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FAST EXPANSION INTO HARMONICS ON THE DISK:
A STEERABLE BASIS WITH FAST RADIAL CONVOLUTIONS\ast 
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Abstract. We present a fast and numerically accurate method for expanding digitized L\times L
images representing functions on [ - 1,1]2 supported on the disk \{ x \in R2 : | x| < 1\} in the harmonics
(Dirichlet Laplacian eigenfunctions) on the disk. Our method, which we refer to as the Fast Disk
Harmonics Transform (FDHT), runs in \scrO (L2 logL) operations. This basis is also known as the
Fourier--Bessel basis, and it has several computational advantages: it is orthogonal, ordered by
frequency, and steerable in the sense that images expanded in the basis can be rotated by applying
a diagonal transform to the coefficients. Moreover, we show that convolution with radial functions
can also be efficiently computed by applying a diagonal transform to the coefficients.
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1. Introduction.

1.1. Motivation. Decomposing a function into its Fourier series can be viewed
as representing a function in the eigenfunctions of the Laplacian on the torus T :=
[0,2\pi ], where 0 and 2\pi are identified. Indeed,

 - \Delta e\imath kx = k2e\imath kx.

The eigenfunctions of the Laplacian (harmonics) on the disk \{ x \in R2 : | x| < 1\} 
that satisfy the Dirichlet boundary conditions can be written in polar coordinates
(r, \theta )\in [0,1)\times [0,2\pi ) as

\psi nk(r, \theta ) = cnkJn(\lambda nkr)e
\imath n\theta ,(1.1)

where cnk is a normalization constant, Jn is the nth order Bessel function of the
first kind, and \lambda nk is the kth smallest positive root of Jn. The indices run over
(n,k)\in Z\times Z>0. The functions \psi nk satisfy

 - \Delta \psi nk = \lambda 2nk\psi nk.(1.2)

In this paper, we present a fast and accurate transform of digitized L\times L images into
this eigenfunction basis often referred to as the Fourier--Bessel basis. For computa-
tional purposes, this basis is convenient for a number of reasons:
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A2432 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

(i) Orthonormal: These eigenfunctions are an orthonormal basis for square in-
tegrable functions on the disk.

(ii) Ordered by frequency: The basis functions are ordered by eigenvalues, which
can be interpreted as frequencies due to the connection with the Laplacian
and Fourier series described above. Low-pass filtering can be performed by
retaining basis coefficients up to a given threshold.

(iii) Steerable: Functions expanded in the basis can be rotated by applying a
diagonal transform corresponding to phase modulation of the coefficients.

(iv) Fast radial convolutions: We show that the convolution with radial functions
can be computed by applying a diagonal transform to the coefficients.

Our Fast Disk Harmonics Transform (FDHT) method involves \scrO (L2 logL) oper-
ations and has precise accuracy guarantees. Python code that implements our FDHT
method is publicly available online.1 To the best of our knowledge, existing methods
for computing the expansion coefficients in a steerable basis [44, 45, 25, 26] either
have computational complexity \scrO (L3) or suffer from low numerical precision; see
section 1.4 for a more detailed discussion of past work.

Steerable bases have been utilized in numerous image-processing problems includ-
ing image alignment [33], image classification [45], and image denoising [44], including
applications to machine learning [5, 7, 43] and data-driven science, such as applica-
tions to cryo-electron microscopy (cryo-EM) [6, 29], and computer vision [31], among
other areas.

There are many possible choices of steerable bases---for instance, Slepian func-
tions (also known as 2D prolate spheroidal wave functions) [25, 26, 37], or Zernike
polynomials which are widely used in optics [43]. The harmonics on the disk (which
satisfy Dirichlet boundary conditions) [44, 45] are one natural choice due to their
orthogonality, ordering by frequency, and fast radial convolution.

We illustrate the frequency ordering property of the Laplacian eigenbasis by per-
forming a low-pass filter by projecting onto the span of eigenfunctions whose eigen-
values are below a sequence of bandlimits that decrease the number of basis functions
successively by factors of four, starting from 39593 coefficients. Since the basis is
orthonormal, this is equivalent to setting coefficients above the bandlimit equal to
zero; see Figure 1(a)--(d). Further, we demonstrate the radial convolution property
by illustrating the convolution with a point spread function, which is a function used
in computational microscopy [41]; see Figure 1(e)--(f). The image used for this ex-
ample is a tomographic projection of a 3D density map representing a bio-molecule
(E. coli 70S ribosome) [35].

1.2. Notation. We denote the Lq-norm of a function g : R2 \rightarrow C and the \ell q-
norm of a vector v \in Cd by \| g\| Lq := (

\int 
R2 | g(x)| qdx)1/q and \| v\| \ell q := (

\sum d
j=1 | vj | q)1/q,

respectively.
Let f be an L \times L image whose pixel values fj1j2 are samples of a function

\~f : [ - 1,1]2 \rightarrow R that is supported on the unit disk \{ x \in R2 : | x| < 1\} . More precisely,
we define the pixel locations by

xj1j2 := (hj1  - 1, hj2  - 1), where h := 1/\lfloor (L+ 1)/2\rfloor ,(1.3)

and assume the pixel values satisfy fj1j2 =
\~f(xj1j2). Let

x1, . . . , xp and f1, . . . , fp(1.4)

1An implementation is available at https://github.com/nmarshallf/fle 2d.
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FAST EXPANSION INTO HARMONICS ON THE DISK A2433

a

b

c

d

e

f

Fig. 1. Illustration of our method for L\times L images with L = 256. Original image (a), a low-
pass filter of the original image using a decreasing number of basis functions (b)--(d), radial function
(e), convolution of the original image with radial function (f).

denote an enumeration of the pixel locations and corresponding pixel values, respec-
tively, where p = L2 is the number of pixels in the image. For any given bandlimit
\lambda > 0, let

m= \{ (n,k)\in Z\times Z>0 : \lambda nk \leq \lambda \} (1.5)

denote the number of Bessel function roots (square root of eigenvalues; see (1.2))
below the bandlimit \lambda , and let

\lambda 1 \leq \cdot \cdot \cdot \leq \lambda m and \psi 1, . . . ,\psi m(1.6)

denote an enumeration of the Bessel function roots below the bandlimit and corre-
sponding eigenfunctions, respectively. Let

n1, . . . , nm and k1, . . . , km

be enumerations such that \psi njkj
= \psi j . In the following, we switch between using

single subscript notation (xj , fj , \lambda j , \psi j) and double subscript notation (xj1j2 , fj1j2 ,
\lambda nk, \psi nk) depending on which is more convenient; the choice will be clear from the
context.

1.3. Main result. We consider the linear transform B : Cm \rightarrow Cp which maps
coefficients to images by

(B\alpha )j =
m\sum 
i=1

\alpha i\psi i(xj)h,(1.7)

and its adjoint transform B\ast :Cp \rightarrow Cm which maps images to coefficients by

(B\ast f)i =

p\sum 
j=1

fj\psi i(xj)h,(1.8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

4/
24

 to
 7

1.
22

6.
23

1.
25

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



A2434 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

(0, 1, 2.4) (1, 1, 3.8) (−1, 1, 3.8) (2, 1, 5.1) (−2, 1, 5.1)

(0, 2, 5.5) (3, 1, 6.4) (−3, 1, 6.4) (1, 2, 7.0) (−1, 2, 7.0)

Fig. 2. Illustration of the real version of eigenfunctions \psi nk (see Remark 1.2) associated with
the smallest 10 eigenvalues \lambda 2nk. The triples above each figure show the corresponding values of
(n,k,\lambda nk), where \lambda nk is approximated to two digits of accuracy.

where the normalization constant h is included so that B\ast B is close to the identity.
Note that h2 is the area of a pixel and thus

(B\ast B)ij =

p\sum 
k=1

\psi i(xk)\psi j(xk)h
2(1.9)

is a Riemann sum for the integral
\int 
R2 \psi i(x)\psi j(x)dx, which equals 1 if i = j and 0

otherwise. Thus, with this scaling, we expect that the entries of B\ast B are close to
those of the identity, at least when the number of pixels is larger than the number of
basis functions.

To provide intuition about B and B\ast , we visualize some of the basis functions \psi i

in Figure 2. The main result of this paper can be informally stated as follows.

Theorem 1.1 (informal statement). Let \varepsilon > 0 be any fixed accuracy, and assume
m=\scrO (p). Then, algorithms described in section 3.4 apply the operators B :Cm \rightarrow Cp

and B\ast :Cp \rightarrow Cm with relative error less than \varepsilon in \scrO (p log p) operations.

Note that the statement of the theorem assumes that m = \scrO (p). We make this
assumption throughout the paper. Informally speaking, this means that the number
of basis functions is comparable to the number of pixels in the image. The connection
between the number of basis functions m, the number of pixels p, and the bandlimit
parameter \lambda , defined in (1.5), is discussed in section 2.5. A more precise version of
Theorem 1.1 is stated in section 4 (see Theorem 4.1), and supporting numerical results
are reported in section 5. In particular, we show that the presented algorithm agrees
with dense matrix multiplication for images with up to p= 1602 pixels and accuracy
parameters as small as \varepsilon = 10 - 14. We report timings of images with up to p =
5122 (where constructing a dense transform matrix required a prohibitive amount of
memory on our testing machine). Moreover, we present a numerical example involving
rotations, radial convolutions, and deconvolutions that illustrates the utility of this
basis.

