

www.acsnano.org

ACCESS

Origins of Fermi Level Pinning for Ni and Ag Metal Contacts on Tungsten Dichalcogenides

3 Xinglu Wang, Yaoqiao Hu, Seong Yeoul Kim, Rafik Addou, Kyeongjae Cho, and Robert M. Wallace*

Metrics & More

Article Recommendations

4 ABSTRACT: Tungsten transition metal dichalcogenides (W-TMDs) are intriguing due to their properties and 5 potential for application in next-generation electronic devices. However, strong Fermi level (E_F) pinning manifests 6 at the metal/W-TMD interfaces, which could tremendously restrain the carrier injection into the channel. In this 7 work, we illustrate the origins of E_F pinning for Ni and Ag contacts on W-TMDs by considering interface chemistry, 8 band alignment, impurities, and imperfections of W-TMDs, contact metal adsorption mechanism, and the resultant 9 electronic structure. We conclude that the origins of E_F pinning at a covalent contact metal/W-TMD interface, such 10 as Ni/W-TMDs, can be attributed to defects, impurities, and interface reaction products. In contrast, for a van der 11 Waals contact metal/TMD system such as Ag/W-TMDs, the primary factor responsible for E_F pinning is the 12 electronic modification of the TMDs resulting from the defects and impurities with the minor impact of metal-13 induced gap states. The potential strategies for carefully engineering the metal deposition approach are also 14 discussed. This work unveils the origins of E_F pinning at metal/TMD interfaces experimentally and theoretically and 15 provides guidance on further enhancing and improving the device performance.

16 KEYWORDS: metal contact, transition metal dichalcogenides, Fermi level pinning, interface chemistry, band alignment, 17 imperfections, density functional theory

18 INTRODUCTION

19 Transition metal dichalcogenides (TMDs) have demonstrated 20 immense potential for applications in state-of-the-art elec- 21 tronic, optoelectronic, and spintronic devices because of their 22 outstanding electronic, optical, mechanical, and magnetic 23 properties. However, the failure of tuning the Schottky 24 barrier height (SBH) by the work function (Φ) of metal 25 contacts strongly limits the efficiency of carrier injection and 26 hence the electronic performance of TMD-based devices. $^{8-11}$ 27 Several strategies, such as the use of interlayer, $^{12-18}$ phase 28 engineering, 19,20 surface or chemical doping, $^{21-24}$ and trans-29 ferred or buffered van der Waals (vdW) metal contacts, 25,26 30 have been employed to alleviate the E_F pinning effect and to 31 reduce the contact resistance (R_c) at the source and drain 32 contacts. Nevertheless, the front- and back-end-of-line (FEOL

and BEOL) processes for wafer scale integration necessitate 33 direct metallization of the TMD-based devices. Employing 34 direct metallization, various metal contacts (Ti, Au, Pd, Pt, Sc, 35 Cr, Ir, Al, Ag, In, Y, Ni, Sn, Mo, Bi, Sb, etc.) have been 36 employed to investigate their contact performance with 37 TMDs; $^{8,9,26-35}$ however, the mechanism of the strong 28 pinning effect at the metal/TMD interface remains elusive in 39 the aspect of fundamental science.

s Supporting Information

Received: July 14, 2023 Accepted: September 29, 2023

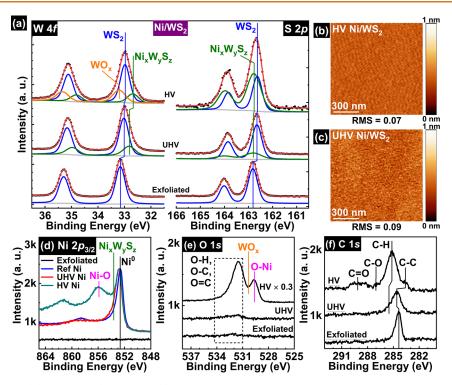


Figure 1. (a) W 4f and S 2p, (d) Ni $2p_{3/2}$, (e) O 1s, and (f) C 1s spectra of WS₂ bulk crystal surfaces following exfoliation and subsequent Ni depositions under UHV and HV conditions, as well as AFM images of Ni/WS₂ bulk crystal surfaces deposited under (b) HV and (c) UHV conditions. The unit of the root-mean-square (RMS) is nm.

Many efforts have been spent to understand the origin of E_F pinning from several perspectives. English et al. have reported that the R_c can vary significantly with the deposition conditions 44 for TMD-based devices. 36 Interface chemistry studies unveil 45 that the contact performance can be improved by carefully 46 reducing the impingement rate of the background gases on the 47 TMD substrate during the metal deposition process. 30,31,37 The oxidation of the contact metal and its contact interface 49 with TMD substrates could strongly modify the intrinsic 50 interface chemistry and lead to degraded contact performance. 37,38 In addition, the contact resistance can be reduced by 52 more than 2 magnitudes if the air and water exposure can be 53 minimized during the metalization of the contacts. 39 It has also 54 been unveiled that minimizing the TMD transfer holding polymer residue can significantly improve the I_{on/off} ratio and 56 decrease the contact resistance. 25,40 These discoveries indicate the importance of careful control of the processing conditions 58 of the TMD transistors.

Besides the processing conditions, the properties and quality of a semiconductor TMD can also impact the nature of the metal/TMD interface. Addou et al. have reported that the intrinsic imperfections of TMDs could induce gap states and vary the Φ of TMDs after exfoliation. For example, S vacancy can introduce gap states 0.04–0.5 eV below the conduction band minimum, which is an n-type dopant to the MoS₂. Other imperfections, such as antisites and impurities, can cause heterogeneous doping on the same freshly exfoliated surface of TMDs. Furthermore, the interaction between the imperfections and the adsorbed contact metal atoms could cause orbital hybridization, leading to the formation of unexpected bonds and interface states. These alterations would change the band alignment and the SBH substantially at the metal/TMD interface.

Recently, theory calculations predicted that the contact 74 metal adsorption site and orientation can be tuned to lower the 75 SBH on the TMDs. In those studies, Moiré pattern adsorption 76 configurations enable greater Fermi level depinning than other 77 geometries without a twisted angle on the TMDs. 46,47 This 78 finding indicates that the adsorption mechanism of the metal 79 atoms on the TMD surface is essential in tuning the SBH and 80 achieving an Ohmic contact.

From the above, it can be inferred that the origin of E_F 82 pinning cannot be solely explained from a single aforemensioned perspective. For a specific metal/TMD interface, the E_F 84 pinning effect at a metal/TMD interface may emerge from an 85 integration of various components, which is further bolstered 86 by the scattered R_c values reported from different research 87 groups even with the same metal and TMD combination. 88 This brings up a strong demand for the investigation of 89 fundamental science and the weight of each component. This 90 complication of the coexisted components necessitates a 91 dedicated systematic and comprehensive study to understand 92 the essential physics and chemistry that lead to the E_F pinning 93 of metal contacts on TMDs.

Among the W-TMDs, WS₂ and WSe₂ have attracted great 95 attention due to their low subthreshold slope (down to 60 96 mV/dec), moderate mobility (250 cm²/V·s), and high I_{on}/I_{off} 97 ratio (up to $\sim 10^9)$. $^{10,29,49-52}$ WTe₂ shows promise in being 98 used as an atomically thin high current interconnect and an 99 interlayer between metal contacts and TMDs to improve the 100 electrical performance. 53,54 For the contact metals, Ni and Ag 101 have demonstrated great potential in achieving a low R_c on 102 TMDs. More specifically, Ni has demonstrated promising R_c 103 values of 500 and 700 $\Omega \cdot \mu m$ on MoS₂ and WS₂, 104 respectively. 24,39 Ag has shown an extremely low R_c of 180 105 $\Omega \cdot \mu m$ with MoS₂ upon direct metal deposition. 55 However, 106 the physical and chemical properties of the interfaces of Ni and 107

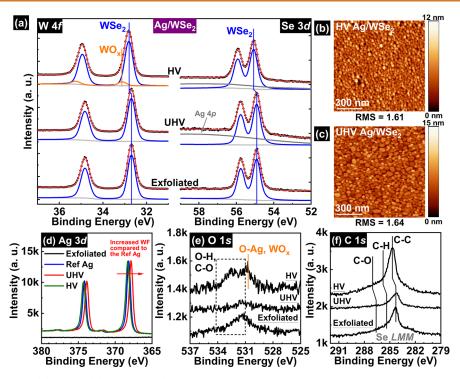


Figure 2. (a) W 4f and Se 3d, (d) Ag 3d, (e) O 1s, and (f) C 1s spectra of WSe₂ bulk crystal surfaces following exfoliation and subsequent Ag depositions under UHV and HV conditions, as well as AFM images of Ni/WS₂ bulk crystal surfaces deposited under (b) HV and (c) UHV conditions. The unit of the RMS is nm.

 108 Ag metal contacts with W-TMDs, which is the key to achieving 109 Ohmic contacts with low 26 have not been studied 110 systematically. It has been unveiled that Ni and Ag form 111 covalent and van der Waals (vdW) interfaces with MoS $_2$, 112 respectively. 56 The distinct interface types, together with their 113 outstanding contact performance, make them perfect candi- 114 dates to understand the origin of E F pinning by comparing the 115 two cases under the same processing conditions.

To study the contact type (Schottky or Ohmic, covalent, or 117 vdW) between exfoliated W-TMD bulk crystals and Ni or Ag 118 contacts, the interface chemistry, band alignment, and surface 119 morphology of Ni and Ag contacts on W-based TMDs are 120 investigated by X-ray photoelectron spectroscopy (XPS) and 121 atomic force microscopy (AFM). The impact of deposition ambient is studied by employing in situ ultrahigh vacuum (UHV) and ex situ high vacuum (HV) deposition conditions. The use of HV deposition methods is common in the majority of materials and device research laboratories, and thus, the 126 literature is replete with such deposition methods employing 127 TMDs. As noted above, reports have indicated that the deposition ambient can be important in the context of contact resistance. 36-39 Comparing a typical ambient deposition (HV) 130 with a well-controlled ambient ambient (UHV) enables the discrimination of reaction products that are likely present in a 132 contact formed under HV conditions. The effect of 133 imperfections, such as defects and impurities, of TMDs on $_{134}$ the $\,E_{F}\,$ pinning is characterized by scanning tunneling 135 microscopy/spectroscopy (STM/STS). The contact metal 136 atom adsorption mechanism is studied by density functional 137 theory (DFT) and is correlated to the interface chemistry and 138 surface morphology. The implications of the resultant interface 139 chemistry, band alignment, and electronic effect of the 140 imperfections and the adsorbed metal atoms on the contact

performance are demonstrated. Potential strategies for 141 optimizing the direct metal deposition process are discussed. 142

RESULTS 143

Ni Reduction of W-Based TMDs. The W 4f and S 2p 144 spectra of WS₂ bulk crystal before and after ~1 nm Ni 145 deposition in UHV and HV are shown in Figure 1a. The 146 fl emergence of an additional Ni_xW_vS_z intermetallic state 147 indicates the reaction between Ni and WS₂ after Ni deposition. 148 Smooth surfaces (RMS roughness < 0.1 nm) obtained after Ni 149 deposition under HV and UHV conditions are shown in 150 Figures 1b and c, respectively. This result also suggests the Ni 151 reduction of WS2 at the Ni/WS2 interface. WOx is detected 152 after Ni deposition under HV conditions in the W 4f spectra. 153 The water and OH residuals in the HV chamber as well as the 154 air exposure during the ex situ transfer process likely lead to 155 oxidation of the Ni/WS₂ interface. The oxidation of the Ni/ 156 WS₂ interface is further evident by the detection of Ni oxide 157 bonding in the Ni 2p_{3/2} and the O 1s spectra after Ni 158 deposition under HV conditions as shown in Figures 1d and e. 159 Adventitious carbon species are detected before and after Ni 160 deposition in UHV and HV. They likely originate from the 161 carbon tape and the outgassed carbon species from the heated 162 Ni source. However, the absence of any metal carbide features 163 (~282 eV) after Ni deposition demonstrates that the 164 involvement of carbon in the interface reaction is below the 165 detection limit of XPS.

