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29 ABSTRACT: The high contact resistance of transition metal dichalcogenide (TMD) -based
devices is receiving considerable attention due to its limitation on electronic performance. The
36 mechanism of Fermi level (Eg) pinning, which causes the high contact resistance, is not thoroughly
39 understood to date. In this study, the metal (Ni and Ag)/Mo-TMDs surfaces and interfaces are
43 characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning tunnelling
46 microscopy and spectroscopy, and density functional theory systematically. Ni and Ag form

covalent and van der Waals (vdW) interfaces on Mo-TMDs, respectively. Imperfections are
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detected on Mo-TMDs, which leads to electronic and spatial variations. Gap states appear after the

adsorption of single, and two metal atoms on Mo-TMDs. The combination of the interface reaction

type (covalent or vdW), the imperfection variability of the TMD materials, and the gap states

induced by contact metals with different weights are concluded to be the origins of Eg pinning.

KEYWORDS: transition metal dichalcogenide, metal contact, Fermi level pinning, interface

chemistry, band alignment, surface imperfections, adsorption

1. INTRODUCTION

Transition metal dichalcogenides (TMDs), a family of layered two-dimensional materials, have

demonstrated great potential for application in various electronic devices.!>* However, the high

contact resistance (R¢) for the metal/TMD interface is one of the bottlenecks that limit the

improvement of the electronic performance for TMD-based devices.* To understand the

mechanism of this high R¢, various metal contacts have been employed for Mo-TMD transistors

to investigate the Fermi level (Eg) pinning effect. The processing conditions, such as the metal

deposition condition,>” the substrate holding the TMD flake,® the physically adsorbed molecules,®-

10 the fabrication method of the TMD,!! and their defect density,'>!3 could modify the band

alignment of a metal/TMD interface and lead to variable contact performance.!# The gap states at
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the metal/TMD interface induced by direct metal deposition are also reported to cause Er pinning

and lead to the formation of Schottky contacts for both covalent and van der Waals (vdW) contact

interfaces.!>!7 In addition, the strain'®!° and the interface dipole?*?! at the metal/TMD interface

could also contribute to the Eg pinning.

Based on the information presented above, it becomes evident that the underlying causes of Eg

pinning cannot be exclusively attributed to a single previously mentioned viewpoint. In the context

of a specific metal/TMD interface, the phenomenon of Er pinning arises as a result of a

combination of various factors. This is further supported by the variation in R, values observed

across different research groups, even when using the same metal and TMD combination.?> This

underscores the pressing need to explore the fundamental principles and the significance of each

contributing factor. The complexity arising from the coexistence of these factors necessitates a

comprehensive and systematic investigation to unravel the fundamental physics and chemistry

behind the Eg pinning of metal contacts on TMDs.

Recently, metals, such as Bi, Sn, In, and Sb, with low melting temperature and high vapor

pressure demonstrate record low contact resistance with TMD materials.>>?” The semi-metallic

nature and the reduced damage (e.g., bond scission, defect generation and modification?8-%?) to the

ACS Paragon Plus Environment



oNOYTULT D WN =

ACS Applied Materials & Interfaces

TMD during metallization are attributed to the improved electronic performance. However, the

low melting temperature of these metals (Bi: 271.40 °C, Sn: 231.93 °C, In: 156.60 °C, Sb: 630.63

°C) and their diffusive nature would cause reliability and stability concerns for the back-end-of-

line process.’-32 Among the thermally stable metals, Ni (1455°C, R, = 500 Q-ym) and Ag

(961.78°C, R. = 180 Q-um) have shown promising contact performance on MoS,.333* It has been

uncovered that the promising performance originates from the formation of the uniform covalent

