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In synchronization problems, the goal is to estimate elements of a group from noisy measurements of

their ratios. A popular estimation method for synchronization is the spectral method. It extracts the group

elements from eigenvectors of a block matrix formed from the measurements. The eigenvectors must be

projected, or ‘rounded’, onto the group. The rounding procedures are constructed ad hoc and increasingly

so when applied to synchronization problems over non-compact groups. In this paper, we develop a

spectral approach to synchronization over the non-compact group SE(3), the group of rigid motions of

R
3. We based our method on embedding SE(3) into the algebra of dual quaternions, which has deep

algebraic connections with the group SE(3). These connections suggest a natural rounding procedure

considerably more straightforward than the current state of the art for spectral SE(3) synchronization,

which uses a matrix embedding of SE(3). We show by numerical experiments that our approach yields

comparable results with the current state of the art in SE(3) synchronization via the spectral method. Thus,

our approach reaps the benefits of the dual quaternion embedding of SE(3) while yielding estimators of

similar quality.

Keywords: applied non-commutative algebra; dual quaternions; group synchronization; spectral

algorithms.

1. Introduction

Synchronization problems arise as part of data processing pipelines in several contexts, including single-

particle reconstruction in cryogenic electron microscopy (3; 21), structure from motion problems (2; 27)

and simultaneous localization andmapping problems (1; 23). A synchronization problem is an estimation

problems over a group G, in which group elements g1, . . . , gn ∈ G are estimated from measurements of

their ratios gig
−1
j . Thesemeasurements are inherently ambiguous, since the set of ratios of g1g, . . . , gng ∈

G, for any g ∈ G, is the same as the set of ratios of the original group elements. Thus, in synchronization

problems, the goal is to estimate the group elements up to a right-multiplication by an arbitrary element

of G.
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The spectral method is a widely used method for solving synchronization problems. It seeks to

approximate a solution by finding eigenvectors of a block matrix formed by embedding the group into a

matrix algebra. The embedding enables the richer algebraic structure of matrix algebras, and in particular

their spectral decomposition, to be leveraged to solve the synchronization problem. Importantly, the

eigenvectors of the observation matrix are not themselves a solution of the synchronization problem.

They have to be projected back onto the group, a projection that is typically non-linear. This procedure

is often referred to as ‘rounding’ in the synchronization literature. In typical rounding procedures, a

matrix formed by these eigenvectors is chopped into blocks and these blocks are subsequently mapped

onto elements of the group.

Consider a synchronization problem over a relatively simple compact group in the absence of mea-

surement noise. As we explain in greater detail in Section 3.2, even in this ideal setting, typically there is

a gap between the synchronization problem and the eigenproblem used to solve it. Oversimplifying to an

extent, we can say that every solution to synchronization problem is a solution of the eigenproblem used

by the spectral method, but not every solution of the eigenproblem is a solution of the synchronization

problem. This issue is exacerbated for synchronization over non-compact groups, the focal point of

this paper. The solutions of the eigenproblem form a compact set, the set of unit eigenvectors which

span the relevant eigenspaces of the measurement matrix. Yet, unlike the case of synchronization

over compact groups, the possible solutions of a synchronization problems over non-compact groups

form a non-compact set. Therefore, the gap between the two problems can be said to be much

larger.

In practice, this gap between the eigenproblem and the synchronization problem must be bridged by

the rounding procedure. It ensures that the output of the synchronizationmethod is comprised of elements

of the group. However, existing rounding procedures are made to do so in an ad hoc manner. Specifically,

they do not stem from a well-characterized relationship between the synchronization problem and the

eigenproblem or the relationship between their respective algebraic contexts, the group and the algebra in

which it is embedded. They are merely constructed to ensure that the result of a synchronization problem

is an element of the group.

In this paper, we address the issues we raised above in the non-compact case of SE(3) synchroniza-

tion, the group of rigid motions, rotations and translations, ofR3. In (1), an analog of the spectral method

was developed for SE(3) synchronization, which utilized an embedding of SE(3) into a matrix algebra.

We replace thismatrix algebra embeddingwith an embedding into the algebra of dual quaternions. Unlike

the matrix algebra embedding used by (1), the algebra of dual quaternions is much closer to the structure

of SE(3), in a sense we explain in Section 2.4. Two recent advances in dual quaternion linear algebra were

a spectral theorem for matrices of dual quaternions (17) and a power iteration capable of approximating

its spectra (7). These two results allow us to develop an elegant spectral synchronization method. The

algebraic context eliminates the gap between the synchronization problem and the eigenproblem, at

least in the absence of measurement noise. In addition, the rounding step itself stems directly from the

algebraic relationship between elements of the algebra itself and the set on which SE(3) is represented.

In addition, it is computationally simpler than the rounding procedure of (1).

The structure of this paper is as follows. We begin in Section 2 with a survey of the necessary

background material. Among other things, we define the algebra of dual quaternions, matrix algebras

with dual quaternion entries and their properties. In Section 3, we delve deeper into synchronization

problems and the spectral method. We define the problem rigorously, introduce the spectral method

and conclude by laying out our approach, relying on dual quaternion embedding of SE(3). Finally, in

Section 4, we demonstrate empirically that our approach yields comparable results with the current state-

of-the-art spectral method for SE(3) synchronization developed by (1). Thus, we offer a better theoretical
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foundation tying SE(3) synchronization problems with eigenproblems while still maintaining the quality

of estimation of the current state-of-the-art spectral method.

2. Background: dual quaternions and matrices of dual quaternions

We provide a succinct background information on dual quaternions and dual quaternion matrices. In

Section 2.1 and Section 2.2, we construct the dual quaternions and describe some of their properties.

In Section 2.3 we survey the well-known representation of SO(3) on the algebra of quaternions and in

Section 2.4 we survey the lesser known representation of SE(3) on the algebra of dual quaternions. In

Section 2.5 we define the free modules of dual quaternions and algebras of matrices with dual quaternion

elements. This section culminates in the spectral theorem for matrices of dual quaternions, which was

recently proved by (17). Finally, in Section 2.6 we survey the power iteration for matrices of dual

quaternions, which was recently developed by (7).

2.1 Dual numbers

The algebra of dual numbers is the set D = {a+ bε | a, b ∈ R} with addition and multiplication

defined by (
a1 + b1ε

)
+
(
a2 + b2ε

)
=
(
a1 + a2

)
+
(
b1 + b2

)
ε (2.1)

(
a1 + b1ε

) (
a2 + b2ε

)
= a1a2 +

(
a1b2 + b1a2

)
ε.(2.2) (2.2)

If a + bε ∈ D, it is convenient to refer to a as the real coordinate and b as the dual coordinate. It is

easy to see from their definition that the dual numbers are defined analogously to the complex numbers.

Although the complex numbers are the algebra over the reals generated by 1 and i such that i2 = −1,

the algebra of dual numbers is generated by 1 and ε such that ε
2 = 0. This similarity accounts for the

similar properties of the algebras of dual numbers and complex numbers. Namely, the underlying vector

space of both is R2, addition and multiplication operations of both are associative and commutative and

both algebras have a unit, 1.

Despite the aforementioned similarities, these two algebras are fundamentally very different. The

algebra of complex numbers is a field, while the algebra of dual numbers is not. It has zero divisors,

i.e. non-zero elements whose product is zero. Indeed, recall that an element x of an algebra is said to be

nilpotent if there is a positive integer n such that xn = 0. The only nilpotent complex number is 0. The

following proposition characterizes the nilpotent dual numbers, and it is obvious it has many non-zero

nilpotents.

PROPOSITION 1. An x = a+ bε ∈ D is nilpotent if and only if a = 0. Also, x2 = 0 for every nilpotent.

Proof. If a �= 0, it is easy to show that (2.2) implies that xn = an + (. . . ) ε �= 0. If a = 0, then

x2 = b2ε2 = 0. �

As the next proposition shows, nilpotent dual numbers are the only dual numbers which are not

invertible.

PROPOSITION 2. If x = a + bε ∈ D, x is invertible if and only it is not nilpotent. In that case, x−1 =
a−1 − ba−2

ε.

Proof. Let y = c+ dε. From (2.2) it follows that xy = 1 if

ac = 1, ad + bc = 0.
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The first equation has a solution if and only if a �= 0. By proposition 1, this holds if and only if x is not

nilpotent. The formula for x−1 is easily obtained by solving this system of equations when a �= 0. �

A final point of analogy between the dual and complex numbers is that both admit a square root.

Following (18), given x = a + bε and y = c + dε, we write x > y if a > c, or a = c and b > d. We

say a dual number x = a + bε ∈ D is non-negative if x ≥ 0 and positive if x > 0. In (18, Sec. 2), the

following definition of a square root was given:

√
x =

{√
a+ b

2
√
a
ε x is positive and invertible,

0 x = 0.
(2.3)

In all other cases, the square root is undefined. Using this definition, it is possible to show that
√
xy =

√
x
√
y. This multiplicative identity implies that for any x = a + bε ∈ D with a �= 0, we have

√
x2 =

|a| + sgn(a)bε, where sgn(a) = 1 for a > 0, zero when a = 0 and −1 when a < 0. Such considerations

motivated (18) to define the following absolute value on dual numbers:

|x| =
{

|a| + sgn(a)bε a �= 0

|b| ε a = 0.

