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Abstract. Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and
NMR spectroscopy as a high-resolution structural method to resolve biological macromolecules.
In a cryo-EM experiment, the microscope produces images called micrographs. Projections of the
molecule of interest are embedded in the micrographs at unknown locations, and under unknown
viewing directions. Standard imaging techniques first locate these projections (detection) and then
reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When
reliable detection is rendered impossible, the standard techniques fail. This is a problem, especially
for small molecules. In this paper, we pursue a radically different approach: we contend that the
structure could, in principle, be reconstructed directly from the micrographs, without intermediate
detection. The aim is to bring small molecules within reach for cryo-EM. To this end, we design an
autocorrelation analysis technique that allows one to go directly from the micrographs to the sought
structures. This involves only one pass over the micrographs, allowing online, streaming processing
for large experiments. We show numerical results and discuss challenges that lay ahead to turn this
proof-of-concept into a complementary approach to state-of-the-art algorithms.
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1. Introduction. Cryo-electron microscopy (cryo-EM) is an imaging technique in struc-
tural biology used for single particle reconstruction of macromolecules. In a cryo-EM exper-
iment, biological samples are rapidly frozen in a thin layer of vitreous ice. The microscope
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(a) EMPTAR 10028 (b) EMPTAR 10061 (c) EMPTAR 10249

Figure 1. Ezcerpts from three data sets from the EMPIAR repository [29]: EMPIAR 10028 (Plasmodium
Falciparum 80S ribosome) [64], EMPIAR 10061 (B-Galactosidase) [8], and EMPIAR 10249 (Alcohol Dehydroge-
nase) [28]. Detecting particles in the EMPTAR 10028 data set (left panel) is rather easy as the particles in the
micrograph, corresponding to a large ribosome with a molecular weight of 4 MDa, are clearly visible. Doing
so in the EMPIAR 10061 data set (middle panel) is harder, as the B-Galactosidase is a smaller protein with a
molecular weight of 465 kDa, but some particles can still be identified visually. The particles in the EMPIAR
10249 data set (right panel) are tomographic projections of a small molecule that weighs 82 kDa, yielding low
SNR. We note that the differences in particle contrast are also attributed to the fact that the EMPIAR 10249
data set was obtained with a microscope operating at 200 keV, whereas the EMPTAR 10028 and EMPIAR 10061
data sets were taken at 300 keV. In this work, we propose a method that aims to recover molecular structures
when the SNR is very low, even below the SNR of the EMPTAR 10249 data set.

produces a two-dimensional (2-D) tomographic image of the samples embedded in the ice,
called a micrograph. Each micrograph contains tomographic projections of the samples at
unknown locations and under unknown viewing directions. Figure 1 presents three experi-
mental micrographs. The goal is to construct three-dimensional (3-D) models of the molecular
structure from the micrographs [19, 9, 56].

The signal-to-noise ratio (SNR) of the tomographic projections in the micrographs is a
function of two dominating factors. On the one hand, the SNR is a function of the electron
dose. To keep radiation damage within acceptable bounds, the dose must be kept low, which
leads to high noise levels. On the other hand, the SNR is a function of the molecule size. The
smaller the molecules, the fewer detected electrons carry information about them.

All methods currently in use split the reconstruction procedure into two main stages. The
first stage consists of extracting the various particle projections from the micrographs. This
stage is called particle picking [50, 24, 14, 17]. The second stage aims to construct a 3-D
model of the molecular structure from these projections. The quality of the reconstruction
eventually hinges on the quality of the particle picking stage. Figure la shows an example of
a data set of a large ribosome with a molecular weight of 4MDa, where the particles in the
micrograph are clearly visible, and thus particle picking is rather easy. The particles in Figure
1b correspond to a smaller protein with a molecular weight of 465 kDa, but some particles
can still be identified visually. The particles in Figure lc¢ are tomographic projections of a
small molecule that weighs 82 kDa, yielding low SNR.

Crucially, it can be shown that reliable detection of individual particles is impossible
below a certain critical SNR. This fact has been recognized early on by the cryo-EM commu-
nity. In particular, in an influential paper from 1995, Nobel laureate Richard Henderson [26]
investigates the following questions:

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/15/24 to 71.226.231.250 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

888 BENDORY, BOUMAL, LEEB, LEVIN, AND SINGER

For the purposes of this review, I would like to ask the question: what is the smallest
size of free-standing molecule whose structure can in principle be determined by phase-
contrast electron microscopy? Given what has already been demonstrated in published
work, this reduces to the question: what is the smallest size of molecule for which it is
possible to determine from images of unstained molecules the five parameters needed

to define accurately its orientation (three parameters) and position (two parameters)

so that averaging can be performed?

In that paper and in others that followed (e.g., [22]), it was established that particle picking
is impossible for molecules below a certain weight (below ~40kDa). Joachim Frank voices
a similar observation in his 2017 Nobel Prize lecture: “Using the ribosome as an example,
it became clear from the formula we obtained that the single-particle approach to structure
research was indeed feasible for molecules of sufficient size: Particle Size > 3 /[Contrast® x
Resolution (as length) x Critical Electron Dose]” [20]. As these two leaders of the cryo-EM
field point out, it is impossible to reconstruct small molecules by any of the existing computa-
tional pipelines for single particle analysis in cryo-EM, because the particles themselves cannot
be picked from the micrographs. Given the fact that the vast majority of the proteins that
make up the mammalian proteome weigh less than 100 kDa, whereas the molecular weights of
almost all biological macromolecules whose structures have been determined using cryo-EM is
greater than 100 kDa, new methodologies targeting macromolecules in this size are of pivotal
importance [40]. In addition, recovering small structures is crucial for structure-guided drug
design [49].

Recovering smaller molecular structures using cryo-EM is an active research effort [66,
65, 5], mostly focused on sample preparation techniques and hardware developments, such as
Volta phase plates [31, 42], laser phase plates [51], and scaffolding cages [43], as well as steady
improvements in the data processing pipeline. Despite this progress, detecting small molecules
in the micrographs remains a challenge (see Figure 1c). We note that nuclear magnetic
resonance (NMR) spectroscopy and X-ray crystallography are well suited to reconstruct small
molecules. Yet, cryo-EM has a lot to offer even for molecules with already known structures
obtained via NMR spectroscopy or X-ray crystallography, because these methods have limited
ability to distinguish conformational variability [58].

