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As the societal impact of Deep Neural Networks (DNNs) grows, the goals for advancing DNNs become more
complex and diverse, ranging from improving a conventional model accuracy metric to infusing advanced
human virtues such as fairness, accountability, transparency, and unbiasedness. Recently, techniques in Ex-
plainable Artificial Intelligence (XAI) have been attracting considerable attention and have tremendously
helped Machine Learning (ML) engineers in understand AI models. However, at the same time, we started
to witness the emerging need beyond XAI among AI communities; based on the insights learned from XAI,
how can we better empower ML engineers in steering their DNNs so that the model’s reasonableness and
performance can be improved as intended? This article provides a timely and extensive literature overview of
the field Explanation-Guided Learning (EGL), a domain of techniques that steer the DNNs’ reasoning process
by adding regularization, supervision, or intervention on model explanations. In doing so, we first provide
a formal definition of EGL and its general learning paradigm. Second, an overview of the key factors for
EGL evaluation, as well as summarization and categorization of existing evaluation procedures and metrics
for EGL are provided. Finally, the current and potential future application areas and directions of EGL are
discussed, and an extensive experimental study is presented aiming at providing comprehensive comparative
studies among existing EGL models in various popular application domains, such as Computer Vision and
Natural Language Processing domains. Additional resources related to event prediction are included in the
article website: https://kugaoyang.github.io/EGL/
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1 INTRODUCTION

In recent years, techniques in Explainable Artificial Intelligence (XAI) have been attracting
considerable attention [2, 10, 61] and have gradually become the dominating ways that connect
the way Deep Neural Networks (DNNs) work and human reasoning [66, 91]. As DNNs can-
not provide human sensible “global structure” of how the model works unlike white-box models,
XAI has become an imperative tool thatMachine Learning (ML) engineers always use to “make
sense” of the way their models work [54]. In recent years, many XAI techniques have been pro-
posed in an effort to open the “black box” of DNNs [61], such as techniques that provide saliency
maps for understanding which sub-parts (i.e., features) in an instance are most responsible for
the model prediction [12, 105, 106, 131, 181]. Despite the recent fast progress on XAI techniques
for DNNs, the majority of the research body in XAI put focus on handling “how to generate the
explanations” while showing less attention to advanced questions like “whether the explanations
are reasonable/accurate,” “what if the explanations are unreasonable/inaccurate,” and, most impor-
tantly, “how to adjust the model to generate more reasonable/accurate explanations in the future.”
We are starting to witness the emerging need beyond XAI; based on the insights learned from XAI,
how can we better steer DNNs such that their future behavior can be improved from the insights
learned from XAI techniques? We argue that understanding how to convert insights learned from
XAI-driven techniques to steer DNNs would be the key to realizing the DNNs to be more powerful,
fair, accountable, transparent, unbiased, and trustworthy, unraveling many real-world application
areas.
In recent years, several new areas have emerged that aim at gaining a thorough grasp of the

model behavior through the model explanation. Explanatory Debugging is one area of research
that has gained popularity [79, 88, 158]. Interactive techniques and systems were developed to
enable human users to interactively select features of interest and then investigate how the model
behaves in the resulting subspaces for debugging purposes. Another interesting area of research
compared the explanation provided by DNNs and the explanation provided by humans to gain
a better understanding of the models’ behavior [35, 147]. Although the aforementioned studies
are capable of providing more insights about whether the explanations are accurate or reasonable,
they are yet to be sufficient for further handling how we can learn from those mistakes, and conse-
quently adjust the model to get better quality explanations and enhance the model performance.
In recent years, a new research direction has emerged, focusing on leveraging XAI techniques to

intervene in the behavior of machine learning models. This is achieved by introducing additional
supervision signals or prior knowledge obtained from human explanations into the model’s rea-
soning process. Human explanation, in the context of machine learning, involves understanding
the rationale behind a person’s decision when performing a task at which this person is compe-
tent. For example, in the diagnostic imaging domain, a radiologist or clinician can use computed
tomography (CT) images to diagnose cancer and annotate suspicious lesion areas to support
the rationale of their diagnostic result. The lesion areas provided can be considered a form of
explanation for decision-making in terms of salient areas [8, 31, 60, 173]. Hence, the human in-
sights into decision-making are often represented through human annotations that help explain
the decision-making, which usually take a form similar to attention mechanisms, saliency maps,
or other forms commonly used in model explanations. In many applications, such as the afore-
mentioned diagnostic imaging domain, human explanation annotations are available and provide
much more informative guidance than conventional prediction labels for machine learning model
training. This motivates the goal of incorporating human explanation annotations into machine
learning models, e.g., by aligning model explanations with human explanation annotations. This
ultimately enhances machine learning models’ interpretability and generalizability, because they
better grasp the correct rationale and become more robust to artifacts and noises that interfere
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with model predictions. This research direction is commonly referred to as Explanation Guided
Learning (EGL) [69, 89, 127, 141]. In addition to EGL, several related terms are frequently used
within this context, such as Explanation Supervision [52–54], Attention Supervision [120, 176], Ex-
planation Alignment [123, 170], and Learning from Explanation [24, 128, 167]. These terms collec-
tively describe the effort to utilize insights from human explanation annotations to enhance the
explainability and performance of machine learning models.
Recently, there has been a surge of research that both proposes and applies new approaches

in numerous application areas, including Computer Vision (CV), Natural Language Process-
ing (NLP), and Visual Question Answering (VQA). Despite the fact that EGL techniques are
generally still in their early stage, the majority of existing studies have produced encouraging re-
sults, showing that the main DNNs can generally benefit from the additional explanation objective
in terms of both model explainability and generalizability to unseen data across various applica-
tion domains. However, developing EGL frameworks can be difficult due to significant technical
challenges caused by its unique characteristics, including the following:

(1) Gap between the pattern of model explanation and human explanation annotation: The ex-
planation generated by model explainers is typically continuous values, whereas human
explanation annotations are typically binary. Therefore, it is difficult to align the human ex-
planation annotation directly with the model explanation without significant efforts to fill
the gap between the data domain and distributions.