Schottky contact and the island vdW Ohmic contact for Ni and Ag, respectively.!? In addition,

their distinct interface types, covalent or vdW, with TMDs make them perfect candidates to
understand the origin of Ep pinning by comparing the two cases at the same processing

conditions.3®

This work investigates the mechanism of Eg pinning in various aspects, including the interface

chemistry, the electronic variability of TMDs, the band alignment, and the effect of contact metal

adsorption for metal/Mo-TMD systems. More specifically, the interface chemistry between metal

films (1 nm Ni and Ag) and exfoliated MoSe, and MoTe, bulk crystals is explored by X-ray

photoelectron spectroscopy (XPS) with the variance of metal deposition ambient. The band

alignment of a metal/TMD interface is extracted from the core level shift after the metal deposition

under UHV and HV conditions. The electronic and spatial variations, caused by the imperfections
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of Mo-TMDs, are characterized by scanning tunneling microscopy/spectroscopy (STM/STS). The

contact metal adsorption mechanism and its effect on the electronic structure of the Mo-TMDs are

simulated by density functional theory (DFT). The growth mechanisms of metal films,

characterized by atomic force microscopy (AFM), are correlated to the interface reaction and the

adsorption mechanism. The mechanism of Eg pinning is discussed in the aspects of interface

chemistry, band alignment, variabilities and imperfections of the TMD materials, and the

adsorption mechanism of contact metals as well as their effect on the metal-induced gap states

(MIGS).

2. RESULTS AND DISCUSSION

2.1. Interface Chemistry of Metal Contacts on Mo-TMDs

Figure 1 presents the XPS and AFM results of the Ni, Ag/MoSe, systems after exfoliation and

subsequent metal depositions under UHV and HV conditions.

Ni Contact. In Figure 1a, the appearance of the NiMo,Se, intermetallic state in the Mo 3d and

Se 3d spectra indicates the formation of the reaction product at the Ni/MoSe; interface after Ni

deposition. This interface reaction is consistent with the previously reported Ni reduction of MoS,

regardless of the deposition ambient and the number of MoS, layers.!> The detection of MoOy
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indicates the oxidation for the HV sample, which is consistent with the oxides detected in the Ni

2ps2 and O 1s spectra as shown in Figure S1. Island-free, smooth surfaces, with Root Mean Square

(RMS) roughness < 0.1 nm, are obtained from Ni/MoSe, surfaces after HV and UHV Ni

depositions by ex-situ AFM as shown in Figure 1b and c, suggesting that Ni tends to react with

MoSe,. The covalent interface also forms at the Ni/MoTe, interface as shown in Figure S2.

Therefore, taken together, the XPS and AFM results indicate that a covalent interface forms at a

Ni/Mo-TMD interface regardless of the deposition ambient.

Ag Contact. In contrast, the absence of any additional state after Ag deposition under UHV and

HV conditions indicates the reaction between Ag and MoSe; is below the detection limit of XPS,

as shown in the Mo 3d and Se 3d spectra (Figure 1d). The full width at half maximums (FWHMs)

of Mo 3ds, and Se 3ds,, peaks stay almost the same compared to those without Ag film (Table

S1). The FWHM of Ag 3d is also close to the values of Ag thick film (~ 30 nm) and foil (Table

S3). This outcome indicates the reaction between Ag and MoSe, is below the detection limit of

XPS at the Ag/MoSe; interface regardless of the deposition ambient. The Ag islands detected by

AFM after Ag depositions indicate the Volmer-Weber growth of Ag on MoSe,, as shown in Figure

3b and c. The formation of a vdW interface between Ag and MoTe; is also observed (Figure S3).
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This suggests that a vdW contact interface is formed at the Ag/Mo-TMD interface. The interface

chemistry between metal contacts (Ni, Ag) and TMDs (MoSe,, MoTe,) is summarized

schematically in Figure 2a.