In this paper, we argue that there is a gap between the two questions in Henderson’s
quoted excerpt above, and that one may be able to exploit it to design better reconstruc-
tion algorithms. Specifically, the impossibility of particle picking does not necessarily imply
impossibility of particle reconstruction. Indeed, the aim is only to reconstruct the molecule:
estimating the locations of the particles in the micrograph is merely a helpful intermediate
stage when it can be done. Our main message is that, while a molecule’s size may limit
our ability to pick particles, that does not necessarily translate into a limit on our ability to
reconstruct the molecule.

In order to recover the 3-D structure, we use autocorrelation analysis that relates the
autocorrelations of the micrographs to the parameters describing the 3-D model. For any
noise level, the autocorrelations of the micrographs can be estimated to any desired accuracy,
provided we observe sufficiently many micrographs. The autocorrelations of the micrographs
are straightforward to compute and require only one pass over the data. To estimate the 3-D
structure itself from the estimated autocorrelations, we formulate and solve a nonlinear inverse
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problem. In particular, we show that the first order autocorrelation is just the average pixel
value, the second-order autocorrelation is effectively a one-dimensional (1-D) radial function,
and the third-order is a 3-D function. We may therefore hope (but not guarantee) to recover
the 3-D volume from the third-order autocorrelation, as it provides sufficiently many equations
to solve for the parameters. Importantly, there is no need to detect individual projection
images. We show a few numerical examples and outline the future developments required to
make this method applicable to experimental data.

Another interesting feature of the described approach pertains to model bias, whose im-
portance in cryo-EM was stressed by a number of authors [54, 61, 27, 60]. In the classical
“Finstein from noise” experiment, multiple realizations of pure noise are aligned to a picture
of Einstein using template matching and then averaged. In [54], it was shown that the av-
eraged noise rapidly becomes remarkably similar to the Einstein template. In the context of
cryo-EM, this experiment exemplifies how prior assumptions about the particles may influ-
ence the reconstructed structure. This model bias is common to all particle picking methods
based on template matching. In our approach, we do not attempt to match a template to
noisy data. Instead, we use an optimization algorithm to try to solve the inverse problem
relating autocorrelations to the sought volume. This nonconvex problem may have spurious
local minima, hence the algorithm’s initialization (a form of template) may affect the out-
come. However, we find empirically that this poses a lesser risk because we are able to obtain
meaningful reconstructions from random initializations.

The rest of this paper is organized as follows. Section 2 shows that it is impossible to detect
the particle images in the micrograph in extremely low SNR regimes. In section 3, which is the
main contribution of this paper, we develop an autocorrelation analysis framework to recover
molecular structures directly from the micrograph, circumventing particle picking. Section
4 shows a few numerical experiments, and section 5 concludes this paper and delineates
challenges that lay ahead to turn this proof-of-concept into a complementary approach to
state-of-the-art algorithms.

2. The detection limit. In the low SNR regime—even if the 3-D structure is known—
one cannot reliably detect the projection images in the micrograph. To support this claim,
we consider a strictly simpler problem: suppose an oracle identifies for us one patch in the
micrograph that either contains a full signal occurrence (plus noise), or contains just noise.
Our task is to determine which one it is. The oracle further provides the true signal x, the
noise variance o2, and the probability ¢ that we observe signal-plus-noise as opposed to pure
noise.

This decision problem can be abstracted as follows: We have two known vectors 6y = z and
6, =0 in RL. There is a random variable 7 taking values 0 or 1 with probabilities ¢ and 1 —g,
respectively. We observe a random vector X € R” (akin to an extract of the micrograph) with
the following distribution: if n =0, then X ~ N (fg,0%I1), and if n =1, then X ~ N (61,0%11).

We observe a realization of X, and our task is to estimate 1. How reliably can this be
done? If ¢ > 1/2, the constant estimator 7 = 0 is correct with probability ¢; likewise, if
q < 1/2, the constant estimator 7) = 1 is correct with probability 1 — g. The question is, can
we do better than this? We prove that, as ¢ — 0o, the answer is no. The result is proved in
Appendix A.
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Proposition 2.1. For any deterministic estimator 7 of n,

(2.1) lim Prob[n =n] <max(q,1 — q);

aT—00

that is, as the SNR deteriorates, the probability of success is no better than random chance.

Proposition 2.1 implies that, at low SNR, particle picking is impossible: in order to esti-
mate the 3-D structure, we must consider methods that aim to estimate the structure directly,
without estimating the nuisance locations of the projection images as an intermediate step.
In the next section, we develop an autocorrelation analysis technique for that purpose.

3. Autocorrelation analysis for cryo-EM.

3.1. Autocorrelation analysis. For a random signal z € RV*Y  the autocorrelation of
order p is given by

(3.1) alley,. .. 0, 1 {N2Z [i+ 1] [i+ep_1]},

where the expectation is taken with respect to the distribution of z, the summation is for i
ranging over the N2 pixels of the signal, and £1,... ,£4—1 are 2-D integer shifts. Indexing out
of bounds is zero-padded, that is, z[i] =0 for i out of the range [0, N — 1] x [0, N — 1]. In our
case, z will represent the micrographs, whose distribution is parameterized by the sought 3-D
structure. In the next sections, we show that as N — oo, the first three autocorrelations of
the micrograph (i.e., p =1,2,3) converge to explicit polynomial functions of the parameters
describing the sought volume. Then, we wish to estimate the volume by finding a set of
parameters which are consistent with the autocorrelations; this entails solving a nonconvex
optimization problem.

We mention that autocorrelation analysis for cryo-EM images was first proposed in 1980 by
Kam [30]. However, Kam’s method, as well as some of its recent extensions [41, 53], assumes
picked particles. To break this fundamental barrier, we suggest computing the autocorrelations
of the micrographs directly, completely bypassing particle picking.

