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Abstract

In this article, we propose an algorithm for aligning three-dimensional objects when represented as density maps,
motivated by applications in cryogenic electron microscopy. The algorithm is based on minimizing the 1-Wasserstein
distance between the density maps after a rigid transformation. The induced loss function enjoys a more benign
landscape than its Euclidean counterpart and Bayesian optimization is employed for computation. Numerical
experiments show improved accuracy and efficiency over existing algorithms on the alignment of real protein
molecules. In the context of aligning heterogeneous pairs, we illustrate a potential need for new distance functions.

Impact Statement

This article proposes a fast algorithm for aligning three-dimensional volumes represented as density maps with a
particular focus on applications in cryogenic electron microscopy. The algorithm achieves both improved
accuracy and efficiency over existing methods on the alignment of real protein molecules. The article also
demonstrates a potential need for new distance functions for the alignment of heterogeneous pairs of volumes.

1. Introduction

Alignment of three-dimensional objects is an important task in applications ranging from computer vision
and robotics such as shape registration and model retrieval' ~ to medical imaging and molecular biology
where protein structures need to be aligned before further processing and conformational analysis.*~®
Given a pair of 3D objects which are rigid transformations of each other, the goal is to recover the relative
translation and rotation that would match the two objects. As the alignment procedure often needs to be
applied multiple times in the applications above, designing an accurate and efficient algorithm is of great
significance.

In this article, we shall be interested in the case where the 3D objects are represented as density maps,
motivated by applications in cryogenic electron microscopy (cryo-EM).”” To formalize our setup,
suppose ¢,,¢, : R — R are two probability density functions representing the volumes, with ¢, being
a transformed version of ¢, that is,

$(x) =41 (Ri(x+v4)),  VxeR, )
for some v, € R* and R, € SO(3), the rotation matrix group. The goal of the alignment problem is to

recover the rotation R, and translation v, based on the density maps ¢, and ¢,. Here we have assumed ¢,
and ¢, to be probability densities only for framing our problem in Wasserstein distances below, while the
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proposed algorithm will work for density maps taking negative values or having non-unit masses. In
practice, the volumes are given as three-dimensional arrays V; € RL“2*L with L an integer, which can be
treated as discretizations of the ¢,’s, with the voxel values encoding their configurations.

A natural idea for solving the alignment problem is to search for the optimal translation and rotation
through the following optimization task:

(v,fe) € argmin  d(¢(R(-+v)).¢5()= argmin F4(v.R), ?)

(vsR) €BxSO(3) (v,R) €BxSO(3)
where B is a cube containing v, and d is a suitable distance function on the space P (|R3) of all probability
measures over R>. Most existing works with few exceptions (see Section 2) set d as the usual L? distance
and (2) is then solved by gradient-based methods or a type of exhaustive search over the space B x SO(3).
However, due to the irregular shapes of the volumes, the landscape of ;2 could be highly nonconvex and
gradient-based methods would fail with poor initialization. Exhaustive search-based methods, on the
other hand, could return more accurate results but have formidable costs if implemented naively. Methods
exploiting convolution structures of ¥’ Lz(g) can lead to great computational speed up but are still considered
expensive for large volumes.

Motivated by these issues, in this article, we shall propose an alignment algorithm based on solving (2)
in the 1-Wasserstein distance, which is known to better reflect rigid transformations than Euclidean
distances and hence creates a better loss landscape. Exploiting this fact, we employ tools from Bayesian
optimization for numerical minimization of (2), which is able to return global optimizers yet with much
fewer evaluations of the objective than an exhaustive search. The resulting algorithm achieves improved
performance over existing ones as we will demonstrate on the alignment of real protein molecules.

1.1. Wasserstein versus Euclidean landscapes

The main motivation for considering Wasserstein distances in (2) comes from the better-resulting loss
landscape as we will discuss in this subsection. Recall that for two probability measures u,v € P ([R3 ), the
p-Wasserstein distance for p € [1,00) is defined as

1/p
Wp(lu’v): (infyef(/z,v)/ |x_y|pdy(x’y)) ’
R® xR3

where I'(1,v) is the set of all couplings between x and v, that is, the set of all joint probability measures
over R? x R* whose marginals are z and v. Wasserstein distances have been widely studied and employed
in for instance image retrieval,” deep learning,"'” and structural determination of molecular conform-
ation''" among many other areas of applied sciences.

For the alignment problem that we are interested in, the Wasserstein distances are better able to reflect
the distances between a density map and its transformed version. For instance, it is shown in Ref. (12),
Lemma 3.5 that for p € (1, ),

Wy(@().g(-+v)) =, WeR’,
where ¢(- +v) denotes the v-shifted density and |- | is the Euclidean norm. Therefore if the volumes are
simply translations of each other (i.e., when R equals identity /3 in (1)), then the associated loss in (2)
satisfies F' w, (v,13) =1v|, a convex function with a unique minimum at v= 0. However, the same is far from
being true for the L7 loss [|¢(:) — (- +v)||,, if ¢ has an irregular shape.
Similar assertions can be made when the two volumes are pure rotations of each other (i.e., when v=0
in (1)). Precisely, one can show that see, for example, Ref. (13), Propositions 1 and 2

W, (¢(Ro-),4(-)) <2sin (g) Mp(¢)1/1’

for an in-plane rotation Ry of angle 6, where M, (¢) is the p-th moment of ¢. The corresponding bound for
the L” distance would have an additional factor of || Vg|| .., which could be large and gives a looser control
on the change of I” distance with respect to the magnitude of 0. Figure 1b,c plots the loss (0, R) for two
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Figure 1. (a) Visualization of the test volume. (b,c) Comparison of local landscapes of F ;(0,R) when d
is WEMD (cf (14)) and Euclidean (L*).

distance functions when R =R, - Rgrepresents a rotation around the y-axis by f € [—x /2,7 /2] followed by
arotation around the z—axis by y € [—x /2,7 /2], for the volume shown in Figure 1a. Here WEMD denotes
the wavelet approximation of ¥ that we shall use for computation (see Section 3.3.1) and Euclidean
stands for the usual L? distance between vectors. We notice that the landscape of the loss associated with
WEMD is flatter or has a larger basin of attraction compared with that for the Euclidean distance, which
can facilitate the search for the minimizer. The narrow basin of attraction in the Euclidean case suggests
the necessity of some type of exhaustive search unless the initial guess for gradient-based methods
happens to fall in such region.