2.2. Band Alignment

Band alignments between the metal contacts (Ni and Ag) and TMD (MoSe, and MoTe;) bulk

crystals are obtained from the shifts of the Mo-TMD peaks in the Mo 3d spectra after metal

depositions relative to the reference.’® The binding energies of the states detected in the Mo 3d, Se

3dss,, and Te 3d core level spectra are listed in Table S4. The electron affinities and ionization

energies displayed in Figure 2b are consistent with those employed in the references.® !> 36 The

Ers of metal contact/TMD interfaces are presented before and after metal depositions in UHV and

HV. (Figure S4 in the supporting information includes the band alignment of 2L.-MoS, CVD film

and MoS, bulk crystal reported elsewhere for comparison.!?) The Ep results after in-situ metal

deposition in UHV are considered the intrinsic value since any absorbed adventitious carbon and

oxidation of the metal contacts during the ex-situ HV deposition and transfer process could

potentially change the Eg at the metal/TMD interface.’” Compared to the binding energy of the

TMD bulk crystal state before metal deposition, a negative shift of the Mo 3d spectrum after metal
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deposition indicates the increase of the work function at the metal contact/TMD interface. The

band bending of the metal/TMD surface is negligible, considering that the depletion width of a

semiconductor is much wider than the XPS sampling depth.?°

The Egs of Ni/TMD interfaces are pinned close to the middle of the bandgap of the MoSe, and

MoTe, bulk crystals. The observed Eg pinning is likely due to the Ni\Mo,Se, and Ni\Mo,Te,

intermetallic reaction products detected in the core level spectra. The formation of interface dipole

due to the charge redistribution could also contribute to the Er pinning of the Ni/TMD interfaces.?®

The Eps of TMDs after Ag deposition in UHV are close to the intrinsic Egs without metal

deposition. The Eg pinning probably originates from the defects and impurities of the TMD bulk

crystals.!? The effect of defects and impurities on the Er pinning is going to be discussed in section

2.3, in which the imperfections of the TMDs are observed by STM/STS. For Ag/MoTe, bulk

crystal interface, the Schottky barrier height extracted from the XPS result (0.16 eV) is in good

agreement with the device result (0.29 eV) by transfer length measurement.?® This consistency

highlights the importance of interface chemistry study in the understanding of the origin of Eg

pinning for metal contact/TMD systems. Compared to that of the UHV Ag/MoTe, sample, a

greater Schottky barrier height is detected for the Ag/MoTe, bulk sample deposited under HV
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conditions. This finding explains the improved contact performance in metal/TMD systems by

employing the UHV deposition conditions.’ The vdW gap between Ag and Mo-TMDs could result

in the decay of the current injection at the metal/TMD interface although Ag shows promising

band alignment with Mo-TMDs. In this point of view, forming a covalent contact between Ag and

Mo-TMDs by the thermal treatment could be a potential strategy for achieving optimized contact

with low resistance.

2.3. Imperfections of Mo-TMDs

Electronic and Spatial Variations. Figure 3 shows the STM images of freshly exfoliated MoSe,

(a and b) and MoTe, (d and e) bulk crystal surfaces. The scan area is the same for a and b, as well

as for ¢ and d. The oxidation of these two samples is minimized as shown in the XPS results in

Figure S5 and S6. In Figure 3a, concaves are present on the surface of MoSe,. By changing the

polarity of the sample bias from 0.85 V to -0.85 V, a concave could stay as a concave as shown in

the white circle. In contrast, in the white square, protrusions show up at -0.85 V instead of a

concave at 0.85 V. The phenomenon above indicates that an acceptor at a positive bias may serve

as an acceptor or a donor at a negative bias. This indicates the electronic variation of the

imperfections on the surface of MoSe,. McDonnell e a/ attribute the bright defects at negative
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bias as metallic-like defects on MoS,, leading to the inhomogeneous doping of the TMDs.!? A

local high contrast area in the positive bias, likely due to the impurities,**-4! disappears at the

negative bias as shown in the blue circle in Figure 3a and b. The surface topography also varies

with the location on the surface of MoSe; as shown in Figure S7. The blue STS curve in Figure 3¢

is measured at the blue spot in Figure S7c. It indicates that this MoSe, surface is n-type with a

bandgap of ~ 1.09 eV.*> The same value is measured in Figure S7a and b for a less n-type area.

However, a much smaller bandgap of ~ 0.54 eV is obtained in the area shown in Figure 3a and b.

