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Variance-based global sensitivity analysis (GSA) can provide a wealth of information when applied to complex models.

A well-known Achilles’ heel of this approach is its computational cost, which often renders it unfeasible in practice. An

appealing alternative is to instead analyze the sensitivity of a surrogate model with the goal of lowering computational

costs while maintaining sufficient accuracy. Should a surrogate be “simple" enough to be amenable to the analytical

calculations of its Sobol’ indices, the cost of GSA is essentially reduced to the construction of the surrogate. We propose

a new class of sparse-weight extreme learning machines (ELMs), which, when considered as surrogates in the context of

GSA, admit analytical formulas for their Sobol’ indices and, unlike the standard ELMs, yield accurate approximations

of these indices. The effectiveness of this approach is illustrated through both traditional benchmarks in the field and

on a chemical reaction network.
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1. INTRODUCTION

A key insight into the behavior of a generic model of the following form:

y = f(x), x 2 Rd
, y 2 R, (1)

is to understand the impact of the uncertainty in the entries of x = (x1, . . . , xd) on the uncertainty in the model output
y; this can be addressed by performing global sensitivity analysis (GSA) [1–3]. We focus on variance-based GSA [4–
6] whereby one seeks to quantify the relative contributions of the entries of x to the variance of f . Specifically, we
rely on the Sobol’ indices [5]. While the method we introduce is applicable for a broader class of distributions, we
assume that the entries of x in Eq. (1) can be regarded as independent uniformly distributed random variables, which
is common in applications.

The standard approach to computing Sobol’ indices uses pick-freeze estimators [1,7]. This generally involves a
costly sampling procedure and multiple applications of Monte Carlo integration. A large input dimension d, common
in engineering applications, increases the cost dramatically. Under typical cost constraints, we cannot afford the
number of samples required for reliable estimation.

Often, an initial parameter screening procedure can be applied to reduce the input dimension, before a more
detailed variance-based GSA is conducted; see e.g., [8]. Nonetheless, when evaluating the model f is prohibitively
expensive, Monte Carlo methods for computing Sobol’ indices should be avoided. In such cases, a widely used
approach is to construct a surrogate model f̂ º f , whose Sobol’ indices can be computed efficiently [9,10].

A number of surrogate models have been proposed for accelerating variance-based GSA. These include polyno-
mial chaos (PC) expansions (PCE) [11,12], multivariate adaptive regression splines (MARS) [13,14], Gaussian pro-
cesses [15–17], Bayesian adaptive regression trees (BART) [18], random forests [19], support vector machines [20],
artificial neural networks (ANNs) [21], autoregressive models [22], and radial basis functions (RBF) [23]. See [9] and
[24] for an overview of surrogate-based methods for GSA.
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In surrogate-based approaches, the user builds the surrogate model and estimates the surrogate’s Sobol’ indices.
Apart from special surrogate models, which admit analytic formulas for Sobol’ indices, surrogate models require
Monte Carlo sampling to estimate Sobol’ indices. This process introduces two sources of error to the Sobol’ index
estimates. The first one is due to the approximation error of the surrogate, and the second one is due to the error in
estimating the surrogate’s Sobol’ indices. Sampling of the surrogate is often considerably cheaper than sampling the
underlying model. However, this sampling can still be costly. In the best case, analytic formulas for the surrogate’s
Sobol’ indices are known. Then, the issues caused by Monte Carlo sampling disappear altogether. Certain statistical
surrogates, such as Gaussian processes [16,17] and BART [18], offer analytic Sobol’ indices along with accompa-
nying uncertainty bounds. The statistical nature of these surrogates, however, means sampling is needed to compute
Sobol’ indices. This could be potentially costly, especially compared to certain numerical surrogate models for which
Sobol’ indices can be computed analytically for practically no additional cost [9]. Examples of such approaches
include PCEs [11,12] or RBFs [25,26].

Sobol’ indices of PCE surrogates can be expressed analytically in terms of the PC coefficients [11,12]. Unsurpris-
ingly, PCE has become a workhorse method for computing Sobol’ indices and uncertainty analysis in general. This
has spawned a number of methods for computing and using PCEs for uncertainty analysis. Nonintrusive project-based
approaches involve computing the PC coefficients using quadrature. For high-dimensional inputs, this is untenable
and motivates regression-based approaches. A major challenge with PCE is that the PC basis can grow to gargantuan
sizes as the degree of the expansion is increased. This necessitates sparse regression methods to reduce the size of
the basis [27]. A survey of these methods can be found in [28]. We also point to [29–33], for recent developments
regarding PCE-based approaches for uncertainty quantification.

In this article, we present a new approach that uses extreme learning machine (ELM) [34,35] surrogates—a
class of neural networks—for which Sobol’ indices can be computed analytically. The existing surrogate modeling
approaches that have this feature each have their strengths and weaknesses, making them suitable for specific ap-
plications of interest. When studying black box models, it is seldom obvious which surrogate is the best choice. In
such applications where one does not know the true values of the sensitivity indices, it is beneficial to have access to
different tools to compute the indices. This can be useful for confirming the reliability of one’s results. An example
of this is [36], where comparing the Sobol’ indices of PCE and ANN surrogates provides verifiable GSA. Notably,
however, the ANN surrogate requires more resources to produce GSA results, partly because Sobol’ indices cannot be
computed analytically. Our contribution expands the limited toolbox of fast surrogate models with analytic formulas
for Sobol’ indices. Having ready access to such analytic formulas enables the users to compute these indices without
any costly Monte Carlo sampling procedures.