Remark 1.2 (real version of eigenfunctions). The complex eigenfunctions \psi nk can
be transformed into real eigenfunctions \~\psi nk via the orthogonal transformation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FAST EXPANSION INTO HARMONICS ON THE DISK A2435

\~\psi 0k =\psi 0k, \~\psi nk =
\psi nk + ( - 1)n\psi  - nk\surd 

2
, and \~\psi  - nk =

\psi nk  - ( - 1)n\psi  - nk

i
\surd 
2

for n \in Z>0 and k \in Z>0; indeed, this follows from the definition (1.1) of \psi nk, the
identity J - n(r) = ( - 1)nJn(r), and Euler's formula eix = cosx+ i sinx.

1.4. Relation to past work. In this paper, we present a fast and accurate
method to apply the operators B and B\ast to vectors in \scrO (p log p) operations for any
fixed relative accuracy \varepsilon . We again emphasize that this is in contrast to previous
results since, to the best of our knowledge, existing methods for computing the ex-
pansion coefficients in a steerable basis either require \scrO (p3/2) operations [25, 26] or
are heuristic in nature [44, 45]. Further, we mention an interesting related work [46]
appearing online after our work was posted on arXiv; it follows a similar approach to
this paper but considers a more general problem setting, where it achieves computa-
tional complexity \scrO (p3/2).

The application of the operators B and B\ast can be used in an iterative method to
determine least-squares optimal expansion coefficients for a given image, for instance,
using modified Richardson iteration or the conjugate gradient method. Alternatively,
applying B\ast to f can be viewed as estimating the continuous inner products that
define the coefficients by using quadrature points on a grid (and potentially quadrature
weights to provide an endpoint correction).

The most closely related previous approach [44, 45] expands the Fourier trans-
form of images into the Fourier--Bessel basis by using a quadrature rule in the radial
direction and an equispaced grid in the angular direction. This approach achieves
complexity \scrO (p log p) but is heuristic and does not come with accuracy guarantees.
Indeed, the authors of [44, 45] do not claim any accuracy guarantees, and empirically
the code associated with the paper has low numerical accuracy; part of the motivation
for this paper is to make a fast and accurate method that is rigorously justified and
that yields a code that agrees with direct calculation to close to machine precision.

We emphasize that a key aspect of our approach is that it avoids separating vari-
ables in real space. If we were given samples of a function sampled on a polar grid
instead of an image (i.e., the Cartesian grid in (1.3)), then it would be possible to
separate variables and use a combination of a fast Fourier transform (FFT) and a
butterfly algorithm such as [30, 39]. Our approach uses the nonuniform fast Fourier
transform (NUFFT) with some classic Bessel function identities and fast polynomial
interpolation to avoid numerical errors caused by performing an approximate separa-
tion in real space.

1.5. Organization. The remainder of the paper is organized as follows. In
section 2, we describe the analytical apparatus underlying the method. In section 3,
we describe the computational method. In section 4, we state and prove Theorem 4.1,
which is a more precise version of the informal result Theorem 1.1. In section 5, we
present numerical results. In section 6 we discuss the implications of the method and
potential extensions.

2. Analytical apparatus.

2.1. Notation. The eigenfunctions of the Laplacian on the unit disk (that satisfy
Dirichlet boundary conditions) defined in (1.1) can be extended to R2 as functions
supported on the unit disk by

\psi nk(r, \theta ) = cnkJn(\lambda nkr)e
\imath n\theta \chi [0,1)(r)(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A2436 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

for (n,k) \in Z \times Z>0, where \chi [0,1) denotes an indicator function for [0,1). For the
sake of completeness, we note that the normalization constants cnk which ensure that
\| \psi nk\| L2 = 1 are defined by

cnk =
1

\pi 1/2| Jn+1(\lambda nk)| 
for (n,k)\in Z\times Z>0;(2.2)

see [9, eq. 10.6.3, eq. 10.22.37]. We use the convention that the Fourier transform\widehat f :R2 \rightarrow C of an integrable function f :R2 \rightarrow C is defined by

\widehat f(\xi ) = 1

2\pi 

\int 
R2

f(x)e - \imath x\cdot \xi dx,(2.3)

where x \cdot \xi denotes the Euclidean inner product. We define the convolution of two
functions f, g :R2 \rightarrow C by

(f \ast g)(x) =
\int 
R2

f(x - y)g(y)dy.

Furthermore, we will make use of the identity

Jn(r) =
1

2\pi 

\int 2\pi 

0

e\imath r sin \theta e - \imath n\theta d\theta ;(2.4)

see, for example, [38, eq. 9.19]. We note that the identities derived in the subsequent
sections are similar to those derived in [17, 16, 15, 18].

2.2. Fourier transform of eigenfunctions. The analytic foundation for the
presented fast method is the following expression for the Fourier transform of the
functions \psi nk defined in (2.1), which we prove for completeness.

Lemma 2.1. The Fourier transform \widehat \psi nk can be expressed by

\widehat \psi nk(\xi ) = ( - \imath )ne\imath n\phi 
\int 1

0

cnkJn(\lambda nkr)Jn(\rho r)rdr,(2.5)

where (\rho ,\phi ) are polar coordinates for \xi = (\rho cos\phi ,\rho sin\phi ).

Proof of Lemma 2.1. By the definition of the Fourier transform (2.3) we have

\widehat \psi nk(\xi ) =
1

2\pi 

\int 
R2

\psi nk(x)e
 - \imath x\cdot \xi dx.

Changing to polar coordinates \xi = (\rho cos\phi ,\rho sin\phi ) and x= (r cos\theta , r sin\theta ) gives

\widehat \psi nk(\xi ) =
1

2\pi 

\int 2\pi 

0

\int 1

0

cnkJn(\lambda nkr)e
\imath n\theta e - \imath r\rho cos(\theta  - \phi )rdrd\theta ,

where we used the fact that x \cdot \xi = r\rho cos(\theta  - \phi ). Changing variables \theta \mapsto \rightarrow  - \theta +\phi  - \pi /2
and taking the integral over \theta gives

\widehat \psi nk(\xi ) = ( - \imath )ne\imath n\phi 
\int 1

0

cnkJn(\lambda nkr)Jn(\rho r)rdr,

as desired.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FAST EXPANSION INTO HARMONICS ON THE DISK A2437

2.3. Coefficients from eigenfunction Fourier transform. Next, we observe
how the coefficients of a function in the eigenfunction basis can be computed by an
application of Lemma 2.1. In the following, we will write the arguments of Fourier
transforms of functions in polar coordinates (\rho ,\phi ). We have the following result.

Lemma 2.2. Suppose that \scrI \subset Z\times Z>0 is a finite index set, and set

f =
\sum 

(n,k)\in \scrI 

\alpha nk\psi nk,(2.6)

where \alpha nk \in C are coefficients. Define \beta n : [0,\infty )\rightarrow C by

\beta n(\rho ) := \imath n
\int 2\pi 

0

\widehat f(\rho ,\phi )e - \imath n\phi d\phi .(2.7)

It then holds that

\alpha nk = cnk\beta n(\lambda nk).(2.8)

The proof is a direct consequence of Lemma 2.1.

Proof of Lemma 2.2. Observe that (2.5) implies

\imath n
\int 2\pi 

0

\widehat \psi n\prime k\prime (\rho ,\phi )e - \imath n\phi d\phi = 2\pi \delta n,n\prime 

\int 1

0

cn\prime k\prime Jn\prime (\lambda n\prime k\prime r)Jn\prime (\rho r)rdr,(2.9)

where \delta n,n\prime = 1 if n= n\prime and \delta n,n\prime = 0 otherwise. Evaluating (2.9) at radius \rho = \lambda nk
gives

\imath n
\int 2\pi 

0

\widehat \psi n\prime k\prime (\lambda nk, \phi )e
 - \imath n\phi d\phi = 2\pi \delta n,n\prime 

\int 1

0

cn\prime k\prime Jn\prime (\lambda n\prime k\prime r)Jn\prime (\lambda nkr)rdr

= 2\pi \delta n,n\prime 

\int 1

0

cnk\prime Jn(\lambda nk\prime r)Jn(\lambda nkr)rdr=
1

cnk
\delta n,n\prime \delta k,k\prime ,

where the final equality follows from the orthogonality of the eigenfunctions \psi nk\prime 

(which is a consequence of the fact that the Laplacian is self-adjoint). By the definition
of \beta n in (2.7), this implies that

\beta n(\lambda nk) =
\sum 

(n\prime ,k\prime )\in \scrI 

\alpha n\prime k\prime \imath n
\int 2\pi 

0

\widehat \psi n\prime k\prime (\lambda nk, \phi )e
 - \imath n\phi d\phi =

\sum 
(n\prime ,k\prime )\in \scrI 

\alpha n\prime k\prime 

cn\prime k\prime 
\delta n,n\prime \delta k,k\prime =

\alpha nk

cnk
,

which concludes the proof.

Remark 2.3 (special property of Bessel functions). We emphasize that the integral
expression (2.4) of the Bessel function is crucial for the fast method of this paper.
The possibility of extending the approach to create other fast transforms defined on
domains in R2 therefore hinges on identifying equally useful integral expressions for
the corresponding transforms.

2.4. Convolution with radial functions. Let g(x) = g(| x| ) be a radial func-
tion. In this section, we observe how the convolution with g can be computed via a
diagonal transform of the coefficients. More precisely, we compute the projection of
the convolution with g onto the span of any finite basis of the eigenfunctions \psi nk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A2438 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

Lemma 2.4. Let f be a function with coefficients \alpha nk as in (2.6), and let g(x) =
g(| x| ) be a radial function. We have

P\scrI (f \ast g) =
\sum 

(n,k)\in \scrI 

\alpha nk\widehat g(\lambda nk)\psi nk,

where P\scrI denotes the orthogonal projection onto the span of \{ \psi nk\} (n,k)\in \scrI .