In Figure 3c, the STS intensity is not zero within the band gap of MoSe,. This indicates the

appearance of gap states, suggesting a doping effect of the impurities and defects, which is

consistent with the strong n-type behavior.

The surface of MoTe, shows a significantly different topography to MoSe, as shown in Figure

3d and e. By changing the sample bias while fixing the scan area, similarities between the two

images are not obvious in Figure 3d and e. This phenomenon, which is likely due to the TeOy

detected by XPS (Figure S6), is also observed in another area on the surface of MoTe, with gap

states close to the conduction band as shown in Figure S8. In Figure 3f, the bandgap of MoTe, is

measured to be ~ 1.02 eV.*® The blue curve is more n-type compared to the green curve. This
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indicates a heterogeneous doping effect by the imperfections, such as vacancies, antisites,

impurities, and excessive chalcogen atoms at different locations within a 100 nm * 100 nm area,

which is also reported for other TMD systems, such as MoS, and WSe,.!34%44 The inhomogeneous

distribution of the imperfections is probably responsible for the spatial, and electronic variations.

Atomic Defects. Atomic imperfections of MoSe, are characterized by STM and STS as shown

in Figure 4. Single (white circle) and multiple (blue circle) Se vacancies (Vs.) are observed in

Figure 4a. In Figure 4c, the depth of the multiple Vs, is measured to be ~ 1.7 A along the green

line in Figure 4a, which is consistent with the height of 0.5 layers of MoSe,, as shown in the side

view of the crystal lattice of MoSe, in Figure 4e. The O substitution of the chalcogen atom

(Ochalcogen), Which shows very similar STM topography with V., can also contribute to these dark

point defects and the variations.*!> 46 Local high contrast (white arrow) and depression (black

arrow) are detected in a vacancy-free area as shown in Figure 4b. This suggests the existence of

impurities, like Re, Cr, V, Nb, etc., that would behave as dopants on the surface of MoSe,.*!>47-48

Similar bright and dark defects are attributed to V. and Sep, antisite on chemical vapor transport

grown PtSe,.4° The lattice constant of MoSe; is ~3.29 A as shown in the profile (Figure 4d) along

the blue line in Figure 4b. This value is consistent with the results measured by X-ray diffraction
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and transmission electron microscopy.’->! Figure 4¢g, h, and j show the defective MoSe, surface

with various atomic defects, such as depressions (green arrow), bright defects within/on the edge

of a depression (blue arrow), amorphous defects (black circle), surface Vg, or Og, (White circle).

Schuler et al. have reported that C, N, and CH substitution of S could also contribute to the

depression and vacancy defects on the WS, surface.’® Although the bonding of C or N with Mo is

below the detection limit of XPS as shown in Figure S5 and S6, the adsorption of carbon species

may deplete the surface carriers, leading to depressions on the surface. Various kinds of defects

are also detected on the surface of MoTe, after exfoliation as shown in Figure S9a and S10b-d.

The depth of V. or Or, (Figure S9c¢), lattice constant (Figure S9d), and vacancy-free area (Figure

S9b and S10a) of MoTe, are also included. The STS curve taken at the amorphous defect in Figure

4g shows a metallic behaviour without an obvious bandgap as illustrated in Figure 4i. This

confirms that the defects of the TMDs would introduce variabilities to the electronic properties of

the TMD materials, such as gap states, and doping effect.!3-40-44 For a TMD-based transistor, these

imperfections could behave as dopants, traps, and scattering centers, which would significantly

impact their electronic performance.