Remark 1.1. Despite the improved landscape offered by Wasserstein distances, there are certain issues
that could arise when aligning a heterogeneous pairs of volumes that we shall discuss in Section 5. In
particular, Wasserstein distances could be unrobust to perturbations of the volumes, which motivates the
need for new distance functions.

1.2. Computation via Bayesian optimization

The landscape analysis above suggests potential benefits in using Wasserstein distances as the loss
function in solving (2). However, a question remains for its numerical optimization as Wasserstein
distances are less analytically tractable and more computationally costly. In particular, computing
gradients of (2) would be challenging both analytically and numerically, and an exhaustive search would
require a huge computational budget due to the lack of a convolution structure. With these issues in mind,
we shall instead adopt a Bayesian optimization approach, which does not require gradient information of
the objective (2) while being able to return accurate solutions with much fewer evaluations of (2) than an
exhaustive search.

First of all, let us make the following simple observation that the relative translation can be recovered
by centering the two density maps, so that the problem reduces to estimating the rotation R, alone. Indeed,
suppose without loss of generality that ¢, is already centered, that is, ngqul (x)dx=0. Then (1) implies
after a change of variable that

/R}x¢2(x)dx=/R}x¢l(R*(x+ v*))dx=R;1/R3x¢](x)dx—v*= — Vs

Therefore one can recover v, by computing the center of mass of ¢, and the shifted volume

¢, (x):=¢h, (x —v,) =, (R,x) is then a purely rotated version of ¢,. This leads to a viable approach for
estimating the shift vector between ¢, , ¢, when they are noise free, as we shall demonstrate in Section 4.3.
For the rest of this article, we shall mainly focus on the rotational recovery, that is, we assume

$r(x)=¢;(R.x), Vxe R3
and find the best rotation that minimizes
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Reargmin d(4,(R(-)).¢,(-))=:arg min F4(R). 3)
RESO(3) RESO(3)
This will be achieved with Bayesian optimization as we overview next.

On a high level, Bayesian optimization is an iterative procedure that searches for optimizer candidates
by solving a sequence of surrogate problems instead of the original one (3). At the ¢-th iteration, one
collects the candidates {R;}!_, picked so far together with the associated function values {F4(R;)}!_, to
form using Bayesian techniques a surrogate function f, whose landscape resembles F'; while being much
cheaper to optimize. The (¢+ 1)-th candidate is then chosen by solving the surrogate problem

R,+1 €argminf,(R), 4)
RESO(3)
and is incorporated to the history {R;, F4(R;)}!_, for updating f,. After a total number of T iterations, the
approximate solution to (3) is returned as

Reargmin Fy(R,).
t=1,...,T

Note that the whole procedure only requires access to function evaluations of F'; but not its gradient.

Intuitively speaking, the algorithm explores the search space SO(3) based on the landscapes of the
surrogate functions f,’s, which will approximate that of F'; as ¢ increases but are much simpler to decode.
As can be expected, the construction of f, is crucial for the algorithm to perform well. In this article, we
shall take f, as a Gaussian process interpolant (see Section 3.2 for more details), which admits a simple
analytic formula whose gradient is also available in closed form so that the surrogate problems (4) can be
solved cheaply. Our numerical experiments in Section 4.2 show that a total of 7=200 iterations would
suffice for accurate rotational alignment for real protein molecules, suggesting it as a practical algorithm.
Furthermore, the fact that only evaluations of F; are required implies that the proposed framework can be
applied to arbitrary loss functions in (3), beyond vanilla Wasserstein or Euclidean distances. This could be
a useful property when aligning a pair of heterogeneous volumes as we discuss in Section 5 where more
sophisticated loss functions may be needed. The algorithm can also be extended beyond the density map
assumption to volumes represented for instance by point clouds as long as one can define a suitable loss
function as in (3).

1.3. Our contributions

The contributions of this article are summarized as follows:

* We propose a novel algorithm for aligning three-dimensional objects (Section 3), which achieves
both improved accuracy and efficiency over existing methods on real datasets of protein molecules
from cryo-EM (Section 4).

* Our algorithmic framework can be extended beyond the 1-Wasserstein distance to arbitrary distance
functions. In the context of aligning a heterogeneous (similar but non-identical) pair of volumes, we
show a potential need for new loss functions in which case our algorithm can be seamlessly
incorporated (Section 5).

2. Related work

A classical approach for rotational alignment when the volumes are represented as point clouds is to
perform principal component analysis and align the resulting eigenvectors. This method could give exact
recovery in theory (up to reflections) but is not robust to perturbations of the given volumes, which is
usually the case in practice, and breaks when the volumes admit certain symmetry. More recent works in
the computer vision literature include Refs. (2,14,15) (see also the references therein), which again
assume representations of the volumes as point clouds or other shape descriptors and parametrizations.
Our problem setting is slightly different in that the point clouds representing our volumes are always fixed
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as the same Cartesian grid, where it is the voxel values that characterize their configurations. Nevertheless,
we remark that the proposed algorithm in this article can be extended easily to the point cloud setting.

In the context of density map alignment that we consider, the optimization approach (2) is most often
adopted, which is then solved by gradient-based or exhaustive search-based methods. Setting d as the L2
distance, (2) is equivalent to correlation maximization

(v,fe) - , agma (B (RC+)) s () 2, (5)

v,R) € B xS0O(3)

where (-,-);> denotes the L? inner product. The Chimera package!'® implements a steepest ascent

algorithm for solving (5) by relying on an initial alignment that is close to the true one, which is usually
done manually by the user. Ref. (17) proposes using Kullback-Leibler divergence as the loss function
which is later optimized with gradient descent, but no simulations are presented. Setting d as an entropic
regularization of the 2-Wasserstein distance, the recent work!'® solves (2) with stochastic gradient
descent by iteratively computing the optimal transport plans. Improved results are obtained over Chimera
but the algorithm still requires the initial alignment to be within certain range of the true one. Extending
such ideas, Ref. (19) uses Gromov-Wasserstein distance for partial alignment of density maps. These are
the only works we are aware of that employ Wasserstein-based distances for the alignment problem. Our
proposed method differs from Refs.(18,19) by employing Bayesian optimization and not involving
explicit calculation of transport plans.