It has the following properties (18, Theorem 2), which are generalized forms of the usual absolute value

defined on the real line:

THEOREM 3. For any x, y ∈ D:

1. |x| = 0 if and only if x = 0.

2. |x| = x if x ≥ 0 and |x| > x otherwise.

3. |x| =
√
x2 if x is invertible.

4. |xy| = |x| |y| for any x, y ∈ D.

5. |x+ y| ≤ |x| + |y|.

2.2 Dual quaternions

The algebra of dual quaternions is the easiest to define using the algebra of quaternions. The algebra of

quaternions is the setH = {a+ bi + cj + dk | a, b, c, d ∈ R}. We typically refer to b, c and d as the i, j or

k coordinates, respectively. In the literature, a is sometimes referred to as the real part of the quaternion,

but in order to eliminate confusion with the real and dual parts of a dual number, we simply refer to it

as the first coordinate of the quaternion. Addition in H is defined coordinate-wise and multiplication is

defined by the following relations among its generators:

i2 = j2 = k2 = ijk = −1. (2.4)

As a vector space, H ∼= R
4. Also, R ⊂ H by constraining the i, j and k coordinates to zero. The

centre of algebra, the set of elements for which multiplication commutes with all other elements of the

algebra, isR. There is an involution on the quaternions, defined analogously to the complex conjugation,

q∗ = a−bi−cj−dk for q = a+bi+cj+dk. This involution is referred to as quaternion conjugation and
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we say that q∗ is the conjugate of q. Similarly to the complex norm, there is a norm on the quaternions

defined as |q| :=
√
q∗q =

√
a2 + b2 + c2 + d2, which can be shown to imply H ∼= R

4 as a normed

vector space. We note here that |q|2 = q∗q = qq∗, and so the inverse of every non-zero q ∈ H is
q∗

q∗q .

Overall, the algebra of quaternions is an involutive normed division algebra.

The algebra of dual quaternions isDH = {a+ bε | a, b ∈ H}. Essentially, it means a dual quaternion

is a dual number with quaternion coordinates instead of real coordinates. From this, we immediately see

that D ⊂ DH and also thatH ⊂ DH, the former by constraining a, b ∈ R and the latter by setting b = 0.

Addition and multiplication are still defined by (2.1) and (2.2) with the quaternion binary operations

replacing the real ones. The trivial involution on D, the identity and quaternion conjugation induce an

involution on DH, x∗ = a∗ + b∗
ε for x = a+ bε ∈ DH. Because D is the centre of DH, we can use the

usual notation for division whenever d = a+ bε ∈ D is invertible and x ∈ DH, and so we write

x

d
:= xd−1 = d−1x. (2.5)

As a vector space, DH ∼= R
8. We use the same names for the coordinates we used for the dual numbers.

Given a+ bε ∈ DH, we call a the real coordinate and b the dual coordinate.

The algebra of dual numbers is a unital algebra, since both D and H are. It is non-commutative,

sinceH is. It is not a division algebra, since D is not. This combination of features sets it apart from both

the algebra of quaternions and the algebra of dual numbers. Despite this, many of their features generalize

well to the dual quaternions. As we did for the dual numbers, we begin by noting that its nilpotents are

characterized in exactly the same way as the nilpotents of the dual numbers. Indeed, one needs to only

replace D with DH in proposition 1 to obtain the proper characterization.

Note here that zero is the only nilpotent in the algebra of quaternions. Therefore, one can say the

first part of proposition 2 holds for quaternions, namely, that a quaternion is invertible if and only if it is

not nilpotent. We show now that the dual quaternions share this property. Before that, we prove a lemma

pointing out several important features of the involutive structure of DH.

LEMMA 4. If x = a+ bε ∈ DH, then x∗x = |a|2 + (ab∗ + ba∗) ε is a dual number and x∗x = xx∗.

Proof. The first equality is easily proved by substituting x∗ and x into (2.2). To prove the result is a dual
number, we note first that the norm of a quaternion is a real number. In addition, q∗ + q ∈ R for every

quaternion q and (ab∗)∗ = ba∗, which implies ab∗ + ba∗ is also real. The second identity follows from

a direct calculation. �

PROPOSITION 5. If x = a+bε ∈ DH, x is invertible if and only if it is not nilpotent. In that case, x−1 = x∗
x∗x .

Proof. If a = 0, we have xy = bcε �= 1 for every y = c + dε ∈ DH. Therefore, x is invertible only if

a �= 0, that is, only if x is not nilpotent. If a �= 0, it follows from Lemma 4 that the real coordinate of

x∗x is positive. Thus, by proposition 2 x∗x is invertible. Finally, taking y = x∗
x∗x one obtains that yx = 1.

The equality xy = 1 follows easily from the second equality in Lemma 4. �

In (18), absolute value was also defined for dual quaternions. If x = a+ bε ∈ DH, then

|x| =
{

|a| + ab∗+ba∗
2|a| ε a �= 0

|b| ε a = 0.
(2.6)
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It can be readily seen that when x is a dual number, (2.6) and (2.3) agree. In (18, Thm. 4), the following

properties of the absolute value of dual quaternions were proved:

THEOREM 6. Let x, y ∈ DH.

1. |x| is a dual number.

2. If x is invertible, then |x| =
√
qq∗.

3. |x| = |x∗|.

4. |x| ≥ 0 for all x and |x| = 0 if and only if x = 0.

5. |xy| = |x| |y|.

6. |x+ y| ≤ |x| + |y|.

2.3 Representing SO(3) on the quaternions

The algebra of quaternions, which we surveyed in Section 2.2, has a close relationship with the special

orthogonal group SO(3), the group of norm and orientation-preserving linear transformations of the

Euclidean space R3. The subset H1 := {q ∈ H | |q| = 1} is a subgroup of the multiplicative group of H.

This follows easily from the fact |q|2 = q∗q = qq∗. In particular, this also implies that the inverse of

every q ∈ H1 is its conjugate q
∗, making the group structure ofH1 closed under involution and dependent

on the involutive structure of the algebra of quaternions. A well-known result states that H1 is a double

cover of SO(3) (8, Sec. 4.9). We succinctly construct the covering map here. We begin by identifying

R
3 ∼= T as vector spaces, where T = {ai + bj + ck | a, b, c ∈ R} ⊂ H. Then, for every q ∈ H1, define

a map R
3 → R

3 by ϕ(q)(x) = qxq∗, where x ∈ R
3 is treated as a quaternion in T via the identification

above. We then have the following:

PROPOSITION 7. The covering map is a 2-to-1 surjective group homomorphism ϕ : H1 → SO(3), such

that ϕ−1(g) = {q,−q} for every g ∈ SO(3).

This double cover allows one to represent elements of SO(3) on H1. More specifically, one can

represent SO(3) on H1+ =
{
q ∈ H1

∣∣ q+ q∗ ≥ 0
}
by choosing an appropriate q ∈ ϕ−1(g).

2.4 Representing SE(3) on the dual quaternions

The special Euclidean group SE(3) is the group of rigid motions of R3, i.e. rotations and translations

of R3, but not reflections. It is a semidirect product SE(3) = SO(3)�R
3. Its elements are most directly

represented as pairs of the form (R, t) ∈ SO(3) × R
3 with the group operation defined as

(
R1, t1

)
◦(

R2, t2
)

=
(
R1R2, t1 + R1t2

)
. Here, ◦ can be thought of as the composition of two affine transformations.

Let DH1 = {x ∈ DH | x∗x = 1} be the set of unit dual quaternions. Let DT =
{
1 + 1

2
tε

∣∣∣ t ∈ T

}
,

where we defined T in Section 2.3. Note that H1 ⊂ DH1 and DT ⊂ DH1. We state an analogue of

Proposition 7. It is a synopsis of (20, Chp. 9) and its proof can be found there.

PROPOSITION 8. We have

1. DH1 = DT �H1.

2. Letψ : DH1 → SE(3) be defined byψ(q, t)(x) = (ϕ(q), t). Here, ϕ is the double cover defined

in proposition 7, q ∈ H1 and 1 + 1
2
tε ∈ DT so t is identified with an element of R3. Then ψ is

a 2-to-1 surjective group homomorphism such that ψ−1(g) = {−x, x} for all g ∈ SE(3).
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Proposition 8 offers a way to represent elements of SE(3) using dual quaternions in much the same

way we represent elements of SO(3) on the quaternions. We represent (R, t) ∈ SE(3) by x = qt ∈
DH1, where q is a unit quaternion with non-negative first coordinate representing the rotation R and t is

represented by t = 1 + 1
2
t′ε, t′ = t1i + t2j + t3k. Its action on R

3 can be defined similarly to what we

saw in the quaternion case. Given s ∈ R
3, let s = 1 + s′ε, s′ = t1i + t2j + t3k. Note the absence of a

1
2
factor in this embedding of R3 into the dual quaternions, compared with how the translational part is

represented on DT in proposition 8. The action of (R, t) ∈ SE(3) on s is then s 
→ xsx∗. Indeed, we have

xsx∗ =
(
q+

1

2
t′qε

) (
1 + s′ε

) (
q∗ +

1

2
q∗t′∗ε

)

= qq∗ +
(
1

2
t′qq∗ + qs′q∗ +

1

2
qq∗t′∗

)
ε

= 1 +
(
qs′q∗ + t′

)
ε.