2.4. Metal contact atom adsorption mechanism
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DFT calculations were performed to investigate the surface chemistry between deposited contact

metal atoms and Mo-TMDs. For a single adatom, the adsorption energy is calculated for the three

adsorption configurations: the Mo top, the chalcogenide top, and the hollow site. Figure 5a-d

presents the atomic structures of Ag or Ni adsorbed on MoSe, or MoTe, with different adsorption

configurations and their corresponding adsorption energies. The adsorption energy of the most

stable site for each system is highlighted in pink. Ag preferably adsorbs on the hollow site while

Ni prefers the Se/Te-top site.’> At the hollow site, a single Ag adatom interacts with all three

neighboring Mo atoms and three neighboring Se/Te atoms. Whereas for single Ni at the Mo-top

site, it bonds with one Mo atom and three neighboring Se/Te atoms. The competition between

Ni/Ag adatom-Mo bonding and Ni/Ag adatom-chalcogenide interaction determines the most

energy-favorable adsorption site. Ni shows significantly stronger adsorption than Ag for all the

sites,”> on both MoSe, and MoTe, which is consistent with the experimental observation that Ag

tends to form a vdW interface with TMDs while Ni forms a covalent interface. In addition to single

adatom adsorption, two adatoms are also modeled to reveal the interaction between contact metal

atoms on Mo-TMDs (Figure Se). For two adatoms, each Ni atom would stay on the Se/Te-top site,

like the single Ni adatom adsorption behavior. The adsorption energy for two Ni adatoms is twice
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that for a single Ni adatom, for example, -7.05 eV versus -3.47 eV on MoSe,. This suggests that

Ni, on the surface of MoSe,, shows negligible Ni-Ni interaction. In contrast, when two Ag atoms

are adsorbed on Mo-TMDs, they move toward each other. Their adsorption energy is more than

three times that of a single adatom (-2.41 eV versus -0.68 eV on MoSe,). This implies considerable

interaction between Ag adatoms. This simulated energy trend agrees with the experimental result

that Ag forms islands while Ni forms a uniform film on Mo-TMDs. We have also calculated the

electronic structure of Ni/Ag adsorbed Mo-TMDs, as shown in Figure 5f-i. The adsorbed single

or two atom(s) alter the DOS of Mo-TMDs, such as new gap states and modified band edges. Ni

modifies the DOS more than Ag for single and two adatoms on both MoSe, and MoTe,. This

further confirms that Ni shows a stronger orbital hybridization with Mo-TMDs than Ag. For a

contact metal/TMD interface, the MIGS would deviate the band alignment from the Schottky-Mott

rule and contribute to the Er pinning.’® 33 For the two Ag adatoms/MoTe, system, only the band

edges are slightly modified, indicating that a vdW metal would induce fewer MIGS to the TMDs

than a covalent metal contact. This explains the origin of record low R¢ achieved by vdW contacts,

such as Bi and In.?3-?’ Although a bulk metal contact would induce much more abundant gap states

than single or two adatoms, this trend that a vdW metal induces fewer MIGS should persist.38
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2.4, Discussions

The Schottky-Mott rule has been widely used to predict band alignment at a

metal/semiconductor interface.** However, the complicated nature of the metal/TMD interface and

the variability of the TMD materials leads to the discrepancy between the experimental results and

the theoretical prediction for the band alignment.>> For example, in this study, both MoSe, and

MoTe, are n-type after exfoliation due to the doping effect from the imperfections. For vdW Ag

metal contacts, without interface reaction with MoSe, and MoTe,, the Eg of the Ag/Mo-TMD

interface is very close to their intrinsic Er. This means that the defects and impurities of the Mo-

TMDs play a significant role in Eg pinning, especially for vdW contacts. In contrast, covalent Ni

contacts shift the Egs toward the valence band of the Mo-TMDs. This indicates that the strong

interface interaction between Ni and Mo-TMD, together with the defects and impurities, leads to

Er pinning. Even after single and two contact metal atom(s) adsorption, MIGS and(or) modified

band edge are observed for all the systems studied in this work. Therefore, the MIGS induced by

bulk metal contacts, which would cause much stronger orbital hybridization than the single and

two adatom(s) models, also needs to be included for the origins of Er pinning at a metal/TMD

interface.3® 33 The deviation of the Egs for UHV in-situand HV ex-situ Ag/MoTe, system is much
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more obvious than the other systems. This indicates that the processing conditions, such as the

deposition ambient, photolithography process, and sample transfer process, are crucial for air

sensitive TMDs, especially for tellurides.> *- 17

3. CONCLUSIONS

This work studies the mechanism of Eg pinning for covalent Ni and vdW Ag contacts on Mo-