The interface reaction at the Ni/WSe₂ and Ni/WTe₂ 167 interfaces is congruent with that of the Ni/WS₂ interface. 168 The Ni reduction of WSe₂ (WTe₂) and the formation of 169 Ni_xW_ySe_z (Ni_xW_yTe_z) are detected after Ni deposition under 170 UHV and HV conditions. The core level spectra and relevant 171 discussion are displayed in the Supporting Information. 172

Figure 3. Schematics of the interfaces between contact metals (Ni and Ag) and W-TMDs before and after metal depositions in UHV and HV.

vdW Gap between Ag and W-TMDs. The interface reactions of Ag/W-TMD interfaces with different chalcogen regarding interface reactions after Ag deposition under both UHV and HV conditions. Therefore, regarding in this section, Ag/WSe₂ is chosen as the representative case to result discuss the interface chemistry upon Ag deposition. The core reverse results represented in the Supporting Information.

Any additional intermetallic chemical state is absent in the 182 W 4f and Se 3d spectra after Ag depositions in UHV and HV as shown in Figure 2a. This indicates the persistence of WSe₂ and the formation of a vdW contact for the Ag/WSe₂ interface. The full width at half-maximums (fwhm's) of the W-TMD 186 bulk crystal and Ag metal states stay almost the same after Ag deposition as shown in Table S1 to S4. This result indicates that the core level orbital interaction between Ag and W-TMDs is below the detection limit of XPS, confirming the 190 formation of a vdW interface between Ag and W-TMDs. 191 Ag islands formation on the WSe₂ surfaces indicates the Volmer–Weber growth of Ag film on the WSe₂ bulk surfaces 193 under UHV and HV conditions as shown in Figure 2b and c. 194 This finding is congruent with the formation of a vdW gap 195 between Ag and WSe2. In Figure 3d, the Ag 3d peaks of the 196 UHV samples shift to a lower binding energy compared to the 197 reference Ag. This indicates that the Φ of the 1 nm Ag film 198 deposited under the UHV condition is greater than that of the 199 ~30 nm reference Ag film. Wood has predicted that the Φ of a 200 small metal sphere should be smaller than that of a planar metal film,⁵⁷ which has also been reported to occur on MoS₂ in UHV. ⁵⁶ However, for the Ag islands deposited on WSe₂, the Φ value is greater than the Φ value of the reference Ag film. This suggests the formation of interface dipole at the Ag/WSe₂ interfaces, which is likely due to the charge redistribution around the intrinsic defects of WSe₂ bulk. 11,41,42 the Ag islands deposited under HV conditions, the sizes 🖰 🖰 islands are smaller and more uniform than those of the islands deposited under UHV conditions. This possibly originates 210 from the oxidation of the Ag/WSe₂ interface deposited under HV conditions as indicated by the appearance of Ag and W oxides in the W 4f and O 1s spectra. The oxidation of Ag also contributes to the positive shift of the Ag 3d peaks of the HV 214 sample. igure 2f, the C 1s spectra overlap with the Se LMM 215 auger specta as indicated by the shakeup around 285 eV. The 216 metal carbide bonds are below the detection limit of XPS for 217 the Ag/WSe₂ samples after Ag deposition in UHV and HV.

This finding demonstrates that the bonding of carbon in the 218 interface reaction is not detectable for the Ag/WSe₂ samples 219 deposited under UHV and HV conditions.

The interfaces of Ni and Ag with W-TMDs are summarized 221 in Figure 3. The interface type is consistent for W-TMDs 222 regardless of the number—of chalcogen atoms for a specific 223 contact metal. Ni forms covalent interfaces on W-TMDs with 224 the formation of intermetallic reaction products. In contrast, 225 Ag forms vdW gaps on W-TMDs without detectable interface 226 reactions. Oxidation of the contact metal films is detected on 227 the HV samples, which highlights the importance of carefully 228 controlling the processing conditions for metallization.

Band Alignment and Fermi Level Pinning. The band 230 alignment of the metal/TMD interfaces is calculated from the 231 shifts of TMD bulk crystal states in the W 4f spectra referring 232 to the peak positions in the references. Specifically, the 233 W $4f_{7/2}$ peaks of WS₂ and WSe₂ in Table S5 are used to extract 234 the binding energy shift before and after metal deposition in 235 UHV and HV. A negative shift of the bulk crystal chemical 236 state in the W 4f spectra indicates a negative shift in the 237 valence band maximum spectra. This means that the E_F shifts 238 toward the vacuum level, which indicates the decrease of the 239 Φ.58 The details of the band alignment extraction method can 240 be found in Figure S8. 1T'-WTe2 investigated in this study is 241 semimetallic. Accordingly, this Φ is aligned with the Φ of the 242 XPS system spectrometer. Therefore, the binding energy 243 variation upon metal deposition should be below the energy 244 resolution of XPS. This identical data analysis process readily 245 enables a direct comparison with the previous band alignment 246 results. 30,31,37,45,59,60 In Figure 4, the energy position of the E_Fs 247 f4 obtained from the in situ UHV samples are considered the true 248 values compared to the HV samples because any contami- 249 nation from the ambient HV and the following ex situ process 250 could introduce deviations to the measured results for the HV 251 samples. E_Fs extracted from the HV samples are also shown for 252 comparison. The variability of the E_F before metal depositions 253 is due to the inhomogeneous distribution of its impurities and 254

The E_F of the Ni/WS $_2$ interface is pinned at -4.33 eV $_2$ 56 (relative to the vacuum level), leading to a Schottky barrier $_2$ 57 height of 0.32 eV for electron injection. The E_F of the Ni/ $_2$ 58 WS $_2$ interface after Ni deposition in UHV is close to the E_F of $_2$ 59 WS $_2$ (-4.19 eV) before metal deposition. The doping effect of $_2$ 60 TMDs caused by their defects impurities has been reported to $_2$ 61 give rise to the modulation of the E_F position. This $_2$ 62

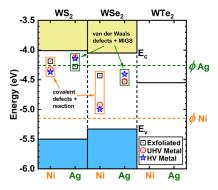


Figure 4. Band alignment of contact metal/W-TMDs interfaces before and after metal depositions in UHV and HV. The energy scale is relative to the vacuum level. The contact type (covalent or vdW) and the main origin of $E_{\rm F}$ pinning are also shown in this figure.

263 doping effect concurrent with the formation of the $Ni_xW_yS_z$ 264 intermetallic probably dominates the E_F pinning at the Ni/WS_2 265 interface according to the interface chemistry study. The 266 Schottky barrier height for the Ag/WS_2 interface is 0.11 eV as 267 shown in Figure 4. Considering that the interface reaction 268 between Ag and WS_2 is below the detection limit of XPS and 269 the E_F after Ag deposition is close to the intrinsic E_F of WS_2 , 270 the doping effect caused by the defects and impurities of WS_2 271 likely leads to the E_F pinning at the Ag/WS_2 interface. The 272 formation of an interface dipole and the appearance of gap 273 states could partially explain the E_F pinning as reported by 274 DFT calculation results. Since the E_F of the Ag/WS_2 interface is close to the Φ of Ag, it is also possible that the 276 Ag/WS_2 interface follows the Schottky–Mott rule.

The WSe₂ after exfoliation is n-type, which is probably due 278 to the impurities, like In, Cu, and alkali metals, detected by 279 inductively coupled plasma mass spectrometry (ICP-MS). 61,62 280 Impurities such as Re, Ag, and halogens, which are below the 281 detection limit of ICP-MS for this sample, are also reported to 282 induce n-type doping to TMDs. 21,63-66 Very recently, Stolz et 283 al. have reported that vanadium is a p-type dopant for WSe₂ synthesized by metalorganic chemical vapor deposition.⁶⁷ It 285 has been highlighted that the E_F pinning and Schottky contact 286 behavior show up upon the number of WSe₂ layers exceeding 2 287 due to the change of the band structure. 67 This affirms that the 288 impurity dopant is one of the origins of E_F pinning at the metal/TMD interface. The E_F of Ni/WSe₂ is pinned at 4.92 eV which is close to the valence band edge of the WSe2 bulk 291 crystal (5.33 eV). Therefore, Ni could potentially serve as a p-292 type contact for the WSe₂-based devices. The E_E of the Ni/ 293 WSe $_2$ interface is much closer to the Φ of Ni metal (further 294 away from the intrinsic E_F of TMDs) than that of the Ni/WS₂ 295 interface. This finding suggests that the E_F pinning effect from

the interface reduction reaction products is more dominant for 296 the Ni/WSe_2 interface, which means that the defects and 297 impurities of WSe_2 contribute less to the E_F pinning compared 298 to that of WS_2 . The E_F for the Ag/WSe_2 interface is pinned at 299 the same energy position as the intrinsic E_F of WSe_2 before 300 metal deposition. This finding indicates that the intrinsic 301 defects dominate the E_F pinning for the Ag/WSe_2 interface. 302 The E_F pinning mechanism discussed in this work is consistent 303 with that observed in the MoS_2 systems. 56

Impurities. As discussed above, the existence of impurities 305 could dope the TMD materials and contribute to E_F pinning at 306 a metal/TMD interface. Addou et al. have studied the 307 concentration of such impurities for the W-TMD bulk crystals 308 that are used in this work by ICP-MS. 61,62 We discuss the 309 effect of these impurities on the contact performance below. 310

The detectable impurities of WS2 are highlighted in the 311 periodic table in ref 61. Te shows the highest concentration 312 among all of the impurities. Theory calculation has predicted 313 that Te substitution of S could lead to an increased indirect 314 band gap for a WS₂/WSe₂ heterostructure.⁶⁸ It has been 315 reported that Re is an n-type dopant for TMDs,⁶⁹ while Li, Na, 316 Ca, Au, Mo, and Nb are p-type dopants. 21,64,65 Klein et al. have 317 reported that Fe has an insignificant impact on the transport 318 performance to W-TMD. 70 Although the concentration of all 319 the detected elements is below the typical impurity 320 specification (5 \times 10¹⁰/cm²) for Si-based technology, these 321 impurities may dope the TMD materials and contribute to the 322 E_F pinning after metallization, as discussed above. The 323 impurities would also cause variation in the electronic and 324 topographical behavior for the STM/STS characterization that 325 will be discussed below. The discussion of the impurities 326 detected in WSe₂ can be found elsewhere. 62 Various impurities 327 are detected for WTe2 as shown in ref 58. These impurities do 328 not strongly impact the metallic property of the WTe₂ since 329 the core level peak positions are not changed significantly as 330 shown in Figures S2 and S4. However, these impurities may 331 impact tribological and thermal properties of TMDs. 71,72