(2) Ensuring the Alignment of Model Explanations in EGL Evaluation: In contrast to conventional
models, where task performance takes precedence, evaluating the quality of EGL outcomes
necessitates sophisticated and thoughtfully designed evaluation procedures that often inher-
ently involve subjectivity. For instance, human participants may be engaged in the evalua-
tion process to assess the accuracy and alignment of model explanations. Moreover, beyond
the realm of XAI explanations, EGL introduces the additional complexity of jointly evalu-
ating the accuracy of predictions, explanations, and their interplay in determining model
generalizability. Consequently, a significant challenge lies in the absence of systematic stan-
dardization and comprehensive summarization methods that can effectively evaluate the
diverse EGL methodologies proposed to date.

(3) Noisiness in human explanation annotation labels: Unlike predictive task labels, it is much
more likely for human annotators to unintentionally create noisy annotation labels where
either the real important features are missed or irrelevant features are mistakenly included
in the explanation annotation. For instance, when annotation the image data, some impor-
tant object parts or even the entire objects may be missed by the coarsely drawn boundary
from human annotators. Thus, applying naive supervision directly to train the model can
lead to falsely excluded non-trivial features from the input space that are important to the
prediction [52].

(4) Difficulty in explicitly measuring the faithfulness of the explanation quality with respect to the

model generalizability: Due to the fact that EGL techniques are generally still in their infancy,
most existing works still primarily focus on merely evaluating the explanation quality of the
EGL model independently of the model task performance. The faithfulness of the improved
explanation quality with respect to the model prediction is yet to be explored explicitly
and can be a key research question to be answered for EGL techniques to further advance
and enhance the model performance and generalizability.

1.1 Contributions

As the majority of existing EGL approaches were built for a specific application domain,
cross-referencing these techniques across application domains serving different communities is
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problematic and challenging. Moreover, the lack of a comprehensive review and taxonomy of ex-
isting techniques and applications in EGL creates substantial challenges for researchers working
in the related field, since they lack clear information on existing bottlenecks, pitfalls, open-ended
questions, and potentially fruitful future research directions.
To this end, this article provides a systematic survey of EGL models across various application

domains, including CV [39, 45, 89, 103, 123, 125, 143, 157], NLP [9, 11, 17, 23, 24, 26, 28, 29, 38,
55, 57, 70, 87, 94, 95, 141, 142, 144, 167, 168, 175, 177, 180], VQA [27, 50, 113, 120, 160, 176], and
more in Section 4. The goal of the survey is to help interdisciplinary researchers build a better
understanding of the existing EGL techniques and develop appropriate frameworks to solve the
problems in their applications domains. In addition, this survey aims at helping researchers outside
the AI communities to understand the basic principles as well as identify interdisciplinary open
research opportunities in the EGL domain. As far as we know, this is the first comprehensive
survey on Explanation-Guided Learning. This work’s contributions are as follows:

—We summarize a general learning paradigm of EGL based on existing works in this field to
provide overall guidance on identifying and designing new EGL techniques.

—We identify the key factors of comprehensively evaluating the EGL model performance
and provide a summarization and categorization of the existing evaluation procedures and
metrics.

—We propose a taxonomy of Explanation-Guided Learning categorized by the level of guid-
ance and methodologies. The advantages, drawbacks, as well as relations among different
subcategories of EGL techniques, are also introduced and compared.

—We introduce the broader application of EGL and detail the unique benefits and future op-
portunities for each application domain.

—We conduct a comprehensive experimental analysis and comparative study among existing
EGL models in CV and NLP domains.

—We summarize the existing literature on EGL at the current stage and then provide a set of
open problems and potential promising future research directions of EGL.

1.2 Relationship with Related Surveys

This section outlines previously published surveys that have some relevance to Explanation-
Guided Learning. These surveys can be classified into three topics: (1) XAI technique and eval-
uation, (2) AI ethics, and (3) interactive machine learning, as introduced in detail below.
Explainablity Technique and Evaluation: The related surveys of interpretability techniques

provide a technical review and categorization of existing explanation techniques that can explain
the machine learning model, especially for the sophisticated “black box” DNN models. Several
related surveys provide an in-depth classification of machine learning interpretability methods in
general [10, 61, 93, 124], while others focus on more specific fields of study. Specifically, Burkart
et al. [22] review the explainability methods of supervised machine learning models. Montavon
et al. [107] provide a survey that specifically focuses on the interpretability techniques designed
for explaining DNNs. Zhang et al. [171] research interpretability techniques for Convolutional
Neural Networks (CNN) and visual explanation. Tjoa et al. [151] summarized the XAI techniques
that have been adopted for explaining medical data. Along the line of interpretability techniques,
many recent surveys also review the methods and metrics for comprehensively validating the
quality of the explanation generated by the XAI techiniques [65, 104, 183].
AI Ethics: As the societal impact of AI grows, the goals for revising AI become more complex

and diverse, ranging from improving a conventional model accuracy metric to infusing advanced
human virtues such as fairness, accountability, transparency (FaccT), and unbiasedness [96].
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Fig. 1. The gaps in Explanation-Guided Learning performance evaluations.