Single-layer neural networks (SLNNs) constructed via ELM are random weight neural networks. Unlike in tra-
ditional neural networks, one draws weights and biases of the hidden layer randomly. Consequently, training amounts
to solving a linear least-squares problem to estimate the output layer weights; see Section 2 for more details. Such
methods are more suitable than tuning all parameters in the neural network for certain UQ applications. When model
evaluations are expensive, we can only afford to generate a scarce amount of data. The amount of generated data
is likely less than the number of tunable parameters, meaning training the neural network is an underdetermined
problem. Random weight methods avoid this issue.

In the field of machine learning, there are several different random weight approaches. The differences between
them are subtle. Some of the first implementations were Schmidt neural networks [37] and the random vector func-
tional link (RVFL) [38,39]. The neural network ELM [34] emerged later as one of the most popular random weight
methods. Helpful surveys of these approaches are, e.g., [40–42]. An intimately related area is random features,
introduced by [43]. Random features originated as a randomized approach to kernel methods. Their connection to
neural networks was noted early on [44,45]. For certain classes of kernels, random feature expansions and random
weight neural networks are equivalent. Random feature expansions are seeing increasing use in applied mathematics;
see [46,47].

Our motivation for considering neural network ELMs for GSA is twofold:

• Through a judicious choice of the activation function, analytic formulas for Sobol’ indices can be derived;
see Section 3.
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• They are simple and inexpensive to train: only a linear least-squares problem needs to be solved.

Also, ELMs provide a flexible surrogate modeling framework; they do not make strong demands on the distribution of
the inputs or the regularity of the input-output map. Additionally, ELMs are well suited to tackle nonlinear and high-
dimensional models. The use of neural networks for surrogate-based uncertainty quantification has been the object
of recent research efforts. Among many others, Refs. [48–53] have, for instance, used neural network surrogates for
GSA. To our knowledge, the present work is the first of its kind to derive analytic formulas for Sobol’ indices of
neural network surrogates.

To be used reliably for a variance-based GSA, the surrogate f̂ must capture some key structural properties of the
exact model f . To illustrate this point, consider Eq. (1) with x 2 R3 and assume f has a mean of zero. The analysis
of variance (ANOVA) decomposition of f is given by

f(x1, x2, x3) = E(f) +
3X

i=1

fi(xi) + f12(x1, x2) + f13(x1, x3) + f23(x2, x3) + f123(x1, x2, x3), (2)

where fi = E(f |xi), fij = E(f |xi, xj) ° fi ° fj , and f123 = f °
P3

i=1 fi °
P

i<j fij . A key observation is
that the variance of f can be decomposed as the sum of the variances of the individual terms in the ANOVA. Here,
the terms {fi}d

i=1 represent contributions from main effects while the remaining terms capture contributions from
variable interactions. This makes it possible to quantify the contributions of the individual inputs (or a group of
inputs) to the total variance of f and leads to definition of Sobol’ indices. To provide accurate estimates of Sobol’
indices, a surrogate f̂ must emulate the main effect terms as well as the variable interaction terms in Eq. (2). As
discussed in Section 4, standard ELMs may fail to correctly capture the impact of variable interactions on output
variance, leading to inaccurate Sobol’ indices. We resolve this shortcoming by introducing sparsity to the hidden layer
weights. The sparsification technique is related to DropConnect, a regularization method in machine learning [54].
DropConnect introduces sparsity to neural networks by randomly setting weights to zero before training. This has
been used to enhance RVFLs [55] and ELMs [56]. Yet another closely related approach was proposed in [57] for
random feature expansions. In that work, the purpose of adding sparsity is to efficiently emulate models with lower
order variable interactions. Our implementation preserves the speed and simplicity of ELM while also allowing the
surrogate to better incorporate model behavior.

We demonstrate the efficiency of the proposed approach on standard benchmark problems, an application from
biochemistry, and a high-dimensional problem; see Section 5.

2. EXTREME LEARNING MACHINES

A SLNN with n hidden layer neurons and a scalar output has the following form:

g(x) =
nX

j=1

Øj¡(w>
j x + bj), (3)

where wj 2 Rd, bj 2 R, j = 1, . . . , n are the weights and biases of the hidden layer; Øj , j = 1, . . . , n are the
weights of the output layer; and ¡ is the hidden layer activation function. For a given number of neurons n and a
given activation function ¡, we set

Mn(¡) =

8
<

:

nX

j=1

Øj¡(w>
j x + bj) : bj , Øj 2 R,wj 2 Rd

9
=

;. (4)

It is known that SLNNs are universal approximators since, when using non-polynomial continuous activation func-
tions, they are dense in C(Rd) [58]. More precisely, if ¡ 2 C(R) is not polynomial and f 2 C(K), where K is a
compact subset of Rd. Then, for any ≤ > 0, there exists n and gn 2Mn(¡), such that

max
x2K

|f(x)° gn(x)| < ≤. (5)
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In addition, SLNNs are universal approximators on L
p(Rd), for p 2 [1,1), when the activation function is

(almost everywhere) not a polynomial [59]. The standard approach to train Eq. (3) is to determine all hidden layer
weights and biases and output weights by solving a nonlinear least-squares problem.