Imperfections of W-TMD. Figure 5 shows the STM 333 f5 images obtained on a freshly exfoliated WS₂ bulk crystal 334 surface. A WS₂ surface with dark "concave" defects is shown in 335 Figure 5a. The STS result in Figure 5b indicates that this 336 surface is n-type, and the band gap of the WS₂ bulk crystal is 337 1.49 ± 0.10 eV, which is consistent with the experimental and 338 theoretical values. The n-type behavior is possibly due to 339 the sulfur deficiency which is confirmed by the W:S ratio of 340 1:1.86 estimated from the XPS peak fitting result. Re, a typical 341 n-type dopant to TMDs, is detected by ICP-MS at 0.42 ppbw 342 $(2.7 \times 10^9 \text{ atoms/cm}^2)$ for WS₂. Tang et al. have reported 343 that oxygen can also serve as an n-type dopant for MoS₂ by *in* 344 *situ* doping. Although the oxidation of this WS₂ is below the 345 detection limit of XPS as shown in Figure S5, the O dopants 346

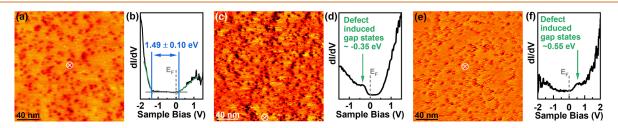


Figure 5. STM images obtained on a freshly exfoliated WS₂ bulk crystal surface at (a) 1.5 V, 0.5 nA, (c) 1 V, 0.5 nA, and (e) -0.95 V, 0.5 nA. (b), (d), and (f) are the STS taken at the white marks in (a), (c), and (e), respectively.

347 could still induce n-type doping to the WS₂. Adventitious 348 carbon is detected by XPS on the freshly exfoliated W-TMDs 349 after the short air exposure (~ 1 min) in this work. This 350 indicates that carbon species would widely exist for the devices 351 fabricated by photolithography and polymer-assisted transfer 352 process. Schuler et al. have reported that C dopants 353 substituting S sites in WS₂ would behave as charge defects and 354 appear as depressions in the STM image. The schuler of the WS₂ would behave as charge defects and 354 appear as depressions in the STM image.

Besides the doping effect, the defects of WS₂ can also induce 356 gap states close to the valence band and conduction band of 357 WS₂ as shown in Figures 5d and e. Figure 5c shows an area 358 with dark concavities and bright hillocks at a positive bias. 359 Figure 5e shows an area with bright hillocks surrounded by 360 dark concaves. Similar bright features are identified on MoS₂, which are attributed to metallic-like defects. 42 A bright defect, 362 reported as a geometrically complex defect, can cause 363 detrimental modifications in the electronic structure for 364 WSe₂ after 600 °C annealing.⁷⁸ It is well-known that the 365 surface of a TMD material is atomically flat in morphology by 366 AFM. The "rough" surface obtained by STM indicates the 367 electronic variation caused by the defects and dopants on the 368 surface. 42,44 By changing the polarity of the imaging for the 369 area in Figure 5e, a bright defect at a negative bias could 370 change into a concave one at a positive bias, and a concave one 371 at a negative bias may stay as a concave one at a positive bias as shown in Figure S7. This finding demonstrates that the defects are not topographical but rather electronic in nature, and they could behave as both donors and acceptors depending on the 375 band bending changed with the applied bias. 79 Areas with 376 much fewer defects are captured by STM as shown in Figure 377 S6. This proves the spatial variation of the defect and impurity 378 distributions across the same freshly exfoliated WS₂ surface. 379 Besides the bias variation, the variation of the concave depth is 380 also observed. The depth of a concave varies from 0.3 to 1.4 381 nm, which corresponds to 0.5 to 2.5 of the WS₂ monolayer as shown in Figure S7.

In addition to the topographical and electronic variation, 384 atomic scale imperfections can also be found on the freshly 385 exfoliated WS₂ surface. Figure 6b is a high magnification image 386 around a concave defect in Figure 6a within which multiple concavities can be observed. The atomic resolution is absent in the concave depression region, highlighted by the green circle, 389 indicating that the concave depression is probably caused by an 390 acceptor type of defect which could deplete the electron in the 391 vicinity of the defect. Such defects can be impurities, missing 392 atoms, and dangling bonds. 41,80,81 Eigure 6c demonstrates a defect-free atomic resolution area $\sqrt{S_2}$. The lattice constant is measured to be 3.17 Å, which is consistent with the results characterized by X-ray diffraction.⁸² Local depression (purple circle), S vacancy (white circle), and absorbate/impurity (black circle) can be seen in Figure 6e, by changing the 398 contrast of the green rectangle area in Figure 6b. A local 399 depression is likely due to an O substituting S (O_S) or an S 400 vacancy (V_S) in the top and bottom sulfur layers. ^{77,83,84} The 401 O_S can also contribute to the narrower band gap of the WS₂ as 402 shown in Figure 5d, f.⁷⁴ An atomic acceptor could also 403 contribute to the presence of a local depression. 41 Multiple 404 localized O_S (purple circles) can be found in Figure 6f without 405 disrupting the hexagonal structure. Surface absorbates/ 406 impurities, which behave like donors on the surface, can also 407 be observed in Figure 6f as bright atoms highlighted by black 408 circles. Locally excess S, S antisite, and impurities like V, Nb, 409 Ta, Au, Cr, Mo, As, Ni, Ca, and Mg could lead to enhanced p-

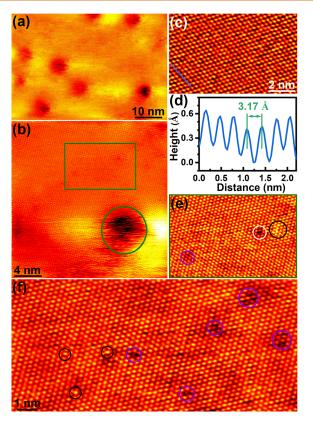


Figure 6. STM images of (a) an area with "concave" defects, (b) a high magnification image including a "concave" defect; (c) a defect-free WS $_2$ surface region; (d) the surface corrugation with a lattice constant of WS $_2$ measured to be 3.17 Å along the blue line in (c); (e) STM image showing local point defect depressions (purple), S vacancy (white), and absorbate/impurity (black); and (f) STM image presenting surface absorbates/impurities (black) and local depressions (purple). All the images are taken at -0.25 V, 1 nA.

type conductivity at a negative tip bias. 65,70,85,86 Even though 410 the impurity concentration has been significantly minimized by 411 using synthesized crystals instead of geological materials, the 412 doping effect and the gap states from these defects and 413 impurities could still considerably impact the physical and 414 chemical properties of the TMD materials and devices. 41,444

Reactivity. DFT calculations were performed to further 416 understand the interface reaction between the contact metals 417 and W-TMDs. Figure 7a-d show top views of the atomic 418 f7 structures of W-TMDs absorbed with single contact metal 419 atoms. To directly quantify the strength of the interface 420 reaction between contact metals and TMDs, we calculated the 421 adsorption energy for metals on the surface of TMDs. For both 422 Ni and Ag adsorption systems, their adsorption energies are 423 negative, meaning that these systems are thermodynamically 424 stable. For example, Ni on WSe₂ shows the lowest binding 425 energy of -3.22 eV at the W-top site, with significantly 426 stronger interaction with WSe2 than that of Ag at the hollow 427 site (-0.56 eV). A similar trend has been reported for MoS₂ 428 systems theoretically, where single adatom adsorption of Ni on 429 MoS₂ shows much greater binding energy than that of Ag. 87 430 Among the possible adsorption sites, including the W-top, 431 chalcogen-top, and hollow site, our calculations show that Ni 432 preferably absorbs at the W-top site, while Ag prefers the 433 hollow site. The adsorption site preference for Ni and Ag on 434 W-TMDs is similar to MoS₂, where Ni prefers the Mo-top site 435

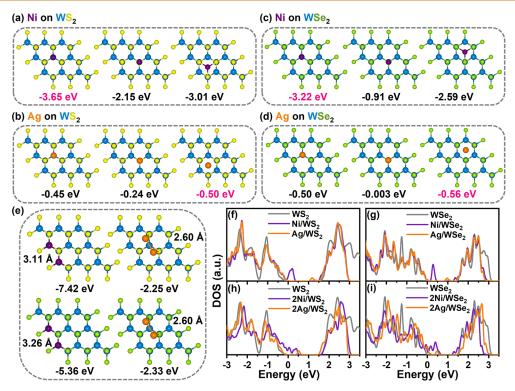


Figure 7. (a-d) Diagrams of a single metal atom adsorbed on W-TMDs with the adsorption energy listed; (e) two metal atoms adsorbed on W-TMDs with the adsorption energy and the distance of the two adatoms listed; (f-g) DOS plots of a single adatom on the W-TMDs; (h-i) DOS plots of two adatoms on the W-TMDs.

436 and Ag prefers the hollow site. ⁸⁸ The calculated adsorption 437 energies suggest that Ni could react with W-TMDs 438 accompanied by a strong thermodynamic driving force (i.e., 439 free energy gain), while Ag does not have enough driving force 440 to react with W-TMDs. This is in good agreement with the 441 interface chemistry results discussed above. Recently, Chen et 442 al. have reported that Ni and Ag tend to form on-top 443 chemisorptive and Morié physisorptive configurations with 444 WSe₂. ⁴⁶ This also agrees with our surface adsorption modeling 445 and interface chemistry characterization results.

The density of states (DOS) has been further calculated to 447 reveal the influence of a single surface adsorption atom on the 448 TMD electronic structure properties. Figure 7f-g presents the 449 DOS of WS2 and WSe2, with a single Ni or Ag metal 450 adsorption. Ni induces significantly higher gap states compared 451 to Ag, which again confirms the stronger surface reaction 452 between Ni and W-TMDs. The above results explain the 453 experimental observation that Ni forms covalent contacts with 454 W-TMDs while Ag forms vdW contacts. The metal-induced 455 gap states (MIGS), the complexity of which would increase 456 with the number of contact metal atoms, could introduce 457 energy levels within the band gap of TMDs. 11,89 These energy 458 levels may serve as trapping centers for carriers and contribute 459 to E_F pinning at a metal/TMD interface. A vdW metal, such as 460 Ag, Bi, In, Sn, and Au, has much weaker interaction relative to 461 a covalent metal contact, like Ni, Ti, Sc, etc., which would 462 reduce the orbital hybridization between the metal contact and 463 the TMD, leading to less intensive gap states. 46 Recently, 464 Kwon et al. have reported a method of using the Se buffer layer 465 to increase the interface gap distance between vdW Au contact 466 and WSe₂, diminishing the overlap of the orbitals.²⁶ This is also 467 in good agreement with our calculation results that a stronger interaction between a metal and a TMD could induce more 468 intensive gap states.