In expanding the products in the second transition we used the fact ε
2 = 0, which implied that no

products of two dual coordinates could appear in the result. The dual coordinate of the result is exactly

the action of (R, t) on s, because qs′q∗ is the action of R on s by proposition 7 and because of the manner

in which we represented R
3 on quaternions when we constructed t′ and s′.

In (7), it was proved that it is possible to project an almost arbitrary dual quaternion onto the unit

dual. Their result is stated here as follows:

THEOREM 9. Let x = a+ bε ∈ DH be non-zero.

1. If a �= 0, then
q
|q| is a unit dual quaternion solving

min
v∈DH1

|v− x|2 . (2.7)

2. If a = 0, then any q′ = a′ + b′
ε such that a′ = b

|b| and b
∗b′ + b′∗b = 0 solves (2.7).

This theorem exposes an aspect of the close tie between SE(3) and the algebra of dual quaternions.

We focus on its first part. It can be interpreted as the idea that every invertible dual quaternion is

essentially a unit dual quaternion multiplied by a dual number. Thus, in a sense, the multiplicative

structure of the algebra of dual quaternions is almost entirely generated by the group of unit dual

quaternions. This property has a geometric interpretation via the absolute value function. Namely,

dividing a dual quaternion by its absolute value yields a solution to the optimization problem (2.7), a

sort of projection function. This function itself is defined via the dual quaternion absolute value (2.6),

which itself intimately related to the algebraic structures on the algebra of dual quaternions as indicated

in Theorem 6.

Finally, we refer the interested reader to Appendix A, where we compare various representations of

SE(3), focusing on features which are perhaps most salient in applied work.

2.5 Matrices of dual quaternions and their spectral decomposition

Modules are an extensively studied generalization of the notion of a vector space to vectors and matrices

with entries from an arbitrary algebra. See (10) for an introduction to module theory. Here, we provide

a synopsis of the necessary information. A (right-)moduleM over an algebra A is a commutative group
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(M,+) along with a map M × A → M, (m, x) 
→ m · x, which satisfies the following properties. First,

it is distributive in the sense that m · (x+ y) = m · x+m · y and (m1 +m2) · x = m1 · x+m2 · x. Second,
the operation is associative, (m · x) · y = m · (x · y). We often refer to this map as the action of A on M

and omit the multiplication sign. Oversimplifying to an extent, a module can be thought of as a vector

space in which the underlying field was replaced by an arbitrary algebra.

We focus on two types of free modules of the algebra of dual quaternions, DHn and DH
n×n. Given

a positive integer n, the free DH-module is DHn =
{
m =

(
m1, . . . ,mn

)� ∣∣∣ mj ∈ DH, j = 1, . . . , n
}
. It

is acted upon by DH via entry-wise right-multiplication, i.e. (mx)j = mjx. Addition is defined entry-

wise. Moreover, DHn×n can be thought of as the module of all n × n matrices of dual quaternions. As

an DH-module, one can identify it with DH
n2 , and so addition is also performed entry-wise and so is

right-multiplication by a dual quaternion. However, it actually is an algebra, not just a module, with the

multiplication of matrices defined in the familiar way. Similarly, one can define the product Ax of a

matrix A ∈ DH
n×n and x ∈ DH

n in the usual way. It is instructive to think of A as a DH-linear operator

on DH
n in the sense that A (xa+ yb) = (Ax) a+ (Ay) b for any x, y ∈ DH

n and a, b ∈ DH.

Several types of real and complex matrices have dual quaternions counterparts. The conjugate

transpose of a matrix A ∈ DH
n×n is (A∗)ij = A∗

ji. This can easily be shown to be an involution on

DH
n×n. We say that a matrix A ∈ DH

n×n is Hermitian if A = A∗. It is unitary if A∗A = AA∗ = In,

where In is the identity matrix, which is defined in usual way.

Deepening the analogy with real and complex matrices, a notion of eigenvector and eigenvalue exists

for matrices of dual quaternions. We say λ ∈ DH is a (right-)eigenvalue of the matrix A ∈ DH
n×n if

there is x ∈ DH
n such that Ax = xλ. As the name suggests, the non-commutativity of DH means one

can also define a left-eigenvalue of a matrix of dual quaternions, though we will not be presenting any

results on these. Whenever we speak of eigenvalues and eigenvectors of dual quaternion matrices, we

will be referring to right-eigenvalues and right-eigenvectors.

We are now ready to state the spectral theorem for Hermitian matrices of dual quaternions

(17, Thm. 4.1):

THEOREM 10. Let A ∈ DH
n×n. If A is Hermitian, then there are a unitary U ∈ DH

n×n and a diagonal

Σ ∈ DH
n×n with dual number elements such that A = UΣU∗. The diagonal elements of Σ have the

form σj = αj + βjε ∈ D with α1 ≥ α2 ≥ · · · ≥ αn. Here, σj is the eigenvalue of A corresponding to the

eigenvector uj, the jth column of U.

This theorem essentially states that Hermitian matrices of dual quaternions have a full set of

eigenvectors. Furthermore, in the dual quaternion case, as in the complex case, the eigenvalues turn out to

be self-adjoint, that is, they satisfy σ ∗ = σ , with respect to the appropriate involution. This highlights the

striking similarities between this theorem and the well-known spectral theorem of complex Hermitian

matrices.

2.6 Power iteration for hermitian matrices of dual quaternion

In a recent paper, (7) developed a dual quaternion analog of the power iteration, capable of approximating

the top eigenvalue of a Hermitian dual quaternion matrix and its corresponding eigenvalue. We clarify

below the sense in which an eigenvalue is the top eigenvalue. Let A ∈ DH
n×n be a Hermitian matrix of

dual quaternions. Given some initializer v0 ∈ DH
n, the power iteration defined in (7) is

y(k) = Av(k−1), λ(k−1) =
(
v(k−1)

)∗
y(k), v(k) =

y(k)

∥∥y(k)
∥∥
2

. (2.8)
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Here, the dual quaternion norm used is defined as follows:

‖x‖2 =

⎧
⎪⎪«
⎪⎪¬

√
∑n

j=1

∣∣∣x′j
∣∣∣
2
ε x = x′

ε, x′ ∈ H
n,

√
∑n

j=1

∣∣∣xj
∣∣∣
2

otherwise.

(2.9)

For simplicity, we refer to ‖x‖2 as a norm, even though it is not a norm in the usual linear-algebraic

sense. Several additional definitions are required. Following (7), we write ck = ÕD
(
sk
)
for some s < 1

if ck = ak + bkε ∈ D and for some polynomial h(k) we have ak = O
(
skh(k)

)
and bk = O

(
skh(k)

)
. The

following result was proved in (7):

THEOREM 11. (Theorem 4.1 of (7))Let u1, . . . ,un be the eigenvectors of A ordered so that their

corresponding eigenvalues σj = αj + βjε ∈ D satisfy
∣∣α1

∣∣ >
∣∣α2

∣∣ ≥ · · · ≥
∣∣αn
∣∣. If v(0) =

∑n
j=1 ujγj

with γj ∈ DH such that γ1 has a non-zero real coordinate, then the sequence defined by (2.8) satisfies

v(k) = u1c

(
1 + ÕD

(∣∣∣∣
α2

α1

∣∣∣∣
k
))

, λ(k) = σ1

(
1 + ÕD

(∣∣∣∣
α2

α1

∣∣∣∣
2k
))

,

where c = sgn(α1)
γ1
|γ1| .

This theorem essentially shows that the power iteration (2.8) converges to u1 and its corresponding

eigenvalue. At every iteration, v(k) and λ(k) are essentially the desired values multiplied by some dual

number, which approaches 1 at an exponential rate. In this and in the general form of the iteration (2.8),

the dual quaternion power iteration is strikingly similar to the well-established power iteration for real

and complex matrices (25, Lecture 27).

2.7 Isometries of eigenspaces of matrices of dual quaternions

At this point, we have established the background material and notation required to point out two

important facts. First, the eigenspaces of a Hermitian matrix of dual quaternion are invariant to the action

of unit dual quaternions. Indeed, if x ∈ DH and x ∈ DH
n is an eigenvector ofA ∈ DH

n×n corresponding
to eigenvalue λ ∈ D, then

A (xx) = xλx = (xx) λ.

Therefore, xx is also an eigenvector corresponding to eigenvalue λ. The last transition follows, because

x and λ commute, since the latter is in the centre of DH.

The second fact relates to the isometries of DHn with respect to the dual quaternion norm defined in

(2.9). Given x ∈ DH
n and an invertible x ∈ DH, we have

‖xx‖2 = ‖x‖2 |x| .

This can be proved by considering both cases of (2.9) separately and using Theorem 6. Therefore, ‖x‖ =
‖xx‖2 if and only |x| = 1, which is equivalent to x∗x = 1, i.e. x is a unit dual quaternion. Therefore, the
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unit dual quaternions are the isometries of a free module of dual quaternions with respect to the norm

structure induced by (2.9).