For this reason, exhaustive search-based methods are also popular and appear necessary. One
subcategory of works in this direction attempts to search for the best alignment over a dense grid of
translations and rotations that maximizes (5). Since the number of grid points is typically large, the key to
these methods is a fast algorithm for computing (5) given a pair of vand R.®“**>") This can be achieved by
expanding the correlation in spherical harmonic bases (with the efficient spherical Fourier transform**)
and using the fact that rotation corresponds to application of Wigner-D matrices. Translations can be
treated similarly with fast Fourier transform techniques. Existing packages include Xmipp,“ and
EMAN2“? which employs a hierarchical tree-based algorithm.

Another subcategory of works approaches this problem by considering the projections of the volumes.
The main idea is to not maximize the correlation between the volumes as in (5) but instead their
projections, where only inner products between images are computed and the search space can be reduced
to five-dimensional.”” The recent work®® improves this idea by employing common lines based
techniques to further accelerate the search of matching projections.

3. The proposed method

In this section, we present in detail our proposed method to solve (3) with d as the 1-Wasserstein distance:
Reargmin W, (¢, (R(-)),¢,(-))=:argmin Fyy, (R). (6)
RESO(3) RESO(3)

Our algorithm is summarized in Algorithm 1, which exploits the general framework of Bayesian
optimization. To make our presentation self-contained, we shall introduce some necessary background
before explicating the algorithmic details. We refer to Ref. (27) for a more thorough introduction to
Bayesian optimization. The interested reader can skip to Section 3.3 for a description of our full algorithm.

As overviewed in Section 1.2, Bayesian optimization is an iterative procedure that searches for an
optimizer of (6) by solving instead a sequence of surrogate problems. At each iteration, the surrogate
problem is to optimize an acquisition function constructed based on a probabilistic model and all past
queries of the objective function Fj,. The acquisition function should be cheap to optimize while at the
same time encodes enough information on the landscape of F'j,. For our purpose in this article, we shall
adopt a Gaussian process for probabilistic modeling of Fy, (Section 3.1) and a Gaussian process
interpolant for the acquisition function (Section 3.2).
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3.1. Gaussian processes
The starting point of Bayesian optimization is to build a probabilistic model for the function F'jy, in (6) that
we wish to optimize, which is used to construct an acquisition function as in Section 3.2. Since Fy, is a
nonparametric function, a common choice is to model it as a sample path from a Gaussian process.”
Recall that a Gaussian process (GP) over a space M is a collection of random variables {u(x),x € M}
where any finite subcollection is jointly Gaussian. For any finite set {x,-}ﬁv: | € M, the mean vector m € R”
and the covariance matrix £ € R”*" of the finite-dimensional Gaussian [u(x; ), ..., u(x,)]" can be specified
in a consistent way through a mean function x(-) and a covariance function c(+,-) so that m; =u(x;) and
Zi,:c(x,-,x,»). Intuitively speaking, a GP is a random process whose realizations fluctuate around s(-)
according to restrictions imposed by c(-,-). In particular, () and ¢(:,-) completely determine the
distribution of the GP and from the modeling perspective it suffices to make the appropriate choices
for them.

Typically the mean is set to be zero and the covariance function encodes one’s prior belief on sample
path properties such as smoothness. When the space M is a subset of the Euclidean space, one of the most
commonly used covariance functions is the squared exponential

2£2

where ¢,£>0 are respectively the marginal variance and correlation lengthscale parameters. Roughly
speaking, o determines the overall magnitude of the sample paths, and function values at two points with
distance on the order of £ are nearly uncorrelated. An important feature of the squared exponential
covariance function is that it leads to infinitely differentiable sample paths see, for example, Ref. (28)
Section 4.2, which are suitable choices for modeling smooth functions.

Based on our discussion in Section 1.1 that the Wasserstein distances vary relatively smoothly with
respect to rigid transformations, the squared exponential serves as a natural choice for our problem. Recall
that in our setting the space M =SO(3) is a subset of R**3. Therefore we shall define our covariance
function as

2
C(x,y)=azexp<—|x y>, x,y€R", @)

IR=SI}

262
where || - ||  denotes the Frobenius norm. Notice that this is equivalent to viewing each matrix as a vector
in R® and applying (7), as a result of which the covariance function (8) retains positive definiteness.
Therefore the probabilistic model for F'y, in (6) that we shall adopt is a GP over SO(3) with mean zero and
covariance (8).

c(R,S) —a2exp< ) R,5€S0(3), ®)

Remark 3.1. Here we briefly discuss other possible choices of covariance functions over SO(3). On the
one hand, any other Euclidean covariance functions such as the Matérn family see, for example, Ref. (28),
Section 4.2 can be employed by viewing SO(3) as a subset of R**3. Our choice of (8) is motivated by its
superior empirical performance in our alignment problem and its simple form that facilitates numerical
optimization of the acquisition function as will be discussed in Section 3.2.

On the other hand, the space SO(3) admits a manifold structure, which suggests a covariance function
over the manifold SO(3) that takes geometry into account. This for instance can be achieved by

Trace (RST) —1

2
M) ®(R,S):arccos(f), R,S€S0(3), ®

262
where ©(R,S) is the relative angle between the two rotations, whose absolute value is also the geodesic
distance on SO(3). However, geodesic exponential kernels such as (9) are not positive definite in general

for all #>0, although empirical evidence suggests positive definiteness for a range of £’s in certain
cases.”” Moreover, our simulation experience suggests slightly better accuracy when using (8) over (9)

c(R,S) =0 exp (—
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so we shall stick to the covariance function (8). Finally, we point to some more sophisticated covariance
functions over SO(3) proposed by Ref. (30).