3.2. Model and autocorrelation functions. Let ¢: R3 — R be the Coulomb potential
representing the molecule we aim to recover. We assume that the molecule is smooth. Specif-
ically, in spherical coordinates, its 3-D Fourier transform ¢ admits a finite expansion of the
form

max L

(3:2) d(ck.0,0) = Zzzmemsn P)ies(k), k<1,

{=0 m=—{ s=1

where 0 < ¢ < 0.5 is the bandlimit in Fourier space (a standard assumption in cryo-EM) {S(¢)}
are determined using the Nyquist criterion as described in [15, 33], jy s is the normalized
spherical Bessel function given by

Jes(k) = )‘jf(uf,sk)a

|Jeg1(ue,s
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Je is the spherical Bessel function of order ¢, and uy s is the sth positive zero of j,. We use the
complex spherical harmonics Y,;™ defined by

m 2041 (0—m)! ., o
v, <9,so>:=\/ R cos0)em,

where P;"* are the associated Legendre polynomials with the Condon—Shortley phase. Rep-
resenting the molecule using a spherical harmonics expansion, akin to (3.2), is a ubiquitous
practice in the cryo-EM literature; see, for example, [7]. Sampling at the Nyquist rate dic-
tates c=1/2 [41]. Because ¢ is real-valued, 5 is conjugate-symmetric and thus the expansion
coefficients satisfy z; _p, s = (— 1)”me m.s- Lherefore, we need only recover coefficients x¢ , s
with m > 0 in order to recover the molecular structure.

Let I, denote the tomographic projection obtained from viewing direction w € SO(3).
The Fourier slice theorem states that the 2-D Fourier transform of a tomographic projection
is equal to a 2-D slice of the volume’s 3-D Fourier transform [45]. Specifically,

(3.3) Lk )= > @tms D @)V (500) s (b),

Lm,m/ s

where Dfn,’m(w) is a Wigner-D matrix. This implies that the projections are also c-band-
limited. In practice, the projections are further affected by additional factors, such as the
microscope’s point spread function, which are neglected in this paper.

Let Z € RV*N denote a micrograph. We assume it consists of shifted copies of projections
contaminated by additive white Gaussian noise:

M
(3.4) T=) I, %6, +e, e~N(0,0°I),

t=1

where * denotes convolution, and the viewing directions w; are assumed to be drawn from the
uniform distribution over SO(3). We assume the projections are discretized on a Cartesian
grid of size P x P and s; € [P, N — P]? denotes the location of the upper-left corner of the tth
projection in the micrograph. We impose a separation condition so that any two projections
are separated by at least 2P — 1 pixels between their upper-left corners, in each direction.
Thus, their end points (in each direction) are necessarily separated by at least P — 1 signal-
free entries in the micrograph.

We stress that the assumptions of the generative model (3.4) are unrealistic for exper-
imental cryo-EM data. For example, in practice, the particles are not likely to satisfy the
separation condition (but they do not overlap and thus are separated by at least P — 1 pixels
in each direction), and the distribution over SO(3) is typically nonuniform; these assumptions
were made to ease the analysis. Section 5 discusses how our autocorrelation analysis technique
can be extended to include these important aspects that are essential to reach high-resolution
reconstructions.

Define the pth (empirical) autocorrelation of Z as

(3.5) abley,. .. L, 1] N2Zz [i4 2] Z[i+ £, 1],
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where the summation is for i ranging over the N? pixels of the micrograph, using zero padding
when indices exceed the micrograph’s edge. Computing the autocorrelations of the micrograph
is straightforward. Let Zi,...,Zx denote a set of K micrographs. Under the specified condi-
tions, we show in the next section that the first three autocorrelations of the micrographs are
related to those of the projections by

(3.6) lim 72% 01,y 1] =7 (a} [1,... . Ly 1]} +Dplla,... L 1],

K—oco K

p=1,2,3, £1,....8, 1€ [—(P—1),P -1

where (-),, denotes averaging over all possible viewing directions w with respect to the uniform
measure, y = ]\]4\,1;)2 € (0,1) is a scalar that encodes the density of the particle projections in
the data, and b, is a bias term. Specifically, by = 0 and therefore, the mean is unbiased. The
bias term of the second-order autocorrelation by depends only on o2, the variance of the noise.
Hence, if the noise level can be accurately estimated from the micrographs, this bias can be
removed. Finally, the bias term of the third-order autocorrelation b3 depends on the mean
of the micrograph and o2. Therefore, given sufficiently many projections, we can accurately
estimate the quantities fy(ai)w directly from the micrographs. These quantities are functions
of the unknown coefficients z; ,, s and we could proceed to invert their relation.

In practice, we want to leverage one more feature of the 3-D reconstruction problem. Since
all in-plane rotations of the micrographs are equally likely observations, it is desirable in (3.6)
to average over all in-plane rotations as well. This can be done efficiently using Prolate Spher-
oidal Wave Functions (PSWFs), which have been used before for cryo-EM data processing
[38, 39, 53, 25]. In particular, as we show next, averaging over all in-plane rotations using the
PSWF's reduces the dimensionality of the problem, without any loss of information. We use
autocorrelations up to and including the third order. Indeed, second-order autocorrelations
are not enough, as was observed already in [30] for a simpler problem where the inputs are
not micrographs but rather picked, perfectly centered particles.

3.3. Autocorrelation derivation. In this section, we prove relation (3.6). We note that
mathematically taking infinitely many micrographs is equivalent to taking one infinitely large
micrograph with fixed density ~. Hence we consider the moments of one micrograph Z in
the limit N — oo and v = lim oo 4 N2 € (0,1). The separation condition guarantees that if
i=(i,7) is in the support of some projection, then i+ £ for £ € [—(P — 1), P — 1]? is either in
the support of the same projection or outside the support of any projection.

We begin by calculating the relation between the pth autocorrelation of the clean micro-
graph and the averaged autocorrelation of the projections. Let us denote the clean micrograph
by Z=7 — ¢, where Z and ¢ are given in (3.4). Denote by S; the support of the projection of
the tth particle in the micrograph. Then, we have

ag[ﬂl,.. p— 1 N2 ZI +£1 [i-f—fp—l]

N2 ZZI [i4£4]- [i+ep—1]

t=1 ieS,
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(37) —>7<a§w [El,...,ﬂpflbw,

where the average is taken over w with respect to the distribution of viewing directions. Here,
we assume it to be uniform.