In neural network ELMs, the weight vectors wj and biases bj , j = 1, . . . , n, of the hidden layer are not deter-
mined as part of a regression process but rather are chosen randomly. Training only involves determining the output
layer weights {Øj}n

j=1 by solving a linear least-squares problem.
Remarkably, even though it bypasses training the hidden layer weights (and replaces a costly nonlinear least-

squares problem by a linear one), ELMs are (almost surely) universal approximators on L
2(Rd). Namely, by Theo-

rem 2.4 in [35], ELMs have a universal approximation property (5) on L
2(Rd) provided: (i) the hidden layer weights

and biases are sampled from a continuous probability distribution; (ii) the activation function is piecewise continuous
and not a polynomial (almost everywhere); and (iii) the output weights are determined by ordinary least-squares.

2.1 Computing ELM Surrogates

Let
W =

£
w1 w2 · · · wn

§>
,

b =
£
b1 b2 · · · bn

§>
,

Ø =
£
Ø1 Ø2 · · · Øn

§>
.

The ELM [Eq. (3)] takes the following form:

g(x) = Ø>¡(Wx + b), (6)

where ¡ is understood to act componentwise. The entries of the weight matrix, W, and bias vector, b, are sampled
independently from a continuous probability distribution,D. It is important to note that this is done before the training,
and a fixed realization ofW and b is used in all subsequent computations.

To construct a surrogate, the model f is sampled at {xi}m
i=1, yielding yi = f(xi), i = 1, . . . , m. We then find Ø

by solving
min

Ø2Rn
kHØ° yk2, (7)

where y = [y1 · · · ym]> and Hij = ¡(w>
j xi + bj) for i, j 2 {1, . . . , m}£ {1, . . . , n}.

In our computations, we implement a regularized least-squares problem to control the magnitude of the solution
Ø,

min
Ø

1
2
kHØ° yk22 +

Æ

2
kØk22, (8)

with Æ > 0, the solution of which is
Ø§ = (H>

H + ÆI)°1H>y.

The regularization parameter Æ can be selected using the L-curve method or generalized cross validation [60].
We construct the hidden layer weight matrix and bias vector by sampling individual values from the standard normal
distribution and use Latin hypercube sampling (LHS) to sample points in the training set {xi}m

i=1.

3. GLOBAL SENSITIVITY ANALYSIS USING ELMS

For each entry xk, k = 1, . . . , d, the first-order Sobol’ index Sk and total Sobol’ index S
tot
k of a surrogate y = f̂(x)

are defined as follows:

Sk =
var(f̂k)
var(f̂)

, S
tot
k = 1° var(E(f̂ |xl, l 6= k))

var(f̂)
, (9)
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where f̂k(xk) = E(f̂ |xk) ° E(f̂); see, e.g., [6]. Henceforth, we assume that the entries of the input vector x are
independent and uniformly distributed on the interval [0, 1] and, therefore, the input domain is [0, 1]d. It is straightfor-
ward to extend the proposed approach to the case where entries of x are independent uniformly distributed random
variables on arbitrary closed and bounded intervals.

To obtain analytic formulas for the Sobol’ indices while avoiding Monte Carlo approximations, we must be able
to easily compute the mean, variance, and partial variances of the surrogate. By carefully choosing the activation
function, we can design f̂ as an ELM that (i) suits the abovementioned requirement and (ii) preserves the universal
approximation property. Activation functions traditionally used in machine learning are not suited for our purpose
as the corresponding calculations in Eq. (9) become impractical or impossible. Instead, we choose an exponential
activation function

¡(t) = e
t
,

which results in

f̂(x) =
nX

j=1

Øje
w>j x+bj =

nX

j=1

√
Øje

bj

dY

l=1

e
wj,lxl

!
. (10)

Since ¡ is a continuous non-polynomial function, the results cited in Section 2 apply and ELMs constructed this
way still have the universal approximation property. ELMs with exponential activation function can be viewed as an
approximation by sums of exponential functions, which is well-studied [61,62]. Still, one could ask whether other
choices of activation function would provide more accurate ELM surrogates. For the numerical examples considered
in this paper, we do not observe a clear disadvantage in terms of accuracy for ELM surrogates with exponential acti-
vation function compared to other activation functions. Moreover, our primary concern is whether the ELM surrogate
yields accurate Sobol’ index approximations. Still, the impact of the choice of activation function on the surrogate
accuracy merits further study.

We now compute the first and second moments of Eq. (10).

Lemma 1. The mean and variance of the ELM [Eq. (10)] are

E(f̂) =
nX

j=1

√
Øje

bj

dY

l=1

≤l(wj,l)

!
,

and

var(f̂) =
nX

j,i=1

ØjØie
bj+bi

√
dY

l=1

≤l(wj,l + wi,l)°
dY

r=1

≤r(wj,r)≤(wi,r)

!
,

where
≤k(t) =

Z

R
e
txkºk(xk) dxk. (11)

Here, ºk denotes the probability density function of xk.

Proof. See Appendix A.

Using Lemma 1, we obtain analytic expressions for the Sobol’ indices of Eq. (10).

Proposition 1. Let ≤k be the function defined in Eq. (11). The first-order and total Sobol’ indices of the ELM [Eq. (10)]
are given by

Sk =
1

var(f̂)

nX

j,i=1

ØjØie
bj+bi(≤l(wj,k + wi,k)° ≤l(wj,k)≤l(wi,k))

Y

l 6=k

≤l(wj,l)≤l(wi,l), (12)

and
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S
tot
k = 1° 1

var(f̂)

nX

j,i=1

ØjØie
bj+bi≤k(wj,k)≤k(wi,k)

0

@
Y

r 6=k

≤r(wj,r + wi,r)°
Y

l 6=k

≤r(wj,r)≤l(wi,l)

1

A, (13)

respectively, for k = 1, . . . , d.