3.2. Gaussian process interpolant as surrogate
With a probabilistic model for Fj,, we shall replace the original optimization problem (6) by a sequence
of simpler surrogate problems. This will be achieved by constructing simple-to-optimize approximations
[ to the objective function F'yy, in (6). In this article, we shall take £/, as the conditional expectation of the
GP proposed in Section 3.1 after “observing” the data {(R;, F, (R;))}:_,, which we explain now.
Suppose we have picked the first ¢ candidates {Ri}ﬁzl (for the initial candidates, we can for instance
generate fy random rotation matrices). Together with the associated objective function values
Y;=Fw,(R;), we shall interpret the pairs {(R;,Y;) }f: | as observations we have obtained for the unknown
function Fy,. Now in the Bayesian regression framework, we have

FWINl_L FW1(Ri):Yi’

where II is the GP model as in Section 3.1. Therefore a natural estimator for F'yy, is the conditional
expectation
fi(xX)=Ecn[G(x)|G(R;)=Y;, 1 <i<H], X

which is known" to minimize the squared error loss E,, ~n|Fw, (x) —F(x)| overall F(x) that is
measurable with respect to {Fy, (R;)}_, when Fy, is indeed a sample path from I1. In particular, f,
interpolates Fyy,, that is, f,(R;) =Fw, (R;) for 1 <i <t, and approximates F', increasingly well as more
observations of F'jy, are obtained. Furthermore, it can be shown that, for example, Ref. (32), Theorem 3.3
[ admits a simple analytic formula

f(0)=k(x)"K'Y, xeSO(3), (10)
where k(x) € R' is a vector with entries [k(x)];=c(x,R;), K € R"*' is a matrix with entries K;;=c(R;,R;),
and Y € R’ is a vector with entries Y;=Fy, (R;). Notice that f, is simply a linear combination of the
covariance functions

13

£0=3"[K"Y]c(x.R). x€SO(3),

i=1

and admits an analytic formula for its Euclidean gradient under the covariance function choice (8) as

VR (x) = Z [K'Y],c(x.R)) (Rif;x), x€S0(3). (11)

i=1
Therefore optimization of f, can be carried out much more cheaply compared with the original problem
(6) by supplying the gradient to standard optimization packages.

3.3. The full algorithm
Now we are ready to present the full algorithm, as summarized in Algorithm 1. Starting with a GP model
for F'yy, and initial candidates {R,-};‘): , (which can be randomly generated), we form the surrogate function
(10) based on all observations {(R;,Fw, (R;))};_, obtained so far and search for the next candidate by
solving
R; 1 €argminf,(R). (12)
RESO(3)

Now with the new observation (R,+1,Fw, (R;+1)) included, we update the surrogate to f,, ; and repeat
the process (12). After a total of T iterations, we shall return the candidate with smallest objective function
value, that is,
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Rest €argmin Fy, (R,) (13)
1=1,...,T
as the solution to the original problem (2). Such a procedure would serve as a prototype for our proposed
method. To further improve its practicality, below we shall introduce two modifications: (i) approximation
of the I, distance and (ii) an optional local refinement step.

3.3.1. Wavelet approximation of W distance

Despite the favorable induced landscape as shown in Section 1.1, anotable issue for Wasserstein distances
is their high computational cost. For practical applications in cryo-EM that we shall consider, the density
maps are represented as three-dimensional arrays of size L x L x L with L on the order of hundreds.
Therefore the cost of exact computation of ' distances is prohibitive and scales in the worst case as
O(N 3logN ) with N=L*. For this reason, we seek an approximation of #; through the wavelet
approximation proposed by Ref. (33) which reduces the above cost to O(N).

Precisely, the wavelet earth mover’s distance (WEMD)“™ is defined as

l¢1 — b2 llwemp = Zz_j(l R (2) = W (D), (14)
7

where n=3 denotes the dimension of the density maps and W¢, denotes a 3D wavelet transform. The
index A consists of the triplet (e,/,k), where € takes values in a finite set of size 2" — 1 that for instance
represents tensor products of 1D wavelets, and j is the scale parameter that ranges over € Z>( and &
ranges over € Z". Itis proved in Ref. (33), Theorem 2 that the metric defined above is equivalent to the ¥,
distance. Such an approximation has the additional advantage that the distance (14) can be defined for
density maps that take negative values, which is usually the case in practice, whereas the original ¥,
distance is restricted to probability densities.

Now we shall replace all occurrences of the /' distance in our previous algorithmic procedure by the
WEMD distance (14). Precisely, the alignment problem we shall be solving becomes

Reargmin||g; (R(-)) — () llwemp=:arg min Fyewn (R), (15)
ReSO(3) ReSO(3)

and the surrogate problem (12) together with the returned solution (13) will be defined in terms of
Fwewmp instead. Note that the Bayesian optimization framework only requires access to function
evaluations, so that replacing F'y, by Fwemp does not require extra modifications of the algorithm.
In principle, Fwgmp can be further replaced by any other distance function, which is an important
feature of the adopted framework that we shall elaborate more in Remark 3.4.

3.3.2. Local refinement

In Section 4.2, we will show numerically that after 7=200 iterations, the algorithm described so far
returns reasonably accurate recovery of the relative rotation R, for real protein molecules. However, for a
finite ¢, the surrogate f, only approximates F', and so does its minimizer. In order to obtain close-to-exact
recovery, the candidates should form a dense enough cover of SO(3), which would require many more
samples than 7=200 and is computationally infeasible. For this reason, we introduce an optional local
refinement step by employing the Nelder—Mead algorithm. Precisely, we shall return

Rretineeargmin||¢l(R('))_¢2('))”2’ (16)
ReSO(3)

where (16) is optimized with the Nelder—-Mead algorithm initialized at R.s given by (13). This concludes
the description of our algorithm, presented in Algorithm 1.

Note that we switched to the L? loss in (16) for reasons to be explained in Remark 3.5. We further
remark that (16) can be solved in principle by other standard optimization algorithms such as BFGS. We
have deliberately chosen Nelder—-Mead because it only requires loss function evaluations in a similar spirit
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as Bayesian optimization. Such a property can be useful and crucial in the context of aligning hetero-
geneous pairs of volumes, where we show in Section 5 a potential need for new and more sophisticated
distance functions which one may only know how to evaluate. In this case, our proposed framework
would still be applicable.