Table 1. Detailed Evaluation Measures Categorized by the Gaps

Category Evaluation Measure

Explanation Faithfulness
Perturbation based [11, 29, 38, 40, 69, 103, 140, 170]
Explanation Consistency based [11, 140]

Explanation Alignment
Case study based [28, 40, 113, 175]
Human annotation based1 [24, 27, 38, 40, 50, 57, 63, 70, 89, 95, 103, 113, 140, 164]
User study based (user-perceived understandability) [29, 70, 116, 149]

Aligning to such direction, recent surveys started to collect, synthesize, and structuralize the ex-
isting approaches meant to be designed to handle several types of bias in AI [25, 99]. The most
noteworthy finding in our survey for the landmark surveys is that the approaches for detecting
bias in ML are more than the ways to mitigate the bias [19, 41]. The second important finding is
that even though several studies focus on showing the ways to detect bias, they also present a
hint of how we can mitigate them by showing some typical bias cases [99, 110]. Last, the existing
survey also provides a pressing field needs explaining why we need to improve the ways to steer
models in the case of witnessing the evidence of bias [66].
Interactive Machine Learning: Since Fails et al. [47] proposed the idea of interactive ML, the

HCI community has put a high priority on applying XAI techniques in developing interactive tech-
niques and systemsmeant to helpML engineers to better understand their models’ weaknesses and
strengths. Landmark surveys related to human factor and interaction can be categorized into (1)
the interactive design, emphasizing how to design the feedback loop between humans andMLmod-
els through system [42, 72] that are widely proposed in the human factor research communities,
such as SIGCHI, CSCW, and UIST, and (2) visual analytic, focusing on how to apply visualization
techniques to help ML engineers understanding complex ML model behavior [44, 166].

1.3 Outline of the Survey

The remaining part of the survey is organized as follows. In Section 2, we delve into the problem
formulation and performance evaluations of EGL models, addressing the challenges of ensuring
the alignment between model explanations and human explanation annotations (Challenge 2) and
explicitly measuring the faithfulness of explanation quality with respect to model generalizability
(Challenge 4), as illustrated in Figure 1 and Table 1. In Section 3, we provide a taxonomy of EGL,
categorized by the level of guidance and methodologies, which directly addresses the challenges
of the gap between the pattern of model explanation and human explanation annotations (Chal-
lenge 1) and the noisiness in human explanation annotation labels (Challenge 3), as illustrated in
Figure 2. Furthermore, we present detailed insights into each EGL technique, including their respec-
tive advantages, drawbacks, and relationships to other techniques within the same subcategories.
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Fig. 2. Taxonomy of Explanation-Guided Learning problems and techniques.

In Sections 4 and 5, we explore the broader applications of EGL and conduct a comprehensive
experimental analysis and comparative study among existing EGL models in both CV and NLP
domains. Finally, in Section 6, we conclude by summarizing the current state of development in
EGL techniques and propose several open problems and potential future research directions.

2 PROBLEM FORMULATION AND PERFORMANCE EVALUATIONS

This section begins by introducing the generic denotation and formulation of the Explanation-
Guided Learning problem (Section 2.1) and then considers ways to categorize the performance
evaluation measures of Explanation-Guided Learning (Section 2.2).

2.1 Problem Formulation

Consider a differentiable model f parameterized by θ that learns to fit inputs X ∈ RN×D and the
corresponding one-hot class labels Y ∈ RN×K , where N denotes the total number of data samples,
D denotes the input dimension, and K denotes the number of classes. An explainer д is considered
to extract the explanationM from the model f given its parameter θ and a set of data points 〈X ,Y 〉.
Generally speaking, the model explanation M represents the marginal contribution of each input
feature to the model’s decision after all possible combinations have been considered. Notice that in
this article we use the terms rationale, attention, and saliency maps interchangeably as the specific
form of M that is frequently used by the corresponding application domains. Depending on the
way the explanation is calculated,M can be generally represented by either local explanationM (L),

where M (L)
i is the local explanation of model f with respect to sample 〈Xi ,Yi 〉, or a single global

explanationM (G) of the model f .
TheEGLparadigm.The general goal for Explanation-Guided Learning is to boost both the task

performance as well as the interpretability of the backbone model by jointly optimizing model
prediction as well as the explanation. Based on the earlier exploration of explanation supervi-
sion frameworks design [52, 53, 103, 126], we introduce the key objective function of Explanation-
Guided Learning as follows:

min LPred(f (X ),Y )︸������������︷︷������������︸
task supervision

+αLExp(д(f , 〈X ,Y 〉), M̂)︸������������������������︷︷������������������������︸
explanation supervision

+ βΩ(д(f , 〈X ,Y 〉))︸���������������︷︷���������������︸
explanation regularization

, (1)
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where M̂ explicitly incorporates the “right” explanation, which can be typically realized by human
annotation masks [38, 54]. The function д is typically realized by existing differentiable XAI ex-
plainers. Common explainers that are widely used for this purpose include GradCAM [131] and
attention mechanisms [13, 152]. These explainers offer established methods for interpreting the
model’s decision-making process.
As shown in Equation (1), the key objective function of Explanation-Guided Learning mainly

consists of three terms, namely (1) task supervision term for the typical prediction loss (such as the
cross-entropy loss), (2) explanation supervision term for supervising the model explanation with
some explicit knowledge of what the “right” explanation should be, and (3) explanation regulariza-
tion term for enforcing some general properties about the “right” explanation (such as maintaining
the sparsity nature of the explanation). Notice that all three terms above can be defined and imple-
mented differently depending on each particular Explanation-Guided Learning method.