Proof. See Appendix A.

We have access to explicit formulas whenever we know the expressions of ≤k, for k = 1, . . . , d. Example
distributions that admit expressions include the following:

• Uniform distribution: xk ª U([a, b]), then ≤k(t) =
Ω

(ebt ° e
at)/t, t 6= 0

1, t = 0 .

• Gaussian distribution: xk ª N (µ, æ2), then ≤k(t) = e
µt+æ2t2/2.

• Gamma distribution: xk ª °(Æ, Ø), then ≤k(t) =
Ω

ØÆ(t° Ø)Æ°1
, t 6= 0

1, t = 0 .

The inputs may follow different distributions and can be a mix of Gaussian and uniform random variables, for exam-
ple.

4. SPARSE WEIGHT ELMS

ELM surrogates [Eq. (6)] are constructed by randomly sampling the hidden layer weight matrixW and bias vector b
from the standard normal distribution. As pointed out in Section 2, an ELM surrogate f̂ can be found to satisfy

f̂ º f (14)

as accurately as desired. Our goal is however not so much to construct f̂ satisfying Eq. (14) within a given tolerance
but rather to construct f̂ such that

S(f̂) º S(f), (15)

where S stands here for any of the Sobol’ indices from Proposition 1 and S(f̂) can be computed at low cost. To
ensure that the Sobol’ indices computed from f̂ yield a reliable description of the variable interactions, we thus have
to construct a surrogate f̂ that not only satisfies Eq. (14) but also,

f̂u º fu, for any u Ω {1, . . . , d}, (16)

were fu and f̂u in the ANOVA decomposition of f and f̂ , respectively, are given by

f =
X

uµ{1,...,d}

fu, fu =
X

vµu

(°1)|u|°|v|E
≥
f̂ |xl, l 2 v

¥
, (17)

corresponding to the subset u.

4.1 ELMs and Variable Interactions

Simple examples show that the amount of variable interactions in f plays a key role in either achieving or failing to
achieve Eq. (15). As an illustration, consider the following parametrized function:

f±(x) =
dX

i=1

xi + ±

dY

j=1

(1+ xj), x 2 [0, 1]d, (18)
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where ± controls the amount of variable interactions. When ± = 0, f± is fully additive; there are no variable inter-
actions and thus the first-order and corresponding total Sobol indices are equal. For ± > 0, there are interactions
between the variables that increase in importance as ± increases. By construction, we also observe that the individual
entries xi, i = 1, . . . , d, all share the same Sobol’ indices. This feature is not present when considering the ELM
surrogate f̂ instead of f because of approximation errors. The first-order and total Sobol’ indices of Eq. (18) can be
found analytically and are given in Appendix B. Therefore, by varying ±, we can explore how variable interactions
affect accuracy in both Eqs. (14) and (15).

To approximate the Sobol’ indices of Eq. (18) with d = 15, we construct ELMs of the form Eq. (10), as follows:

1. Collectm = 900 training points sampled by LHS.

2. Construct ELMs with n = 300 neurons.

3. Compute the surrogate relative error

Esurr =
1qPs
j=1 y

2
j

vuut
sX

j=1

(f̂(xj)° yj)2, yj = f(xj) j = 1, . . . , s, (19)

using s = 1000 validation points sampled by LHS.

4. Select a regularization parameter by the L-curve method.

5. Compute Sobol’ indices of the ELM surrogate using Eqs. (12) and (13).

For each choice of ±, the L-curve method selects Æ = 10°3 as the regularization parameter.
Figure 1 (top left) illustrates that, unsurprisingly, the surrogate relative error, which measures the discrepancy in

Eq. (14), increases as the amount of interactions increases with ±. Interestingly, the situation is reversed when looking
at the accuracy of the Sobol’ indices through Eq. (15). Indeed, Fig. 1 (bottom left) shows that, while Si(f̂) is a close
approximation of Si(f), for any i = 1, . . . , d, at the larger values of ±, the relative accuracy of the corresponding
approximations decreases for smaller levels of interaction (i.e., smaller values of ±). The variance of the Si(f̂)’s,
which again should ideally all have the value S1(f) = · · · = Sd(f), also increases with smaller values of ±. The total
Sobol’ indices and their approximations largely behave in similar fashion, see Fig. 1 (bottom right). This example
shows that ELM-based surrogates have a tendency to overestimate variable interactions, a point made clear in Fig. 1
(top right), where the interaction indices Ii := S

tot
i ° Si, i = 1, . . . , d are considered.

These results demonstrate that, for variance-based GSA, standard ELMmay fail to effectively adapt when applied
to models featuring different degrees of contribution from interaction terms to the output variance.