The above results shed light on the Ni and Ag single adatom 470 behaviors on W-TMDs. Experimentally, the initially deposited 471 contact metals will form thin monolayer films or islands where 472 metal-metal interactions could play an important role in the 473 surface reaction. To investigate the influence of metal-metal 474 interaction on the surface reaction, we have modeled two 475 contact metal adatoms' adsorption behaviors on W-TMDs. 476 Figure 7e presents the atomic structures of Ni and Ag adatoms 477 adsorbed on W-TMDs. Like the single adatom, Ni exhibits 478 more negative adsorption energy on WSe₂ than Ag (-5.36 vs 479 -2.33 eV), which again suggests a stronger surface reaction 480 between WSe₂ and Ni. Quantitatively, the adsorption energy 481 for Ni two adatoms is less than twice (~1.7 times) that of a 482 single adatom, while this value for Ag two adatoms is much 483 more than twice (~4.2 times) that of a single adatom. This 484 result suggests that there is a strong bonding interaction 485 between Ag atoms, which leads to the significantly increased 486 adsorption energy from a single Ag adatom to two Ag adatoms 487 (from -0.56 to -2.33 eV). Namely, Ag-Ag dimer adsorption 488 leads to a more negative binding energy. Therefore, it could be 489 argued that during metal deposition, due to a strong Ag-Ag 490 bonding interaction, Ag tends to form metal clusters with weak 491 surface interactions on W-TMDs. While for Ni, there is a 492 relatively weak Ni-Ni bonding but a strong Ni/W-TMD 493 surface reaction. Like the single adatom systems, two Ni 494 adatoms induce stronger gap states relative to two Ag adatoms 495 as shown in Figure 7h-i, which confirms that Ni shows 496 enhanced interaction with W-TMDs compared to Ag. This 497 scenario is consistent with our experimental result that uniform 498 Ni film forms covalent contacts, while Ag islands form vdW 499 contacts on W-TMDs. It is worth noting that the DOS of a 500

501 bulk metal contact/W-TMD system would show significant 502 differences from that of the single or two adatom system due to 503 the different number of contact metal atoms included in the 504 calculation model.

505 **DISCUSSION**

Implications for R_c. Using the difference between the Φ of 506 507 a contact metal and the electron affinity or ionization energy of 508 a semiconductor has been considered a reliable method of 509 predicting the SBH of the contact interface. 90–92 However, due 510 to the complicated nature of the metal/TMD interface, 511 significant deviation from the Schottky-Mott rule has been 512 reported in the aspects of device performance and interface 513 chemistry for various metal/TMD systems.^{8,9,27–34} From our 514 systematic study of the interface chemistry and band alignment 515 of Ag/TMDs systems, the E_F pinning after Ag deposition likely 516 originates from the doping effect by the defects and impurities 517 of the W-TMDs. This brings up a potential strategy for tuning 518 the R_c of TMD-based devices by intentionally doping the 519 contact region of the TMD substrate into the bands of the 520 semiconductors. 24,93,94 In this way, the SBH between a metal, 521 which forms a vdW gap with TMDs, and a TMD substrate can 522 be eliminated.

Without detectable interface reactions, the E_F s of both WS₂ and WSe₂ after Ag deposition (Figure 4) are close to their sets intrinsic E_F s before metal deposition. This fact indicates that set the doping effect and the gap states from the impurities and defects captured by STM and ICP-MS examinations dominate set the origin of E_F pinning for a vdW metal contact on a TMD material. Therefore, by minimizing the impurities and defects of the TMDs, it is possible to tune the band alignment by the Φ of the metal and form a vdW metal/TMD interface to follow the Schottky–Mott rule.

The formation of vdW gaps between Ag and TMDs indicates that the injection of carriers must tunnel through a barrier at the interface, which is detrimental to achieving a high on-state current. Since the reaction between Ag and TMDs is not thermodynamically favorable at room temperature, caresular fully raising the temperature during or postmetal deposition could promote the formation of a covalent interface and maximize the injection of the carriers. This would be a processing strategy to enhance the on-state current for a TMD-based device with vdW metal contacts, such as Ag, Pt, Pd, Au, In, Bi, and Sn. 26,34,44,45,95,96 The interface reaction products and their impact on band alignment need to be carefully characterized to optimize the carrier injection efficiency.

Recently, TMD devices using vdW contacts, such as Bi, In, S47 Sn, Au, Ag, Co, Cu, and Pt, show significant improvement in the R_c and good agreement with the Schottky–Mott rule. S19 The commonality of these studies is that the s10 damage of the TMD materials during metal contact deposition s11 has been minimized by various methods, e.g., transferred contact, Se buffer layer, low deposition rate, and controlled radiative damage. Besides the damage during the metal s14 deposition, the intrinsic defects of the TMDs also need to be carefully characterized and controlled to accomplish reliable and comprehensive results. S14

Minimize Radiation Damage. To be compatible with the sss current industrial high-volume manufacturing process, it is vital to understand the source of damage to the TMDs during the e-soo beam deposition process of metal contact. The thermal energy of evaporated metal atoms or clusters, the (X-ray) photons, and electron radiation from the crucible are three

main sources of energetic species available to cause damage 563 (viz. atomic bond scission) to the TMD samples. The 564 formation energy of a W-Se bond is -0.872 eV, 99 and as a s6s result, the energies to remove a Se and a W atom are 2.616 and 566 5.232 eV, respectively. The thermal energy of an emitted 567 tungsten (the metal with the highest melting point) atom at its 568 melting point (~ 3030 K at 10^{-2} pa vapor pressure 100,101) is 569 ~0.262 eV. This amount of energy is therefore not sufficient to 570 break a bond of a TMD material resulting in a defect that 571 would impact the electronic performance. Additionally, the 572 long-throw e-beam source to sample distance and manipulator 573 water cooling results in a sample surface temperature increase 574 of <3 °C during the deposition in our apparatus, and thus 575 thermal radiation from the source is also insufficient to enable 576 bond scission, in contrast to recent reports.⁹⁸ Moreover, 577 considering that the potential difference between the crucible 578 and the electron source is usually in the magnitude of 10 kV, ¹⁰² 579 the accelerated and scattered electrons are unlikely to escape 580 from the force of the intense magnetic field (~10² Gauss) 581 around the e-beam source and the crucible. Therefore, the 582 damage from thermal radiation, vaporized metal atoms, and 583 stray electrons would not dominate the radiative damage to the 584 TMD materials.

However, the energies of photons generated by Brems- 586 strahlung radiation of the accelerated electrons could be as 587 high as the potential energy of the electrons (~10 keV). 588 Furthermore, 10 keV is enough to generate characteristic X- 589 rays for almost all the metal elements used for contact, 103 590 which is consistent with the universal E_E pinning at a metal/ 591 TMD interface. This photon radiation would serve as a 592 reasonable source of damage to the TMDs during the e-beam 593 deposition process and is widely known as a potential source of 594 damage in III-V device materials. 104,105 For WSe₂, the 595 wavelength of the photon must be less than 473 nm ($h\nu = 596$ 2.62 eV) to create a Se vacancy. Energetic X-ray and ultraviolet 597 (UV) photons are more likely to be the source of radiation 598 damage during the metal deposition process. Recently, contact 599 metals with low melting points, such as Bi, In, Sb, and Sn, 600 demonstrate low R_c for TMD-based devices. ^{34,95,106} The 601 contact metal with a low melting point would need much less 602 power to deposit a suitable contact film, which could 603 significantly decrease the radiation dosage of X-ray and UV 604 light to the TMDs. The reduced dosage would thus be 605 expected to induce fewer defects in the TMDs and relieve the 606 E_F pinning at the contact/TMD interface. English et al. have 607 reported that UHV deposition conditions can improve contact 608 performance compared to HV conditions.³⁶ For a specific 609 metal source, the temperature to trigger the metal vaporization 610 decreases with the decrease of the pressure in the vacuum 611 chamber. 107 A lower temperature requires less power applied 612 to the metal source in the crucible. This can reduce the X-ray 613 and UV radiation to the TMDs and hence decrease the 614 number of defects created during the deposition process. In 615 addition, the collision between the ~10 keV electrons and the 616 lightweight residual gas (such as hydrogen) could also generate 617 energetic particles, which can transfer energy to the TMD 618 lattice. According to the calculation by Coelho et al., 108 this 619 amount of energy is probably not enough to create defects, but 620 it may develop existing defects and increase the defect density. 621

For a fixed acceleration voltage, the temperature of the 622 evaporation material rises roughly linearly with the e-beam 623 current. According to the Antoine equation in the first-order 624 approximation, the deposition rate increases exponentially as a 625

626 function of the e-beam current. Thus, slightly increasing the e-627 beam current can substantially decrease the deposition time for 628 a target film thickness. In contrast, the X-ray intensity changes 629 linearly with the e-beam current. 109 Therefore, the X-ray 630 dosage would decrease drastically by increasing the deposition 631 rate. The flux of secondary and backscattered electrons would 632 also change linearly with the intensity of the primary electron 633 beam, which would also minimize any potential damage to the 634 TMDs caused by these electrons. 109 Wang et al. have reported 635 a multistep deposition process with the formation of E_F 636 unpinned p-type contacts on TMDs at a relatively high 637 deposition rate (2 Å/s vs 0.1 Å/s). Based on the discussion 638 above, this intermittent e-beam deposition strategy could 639 reduce the total X-ray dosage of the sample and decrease the 640 damage to the TMDs. Also, the pause time between the steps 641 could stabilize the vacuum pressure and reduce the generation 642 of energetic residual gas particles, and hence less energy would 643 be transferred to the surface of the sample.

Therefore, the metal deposition process, especially for the deposition rate and the vacuum condition, needs to be defect optimized to minimize the radiation damage, mainly from the high-energy photons, to the TMDs. The operation temper-defect ature of thermal evaporation is usually <2000~K, for which the radiation is dominated by infrared and visible light. From the perspective of radiation damage, thermal evaporation might be a better solution for contact metal deposition to design avoid high-energy X-ray radiation and energetic particles.

653 CONCLUSIONS

654 In this study, the origins of E_F pinning for metal contacts on 655 W-TMDs are investigated in the aspects of interface chemistry, 656 band alignment, impurities, imperfections, contact metal 657 adsorption mechanism, and the resultant electronic structure. 658 The combination of all these factors with different weights 659 leads to various contact performances even with the same 660 TMD and contact metal in the literature. The defects, 661 impurities, and interface reaction product are the origins of 662 the E_F pinning at a covalent contact metal/W-TMD interface 663 such as Ni/W-TMDs. The electronic modification from the 664 defects and impurities of the TMDs dominates the E_F pinning 665 for a vdW contact metal/TMD system, e.g., Ag/W-TMDs. The 666 MIGS would also contribute to E_F pinning for a metal/TMD 667 interface. These results shed light on the achievement of 668 Ohmic metal contacts on TMD materials by direct metal 669 deposition which is compatible with the current mass 670 manufacturing fabrication process.