2.2 Performance Evaluations

Unlike the evaluation of conventional machine learning models, which primarily centers on as-
sessing the model’s performance, and the evaluation of traditional explainable AI models, which
concentrates on the quality of generated model explanations, EGL introduces a holistic assessment
that simultaneously considers model prediction performance, the quality of model explanation,
and their interplay. As depicted in Figure 1, we discern and categorize two pivotal dimensions
of evaluation that are fundamental for gauging the effectiveness of EGL models: faithfulness and
alignment of the model explanation.
Explanation Faithfulness, in the context of EGL, revolves around the concept of whether the

model explanation remains true to the underlying model’s reasoning. It encompasses questions
such as “Is the explanation faithful to the model’s true reasoning process?,” “Is the explanation
consistent across similar instances?,” and “Is the explanation and prediction robust against pertur-
bation?” For example, in a medical diagnosis EGLmodel, faithfulness entails assessing whether the
model’s explanation aligns with the medical knowledge and diagnostic reasoning used by human
experts. A faithful explanation should consistently reflect similar diagnostic results for patients
with similar symptoms, and it should remain robust when presented with minor variations in
patient data.
Explanation Alignment, however, focuses on the accuracy and perceptibility of the model ex-

planation from a human perspective. It delves into questions like “How well does the model
explanation align with human explanation?” and “How well can humans perceive the model
explanation?” Alignment would encompass assessing whether the explanations generated by the
model accurately align with the nuances and interpretations of language used by humans, thereby
ensuring the correctness of the AI explanation by aligning it with human explanation annota-
tions. It also gauges how easily humans can comprehend and trust the explanations provided by
the model.
These two dimensions, faithfulness and alignment, are crucial for comprehensively evaluating

EGL models, because they ensure that the model not only provides faithful, accurate explanations
but also that these explanations are presented in a manner that is understandable and trustable to
humans. This broader perspective on evaluation acknowledges the unique challenges and complex-
ities of EGL, where the alignment and faithfulness of model explanations are integral to achieving
the model’s ultimate goal: improving transparency and decision-making in complex, real-world
applications.
Here we summarize the existing evaluation metrics into the two categories in Table 1 and intro-

duce each type of metric in great detail in the following two subsections.
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2.2.1 Metrics on Evaluating Explanation Faithfulness. Here we introduce the metrics for expla-
nation faithfulness (model prediction vs. model explanation) evaluation, which aims at evaluating
how the model-generated explanation influences the corresponding model’s prediction.
Perturbation-based evaluations: To evaluate the faithfulness of the model explanation, the

study of how different types of perturbations on the input space influence the model prediction
has become a very common and well-received approach in the literature [11, 29, 38, 40, 69, 103,
140, 170]. Existing measures can be mainly categorized into three groups, depending on the type
of perturbation, as follows:

—Occlusion-based perturbation: These metrics basically study how much influence on the
model’s prediction if the important feature or rationale identified by the model explana-
tion are occluded or masked from the original sample [29, 38, 69, 103, 170]. One commonly
used occlusion-based metric is comprehensiveness [38], where the difference of the predicted
probability from the model f (·) for the same class Yi is compared between the original input
Xi and Xi\д(f , 〈Xi ,Yi 〉), where the operation “\” represents the exclusion of the supporting
rationales д(f , 〈Xi ,Yi 〉) from input Xi . Mathematically, Comprehensiveness can be defined
as follows:

Comprehensiveness = f (Xi )Yi − f (Xi\д(f , 〈Xi ,Yi 〉))Yi . (2)

Besides the comprehensiveness score, many other intuitivemethods are also used to evaluate
the quality of the explanation. Inspired by previous works [108, 132], a common intuitive
strategy to measure the faithfulness of the explanation used by existing works [29, 103, 170]
is to track the degradation of model performance by removing importance features (often in
decreasing order) from the input.

— Insertion-based perturbation: These metrics study how well the prediction aligns between
the original sample and an artificially generated sample where only the important fea-
ture/rationales are included [11, 38, 103, 140]. One popular metric is Sufficiency [38], which
captures the degree to which the snippets within the extracted rationales д(f , 〈Xi ,Yi 〉) are
adequate for a model to make a prediction. Concretely, it can be defined as follows:

Sufficiency = f (Xi )Yi − f (д(f , 〈Xi ,Yi 〉))Yi . (3)

Similarly, many other intuitive methods are also used following the insertion idea. A com-
mon strategy used by existing works [11, 103] is to track the increase in model performance
by gradually inserting the important features (often in decreasing order) from the input.

—Adversarial perturbation: These metrics in general check whether the model explanation
is still faithful to the model prediction under adversarial attacks [40, 170]. For instance,
Reference [170] leveraged the sanity check method originally proposed in Reference [3] to
check if attribution maps look different when the deep network being explained is extremely
perturbed or under adversarial attacks. The intuition behind this measure is that a faithful
attribution method should yield different explanations for the randomized model.

Consistency-based evaluations: Besides the perturbation-based metrics that only focus on
evaluating each instance locally at a time, existing works also propose consistency-based evalua-
tion, where more global evaluation metrics have been proposed to validate how well the explana-
tion aligns across similar instances [11, 140]. More specifically, Reference [11] proposed a metric
called Data Consistency that measures how similar the explanations for similar instances are. Al-
though the specific equation of the measurement in the article is specifically designed for NLP and
generative explanation, the basic idea can be generally expressed as follows:

Data Consistency = |д(f , 〈Xi ,Yi 〉) − д(f , 〈Xi\M,Yi 〉)|, (4)
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where M is a random mask that masks out K input features from Xi , K can be treated as a hyper-
parameter dependent on the dataset characteristics. The underlying assumption here is that model
explanations between highly similar samples should exhibit proximity, and, therefore, higher Data
Consistency values indicate superior performance in preserving this similarity.
It is worth noting that the authors of this metric emphasized the use of the L1 loss function

instead of L2 [11]. This choice serves as a strategy to mitigate the penalization in the rare situation
where the random mask M unintentionally masks out important features, potentially leading to
significantly different outlier predictions. Furthermore, in practical scenarios where ground-truth
explanation annotations are available, this information can be employed to guide the selection
ofM .
Similarly to the above idea, another work employed Intersection over Union (IoU) score to

measure explanation stability across similar instances [140]. Specifically, they proposed to find
similar instances by searching for the nearest neighbors of Xi in the dataset based on both the
semantic similarity (the cosine of their BERT representations) and the lexical similarity (the ratio
of overlapping n-grams).

