. Following the model of section 2.4.4, the unknown image f is viewed as an L X R
matrix A, and the projected second moment determines the matrix A*A. Thus, the ambiguity
group is U(L) (complex images) or O(L) (real images). The orbit of a generic signal f has
dimension M, where M = min(dimV, L?). Since dimV = LR, we have M = min(RL, L?). In
order to be able to recover sparse signals, we need to take R > Lj; i.e., the number of radial
samples must exceed the number of frequencies. Specifically, Theorem 3.1 implies that, for a
generic ordered orthonormal basis V, we can recover K-sparse signals where K = (R — L)L.
In particular, if R > pL with p > 1, then a generic K-sparse signal is uniquely determined by
its second moment if K < pp%lN , where N =dim V.

4. Application to cryo-EM. This section is devoted to the application of the results of
section 2 and section 3 to single-particle cryo-EM, which is the main motivation of this work.

Recent technological breakthroughs in cryo-EM have sparked a revolution in structural
biology—the field that studies the structure and dynamics of biological molecules—by re-
covering an abundance of new molecular structures at near-atomic resolution. In particular,
cryo-EM allows recovering molecules that were notoriously difficult to crystallize (e.g., differ-
ent types of membrane proteins), the sample preparation procedure is significantly simpler
(compared to alternative technologies) and preserves the molecules in a near-physiological
state, and it allows reconstruction of multiple functional states.

In this section, we describe the mathematical model of cryo-EM in detail, formulate the
ambiguities of recovering the three-dimensional structure from the second moment, and then
derive the sparsity level that allows resolving these ambiguities based on Theorem 3.1.
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4.1. Mathematical model. Let L2(R?) be a Hilbert space of complex-valued L? functions
on R®. The action of SO(3) on R? induces a corresponding action on L?(R3), which we view
as an infinite-dimensional representation of SO(3). In cryo-EM, we are interested in the action
of SO(3) on the subspace of L2(R?) corresponding to the Fourier transforms of real-valued
functions on R3, representing the Coulomb potential of an unknown molecular structure.

Using spherical coordinates (r,60,¢) we consider a finite-dimensional approximation of
L?(R3) by discretizing f(r,6,¢) with R samples r1,...,7g of the radial coordinates and ban-
dlimiting the corresponding spherical functions f(r;,0,¢). This is a standard assumption in
the cryo-EM literature; see, for example, [9]. Mathematically, this means that we approxi-
mate the infinite-dimensional representation L?(R?) with the finite-dimensional representation
V = (®L_,Vo)¥, where L is the bandlimit, and V; is the (2¢ + 1)-dimensional irreducible rep-
resentation of SO(3), corresponding to harmonic polynomials of frequency ¢. An orthonormal
basis for V; is the set of spherical harmonic polynomials {Y;™(#, qﬁ)}ﬁlz_ ;- We use the notation
Y,/ "[r] to consider the corresponding spherical harmonic as a basis vector for functions on the
rth spherical shell. The dimension of this representation is R(L? + 2L + 1).

Viewing an element of V as a radially discretized function on R?, we can view f € V as
an R-tuple

f=(f--, FIR]),

where f[r] € L?(S?) is an L-bandlimited function. Each f[r] can be expanded in terms of the
basis functions Y;™(6,¢) as follows:

L 12
(4.1) fIrl=Y_ > AP

{=0 m=—¢
Therefore, the problem of determining a structure reduces to determining the unknown coef-
ficients A}*[r] in (4.1).
Note that, when f is the Fourier transform of a real-valued function, the coefficients A}*[r]
are real for even ¢ and purely imaginary for odd ¢ [25].

4.2. The second moment of the cryo-EM model. In this section, we first formulate the
second moment of the MRA model (1.1) for G = SO(3) and functions of the form (4.1). Then,
we show that this is equivalent to the second moment of the cryo-EM model (Lemma 4.1) and
derive the ambiguity group of this model (Corollary 4.2).

Consider the MRA model with G = SO(3) and functions of the form (4.1). Using the
expansion from the previous section and the functional representation of the second moment
(2.11), we can write

R L
(4.2) mi= > Z(Z A7 r]A ) > Y Y [l
m/'=—{

r1,ro=14=0 \m=-—/

where the notation Y;"[r] denotes the corresponding spherical harmonic in the rth copy of
V, C L*(S?%). To simplify notation, set

(4.3) 71, 72] Z AP AP ).

m=—/{
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This can be viewed as an inner product of the coefficient vector (Azg[rl], oo, Ab[r1]) from the
r1 shell and the coefficient vector (AK_K[TQ], ..., Ablro]) from the 7y shell. Let A, € CHIXE
and B, € CP*F be matrices consisting of the coefficients

A= (A [Ti])m:—e,...,e,izl,...,R

and

By = (Bylri,r5]); jo1. -
Then, the second moment determines the matrices
(4.4) B,=ArA,, (=0,... L.