TMD:s in the aspects of interface chemistry, band alignment, imperfections of Mo-TMDs, and the

effect of contact metal adsorption. The Eg pinning at a metal/TMD interface is a combination of

the interface reaction type (covalent or vdW), the spatial and electronic variabilities of the TMDs,

and the MIGS with different weights. The contact metal needs to be carefully chosen by not only

the work function but also their reactivity nature and orbital hybridization with the TMDs. In

addition, the imperfections (vacancies, antisites, impurities, crystallinity, etc.) of the TMD

materials require enormous optimization to fabricate homogeneous TMDs with high quality to

minimize the spatial and electronic variabilities. The band alignment discrepancy for the HV

Ag/MoTe, interface highlights the importance of carefully engineering the processing conditions

(e.g., metallization conditions, 2d film transfer process, the residue of the photoresist, etc.) of the

TMD transistors to achieve reliable, reproducible, and manufacturable low dimensional devices.
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These findings unveil the mechanism of Er pinning systematically and guide in achieving Ohmic

contact on TMDs with low contact resistance.

4. Experimental Methods

4.1. Metal deposition

MoSe, and MoTe, bulk crystals (~2 mm X 2 mm), purchased from HQ Graphene,’® were affixed,

side by side, on a 4-inch Si wafer by carbon tape to facilitate deposition and analysis. Within 1

min of the exfoliation, the sample assembly was loaded into the electron beam deposition systems

for contact metal depositions. A target thickness of ~ 1 nm Ni and Ag films were deposited on the

freshly exfoliated bulk crystals under UHV conditions, respectively. After contact metal

depositions under UHV conditions (base pressure = ~ 3 x 10-!! mbar), the samples were in-situ

transferred through a UHV tube to the XPS chamber without air exposure. More detailed

descriptions of the in-situcluster tool can be found elsewhere.>’ Contact metals were also deposited

on exfoliated MoSe, and MoTe, bulk crystals under HV conditions (base pressure = ~ 3 x 10

mbar) using an elastomer-sealed Cryo electron beam evaporator in the cleanroom facility.’® After

metal depositions in HV, the samples were transferred to the cluster tool ex-situ for XPS

characterizations. The air exposure during this ex-situ transfer process is ~ 5 mins. The 7in-situ and
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ex-situ deposition and transfer processes were identical to our previous metal/TMD interface

studies.” Therefore, a direct comparison with those studies could be performed readily. The method

of obtaining the reference Ni 2p3, and Ag 3d spectra was described in our previous work.!?

4.2. XPS

The XPS characterization was performed via a monochromatic Al Ka X-ray source (hv = 1486.7

eV) and an Omicron EA125 analyzer with a pass energy of 15 eV for core level scans. The EA125

analyzer was calibrated according to the standard ASTM procedure using sputter-cleaned Au, Ag,

and Cu foils.>® The XPS spectra were obtained at the take-off angle of 45° with 0.05 eV energy

resolution. The A Analyzer software was employed for core-level peak fitting.5° To make the fitting

results consistent, congruent fitting parameters (the background type, the peak shape, the doublet

separation, and the Gaussian and Lorentzian components of the peak width) were employed for a

specific core level peak.®! The scanning spot size for XPS acquisition is 1.5 mm, which is close to

the size of the TMD crystal. Most of the adventitious carbon signal is probably from the exposed

carbon tape.

4.3. AFM
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AFM images of the MoSe, and MoTe, bulk crystals after metal depositions were obtained ex-

situ by Veeco model 3100 Dimension V and Oxford Asylum Research Jupiter XF instruments in

the tapping mode.’® Image processing and root mean square (RMS) roughness determination were

performed via the WSxM software.5?