Combining these two facts together, we conclude that for a fixed unit dual number q, the DH → DH

map x 
→ xq has two important properties. First, it preserves the norm (2.9). Second, it maps eigenvectors

of Hermitian matrices of dual quaternions to eigenvectors corresponding to the same eigenvalue. These

two properties play a key role in the spectral approach to synchronization we develop in the next

section.

3. The spectral approach to synchronization problems via dual quaternions

In this section, we apply the dual quaternion representation of SE(3) to the problem of SE(3)

synchronization. In Section 3.1, we describe group synchronization problems and noise types which

were considered in the literature. In Section 3.2, we describe the spectral method, a prevalent solution

to group synchronization problems. As we describe in Section 3.3, this approach can be generalized to

the dual quaternions algebra and therefore can be used to address SE(3) synchronization problems. We

dedicate Section 4 to numerical experiments demonstrating that our proposed method indeed works on

simulated data.

3.1 Group synchronization: problem statement

Let G be a group. Let g1, . . . , gn be elements of G and let gij = gig
−1
j be their ratios, 1 ≤ i, j ≤ n. A

synchronization problem is an estimation problem in which one attempts to estimate
{
gi
∣∣ 1 ≤ i ≤ n

}
,

the absolute group elements, from their ratios
{
gij | 1 ≤ i < j ≤ n

}
. Often, the clean ratios are

perturbed by some sort of noise. Because g1g, . . . , gng generate the same set of clean measurements for

every arbitrary g ∈ G, we can only hope to estimate g1, . . . , gn up to a global right-multiplication by an

arbitrary element of G.

In order to describe the typical noise models, it is convenient to represent the group faithfully as

some subgroup of the general linear group, the group of invertible matrices. Thus, we assume in this

section that one has an injective homomorphism ρ : G → GLk(F), with F = R or F = C. The

absolute group elements and their ratios are mapped onto GLk(F) via ρ in a consistent manner. Namely,

ρ(gij) = ρ(gi)ρ(gj)
−1. The elements of G are represented by elements of Fk×k, the k × k matrices

with entries in F. We refer to Fk×k as the representation space and to the image of ρ as the representing

subspace. Throughout this subsection, we suppress the homomorphism ρ and assume the absolute group

elements and their ratios are already faithfully represented in some matrix algebra.

Given a group represented in this manner, three kinds of noise sources are usually considered in the

literature. First, perturbative noise can be applied to each clean ratio. This has two forms.Multiplicative

noise perturbs the clean ratio while still remaining in the group, so that we measure ĝij = gijεi,j, with

εi,j ∈ G. Additive noise perturbs the clean ratio within the representation space, so that we measure

ĝij = gij + εi,j, with εi,j ∈ F
k×k. We here assume that perturbative noise is either multiplicative for all

ratios, or additive for all ratios.

The last two kinds of noise are best viewed as applied to a set of measurements. This set of

measurements may be assumed to be either a complete set of clean measurements
{
gij | 1 ≤ i < j ≤ n

}
,

a measurement set afflicted with perturbative noise,
{
g̃ij | 1 ≤ i < j ≤ n

}
, or a subset of one of these.

Every set of measurements can be envisaged as an undirected graph of order n, in which each vertex is

labeled with an absolute group element and the edges correspond to the measurements in the set. See

Fig. 1 for an example.
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FIG. 1. An example of a synchronization measurement graph with 10 absolute group elements, labeled from 0 to 9. Vertices appear

in blue circles. Edges are labeled with ratio measurements. Edges of the subgraph of non-corrupted measurements are dyed green.

Edge labels of this subgraph can be thought of as either clean or afflicted with perturbative noise. In a synchronization problem,

the goal is to estimate the absolute group elements in a manner that is as consistent as possible with the measurements of their

ratios.

The first kind of noise acting on the measurement graph, which we term selection noise, merely

removes a subset of the edges of the measurement graph. The second, which is often called corruptive

or adversarial noise, replaces the labels of a subset of edges with a randomly generated labels which

are independent from the clean group ratios. In both kinds of noise, the affected subset of edges may be

chosen randomly or deterministically. The measurement graph has a subgraph formed by edges which

were not corrupted. We assume that this subgraph is connected, regardless of the method used to choose

the subset of edges affected by selection or corruptive noise. Figure 1 shows an example of ameasurement

graph with corruptive noise.

All combinations of the three kinds of noise were considered in the literature, both in numerical

investigations of estimation methods and in their theoretical analysis (1; 5; 6; 12; 13; 19; 22; 26). The

literature cited provides a mere illustrative selection.

3.2 Group synchronization via the spectral method

Let g1, . . . , gn be elements of a groupG. We emphasize at the outset of this subsection that all elements of

G are faithfully represented within somematrix algebraFk×k. Whenever perturbative noise is considered,

it is always assumed to be multiplicative.

The spectral method relates synchronization problems to eigenproblems on a matrix, which is

essentially a generalized adjacency matrix of the synchronization graph. Let Y ∈ F
nk×nk be a block

matrix such that the (i, j)th block Yij, i < j, is the measurement of the ratio gig
−1
j . If the measurement

is clean, perturbed (multiplicatively) or corrupted, we assign Yji = Y−1
ij . If the measurement is missing,

we set Yij = Yji = 0k×k. The diagonal blocks are Yii = Ik for i = 1, . . . , n. Essentially, the block

on the ith row of blocks and jth column of blocks is a measurement of the ratio of gig
−1
j . Since these

measurements label the edges of the synchronization graph, this is a generalization of the notion of the

adjacency matrix of a graph.

In the absence of noise, it is evident that Y = gg−1. Here, g ∈ F
nk×k is the column block matrix

with gi as its ith block and g
−1 ∈ F

k×nk is the row block matrix with g−1
i as its ith block. It is immediate

that Yg = ng and that n is the only non-zero eigenvalue of Y. Thus, the columns of g form a basis of

the eigenspace of Y associated with n. Furthermore, the kernel of Y is the orthogonal complement of

the space spanned by the columns of
(
g−1
)� ∈ F

nk×k. Thus, Fn is the direct sum of the kernel of Y and
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the eigenspace of Y associated with n. Overall, in the absence of noise, the eigenspaces structure of the

measurement matrix Y contains information on g, and therefore contains information on the absolute

group elements.

In the presence of noise, the measurement matrix Y can be viewed as a disrupted form of a

hypothetical, clean measurement matrix of the form we described in the previous paragraph. The

eigenspaces of the measurement matrix can also be viewed as disruptions of the eigenspaces of this

hypothetical matrix. If the disruption is mild enough, the eigenspaces of the top k eigenvalues of Y

is expected to preserve enough of the information of the eigenspace associated with the eigenvalue n

of this hypothetical matrix. By projecting these top eigenvectors of the measurement matrix onto the

representation of G, it is possible to obtain an estimate of the absolute group elements. This step may

also somewhat alleviate the disruption of the eigenspace caused by the noise. The resulting estimation

method can be formulated as a two-step procedure:

1. Find a set of unit eigenvectors of Y associated with its largest k eigenvectors. These can be

placed in a matrix U ∈ R
nk×k.

2. Project these eigenvectors onto G.

Implementing this two-step method is fairly straightforward using existing numerical algebra

libraries. The first step can be easily implemented using all modern numerical eigenproblem solvers.

The second step, often referred to as ‘rounding’ in the synchronization literature (19; 22), can be more

involved, depending largely on G and its chosen representation. A few examples will serve to illustrate

the range in the complexity of this task.

EXAMPLE 1. If G = SO(2) is represented as unit complex numbers, the result of the first step is a unit

vector of complex numbers. Simply dividing each of its entries by its complex norm yields a vector of

unit complex numbers. This is possible, provided the disruption caused by the noise is mild enough so

as to ensure all entries of the eigenvector are non-zero. This rounding procedure was used to great effect

in SO(2) synchronization, e.g. (16; 22).

EXAMPLE 2. If G = SO(k) is represented as real orthogonal k× k matrices, the result of the first step is a

nk× k matrix which can be treated as a column block matrix with k× k blocks. The projection is carried

out block-wise. The SVD of each block is calculated, yielding a decomposition B = UΣV�, where U
and V are orthogonal matrices and Σ is a diagonal matrix. The rounding step is completed by replacing

every block with the image of the map B 
→ Udiag
(
1, . . . , 1, det

(
UV�))V�.

EXAMPLE 3. In (1), G = SE(3) was represented on the real 4 × 4 matrices of the form

[
R t

0� 1

]
. (3.1)

This matrix represents (R, t) ∈ SE(3), where R is a rotation represented as R, a real 3 × 3 orthogonal

matrix with determinant of 1. Consider the matrix V ∈ R
4n×4, the columns of which are the top

eigenvectors of the measurement matrix which were calculated in the first step. The rounding procedure

considered by (1) begins by extracting every fourth row of V. Denoting the resulting R
n×4 matrix by

V4, all solutions of V4u = 0 are found by finding an orthonormal basis u1,u2,u3 for the kernel of V4.