Algorithm 1. Volume Alignment in WEMD via Bayesian Optimization

Input: Volumes ¢,,4,; loss Fwemp (15); GP covariance (8); initialization {(R;, Fwemp (R:))}* .

for t=ty,...,T do
Compute f, as in (10) and find
R+ €argminf,(R)
RESO(3)
Add (R4 1,Fwemp (Ri+1)) to {(Ri, Fwemp (R)) }i— ;.-
end for
Set the estimated rotation as
Ryt € argmin Fyemp (Ry)-
t=1,...,T
(Optional) Solve the following with Nelder—Mead algorithm initialized at R

Riefine € arg min ||¢1 (R()) - ¢2()) ”2
. . ReSO(3)
Ouput: Ry and (optional) Riefine.

We end this section with further remarks on the algorithmic details.

Remark 3.2 (Choice off,). In Bayesian optimization.f is called the acquisition function and there have
been extensive research on its choice see, for example, Ref. (27), all of which could have been employed in
our problem setting. Our choice of (10) is motivated by its simple form that admits an analytic formula for
its gradient, which facilitates solving (12). For readers familiar with Bayesian optimization, (10)
corresponds to GP-UCB®? with no exploration, which appears to be a suboptimal choice. However
for practical implementation, one may only want to solve (12) approximately with early stopping to speed
up the search, which can be treated as another form of exploration. Our experience suggests better
performance for using (10) than adding a term proportional to the conditional variance as in the standard
GP-UCB. Furthermore, (10) is independent ofo, the marginal variance parameter in (8), which would
otherwise be present in the standard form and requires tuning.

Remark 3.3 (Numerical optimization off ,and addressing handedness). The majority of the efforts in
Algorithm I are devoted to solving the surrogate problems (12), whose accuracy and efficiency are the key
to the algorithm. We note that the kernel matrixKin (10) could be ill-conditioned if two candidatesR,

andRyare very close to each other. For numerical stability, a nugget term is usually incorporated to (10)

so that we consider instead

fi=k(x)"(K+1,)" 'Y, (17)
with a small 7 for practical implementation.

Taking advantage of the manifold structure of SO(3), we shall optimize f, with the Riemannian
optimization package.””*® The Euclidean gradient (11) can still be supplied for speed up, which is
automatically transformed into Riemannian gradients by the package. In cryo-EM applications, one often
needs to address also the handedness of the molecules, that is, when ¢, and ¢, differ additionally by a
reflection. This can be achieved in our framework by optimizing f, instead over O(3), the space of
orthogonal matrices, which corresponds to the Stiefel manifold St(3,3) in the package.®”*? However, we
remark that this is not much different from reflecting one of ¢, ¢, first and aligning the resulting pair since
the new search space O(3) is twice as large as SO(3) and the number of iterations 7 for accurate alignment
is also expected to double.
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Remark 3.4 (Choice of loss function). Algorithm I is presented in terms of the loss function Fwgwmp (15)
and only requires access to its evaluations but nothing else. An immediate observation is that Algorithm 1
can be applied to solve the alignment problem with any distance function d in (3), as a consequence of the
Bayesian optimization framework. Our choice of ', distance is motivated by the fact that it can be
efficiently approximated with WEMD (14). Based on the discussion in Section 1.1, we believe a general
W, distance could also be used, with for instance an entropic regularization®”” for practical implemen-
tation.

To illustrate the advantage of employing Wasserstein-based loss functions, we will show in Section 4.2
the improved performance of Algorithm 1 over its L? loss counterpart. Finally, in the context of aligning
a pair of heterogeneous volumes in Section 5, we shall discuss a potential need for new loss functions
other than the vanilla Wasserstein or Euclidean distances. In such a setting, the new loss function could be
analytically intractable and expensive to evaluate, which renders unclear the applicability of gradient-
based or exhaustive search-based algorithms. Nevertheless, Algorithm | could be seamlessly incorpor-
ated as long as we can afford a small number of evaluations of the loss function and potentially give a
feasible solution.

Remark 3.5 (Refinement inL*distance). We have switched to theL*distance in the refinement step (16)
for the following two reasons. First, the recoveryRqyis already very close to the global minimizer of (15),
which is likely to lie also in the basin of attraction in theL?loss, although the latter is generally much
narrower as shown in Figure 1. Therefore a local search inL*loss would be sufficient and more efficient
than in the WEMD.

Second, the WEMD or W distance appear to be more sensitive than the L distance to perturbations of
the density maps in terms of the optimal alignment. In practice, the density maps may correspond to two
different reconstructions of the same object and are only provided as three-dimensional arrays
V1,V,eREEXL for an integer L. Therefore, the minimizers of the empirical versions of (15) and (16)
are not necessarily equal to the true relative rotation R, but only approximately. However, we found that
the minimizer of the empirical version of (15) could be non-negligibly different from R, in many cases
where there is no issue with the L? distance, suggesting the L? loss as a more robust local search metric.
Such observation is also related to the alignment of heterogeneous pairs that we shall discuss in Section 5.

4. Numerical experiments

In this section, we apply our proposed method in Section 3 to align real protein molecules from a cryo-EM
database.”’ Section 4.1 contains the implementation details, in particular the choices of hyperparameters
in Algorithm 1. In Section 4.2, we investigate the performance of Algorithm | under different down-
sampling levels, total number of iterations, and noise corruption, while comparing with the L loss version
of Algorithm 1. In Section 4.3, we compare the performance of Algorithm |1 with the two recent
works.!'*?® The algorithmic complexity is discussed in Section 4.4. Our code is available at https:/
github.com/RuiyiYang/BOTalign.