4.2 Hidden Layer Weight Sparsification

We propose sparsifying the hidden layer weight matrixW before training the output weights as a means of controlling
the influence of variable interactions. Specifically, we replaceW by a sparse weight matrix fW defined as

fW = B ±W, (20)

where B is a (n£ d)-matrix with independent Bernoulli entries, i.e.,

Bij =
Ω
0 with probability p

1 with probability 1° p
, (21)

and where ± stands for elementwise matrix multiplication. The sparsification parameter p 2 [0, 1) determines how
sparse the hidden layer weight matrix is. If p = 0, then fW = W and the method reverts to standard ELM; when p
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FIG. 1: Example (18) with d = 15. Top left: Surrogate relative error; bottom left: first-order Sobol’ indices Si(f) and Si(f̂)
for xi, i = 1, . . . , 15 and corresponding mean; bottom right: total Sobol’ indices Stoti (f) and Stoti (f̂) of xi, i = 1, . . . , 15, and
corresponding mean; top right: interaction indices Ii := Stoti °Si, i = 1, . . . , 15, for both f and f̂ . In the true model with fixed ±,
indices Si(f) are equal for all i = 1, . . . , 15. The “ELM individual” values provide the distribution of estimates Si(f̂), and “ELM
mean” is the mean of these estimates at a given ±.

is selected to be near 1, the weight matrix fW is sparse. This technique strays from the ELM theory, which assumes
sampling weights from a continuous probability distribution to guarantee universal approximation.

We implement the sparse-weight ELM (SW-ELM) approach, i.e., ELM with fW instead ofW as a hidden layer
weight matrix, on example (18). Figure 2 illustrates the results for a range of values of the sparsification parameter
p and for three values of ± corresponding to low variable interactions (± = 10°8), limited variable interactions
(± = 10°3), and strong variable interactions (± = 108). In the case of low variable interactions (± = 10°8), Fig. 2
shows that using a sparse weight matrix can dramatically increase the accuracy of both the ELM surrogate and
of the Sobol’ indices computed using that surrogate. Sparsifying the weight matrix may thus lead to significant
improvements in GSA results when dealing with models with few interaction terms. On the other hand, in cases where
interaction terms are prominent in the model, sparsifying the hidden layer weight matrix may offer no improvement
or may even result in loss of accuracy.

4.3 Selection of Sparsification Parameter

Figure 2 suggests a framework for how to implement SW-ELM for a given model. Indeed, for fixed values of ± and
varying values of p, we observe similar trends in the surrogate error and in the total Sobol’ index approximation error.
This indicates that we may use the surrogate error as a guideline when searching for the best sparsification parameter.
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FIG. 2: Example (18) with d = 15, with low variable interactions ± = 10°8, limited variable interactions 10°3, and strong
variable interactions 108; surrogate relative error (left) and largest absolute error in total Sobol’ index approximation (right)

We propose creating a validation set alongside the training set when using SW-ELM surrogates for GSA. Sub-
sequently, we select r values of the sparsification parameter p and construct corresponding sparse weight matrices.
Then, ELMs are trained using each weight matrix and the validation set is used to compute the surrogate error for
each ELM. This serves as a diagnostic tool to aid in deciding whether sparsification may improve Sobol’ index ap-
proximation. If sparsification yields an improved surrogate error, then we use the SW-ELM with the lowest surrogate
error to approximate Sobol’ indices. If, on the other hand, sparsification does not yield a notable improvement then
we may default to using standard ELM. We summarize the method in Algorithm 1.

We illustrate the power of this method by repeating the experiment in Fig. 1 for Eq. (18) using SW-ELM instead
of ELM. Figure 3 displays the total Sobol’ indices for both surrogates as well as the exact indices. SW-ELM displays
increased accuracy and reduced variance across all tested ranges of interaction strength.

In the context of GSA, SW-ELM displays better accuracy and flexibility than standard ELM. The proposed
implementation is only marginally more costly than standard ELM because there is no need to resample training or
validation points for each ELM.

Algorithm 1: GSA with sparse weight ELM
Input: (i) Model f ; (ii) training set {xi, yi}m

i=1; (iii) validation set {x0j , y0j}s
j=1; (iv) number of neurons n;

and (v) candidate sparsification values {pl}r
l=1 (with p1 = 0).

Output: (i) First-order Sobol’ indices {Sk}n
k=1 and (ii) total Sobol’ indices {Stotk }n

k=1.
1 Generate weight matrixW0 and bias vector b using a standard normal distribution
2 for l = 1, . . . , r do
3 ConstructWl = B ±W0 with B from Eq. (21) with p = pl.
4 Determine regularization parameter Æl by the L-curve method.
5 Find output weights Øl by training ELM usingWl, b, Æl [see Eq. (8)].
6 Compute relative surrogate error El = Esurr [see Eq. (19)].
7 end for
8 Select hidden layer weight matrixW and output weights Ø corresponding to sparsification parameter that
gives smallest relative surrogate error.

9 WithW,Ø, and b, compute first-order Sobol’ indices {Sk}n
k=1 and total Sobol’ indices {Stotk }n

k=1
using Eqs. (12) and (13), respectively.
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FIG. 3: Example (18) true analytic total Sobol’ indices compared to those approximated by standard ELM and sparse weight
ELM (SW-ELM). All approximated indices are plotted with means for each ±. In the true model with fixed ±, indices Stoti (f) are
equal for all i = 1, . . . , 15. The “ELM individual” values show all ELM surrogate estimates of total indices when standard normal
sampling is used; “ELM mean” gives the mean of these estimates. “SW-ELM individual” values show ELM surrogate estimates
of total indices when the sparse weight sampling of Algorithm 1 is used; “SW-ELM mean” is the mean of these estimates.