The proof is a direct application of Lemma 2.2.

Proof of Lemma 2.4. We use the notation g(x) = g(| x| ) and \widehat g(\xi ) = \widehat g(| \xi | ). Since the
functions \psi nk are an orthonormal basis, in order to compute the orthogonal projection
P\scrI , it suffices to determine the coefficients of f \ast g with respect to \psi nk for (n,k)\in \scrI .
Since (̂f \ast g)(\rho ,\phi ) = \widehat f(\rho ,\phi )\widehat g(\rho ), and \widehat g is radial, we have

\imath n
\int 2\pi 

0

(̂f \ast g)(\lambda nk, \phi )e - \imath n\phi d\phi = \imath n
\int 2\pi 

0

\widehat f(\lambda nk, \phi )\widehat g(\lambda nk)e - \imath n\phi d\phi =
\alpha nk

cnk
\widehat g(\lambda nk),

where the final equality follows from (2.8). An application of Lemma 2.2 then com-
pletes the proof.

2.5. Maximum bandlimit. In this section, we use Weyl's law and lattice point
counting estimates to derive a bound on the bandlimit parameter \lambda in terms of the
number of pixels p under the assumption that the number of basis functions should
not exceed the number of pixels corresponding to points in the unit disk.

Recall from (1.5) that the number of basis functions m is determined from \lambda by

m=\#\{ (n,k)\in Z\times Z>0 : \lambda nk \leq \lambda \} ,

where \lambda nk is the kth smallest positive root of Jn. Further, recall that \lambda 2nk are the
eigenvalues of the Dirichlet Laplacian on the unit disk; see (1.2). Thus, it follows from
Weyl's law that

\#\{ (n,k)\in Z\times Z>0 : \lambda nk \leq \lambda \} = \lambda 2

4
 - \lambda 

2
+\scrO (\lambda 2/3);(2.10)

see [8]. On the other hand, the number of pixels representing points in the unit
disk is equal to the number of integer lattice points from Z2 inside a disk of radius
\lfloor (\surd p+ 1)/2\rfloor ; see (1.3). Classic lattice point counting results give

\#

\Biggl\{ 
(j1, j2)\in Z\times Z : j21 + j22 \leq 

\biggl\lfloor \surd 
p+ 1

2

\biggr\rfloor 2\Biggr\} 
= \pi 

\biggl\lfloor \surd 
p+ 1

2

\biggr\rfloor 2
+\scrO (p1/3);(2.11)

see, for example, [14, 23, 40]. Equating (2.10) with (2.11) results in

\lambda = 2
\surd 
\pi 

\biggl\lfloor \surd 
p+ 1

2

\biggr\rfloor 
+ 1+\scrO 

\Bigl( 
p - 1/6

\Bigr) 
.(2.12)

For simplicity, motivated by (2.12), we assume

\lambda \leq \surd 
\pi p.(2.13)

Practically speaking, it can be advantageous to expand the image using fewer basis
functions than described by (2.12). See, for example, the heuristic described by
Remark 5.1, or see [44].
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FAST EXPANSION INTO HARMONICS ON THE DISK A2439

3. Computational method. In this section, we describe how to apply the
operators B and B\ast defined above in section 1.3 in \scrO (p log p) operations. For the
purpose of exposition, we start by describing a simplified method before presenting
the full method. The section is organized as follows:

\bullet In section 3.1, we introduce notation for the algorithm description.
\bullet In section 3.2, we give an informal description of a simplified method to

apply B and B\ast in \scrO (p3/2 log p) operations. The simplified method is a
direct application of the lemmas from the previous section.

\bullet In section 3.3, we provide an informal description of how to modify the sim-
plified method to create a fast method to apply B and B\ast in \scrO (p log p) oper-
ations. The main additional ingredient is a fast method of interpolation from
Chebyshev nodes.

\bullet In section 3.4, we give a detailed description of the fast method to apply B
and B\ast in \scrO (p log p) operations.

3.1. Notation. Recall that x1, . . . , xp and f1, . . . , fp are an enumeration of the
pixel locations and corresponding pixel values, and \lambda 1, . . . , \lambda m and \psi 1, . . . ,\psi m are
an enumeration of the Bessel function roots and corresponding eigenfunctions; see
section 1.2. Let c1, . . . , cm be an enumeration of the normalization constants defined in
(2.2) such that cj is the normalization constant associated with \psi j , and let n1, . . . , nm

and k1, . . . , km, be an enumeration of the Bessel function orders and root numbers
such that \psi njkj

= \psi j . Further, we define Nm = max\{ nj \in Z : j \in \{ 1, . . . , p\} \} to be
the maximum order of the Bessel functions, and Kn := max\{ k \in Z>0 : \lambda nk \leq \lambda \} for
n\in \{  - Nm, . . . ,Nm\} .

A key ingredient in the simplified and fast methods is the nonuniform fast Fourier
transform (NUFFT) [11, 21, 28], which is now a standard tool in computational
mathematics. Given n source points and m target points in Rd, and 1 \geq \varepsilon > 0, the
NUFFT involves

\scrO 

\Biggl( 
n logn+m

\biggl( 
log

1

\varepsilon 

\biggr) d
\Biggr) 

(3.1)

operations to achieve \ell 1-\ell \infty relative error \varepsilon ; see [1, eq. (9)] and [2, sec. 1.1]. Through-
out the paper (except for Theorem 4.1 and its proof), we treat \varepsilon as a fixed constant,
say, \varepsilon = 10 - 7, and do not include it in computational complexity statements.

3.2. Informal description of simplified method. In this section, we present
a simplified method that applies B and B\ast in \scrO (p3/2 log p) operations. We first
describe how to apply B\ast . The basic idea is to apply Lemma 2.2 to the function

f(x) =

p\sum 
j=1

fj\delta (x - xj),

where \delta is a Dirac delta distribution. Observe that, by our convention (2.3), the
Fourier transform of f is

\widehat f(\xi ) = 1

2\pi 

p\sum 
j=1

fje
 - \imath xj \cdot \xi .

In polar coordinates xj = (rj cos\theta j , rj sin\theta j) and \xi = (\rho cos\phi ,\rho sin\phi )

\widehat f(\rho ,\phi ) = 1

2\pi 

p\sum 
j=1

fje
 - \imath rj\rho cos(\theta j - \phi ),
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A2440 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

and by the definition (2.7) of \beta n we have

\beta n(\rho ) =

p\sum 
j=1

fj
\imath n

2\pi 

\int 2\pi 

0

e - \imath rj\rho cos(\theta j - \phi )e - \imath n\phi d\phi .(3.2)

Changing variables \phi \mapsto \rightarrow \phi + \theta j + \pi /2 and using the identity (2.4) gives

\beta n(\rho ) =

p\sum 
j=1

fjJn(rj\rho )e
 - \imath n\theta j .

By the definition (1.8) of B\ast it follows that

(B\ast f)i = ci\beta ni(\lambda i)h.

In order to implement the above calculations numerically, we need to discretize the
integral in (3.2). In Lemma 4.2, we prove that discretizing \phi using s=\scrO (

\surd 
p) equi-

spaced angles guarantees that sums over the equispaced angles approximate integrals
over \phi to sufficient accuracy. In more detail, the simplified method for applying B\ast 

can be described as follows.
Step 1. Using the type-2 2D NUFFT compute

ai\ell :=

p\sum 
j=1

fje
 - \imath xj \cdot \xi i\ell , where \xi i\ell := \lambda i(cos\phi \ell , sin\phi \ell ),

for (i, \ell )\in \{ 1, . . . ,m\} \times \{ 0, . . . , s - 1\} , where \phi \ell = 2\pi \ell /s. The computational complexity
of this step is \scrO (p3/2) using the NUFFT since there are \scrO (p) source nodes and \scrO (p3/2)
target nodes; see (3.1).

Step 2. Using the FFT compute

\beta n(\lambda i)\approx 
\imath n

s

s - 1\sum 
\ell =0

ai\ell e
 - \imath n\phi \ell 

for (i, n)\in \{ 1, . . . ,m\} \times \{ 0, . . . , s - 1\} . Since this step involves m=\scrO (p) FFTs of size
s=\scrO (

\surd 
p), the computational complexity of this step is \scrO (p3/2 log p).

Step 3. By Lemma 2.2, it follows that

(B\ast f)i = \beta ni(\lambda i)cih

for i \in \{ 1, . . . ,m\} . The computational complexity of this step is \scrO (p) since it only
involves selecting and scaling \beta ni

(\lambda i) and since m=\scrO (p).

3.3. Sketch of fast method. In this section, we describe how the computa-
tional complexity of the simplified method of the previous section for applying B\ast 

can be improved from \scrO (p3/2 log p) to \scrO (p log p) by using fast interpolation from
Chebyshev nodes.

The problem with the simplified method is the first step: it involves computing\widehat f(\rho ,\phi ) for \scrO (p) values of \rho and \scrO (
\surd 
p) values of \phi for a total of \scrO (p3/2) points, which

is already prohibitively expensive. Fortunately, there is a simple potential solution to
this problem: since the functions \beta n(\rho ) are analytic functions of \rho , it is possible to
tabulate them at appropriate points and then use polynomial interpolation to compute
the coefficients. We take this approach to design a fast method. Crucially, we prove
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FAST EXPANSION INTO HARMONICS ON THE DISK A2441
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Fig. 3. We visualize the interpolation step for a 64\times 64 input image. For n= 40 and 100 we
plot \beta n(\rho ) (black line), interpolation source nodes (black dots), and target points (orange crosses).
(Color available online.)

that tabulating each \beta n at \scrO (
\surd 
p) Chebyshev nodes is sufficient to achieve the desired

accuracy (see Lemma 4.3). This reduces the number of target points in the NUFFT
in the first step of the algorithm from \scrO (p3/2) to \scrO (p). Note that one should not
expect to be able to use o(p) points in total, since the images have p pixels.