2.2.2 Metrics on Evaluating Explanation Alignment. Here we introduce the metrics for expla-
nation alignment evaluation, which aims at evaluating how well the model-generated expla-
nation aligns with the human explanation annotation or how well can humans perceive the
model-generated explanation.
Case study: Case study has been widely used as a conventional method for qualitatively evalu-

ating the explanation generated by the model [28, 40, 113, 175], where a set of instances and their
corresponding model explanations are selected and investigated qualitatively. Although making
qualitative assessments and detailed analyses of just a few samples can be easily achieved, it is in
general less scientifically rigorous, and the claims or conclusions are pruned to be biased due to
the author’s subjectivity.
User study (user-perceived understandability): User study, specifically user-perceived un-

derstandability, has been commonly used as a qualitative evaluationmethod to assess how humans
can understand the explanation generated by the model [26, 70, 116, 149]. The user-perceived un-
derstandability methods are typically achieved by developing a user interface to show the model
explanations to human subjects, and collecting the rating of how likely the important features iden-
tified by the model explanation can lead to the correct prediction of the underlying ground-truth
label.
Human annotation-based evaluation: Explanation alignment is a unique yet commonly used

quantitative metric in Explanation-Guided Learning which measures how the human-annotated
ground-truth explanation is aligned with the model generated explanation [24, 27, 38, 40, 50, 57,
63, 70, 89, 95, 103, 113, 140, 164]. The distance is commonly measured by the IoU score [38, 95, 140],
precision, recall, and F-1 scores [57, 140].

2.2.3 Other General Metrics. Besides measuring the faithfulness and alignment of model expla-
nation, most of the papers also included the conventional model task performancemetrics to verify
if the Explanation-Guided Learning actually helped the generalizability of the backbone DNNmod-
els. Like most papers working on classification tasks, the common metrics used to evaluate model
performance are accuracy, Area Under the ROC Curve (AUC) score, and F1 score.

3 EXPLANATION-GUIDED LEARNING TECHNIQUES

This section focuses on the taxonomy and representative techniques utilized for each category and
subcategory. According to the level at which the model explanation is obtained and supervised,
the technique types for EGL can be divided into global guidance and local guidance, as shown in
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Fig. 3. Illustration of Global Guidance techniques. Specifically, global explanation supervision techniques

(left) aim at providing supervision in terms of model attribution, while global explanation regularization

techniques (right) aim at confining the model reasoning process with prior knowledge.

Figure 2. Specifically, global guidance focuses on the model’s global explanation and refines the
model’s overall decision-making process, while local guidance guides the model with each sample-
specific explanation. The aforementioned techniques are then further categorized in terms of the
way explanation guidance is injected during the course of model training.

3.1 Global Guidance

Global explanation guidance focuses on injecting prior knowledge or adding supervision signals
to improve the model’s global explanation that explains the decision-making process of the model
in general. Based on the way explanation guidance is injected, global explanation guidance meth-
ods can be categorized into two types: (1) Global Explanation Supervision, where the ground-truth
explanation labels are provided as an additional supervision signal to train the featurewise explana-
tion of the model, and (2) Global Explanation Regularization, in which some regularization terms
that represent some general prior knowledge about the model explanation are added to regularize
the featurewise explanation of the model, as illustrated in Figure 3.

3.1.1 Global Explanation Supervision. The techniques proposed in global explanation supervi-
sion [45, 94, 157] aim at providing a single featurewise explanation of themodel globally. Compared
with instance-level local explanation supervision where the explanation ground truth is provided
for each instance [52, 54, 103], global explanation aims to provide a more effective global guide
to the model’s behavior as a whole. Depending on the strategies to compute the global explana-
tion of the model, current literature can be mainly categorized in two directions: (1) aggregation
based [45, 94] and (2) surrogate based [34, 118, 153].

Aggregation-based Global Supervision: This type of method typically achieves explanation
supervision by first estimating the global feature attribution via aggregating local feature attribu-
tion of each sample and aligning it with a single ground-truth feature attribution vector m̂ as the
additional supervision signal to train the model jointly with the conventional task loss. The com-
mon techniques used to calculate each sample’s feature attribution are integrated gradient [94]
and the expected gradient proposed by Erion et al. [45]. Specifically, the objective function for
aggregation-based global supervision can be summarized as follows:

min LPred(f (X ),Y ) + αLExp

(
1

N

N∑
i=1

д(f , 〈Xi ,Yi 〉), M̂

)
. (5)
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This type ofmethod has been utilized and shown promising results inmany application domains,
such as image classification tasks [45] and text classification [94]. For image data use cases [45],
the global explanation M̂ represents the global pixel-level saliency map calculated using expected
gradients. As demonstrated in Figure 1 in Reference [45], the authors illustrate the significant im-
provements in global explanation quality achieved by combining higher-level attribution priors
with expected gradients attributions. This enhancement is consistent across various data domains,
including image, gene expression, and healthcare datasets. In the context of text data applications
[94], the global explanation M̂ denotes the global attribution values assigned to each potential
token in the text dataset, which are calculated using Integrated Gradients attributions. The au-
thors applied this approach to an NLP task aimed at identifying toxic conversations. In Table 8 in
Reference [94], the authors showcase the successful highlighting of toxic words with higher attri-
bution values using their proposed method, even across different data ratios, as compared to the
baseline.
The advantage of the aggregation-based global supervisionmethods is that they can easily adapt

existing techniques developed for local explanation with little to no extra effort. Besides, the ac-
quisition of only one single feature attribution vector as a classwise explanation signal is much
more affordable, as compared with instancewise supervision methods that require much more la-
bor from human annotators. However, the drawbacks of this type of technique also come from the
aggregation of local explanation, as the aggregated explanation is sensitive to the samples used to
calculate, and thus could bring the sample bias into the global explanation of the model estimated.
Surrogate-based Global Supervision: This branch of work achieves explanation supervision

by first estimating the global explanation of the target model via a surrogate model where the
model-level explanation is easy to obtain, and then human knowledge can be leveraged to guide
the global explanation and consequently supervise the model behavior. In this branch, the rule-
based explanation is commonly used as it can be easily edited by practitioners [34, 118, 153].