A unit vector solution for V4u4 = (1, . . . , 1)� is also found. Since nothing guarantees that solutions to

these equations even exist, they are approximated in the least squares sense. Let U ∈ R
4×4 be the matrix
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with columns u1,u2,u3,u4. Let V
′ = VU and substitute every forth row of the resulting matrix with

(0, 0, 0, 1). Now, each of the 4× 4 blocks of V′ has almost the form (3.1). If this matrix is complex, zero

out the imaginary part of every entry. Finally, the top 3 × 3 submatrix of every block is projected onto

SO(3) by utilizing its SVD in the manner described in Example 2.

Non-linear transformations are employed in all three examples. However, the simplicity of the

rounding step in Example 1 for SO(2) is contrasted by the multi-step, complicated procedure shown

in the Example 3 for SE(3), the focus of this paper. This difference stems from inherent features of the

representation of the group. The group SO(2) is embedded within the complex plane in a way which

respects the algebraic properties of the representation space. First, the norm of a complex number is

directly related to the conjugation operation, i.e. |z| =
√
zz∗ for any z ∈ C. The submanifold of

the complex plane into which SO(2) is embedded, the unit circle, is entirely defined in terms of this

conjugation operation, i.e. T = {z ∈ C | zz∗ = 1}. Second, the embedding takes into consideration the

∗-algebra structure of the complex plane. The group inverse is the conjugation operation.

These features do not hold for the matrix representation (3.1) of SE(3). As we discuss in greater

detail in Appendix A, this representation merely embeds SE(3) within the multiplicative group of the

matrix algebra of real 4 × 4 matrices. It does not rely on or respect the other algebraic structures of the

representation space. Merely transposing (3.1) almost always yields a matrix which does not represent

an element of SE(3).

We now discuss the nature of the rounding procedure. On the surface, all it does is ensure that the

output of the spectral method are elements of the group, but a closer look reveals a more complicated

situation. In the noiseless case, which is simplest, we saw that the measurement matrix has a single non-

zero eigenvalue. We consider now the linear isometries of its eigenspace with respect to the standard

Euclidean norm. These isometries form a compact group. Numerical linear algebra tools ensure we shall

obtain unit eigenvectors of the measurement matrix. These may be 1
n
g, where the 1

n
term ensures these

columns are unit eigenvectors. However, more often they are expected to be 1
n
gS, where S is an isometry

of the eigenspace of the non-zero eigenvalue of the measurement matrix.

Let us consider the three examples above. In SO(2) synchronization (Example 1), the group of

isometries is SO(2) itself, represented by unit complex numbers. Indeed, since the eigenspace is one-

dimensional, every isometry has the form x 
→ xx for x ∈ C. By substituting xx into the standard

Euclidean norm, it is easy to show that it is an isometry if and only if ‖xx‖ = ‖x‖ |x|, which holds if and
only if |x| = 1. Therefore, x ∈ SO(2). It follows that in the noiseless case, the spectral method recovers

the absolute group elements up to a right-multiplication by an element of SO(2). And so, in the presence

of noise, the rounding step alleviates a disruption in the eigenspace structure and nothing more.

This is not the case in the other two examples. There, the rounding has to perform other tasks, which

are unrelated to the disruption of the eigenspaces caused by the noise and will be required even in its

absence. Again, it is instructive to consider the noiseless case first. In SO(k) synchronization (Example 2),

the non-zero eigenspace is a k-dimensional subspace of Rn and its isometry group with respect to the

standard Euclidean norm on R
n is O(k), the group of orthogonal transformations of Rk. The group

SO(k) is a proper subgroup of O(k) and so the unit eigenvectors in the eigenspace can be separated

into two disjoint populations. The first population is obtained by applying SO(k) to the columns of 1
n
g

from the right. The second can be obtained by applying elements of O(k) \ SO(k). This means that

being a solution to the synchronization problem implies being a basis of an eigenspace of the non-zero

eigenvalue of the measurement matrix, but the converse does not hold. We refer to this phenomena

as the eigenspace-synchronization gap. Therefore, in the presence of noise, the rounding procedure

performs at least the following two tasks. It alleviates the disruption to the eigenspace structure and

ensures that the resulting estimate of the absolute group elements is indeed the absolute group elements
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up to a multiplication by an arbitrary element of G from the right. The latter can no longer be taken for

granted.

These issues are exacerbated considerably in SE(3) synchronization (Example 3), where the group

is non-compact. There, even in the absence of noise, the group SE(3) is not even a subgroup of the

isometries of the eigenspace. This is the case because the group of isometries is compact, while SE(3)

is not. In this case, the eigenspace-synchronization gap is not so much a gap as an abyss. The domain of

the rounding procedure is a compact manifold, matrices formed with four unit eigenvectors as columns.

Its codomain is a non-compact manifold, block matrices with blocks of the form (3.1). The rounding

procedure maps this compact domain to this non-compact codomain. Thus, even in the absence of noise,

for SE(3) synchronization it is another large step away from the neat correspondence exhibited in SO(2)

synchronization (Example 1) between eigenvectors of the measurement matrix and estimates of the

absolute group elements. In the presence of noise, it does a great deal more than handling the eigenspace

disruption.

In closing this subsection, we digress to note an important distinction between the way we introduced

the spectral method and the way it is often discussed in the literature. In the literature on synchronization,

the relationship between the eigenvectors of the noisy measurement matrix and an estimate of the

absolute group elements is often arrived at via optimization terminology. For instance, the initial goal of

both (1) and (22) is an estimate the absolute group elements obtained by solving a certain least squares

problem over ĝ ∈ Gn. Here,Gn is the set of all column block matrices with blocks representing elements

ofG. Since the domain of the problem is non-convex, this is a challenging optimization problem to solve

in practice. This constraint is therefore changed to all matrices satisfying ĝ∗̂g = nIk. In the case of (22),

which worked on SO(2) represented on the unit complex numbers, this change in the constraint is a

relaxation of the constraint of the original least squares problem. That is, the feasible set of the original

problem is replaced by a larger set. However, this change is not a relaxation of a constraint in (1), which

worked on SE(3) with the matrix representation (3.1). Regardless of that, in both cases, the new least

squares problem turns out to be easily solved by finding the eigenvectors of the measurement matrix.

We note this here merely to point out that the optimization perspective provides a useful heuristic for

deriving practically useful estimation methods for synchronization problems. However, it does not offer

an immediate way to prove when and why these methods work. We here treat the noisy measurement

matrix as a disrupted version of a clean, complete measurement matrix, and seek to approximate the

eigenspaces of the latter using the eigenspaces of the former. In the optimization perspective, the very

same eigenproblem is considered as a relaxed optimization problem, which one hopes approximates the

solution of the non-convex problem. This is a difference without much consequence to the governing

mathematics of the spectral method. Regardless of the heuristic used to derive the method, considerable

effort is required to come up with and prove theoretical guarantees on the performance of the spectral

method. Indeed, there is a rich literature of formal characterizations of when and how solutions of

the eigenproblem provide good estimates of the absolute orientations, e.g. (14; 15; 19; 22) with many

mathematical tools, including random matrix theory and perturbation theory, being brought to bear on

these questions.

3.3 A spectral approach to SE(3) synchronization via dual quaternion representation

In Section 3.2, we discussed the contrast between the rounding step in SO(2) and SE(3) synchronization

in Example 1 and Example 3. We identified two types of differences between them. First, their respective

representations have different features. For instance, the representation of SO(2) agreed with involutive

algebraic structure of the space it was embedded in, whereas the representation of SE(3) did not. Second,
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in a sense, the rounding does more in the SE(3) case than in the SO(2) case. We now utilize the material

we surveyed in Section 2 to develop a spectral synchronization method for SE(3), which is more similar

to the spectral method for SO(2) in both these respects. We note in passing that the quaternions and the

dual quaternions were used in the past to address synchronization problems (9; 24), but this is the first

time an analog of the spectral method for synchronization was developed using dual quaternions.

All the necessary components of the spectral method are present over the dual quaternions. Elements

of SE(3) are represented as unit dual quaternions, as we surveyed in Section 2.4. This representation

agrees with both the multiplication operation of the algebra and its involution, since the dual quaternion

conjugate of unit dual quaternion is its inverse. The generalized adjacency matrix of the synchronization

graph is a matrix of dual quaternions, rather than a block matrix with real or complex entries. The

resulting matrix is Hermitian, in the dual quaternion sense. By the spectral theorem for dual quaternion

matrices, it has a eigenvector decomposition, as described in Section 2.5.

Now, given a clean, complete set of measurements, the measurement matrix has the form Y = gg∗,

where g =
(
g1, . . . , gn

)�
is a column vector of unit dual quaternions and g∗ is its conjugate transpose.

In the presence of noise, we consider the dual quaternion eigenvector of the measurement matrix

corresponding to its top eigenvalue as an approximation of g, the eigenvector of the clean measurement

matrix. Here, ‘top’ is with respect to the order of eigenvalues established in Theorem 10. This eigenvector

can be approximated using the power method we surveyed in Section 2.6. The rounding is carried out by

applying the map defined in Theorem 9 to each entry of this eigenvector. This rounding procedure stems

directly from the close relationship between the algebraic structure and geometry of the dual quaternion

algebra and the unit dual quaternions, as we discussed at the end of Section 2.4. If the noise is mild

enough, all entries of the top eigenvector are expected to be invertible, in which case the projection

amounts to applying the map q 
→ q
|q| entry-wise to the eigenvector.