In more detail, here is an informal summary of the fast method:
\bullet Compute the Fourier transform of f at

\xi k\ell := tk(cos\phi \ell , sin\phi \ell )

for \scrO (
\surd 
p) Chebyshev nodes tk and \scrO (

\surd 
p) angles \phi \ell .

\bullet Approximate \beta n(tk) for the\scrO (
\surd 
p) Chebyshev nodes tk in the interval [\lambda 1, \lambda m]

and \scrO (
\surd 
p) frequencies n.

\bullet For each of the \scrO (
\surd 
p) frequencies, use fast interpolation from the \scrO (

\surd 
p)

Chebyshev nodes tk to the \scrO (
\surd 
p) Bessel function roots associated with each

frequency n. We illustrate the interpolation step in Figure 3.

3.4. Detailed description of fast method. In addition to the notation of
section 3.1, let

tk :=
\lambda m  - \lambda 1

2
cos

\biggl( 
2k+ 1

q
\cdot \pi 
2

\biggr) 
+
\lambda 1 + \lambda m

2
, k= 0, . . . , q  - 1,(3.3)

be Chebyshev nodes of the first kind in the interval [\lambda 1, \lambda m] for fixed integer q. We
present a detailed description of the fast method for applying B\ast in Algorithm 3.1.

Remark 3.1 (methods for fast interpolation from Chebyshev nodes). Given values
v0, . . . , vq - 1, we denote by P the q  - 1 degree polynomial such that P (tk) = vk for
k \in \{ 0, . . . , q - 1\} , where tk are the Chebyshev nodes defined in (3.3). We can explicitly
write P as

P (t) =

q - 1\sum 
k=0

vkuk(t), where uk(t) =

\prod 
\ell \not =k(t - t\ell )\prod 
\ell \not =k(tk  - t\ell )

, for k \in \{ 0, . . . , q  - 1\} .(3.4)

Given r target points w0, . . . ,wr - 1, the map (v0, . . . , vq - 1) \mapsto \rightarrow (P (w0), . . . , P (wr - 1))
is a linear mapping Cq \rightarrow Cr. This linear operator (and its adjoint) can be applied
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A2442 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

Algorithm 3.1. Fast method for applying B\ast .

Input: Image f , bandlimit \lambda , and accuracy parameter \varepsilon .
Constants: \# of pixels p, \# of basis functions m, \varepsilon dis defined by (A.9), \varepsilon nuf and \varepsilon fst

defined by (A.6), s= \lceil max\{ 7.09\surd p, | log2 \varepsilon dis| \} \rceil , and q= \lceil max\{ 2.4\surd p, | 
log2 \varepsilon 

dis| \} \rceil .
Output: \alpha approximating B\ast f to relative error \varepsilon (see Theorem 4.1).

1 Using the type-2 NUFFT, compute

ak\ell :=

p\sum 
j=1

fje
 - \imath xj \cdot \xi k\ell ,

with relative error \varepsilon nuf, where \xi k\ell := tk(cos\phi \ell , sin\phi \ell ) and \phi \ell = 2\pi \ell /s, for k \in 
\{ 0, . . . , q  - 1\} and \ell \in \{ 0, . . . , s - 1\} .

2 Using FFT, compute

\beta nk :=
\imath n

s

s - 1\sum 
\ell =0

ak\ell e
 - \imath n\phi \ell ,

for k \in \{ 0, . . . , q  - 1\} and n\in \{  - Nm, . . . ,Nm\} .
3 Using fast Chebyshev interpolation, compute

\alpha i :=

q - 1\sum 
k=0

ci\beta nikuk(\lambda i)h,

for i\in \{ 1, . . . ,m\} with relative error \varepsilon fst for k \in \{ 0, . . . , q - 1\} and n\in \{  - Nm, . . . ,
Nm\} , where uk(t) is defined in (3.4).

quickly by a variety of methods: for example, the interpolation could be performed by
using the NUFFT [11, 21, 28] in \scrO (p log p) operations (which is often called spectral
interpolation), the Fast Multipole Method (FMM) [10] in \scrO (p) operations, or gener-
alized Gaussian quadrature [19] in \scrO (p log p) operations. See also [32, Chapter 7.4]
for an approach using the nonuniform fast discrete cosine transform. Although the
FMM has the lowest computational complexity, it is known to have a large run-time
constant, so using other methods may be faster in applications. Practically speaking,
choosing a fixed number of source points centered around each target point (say 20
source points) and then applying a precomputed sparse (barycentric interpolation [3])
matrix may be more practical than any of these methods; sparse interpolation can be
used in combination with spectral interpolation (by discrete cosine transform) to first
increase the number of Chebyshev nodes.

Algorithm 3.2 details the fast method for applying B, which consists of applying
the adjoint of the operator applied in each step of Algorithm 3.1 in reverse order, with
slightly different accuracy parameters. Indeed, each step of Algorithm 3.1 consists of
applying a linear transform whose adjoint can be applied in a similar number of
operations: the adjoint of the first step (which uses type-2 NUFFT) is a type-1 2D
NUFFT [1], the adjoint of the second step (which uses a standard FFT) is an inverse
FFT, and the adjoint of the third step (fast interpolation, see Remark 3.1) can be
computed by a variety of methods (including NUFFT).
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FAST EXPANSION INTO HARMONICS ON THE DISK A2443

Algorithm 3.2. Fast method for applying B.

Input: Coefficients \alpha , bandlimit \lambda , and accuracy parameter \varepsilon .
Constants: \# of pixels p, \# of basis functions m, \varepsilon dis defined by (A.15),

\varepsilon fst and \varepsilon nuf defined by (A.13), s= \lceil max\{ 7.09\surd p, | log2 \varepsilon dis| \} \rceil , and
q= \lceil max

\bigl\{ 
2.4

\surd 
p, | log2 \varepsilon dis| 

\bigr\} 
\rceil .

Output: f approximating B\alpha to relative error \varepsilon (see Theorem 4.1)
1 Using a fast Chebyshev interpolation method, compute

\beta \ast 
nk = h

\sum 
i:ni=n

uk(\lambda i)ci\alpha i,

with relative error less than \varepsilon fst for n\in \{  - Nm, . . . ,Nm\} and k \in \{ 0, . . . , q  - 1\} ,
where uk(t) is defined in (3.4).

2 Using FFT compute

a\ast k\ell :=

Nm\sum 
n= - Nm

( - \imath )n

s
e\imath n\phi \ell \beta \ast 

nk,

for all k \in \{ 0, . . . , q  - 1\} and \ell \in \{ 0, . . . , s - 1\} , where \phi \ell = 2\pi \ell /s.
3 Using the type-1 NUFFT compute

fj =

q - 1\sum 
k=0

s - 1\sum 
\ell =0

e\imath xj \cdot \xi k\ell a\ast i\ell ,

with relative error less than \varepsilon nuf, for j \in \{ 1, . . . , p\} , where \xi k\ell := tk(cos\phi \ell , sin\phi \ell ).

4. Accuracy guarantees for the fast methods. We state and prove a precise
version of the informal result in Theorem 1.1.

Theorem 4.1. Let 1\geq \varepsilon > 0 be given, and assume \lambda \leq \surd 
\pi p and | log \varepsilon | \leq \surd 

p. Let
\~B\ast and \~B be operators whose actions consist of applying Algorithm 3.1 and Algorithm
3.2, respectively. We have

\| \~B\ast f  - B\ast f\| \ell \infty \leq \varepsilon \| f\| \ell 1 and \| \~B\alpha  - B\alpha \| \ell \infty \leq \varepsilon \| \alpha \| \ell 1 .

Moreover, both algorithms involve \scrO (p log p+ p| log \varepsilon | 2) operations.
The proof of Theorem 4.1 is given in Appendix A. We note that the theorem

quantifies the computational accuracy in terms of \ell 1-\ell \infty relative error, which is stan-
dard for algorithms involving the NUFFT [1, 2]. The assumption | log \varepsilon | \leq \surd 

p is
not restrictive since if | log \varepsilon | \geq \surd 

p, then we could directly evaluate B\ast f in the same
asymptotic complexity \scrO (p2). The proof of Theorem 4.1 relies on the following two
key lemmas that estimate a sufficient number of angular nodes and radial nodes in
sections 4.1 and 4.2, respectively.

4.1. Number of angular nodes. Informally speaking, the following lemma
shows that s=\scrO (

\surd 
p) angular nodes are sufficient to achieve error \gamma in the discretiza-

tion of the integral over \phi ; see (3.2).

Lemma 4.2. Let the number of equispaced angular nodes s satisfy

s= \lceil max\{ 7.09\surd p, log2 \gamma  - 1\} \rceil .(4.1)
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A2444 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

Let xj = (rj cos\theta j , rj sin\theta j). If \rho \in [\lambda 1, \lambda m], then\bigm| \bigm| \bigm| \bigm| \bigm| \imath ns
s - 1\sum 
\ell =0

e\imath rj\rho cos(\theta j - \phi \ell )e - \imath n\phi \ell  - Jn(rj\rho )e
 - \imath n\theta j

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \gamma 

for n\in \{  - Nm, . . . ,Nm\} and j \in \{ 1, . . . , p\} , where \phi \ell = 2\pi \ell /s.