671 EXPERIMENTAL METHODS

Metal Depositions. 2H-WS₂, 2H-WSe₂, and 1T'-WTe₂ bulk 673 crystals (\sim 2 mm \times 2 mm), purchased from HQ Graphene, ¹¹¹ were 674 attached to a 4-in. Si wafer side by side by carbon tape. After 675 exfoliation, the wafer was loaded into the UHV cluster tool ¹¹² or the 676 HV Cryo electron beam (e-beam) evaporator ¹¹³ within 1 min to 677 minimize the contamination and oxidation of the freshly exfoliated 678 TMD surfaces. Metal films (\sim 1 nm Ni or Ag) were deposited at a rate 679 of 0.1 Å/s on the freshly exfoliated TMD surfaces under UHV and 680 HV conditions at room temperature. After metal deposition in UHV 681 (base pressure \sim 3 \times 10⁻¹¹ mbar), the samples were *in situ* transferred 682 through the interconnected tube under UHV conditions into the 683 analytical chamber for interface chemistry studies. Contamination 684 should be minimized by employing the UHV *in situ* process. 685 Therefore, intrinsic interface reactions can be obtained for the metal/686 W-TMD interfaces deposited under UHV conditions. After metal 687 deposition in HV (base pressure \sim 3 \times 10⁻⁶ mbar), the samples were

transferred *ex situ* into the cluster tool for interface chemistry 688 characterization. The air exposure of the samples was \sim 5 min during 689 the *ex situ* transfer process. Identical deposition and transfer 690 procedures were employed as reported in previous work. ⁵⁶ Ni and 691 Ag reference spectra were obtained from the *in situ* (\sim 30 nm) metal 692 films also deposited under UHV conditions. The oxidation of the 693 reference metal films was below the detection limit of XPS. Their 694 carbon contamination is close to the detection limit of XPS.

XPS. The core level spectra were collected at a takeoff angle of 45° 696 using a monochromatic Al K α_1 X-ray source and an Omicron EA 125 697 hemispherical analyzer. The pass energy for core level scans was 15 eV 698 under the constant analysis energy mode with an energy resolution of 699 0.05 eV. The energy analyzer was calibrated following the ASTM 700 E2108 standard procedure employing sputter-cleaned Au, Ag, and Cu 701 foils. ¹¹⁴ The scan spot size is ~1.5 mm with $\pm 8^{\circ}$ angular acceptance. 702 (This spot size is very close to the size of the TMD crystals. 703 Therefore, it is reasonable to consider that most of the adventitious 704 carbon signal (~20 atomic%) is from the exposed carbon tape.) The 705 core level peaks were fitted using the AAnalyzer peak fitting 706 software. ¹¹⁵ Consistent fitting parameters (peak width, background 707 type, doublet separations) were utilized for the same core level 708 spectra. The fitting residual of each core level spectrum was within the 709 noise level.

AFM. Veeco model 3100 Dimension V and Oxford Asylum 711 Research Jupiter XF AFM instruments were employed in tapping 712 mode to acquire the surface morphology of the TMD surfaces after 713 metal deposition. The RMS roughness of the AFM images was 714 calculated by the WSxM software. 116

STM/STS. The STM images were acquired using an Omicron VT- 716 AFM system with constant current mode at room temperature. Each 717 STS spectrum is averaged from at least 17 repetitions to enhance the 718 signal-to-noise ratio. The STM images were processed using 719 Gwyddion software. 117 720

DFT Calculations. DFT calculations were performed by using the 721 Vienna Ab initio Simulation Package (VASP)^{118,119} with projected 722 augmented wave (PAW)^{120,121} pseudopotentials. The Perdew– 723 Burke-Ernzerhof generalized gradient approximation (GGA-PBE) 724 functional was employed to describe the exchange-correlation 725 potential energy between electrons. A cutoff energy of 520 eV was 726 used. The Monkhorst-Pack scheme with a $5 \times 5 \times 1$ mesh was used 727 for Brillouin-zone k-point sampling. The conjugated gradient method 728 was used for structural optimization with the convergence criterion of 729 the force on each atom less than 0.01 eV/Å. Electronic minimization 730 was performed by using a blocked Davidson iteration scheme until 731 total system energy converges at 10⁻⁵ eV. For the interface reaction 732 modeling, the metal-adsorbed TMD systems were constructed by 733 placing the contact metal atoms on top of four TMD layers. A 15-A-734 thick vacuum layer along the z-direction was introduced to the surface 735 adsorption slab model to decouple the adjacent periodic images. The 736 adsorption energy was calculated according to $E_{\rm ad}$ = $E_{\rm (M/TMD)}$ - $E_{\rm (TMD)}$ - 737 $E_{
m (M)}$ where $E_{
m (M/TMD)}$ is the energy of the metal adsorbed TMD, and 738 $E_{\text{(TMD)}}$ and $E_{\text{(M)}}$ are the energies of the isolated TMD and metal 739 atom(s) before adsorption, respectively.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 743 https://pubs.acs.org/doi/10.1021/acsnano.3c06494.

Interface chemistry and surface morphology of Ni/ 745 WSe₂, Ni/WTe₂, Ag/WS₂, and Ag/WTe₂; The fwhm's 746 of the TMD bulk crystal and Ag metal chemical states 747 before and after Ag depositions; The binding energies of 748 W-TMD states in W $4f_{7/2}$, S $2p_{3/2}$, and Se $3d_{5/2}$ spectra; 749 ICP-MS results of W-TMDs; XPS spectra of the freshly 750 exfoliated WS₂ for STM/STS; Freshly exfoliated WS₂ 751 surface with fewer defects; Bias-dependent electronic 752 variation and the depth variation of the concaves on the 753

https://doi.org/10.1021/acsnano.3c06494 ACS Nano XXXX, XXX, XXX—XXX 741

fresh exfoliated WS_2 surface. The extraction of the band alignment by XPS. (PDF)

756 AUTHOR INFORMATION

757 Corresponding Author

Robert M. Wallace – Department of Materials Science and
Engineering, The University of Texas at Dallas, Richardson,
Texas 75080, United States; orcid.org/0000-0001-55664806; Email: rmwallace@utdallas.edu

762 Authors

- Xinglu Wang Department of Materials Science and
 Engineering, The University of Texas at Dallas, Richardson,
 Texas 75080, United States; orcid.org/0000-0003-2466 6889
- Yaoqiao Hu Department of Materials Science and
 Engineering, The University of Texas at Dallas, Richardson,
 Texas 75080, United States; orcid.org/0000-0002-0701 1613
- Seong Yeoul Kim Department of Materials Science and
 Engineering, The University of Texas at Dallas, Richardson,
 Texas 75080, United States
- Rafik Addou Department of Materials Science and
 Engineering, The University of Texas at Dallas, Richardson,
 Texas 75080, United States; orcid.org/0000-0002-54540315
- Kyeongjae Cho Department of Materials Science and
 Engineering, The University of Texas at Dallas, Richardson,
 Texas 75080, United States; orcid.org/0000-0003-2698 7774
- 782 Complete contact information is available at: 783 https://pubs.acs.org/10.1021/acsnano.3c06494

784 Notes

785 The authors declare no competing financial interest.

786 ACKNOWLEDGMENTS

787 This work was supported in part by NEWLIMITS, a center in 788 nCORE, a Semiconductor Research Corporation (SRC) 789 program sponsored by NIST through award number 790 70NANB17H041, and by the National Science Foundation 791 through award DMR-2002741.

792 REFERENCES

- 793 (1) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. 794 Single-Layer MoS₂ Transistors. *Nat. Nanotechnol.* **2011**, *6*, 147–150. 795 (2) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; 796 Galli, G.; Wang, F. Emerging Photolyminescence in Monolayer MoS.
- 796 Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS₂. 797 Nano Lett. **2010**, 10, 1271–1275.
- 798 (3) Akinwande, D.; Petrone, N.; Hone, J. Two-Dimensional Flexible 799 Nanoelectronics. *Nat. Commun.* **2014**, *5*, 5678.
- 800 (4) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; 801 Dai, X.; Bernevig, B. A. Type-II Weyl Semimetals. *Nature* **2015**, *527*, 802 495–498.
- 803 (5) Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant Spin-804 Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal 805 Dichalcogenide Semiconductors. *Phys. Rev. B* **2011**, *84*, 153402.
- 806 (6) Ng, H. K.; Xiang, D.; Suwardi, A.; Hu, G.; Yang, K.; Zhao, Y.; 807 Liu, T.; Cao, Z.; Liu, H.; Li, S.; Cao, J.; Zhu, Q.; Dong, Z.; Tan, C. K. 808 I.; Chi, D.; Qiu, C.-W.; Hippalgaonkar, K.; Eda, G.; Yang, M.; Wu, J. 809 Improving Carrier Mobility in Two-Dimensional Semiconductors 810 with Rippled Materials. *Nat. Electron.* 2022, *5*, 489–496.
- 811 (7) Wu, R.; Tao, Q.; Li, J.; Li, W.; Chen, Y.; Lu, Z.; Shu, Z.; Zhao, 812 B.; Ma, H.; Zhang, Z.; Yang, X.; Li, B.; Duan, H.; Liao, L.; Liu, Y.;

- Duan, X.; Duan, X. Bilayer Tungsten Diselenide Transistors with On- 813 State Currents Exceeding 1.5 Milliamperes Per Micrometre. *Nat.* 814 *Electron.* **2022**, *5*, 497–504.
- (8) Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. High 816 Performance Multilayer MoS₂ Transistors with Scandium Contacts. 817 *Nano Lett.* **2013**, *13*, 100–105.
- (9) Kim, G.-S.; Kim, S.-H.; Park, J.; Han, K. H.; Kim, J.; Yu, H.-Y. 819 Schottky Barrier Height Engineering for Electrical Contacts of 820 Multilayered MoS₂ Transistors with Reduction of Metal-Induced 821 Gap States. *ACS Nano* **2018**, *12*, 6292–6300.
- (10) Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; 823 Javey, A. High-Performance Single Layered WSe₂ P-FETs with 824 Chemically Doped Contacts. *Nano Lett.* **2012**, *12*, 3788–3792.
- (11) Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The Unusual 826 Mechanism of Partial Fermi Level Pinning at Metal-MoS₂ Interfaces. 827 *Nano Lett.* **2014**, *14*, 1714–1720. 828
- (12) Andrews, K.; Bowman, A.; Rijal, U.; Chen, P.-Y.; Zhou, Z. 829 Improved Contacts and Device Performance in MoS₂ Transistors 830 Using a 2D Semiconductor Interlayer. ACS Nano 2020, 14, 6232—831 6241.
- (13) Du, Y.; Yang, L.; Zhang, J.; Liu, H.; Majumdar, K.; Kirsch, P. 833 D.; Ye, P. D. MoS₂ Field-Effect Transistors with Graphene/Metal 834 Heterocontacts. *IEEE Electron Device Lett.* **2014**, *35*, 599–601.
- (14) Das, S.; Gulotty, R.; Sumant, A. V.; Roelofs, A. All Two- 836 Dimensional, Flexible, Transparent, and Thinnest Thin Film 837 Transistor. *Nano Lett.* **2014**, *14*, 2861–2866.
- (15) Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; 839 Hettick, M.; Hu, C. C.; Javey, A. Field-Effect Transistors Built from 840 All Two-Dimensional Material Components. *ACS Nano* **2014**, *8*, 841 6259–6264.
- (16) McDonnell, S.; Azcatl, A.; Addou, R.; Gong, C.; Battaglia, C.; 843 Chuang, S.; Cho, K.; Javey, A.; Wallace, R. M. Hole Contacts on 844 Transition Metal Dichalcogenides: Interface Chemistry and Band 845 Alignments. ACS Nano 2014, 8, 6265–6272.
- (17) Wang, J.; Yao, Q.; Huang, C.-W.; Zou, X.; Liao, L.; Chen, S.; 847 Fan, Z.; Zhang, K.; Wu, W.; Xiao, X.; Jiang, C.; Wu, W.-W. High 848 Mobility MoS₂ Transistor with Low Schottky Barrier Contact by 849 Using Atomic Thick h-BN as a Tunneling Layer. *Adv. Mater.* **2016**, 850 28, 8302–8308.
- (18) Xie, L.; Liao, M.; Wang, S.; Yu, H.; Du, L.; Tang, J.; Zhao, J.; 852 Zhang, J.; Chen, P.; Lu, X.; Wang, G.; Xie, G.; Yang, R.; Shi, D.; 853 Zhang, G. Graphene-Contacted Ultrashort Channel Monolayer MoS₂ 854 Transistors. *Adv. Mater.* **2017**, *29*, 1702522.
- (19) Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; 856 Mohite, A. D.; Chhowalla, M. Phase-Engineered Low-Resistance 857 Contacts for Ultrathin MoS₂ Transistors. *Nat. Mater.* **2014**, *13*, 1128–858 1134.
- (20) Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; 860 Baik, J.; Choe, D.-H.; Chang, K. J.; Suenaga, K.; Kim, S. W.; Lee, Y. 861 H.; Yang, H. Phase Patterning for Ohmic Homojunction Contact in 862 MoTe₂. Science 2015, 349, 625.
- (21) Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; 864 Javey, A. Degenerate N-Doping of Few-Layer Transition Metal 865 Dichalcogenides by Potassium. *Nano Lett.* **2013**, *13*, 1991–1995.
- (22) Suh, J.; Park, T.-E.; Lin, D.-Y.; Fu, D.; Park, J.; Jung, H. J.; 867 Chen, Y.; Ko, C.; Jang, C.; Sun, Y.; Sinclair, R.; Chang, J.; Tongay, S.; 868 Wu, J. Doping against the Native Propensity of MoS₂: Degenerate 869 Hole Doping by Cation Substitution. *Nano Lett.* **2014**, *14*, 6976—870 6982.
- (23) Kiriya, D.; Tosun, M.; Zhao, P.; Kang, J. S.; Javey, A. Air-Stable 872 Surface Charge Transfer Doping of MoS₂ by Benzyl Viologen. *J. Am.* 873 *Chem. Soc.* **2014**, *136*, 7853–7856.
- (24) Yang, L.; Majumdar, K.; Liu, H.; Du, Y.; Wu, H.; Hatzistergos, 875 M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C.; Ye, P. D. 876 Chloride Molecular Doping Technique on 2D Materials: WS_2 and 877 MoS_2 . Nano Lett. **2014**, 14, 6275–6280.
- (25) Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; 879 Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky-Mott 880