Rule-based explanation supervision can be achieved from many different angles. For instance,
Vojíř et al. [153] proposed the editable rule-based models that enable the users to edit rules and
replace the underlying machine learning model, and Popordanoska et al. [118] proposed the Ex-
planatory Guided Learning framework that creates simple rules capturing the prediction of the tar-
get model and allows the user to correct instances that are incorrect and themodel is retrained. The
rule-based explanation is also used as a mechanism for feedback that supports user adjustments
without retraining the model [34]. Cornec et al. [33] developed the AI Model Explorer and Edi-
tor tool, which provides visualization of model decision boundaries using interpretable surrogates
and allows for the real-time modification of the decision boundaries. More recently, Lee et al. [86]
proposed SELOR, a framework for upgrading a deep model with a Self-Explainable version with
LOgic rule Reasoning capability, inspired by neuro-symbolic reasoning [36] that integrates deep
learning with logic rule reasoning to inherit advantages from both. SELOR provides high human
precision by explaining logic rules while also maintaining high prediction performance and does
not require predefined rule sets and can be learned in a differentiable way.

3.1.2 Global Explanation Regularization. Global explanation regularization is the method
where some regularization terms that incorporate general prior knowledge about the global expla-
nation are applied to the model. A good example of a preferred property of the model explanation
is the sparseness, as it can provide a better understanding of the model behavior by humans, and
in the meantime, serve as a regularizer of the explanation space to enhance model generalizabil-
ity [51, 115, 133]. Concretely, the objective function for global explanation regularization can be
summarized as

min LPred(f (X ),Y ) + βΩ(M (G)), (6)
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where the function Ω(·) represents the specific regularization function for regulating the model’s
global explanation andM (G) represents the model’s global explanation vector calculated based on
intrinsic parameters of the model f .
A commonly used prior knowledge to define Ω(·) is to ensure the sparseness of the explanation,

where a regularization term is proposed to penalize small magnitude weights of f that connect
to the input features [51, 115, 133]. The existing studies suggest that this can result in a feature
selection effect and greatly enhance the model’s computational efficiency as well as generalizabil-
ity. In addition, Burkart et al. [21] proposed a batchwise regularization technique to enhance the
interpretability of DNNmodels by means of a global surrogate rule list with a novel regularization
approach that yields a differentiable penalty term. In Wu et al. [161], the authors proposed the
regional tree regularization that encourages a DNN model to be well approximated by several sep-
arate decision trees specific to predefined regions of the input space, yielding simpler explanations
without compromising model accuracy.

3.2 Local Guidance

Local explanation guidance focuses on applying supervision signals or regularization terms to the
model explanation of each local sample to guide the model learning. As shown in Figure 4, com-
paredwith the global explanation guidance, local guidance is more commonly used and explored in
the current research communities thanks to the development of local explanation techniques, such
as GradCAM [131] and attention mechanism [13, 152]. Based on the way explanation guidance is
injected, local explanation guidance techniques can be categorized into three types: (1) Local Ex-
planation Supervision, where the ground-truth explanation labels for each individual sample are
provided as additional supervision signals to train the corresponding model explanation, (2) Local
Explanation Regularization, in which some regularization terms that represent some general prior
knowledge about the local model explanation are added to regularize all the local explanation of
the model, and (3) Explanation Guided Data Augmentation, where the local model explanations
are used to construct additional data samples for model training.

3.2.1 Local Explanation Supervision. Just aswe supervise themodel prediction via ground-truth
labels, local explanation supervisionmethods add additional supervision signals to align the model
explanation with ground-truth explanation labels (e.g., human annotation masks) during model
training. The explanation loss and the conventional prediction loss are typically jointly optimized
during model training. The general assumption behind this approach is that the model can benefit
from the explanation labels by learning to focus on the right features and consequently lead to
better generalizability to unseen instances. Depending on the data representation and application
domains, we further narrow down the techniques into three subcategories: (1) visual explanation
alignment, (2) rationale attention alignment, and (3) feature attribution alignment.
Visual Explanation Alignment: The visual explanation of image data is typically represented

by a heat map overlaid on top of the original image, and the ground-truth explanation labels M̂ are
typically obtained by human annotation in the form of bounding boxes or fine-grained contours.
The first framework that can be applied to visual explanation alignment was proposed by Ross

et al. [126], where the authors defined a very generic Explanation-Guided Learning loss called
“Right for the Right Reasons” loss (RRR) as follows:

min
N∑
i=1

−Yi log(f (Xi )) + α
N∑
n=1

(M̂i
∂

∂Xi
log(f (Xi )))

2 + β ‖θ ‖22 , (7)

where M̂i denotes the ground-truth explanation mask of a sample i; the task supervision loss
is implemented as the conventional cross-entropy loss, and the explanation supervision loss is
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Fig. 4. Illustration of Local Guidance techniques. (Left) Local Explanation Supervision, where the ground-

truth explanation labels for each individual sample are provided as additional supervision signals to train the

corresponding model explanation; (middle) Local Explanation Regularization, in which some regularization

terms that represent some general prior knowledge about the local model explanation are added to regularize

all the local explanation of the model; and (right) Explanation Guided Data Augmentation, where the local

model explanations are used to construct additional data samples for model training.

designed to enforce the alignment of the ground-truth explanation mask M̂ and the gradient maps
via inner product operations.