It will be clear from the proof that the constant 7.09 in the statement of the
lemma is an overestimate; see Remark 4.4 for a discussion of how this constant can
be improved.

Proof of Lemma 4.2. Let

gnj(\rho ,\phi ) =
\imath n

2\pi 
e\imath rj\rho cos(\theta j - \phi )e - \imath n\phi (4.2)

for n\in \{ 0, . . . , s - 1\} and j \in \{ 1, . . . , p\} . We want to show that\bigm| \bigm| \bigm| \bigm| \bigm| 2\pi s
s - 1\sum 
\ell =0

gnj(\rho ,\phi \ell ) - Jn(rj\rho )e
 - \imath n\theta j

\bigm| \bigm| \bigm| \bigm| \bigm| <\gamma .(4.3)

Notice that the sum in (4.3) is a discretization of the integral\int 2\pi 

0

gnj(tk, \phi )d\phi = Jn(rjtk)e
 - \imath n\theta j ,(4.4)

where the exact expression for the integral results from (2.4) and a change of variables
from \phi \mapsto \rightarrow \phi + \theta j + \pi /2 in the integral. It follows from Lemma A.3 that\bigm| \bigm| \bigm| \bigm| \bigm| 2\pi s

s - 1\sum 
\ell =0

gnj(\rho ,\phi \ell ) - Jn(rj\rho )e
 - \imath n\theta j

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 2\pi s

s - 1\sum 
\ell =0

gnj(\rho ,\phi \ell ) - 
\int 2\pi 

0

gnj(\rho ,\phi )d\phi 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

4\| g(s)nj (\rho , \cdot )\| L1

ss
,

(4.5)

where g
(s)
nj (\rho ,\phi ) denotes the sth derivative of gnj(\rho ,\phi ) with respect to \phi . From defi-

nition (4.2) of gnj(\rho ,\phi ), we have the estimate\bigm| \bigm| \bigm| g(s)nj (\rho ,\phi )
\bigm| \bigm| \bigm| \leq (\lambda m +Nm)s

2\pi 

for all \rho \in [\lambda 1, \lambda m], n \in \{  - Nm, . . . ,Nm\} , j = 1, . . . , p, and \phi \in [0,2\pi ]. Therefore, since
4/(2\pi )\leq 1, it suffices to choose s such that\biggl( 

\lambda m +Nm

s

\biggr) s

\leq \gamma .(4.6)

It follows that choosing s=max\{ 2(\lambda m +Nm), log2 \gamma 
 - 1\} achieves error at most \gamma . To

complete the proof, we note that \lambda m \leq \lambda , where \lambda is the maximum bandlimit from
section 2.5. Also by [9, 10.21.40] we have

\lambda n1 = n+ 1.8575n1/3 +\scrO (n - 1/3),

which implies that the maximum angular frequency

Nm \leq \lambda .(4.7)

We conclude that s = max\{ 4\lambda , log2 \gamma  - 1\} is sufficient to achieve error \gamma . Since we
assume \lambda \leq \surd 

\pi p and 4
\surd 
\pi \leq 7.09, the proof is complete.
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FAST EXPANSION INTO HARMONICS ON THE DISK A2445

4.2. Number of radial nodes. The following lemma shows that \scrO (
\surd 
p) Cheby-

shev nodes are sufficient for accurate interpolation in Step 3 of Algorithm 3.1.

Lemma 4.3. Let the number of radial nodes

q= \lceil max
\bigl\{ 
2.4

\surd 
p, log2 \gamma 

 - 1
\bigr\} 
\rceil .(4.8)

Let Pn be the degree q - 1 polynomial such that

Pn(tk) = Jn(rjtk)e
 - \imath n\theta j

for k \in \{ 0, . . . , q  - 1\} , where tk are Chebyshev nodes for [\lambda 1, \lambda m]; see (3.3). Then,

| Pn(\rho ) - Jn(rj\rho )e
 - \imath n\theta j | \leq \gamma 

for \rho \in [\lambda 1, \lambda m], n\in \{  - Nm, . . . ,Nm\} , and j \in \{ 1, . . . , p\} .
As above, we emphasize that the constant 2.4 in the statement of this result is

an overestimate. See Remark 4.4 for a discussion about how this constant can be
improved.

Proof of Lemma 4.3. When interpolating a smooth differentiable function h de-
fined on the interval [a, b] using an interpolating polynomial P at q Chebyshev nodes,
the residual term R(\rho ) = h(\rho ) - P (\rho ) can be written as

| R(\rho )| \leq Cq

q!

\biggl( 
b - a

4

\biggr) q

,

where Cq := max\rho \in [a,b] | h(q)(\rho )| ; see [34, Lemma 2.1]. If we apply this result with
[a, b] = [\lambda 1, \lambda m], the residual satisfies

| R(\rho )| \leq Cq

q!

\biggl( 
\lambda m  - \lambda 1

4

\biggr) q

\leq Cq

q!

\biggl( \surd 
\pi p

4

\biggr) q

,

where the final inequality follows from the bound \lambda m \leq \surd 
\pi p; see section 2.5. In order

to apply this bound to Jn(rj\rho )e
 - \imath n\theta j , we estimate

Cq := max
\rho \in [\lambda 1,\lambda m]

\bigm| \bigm| \bigm| \bigm| \partial q\partial \rho q (Jn(rj\rho )) e - \imath n\theta j

\bigm| \bigm| \bigm| \bigm| .
We expand the function Jn(rj\rho ) using the integral identity in (2.4) and obtain\bigm| \bigm| \bigm| \bigm| \partial q\partial \rho q (Jn(rj\rho ))

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 12\pi 
\int 2\pi 

0

\partial q

\partial \rho q

\Bigl( 
e\imath rj\rho sin(\theta ) - \imath n\theta 

\Bigr) 
d\theta 

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| 12\pi 
\int 2\pi 

0

(\imath rj sin(\theta ))
q
e\imath rj\rho sin(\theta ) - \imath n\theta d\theta 

\bigm| \bigm| \bigm| \bigm| 
\leq 
\biggl( 

1

2\pi 

\int 2\pi 

0

d\theta 

\biggr) 
.

In combination with Stirling's approximation [9, 5.11.3], it follows that

| R(\rho )| \leq 1

q!

\biggl( \surd 
\pi p

4

\biggr) q

\leq 
\biggl( \surd 

\pi pe

4q

\biggr) q

.
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A2446 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

Therefore, in order to achieve error | R(\rho )| \leq \gamma , it suffices to set q such that

\gamma \geq 
\biggl( \surd 

\pi pe

4q

\biggr) q

.(4.9)

Setting
\surd 
\pi pe/4q= 1/2 and solving for q gives

q=

\surd 
\pi e

\surd 
p

2
\approx 2.4

\surd 
p =\Rightarrow q\geq max\{ 2.4\surd p, log2 \gamma  - 1),

which is sufficient to achieve error less than \gamma .

Remark 4.4 (improving estimates for number of radial and angular nodes). While
Lemmas 4.3 and 4.2 show that the number of radial nodes q and angular nodes s are
\scrO (

\surd 
p), the constants in the lemmas are not optimal. For practical purposes, choosing

the minimal number of nodes needed to achieve the desired error is advantageous to
improve the run-time constant of the algorithm, and it is clear from the proofs how
the estimates can be refined. For Lemma 4.3 we set Q= \lceil 2.4\surd p\rceil , and motivated by
(4.9) we compute

\gamma rad(q) =
1\surd 
\pi q!

\biggl( \surd 
\pi p

4

\biggr) q

for q= 1, . . . ,Q and choose the smallest value q\ast of q such that \gamma rad(q\ast )\leq \gamma . Similarly,
for Lemma 4.2, we set S = \lceil 7.09\surd p\rceil , and motivated by (4.6) we compute

\gamma ang(s) =

\biggl( 
\lambda m +Nm

s

\biggr) s

for s = 1, . . . , S and choose the smallest value s\ast of s such that \gamma ang(s) \leq \gamma . Then,
it follows that 2.4

\surd 
p and 7.09

\surd 
p can be replaced by q\ast and s\ast in the statements

of Lemmas 4.3 and 4.2, respectively. This procedure improves the estimate of the
required number of angular and radial nodes by a constant factor.

5. Numerical results.

Remark 5.1 (FFT bandlimit heuristic). One heuristic for setting the bandlimit
is based on the fast Fourier transform (FFT). For a centered FFT on a signal of
length L, the maximum frequency is \pi 2(L/2)2, which corresponds to a bandlimit of
\lambda = \pi L/2. Note that

\pi L/2\approx 1.57L< 1.77L\approx 
\surd 
\pi \lfloor (L - 1)/2\rfloor /2,(5.1)

so this FFT bandlimit heuristic does indeed produce a reasonable bandlimit below
the bound (2.12) derived from Weyl's law. We use this bandlimit for our numerical
experiments. The computational complexity and accuracy guarantees of the method
presented in this paper hold for any bandlimit \lambda = \scrO (L). However, the fact that
the fast method performs interpolation in Fourier space inside a disk bounded by the
maximum bandlimit provides additional motivation for this FFT-based heuristic since
it will ensure that the disk will be contained within the square in frequency space used
by the two-dimensional FFT.