Remarkably, unlike the tomographic projection R?> — R!, the tomographic projection operator
(1.4) does not affect the second moment for SO(3). Therefore, in the context of the second
moment, we can treat cryo-EM as a special case of the MRA model (1.1), where G is the
group of three-dimensional rotations SO(3) and V is a discretization of L?(R3) as in (4.1).
This fact has been recognized (implicitly) already by Zvi Kam [54]. For completeness, we
prove the following lemma.

Lemma 4.1. Assume a function of the form (4.1). Then, the second moment of the cryo-
EM model (1.3) is the same as the second moment of the MRA model (1.1) with G = SO(3).
Namely, the tomographic projection operator in (1.3) does not affect the second moment.

Proof. Consider the projected second moment of a function f €V for fixed (r1,r2):

(4.5) / T(g- £1r)(6r,62))T (g - 1202, 62) dg
SO(3)

—(TxT) / (g F1r)(0r, 1) (g~ 1)) (B2, B2)dg
SO(3)

= (T x T)(m3[r1,r2) (61, 61,02, 2))

L ¢
=Y Bilri,ra] Y Y (/2,00 )Y (7/2, 02)[r2].
=0

m=—/

Here, T x T is the product of tomographic projections so that (7' x T)f(01,¢1,02,¢p2) =
f(m/2,¢01,7/2,¢2). Note that the first equality holds because the linear operator 7' commutes
with integration over the group SO(3). Let P, be the Legendre polynomial of degree ¢. Since,
up to constants [6, section 2.2],

l
(4.6 S Vi /2, 00V (72, 9) = Pilcos(pr — 92),
m=—~
we have
- L
(4.7) [ Tl fin) Tl Tr dg =Y Bl ralPa(cos(ion — ).
G =0

Since the Legendre polynomials are orthonormal functions of ¢ = ¢ — @2, we can determine
the coefficients By[ry,ro] from (4.7). Thus, we can conclude that no information is lost from
taking the projected second moment. |
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Corollary 4.2. Assume a function of the form

L ¢
fr= > APy

=0 m=—/
Then, the second moment of the cryo-EM model (1.3) is given by (4.4). Therefore, the second
moment determines the coefficient matrices Ay, £=0,..., L, up to the action of the ambiguity
group Hf:o U(20+1). Moreover, if we consider functions f[r], which are the Fourier trans-
forms of real-valued functions on R3 (which is the scenario in cryo-EM), then the coefficients
A?ZM are real for even € and purely imaginary for odd £ [25], and the ambiguity group is
[IoO2¢+1).

4.3. Recovery of sparse structures from the second moment. Based on Theorem 3.1,
we now prove that, in cryo-EM, a K-sparse signal can be recovered from the second moment
when K S N/3.

Theorem 4.3. Assume a function of the form (4.1), where the number of shells satisfies
R>2L+1. Let V=&V, and let N =dimV. Then, if
K _ 2/3L3+L*+L/3 1

N = 2[3+5L2+4L+1" 3
for a generic choice of orthonormal basis V, a generic K-sparse function f € V is uniquely
determined by its second moment up to a global phase.

Proof. The dimension of the representation V is N = R(L+1)2. Thus, if R > 2L +1, then
N =dimV > 2L3 +5L% + 4L 4+ 1. On the other hand, since R > dimV} for all ¢, we know
by Proposition 3.5 that, for f € V, the linear span Ly of the orbit of f under the ambiguity
group ®%_,0(2¢+ 1) has dimension at most

L
> (2041)°=4/3L° +4L* + 11L/3 + 1.
=0

Therefore, by Theorem 3.1, if K <2/3L3+ L?+ L/3, then, for a generic choice of orthonormal
basis, a generic K-sparse vector f € V is uniquely determined by its second moment. |

Corollary 4.4. Under the conditions of Theorem 4.3, a three-dimensional structure of the
form (4.1) can be recovered from n realization from the cryo-EM model when n = w(c?).

Remark 4.5 (near-optimality). While the sparsity level of Theorem 4.3 is not necessarily
optimal, it is optimal up to a constant. Thus, we say that our sparsity bound is near-optimal.