- 881 Limit in van der Waals Metal-Semiconductor Junctions. Nature 2018, 882 557, 696-700.
- (26) Kwon, G.; Choi, Y.-H.; Lee, H.; Kim, H.-S.; Jeong, J.; Jeong, K.; 884 Baik, M.; Kwon, H.; Ahn, J.; Lee, E.; Cho, M.-H. Interaction- and 885 Defect-Free van der Waals Contacts between Metals and Two-886 Dimensional Semiconductors. Nat. Electron. 2022, 5, 241-247.
- (27) Schauble, K.; Zakhidov, D.; Yalon, E.; Deshmukh, S.; Grady, R. 888 W.; Cooley, K. A.; McClellan, C. J.; Vaziri, S.; Passarello, D.; Mohney, 889 S. E.; Toney, M. F.; Sood, A. K.; Salleo, A.; Pop, E. Uncovering the 890 Effects of Metal Contacts on Monolayer MoS2. ACS Nano 2020, 14, 891 14798-14808.
- (28) Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; 893 Cho, Y.; Shin, H.-J.; Park, S.; Yoo, W. J. Fermi Level Pinning at 894 Electrical Metal Contacts of Monolayer Molybdenum Dichalcoge-895 nides. ACS Nano 2017, 11, 1588-1596.
- (29) Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. 897 Role of Metal Contacts in Designing High-Performance Monolayer 898 N-Type WSe2 Field Effect Transistors. Nano Lett. 2013, 13, 1983-
- (30) Smyth, C. M.; Addou, R.; McDonnell, S.; Hinkle, C. L.; 901 Wallace, R. M. WSe₂-Contact Metal Interface Chemistry and Band 902 Alignment under High Vacuum and Ultra High Vacuum Deposition 903 Conditions. 2D Mater. 2017, 4, 025084.
- (31) Smyth, C. M.; Addou, R.; Hinkle, C. L.; Wallace, R. M. Origins 905 of Fermi Level Pinning between Tungsten Dichalcogenides (WS2) WTe₂) and Bulk Metal Contacts: Interface Chemistry and Band 907 Alignment. J. Phys. Chem. C 2020, 124, 14550-14563.
- (32) Kang, J.; Liu, W.; Banerjee, K. High-Performance MoS₂ 909 Transistors with Low-Resistance Molybdenum Contacts. Appl. Phys. 910 Lett. 2014, 104, 093106.
- (33) Chou, A. S.; Cheng, C. C.; Liew, S. L.; Ho, P. H.; Wang, S. Y.; 912 Chang, Y. C.; Chang, C. K.; Su, Y. C.; Huang, Z. D.; Fu, F. Y.; Hsu, C. 913 F.; Chung, Y. Y.; Chang, W. H.; Li, L. J.; Wu, C. I. High On-State 914 Current in Chemical Vapor Deposited Monolayer MoS₂ NFETs with 915 Sn Ohmic Contacts. IEEE Electron Device Lett. 2021, 42, 272.
- (34) Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X.; Yang, J.; 917 Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. van der Waals Contacts between Three-Dimensional Metals and Two-Dimensional
- 919 Semiconductors. Nature 2019, 568, 70-74. (35) O'Brien, K. P.; Dorow, C. J.; Penumatcha, A.; Maxey, K.; Lee,
- 921 S.; Naylor, C. H.; Hsiao, A.; Holybee, B.; Rogan, C.; Adams, D.; 922 Tronic, T.; Ma, S.; Oni, A.; Gupta, A. S.; Bristol, R.; Clendenning, S.;
- 923 Metz, M.; Avci, U., Advancing 2D Monolayer CMOS through 924 Contact, Channel and Interface Engineering. In 2021 IEEE Interna-
- 925 tional Electron Devices Meeting (IEDM); IEEE: 2021; pp 7.1.1-7.1.4.
- (36) English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, 927 E. Improved Contacts to MoS₂ Transistors by Ultra-High Vacuum
- 928 Metal Deposition. Nano Lett. 2016, 16, 3824-3830.
- (37) Smyth, C. M.; Walsh, L. A.; Bolshakov, P.; Catalano, M.; 930 Schmidt, M.; Sheehan, B.; Addou, R.; Wang, L.; Kim, J.; Kim, M. J.;
- 931 Young, C. D.; Hinkle, C. L.; Wallace, R. M. Engineering the Interface
- 932 Chemistry for Scandium Electron Contacts in WSe₂ Transistors and 933 Diodes. 2D Mater. 2019, 6, 045020.
- (38) McDonnell, S.; Smyth, C.; Hinkle, C. L.; Wallace, R. M. MoS₂-935 Titanium Contact Interface Reactions. ACS Appl. Mater. Interfaces 936 **2016**, 8, 8289-8294.
- (39) Leonhardt, A.; Chiappe, D.; Asselberghs, I.; Huyghebaert, C.; 937 938 Radu, I.; De Gendt, S. Improving MOCVD MoS₂ Electrical 939 Performance: Impact of Minimized Water and Air Exposure 940 Conditions. IEEE Electron Device Lett. 2017, 38, 1606-1609.
- (40) Mondal, A.; Biswas, C.; Park, S.; Cha, W.; Kang, S.-H.; Yoon, 942 M.; Choi, S. H.; Kim, K. K.; Lee, Y. H. Low Ohmic Contact 943 Resistance and High on/off Ratio in Transition Metal Dichalcoge-944 nides Field-Effect Transistors via Residue-Free Transfer. Nat.
- 945 Nanotechnol. 2023. DOI: 10.1038/s41565-023-01497-x.
- 946 (41) Addou, R.; McDonnell, S.; Barrera, D.; Guo, Z.; Azcatl, A.; 947 Wang, J.; Zhu, H.; Hinkle, C. L.; Quevedo-Lopez, M.; Alshareef, H. 948 N.; Colombo, L.; Hsu, J. W. P.; Wallace, R. M. Impurities and