5.1. Numerical accuracy results. In this section, we report numerical results
for the accuracy of our FDHT method compared to matrix multiplication. The im-
plementation of the method is based on the parameters \varepsilon dis, \varepsilon nuf, \varepsilon fst, s, and q, which
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FAST EXPANSION INTO HARMONICS ON THE DISK A2447

result in the error guarantees in Theorem 4.1. However, since these theoretical error
bounds do not account for errors from finite precision arithmetic, the parameters used
by the implementation of the algorithm are tuned slightly so that the code achieves
the desired accuracy in numerical tests. In particular, when running the optimization
procedure for s described in Remark 4.4, we decrease the threshold parameter \gamma by
an additional factor of p. The motivation for this heuristic is to try to account for
numerical errors. This results in a value of s slightly larger than that of Remark 4.4,
but smaller than that of Lemma 4.2. In particular, this choice of s theoretically guar-
antees the correct complexity and accuracy. We also tune the values of \varepsilon dis, \varepsilon nuf, \varepsilon fst

in Algorithms 3.1 and 3.2 for further increased performance.
Recall that B :Cm \rightarrow Cp maps coefficients to images by

(B\alpha )j =
m\sum 
i=1

\alpha i\psi i(xj)h,

and its adjoint transform B\ast :Cp \rightarrow Cm maps images to coefficients by

(B\ast f)i =

p\sum 
j=1

fj\psi i(xj)h;

see section 1.3. By defining the m\times p matrix B by

Bij =\psi i(xj)h,

we can apply B and B\ast by dense matrix multiplication to test the accuracy of our fast
method. Since the size of the matrix scales like L4 for L\times L images, constructing these
matrices quickly becomes prohibitive so the comparison is only given up to L = 160
(see Table 1), where

err\alpha =
\| \alpha fast  - \alpha dense\| \ell 2

\| \alpha dense\| \ell 2
and errf =

\| ffast  - fdense\| \ell 2
\| fdense\| \ell 2

denote the relative errors of the coefficients and the image, respectively, where \alpha dense =
B\ast f and fdense =B\alpha are computed by dense matrix multiplication and \alpha fast and ffast
are the corresponding quantities computed using the fast algorithm of this paper.

The image used for the accuracy comparison is a tomographic projection of a 3D
density map representing a bio-molecule (E. coli 70S ribosome) [35], retrieved from
the online EM data bank [27].

5.2. Timing results. In this section, we plot the timing of our FDHT method
for L\times L images with p = L2 pixels. We demonstrate that the method does indeed

Table 1
Relative error of fast method compared to dense matrix multiplication.

L \varepsilon err\alpha errf \varepsilon err\alpha errf

64 1.00e-04 1.92422e-05 2.10862e-05 1.00e-10 3.55320e-11 2.36873e-11

96 1.00e-04 1.82062e-05 2.52219e-05 1.00e-10 2.99849e-11 2.48166e-11
128 1.00e-04 1.90648e-05 2.41142e-05 1.00e-10 3.25650e-11 2.61890e-11

160 1.00e-04 2.00748e-05 2.49488e-05 1.00e-10 3.13903e-11 3.50455e-11

64 1.00e-07 2.03272e-08 2.98083e-08 1.00e-14 7.41374e-15 6.82660e-15

96 1.00e-07 2.28480e-08 2.58272e-08 1.00e-14 9.82890e-15 8.80843e-15
128 1.00e-07 2.69215e-08 2.27676e-08 1.00e-14 1.21146e-14 1.11909e-14

160 1.00e-07 2.47053e-08 2.51146e-08 1.00e-14 1.36735e-14 1.51430e-14
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e
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)
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dense apply B

Fig. 4. Timings of fast method versus dense method for precomputation (left) and applying B
(right). The timings for the dense method for L > 160 are extrapolated since the memory require-
ments for the dense method were prohibitive.

have complexity \scrO (p log p) and that the timings are practical. We plot the time of
precomputation and the time of applying B using the fast method; for comparison,
we include timings for forming and applying the dense matrix B; see Figure 4. The
timings for applying B\ast are similar to the timings for applying B (since the algorithm
consists of applying similar transforms in the reverse order), so a separate plot was
not included.

The timings were carried out on a computer with an AMD 5600X processor
and 24GB of memory. We set \varepsilon = 10 - 7 for the reported timings and compare to
the dense method up to L = 160. For L > 160, comparison to the dense method
was prohibitively expensive. For reference, storing the dense transform matrix in
double precision complex numbers for L= 512 would require about 640 GB of mem-
ory. The NUFFT uses the FINUFFT implementation [1, 2]. The image used for
the timing results is a tomographic projection of a 3D density map representing the
SARS-CoV-2 Omicron spike glycoprotein complex [22], retrieved from the online EM
data bank [27].

Remark 5.2 (precomputation time negligible when transforming many images).
The precomputation involves organizing Bessel function roots and creating data struc-
tures for the NUFFT and interpolation steps of the algorithm. Precomputation only
needs to be performed once for a given size of image L and becomes negligible when
the method is used to expand a large enough set of images (around 100 images), which
is a typical use-case in, for example, applications in cryo-EM [4].

Remark 5.3 (breakdown of timing of fast algorithm). Each step of the algorithm
has roughly the same magnitude. For example, for L= 512 and \varepsilon = 10 - 7 the timings
of the NUFFT, FFT, and interpolation steps of the algorithm for applying B are
0.035, 0.046, and 0.026 seconds, respectively. We note that the timing of each step
is dependent on the choice of parameters. For example, sampling more points will
increase the cost of the NUFFT step but decrease the cost of the interpolation step
since sparser interpolation matrices can be used; decreasing \varepsilon will increase the cost of
the NUFFT step.

Remark 5.4 (parallelization). The timings reported in Figure 4 are for a single-
threaded CPU code. However, each step of the code is amenable to parallelization
through GPU implementations. Indeed, the NUFFT step has a GPU implementation
[36], and the 2D FFT and interpolation steps can also benefit from straightforward
parallelization schemes.
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FAST EXPANSION INTO HARMONICS ON THE DISK A2449

5.3. Numerical example: Convolution and rotation. We lastly present an
example illustrating the use of the steerable and fast radial convolution properties of
the eigenbasis. The example is motivated by cryo-EM, wherein tomographic projec-
tion images of biological molecules in a sample are registered by electron beams; see,
for example, [13] for more information. Because of aberrations within the electron-
microscope and random in-plane rotations of the molecular samples, the registered
image Ir does not precisely coincide with the actual projection image Ip, and the
following model is used:

Ir(x) = c(| x| ) \ast R\theta (Ip(x)) + \eta ,(5.2)

where R\theta describes rotation around the origin by an angle of \theta , c is a radial function
termed the point-spread function, and \eta is additive white noise. The function \widehat c is,
in turn, known as the contrast transfer function (CTF). Examples of point spread
functions are shown in Figure 5.

Notably, the regions of the frequency space where \widehat c equals zero destroy informa-
tion of Ip(x). However, the fact that convolution is a diagonal transformation of the
coefficients in the basis of eigenfunctions enables reconstruction of a fixed projection
image Ip from a small number of registered images I

(i)
r with different point spread

functions ci(| x| ), rotations R\theta i , and noise \eta (i) for i = 1, . . . , t. From Lemma 2.2, it

follows that the basis coefficients \alpha 
(i)
nk of the registered images satisfy

\alpha 
(i)
nk = \widehat ci(\lambda nk)e\imath n\theta i\alpha (0)

nk + \eta 
(i)
nk for i= 1, . . . , t,(5.3)

where \alpha 
(0)
nk denote the basis coefficients of Ip. We assume that the parameters \theta i and

ci are known or estimated to a desired precision. We remark that the standard FFT
can be used to solve this problem when there are no rotations.

To recover the \alpha 
(0)
nk , we find the least-squares optimizers of (5.3). To improve the

conditioning of the problem, (5.3) is thresholded to exclude the values of i for which\widehat ci(\lambda nk) has sufficiently low magnitude. We therefore estimate \alpha 
(0)
nk by \alpha 

(0)
nk \approx \alpha nk,

with \alpha nk defined by

a b c d

e f g h

Fig. 5. Two different point spread functions (a)--(b), result of their convolution with a fixed
image and subsequent rotation (c)--(d). (e) Projection of reference image into the eigenbasis using
the fast algorithm. (f)--(g) Result of deconvolution algorithm using t= 1, 3,5, respectively.
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A2450 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

\alpha nk = argmin
\alpha nk

\sum 
(n,k)\in \scrI 

t\sum 
i=1

\gamma 
(i)
nk \cdot 

\bigm| \bigm| \bigm| \alpha (i)
nk  - \widehat ci(\lambda nk)e\imath n\theta i\alpha nk

\bigm| \bigm| \bigm| 2 ,(5.4)

where \gamma 
(i)
nk = 0 if | \widehat ci(\lambda nk)| < \tau , for a given threshold \tau , and \gamma 

(i)
nk = 1 otherwise. This

describes a decoupled least-squares problem for each coefficient \alpha nk, which can be
solved efficiently. We remark that (5.4) is a basic version of Wiener filtering [4],
which we use for simplicity of exposition. The result of this procedure for different
values of t and a nonzero value of the noise \eta is shown in Figure 5.

6. Discussion. This paper presents a fast method for expanding a set of L\times L
images into the basis of eigenfunctions of the Laplacian on the disk. The approach
calculates the expansion coefficients from interpolation of the Fourier transform of
the image on distinguished subsets of the frequency space and relies on an integral
identity of the Fourier transform of the eigenfunctions. Unlike previous approaches
[44], we demonstrate that our fast method is guaranteed to coincide with a dense,
equivalent method up to a user-specified precision. Moreover, our method provides a
natural way to compute the convolution with radial functions. Potential extensions
of the presented method include extending the method to three dimensions or other
domains in two dimensions.