Later, the RRR loss was further extended by Schramowski et al. [129] and Dharma et al. [39]
regarding the definition of the explanation losses. Specifically, instead of regularizing the gradients
with respect to input X , Schramowski et al. [129] proposed to regularize the gradients of the final
convolutional layer of the model that corresponds to GradCAM explanation and add a rescaling
weight ck to each class k for handling the unbalanced dataset issue. In Dharma et al. [39], the
explanation loss is broken down into two terms to characterize the sensitivity of the gradient
maps differently based on the relationship between each pixel of input and the ground-truth mask
as follows:

LExp = α1
∑
j ∈M̂i

∂LPred(f (Xi ),Yi )

∂Xi, j
+ α2

∑
j ∈[d ]\M̂i

∂LPred(f (Xi ),Yi )

∂Xi, j
, (8)

where [d]\M̂i represent the complement subset of the explanation M̂i of the whole feature set.
Many more models that are designed for visual explanation alignment have been proposed

[52, 54, 103, 143, 165]. Specifically, Stammer et al. [143] proposed a visual explanation alignment
model based on symbolic (concept) alignment, where the symbolic (concept) explanation is mod-
eled by a set transformer module. Mitsuhara et al. [103] proposed a visual explanation alignment
objective specifically designed for the Attention Branch Network (ABN) [49], where the atten-
tion branch outputs are used as the model explanation. The limitation of this work is that it can
only work under ABN architecture. Ying et al. [165] proposed the Visual Feature Importance Super-
vision framework that optimizes four key model objectives: (1) accurate predictions given limited
but sufficient information (Sufficiency), (2) max-entropy predictions given no important informa-
tion (Uncertainty), (3) invariance of predictions to changes in unimportant features (Invariance),
and (4) alignment between model explanations and human explanation annotations (Plausibility)
to improve model accuracy as well as performance. Nguyen et al. [109] proposed two novel ar-
chitectures of self-interpretable image classifiers that first explain, and then predict by harness-
ing the visual correspondences between a query image and exemplars and demonstrated the im-
provement on out-of-distribution dataset scenarios. Gao et al. [54] proposed a more generic visual
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explanation alignment framework called GRADIA based on the GradCAM explanation. In addi-
tion, they proposed the Reasonability Matrix that can better determine what samples need to be
adjusted to improve the model performance and explanation quality. More recently, Gao et al. [52]
proposed a robust visual explanation alignment framework that can better handle the nosiness of
human annotation on image data. Specifically, the explanation loss is defined as follows:

LExp = min
θ,λ,ϕ

∑N

i
max{0, ‖M̃i − M̂i ‖ − λ} + (д(f , 〈Xi ,Yi 〉) − hϕ (M̂i ))

2, (9)

where ϕ is the parameter set of the imputation function hϕ (·). The imputation function can be
realized by applying multiple layers of convolution operations with learnable kernels over the raw
annotation labels; M̃i is a binary projection of the explanation д(f , 〈Xi ,Yi 〉) by a threshold λ, as

M̃i =

{
1 д(f , 〈Xi ,Yi 〉) ≥ λ

−1 д(f , 〈Xi ,Yi 〉) < λ
. (10)

Besides the application to general images, visual explanation alignment techniques have also
been applied to medical image domains [136, 137, 184]. Please refer to the Applications Section 4
for more details.
Rationale Attention Alignment: The explanation of natural language data is typically rep-

resented by the rationales (e.g., word tokens) that highlight the most significant part of the data
for making specific task predictions. The ground-truth explanation labels are typically obtained by
human annotation in the form of rationales or natural language format (sentences). In this domain,
the datasets collected by the ERASER benchmark [38] are commonly used as the datasets come
with ground-truth rationales obtained from human annotators.

Many existing works have proposed to supervise the rationale attention of the model to improve
themodel performance and quality of attention [24, 28, 57, 74, 142, 175, 180]. The explanation loss is
commonly realized by conventional losses, such as cross-entropy loss [28, 74], Mean Squared Error
[141, 142], and KL-divergence loss [180]. In addition, Atanasova et al. [11] proposed several novel
ways to enforce the alignment, such as Data Consistency, Confidence Indication, and Faithfulness.

In addition to leveraging the model attention value itself, many existing works have also pro-
posed to directly generate rationales [17, 70, 87, 141, 167, 180] or natural language [23, 95] as the
“explanation” of the model to be aligned with ground-truth labels via additional decoders, such
as Conditional Random Field (CRF) [81, 167], Gated Recurrent Unit (GRU) [30, 180], and
Transformer-based models [37, 95, 141, 152].