Overall, we obtain the following two-step algorithm:

1. Find the eigenvector of Y corresponding to its largest eigenvalue, in the order established in

Theorem 11. Use the power iteration we surveyed in Section 2.6. Denote this eigenvector by

ĝ =
(
ĝ1, . . . , ĝn

)�
.

2. Carry out the substitution ĝj → ĝj

|gj| on each of its entries (j = 1, . . . , n).

As we demonstrate in Section 4, this algorithm yields comparable performance with the state-of-

the-art spectral approach to SE(3) synchronization described in (1). We emphasize the simplicity of the

rounding step compared with the one employed by (1), which we described in Example 3. Its simplicity

is owed entirely to the close relationship between SE(3) and the algebra of dual quaternions. We also

emphasize that here the rounding procedure does nothing more than handle the disruption the noise

causes to the eigenspaces of the clean measurement matrix. Indeed, as we discussed in Section 2.7, the

isometry group of the eigenspaces of Y is actually the unit dual quaternions and as we discussed in

Section 2.4, each unit dual quaternion represents an element of SE(3). Thus, there is no eigenspace-

synchronization gap, despite the non-compact setting. Our method enjoys similar performance to the

current state of the art in spectral synchronization for SE(3), yet reaps the benefits of embedding SE(3)

in an algebra that is much closer to it in structure.

Taken together, the resulting spectral method is remarkably similar to the spectral method of SO(2)

we showcased in Example 1. This is evident in two places. First, in the properties of the representing

space and its relationship to the subset which represents the group. Second, in the underlying tasks

performed by the rounding step. This similarity is especially remarkable when we consider the fact
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that SO(2) is a compact, commutative group, while SE(3) is a non-compact and non-commutative

group.

Finally, we note that (7) addressed a synchronization problem with selection noise, though they do

not use the word synchronization at all. They proposed an iterative method, which is distinct from the

spectral method we constructed here, both in its form and its theoretical underpinnings. First, it is not

the spectral method as we conceived it here. At every iteration, the iteration (2.8) is used to approximate

the eigenvector of some matrix of dual quaternions. Second, their iterative method was motivated by

the need to solve an explicit optimization problem over the dual quaternions, whereas we relied on the

heuristic picture of the eigenspaces of a matrix being disrupted by noise.

4. Numerical experiments

We run several numerical experiments demonstrating the utility of the dual quaternions in synchroniza-

tion problems. We begin in Section 4.1 by describing how the synthetic synchronization measurement

matrices were simulated in our experiments and describe our experimental procedure. In Section 4.2

and Section 4.3 we show and discuss the results of the synthetic data experiments. They demonstrate

that using the dual quaternions to represent SE(3) yields comparable estimates with the current state-of-

the-art spectral synchronization method (1) while enjoying the simpler rounding procedure obtained

by embedding SE(3) in the algebra of dual quaternions. Finally, in Section 4.4, we consider the

computational efficiency of our method. We discuss the computational efficiency of our implementation

of the algebra of dual quaternions and of the current state of the art. We show that our approach has better

computational performance overall than the current state of the art, and that our rounding procedure is

faster than the current state of the art by an order of magnitude. We obtained this result even though our

implementation is not optimal, which indicates that our approach has untapped potential when it comes

to its computational efficiency.

4.1 Synthetic experiments set-up

We conducted several experiments on synthetic measurements matrices, modelled after the synthetic data

experiments carried out in (1), the current state of the art in SE(3) synchronization. Probability functions

on SE(3) were defined using the angle-axis-translation representation discussed in Appendix A. Ground

truth elements g1, . . . , gn ∈ SE(3) were drawn from i.i.d. random variables. The angles were indepen-

dently and uniformly distributed over [0, 2π). The axis was independently and uniformly distributed over

S2. Translations of the form t =
(
t1, t2, t3

)� ∈ R
3 were independently distributed with t1, t2 and t3 being

i.i.d. standard Gaussian random variables. The measurement matrix Y ∈ DH
n×n follows the following

model:

Yij =

⎧
⎪⎪«
⎪⎪¬

eij

(
sijgig

−1
j εi,j +

(
1 − sij

)
cij

)
1 ≤ i < j ≤ n,

1 i = j,

Y∗
ji 1 ≤ j < i ≤ n.

(4.1)

Here,
(
eij | 1 ≤ i < j ≤ n

)
are i.i.d Bernoulli random variables with parameter p and

(
sij | 1 ≤ i < j ≤

n
)
are i.i.d. are the same with parameter q. The former are indicators of existing measurements and the

latter are indicators of entries which were not corrupted. Denoting by ◦ the entry-wise product of two

matrices of elements of SE(3), the matrices E =
(
eij
)
, S =

(
sij
)
and E◦S =

(
eijsij

)
are all the adjacency
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matrices of random graphs following the Erdoős–Rényi model with parameter p, q and pq, respectively.

The corrupted entries
(
cij | 1 ≤ i < j ≤ n

)
are i.i.d. with an angle in degrees normally distributed with

zero mean and variance σ 2
r , axis distributed uniformly over S2 and translation with t1, t2, t3 being i.i.d.

Gaussian with zero mean and variance σ 2
t . All random variables mentioned above were also independent

of each other.

Given a ground truth g ∈ SE(3)n and an estimate ĝ ∈ SE(3)n, we measure the quality of the estimate

as follows. Due to the symmetry in the observations, we have to align g and ĝ in the following sense.

We find a g ∈ SE(3) such that a distance metric between g and ĝg is minimized, where ĝg is the result

of multiplying by g from the right every entry of ĝ. In Appendix B, we discuss the specifics, including

the distance metric we used. Here, we describe the procedure itself. First, we assume that every element

of SE(3) is represented by (q, t) with q ∈ H being a unit quaternion with non-negative first coordinate

as discussed in Section 2.3 and t ∈ R
3. Second, if g = (q, t), g =

((
q1, t1

)
, . . . ,

(
qn, tn

))
and ĝ =((

q̂1 ,̂ t1
)
, . . . ,

(
q̂n ,̂ tn

))
, we have

q =
s

|s|
, s =

n∑

j=1

q̂∗
j qj, (4.2)

and

t =
1

n

n∑

j=1

ϕ

(
q̂∗
j

) (
tj − t̂j

)
. (4.3)

This alignment procedure was used on the estimate obtained by both methods employed in our

experiments, our dual quaternion spectral synchronization and the spectral method of (1), which used

the matrix representation (3.1). We note that our alignment method is considerably simpler to apply than

the alignment method utilized by (1), whose numerical experiments inspired our own.

All experiments were repeated 50 times, each with freshly generated ground truth and noise

realization with the specified experimental parameters. In all our experiments, we used exactly 20

iterations of the dual quaternion power iteration. From each estimate we extracted the entry-wise error,

after alignment, for the rotations and translations, separately. For the rotations, the error was calculated as

d
(
q1, q2

)
= 2 arccos

(
2
〈
q1, q2

〉2 − 1
)
, where

〈
q1, q2

〉
is the Euclidean inner product applied to q1 and q2

considered as elements ofR4 with the obvious embedding. See Remark 1 at the end of Appendix B for an

explanation of this metric. For the translations, we used the Euclidean distance, d
(
t1, t2

)
=
∥∥t1 − t2

∥∥.
For each, the mean, minimum and maximum error were calculated and each of these measures was

averaged over the 50 repeats. The plotted data for every quantity are always its mean over the repeats.

We described the approach of (1) in Example 3. Both estimation methods were implemented

in Python. The original implementation of (1) was in MATLAB. We took care to use equivalent

functions to theirs in the Python ecosystem. Code used to simulate the figures below is available at

https://github.com/idohadi/dqsync-python/.

4.2 Response to missing entries and perturbative noise

In Fig. 2(a), we show the results with increasing levels of multiplicative noise on the rotations and no

noise on the translations. In Fig. 2(b), we show the results with increasing levels of multiplicative noise on

the translations and no noise on the rotations. Consistent with the semidirect product structure of SE(3),
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FIG. 2. Synthetic data experiments with missing entries and perturbative noise. Throughout experiments, problem size is

n = 100 and there are no corrupted entries (q = 1). Every data point is an average over 50 repeats. The results using the dual

quaternion representation are denoted DQ and using the matrix representation (3.1) are denoted MAT.
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in Fig. 2(a) the estimate of the translational component is also affected by noise, whereas in Fig. 2(b)

the quality of the estimate of the rotations is basically flat, unaffected by the noise. When we vary the

level of noise on both the rotational and translational part in Fig. 2(c), the error rises on both components.

Overall, using the dual quaternion representation of SE(3) yieldsmarginally bettermean entry-wise error,

especially in the estimate of the rotation and when more entries are missing (p = 0.05 vs. p = 0.3). It

is also evident that using the dual quaternions yields somewhat stabler estimates, as indicated by the

smoother dual quaternion curves evident in Fig. 2. This may be a feature of our implementation, rather

than the method, as these peaks are not evident in the plots shown in (1). All trends we discussed above

are also evident in minimum andmaximum entry-wise errors.We conclude that the twomethods perform

comparably and that the dual quaternions can be used effectively to represent SE(3) in applied estimation

problems.