- Electronic Property Variations of Natural MoS₂ Crystal Surfaces. ACS 949 Nano 2015, 9, 9124-9133.
- (42) Addou, R.; Colombo, L.; Wallace, R. M. Surface Defects on 951 Natural MoS₂. ACS Appl. Mater. Interfaces 2015, 7, 11921–11929.
- (43) Jeong, T. Y.; Kim, H.; Choi, S.-J.; Watanabe, K.; Taniguchi, T.; 953 Yee, K. J.; Kim, Y.-S.; Jung, S. Spectroscopic Studies of Atomic 954 Defects and Bandgap Renormalization in Semiconducting Monolayer 955 Transition Metal Dichalcogenides. Nat. Commun. 2019, 10, 3825.
- (44) McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. 957 L. Defect-Dominated Doping and Contact Resistance in MoS₂. ACS 958 Nano 2014, 8, 2880-2888.
- (45) Smyth, C. M.; Addou, R.; McDonnell, S.; Hinkle, C. L.; 960 Wallace, R. M. Contact Metal-MoS₂ Interfacial Reactions and 961 Potential Implications on MoS2-Based Device Performance. J. Phys. 962 Chem. C 2016, 120, 14719-14729.
- (46) Chen, J.; Zhang, Z.; Guo, Y.; Robertson, J. Metal Contacts with 964 Moire Interfaces on WSe2 for Ambipolar Applications. Appl. Phys. 965 Lett. 2022, 121, 051602.
- (47) Zhang, Z.; Guo, Y.; Robertson, J. Reduced Fermi Level Pinning 967 at Physisorptive Sites of Moire-MoS₂ Metal Schottky Barriers. ACS 968 Appl. Mater. Interfaces 2022, 14, 11903-11909.
- (48) McClellan, C. J.; Suryavanshi, S. V.; English, C. D.; Smithe, K. 970 K. H.; Bailey, C. S.; Grady, R. W.; Pop, E. 2d Device Trends. http:// 971 2d.stanford.edu (accessed September 13).
- (49) Li, W.; Zhou, J.; Cai, S.; Yu, Z.; Zhang, J.; Fang, N.; Li, T.; Wu, 973 Y.; Chen, T.; Xie, X.; Ma, H.; Yan, K.; Dai, N.; Wu, X.; Zhao, H.; 974 Wang, Z.; He, D.; Pan, L.; Shi, Y.; Wang, P.; Chen, W.; Nagashio, K.; 975 Duan, X.; Wang, X. Uniform and Ultrathin High-k Gate Dielectrics 976 for Two-Dimensional Electronic Devices. Nat. Electron. 2019, 2, 563-977
- (50) Pang, C.; Hung, T. Y. T.; Khosravi, A.; Addou, R.; Wallace, R. 979 M.; Chen, Z. Doping-Induced Schottky-Barrier Realignment for 980 Unipolar and High Hole Current WSe₂ Devices with > 10⁸ on/off 981 Ratio. IEEE Electron Device Lett. 2020, 41, 1122-1125.
- (51) Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; Dumcenco, D.; Kis, 983 A. Electrical Transport Properties of Single-Layer WS2. ACS Nano 984 **2014**, *8*, 8174-8181.
- (52) Yeh, C.-H.; Chen, H.-C.; Lin, H.-C.; Lin, Y.-C.; Liang, Z.-Y.; 986 Chou, M.-Y.; Suenaga, K.; Chiu, P.-W. Ultrafast Monolayer In/Gr- 987 WS2-Gr Hybrid Photodetectors with High Gain. ACS Nano 2019, 13, 988 3269 - 3279
- (53) Sung, J. H.; Heo, H.; Si, S.; Kim, Y. H.; Noh, H. R.; Song, K.; 990 Kim, J.; Lee, C.-S.; Seo, S.-Y.; Kim, D.-H.; Kim, H. K.; Yeom, H. W.; 991 Kim, T.-H.; Choi, S.-Y.; Kim, J. S.; Jo, M.-H. Coplanar Semi- 992 conductor-Metal Circuitry Defined on Few-Layer MoTe2 via 993 Polymorphic Heteroepitaxy. Nat. Nanotechnol. 2017, 12, 1064-1070. 994
- (54) Mleczko, M. J.; Xu, R. L.; Okabe, K.; Kuo, H.-H.; Fisher, I. R.; 995 Wong, H. S. P.; Nishi, Y.; Pop, E. High Current Density and Low 996 Thermal Conductivity of Atomically Thin Semimetallic WTe2. ACS 997 Nano 2016, 10, 7507-7514.
- (55) Rai, A.; Valsaraj, A.; Movva, H. C. P.; Roy, A.; Ghosh, R.; 999 Sonde, S.; Kang, S.; Chang, J.; Trivedi, T.; Dey, R.; Guchhait, S.; 1000 Larentis, S.; Register, L. F.; Tutuc, E.; Banerjee, S. K. Air Stable 1001 Doping and Intrinsic Mobility Enhancement in Monolayer 1002 Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsu- 1003 lation. Nano Lett. 2015, 15, 4329-4336.
- (56) Wang, X.; Kim, S. Y.; Wallace, R. M. Interface Chemistry and 1005 Band Alignment Study of Ni and Ag Contacts on MoS₂. ACS Appl. 1006 Mater. Interfaces 2021, 13, 15802-15810. 1007
- (57) Wood, D. M. Classical Size Dependence of the Work Function 1008 of Small Metallic Spheres. Phys. Rev. Lett. 1981, 46, 749-749. 1009
- (58) Fadley, C. S.; Shirley, D. A. Electronic Densities of States from 1010 X-Ray Photoelectron Spectroscopy. J. Res. Natl. Bur Stand A Phys. 1011 Chem. 1970, 74A, 543-558.
- (59) Smyth, C. M.; Walsh, L. A.; Bolshakov, P.; Catalano, M.; 1013 Addou, R.; Wang, L.; Kim, J.; Kim, M. J.; Young, C. D.; Hinkle, C. L.; 1014 Wallace, R. M. Engineering the Palladium-WSe₂ Interface Chemistry 1015 for Field Effect Transistors with High-Performance Hole Contacts. 1016 ACS Appl. Nano Mater. 2019, 2, 75-88.

- 1018 (60) Smyth, C. M.; Addou, R.; Hinkle, C. L.; Wallace, R. M. Origins 1019 of Fermi-Level Pinning between Molybdenum Dichalcogenides 1020 (MoSe₂, MoTe₂) and Bulk Metal Contacts: Interface Chemistry 1021 and Band Alignment. *J. Phys. Chem. C* **2019**, *123*, 23919–23930.
- 1022 (61) Addou, R.; Wallace, R. M. Integration of 2D Materials for 1023 Advanced Devices: Challenges and Opportunities. *ECS Trans.* **2017**, 1024 79, 11–20.
- 1025 (62) Addou, R.; Wallace, R. M. Surface Analysis of WSe₂ Crystals: 1026 Spatial and Electronic Variability. *ACS Appl. Mater. Interfaces* **2016**, 8, 1027 26400–26406.
- 1028 (63) Han, D.; Ming, W.; Xu, H.; Chen, S.; Sun, D.; Du, M.-H. 1029 Chemical Trend of Transition-Metal Doping in WSe₂. *Phys. Rev. Appl.* 1030 **2019**, *12*, 034038.
- 1031 (64) Schellenberger, A.; Schlaf, R.; Pettenkofer, C.; Jaegermann, W. 1032 Synchrotron-Induced Surface-Photovoltage Saturation at Intercalated 1033 Na/WSe₂ Interfaces. *Phys. Rev. B* **1992**, *45*, 3538–3545.
- 1034 (65) Li, H.; Liu, S.; Huang, S.; Zhang, Q.; Li, C.; Liu, X.; Meng, J.; 1035 Tian, Y. Metallic Impurities Induced Electronic Transport in WSe₂: 1036 First-Principle Calculations. *Chem. Phys. Lett.* **2016**, 658, 83–87.
- 1037 (66) Deshpande, M.; Patel, P.; Vashi, M.; Agarwal, M. Effect of 1038 Intercalating Indium in WSe₂ Single Crystals. *J. Cryst. Growth* **1999**, 1039 197, 833–840.
- 1040 (67) Stolz, S.; Kozhakhmetov, A.; Dong, C.; Gröning, O.; Robinson, 1041 J. A.; Schuler, B. Layer-Dependent Schottky Contact at van der Waals 1042 Interfaces: V-Doped WSe₂ on Graphene. *npj 2D Mater. Appl.* **2022**, *6*, 1043 66.
- 1044 (68) Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Lazzari, J.-L. 1045 Energy Band Gap Tuning in Te-Doped WS₂/WSe₂ Heterostructures. 1046 *J. Mater. Sci.* **2020**, *55*, 9695–9702.
- 1047 (69) Zhang, K.; Bersch, B. M.; Joshi, J.; Addou, R.; Cormier, C. R.; 1048 Zhang, C.; Xu, K.; Briggs, N. C.; Wang, K.; Subramanian, S.; Cho, K.; 1049 Fullerton-Shirey, S.; Wallace, R. M.; Vora, P. M.; Robinson, J. A. 1050 Tuning the Electronic and Photonic Properties of Monolayer MoS₂ 1051 via In situ Rhenium Substitutional Doping. *Adv. Funct. Mater.* **2018**, 1052 28, 1706950.
- 1053 (70) Klein, A.; Dolatzoglou, P.; Lux-Steiner, M.; Bucher, E. 1054 Influence of Material Synthesis and Doping on the Transport 1055 Properties of WSe₂ Single Crystals Grown by Selenium Transport. 1056 Sol. Energy Mater. Sol. Cells 1997, 46, 175–186.
- 1057 (71) Li, W.; Hu, L.; Wang, M.; Tang, H.; Li, C.; Liang, J.; Jin, Y.; Li, 1058 D. Synthesis and Tribological Properties of Mo-Doped WSe₂ 1059 Nanolamellars. *Cryst. Res. Technol.* **2012**, 47, 876–881.
- 1060 (72) Kriener, M.; Kikkawa, A.; Suzuki, T.; Akashi, R.; Arita, R.; 1061 Tokura, Y.; Taguchi, Y. Modification of Electronic Structure and 1062 Thermoelectric Properties of Hole-Doped Tungsten Dichalcogenides. 1063 *Phys. Rev. B* **2015**, *91*, 075205.
- 1064 (73) Guo, Y.; Robertson, J. Band Engineering in Transition Metal 1065 Dichalcogenides: Stacked Versus Lateral Heterostructures. *Appl. Phys.* 1066 *Lett.* **2016**, *108*, 233104.
- 1067 (74) Tang, J.; Wei, Z.; Wang, Q.; Wang, Y.; Han, B.; Li, X.; Huang, 1068 B.; Liao, M.; Liu, J.; Li, N.; Zhao, Y.; Shen, C.; Guo, Y.; Bai, X.; Gao, 1069 P.; Yang, W.; Chen, L.; Wu, K.; Yang, R.; Shi, D.; Zhang, G. In situ 1070 Oxygen Doping of Monolayer MoS₂ for Novel Electronics. *Small* 1071 **2020**, *16*, 2004276.
- 1072 (75) Liang, J.; Xu, K.; Toncini, B.; Bersch, B.; Jariwala, B.; Lin, Y. C.; 1073 Robinson, J.; Fullerton-Shirey, S. K. Impact of Post-Lithography 1074 Polymer Residue on the Electrical Characteristics of MoS₂ and WSe₂
- 1075 Field Effect Transistors. Adv. Mater. Interfaces 2019, 6, 1801321.
- 1076 (76) Bolshakov, P.; Smyth, C. M.; Khosravi, A.; Zhao, P.; Hurley, P. 1077 K.; Hinkle, C. L.; Wallace, R. M.; Young, C. D. Contact Engineering 1078 for Dual-Gate MoS₂ Transistors Using O₂ Plasma Exposure. ACS 1079 Appl. Electron. Mater. **2019**, 1, 210–219.
- 1080 (77) Schuler, B.; Lee, J.-H.; Kastl, C.; Cochrane, K. A.; Chen, C. T.; 1081 Refaely-Abramson, S.; Yuan, S.; Van Veen, E.; Roldán, R.; Borys, N. 1082 L.; Koch, R. L.; Aloni, S.; Schwartzberg, A. M.; Ogletree, D. E.; Neaton,
- 1082 J.; Koch, R. J.; Aloni, S.; Schwartzberg, A. M.; Ogletree, D. F.; Neaton, 1083 J. B.; Weber-Bargioni, A. How Substitutional Point Defects in Two-1084 Dimensional WS₂ Induce Charge Localization, Spin-Orbit Splitting,

1085 and Strain. ACS Nano 2019, 13, 10520-10534.