4.1. Implementation details

For GP modeling, we shall use the Gaussian kernel defined in (8) with o = 1. Notice that the surrogate f,
defined in (10) is independent of ¢ so its choice is indeed arbitrary. The choice of £, on the other hand,
would have an effect and is empirically tuned for optimal algorithmic performance. As mentioned, we
shall investigate the performance of Algorithm 1 under both the WEMD loss and the L2 loss. The values of
Zare fixed as 0.75 and 1 respectively throughout the experiments. The WEMD distance is computed using
PyWavelet®® with the sym3 wavelet and maximum scale level s =6 following."*”

We shall initialize Algorithm 1 with a single candidate /3, the identity matrix. Our experience suggests
that the initialization does not affect much the performance. For optimization of the surrogate problems,
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we shall follow the discussion in Remark 3.2 and consider f, defined in (17) with =10~ for numerical
stability. The surrogate f, is then optimized with Riemannian steepest descent with random initialization
using Pymanopt,”® with an early stopping if both the gradient norm and the step size are less than 0.1. We
empirically found that such an early stopping greatly improves the efficiency of Algorithm | while not
losing much accuracy (see Remark 3.2).

In practice, the density maps of the volumes are given as three-dimensional arrays ¥ € RE*E*L for
some integer L In other words, ¥ is supported on the Cartesian grid and computing its rotated versions is a
nontrivial and essential procedure. In our algorithm, this is done with the ASPIRE package,”"”’ which first
computes the nonuniform Fourier transform of / over the rotated grid and then applies an inverse Fourier
transform. Note that this step is needed when computing the loss function values in Algorithm 1.

Finally, to further speed up the computation, a common practice in cryo-EM is to downsample the
given volumes V € RE*L*L to be of size R0 *L0*Lo for some integer Lo <L. This leads to faster
computation of WEMD distances and potentially a better loss landscape by removing the fine-scale
structures of the protein molecules. For the rest of this section, we shall treat L and the total number of
iterations 7 in Algorithm 1| as user-chosen parameters and in Section 4.2 demonstrate its performance
when Ly € {32,64} and T € {150,200}.

4.2. Alignment of real protein molecules

In this section, we shall illustrate the performance of Algorithm 1 on real protein molecules from the
publicly available Electron Microscopy Data Bank.!” The experimental setup is as follows. For a given
volume 7 € RE*E*L " we randomly generate a rotation matrix R, € SO(3) and compute its rotated
version 7, € RE*E*L ysing the Fourier transform-based approach mentioned above. The goal is then to
recover the rotation R, given only ¥} and V. In this subsection we focus on pure rotation recovery and
incorporation of translation will be demonstrated in Section 4.3. The test volumes shown in Figure 2 will
be used throughout the numerical experiments.

4.2.1. Algorithm 1 without refinement

As mentioned, we shall first downsample the given volumes to ¥'PS € RE*£0* Lo and then align the 'P5’s
with Algorithm 1. The downsampling level Ly and the total number of iterations 7" in Algorithm 1 are
treated as user-chosen parameters which could vary depending on the molecules at hand. Below we shall
investigate their effects on the performance of Algorithm 1, first without the refinement step to focus on
the Bayesian optimization performance.

Denoting the estimated rotation by R, we quantify the performance by the relative angle |@ (R, Rest)|
between R, and Ry defined in (9). Figure 3 shows the results for four combinations of Ly and T for the
molecules shown in Figure 2. To illustrate the benefits of alignment in Wasserstein distances, also shown
in Figure 3 are results for the parallel experiments with WEMD loss in Algorithm 1 replaced by the L loss.
The experiments are repeated 50 times with R, regenerated in each. The run time is recorded on a laptop
with Intel(R) Core(TM) i17-7500 CPU@ 2.70GHz. We see that with high probability, the WEMD version
of Algorithm 1 is able to recover the relative rotation up to a 5-degree error with only 200 evaluations of
the loss function and in most cases outperforms its Z> counterpart with comparable computing time.

4.2.2. Algorithm 1 with refinement

With the results shown in Figure 3, we shall continue to demonstrate the performance of Algorithm 1
when refinement is included. We recall that the refinement step is a local search (16) solved with the
Nelder—Mead algorithm initialized at the estimate Ry returned by the first part of Algorithm 1. We note
that here we have the freedom to choose the combination of Ly and 7 for obtaining R.sy With optimal
efficiency. In particular, setting Lo=64 and 7=200 as shown in Figure 3 leads to the best overall
performance, but the other choices also give reasonably accurate recovery while requiring much less run
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Figure 3. Performance comparison between Algorithm I and its L? loss version without refinement. The
Jour boxplots in each subfigure correspond to (from left to right) (Lo, T)=(32,150),(32,200),(64,150)

,(64,200). The vertical axis represents rotation recovery error |@(R.,Res)| in degrees. The tick labels

record the average run time in seconds.

time. Meanwhile, it would not be too surprising that the R.’s returned by these other choices could lie in
the basin of attraction around R, so that local convergence is still retained after the refinement.

In Figure 4, we show that this is indeed the case for the combinations (Lo, T') = (32,200) and (64,150)
for both the WEMD and L? versions of Algorithm 1, which give after refinement more accurate recovery
but with less run time than using the combination (64,200) without refinement. Here in the refinement
step, we are fixing the downsampling level to be 32. In particular, we see that the local search step by
Nelder—Mead appears to be not very stringent on its initializations so that even those returned by the L?
version of Algorithm 1 would suffice for good final accuracy. However, this could be a coincidence due to
the benign structures of the test volumes. The better initial estimates returned by the WEMD version as
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Figure 4. Performance comparison between Algorithm 1 and its L* loss version with refinement. The two

boxplots in each subfigure correspond to (from left to right) (Lo, T) = (32,200)and(64,150). The vertical

axis represents rotation recovery error |@ (R, Rest) | in degrees. The tick labels record the average run time
in seconds.

shown in Figure 3 could already be returned as a solution and at the same time are more reassuring as
initializations for the local refinement. For this reason, the WEMD version serves as our main algorithm.

4.2.3. Robustness to noise

We further test the performance of Algorithm | in the presence of noise, where we fix the test volume to be
EMD-3683 and add to each entry of ¥/, V', an independent Gaussian noise of variance o> across a range of
signal-to-noise ratios, defined as SNR=||V; ||§ / (L302). Figure 5 visualizes a central slice of the noise-
corrupted volumes. The performance of Algorithm 1 is shown in Figure 6, which shows a decent level of
robustness. An interesting observation is that the L? version with downsampling level Ly =32 appears to
be more robust than the WEMD version for very high noise levels. This is related to our discussion in
Section 5 on the alignment of heterogeneous pairs since the noise corrupted volumes can be treated as
different conformations of the clean one. We will show by an example that the Wasserstein-based
distances could be more susceptible to heterogeneity.