4.3 Response to corruptive noise

In Fig. 3(a), we used no perturbative noise but thereweremissing entries. In Fig. 3(b), there are nomissing

entries but there is perturbative noise. The same trends are evident in both of them. First, the rotation

estimate is better using the matrix representation (3.1), while the translation estimate is better using the

dual quaternion representation. Second, the differences in estimate quality are larger in Fig. 3(a) than in

Fig. 3(b). Overall, these experiments indicate no clear advantage to either method, but do underscore the

fact the dual quaternions can be used effectively to represent SE(3) in applied estimation problems.

4.4 Runtime

In Fig. 4 we show the runtime of our spectral approach to SE(3) synchronization and that of (1) for

increasing problem size n. We show the runtime of the eigenproblem solver, the rounding procedure

and the total running time which combines both. The eigenproblem solver in our method is the dual

quaternion power iteration and an optimized numerical eigenproblem solver provided by the scipy 

Python library. Each data point is the average running time of 50 repeats. Here, a single repeat starts by

generating a fresh synchronization matrix with new ground truth and noise realization with no corruptive

noise, p = 0.05, σr = 20◦ and σt = 0.2. A discussion of our implementation of the algebra of dual

quaternions is necessary to fully appreciate these results.

The algebra of real 4× 4 matrices, into which (1) embed SE(3), can be implemented using standard

numerical algebra libraries and the same holds for block matrices with blocks in this algebra. A single

element of this algebra is stored in 16 real floating points numbers. It takes 16 floating point operations

to add two elements of this algebra and 112 (43 multiplications and 42 · 3 additions) operations to

multiply them. In an optimized implementation, only eight real floating points numbers are stored to

represent a single dual quaternion. It takes eight floating point operations to add two dual quaternions.

Multiplying a pair of quaternions takes 28 (42 multiplications and 4 ·3 additions or subtractions) floating
point operations. Therefore, it takes 88 floating points operations to multiply a pair of dual quaternions.

Thus, in an optimized implementation, dual quaternions require half the storage, half the floating points

operations for addition and roughly a fifth less floating points operations for multiplication, compared

with real 4 × 4 matrices.

In implementing the algebra of dual quaternions, we used the fact that the algebra of dual quaternions

is isomorphic to the tensor productH⊗
R
D of the algebra of quaternions and the algebra of dual numbers,

both algebras over the reals. The algebra of quaternions has a known embedding into the algebra of

complex 2 × 2 matrices (8, Sec. 2.3). The algebra of dual numbers can be realized as the subalgebra

of the real 2 × 2 matrices generated by the identity matrix and a nilpotent 2 × 2 (satisfying X2 = 0).
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FIG. 3. Synthetic data experiments with corruptive noise. Throughout experiments, problem size is n = 100. Every data point is

an average over 50 repeats. The results using the dual quaternion representation are denotedDQ and using the matrix representation

(3.1) are denoted MAT.

By choosing explicit generators for these two matrix algebras, the algebra of dual quaternions can then

be represented by the algebra generated by the tensor product (that is, the Kronecker product) of these

generators. The result is a representation of the dual quaternions on a subalgebra of the complex 4 × 4

matrices.

The pertinent advantage of this representation of the dual quaternions is the ease of implementation

it provides. The matrix addition and product of the complex 4 × 4 matrices correspond to their dual

quaternion counterparts. Thus, using a standard numerical linear algebra library, we can implement

algorithms which require addition and multiplication of dual quaternions. Furthermore, modules of
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TABLE 1 Storage and floating point operations for basic operations of various representing spaces of

dual quaternions. Under storage we list the number of real numbers stored and floating point operations

are the number of operations on real numbers.

Representing algebra Storage Addition Multiplication

R
4×4 16 16 112

DH (optimized) 8 8 88

DH ⊆ C
4×4 32 32 288

botrule

FIG. 4. Empirical runtime in seconds for the numerical eigenproblem solver (left), rounding procedure (middle) and entire spectral

synchronization problem (right) when using the dual quaternion representation (DQ) and the matrix representation (3.1) (MAT).

vectors or matrices of dual quaternions can also be easily implemented using block matrices with blocks

taken from the algebra of complex 4 × 4 matrices. Its disadvantages are as follows. First, this is an

algebra embedding that is not a ∗-algebra embedding. In practice, this means we have to implement a

dedicated function for the dual quaternion conjugation operation. Second, and this is most pertinent to our

discussion here, the resulting performance is not optimal from a computational efficiency standpoint. A

single dual quaternion element is stored as 32 real floating point numbers. Addition requires 32 floating

point operations on real numbers. Multiplication requires 288 floating point operations on real numbers.

This is considerably worse even than the amount of storage and floating point operations required for

basic operations in the matrix embedding of SE(3). In Table 1, we summarize the discussion on the

storage and the floating point operations required for various representing spaces of SE(3).

We sought to demonstrate the viability of the dual quaternion embedding for spectral synchro-

nization, rather than its superior computational performance. Our implementation of the algebra of

dual quaternions was therefore unoptimized. Yet, viewing the results in Fig. 4 with that knowledge in

hand, we see that even our unoptimized implementation of the dual quaternions challenges the current

state of the art in spectral synchronization for SE(3). The rounding procedure is consistently an order

of magnitude faster. In addition, the dual quaternion power iteration has inferior performance to the

optimized eigenproblem solver used in the matrix representation, but the two are fairly close. Owing

mainly to its superior performance in the rounding step, the total running time of the dual quaternion

approach to synchronization is actually better. Only when the problem size is around n = 5000, the

matrix embedding provides better performance, due to the better performance of its eigenproblem solver.
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Beyond the superior performance demonstrated already, taking these results in context suggests that a

dual quaternion approach to spectral synchronization has the potential to be even more computationally

efficient than the current state of the art, including for larger problem sizes.

Data availability

The data underlying this article are available in the GitHub repository dqsync-python at https://

github.com/idohadi/dqsync-python/.
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A. Comparison of representations of SE(3)

We compare the properties of three representations of SE(3) which were used in applied mathematics

work. Our discussion is skewed towards properties which we think are central to how notions from linear

algebra can be used to solve applied problems over SE(3).

The most straightforward way to represent elements of SE(3) is as affine transformations, a pair

(R, t) ∈ SO(3)�R
3. These may come in several variants, differing in the way the rotation is represented.

Here we survey the axis-angle and rotation matrix representations.

In the axis-angle representation, a rotation R is represented by the axis v ∈ S2 ⊂ R
3 of the

rotation and the angle θ (in radians) by which vectors are rotated around v. Both can be concisely

encapsulated in a rotation vector x = θv ∈ R
3, which are elements of B3 (0, 2π), where B3 (x, r) ={

y ∈ R
3
∣∣ ‖x − y‖2 < r

}
. Every pair of a rotation vector and a translation can represent an element of

SE(3) and one can easily extend that to pairs of the form R
3 × R

3 by taking the Euclidean norm of the

rotation vector modulo 2π . Thus, we say that representation space, the space of all elements of the

form of the given representation, is R3 × R
3. The representing subset, the subset of the representation

space into which SE(3) is embedded, is B3 (0, 2π) × R
3. Furthermore, there is projection from the

representation space to the representation subset, mapping every element of the representation space to

the representing subset. We refer to this representation as the axis-angle-translation representation.

From all this it follows in particular that in this representation the dimension of the representation

space is 6, which matches the manifold dimension of SE(3), which makes it the most parsimonious

representation we will survey. However, there is no direct way to calculate the product of two elements

of SE(3) in this representation. It is necessary to convert them into one of the other representations

we will survey. We do not know of any established way to construct something like an algebra over

this representation space and consequently we know of no such way to construct matrix algebras and

investigate their spectral properties.

The other SO(3) representation we consider are rotation matrices, real 3×3 orthogonal matrices with

a determinant of 1. This representation comes with a multiplicative structure of matrix multiplication and

it is embedded in the matrix algebra of all real 3× 3 matrices. The representation space of SE(3) is then

R
3×3 ×R

3 ∼= R
12. Its multiplicative and vector space structure can be identified with the set of all affine

transformations of R3, transformations of the form x 
→ Ax + t, where A is a linear transformation and

t ∈ R
3. This set has both an addition of and multiplication operations, defined by adding or composing,

respectively, two affine transformations. Despite this, it does not form a ring, because these two binary
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operations do not satisfy one of the distributive properties. Borrowing an example from (4), suppose that(
A1, t1

)
and

(
0, t2

)
are two affine transformations. Here, 0 is the zero linear transformation and t2 �= 0.

We have

(
0, t2

)
◦
((
A1, t1

)
+
(
A1, t1

))
=
(
0, t2

)
,

but
(
0, t2

)
◦
(
A1, t1

)
+
(
0, t2

)
◦
(
A1, t1

)
= 2t2.

While not being a ring, the affine transformations form a different algebraic structure, that of a near-ring.