Appendix A. Proof of Theorem 4.1. This section proves Theorem 4.1.

A.1. Proof of accuracy of Algorithm 3.1. Let \~\alpha i be the output of
Algorithm 3.1, including the error from the NUFFT and fast interpolation steps.
By composing the steps of the algorithm, we have

\~\alpha i = cih

\left(  q - 1\sum 
k=0

\left(  \imath ni

s

s - 1\sum 
\ell =0

\left(  p\sum 
j=1

fje
 - \imath xj \cdot \xi k\ell + \delta nufk\ell 

\right)  e - \imath ni\phi \ell 

\right)  uk(\lambda i) + \delta fsti

\right)  ,

where \delta nufk\ell and \delta fsti denote the error from the NUFFT and fast interpolation, respec-
tively. These satisfy \ell 1-\ell \infty relative error bounds

\| \delta nuf\| \ell \infty \leq \varepsilon nuf
p\sum 

j=1

| fje - \imath xj \cdot \xi k\ell | = \varepsilon nuf\| f\| \ell 1 ,(A.1)

and (using \varepsilon nuf \leq 1, which we can ensure holds)

\| \delta fst\| \ell \infty \leq \varepsilon fst
q - 1\sum 
k=0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \imath 
ni

s

s - 1\sum 
\ell =0

\left(  p\sum 
j=1

fje
 - \imath xj \cdot \xi k\ell + \delta nufk\ell 

\right)  e - \imath ni\phi \ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\varepsilon fstq\| f\| \ell 1 ,(A.2)

where \varepsilon nuf and \varepsilon fst are the relative error parameters for the NUFFT and fast interpo-
lation, respectively. Let \alpha i denote the output of Algorithm 3.1 without the NUFFT
and fast interpolation error terms, i.e.,

\alpha i = cih

q - 1\sum 
k=0

\imath ni

s

s - 1\sum 
\ell =0

p\sum 
j=1

fje
 - \imath xj \cdot \xi k\ell e - \imath ni\phi \ell uk(\lambda i).(A.3)
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FAST EXPANSION INTO HARMONICS ON THE DISK A2451

We have

| \alpha i  - \~\alpha i| \leq cih

\Biggl( 
q - 1\sum 
k=0

1

s

s - 1\sum 
\ell =0

\| \delta nuf\| \ell \infty | uk(\lambda i)| + \| \delta fst\| \ell \infty 
\Biggr) 

\leq cih

\Biggl( 
\| \delta nuf\| \ell \infty 

q - 1\sum 
k=0

| uk(\lambda i)| + \| \delta fst\| \ell \infty 
\Biggr) 

\leq 2
\surd 
2
\Bigl( 
\| \delta nuf\| \ell \infty (2 +

\pi 

2
log q) + \| \delta fst\| \ell \infty 

\Bigr) 
,

(A.4)

where the final inequality follows from Lemma A.2 and the fact that

cih\leq 2
\surd 
2,

which follows from the definition of h in (1.3) and Lemma A.4. Combining this
equality with (A.1) and (A.2) gives

\| \alpha  - \~\alpha \| \ell \infty \leq 2
\surd 
2
\Bigl( 
\varepsilon nuf

\Bigl( 
2 +

\pi 

2
log q

\Bigr) 
+ 2q\varepsilon fst

\Bigr) 
\| f\| \ell 1 .(A.5)

Setting

\varepsilon nuf =

\biggl( 
2
\surd 
2

\biggl( 
2 +

\pi 

2
log q

\biggr) \biggr)  - 1

(\varepsilon /4) and \varepsilon fst = (4
\surd 
2q) - 1(\varepsilon /4)(A.6)

gives

\| \alpha  - \~\alpha \| \ell \infty \leq \varepsilon 

2
\| f\| \ell 1 .(A.7)

By the definition of \alpha i in (A.3), we have

\alpha i = cih

p\sum 
j=1

fj

\Biggl( 
q - 1\sum 
k=0

\imath ni

s

s - 1\sum 
\ell =0

e - \imath xj \cdot \xi k\ell e - \imath ni\phi \ell uk(\lambda i)

\Biggr) 

= cih

p\sum 
j=1

fj
\bigl( 
Jni

(rj\lambda i)e
 - \imath ni\theta j + \delta disij

\bigr) 
= (B\ast f)i + cih

p\sum 
j=1

fj\delta 
dis
ij ,

(A.8)

where the third equality follows from Lemma A.1 with \delta disij a discretization error that
is bounded by \| \delta dis\| \ell \infty \leq (3 + \pi 

2 log q)\varepsilon 
dis. It follows that

| \alpha i  - (B\ast f)i| \leq cih\| f\| \ell 1\| \delta dis\| \ell \infty \leq 2
\surd 
2
\Bigl( 
3 +

\pi 

2
log q

\Bigr) 
\varepsilon dis\| f\| \ell 1 .

Setting

\varepsilon dis =
\Bigl( 
2
\surd 
2
\Bigl( 
3 +

\pi 

2
log (2.4

\surd 
p)
\Bigr) \Bigr)  - 1 \varepsilon 

2
(A.9)

and combining with (A.7) gives

\| \alpha  - B\ast f\| \ell \infty \leq \varepsilon \| f\| \ell 1 ,

which completes the proof of the accuracy guarantees for Algorithm 3.1.
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A.2. Proof of accuracy of Algorithm 3.2. Let \~f be the output of
Algorithm 3.2, including the approximation error from using fast interpolation and
the NUFFT. By composing the steps of Algorithm 3.2 we have

\~fj =

q - 1\sum 
k=0

s - 1\sum 
\ell =0

\Biggl( 
Nm\sum 

n= - Nm

\Biggl( \sum 
i:ni=n

uk(\lambda i)cih\alpha i + \delta fstnk

\Biggr) 
( - \imath )n

s
e\imath n\phi \ell 

\Biggr) 
e - \imath xj \cdot \xi k\ell + \delta nufj ,

where \delta fstnk and \delta nufj denote the error from the fast interpolation and NUFFT, respec-
tively, which satisfy \ell 1-\ell \infty relative error bounds. We have

\| \delta fstn \| \ell \infty \leq \varepsilon fst
\sum 

i:ni=n

cih| \alpha i| \leq 2
\surd 
2\varepsilon fst

\sum 
i:ni=n

| \alpha i| ,

where \delta fstn = (\delta fstnk)
q - 1
k=0, and

\| \delta nuf\| \ell \infty \leq \varepsilon nuf
q - 1\sum 
k=0

s - 1\sum 
\ell =0

1

s

\bigm| \bigm| \bigm| \bigm| \bigm| 
Nm\sum 

n= - Nm

\Biggl( \sum 
i:ni=n

uk(\lambda i)cih\alpha i + \delta fstnk

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \varepsilon nuf

m\sum 
i=1

\Biggl( 
q - 1\sum 
k=0

| uk(\lambda i)| 

\Biggr) 
cih| \alpha i| + \varepsilon nuf

q - 1\sum 
k=0

Nm\sum 
n= - Nm

2
\surd 
2\varepsilon fst

\sum 
i:ni=n

| \alpha i| 

\leq \varepsilon nuf
\Bigl( \Bigl( 

2 +
\pi 

2
log q

\Bigr) 
2
\surd 
2\| \alpha \| \ell 1 + q2

\surd 
2\varepsilon fst\| \alpha \| \ell 1

\Bigr) 
\leq \varepsilon nuf2

\surd 
2
\Bigl( \Bigl( 

2 +
\pi 

2
log q

\Bigr) 
+ 1
\Bigr) 
\| \alpha \| \ell 1 ,

(A.10)

where the final inequality assumes q\varepsilon fst \leq 1. Let fj denote the output of Algorithm 3.2,
ignoring the error from the fast interpolation and NUFFT, i.e.,

fj =

q - 1\sum 
k=0

s - 1\sum 
\ell =0

Nm\sum 
n= - Nm

\sum 
i:ni=n

uk(\lambda i)cih\alpha i
( - \imath )n

s
e\imath n\phi \ell e - \imath xj \cdot \xi k\ell .(A.11)

We have

| fj  - \~fj | \leq 

\Biggl( 
q - 1\sum 
k=0

s - 1\sum 
\ell =0

1

s

Nm\sum 
n= - Nm

| \delta fstnk| 

\Biggr) 
+ | \delta nufj | 

\leq 

\Biggl( 
q - 1\sum 
k=0

2
\surd 
2\varepsilon fst\| \alpha \| \ell 1

\Biggr) 
+ \varepsilon nuf2

\surd 
2
\Bigl( \Bigl( 

2 +
\pi 

2
log q

\Bigr) 
+ 1
\Bigr) 
\| \alpha \| \ell 1

\leq 
\Bigl( 
\varepsilon fst2

\surd 
2q+ \varepsilon nuf2

\surd 
2
\Bigl( 
3 +

\pi 

2
log q

\Bigr) \Bigr) 
\| \alpha \| \ell 1 .