- (78) Blades, W. H.; Frady, N. J.; Litwin, P. M.; Mcdonnell, S. J.; 1086 Reinke, P. Thermally Induced Defects on WSe₂. *J. Phys. Chem. C* 1087 **2020**, 124, 15337–15346.
- (79) Leon, C. C.; Kuhnke, K.; Gunnarsson, O. Band Bending and 1089 Beyond. *J. Phys. Chem. C* **2021**, *125*, 3206–3214.
- (80) Ma, N.; Jena, D. Charge Scattering and Mobility in Atomically 1091 Thin Semiconductors. *Phys. Rev. X.* **2014**, *4*, 011043.
- (81) KC, S.; Longo, R. C.; Addou, R.; Wallace, R. M.; Cho, K. 1093 Impact of Intrinsic Atomic Defects on the Electronic Structure of 1094 MoS₂ Monolayers. *Nanotechnology* **2014**, 25, 375703.
- (82) Wildervanck, J. C.; Jellinek, F. Preparation and Crystallinity of 1096 Molybdenum and Tungsten Sulfides. *Z. Anorg. Allg. Chem.* **1964**, 328, 1097 309–318.
- (83) Zhu, H.; Wang, Q.; Cheng, L.; Addou, R.; Kim, J.; Kim, M. J.; 1099 Wallace, R. M. Defects and Surface Structural Stability of MoTe₂ 1100 under Vacuum Annealing. *ACS Nano* **2017**, *11*, 11005–11014.
- (84) Schuler, B.; Qiu, D. Y.; Refaely-Abramson, S.; Kastl, C.; Chen, 1102 C. T.; Barja, S.; Koch, R. J.; Ogletree, D. F.; Aloni, S.; Schwartzberg, 1103 A. M.; Neaton, J. B.; Louie, S. G.; Weber-Bargioni, A. Large Spin-1104 Orbit Splitting of Deep in-Gap Defect States of Engineered Sulfur 1105 Vacancies in Monolayer WS₂. *Phys. Rev. Lett.* **2019**, 123, 076801.
- (85) Edelberg, D.; Rhodes, D.; Kerelsky, A.; Kim, B.; Wang, J.; 1107 Zangiabadi, A.; Kim, C.; Abhinandan, A.; Ardelean, J.; Scully, M.; 1108 Scullion, D.; Embon, L.; Zu, R.; Santos, E. J. G.; Balicas, L.; 1109 Marianetti, C.; Barmak, K.; Zhu, X.; Hone, J.; Pasupathy, A. N. 1110 Approaching the Intrinsic Limit in Transition Metal Diselenides via 1111 Point Defect Control. *Nano Lett.* 2019, 19, 4371–4379.
- (86) Zheng, H.; Choi, Y.; Baniasadi, F.; Hu, D.; Jiao, L.; Park, K.; 1113 Tao, C. Visualization of Point Defects in Ultrathin Layered 1T-PtSe₂. 1114 2D Mater. **2019**, *6*, 041005.
- (87) Rastogi, P.; Kumar, S.; Bhowmick, S.; Agarwal, A.; Chauhan, Y. 1116 S. Doping Strategies for Monolayer MoS₂ via Surface Adsorption: A 1117 Systematic Study. *J. Phys. Chem. C* **2014**, *118*, 30309–30314.
- (88) Costa-Amaral, R.; Forhat, A.; Caturello, N. A. M. S.; Silva, J. L. 1119 F. D. Unveiling the Adsorption Properties of 3d, 4d, and 5d Metal 1120 Adatoms on the MoS₂ Monolayer: A DFT-D3 Investigation. *Surf. Sci.* 1121 **2020**, 701, 121700.
- (89) Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden, 1123 D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K.; Xu, X.; Chabal, Y. J. 1124 Metal Contacts on Physical Vapor Deposited Monolayer MoS₂. ACS 1125 Nano 2013, 7, 11350–11357.
- (90) Brillson, L. J. Transition in Schottky Barrier Formation with 1127 Chemical Reactivity. *Phys. Rev. Lett.* **1978**, *40*, 260–263.
- (91) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Perturbative 1129 Perspectives on the Chemical Reaction Prediction Problem. *Int. J.* 1130 *Quantum Chem.* **2005**, *101*, 520–534.
- (92) King, S. W.; French, M.; Jaehnig, M.; Kuhn, M.; Boyanov, B.; 1132 French, B. X-Ray Photoelectron Spectroscopy Measurement of the 1133 Schottky Barrier at the SiC(N)/Cu Interface. *J. Vac. Sci. Technol. B* 1134 **2011**, 29, 051207.
- (93) Azcatl, A.; Qin, X.; Prakash, A.; Zhang, C.; Cheng, L.; Wang, 1136 Q.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K.; Addou, R.; Hinkle, C. L.; 1137 Appenzeller, J.; Wallace, R. M. Covalent Nitrogen Doping and 1138 Compressive Strain in MoS_2 by Remote N_2 Plasma Exposure. Nano 1139 Lett. 2016, 16, 5437–5443.
- (94) Pang, C.-S.; Hung, T. Y. T.; Khosravi, A.; Addou, R.; Wang, Q.; 1141 Kim, M. J.; Wallace, R. M.; Chen, Z. Atomically Controlled Tunable 1142 Doping in High-Performance WSe₂ Devices. *Adv. Electron. Mater.* 1143 **2020**, *6*, 1901304.
- (95) Shen, P.-C.; Su, C.; Lin, Y.; Chou, A.-S.; Cheng, C.-C.; Park, J.- 1145 H.; Chiu, M.-H.; Lu, A.-Y.; Tang, H.-L.; Tavakoli, M. M.; Pitner, G.; 1146 Ji, X.; Cai, Z.; Mao, N.; Wang, J.; Tung, V.; Li, J.; Bokor, J.; Zettl, A.; 1147 Wu, C.-I.; Palacios, T.; Li, L.-J.; Kong, J. Ultralow Contact Resistance 1148 between Semimetal and Monolayer Semiconductors. *Nature* 2021, 1149 593, 211–217.
- (96) Dong, H.; Gong, C.; Addou, R.; McDonnell, S.; Azcatl, A.; Qin, 1151 X.; Wang, W.; Wang, W.; Hinkle, C. L.; Wallace, R. M. Schottky 1152 Barrier Height of Pd/MoS₂ Contact by Large Area Photoemission 1153 Spectroscopy. *ACS Appl. Mater. Interfaces* **2017**, *9*, 38977–38983. 1154

- 1155 (97) Wang, Y.; Chhowalla, M. Making Clean Electrical Contacts on 1156 2D Transition Metal Dichalcogenides. *Nat. Rev. Phys.* **2022**, *4*, 101–1157 112.
- 1158 (98) Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, 1159 H. S.; Jeong, H. Y.; Chhowalla, M. P-Type Electrical Contacts for 1160 Two-Dimensional Transition Metal Dichalcogenides. *Nature* **2022**, 1161 610, 61–66.
- 1162 (99) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; 1163 Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. 1164 A. Commentary: The Materials Project: A Materials Genome 1165 Approach to Accelerating Materials Innovation. *APL Mater.* 2013, 1166 1, 011002.
- 1167 (100) Lin, Y. Advanced Nano Deposition Methods; Wiley: 2016.
- 1168 (101) Lunk, H.-J.; Hartl, H. Discovery, Properties and Applications 1169 of Tungsten and Its Inorganic Compounds. *ChemTexts* **2019**, *5*, 15.
- 1170 (102) Bashir, A.; Awan, T. I.; Tehseen, A.; Tahir, M. B.; Ijaz, M.
- 1171 Chapter 3 Interfaces and Surfaces. In *Chemistry of Nanomaterials*; 1172 Elsevier, 2020; pp 51–87.
- 1173 (103) Deslattes, R. D.; Jr, E. G. K.; Indelicato, P.; Billy, L. d.; 1174 Lindroth, E.; Anton, J.; Coursey, J. S.; Schwab, D. J.; Chang, C.;
- 1174 Enterotti, E., Anton, J., Coursey, J. S., Schwab, D. J., Chang, C., 1175 Sukumar, R.; Olsen, K.; Dragoset, R. A. X-Ray Transition Energies 1176 (Version 1.2). National Institute of Standards and Technology,
- 1177 Gaithersburg, MD., 2005.
- 1178 (104) Burek, G. J.; Hwang, Y.; Carter, A. D.; Chobpattana, V.; Law,
- 1179 J. J. M.; Mitchell, W. J.; Thibeault, B.; Stemmer, S.; Rodwell, M. J. W. 1180 Influence of Gate Metallization Processes on the Electrical Character-
- 1181 istics of High-k/In_{0.53}Ga_{0.47}As Interfaces. *J. Vac. Sci. Technol. B* **2011**, 1182 29, 040603.
- 1183 (105) Chen, C.-H.; Hu, E. L.; Schoenfeld, W. V.; Petroff, P. M. 1184 Metallization-Induced Damage in III-V Semiconductors. *J. Vac. Sci.* 1185 *Technol. B* **1998**, *16*, 3354.
- 1186 (106) Li, M.-Y.; Hsu, C.-H.; Shen, S.-W.; Chou, A.-S.; Lin, Y. C.;
- 1187 Chuu, C.-P.; Yang, N.; Chou, S.-A.; Huang, L.-Y.; Cheng, C.-C.;
- 1188 Woon, W.-Y.; Liao, S.; Wu, C.-I.; Li, L.-J.; Radu, I.; Wong, H.-S. P.;
- 1189 Wang, H., Wafer-Scale Bi-Assisted Semi-Auto Dry Transfer and 1190 Fabrication of High-Performance Monolayer CVD WS, Transistor. In
- 1191 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI
- 1192 Technology and Circuits); IEEE: 2022; pp 290-291.
- 1193 (107) Honig, R. E. Vapor Pressure Data for the More Common 1194 Elements; David Sarnoff Research Center: Radio Corporation of 1195 America. RCA Labratories Division, 1957.
- 1196 (108) Coelho, S. M. M.; Archilla, J. F. R.; Auret, F. D.; Nel, J. M.
- 1197 The Origin of Defects Induced in Ultra-Pure Germanium by Electron
- 1198 Beam Deposition. In *Quodons in Mica*; Springer International 1199 Publishing, 2015; pp 363–380.
- 1200 (109) Yamada, M.; Matsumura, M.; Maeda, Y. Electron Beam 1201 Deposition System Causing Little Damage to Organic Layers. *Thin* 1202 *Solid Films* **2011**, *519*, *6219*–*6223*.
- 1203 (110) Martín-Palma, R. J.; Lakhtakia, A. Chapter 15 Vapor-1204 Deposition Techniques. In *Engineered Biomimicry*; Elsevier, 2013; pp 1205 383—398.
- 1206 (111) HQ Graphene. www.hqgraphene.com (accessed 15 Septem-1207 ber 2023).
- 1208 (112) Wallace, R. M. In-Situ Studies of Interfacial Bonding of High-1209 K Dielectrics for Cmos Beyond 22nm. *ECS Trans.* **2008**, *16*, 255– 1210 271.
- 1211 (113) The University of Texas at Dallas Cleanroom https:// 1212 cleanroom.utdallas.edu/ (Accessed 15 September 2023).
- 1213 (114) ASTM E2108-16. Standard Practice for Calibration of the
- 1214 Electron Binding Energy Scale of an X-Ray Photoelectron Spectrometer
- 1215 2016 (West Conshohocken, PA: ASTM) DOI: 10.1520/E2108-16. 1216 (115) Herrera-Gómez, A.; Hegedus, A.; Meissner, P. L. Chemical
- 1217 Depth Profile of Ultrathin Nitrided Sio₂ Films. *Appl. Phys. Lett.* **2002**, 1218 *81*, 1014–1016.
- 1219 (116) Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero,
- 1220 J.; Gómez-Herrero, J.; Baro, A. M. WSxM: A Software for Scanning
- 1221 Probe Microscopy and a Tool for Nanotechnology. *Rev. Sci. Instrum.* 1222 **2007**, 78, 013705.

- (117) Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software 1223 for SPM Data Analysis. *Open Physics* **2012**, *10*, 181–188.
- (118) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total 1225 Energy Calculations for Metals and Semiconductors Using a Plane- 1226 Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.
- (119) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for 1228 Liquid Metals. *Phys. Rev. B* **1993**, 47, 558–561.
- (120) Kresse, G.; Hafner, J. Norm-Conserving and Ultrasoft 1230 Pseudopotentials for First-Row and Transition Elements. *J. Phys.*: 1231 *Condens. Matter* **1994**, *6*, 8245.
- (121) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the 1233 Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, *59*, 1758–1234 1775.
- (122) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; 1236 Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, 1237 and Surfaces: Applications of the Generalized Gradient Approx- 1238 imation for Exchange and Correlation. *Phys. Rev. B* **1992**, *46*, 6671. 1239 (123) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient 1240

1241

Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.