As far as we know, matrix spaces and spectral decompositions were not studied over near-rings in general

and over the affine transformations in particular. Furthermore, to the best of our knowledge, a projection

of affine transformations onto the representing subset has not been worked out in the literature.

Finally, SE(3) has a group embedding within the matrix algebra R4×4. An element (R, t) ∈ SE(3),

where R is represented as R, real 3 × 3 orthogonal matrix with determinant of 1, can be represented as

a block matrix
[
R t

0� 1

]
. (A.1)

Rectangular block matrix where all blocks are of this form obviously belong to the matrix algebra

R
4n×4n, which definitely has a spectral decomposition theorem and many other matrix decompositions.

Furthermore, an invertible A ∈ R
4×4 can also be projected onto the representing subset by a two-step

procedure. First, finding a invertible matrixB ∈ R
4×4 such that thematrixAB has (0, 0, 0, 1) in its bottom

row. This amounts to changing the coordinates of the matrix A to one which satisfies this particular

constraint on the bottom row. Second, denoting by (BA)3×3 the upper left 3 × 3 submatrix of BA,

one takes its singular value decomposition (BA)3×3 = VSU�, where S is diagonal and U and V are

orthogonal. To obtain a matrix of the form (A.1), replace (BA)3×3 with Vdiag (1, 1,det (VU))V�.
The great advantage of the matrix representation (A.1) is the fact that its representation space is

a matrix algebra. This allows the use of the familiar linear algebraic toolkit and in particular allows

one to define the projection we described above. However, this is also the source of the greatest

disadvantage. The group SE(3) is embedded in the multiplicative group of R4×4, and no more. The

other algebraic structures defined on R
4×4 are inconsistent with the embedding. Merely transposing

(A.1) would generally take one out of the representing subspace, indicating the involution of R4×4 plays

no role in representing SE(3). Furthermore, the relationship between the projection and group structure is

hard to characterize. This last problem comes to the fore in the situation discussed in Section 3.2, where

we describe the projection onto SE(3) of an entire column block matrix with R4×4 blocks, which is used

in an actual application (1). Perhaps underscoring the gap between SE(3) and the representation space in

this case is the fact SE(3) is a manifold of dimension 6, while the representation space is 16-dimensional.

Consider the unit dual quaternion representation of SE(3) we surveyed in Section 2.4. We argue that

the representation space is very close to the structure of SE(3), yet similar enough to ordinary vector

spaces to allow some of the same linear-algebraic notions that are so useful to the applied mathematician

to be brought to bear on applied problems. The representation space is very close to the structure of

SE(3) in two ways. First, by the fact nearly all dual quaternions are elements of SE(3) scaled by dual

numbers, as shown by Theorem 9 of (7). Second, the inverse of an element of SE(3) represented on the
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unit dual quaternion is its dual quaternion conjugate, as we saw Section 2.4. In this way, the involutive

algebra structure of the dual quaternions is intimately tied with the group structure of SE(3). Most

importantly, despite the non-commutativity of this algebra, it is sufficiently simple to allow one to

establish a spectral theorem as we saw in Section 2.5 and also the derivation of a numerical schemes

to approximate eigenvectors, like we surveyed in Section 2.6. We suggest that other numerical schemes,

like the Arnoldi iteration and other Krylov subspace methods, may also be generalizable to the dual

quaternions.

Taken together, these properties indicate that the dual quaternion algebra balances well the difficulties

incurred by working over non-commutative algebra with the advantages it offers.

B. Alignment of two dual quaternion vectors

Let g =
(
g1, . . . , gn

)� ∈ SE(3)n and ĝ =
(
ĝ1, . . . , ĝn

)� ∈ SE(3)n. Assume that elements of SE(3)

are represented as gj =
(
qj, tj

)
and ĝj =

(
q̂j ,̂ tj

)
, where qj and q̂j are unit quaternions with a non-

negative first coordinate, representing a rotation as we discuss in Section 2.4, and tj and t̂j are translations

represented as vectors in R3. Recall proposition 7 and the double cover ϕ defined there. Aligning g and

ĝ amounts to finding g = (q, t) solving

min
g∈SE(3)

⎧
«
¬

n∑

j=1

∥∥∥q̂jq − qj

∥∥∥
2

F
+

n∑

j=1

∥∥∥ϕ(̂qj)(t) + t̂j − tj

∥∥∥
2

2

«
¬
­ . (B.1)

Here, q̂j, qj and q are real 3×3 orthogonal matrices with determinant of 1 representing the same elements

of SO(3) as q̂j, qj and q. These matrices are constructed by representing ϕ (q) in the standard basis of

R
3. Also, ‖·‖2 is the Euclidean norm and ‖·‖F is the Frobenius norm. Solving (B.1) amounts to finding

g minimizing the sum of squared distances between corresponding rotations of g and ĝ and a sum of

squared distances between the translations of g and ĝ.

The two sums in (B.1) are two decoupled optimization problems, since the left one depends only on

q and the right one only on t. We consider these two decoupled problems separately. We begin with the

translation sum. Let F(t) be the right sum in (B.1). We wish to find the minimum of F in R
3. Because

the Euclidean norm is preserved under orthogonal transformations and ϕ is a homomorphism, F can be

written as

F(t) =
n∑

j=1

∥∥∥t + ϕ

(
q̂∗
j

) (
t̂j − tj

)∥∥∥
2
.

Fermat’s theorem then yields that its exterema is

t =
1

n

n∑

j=1

ϕ

(
q̂∗
j

) (
tj − t̂j

)
,

exactly as in (4.3). That it is a minimum follows from the fact F is convex and defined on R
3, and

therefore can have no local maxima.
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The rotation sum is slightly more involved. First, we note that for anyR1 and R2 two real 3 × 3

orthogonal matrices with determinant of 1 we have

∥∥R1 − R2

∥∥2
F

=
∥∥R1

∥∥2
F

+
∥∥R2

∥∥2
F

− 2 tr
(
R1R

�
2

)
= 3 − 2 tr

(
R�
1 R2

)
.

A minimizer of the left sum in (B.1) is therefore a maximizer over the unit quaternions with non-negative

first coordinate of

G1(q) =
n∑

j=1

tr
(
q�q̂�

j qj

)
.

Finally, let q1 and q2 are quaternions representing the same elements of SO(3) asR1 andR2, respectively.

As we argue below, the following identity holds:

tr
(
R�
1 R2

)
= 4

〈
q1, q2

〉2 − 1, (B.2)

where 〈·, ·〉 is the Euclidean inner product on R
4 applied to quaternions via their obvious identification

with R
4. Therefore, the maximizer of G1 over the unit quaternions with non-negative first coordinate is

the maximizer over the same domain of

G(q) =
n∑

j=1

〈
q̂jq, qj

〉
.

We note that

〈
q1, q2

〉
=

1

2

(
q∗
1q2 + q∗

2q1
)
,

and so

〈
q1q, q2

〉
=

1

2

(
q∗q∗

1q2 + q∗
2q1q

)
=

1

2

(
q∗ (q∗

1q2
)
+
(
q∗
1q2
)∗
q
)

=
〈
q, q∗

1q2
〉
.

Therefore, for any unit quaternion with non-negative first coordinate q we have

G(q) =
n∑

j=1

〈
q, q̂∗

j qj

〉
=
〈
q,

n∑

j=1

q̂∗
j qj

〉
≤ ‖q‖2

∥∥∥∥∥∥

n∑

j=1

q̂∗
j qj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥

n∑

j=1

q̂∗
j qj

∥∥∥∥∥∥
2

.

In the above we used the Cauchy–Schwartz inequality applied to the quaternions, again identified as

elements of R4. Simple substitution into G shows that the q defined in (4.2) is a unit quaternion with

non-negative first coordinate which achieves this bound.

It remains to prove (B.2). It follows from the following lemma:
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LEMMA 12. Let q be a unit quaternion. Let R be the real 3 × 3 orthogonal matrix with determinant of 1

formed by representing ϕ(q) using the standard basis of R3. If q = a+ bi + cj + dk, then

tr (R) = 4a2 − 1.

We obtain (B.2) as a corollary of Lemma 12 due to a combination of two facts. First, R�
1 R in (B.2)

expressed in quaternions is q∗
1q2. Second, as can be worked out from (2.4), the first coordinate of the

product q∗
1q2 is

〈
q1, q2

〉
.

Proof. Using the axis-angle representation of R, we consider it a rotation around axis r ∈ S2 by angle

θ . From (11, Appendix A), tr (R) = 2 cos θ + 1, while (11, eq. (6)) yields a = cos
θ
2
. Therefore, using

the trigonometric identity cos θ = 2 cos
2 θ
2

− 1, we obtain

4a2 − 1 = 4 cos
2 θ

2
− 1 = 2

(
2 cos

2 θ

2
− 1

)
+ 1 = 2 cos θ + 1,

as required. �

REMARK 1. From the identities used in the proof of Lemma 12, it follows that the metric we defined on

the unit quaternions in Section 4.1 satisfies d(q1, q2) = 2 arccos (cos θ) = 2θ12, where θ12 ∈ [0,π) and

θ is the rotation angle in the angle-axis representation of the rotation q∗
1q2.
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