5. COMPUTATIONAL RESULTS

5.1 Analytic Example: Sobol’ g-Function

The Sobol’ g-function [4]

f(x) =
dY

i=1

gi(xi) x 2 [0, 1]d, gi(xi) =
|4xi ° 2|+ ai

1+ ai
, i = 1, . . . , d, (22)

is commonly used as a benchmark to test new methods; its nonlinearity and lack of smoothness make approximating
its Sobol’ indices a significant challenge. Moreover, we can compare to the true Sobol’ indices. Formulas for these
can be found in the appendix to [7]. The constants ai, chosen from the interval (°1,1), can be tuned to determine
which input variables are important. The closer ai is to °1, the more important xi becomes. On the other hand, the
relative importance of xi diminishes with larger values of ai. For our test, we take the input dimension d = 8 and let
a = [1, 2, 5, 10, 20, 50, 100, 500] as in [11].

We train our SW-ELM surrogates with 160 hidden layer neurons using 400 training points and 100 validation
points, all sampled by LHS. The regularization parameter Æ = 10°3 is selected by the L-curve method. The sparsi-
fication parameter p is determined through Algorithm 1. While Fig. 4 does not show drastic improvements in error,
we nevertheless conclude from this test that sparsifying may improve our approximations when performing GSA; we
select the sparsification parameter p = 0.85. Sobol’ indices estimated by SW-ELM are compared to their true analytic
values.

As can seen from Fig. 5, SW-ELM correctly ranks the Sobol’ indices and successfully identifies the most influ-
ential input variables. For important input variables, each approximated first-order Sobol’ index is within 5% relative
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FIG. 4: Sparsification test for eight-dimensional g-function (22) with a = [1, 2, 5, 10, 20, 50, 100, 500]. Relative surrogate error
is estimated using validation set with 100 points.
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FIG. 5: Eight-dimensional g-function (22) with a = [1, 2, 5, 10, 20, 50, 100, 500]; first-order (left) and total (right) Sobol’ indices
approximated via SW-ELM and computed analytically

error of the respective true first-order Sobol’ index while each approximated total Sobol’ index is within 7% relative
error of the respective true total Sobol’ index.

We use this benchmark example to study how numerical accuracy of SW-ELM affects the accuracy of GSA. In the
experiment, we train SW-ELMs to a certain accuracy level by adding neurons and training points until the surrogate
reaches the accuracy level. Each surrogate uses two training points for every neuron. We decrease the surrogate
relative error from 15% to 5% and record the relative error of the first-order and total Sobol’ index estimates for the
inputs x1, x2, x3. The relations between numerical error and GSA error are shown in Fig. 6. The experiment shows
that SW-ELM can provide accurate GSA estimates, especially for the more influential inputs, despite 11% numerical
error. Still, reducing the numerical error has a demonstrative effect on GSA. As we decrease the error to 5%, the
Sobol’ indices become much more accurate.

5.2 Genetic Oscillator

We examine the performance of the proposed approach on a challenging application problem from biochemistry,
specifically, the genetic oscillator system that describes the time evolution of molecular species involved in the
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FIG. 6: Eight-dimensional g-function (22) with a = [1, 2, 5, 10, 20, 50, 100, 500]; effect of reducing numerical error on the
relative error of first-order (left) and total (right) Sobol’ indices estimated by SW-ELM

regulation of circadian rhythm [65]. The reaction network consists of 16 reactions and involves nine species. The
reactions, the corresponding propensity functions, and the nominal values of the rate parameters are given in Table 1.
We consider the reaction rate equations (RREs), described by a nonlinear system of ordinary differential equations
(ODEs), for this reaction network; see e.g., [65], [63], or [64], which we follow in the specific problem formulation
used in the present study. We focus on the uncertainty in the reaction rate parameters. A uniform distribution is at-
tached to each rate parameter on an interval given by a± 5% perturbation from the corresponding nominal value. We
use a random vector x 2 R16, whose entries are uniformly distributed on [0, 1], to parametrize the uncertainty in the
reaction rates. The vector of reaction rates is obtained by applying a linear transformation to x that maps the entries
of x to the respective physical ranges. In the present study, we consider the quantity of interest (QoI) given by

f(x) =
1
T

Z T

0
R(t; x) dt, (23)

TABLE 1: Genetic oscillator reactions, propensity functions, parameters, and
nominal values of the parameters [63,64]

Reaction Propensity function Parameter Value
Pa ! Pa +mRNAa ÆAPa ÆA 50.0
Pr ! Pr +mRNAr ÆRPr ÆR 0.01

mRNAa ! mRNAa + A ØAmRNAa ØA 50.0
mRNAr ! mRNAr + R ØRmRNAr ØR 5.0

A + R ! C ∞CAR ∞C 20.0
Pa + A ! Pa°A ∞APaA ∞A 1.0
Pa°A ! Pa + A µAPa°A µA 50.0
Pr + A ! Pr°A ∞RPrA ∞R 1.0
Pr°A ! Pr + A µRPr°A µR 1.0

A ! ; ±AA ±A 1.0
R ! ; ±RR ±R 0.2

mRNAa ! ; ±MAmRNAa ±MA 10.0
mRNAr ! ; ±MRmRNAr ±MR 0.5

C ! R ±0AC ±0A 1.0
Pa°A ! Pa°A +mRNAa ÆaÆAPa°A Æa 10.0
Pr°A ! Pr°A +mRNAr ÆrÆRPr°A Ær 5000
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where R(t; x) is the concentration of the species R present in the system at time t, and T is the final simulation
time. Notice that computing R(t;x), for t 2 [0, T ], requires solving the system of RREs with the reaction rates set
according to x. This system, for the present application, is given by a stiff system of nonlinear ODEs. Evaluations of
the QoI in Eq. (23) are computationally expensive. This sensitivity analysis problem was considered in [64], where
Sobol’ indices were estimated by the pick-freeze method. We replicate their results using 1.5 £ 106 samples and use
these as reference values to measure the accuracy of our method.