In the presence of noise, we get additional bias terms denoted by b, in (3.6). The mean
(p = 1) is unbiased, since the noise is assumed to have zero mean. For the second-order
autocorrelation (p =2), we have

a[f) = % Zz[i]z[we
— % Zf[i]f[i +0) + % Zf[i]a[i +0) + % Ze[iﬁ[i +0) + % Zg[l]g[l )

The first term is given by (3.7) for p = 2. The cross terms have the expected value 0, and,
therefore, almost surely vanish in the limit due to the law of large numbers. The fourth term
is zero unless £ =0, in which case it converges to 0. Thus, we conclude that

(3.8) az[€] = (a7 [€])w +o?01e],

where the bias term by[€] = 025[£] depends only on the variance of the noise o2.

For the third moments, we get eight terms:

1
a}[l1,£2] = e ZI i+ &)Z[i+ o]+ —

e [i]&'[i—i—fﬂ&[i-ﬁ-fg]

i

(1) (2)
Zz i+ 1203+ o] + 75 ZI [i -+ &1)e[i+ £2]

3) (4)

NQZ [i+ 1) Z[i + £o] +2 ZI [i + £1)eli + £o]
() (6)
1 P, .
+ 52 Z [i 4+ £1]Z[i + £o] + — Nz DT+ fiefi+ &)

(7) (8)

We address these terms one by one:
e Term (1) is treated by (3.7) for p=3.
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e Term (2) is the third-order autocorrelation of pure noise which almost surely vanishes
in the limit by the law of large numbers.

e Terms (3)—(5) depend linearly on the noise and hence vanish in the limit.

e For term (6), if £; # €3, the term vanishes in the limit. If €1 = €9, then

l =~ o ., MP2 1 Y T
S S Tlleli+ 07 = SO ST L fieli + 47 0% (al )
i t=1ieS;

where (a}w>w is the mean of the volume.
e Terms (7) and (8) contribute ¢ functions similar to (6).
Thus, we conclude that

(3.9) a1, €3] = y{a} (€1, £2))w + vo 2 (af e (561 — £2] + 6[€1] + 6[£3]) ,

where the second term is the bias b3[€1,€s]. Note that y(aj )., is approximately the mean of
the micrograph since a% R a% R 7<a}w>w. Therefore, we do not need prior knowledge of v to

effectively debias the third-order autocorrelation.

3.4. Accounting for all in-plane rotations. We represent our autocorrelations using
PSWFs [57]. As we demonstrate below, this makes it easier to account for the fact that
all in-plane rotations of the micrographs are equally likely observations. The PSWFs are
given in polar coordinates by

1 k
(3.10) Prg(rr ) = \/ﬁak,qu,q(T)eL ¢, r<l,
’ 0, r>1,

where k, g are integers with ¢ > 0, the range of k, ¢ is determined by eq. (8) in [38], the Ry, , are
a family of real, 1-D functions satisfying Ry, = Ry 4, and the ay 4 are scaling factors which
will be defined in the next section. The PSWFs are orthogonal on the unit disk. Note that
Y_gg= 1/)77(1, hence, we need only consider PSWFs with k£ > 0 when expanding real images. As
can be seen from the definition of the PSWF's (3.10), the effects of rotations and reflections on
expansion coefficients of real images are, respectively, phase modulation and conjugation: this
is why the PSWF basis is called steerable [38, 67]. Using the steerability property, we will show
that the second-order autocorrelation, though 2-D, effectively only provides radial information.
Similarly, the four-dimensional (4-D) third-order autocorrelation truly only carries information
along three dimensions. While there exist alternative steerable bases, such as Fourier—Bessel
[67], we chose to work with the PSWF's since they are eigenfunctions of the truncated Fourier
transform: a fact that we exploit later on.
We start with the second-order autocorrelation. For £ € [—(P — 1), P — 1], let us define

(3.11) [k, q) = a7 [l 404,
4

'A different normalization is used in [38].
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where 1y, 4[€] := 1y o(£/(P — 1)) is a discretization of the PSWFs. Knowledge of these co-
efficients is essentially equivalent to knowledge of the second-order correlations owing to the
following approximate identity:

(3.12) azll) = a?[k, qlir,q ).
k,q

This holds because the continuous PSWF's form an orthonormal basis, and their discretized
counterparts with indices (k,q) appropriately bounded as in [38] are (empirically) almost
orthonormal. As a result, for our purposes, the pair of equations above provides a basis
expansion for the autocorrelations.

We now proceed to show that the coefficients a®[k,q] can be computed from the micro-
graphs directly. By definition,

0’k q] =) aF (€ q[¢]
£

_ % S 10 (Z Thi+ em,m)
i £
(3.13) . % > ol

where we defined

(3.14) ag[i] =Y I[i+ Ly qle].
£

These coefficients can be computed efficiently. Indeed, consider a patch of the micrograph 7
centered around pixel i and of size (2P — 1) x (2P — 1). This is exactly the patch indexed in
the sum above. Hence, using the same approximation as we did in (3.12), a direct expansion
of that patch in the discretized PSWFs yields the sought coefficients:

(3.15) TR+~ apgliltegll).
k.q

Thus, we proceed as follows: for each position i in the micrograph Z, we extract the corre-
sponding patch of size (2P —1) x (2P —1), expand it in the discretized PSWFs as in (3.15), and
collect the ay, 4 as per (3.13) to constitute the second-order autocorrelation of the micrograph.

Following this formalism, and using the steerability property, it is now straightforward to
account for all in-plane rotations and reflections of the micrograph. We have the following
approximate expansions for a patch rotated about its center i by an angle a:

T+ 4 =) akge g[8,
k.q

and the reflection followed by a rotation by angle a:

T [i4-£] ~ Zmeﬂk%k,qm.
k.q
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Averaging over all rotations of the patch Z(i+ Ai) and its reflection we get

a’[k,q] = % ZI[i] <417T/0 i (i + T fi]) e~k da)
(3.16) = 6[k]$ Zl[i]ao’q[iL

where in the last equality we used that ag4[i] is real since both 7 and vy, are real-valued
(more generally, a_j ; = @y ). Thus, the second-order autocorrelation, though 2-D, effectively
only provides radial information.