4.3. Comparison with existing algorithms

Finally, we shall compare Algorithm 1 with two recent alignment algorithms proposed by Ref. (26), which
exploits common line-based methods for fast projection matching, and Ref. (18), which considers an
entropic regularization of 2-Wasserstein loss in (6) and employs stochastic gradient descent for opti-
mization. In the following comparison, we shall also consider translation recovery. More precisely, given
a volume V; € RE*E*L we randomly generate a rotation matrix R, and first compute its rotated version
V%, whose shifted version V', is then treated as the given volume. Here the shift vector is uniformly
randomly generated over the cube [—S ,S]3 with §'=0.05L. This corresponds to a typical situation in cryo-
EM applications where the given volumes are already preprocessed and approximately centered.

Figure 5. Visualization of a central slice of EMD-3683 under different signal-to-noise ratios.
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Figure 6. Performance comparison between Algorithm | and its L? loss version with refinement under

noise corruption. The two boxplots in each subfigure correspond to (from left to right) (Lo, T) = (32,200)

and (64,150). The vertical axis represents rotation recovery error |O(R., Rest) in degrees. The tick labels
record the average run time in seconds.

As mentioned in the introduction, we shall recover the shift by centering the volumes. We point out that
the volumes given in the database!”’ contain negative values so a thresholding is applied first before
computing the center of mass, where the threshold is chosen based on the recommended contour level for
each molecule in Ref. (7) or could be tuned empirically. The code provided by Ref. (18) also focuses only
on rotation recovery so we apply the same centering step for their algorithm.

For the comparisons below, we shall use (Lo, T) = (32,200) with refinement in our Algorithm 1, which
will be denoted as Bayesian Optimal Transport Align (BOTalign). The algorithm in Ref. (26) will be
denoted as EMalign following the authors, and is applied with downsampling 32 and their recommended
number of reference projections 30, also implemented with their local refinement. Lastly, AlignOT stands
for the algorithm in Ref. (18) with n=500 in their topology representing network step and maximum
number of iteration N =500 in their stochastic gradient descent. Again, we repeat the experiments
50 times for each molecule and the results are shown in Figure 7 and Table 1.

We see that our algorithm achieves the best accuracy with minimal run time. We remark that AlignOT
is a local search algorithm where the authors report good recovery if the angle between R, and the identity
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Figure 7. Comparison with existing methods. The three boxplots in each subfigure correspond to (from
left to right) BOTalign (our method), EMalign, and AlignOT. The vertical axis represents rotation
recovery error |@(R,, Res )| in degrees. The tick labels record the average run time in seconds.
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Table 1. Summary statistics of the recovery errors in Figure 7

EMDID 3683 1717 3342 9515 4547 10180 25892 2660
BOTalign  0.26 0.11 0.23 0.25 0.11 0.10 0.58 0.18

0.13)  (0.05)  (0.11)  (0.14)  (0.05)  (0.04)  (0.29)  (0.08)
EMalign 0.95 0.15 5.18 2.04 0.74 0.24 8.09 0.60

(1.09)  (0.31)  (2498) (223)  (0.77)  (0.18)  (23.34)  (0.60)
AlignOT 14073 122.12 12353 11926  97.92  118.00 12669  103.96
(4333)  (45.87) (56.28) (49.13) (8539) (69.14)  (77.90)  (61.38)

Note: In each block are the mean and standard deviation (in parentheses).

is within 75 degrees. This is not contradictory with the results shown in Figure 7 as here R, is randomly
generated, which more than half of the time is 75 degrees away from the identity. EMalign is a global
search algorithm that improves over earlier alignment algorithms especially in terms of running time (see
their Tables 2 and 3). Our algorithm achieves further improvements when aligning clean molecules. We
mention that EMalign performs exhaustive search over shifts as well as rotations and could have an
advantage when the noise level is high as the centering step would be less accurate. In this case, more
sophisticated center of mass estimation method such as Ref. (41) needs to be employed instead in our
approach.

4.4. Algorithmic complexity

Here we briefly discuss the complexity of our Algorithm | with respect to the size L of the volumes. The
majority of the computational cost of our algorithm takes place in (i) solving the surrogate problem (12)
and (ii) evaluating the loss Fwgmp. The former step is always a three-dimensional optimization problem
and does not depend explicitly on L. Our empirical experience suggests that with the early stopping that
we have adopted its cost is relatively small compared to evaluating F'wgmp. The latter would involve two
steps, where one first rotates one of the volumes using nonuniform fast Fourier transform that costs
O(L*logL), and then computes the WEMD with a cost of O(L?). One may need to use a larger maximum
scale level s for large L’s but the dependence is in general only logarithmic. Therefore the total cost of
Algorithm | is on the order of O(T L3 logL) where T is the total number of iterations which can be fixed for
instance as 200. Therefore the dependence on 7 improves over naive exhaustive search methods which
cost O(|S| x L*) where [S|=0(10%) ~ O(10°) is the size of the rotation grid to search over, and the
dependence on L improves over the convolution based methods such as Refs. (8,20) which would take
o(L*).

5. Alignment of heterogeneous pairs

In this section, we shall discuss the problem of aligning a pair of similar but non-identical volumes, which
we denote as a heterogeneous pair. Such problem arises naturally in cryo-EM, where the same protein
molecule can exhibit different conformations. For example, a molecule can consist of two moving parts
that are rotating with respect to each other, or the molecule can be more elongated in certain states than
others. We shall show by an example that alignment in W distance as we have proposed could be
problematic in the presence of heterogeneity. The same issue is present for the L? distance although milder.
This motivates a need of new loss functions for aligning a heterogeneous pair, which ideally extracts and
compares the common part of volumes. Such sophisticated loss functions are likely to render gradient-
based or exhaustive search-based optimization ineffective, whereas our algorithmic framework in
Algorithm | could be seamlessly incorporated.