(A.12)

Setting

\varepsilon nuf =
\Bigl( 
2
\surd 
2
\Bigl( 
3 +

\pi 

2
log q

\Bigr) \Bigr)  - 1

(\varepsilon /4) and \varepsilon fst = (2
\surd 
2q) - 1(\varepsilon /4)(A.13)

gives

\| f  - \~f\| \ell \infty \leq \varepsilon 

2
\| \alpha \| \ell 1 .
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By the definition of fj in (A.11), we have

fj =

q - 1\sum 
k=0

s - 1\sum 
\ell =0

m\sum 
i=1

uk(\lambda i)cih\alpha i
( - \imath )n

s
e\imath n\phi \ell e - \imath xj \cdot \xi k\ell 

=
m\sum 
i=1

cih\alpha i

\Biggl( 
q - 1\sum 
k=0

( - \imath )n

s

s - 1\sum 
\ell =0

uk(\lambda i)e
\imath n\phi \ell e - \imath xj \cdot \xi k\ell 

\Biggr) 

=
m\sum 
i=1

cih\alpha i

\bigl( 
Jni(rj\lambda i)e

\imath ni\theta j + \=\delta disij

\bigr) 
= (Bf)j +

m\sum 
i=1

cih\alpha i
\=\delta disij ,

(A.14)

where the third equality follows from Lemma A.1 with \=\delta disij a discretization error that
satisfies \| \=\delta dis\| \ell \infty \leq (3 + \pi 

2 log q)\varepsilon 
dis. It follows that

\| f  - B\alpha \| \ell \infty \leq 2
\surd 
2
\Bigl( 
3
\pi 

2
log q

\Bigr) 
\varepsilon dis\| \alpha \| \ell \infty .

Setting

\varepsilon dis =
\Bigl( 
2
\surd 
2
\Bigl( 
3 +

\pi 

2
log (2.4

\surd 
p)
\Bigr) \Bigr)  - 1 \varepsilon 

2
(A.15)

and combining with (A.7) gives

\| f  - B\alpha \| \ell \infty \leq \varepsilon \| \alpha \| \ell 1 ,

which completes the proof of the accuracy guarantees for Algorithm 3.2.

A.3. Proof of computational complexity of Algorithms 3.1 and 3.2.

A.3.1. Computational complexity of NUFFT. Both Algorithms 3.1 and 3.2
use the same number of source points and target points and have asymptotically
similar error parameters, and thus have the same computational complexity. In both
cases, the number of source points is p, the number of target points is sq=\scrO (p) (see
the definition of s and q in Lemmas 4.2 and 4.3), and the error parameter \varepsilon nuf =
\scrO (\varepsilon / log q); see (A.6) and (A.13). It follows that the computational complexity is
\scrO (p log p + p | log \varepsilon  - log log q| 2) (see (3.1) or [1, 2]), which simplifies to \scrO (p log p +
p | log \varepsilon | 2) operations.

A.3.2. Computational complexity of FFT. Algorithms 3.1 and 3.2 use an
FFT and inverse FFT (which both have the same computational complexity) on a
similar amount of data. In particular, they perform \scrO (

\surd 
p) applications of the FFT

of size \scrO (
\surd 
p). Therefore, the computational complexities are \scrO (p log p).

A.3.3. Computational complexity of fast interpolation. There are a num-
ber of ways to perform fast polynomial interpolation; see Remark 3.1. For consis-
tency with the rest of the paper, assume that fast interpolation is performed using
the NUFFT, whose computational complexity in dimension d is stated in (3.1).

Recall that Nm = max\{ nj \in Z : j \in \{ 1, . . . ,m\} \} and Kn = max\{ k \in Z>0 : \lambda nk \leq 
\lambda for some n\in Z\} . By (4.7) we have Nm \leq \surd 

\pi p. Fix n\in \{  - Nm, . . . ,Nm\} ; we need to
compute a polynomial interpolation from q=\scrO (

\surd 
p) source points (Chebyshev nodes)

to Kn target nodes. The computational complexity of each interpolation problem to
\ell 1-\ell \infty relative error \delta is \scrO (

\surd 
p log p+Kn| log \delta | ). Summing over the 2Nm+1=\scrO (

\surd 
p)

interpolation problems gives a total complexity of \scrO (p log p+p| log \delta | ), where we used
the fact that

\sum Nm

n= - Nm
Kn = m = \scrO (p). It follows from (A.6) and (A.13) that the

computational complexities are \scrO (p log p+ p| log \varepsilon | ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

4/
24

 to
 7

1.
22

6.
23

1.
25

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



A2454 N. F. MARSHALL, O. MICKELIN, AND A. SINGER

A.3.4. Summary. Since all of the steps are \scrO (p log p + p| log \varepsilon | 2), the proof is
complete.

A.4. Technical lemmas. We first state and prove a lemma that combines
Lemma 4.2 and Lemma 4.3.

Lemma A.1. Let s and q be defined by Lemmas 4.2 and 4.3 with accuracy param-
eter \gamma > 0. Then\bigm| \bigm| \bigm| \bigm| \bigm| 

q - 1\sum 
k=0

\imath ni

s

s - 1\sum 
\ell =0

e - \imath xj \cdot \xi k\ell e - \imath ni\phi \ell uk(\lambda i) - Jn(rj\lambda i)e
 - \imath ni\theta j

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \Bigl( 3 + \pi 

2
log q

\Bigr) 
\gamma 

for i\in \{ 1, . . . ,m\} and j \in \{ 1, . . . , p\} .
Proof. We can write

q - 1\sum 
k=0

\imath ni

s

s - 1\sum 
\ell =0

e - \imath xj \cdot \xi k\ell e - \imath ni\phi \ell uk(\lambda i) =

q - 1\sum 
k=0

\Bigl( 
Jn(rjtk)e

 - \imath ni\theta j + \delta angkij

\Bigr) 
uk(\lambda i)

= Jn(rj\lambda i)e
 - \imath ni\theta j + \delta radij +

q - 1\sum 
k=0

\delta angkij uk(\lambda i),

(A.16)

where \delta angkij and \delta radij are the errors from discretizing the angles and using interpolation
in the radial direction, respectively. By Lemmas 4.2 and 4.3 it follows that the error
satisfies \bigm| \bigm| \bigm| \bigm| \bigm| \delta radij +

q - 1\sum 
k=0

\delta angkij uk(\lambda i)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \gamma + \gamma 
\Bigl( 
2 +

\pi 

2
log q

\Bigr) 
,

which completes the proof.

We will use the following property of Chebyshev interpolation polynomials; see
[34, eq. 11].

Lemma A.2. Let tk be Chebyshev nodes of the first kind defined in (3.3) for the
interval [\lambda 1, \lambda m]. Then,

q - 1\sum 
k=0

| uk(t)| \leq 2 +
2

\pi 
log q, where uk(t) =

\prod 
\ell \not =k(t - t\ell )\prod 
\ell \not =k(tk  - t\ell )

,

for all t\in [\lambda 1, \lambda m].

We will also require a classical result on discretization errors for integrals of
smooth periodic functions.

Lemma A.3. Suppose that g : [0,2\pi ] \rightarrow C is a smooth periodic function on the
torus [0,2\pi ] where 0 and 2\pi are identified. Then\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 2\pi 

0

g(\phi )d\phi  - 2\pi 

s

s - 1\sum 
\ell =0

g(\phi \ell )

\bigm| \bigm| \bigm| \bigm| \bigm| < 4
\| g(s)\| L1

ss
(A.17)

for all s\geq 2, where \phi \ell = 2\pi \ell /s, where g(s)(\phi ) denotes the sth derivative of g(\phi ) with
respect to \phi .

See [24, Theorem 1.1] for a proof. Lastly, we prove an upper bound on the
normalization constants cnk.
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Lemma A.4. If \lambda nk \leq 
\surd 
\pi p, then the constants cnk satisfy | cnk| \leq 

\surd 
2p.

Proof of Lemma A.4. We start with an alternate equivalent definition to (2.2):

cnk =
1

| \pi 1/2J \prime 
n(\lambda nk)| 

for (n,k)\in Z\times Z>0;(A.18)

see [9, eq. 10.6.3, eq. 10.22.37]. By [9, eq. 10.18.4, eq. 10.18.6],

Jn(x) =Mn(x) cos(\theta n(x)),

where Mn(x)
2 = Jn(x)

2 + Yn(x)
2 is a magnitude function, Yn is the nth order Bessel

function of the second kind, and \theta n(x) is a phase function. Taking the derivative gives

J \prime 
n(x) =M \prime 

n(x) cos(\theta n(x)) - Mn(x) sin(\theta n(x))\theta 
\prime 
n(x).

By [20, eq. 8.479], we have

\pi 

2
\surd 
x2  - n2

\geq Mn(x)
2 \geq \pi 

2x
.(A.19)

In particular, the magnitude function Mn(x) does not vanish, so at a root \lambda nk of Jn,
we must have \theta n(\lambda nk) =

\pi 
2 + \pi \ell for \ell \in Z. It follows that

J \prime 
n(\lambda nk)

2 =Mn(\lambda nk)
2\theta \prime n(\lambda nk)

2.

Using [9, eq. 10.18.8] and (A.19) gives

J \prime 
n(\lambda nk)

2 =

\biggl( 
2

\pi \lambda nk

\biggr) 2

Mn(\lambda nk)
 - 2 \geq 

\biggl( 
2

\pi \lambda nk

\biggr) 2
2
\sqrt{} 
\lambda 2nk  - n2

\pi 
.

By [12, eq. 1.6] we have \lambda nk >n+k\pi  - \pi /2+1/2>n+2 for (n,k)\in Z\geq 0\times Z>0, which
implies

\sqrt{} 
\lambda 2nk  - n2 \geq 2 (this bound can be refined but is sufficient for the purpose of

proving this lemma). Using this inequality together with the fact that 2(2/\pi )3 \geq 1/2
gives

cnk =
1

\pi 1/2| J \prime 
n(\lambda nk)| 

\leq 21/2\lambda nk
\pi 1/2

\leq 
\sqrt{} 
2p,

where the final inequality follows from the assumption \lambda nk \leq 
\surd 
\pi p.
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