4.4. STM/STS

An Omicron VT-AFM system was used for STM/STS characterizations at the constant current

mode at room temperature. To enhance the signal-to-noise ratio, at least 16 repetitions were

averaged for every STS spectrum. Gwyddion software was used for image processing.®® The

conduction band and valence band edges are identified by the onset of a sudden increase in a

differential conductance (dI/dV) spectrum. The MoSe, and MoTe, bulk crystals were exfoliated

in air, after which the samples were loaded in the load lock within 1 min.

4.5. DFT calculations

DFT calculations were carried out by using the Vienna Ab initio Simulation Package (VASP) ,

which uses projected augmented wave (PAW) pseudopotentials.®*%7 Electronic exchange and

correlation interaction are described by generalized gradient approximation (GGA-PBE)

functional Perdew-Burke-Ernzerhof format (GGA-PBE).%%-%° For plane wave basis expansion, a
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cutoff energy of 520 eV was used. Supercells were used with Gamma-only -point mesh for
Brillouin-zone sampling. For structure relaxation, the conjugated gradient method was employed,
with the convergence criterion of the force on each atom less than 0.01 eV/A. Self-consistent
electronic minimization was achieved by using a blocked Davidson iteration scheme with energy
converges at 10~ eV. For surface adsorption modeling, metal adatoms were on top of the TMD
surface. Adsorbed metal atoms were then relaxed with atoms in the TMD layer kept fixed. A 15-
A-thick vacuum region was introduced to minimize the interaction between adjacent periodic
images. The adsorption energy was calculated according to E4 = E(M/TMD)-ETMD)-EM),
where Z{M/TMD) is the energy of metal adsorbed TMD, ETMD) and E(M) are energies of

isolated TMD and metal atom(s) before adsorption, respectively.
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electronic variations of MoSe; and MoTe, by STM/STS; Atomic imperfections of MoTe, by STM.
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Figure 1. Mo 3d and Se 3d spectra of MoSe; bulk crystal following exfoliation and subsequent (a)

Ni, and (d) Ag depositions under UHV and HV conditions. AFM results of Ni/MoSe; bulk crystal

surfaces deposited under (b) HV and (c) UHV conditions. AFM results of Ag/MoSe, bulk crystal

surfaces deposited under (e) HV and (f) UHV conditions. The unit of RMS roughness is nm.
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Figure 2. (a) Schematic representations of the interfaces formed between contact metals (Ni and

Ag) and TMDs (MoSe, and MoTe,) before and after metal depositions under UHV and HV

conditions. (b) Band alignment of contact metal/TMD bulk crystal systems studied in this work

after exfoliation and subsequent metal deposition under UHV and HV conditions.
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Figure 3. STM images obtained on the same area of a freshly exfoliated MoSe, bulk crystal surface

at (a) 0.85 V, 0.3 nA, (b) -0.85 V, 0.3 nA; (c) STS spectra taken on the surface of MoSe,. The

green curve (Eg ~ 0.54 eV) is taken at the green dot shown in (a) and (b). The blue curve (Eg ~

1.09 eV) is taken at the blue dot in Figure S7c; STM images obtained on the same area of a freshly

exfoliated MoTe, bulk crystal surface at (d) 0.8 V, 0.5 nA, (e) -1.2 'V, 0.5 nA; (f) STS spectra (Eg

~ 1.02 eV) taken at the blue and green dots in (d) and (e). The curve and the dot are correlated by

the colors.
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Figure 4. High-resolution STM images of a freshly exfoliated MoSe, bulk crystal for (a) an area
with single (white circle) and multiple (blue circle) Vg, and Os,; (b) an area including local high
contrast (white arrow) and depression (black arrow); (c) The line profile across the multiple Vg,
and Og, along the green line in (a); The depth of the Vg, or Og, is consistent with the height of 0.5
MoSe; layers; (d) The line profile along the blue line in (b), the lattice constant of MoSe; is
measured to be ~ 3.29 A; The (e) side view and (f) top view of MoSe; lattice; (g), (h), (j) High-
resolution STM images of the freshly exfoliated MoSe, bulk crystal showing local depression
(green arrow), bright defect (blue arrow), Vg, or Og. (white circle), and disordered protrusion
(black circle); (i) dI/dV taken at the disordered protrusion in (g). The band gap is not detectable,

indicating a metallic defect.
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Figure 5. Diagrams of a single (a) Ni atom adsorbed on MoSe,, (b) Ag atom adsorbed on MoSe,,