We now follow a similar approach to estimate the bias term by. Introduce the coefficients
by as

balk,q] = 0% ) 6[€]kq[¢]
£

= 0"k q[0]

2
= §[k]

g

—=Rp4(0

m 7(1( )a

where we used the fact that the functions Ry, are zero at the origin for £ # 0. With this
definition, we have the usual approximation:

baoll] = 0?56 ~ > bk, gl g[€).
k,q

We now turn our attention to the third-order autocorrelation. Following the same lines,
we define the coefficients:

®lk1,qui ko, q2) = Y aF (01, Lo]br, g, (1], 4, €]
£y .8>

= %Zl[i] (Zz[i‘*‘el]%l,ql [&]) (Zf[i+£2]¢k2,q2[£2]>
i 0

£

1 . . .
= W Z I[l]akh(h [l]akz,(h [1]7

where the patch expansion coefficients ay, are as defined in (3.14). The coefficients
a[k1, q1; k2, g2] are related to the third-order autocorrelation via the approximate identity:

a3 (01, 6]~ a®[k1,q15 k2, g2l ks g, [€1] ks g [€2].

k1,q1
k2,2

Averaging over all rotations of Z and its reflection, we obtain

1 . 1 2 . . . . —L kl—kz [e%
ki ko) = 53 ST [ (i ]+ B ) 70

(3.17) = lks o) 5 3 TRk, e, )
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Thus, similarly to the second-order autocorrelation, averaging over all in-plane rotations re-
veals that the 4-D third-order autocorrelation truly only carries information along three di-
mensions.

Finally, we treat the bias terms:

1
bslk1, q15 k2, g2) = vo? (ag_ )ewd[k1 — ko] [5[611 — 2] + 8[k1] 5 (@04, + @0,6:) Ro.4, (0) Rog. (0)
Thus,

bs[€1,€a] =vo*(aj ) (5[€1 — £2] + O[€1] + 6[£2])

~ Z [13[kla q1; k?) QQ]¢k1,Q1 [el]qzz)k‘z,(h ['62]

k1,q1
k2,q2

3.5. Connection to volume. Until now, we have established simple relations between the
autocorrelations of the micrographs and the autocorrelations of the projection images of the
3-D structure, and explained how to compute the former. Now, we complete the picture by
relating the latter to the 3-D structure itself.

Using the 2-D PSWFs and the Fourier slice theorem, we can express each projection (3.3)
as

o (ck,0) Zan VN (k,0),

where

4 27 1/\
byn(w)= —— I,(ck,0) RN n(k)e N0k dk do,
wn)= s | ek o) Rt
= Y e [V /2,00 Dl )

N,n
£m,m/’,s ’

1 27
X (/ jt’s(k)RNn(k)kdk> (1/ eL(m’N”dG)
o ’ 27 Jo

= Z Z .Cll‘e,m’stV,m(w)/Bf,s;N,na

[N|<em,s
and the coefficients

BEYN(1/2,0) [ jos(k)Ryn(k)kdk, £>|N
(3.19 mm-:{%e<w/,>fom<> salkhdk, €2 |N),

0, (< |NJ|,

can be precomputed. The PSWFs are eigenfunctions of the truncated Fourier transform [38]
and hence satisfy

(319) QN nf‘/}Nn / wNn Lc a k)dr

[lrf[2<1
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We can now express the projection in real space as

(3.20) ZaNnan YN (T, )

Lmax nIndX

=2, Z > szmsﬂeanDNm( YN (),

=0 Nnm=—¢ n=0 s=1

where npmax(N) is chosen according to eq. (8) in [38], aun p, is the eigenvalue corresponding to
the (N,n)th PSWF, ay ., = (¢/27)%ann, and ﬁgan aNnBe,s:Nn-

3.5.1. First-order autocorrelation (the mean). Since j,5(0) =0 unless £ =0, and since

Y0.0(6,¢) = \/%, we conclude from (3.2) that

(3:21) b= ah)o= 0= = D w0 0)

3.5.2. Second-order autocorrelation. The second-order autocorrelation is easier to derive
directly in Fourier space, to avoid integration of shifted PSWFs against centered ones. The
relation between the second-order autocorrelation of the micrographs and projection images
of the volume is given in (3.8) and (3.16). The connection with the expansion coefficients of
the volume can be derived in Fourier space directly from Kam’s original formula [30, eq. (11)]
by setting ki = ks to obtain

1 .
(a2 (k,0)) =D > Ttmsies(k)
m | s
1 . .
= E Z Ll m,s1Llm,s2J0,81 (k)]K,SQ (k‘),

S1,82

where we used the fact that the normalized spherical Bessel functions j, s are real.
As before, we want to derive the relation with respect to the PSWEF coefficients of the
autocorrelation. Hence, we expand the above in 2-D PSWFs by

(4100) = Yt

and conclude that

1 1
3.22 lgl=— Y Toms, Timss m/ 0., (k) 0.5, (k) Ro o (k)k dk.
(3.22) [4] \/EGZ tmsiThmsy | sy (K)tss (F)Rog (k)

b
S1,52

The integral on k is precomputed.
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3.5.3. Third-order autocorrelation. In (3.9) and (3.17) we have shown how the third-
order autocorrelations of the micrographs and the projection images of the volume are related,
and how we can represent them in PSWFs. Now, we relate these expressions to the expansion
coefficients of the volume itself.

The third-order autocorrelation of the volume can be expressed in terms of (3.20):

(3.23) (af, [&1,€2))0 = = Z wli+ &L ([ +€]),

~ Z (b (@)D, 1 (), ()}

Niny
Na,nz
N3,n3

X Z QJZ)Nl,nl [i]/llz)NQJQ [i + El]wNm?% ([i + 22])?

where the approximation is due to discretization. Now,

<bN1,n1(w)bN2yn2(w)bN37n3(w)>w: Z Lty ,my,81Lls,ma,s:Lls,ma,ss

£1,m1,81
£a,ma,s2
l3,m3,83

V4 V4 V4
XDy, @)D, o (@)D (W)
X BZ1,S1;N1,R1 5@752;]\727”25[3753%]\[37”3 ’

where the latter coefficients are given explicitly in (3.18). Using standard properties of Wigner-
D functions, we obtain