Figure 7 (top row) presents approximations for first-order and total Sobol’ indices when using standard ELM.
The experiment uses 3000 training points and 1000 neurons. The regularization parameter Æ = 10°4 is selected
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FIG. 7: Top row: first-order (left) and total Sobol’s (right) indices corresponding to the QoI (23) approximated via ELM with
weights sampled from standard normal distribution, using a training set with 3000 points. MC values are pick-freeze estimates.
Middle row: same experiment with SW-ELM, with a 100-point validation set, instead of standard ELM. Bottom row: same exper-
iment with SW-ELM instead of ELM and training size of 150 instead of 3000.
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by the L-curve method. We observe that approximation using standard ELM leads to overestimates, particularly for
unimportant input variables, of the total Sobol’ indices and underestimates of the first-order Sobol’ indices. This is a
clear case of standard ELM overestimating contributions to the output variance by higher order interactions.

Let us instead tackle this problem using SW-ELM. We train our surrogates with again 3000 training points, using
1000 hidden layer neurons, and 100 validation points, all sampled by LHS. Regarding sparsification, we follow Al-
gorithm 1. The results of these tests are displayed in Fig. 8 (left), and show that as the hidden layer weight matrix
becomes more sparse, the error in the surrogate improves dramatically. We select the sparsification parameter p = 0.8.
Figure 7 (middle row) displays the resulting approximated Sobol’ indices and compares them to the reference values.
Given that the Sobol’ indices computed via pick-freeze methods are a close representation of the true Sobol’ indices,
SW-ELM provides an accurate approximation of the indices.

We can further challenge the performance of SW-ELM. We train surrogates with only 150 training points, using
50 hidden layer neurons and 100 validation points. The results of sparsification tests are displayed in Fig. 8 (right).
We select the sparsification parameter p = 0.9. Figure 7 (bottom row) displays the resulting approximated Sobol’
indices. SW-ELM with 150 training points or 3000 training points gives very similar results. This indicates that
SW-ELM is extremely efficient for this problem—a modest number of training samples are sufficient for obtaining
accurate sensitivity analysis results.

As shown in Fig. 7, the first-order Sobol’ indices and the total Sobol’ indices are very close to each other for this
appplication. This suggests that there are few, if any, higher order variable interactions present in the QoI function (23).
The fact that the sparsity of the weight matrix had a significant influence over the quality of the ELM surrogate, as
seen in Fig. 8, further supports this. Here, sparsification is not simply helpful; it is essential and allows us to drastically
decrease the number of sample points needed to obtain accurate approximations.

5.3 High-Dimensional Example

In this section, we use our proposed approach to peform GSA in a model governed by a system of ODEs which has
50 uncertain inputs. Specifically, we consider a linear homogeneous ODE system

ẋ = °Ax, x0 = x(0), (24)

where x(t) = [x1(t), . . . , x50(t)]> and A 2 R50£50. Note that the solution of this is system is given by x(t) =
e
°tAx0.
In the present example, we assumeA is symmetric. Thus,A has spectral decompositionA = Q§Q

>, whereQ

is orthogonal and § is diagonal with the eigenvalues ∏1, . . . , ∏50 ofA as its diagonal entries. This allows us to express
the solution as follows:
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FIG. 8: Sparsification test for 16-dimensional QoI (23). Left: ELMs trained with training size 3000. Right: ELMs trained with
training size 150. Relative surrogate error is estimating using a validation set with 100 points.
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x(t) = Qe
°t§

Q
>x0, (25)

where e
°t§ is the diagonal matrix taking e

°t∏1 , . . . , e°t∏50 as its diagonal entries. In this example, we consider
a symmetric matrix A with a known orthogonal matrix Q of eigenvectors and uncertain eigenvalues. That is, the
diagonal entries of § in Eq. (25), are uncertain. We assume these eigenvalues take nominal values ∏k = 1/k, k =
1, . . . , 50. Each eigenvalue is assumed to follow a uniform distribution on an interval given by a ± 5% perturbation
from the respective nominal value. We consider the quantity of interest,

f(µ) = x50(10), (26)

which is the last entry in the solution vector x(t) = Qe
°t§

Q
>x0 at time t = 10. For further details on the setup of

the problem, see Appendix C. Reference Sobol’ indices are computed by the pick-freeze method using 105 samples.
As show in Fig. 9, the surrogate error reaches a minimum when p = 0.95, indicating that a very sparse weight

matrix should be used. In Fig. 10, we see the results of the sparsification test. The experiment uses 700 training points,
350 neurons, and 100 validation points to compute surrogate error. Figure 10 demonstrates the accuracy of the total
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FIG. 9: Sparsification test for Eq. (26) on a 100-point validation set. ELMs trained with 700 training points and 350 neurons.
Surrogate relative error reaches a minimum of 2.73 £ 10°4 on the validation set at p = 0.95.
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Sobol’ indices estimated using SW-ELM. These are compared to the reference values. The Sobol’ indices reveal the
absence of variable interactions, justifying the use of a very sparse weight matrix.