To start with, let us consider a pair of simulated volumes V| and V', in Figure 8, which have an overall
similar shape but certain differences in their upper right parts, representing different conformations of the
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v, v, V,&V

Figure 8. Side views of a heterogeneous pair of volumes. Notice that V| and V, differ mostly in the upper
right portion.

same molecule. The two volumes are considered as already aligned as the “base” portions of the volumes
are matched. However, if we apply Algorithm 1 (without refinement) to this pair, the resulting aligned
volume is shown as the rightmost subplot in Figure 9, which turns out to be misaligned, in that the left
portion of the volumes are now mismatched.

To see what is happening in this case, let us give a heuristic explanation by considering the following
two-dimensional abstraction of the volumes in Figure 10. Here /; is a semi-circle and /; is an extended
(but slightly thinner) semi-circular arc with the same radius as /;, where the extended portion of 7, is
considered as the heterogeneous part, in analogy with 7} and ¥, in Figure 9. Now we consider two
possible alignment of these two arcs as in Figure 10 and give a rough calculation of the corresponding W,
losses in both cases.

Suppose the extended portion in 7, has length &. Recall that the 7, distance has the interpretation of the
amount of mass transportation needed from arc /; to the arc /,. For Alignment 1, the optimal transport plan
would be to map both the endpoints of /; to the endpoints of /5, and to map every other point in the middle
in a proportional way. This would incur a #; loss approximately equal to

1
Wl(Il,Ig)z/ ocdx=§. (Alignment 1)
0

v, v, V1 & aligned V2

Figure 9. Volume alignment with heterogeneity in Wasserstein distance.

I

Alignment 1 Alignment 2

) U

Figure 10. Synthetic heterogeneous pair.
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Vv Vv V1 & aligned V2

Figure 11. Volume alignment with heterogeneity in Euclidean distance.

For Alignment 2, the optimal transport plan would be to map each half of /; proportionally to the
corresponding halves of 7, which would incur a W loss roughly
1/2 c

Wi(l,L)~2- exdx= 1 (Alignment 2)
0

Therefore Alignment 2 leads to a smaller 7, loss and is preferred as we have observed in Figure 9.

On the other hand, the L? losses between I, and I, remain the same regardless of whether Alignment
1 or 2 is applied. An implementation of Algorithm | with WEMD replaced by the L? loss actually gives
close-to-correct alignment as shown in Figure 11, with an error about 3 degrees. This suggests that the L?
loss might be a better choice in the presence of heterogeneity and explains its choice in our refinement step
to avoid the effect of perturbations of the given volumes.

However, the empirical success of L% alignment in Figure 11 may be a coincidence thanks to other finer
structures of the molecules. Our synthetic example in Figure 10 does raise an interesting question on what
loss function to be used when aligning heterogeneous pairs. In particular, there is a potential need of a
more sophisticated distance function dy.r that for instance only compares the shared components in the
volumes by extracting the common features. In the context of compositional heterogeneity where the two
volumes have different total masses as a result of missing subunits, Ref. (19) proposes a partial alignment
procedure based on Gromov-Wasserstein divergence. We shall leave such investigation of more advanced
distance functions for future work. Meanwhile, we remark that in this case, exhaustive search-based
methods that rely on efficient representations of the loss function over SO(3) such as Ref. (20) would be
challenging unless certain special structures of dyeer can be exploited. The same is likely to be true for
gradient-based methods where one would need to rely on numerical differentiation which could be less
accurate and inefficient. Nevertheless, our Algorithm 1 provides a ready-to-use recipe as long as we can
evaluate dheer-

6. Discussion

In this article, we proposed an alignment algorithm using a Wasserstein-based distance as the loss
function, which is optimized with tools from Bayesian optimization followed by a local refinement
procedure. Numerical experiments show improved performance of our algorithm over existing methods
on the alignment of real protein molecules from cryo-EM. The proposed algorithm can be extended to
arbitrary loss functions, which could be a feasible solution in the presence of heterogeneity where we have
illustrated a potential need of novel distance functions. We have presented the algorithmic framework for
volumes represented as density maps, but it can be easily extended to other volume representations as long
as one can define a suitable loss function as in (3).

Our algorithm focuses mainly on the clean volume case, where the problem reduces to rotation
estimation since the relative translation can be recovered by the centering step. We remark that this is nota
simplifying assumption in the context of cryo-EM since 3D alignment is usually carried out on
reconstructed molecules, which are much cleaner than their projection images to start with. However,
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this could be a limitation of our approach, where in the presence of noise more sophisticated center of mass
estimation methods such as Ref. (41) would be necessary.

On the other hand, we remark that it is possible to incorporate translation estimation in the Bayesian
optimization framework that we have adopted. In particular, the alignment objective in (15) and its
surrogate problem (12) can be both extended to the product space B x SO(3). The algorithmic framework
proceeds as before except the covariance function defining the GP would also need to be extended to
B x SO(3). This for instance can be achieved simply with the product covariance

IR — S|

(), (v.8)) =P exp (—T) exp

2
Cv—wli;
26*

However, our simulations suggest slow exploration of the search space and poor recovery in
comparable amount of time as existing methods. This may be due to the fact that Bayesian optimization
is known to work better in lower dimensions. The additional set Bdoubles the search space dimension and
necessitates many more observations of the loss function to decode its landscape.

In the context of aligning heterogeneous pairs of volumes, there are still many improvements of the
current work that are worth exploring. As a referee pointed out, the WEMD framework might be able to
inform us about which parts of the volumes need further transport after obtaining an optimal alignment.
Here we outline the idea without going into the mathematical details. As noted in Ref. (33), computing the
W, distance between two density maps ¢, and ¢, is equivalent to the following optimization problem

/ F00) 1 () — (),

whose solution f can be approximated by a wavelet expansion with coefficients £, =sign(p;) -2~/ (1+n/2)
where p,’s are the wavelet coefficients of the difference density map p = ¢, — ¢,. Therefore f'is computable
and according to the Kantorovich—Rubenstein duality theorem, it corresponds to the Lagrange multiplier
of the marginal constraints involving ¢, and ¢,. It can then be used to locate regions where the marginal
constraints could be relaxed and hence regions where further transport is needed. This would have
important applications in heterogeneous alignment and we wish to explore such ideas in the future.

max
f1-Lipschitz
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