(c) Ni atom adsorbed on MoTe,, and (d) Ag atom adsorbed on MoTe,, with the adsorption energy

listed. The adsorption energy of the most stable site is highlighted in pink; (e) two metal atoms

adsorbed on Mo-TMDs with the adsorption energy and the distance of the two adatoms listed;

DOS plots of a single adatom on the (f) MoSe, and (g) MoTe,; DOS plots of two adatoms on the

(h) MoSe, and (i) MoTe,.
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24 Figure 1. Mo 3d and Se 3d spectra of MoSe; bulk crystal following exfoliation and subsequent (a) Ni, and (d)
25 Ag depositions under UHV and HV conditions. AFM results of Ni/MoSe; bulk crystal surfaces deposited under

26 (b) HV and (c) UHV conditions. AFM results of Ag/MoSe; bulk crystal surfaces deposited under (e) HV and
27 (f) UHV conditions. The unit of RMS roughness is nm.
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Figure 2. (a) Schematic representations of the interfaces formed between contact metals (Ni and Ag) and

TMDs (MoSey and MoTe) before and after metal depositions under UHV and HV conditions. (b) Band
alignment of contact metal/TMD bulk crystal systems studied in this work after exfoliation and subsequent
metal deposition under UHV and HV conditions.
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Figure 3. STM images obtained on the same area of a freshly exfoliated MoSe; bulk crystal surface at (a)
0.85V, 0.3 nA, (b) -0.85V, 0.3 nA; (c) STS spectra taken on the surface of MoSe;. The green curve (Eg ~
0.54 eV) is taken at the green dot shown in (a) and (b). The blue curve (Eg ~ 1.09 eV) is taken at the blue
dot in Figure S7c; STM images obtained on the same area of a freshly exfoliated MoTey bulk crystal surface
at (d) 0.8V, 0.5 nA, (e) -1.2V, 0.5 nA; (f) STS spectra (Eg ~ 1.02 eV) taken at the blue and green dots in

di/dV (nA/V)
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(d) and (e). The curve and the dot are correlated by the colors.
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Figure 4. High-resolution STM images of a freshly exfoliated MoSe; bulk crystal for (a) an area with single
(white circle) and multiple (blue circle) Vse and Ose; (b) an area including local high contrast (white arrow)
and depression (black arrow); (c) The line profile across the multiple Vse and Ose along the green line in
(a); The depth of the Ve or Ose is consistent with the height of 0.5 MoSe; layers; (d) The line profile along
the blue line in (b), the lattice constant of MoSe; is measured to be ~ 3.29 A: The (e) side view and (f) top
view of MoSe; lattice; (g), (h), (j) High-resolution STM images of the freshly exfoliated MoSe> bulk crystal

showing local depression (green arrow), bright defect (blue arrow), Vse or Ose (white circle), and disordered
protrusion (black circle); (i) dI/dV taken at the disordered protrusion in (g). The bandgap is not detectable,
indicating a metallic defect.
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31 Figure 5. Diagrams of a single (a) Ni atom adsorbed on MoSe;, (b) Ag atom adsorbed on MoSey, (¢) Ni atom

32 adsorbed on MoTejp, and (b) Ag atom adsorbed on MoTey, with the adsorption energy listed. The adsorption
33 energy of the most stable site is highlighted in pink; (e) two metal atoms adsorbed on Mo-TMDs with the
34 adsorption energy and the distance of the two adatoms listed; DOS plots of a single adatom on the (f)

35 MoSe; and (g) MoTey; DOS plots of two adatoms on the (h) MoSe; and (i) MoTe;.
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