0 0 7 o \Nawms [l b2 A3 b by A
<DN1 ml( )DNQ,m2(w)DN3,m3<w)>w*( 1) < Nl N2 —N3 ) < my ms —ms ’

where (T‘;Lll 7%2 7%3) are called Wigner 3-j symbols. Notably, these terms are zero unless mp +

mo +mg =0 and [ — ly| < {l3 < {1 + l5. Thus, we conclude that

(3.24)
min(L,¢;+£2)
<bN1,7”L1 (w)bNan (w)sz,n3 (w)>w - 5N3,N1+N2 Z Z Loy my,s1%0,ma,s82 L5, my+m2,s5
£17m1,81 Kg |él ég‘
£y, ma,82
S3
% (_1)N1+N2+m1+m2 61 62 53
N1 Ny =Ny — N,

o b Ay ls
mi1 Mo —Mi1 — My

X /851751§N1,n1 642752;N2,TL2/B€3,83;N1+N2,W3 :

Combining (3.24) with (3.23) provides the explicit relation between the third-order
autocorrelation and the volume.
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Recall that we obtain the autocorrelations of the volume in PSWFs coefficients; see (3.17).
Hence, to conclude the derivation we expand

(af [, o)) = > al[k, q1, g2 Wr g, [€1]0n g, 2]
k7q17q2

where we only include the block-diagonal terms in the expansion; the rest are equal to zero.
Let,

Nmax (N)

\IIZ,N,S[K] = Z B\E,S;N,an,n[e]v
n=0

pgkf\?)s: /Z\I'E,N,S([i‘f'g])wk,q(f)‘

Then, the final formula reads

min(L,l1+£2)
k »q1, q2 § E Tly,ma,51Lly,ma,s0Lls,my+ma,ss

Limy,s1 Lz3=[l1—Ls|
lymz,so
S3

(3.25) x(—l)m1+m2< b b b )
mi1 Mo —Mi1 — 1My

% ézl ZZQ (_1)N1+N2 £1 62 63
Ny Ny —N;—N2

le—Zl Ny=—V;

L2 quélalesl[ }pég’?\}z)’SQ[ ]p§3,7?\?1)+N2753 [i]

In practice, the last two lines of the above expression for a[k,qi,qs] are precomputed, and
both the integration over i and over £ are performed on the grid of the images in the data set,
to match the integration performed on the actual images.

3.6. Recovering the volume from the autocorrelations of the micrographs. To estimate
the coefficients of the volume itself, we solve the least squares problem

(3.26) min e |a, —yag|* +wsflag - Faz |3 + wsllal - Jaz[z,
’

where the explicit expressions of al, a2 and a2 are given in (3.21), (3.22), and (3.25), respec-
tively. In the experiments, we set w; = wgy = w3 =1. We solve the least squares problem using
MATLAB’s 1sgnonlin solver for nonlinear least squares problems with the trust-regions algo-
rithm. The algorithm is initialized by sampling the coefficients from i.i.d. random Gaussians.

3.7. Complexity analysis. The computational complexity for the computation of the mo-
ments from the micrograph is O(KN2PY), since we have N? patches that we extract from
each of K micrographs. For each patch, we perform an expansion in PSWFs with complexity
O(P3) [38], and then compute the autocorrelations dominated by computation of the third-
order autocorrelation as in (3.17) costing O(P%). We note that computing autocorrelations
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(a) TPRV1 with cutoff Ly.x =5 (b) BPTI with cutoff Ly = 2

Figure 2. Reconstructions from the first, second, and third order autocorrelations. The ground truth vol-
umes were expanded according to (3.2) with cutoff Lmax. The original molecules are shown in purple and
the (smoothed) ground truths in blue to illustrate the smoothing effect of our downsampling and truncation of
the spherical harmonics expansion. The reconstructions from clean autocorrelations are shown in yellow, and
recoveries from autocorrelations estimated from noisy data in gray. For the noisy erperiments, we used 300
micrographs with SNRs of 1/16 for TRPV1 and 1/64 for BPTI. We present excerpts from moisy micrographs
side-by-side with the corresponding clean ones in Figure 3.

can be executed efficiently on CPUs and GPUs, and in parallel across micrographs. It can
even be done in a streaming mode, as only one pass through each micrograph is necessary.
The complexity of evaluating the third-order autocorrelation using (3.25) after the precom-
putation takes O(BP%), where B is the number of entries in the third-order autocorrelation.
Since B = O(P3), the total complexity for evaluating the third-order autocorrelation is O(P?).
That is because, if the number of volume expansion coefficients is V = O(P?), the dominant
step can be written as a matrix-vector multiplication with a matrix of size BV x V and a
vector V x 1, so the cost is BV2 = O(P?). The complexity of solving the least squares problem
(3.26) is O(TP?), where T is the number of iterations required for the optimizer to converge,
since the third-order autocorrelation evaluation dominates the cost of each iteration. The
optimizer terminates when the norm of the gradient of the cost function in (3.26) decreases
below 1076 or the number of iterations exceeds 10%.

4. Numerical experiments. The technique we advocate allows recovery of a 3-D struc-
ture from its tomographic projections hidden in noisy micrographs without detecting their
locations. To illustrate the underlying principles of the method, we present several simple
proof-of-concept results for simulated cryo-EM data.” We first present numerical results, and
then provide additional technical details.

Numerical results. Figure 2 shows recoveries of the 3-D volumes from the clean auto-
correlations and from 300 noisy micrographs of size 74202. The experiments were conducted
on the Bovine Pancreatic Trypsin Inhibitor (BPTI) and the TRPV1 molecules (see technical
details at the end of this section). In the experiments, we define SNR as SNR = Va;(gz) ,
var(Z) is the variance of our stack of micrographs and o2 is the variance of noise. The noise
level in Figure 3 was SNR =1/16 for the TRPV1 micrographs and SNR =1/64 for the BPTI
micrographs. We present excerpts from noisy micrographs side-by-side with the corresponding

clean ones in Figure 3. Figure 4 presents the Fourier shell correlation curves.

where

2The code to generate all figures is publicly available in https://github.com/PrincetonUniversity/
BreakingDetectionLimit.
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(a) (b) () (d)

Figure 3. Excerpts of size 250 x 250 from the noisy micrographs used for the reconstructions in Figure 2
and the corresponding clean excerpts. (a) Ezcerpt of the clean TRPV1 micrograph. (b) Exzcerpt of the noisy
TRPV1 micrograph with SNR = 1/16. (c) Excerpt from the clean BPTI micrograph. (d) Exzcerpt from the
noisy BPTI micrograph with SNR =1/64.
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Figure 4. Fourier Shell Correlations (FSCs) for the noisy reconstructions presented in Figure 2. The FSC
measures the normalized cross-correlation between the recovered 3-D structure and the (smoothed) ground truth
3-D structure over corresponding shells in Fourier space (i.e., as a function of spatial frequency). The resolution
is determined as the frequency where the FSC curve drops below 0.5. This is the standard resolution measure
in the cryo-EM literature. (a) FSC for the TRPV1 reconstruction, giwing resolution of 24 4. (b) FSC for the
BPTI reconstruction, giving resolution of 13A.