Remark 4.6. A recent paper [23] showed that a three-dimensional structure composed of a
finite number of ideal point masses (or its convolution with a fixed kernel with a nonvanishing
Fourier transform) can be recovered from the second moment. Theorem 4.3 is far more
general because it includes sparse structures under almost any basis. Yet, [23] also suggests
an algorithm that harnesses sparsity in the wavelet domain, for which our result does not
necessarily hold (since Theorem 4.3 holds for generic bases, and we cannot verify that any
particular basis satisfies the generic condition).
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Remark 4.7 (spherical-Bessel expansion). Our analysis assumes a model of multiple shells
asin (4.1). However, a similar analysis can be carried out to related models, such as spherical-
Bessel expansion, where the coefficients A}*[r] are expanded by

where the jg s[r] are the normalized spherical-Bessel functions. The “bandlimit” S, is deter-
mined by a sampling criterion, akin to the Nyquist sampling criterion [26]. This expansion
has been useful in various cryo-EM tasks; see, for example, [60, 16, 24]. Our analysis can be
applied to molecular structures represented using the spherical-Bessel expansion, where the
only difference is the way we count the dimension of the representation.

5. Crystallographic phase retrieval. The crystallographic phase retrieval problem is the
problem of recovering a signal in RY or CV from its power spectrum. As seen from sec-
tion 2.4.1, this is equivalent to recovering a signal from its second moment for the action of
either the cyclic group Zy or the dihedral group. However, because each irreducible repre-
sentation appears exactly once, Theorem 3.1 provides an uninformative bound of K <0.

In [18], the authors conjectured that, when RY is given by the standard basis, a generic K-
sparse vector in R can be recovered, up to unavoidable ambiguities, from its power spectrum
if K < N/2 and the support is not an arithmetic progression. This conjecture was proved
for a few specific cases, but a complete proof of this conjecture is beyond current techniques.
In [46], it was shown that, for large enough N, K-sparse, symmetric signals are determined
uniquely from their power spectrum for K = O(N/log® N).

On the other hand, for generic bases, the following provable optimal bound for phase
retrieval was recently obtained [39] using the techniques of this paper. Unlike the conjectures
of [18], this result makes no assumption on the support of the signal with respect to the given
basis.

Theorem 5.1 ([39, Theorem 1.1]). Let V be a generic basis for RN. Then, if K < N/2, a
generic K-sparse vector can be recovered from its power spectrum up to a global phase.

6. Discussion and future work. In this paper, we have derived general sparsity conditions
under which the sample complexity of the MRA model (1.1) is only n = w(o*) rather than
n =w(c%) in the general case. We have further applied the result to cryo-EM, showing that, if
a molecular structure can be represented with ~ N/3 coefficients in a generic basis, then the
sample complexity is quadratic in the variance of the noise. Next, we delineate a few possible
extensions of these results.

Linear transformations that are not compact groups. Our MRA model (1.1) assumes a com-
pact group. However, in some important situations, the group is noncompact, for instance, the
group of rigid motions SE(d) [21]. One challenge of working with noncompact groups is that
their representations do not necessarily decompose into a sum of irreducibles, which makes
the representation-theoretic analysis of the second moment more difficult. The problem is
even more challenging when considering a combination of a group action with a general linear
operator; this is, for example, the situation when considering subpixel measurements [22].
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Sample complexity for specific bases. Our main theoretical result, Theorem 3.1, holds for
almost all bases, but it is very difficult to say if it holds for a specific basis, such as wavelets,
since the algebraic conditions on the bases are implicit. An important future work is to derive
conditions for recovery from the second moment for specific bases, and ideally for all bases.
(In [24], recovery from the second moment of structures composed of ideal point masses was
proven.)

Unified theoretical framework with phase retrieval. In section 5, Theorem 5.1, we discussed
sparsity conditions for recovering a signal from its power spectrum, which is the second mo-
ment of the simplest MRA model, where a signal in RY is acted upon by Zy. This problem
is called the phase retrieval problem. We wish to consolidate the proof techniques of The-
orem 3.1 and those used to prove Theorem 5.1 in one general theoretical framework, which
should yield optimal dimension bounds for recovering a signal from its second moment.

Multitarget detection. The multitarget detection model was devised to design a new com-
putational paradigm for recovering small molecular structures using cryo-EM [15]. Without
delving into the technical details, the second moment of this model is provided by the di-
agonals of the matrices By, £ = 0,..., L, which describe the second moment of the cryo-EM
model (4.4) [16]. Deriving the conditions for signal recovery from these diagonals will have
important implications for the sample complexity of the multitarget detection model and for
understanding the fundamental limitations of cryo-EM technology.

Alternative priors. This work shows that the sample complexity of MRA and cryo-EM
can be significantly improved if the signal can be sparsely represented. An interesting future
research thread is studying alternative priors that can improve the sample complexity, such
as statistical priors, data-driven priors (e.g., based on AlphaFold [53]), semialgebraic priors
[37], or priors based on the statistical properties of proteins [90, 83].

Acknowledgments. We thank Nicolas Boumal for his notes on [54] and Guy Sharon and
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