6. CONCLUSION

The use of SW-ELM as a surrogate in the context of variance-based GSA allows the user to completely eschew
Monte Carlo integration, which is a perennial bottleneck in this field. The previously presented numerical results
make a strong case for further study of the approach. In particular, there is, in general, very little known theoretically
regarding the link from Eq. (14) (accurate surrogate) to Eq. (15) (accurate GSA).

In our particular case, we note further that SW-ELM is not strictly covered by the existing theory [34] because
the distribution we use forW does not correspond to a continuous random variable. The ELM theory of [34] is also
limited in not providing convergence rates or generalization bounds. In this respect, theory for RVFLs [39,66] and
random features [45,57] is more developed. Extending existing theory to the setting in this paper is an interesting
direction for future study.

A key point in our approach is the ability to analytically compute the Sobol’ indices of f̂ . This is where assump-
tions about the parameter distribution are crucial. Further work is need to understand how these assumptions can be
generalized. More activation functions could be identified that facilitate formulas for Sobol’ indices with respect to
specific distributions of interest. Application of isoprobablistic transformations, as is commonly done in the context
of PCE [9,67], can expand the classes of input distributions that can make use of the analytic Sobol’ index formulas
of SW-ELM.

For certain applications, our method can be enhanced by building on sparse feature methods [28,68], including
Bayesian compressive sensing [69] and data-driven [31,70] approaches geared to high-dimensional models. Applica-
tion to ELM is an area for future work. A deeper understanding of the proposed sparsification process could lead to
improvement of the proposed approach but also have broader impact. We interpret the weight sparsification step as
a data-driven means of increasing the probability of choosing basis functions with appropriate ANOVA components.
The algorithm, which bears similarity to ours, proposed in [57] for random feature expansions also enjoys enhanced
accuracy from weight sparsification. Future directions should seek to develop sparse sampling approaches that create
a random basis from more sophisticated information about the ANOVA decomposition of the target model.
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APPENDIX A. DERIVATION OF ANALYTIC FORMULAS FOR ELM SURROGATE

APPENDIX A.1 Proof of Lemma 1

Proof. For the surrogate presented in this paper, we derive expressions for the mean and variance. Recall the expres-
sion for the ELM (10) and the definition of the function ≤k(t), given in the statement of the lemma,

≤k(t) =
Z 1

0
e
txkºk(xk)dxk.

We first find the expression for the mean,

E(f̂) =
Z

[0,1]d

nX

j=1

√
Øje

bj

dY

l=1

e
wj,lxl

!
dx =

nX

j=1

√
Øje

bj

dY

l=1

Z 1

0
e
wj,lxldxl

!
.

Therefore, the mean can be expressed as follows:

E(f̂) =
nX

j=1

√
Øje

bj

dY

l=1

≤l(wj,l)

!
.
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Next, we find the expression for the variance:

var(f̂) = E(f̂ 2)° E(f̂)2 =
Z
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APPENDIX A.2 Proof of Proposition 1

Proof. For the surrogate presented in this paper, we derive expressions for the general formulas for regular and total
Sobol’ indices and offer simplified expressions for indices corresponding to single variables. Recall the expression
for the ELM [Eq. (10)] and the function ≤k(t), and let E(f̂) and var(f̂) be as presented in Lemma 1.

Given a subset of variables of {x1, . . . , xd}, we first derive the expressions for Sobol’ indices,

Su =
var(f̂u)
var(f̂)

, f̂u :=
X

vµu

(°1)|u|°|v|E
≥
f̂ |xl, l 2 v

¥
,

where u Ω {1, . . . , d} [6]. Since terms in the ANOVA decomposition have the property that var(f̂u) = E(f̂ 2u) [71]
we can we can express the Sobol’ index Su for Eq. (10) as follows:
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v,ṽµu

nX

j,i=1

(°1)2|u|°|v|°|ṽ|
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A.

When we only consider the single variable case or, in other words, when u = {k}, then we arrive at Eq. (12) for the
first-order Sobol’ indices:

Sk =
1

var(f̂)
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Now we derive the expressions for the total Sobol’ indices for a given subset of variables of {x1, . . . , xd},

S
tot
u = 1° var(E(f̂ |xr, r 62 u))

var(f̂)
,
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where u Ω {1, . . . , d} [6]. We find the expression for the total index S
tot
u for Eq. (10), as follows:
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When we consider the total Sobol’ index corresponding to a single variable xk, we have expression Eq. (13) based
on:
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APPENDIX B. SOBOL’ INDICES OF TUNABLE INTERACTIONS EXAMPLE

Here we present formulas for the analytic first-order and total Sobol’ indices for Eq. (18), given an input dimension d

and parameter ±. The first-order Sobol indices are the same for all k = 1, . . . , d. The total Sobol’ indices are also the
same for k = 1, . . . , d. The first-order and total Sobol’ indices are given by

Sk =
var(E(f±|xk))
var(f±)

and S
tot
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APPENDIX C. SETUP OF HIGH-DIMENSIONAL EXAMPLE

Here we describe our choices for x0 andQ in Eq. (25), as implemented in MATLAB. For the initial state, x0, we take
x0 = [1, . . . , 1]>. We chose Q by generating a random orthogonal matrix as follows. First, we generated a matrix
P whose entries are independent draws from standard normal distribution. This was done using MATLAB’s randn
command. The random seed was fixed using rng(1). Subsequently, the matrixQ was obtained by performing a QR
factorization P = QR, whereQ is orthogonal andR is upper triangular, and retainingQ. The QR factorization was
computed using MATLAB’s qr command.
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