Numerical evidence suggests that autocorrelations up to order three, together, uniquely de-
termine the 3-D volume (see also [6, 18] for statistical analysis of closely-related models). Un-
fortunately, the mapping between the autocorrelations and volume seems to be ill-conditioned,
preventing high-resolution recovery from noisy data. For the TRPV1 reconstruction, the opti-
mizer converged to an estimator with relative f5 error of 1076 in the first three autocorrelations
and an error of 10! in the expansion coefficients of the volume. For the BPTI reconstruction,
the errors in the autocorrelations were 1076, 1077, and 10~® for the third, second, and first
autocorrelations, respectively, while the error in the expansion coefficients of the volume was
5x 1072, This illustrates the ill-conditioning of the map between the volume and its first three
autocorrelations that prevents us from obtaining high-resolution results from noisy data. In
the next section, we outline how we suggest overcoming the ill-conditioning in future work.
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(a) An excerpt of the (b) An excerpt of the clean (¢) An excerpt of the clean
pure noise micrograph micrograph in the right panel micrograph

perturbed by the noise in the

left panel.

Figure 5. All micrographs are of size 7420% pizels and the projections are taken from the BPTI molecule of
size 313. The added noise was drawn from i.i.d. Gaussian distribution with zero mean and standard deviation
25, corresponding to an SNR below 1/1024. The noise realization is identical in both micrographs.

While we cannot provide a high-resolution 3-D reconstruction from noisy data with the
current algorithm, our method can be easily applied to the problem of deciding whether
a micrograph contains projections or merely pure noise—a problem considered in classical
works in statistics [16] and cryo-EM [27]. This task can be performed by considering solely
the recovered v (the fraction of pixels occupied by projections in the micrograph), estimated
as part of the recovery algorithm. Specifically, for this experiment, we used 25 micrographs
of size 74202, and the LS problem (3.26) was solved assuming the spherical harmonic cutoff
for the volume is Lyax = 0, which is sufficient to recover a significant 4 in the presence of
projections in the micrograph.

Figure 5 presents excerpts of two noisy micrographs, only one of which contains projec-
tions. The noise level corresponds to SNR = 1/1024. In the presence of projections, the
estimated v was 0.12, corresponding to approximately 6784 projections. On the other hand,
the estimated « drops to 107> for the pure noise micrograph, corresponding to less than one
projection.

More technical details. The true volume used in the experiments in Figures 5 and 2b was
the BPTT mutant with altered binding loop sequence, whose atomic model is available in the
Protein Data Bank (PDB) as 1QLQ." We generated an EM map from this atomic model in
UCSF Chimera [47] at a resolution of 5 A, and cropped it to remove zeros at the boundary to
obtain a volume of size 313. For the experiment in Figure 2b, the volume was downsampled
to size 203. For the experiment in Figure 2a, we used the TRPV1 in complex with DkTx
and RTX, whose EM map is available in the Electron Microscopy Data Bank (EMDB) as
EMD-8117." The original map has size 1923, and was downsampled to size 203. To generate
the ground truth for our reconstructions, we expanded both volumes as in (3.2) with cutoff

Shttps:/ /www.rcsb.org
*http://www.ebi.ac.uk/pdbe/emdb
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Lyax =5 for TRPV1 and Ly = 2 for BPTI. Each volume is described by Ef;“g“ (2¢+1)S(0)
coefficients using the expansion (3.2), where the cutoffs S(¢) are determined using the Nyquist
criterion as in [15].

The micrographs for the experiments were generated as follows. We sample rotation
matrices from SO(3) uniformly at random using the QR-based algorithm described in [59],
and generate the projection of the volume corresponding to that rotation matrix using ASPIRE
[1]. The projections for the experiments were obtained from the smoothed volumes, not the
original ones, to ensure that the only sources of error are the noise and our ability to invert the
moments via (3.26). We keep track of the indices at which the upper left corner of a projection
can be placed without violating the separation condition, so all projections are separated by
at least P — 1 pixels in each dimension, where the projections are contained in a box of size
P x P. The location of the upper left corner of each new projection is picked uniformly at
random from the set of available indices. We continue adding projections to the micrograph
until no more projections can be added without violating the separation condition.

The experiments were performed on a machine with 40 cores of Intel Xeon E5-2698 v4 @
2.20 GHz with 100 GB of RAM, and took two hours per reconstruction. The computation of
the moments from each micrograph was performed on a machine with four nVidia P100 GPUs
with 16 GB of memory each and with 100 GB of RAM. It took three minutes per micrograph
of size 7420% to compute the first three autocorrelations.

5. Discussion. In this paper, we showed that, in principle, it is possible to estimate a 3-D
structure from micrographs, without detecting its projections. Our strategy is to compute
autocorrelations of the micrographs and to relate these statistics to the unknown volume’s
parameters. Recovering the parameters from the statistics reduces to solving a set of polyno-
mial equations. Crucially, the outlined approach involves no particle picking, hence it might
be possible to reconstruct small molecules, particularly, molecules that are too small to be de-
tected in micrographs. In pursuing this research direction, our goal is to significantly increase
the range of molecules to which cryo-EM can be successfully applied. Concerns for model bias
are also greatly reduced since no template matching is involved. We recognize that significant
challenges lay ahead for the implementation of the proposed approach to high-resolution 3-D
reconstruction directly from the micrographs. We discuss a few now.

The numerical experiments we have performed reveal that the third-order autocorrelation
may not be enough for 3-D reconstruction in practice, due to high sensitivity. One possible
remedy might be adding priors to the least squares problem (3.26). For example, one can
use data-driven or sparsity aware priors [32, 52, 62, 13, 11], or priors based on the statistical
properties of typical proteins [55, 21]. Alternatively, this suggests that fourth-order autocor-
relation may be necessary. This, in turn, would imply that the procedure might require a
large amount of data. Recent trends in high-throughput cryo-EM technology give hope that
this may be a lesser concern in the long term. Still, large amounts of data also require large
amounts of computation.

To reach high-resolution reconstruction, beyond data acquisition, and computational chal-
lenges, there are modeling issues to consider. In contrast to the simplifying assumptions we
have made above, the noise might be colored; the viewing directions of the particles may be
distributed nonuniformly; there may be conformational heterogeneity; particles generally do

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/15/24 to 71.226.231.250 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

PARTICLE RECONSTRUCTION WITHOUT PARTICLE PARKING 905

not satisfy our separation condition; and micrographs undergo a contrast transfer function
which we have omitted. We believe that these aspects can be handled with the same general
strategy: establish a forward model relating the expected autocorrelations of the micrographs
to the target volume(s) and all parameters necessary to model the above effects. The effect
of many of these aspects was recently studied in the context of the multitarget detection
problem, which can be interpreted as a simplified model of the problem considered in this
paper [10, 44, 12, 37]. For example, it was shown that the strict separation condition can
be replaced by a parameterized pair-correlation function [36, 34]. Such a function models
the distribution of distances between neighboring projections. The observed autocorrelations
depend linearly on these parameters, which could be estimated as part of the inverse prob-
lem. In addition, alternative computational strategies to autocorrelation analysis, such as
approximate expectation-maximization [36, 35], GAN-based techniques [23], and generalized
autocorrelation analysis [2, 63], were developed. We believe that these techniques can be
adapted to recovering molecular structures directly from the micrographs, and perhaps to
alleviate some of the computational challenges. We hope to take care of these issues in future
research.

In addition, our technique allows the use of much lower defocus values (a parameter
controlled by the user, and which affects the microscope’s point spread function). Lower
defocus means lower contrast, but also maintains higher frequency information. Consequently,
we may be able to get high resolution reconstructions from fewer micrographs.

From the information-theoretic perspective, it is essential to understand the sample com-
plexity of the problem: how many particle projections are required to estimate the 3-D struc-
ture to a desired accuracy? In the closely-related model of multireference alignment, it was
shown that in the finite-dimensional, low SNR regime, the sample complexity is governed by
the moments [46, 6, 4, 3]. If the same is true for our problem, and since we believe that the
third-order autocorrelation suffices to determine uniquely the 3-D structure, this will imply
that N = w(cY) is a necessary condition for accurate recovery (for a fixed v > 0). If the dimen-
sion of the problem is high (many parameters are required to describe the 3-D structure), the
sample complexity of multireference alignment is no longer controlled by the moments, but
by the ratio between the dimension and the noise level [48]; we believe a similar phenomenon
will hold true for the problem studied in this paper.

Appendix A. Proof of Proposition 2.1. The proof is based on a variant of the
Neyman—Pearson lemma to derive the best (deterministic) estimator 7). Take any deter-
ministic estimator 7 =7(X), with values in {0,1}; then 7 is characterized by S, defined to be
the set of X’s where 77 =1. We write Prob; to mean the probability conditional on the event
n =1; that is, Prob;[A] = Prob[A|n = i]. Then, the probability that 7 fails is

Probl[f) # 1] = gProbg[f) = 1] 4 (1 — ¢)Prob: [} = 0]
— qProbofi = 1] + (1 — g)(1 — Proby [ = 1))
— qProboli = 1] + (1 — g) — (1 — g)Proby [ = 1]
(A1) —(1-q+ / (afolx) — (1 — q) fa(2))de
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where f;(z) is the normal density with mean 6; and variance o2. The best estimator of 1 based
on X minimizes the failure probability; hence, it minimizes the integral in (A.1) through an
appropriate choice of the set S. This is achieved by picking all z’s such that the integrand is
nonpositive:

S={z:qfo(z) = (1 —q)fr(x) <0}.
With A(z) = fo(x)/fi(xz) and b= (1 — ¢)/q, the corresponding estimator is
. J1if A(z) <0,
= {0 it A(z) > b.
Taking logarithms, the set S can be rewritten as the set of z’s where
~[lz = 0ol]* < |z — 61]]* + 20 log(b),
or equivalently,

2 _ 2
o 1021 = 1l6ol” _
- 2
Now let us compute the probability of failure conditional on the event n = 0. In this case,

failure occurs when X € S. Since X|(n = 0) ~ N(6p,0?), we can write X|(n=0) = 0Z + 0,
where Z ~ N(0,I). On that condition,

(x,01 — bp) o?log(b).

(X,01 —6o) =0(Z,01 — 6) + (60,01 — bo)
=0(Z,01 — o) + (00,61) — |160]%,

and failure occurs when

2 2
, I+l

1
J(Z, 61 — 90> <00,91> — 0'2 log(b) = *H@l — (90”2 — (72 log(b).
2

Define Y = (Z,01 — 6) ~ N(0,]|01 — 6p||?) and divide through by o. The above event is
equivalent to

y><- olog(b),
o
where ¢ = || —60p||?/2. For simplicity, let us assume |61 —6p|| = 1, so that Y ~ N(0,1). Then,
Probolij = 1] = Prob [Y > S Jlog(b)} , Y ~N(0,1).
o
Similarly,
Proby[f} = 0] = Prob [Y >S4 Ulog(b)} .Y ~N(0,1).
o
Thus, the overall probability of failure is

Problij # 1] = qProb [Y > g - Ulog(b)} + (1 — g)Prob [Y > g +olog(b)].
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Now, if ¢ =1/2, then log(b) =0. Hence the probability of failure is simply
c 1
Prob [YZ 7} —>—=q as o0 —00.
o 2
If g>1/2, then ¢ > 1 — ¢ and log(b) < 0. Consequently,
Prob [Y >C alog(b)} 0,
o
while
Prob [Y >S4 alog(b)} )
o
as 0 — oo. Hence,

Prob[i#n]—1—q as o— oc.

That is, the probability of success converges to ¢. Finally, if ¢ < 1/2, then log(b) > 0 and
a similar reasoning shows the probability of success converges to 1 — q. In all cases, the
probability of success of the best possible deterministic estimator converges to max(q,1 — gq).
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