FeatureAttributionAlignment:Besides the specific domain of applications, local explanation
supervision can be generally applied to any dataset where the input feature importance can be
computed. Such feature importance is typically referred to as “Feature Attribution” and can be
also treated as the model explanation to be aligned with human explanation annotation ground
truth. For instance, in Balayan et al. [15] the feature attribution is computed by a specific designed
semantic layer (an intermediate output that is the importance of each feature) and is aligned with
human-labeled feature masks by Cross-Entropy loss; in Singh et al. [138], feature attribution is
calculated by Contextual Decomposition and is aligned with the ground-truth human labels by �1
distance [123].
Overall, the idea of local explanation supervision has been explored extensively in many ap-

plication domains in recent few years, primarily due to the fact that (1) it is straightforward for
human annotators to provide an instancewise explanation with necessary domain knowledge and
(2) the development and popularity of local explanation techniques, such as GradCAM [131] and
attention mechanism [13, 152] to explain complex DNNs in high-dimensional problem space (such
as image and text data). So far the results seem to be promising, as most existing works suggest
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that applying the local explanation supervision during training can greatly enhance both the qual-
ity of the explanation as well as the performance of the backbone DNNs model. However, as also
pointed out by several existing works, the scalability remains the biggest challenge for this kind
of approach, as the additional instancewise human explanation annotations may not be easily
accessible and require non-trial effort from human annotators [52, 53]. Designing effective semi-
supervised or weakly-supervised explanation supervision frameworks, or even adapting the idea
from active learning, can be promising future directions to further overcome this limitation. Never-
theless, existing works also demonstrated the effectiveness of local explanation supervision under
very limited training sample sizes [52, 54], which could suggest the potential benefit of applying
current techniques to the domains where data samples are limited and hard to acquire, yet both
model performance and the explainability are on-demand, such as in medical domains.

3.2.2 Local Explanation Regularization. Local explanation regularization methods add addi-
tional regularization terms to regularize each local explanation to ensure the generated model
explanations follow some general properties (such as smoothness, stability, and sparsity) or follow
the knowledge from other existing well-trained models. The additional explanation of regulariza-
tion loss is typically jointly optimized with the prediction loss during model training. Depending
on the type of regularization terms, we break down the existing techniques into two subcategories:
(1) Property-based Regularization and (2) Explanation Distillation Regularization.

Property-based Regularization: The additional regularization terms are injected into the
model explanation to enforce some general properties (such as smoothness, stability, and spar-
sity). Specifically, in Lei et al. [87] the authors proposed the continuity and sparsity regularization
terms. In Erion et al. [45] the authors proposed the smoothness Regularization (i.e., Laplace 0-mean
prior) on the model Explanation computed by expected gradient. In Halliwell et al. [62] the authors
proposed the Prediction-guided sparsity regularization (in Equations (5) and (6)) to penalize the
model to have small values in saliency maps (computed by GradCAM and guided BP) if the pre-
diction is incorrect. Alvarez et al. [5] proposed a gradient regularization approach for enforcing
explanation robustness/stability. Plumb et al. [117] apply the fidelity and stability regularization on
the explanation. Specifically, the explainer д(·) is realized by Local Interpretable Model-Agnostic
Explanations [122] with a linear function l(·), and the authors applied two regularization terms on
the model explanation, (1) neighborhood-fidelity and (2) stability based on the neighborhood of
input, as follows:

Ω = EX ′∼NXi
[(l(X ′) − f (X ′))2]︸����������������������������︷︷����������������������������︸

neighborhood-fidelity

+EX ′∼NXi
[‖д(f , 〈Xi ,Yi 〉) − д(f , 〈X ′,Yi 〉)‖

2
2]︸��������������������������������������������������︷︷��������������������������������������������������︸

stability

, (11)

whereNXi
is a neighborhood of sample Xi in the space of probability distributions over the whole

input data distribution X , and X ′ is sampled from the neighborhood NXi
. Intuitively, the fidelity

regularization enhanced the explanation to accurately convey which patterns the model used to
make this prediction, while the stability regularization will lead to more stable explanations, which
will improve the model’s trustworthiness [5, 6].

Explanation Distillation Regularization: Besides enforcing predefined properties of the ex-
planation, this line of work tries to distill explanation knowledge from other well-trained models
to guide the explanation of the target model. In Zeng et al. [170], the authors proposed to align the
explanation of a target model with another pre-trained adversarially counterpart model generated
explanation using �2 distance loss. Singh et al. [139] proposed to align the target model’s Class
Activation Maps (CAM) [181] explanation with a pre-trained model’s explanation by minimiz-
ing the overlap between each classes explanation. More specifically, the explanation loss consists
of two terms, (1) regularization loss, which measures the distance between the target models’ and
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the corresponding pre-trained model’s explanation of class i , and (2) overlapping loss, which cal-
culates the similarity between the target model’s explanation of different classes. As a result, the
model can be trained under the constraints whereby (1) the target model explanation should be as
close as possible to a pre-trained model and (2) the model explanation of different classes should
be as different as possible, leading to a batter explanation quality and higher accuracy. More re-
cently, Fernandes et al. [48] proposed the Scaffold-Maximizing Training (SMaT) framework for
directly optimizing explanations of the model’s predictions to improve the training of a student
simulating the said model. The authors found that, across tasks and domains, explanations learned
with SMaT both lead to students that simulate the original model more accurately and are more
aligned with how people explain similar decisions.
While using the idea from model distillation to extract the knowledge to guide the model expla-

nation is an interesting direction, the potential positive effect is largely dependent on the choice
and quality of the pre-trained model and is prone to negative transfer, such as contextual bias
in pre-trained model explanation, that can hurt the target model performance. Thus additional
validation and guidelines are on demand for real-world problems.

3.2.3 Explanation Guided Data Augmentation. Explanation Guided Data Augmentation is an
emerging subdomain in the data augmentation domain, where the ground-truth explanation (i.e.,
rationale) of the prediction task is taken into account when building up additional augmented
samples for model training. The general formulation for generating explanation-guided data aug-
mentation samples can be summarized as follows:

X ′
i = aug(Xi ,д(f , 〈Xi ,Yi 〉)), (12)

where aug(·) denotes the specific augmentation function based on the original input sample Xi

and the model’s explanation for the given input–output pair 〈Xi ,Yi 〉.
The underlying assumption is that training the model with the augmented samples X ′ will en-

courage themodel to better learn to pay attention to the right rationales for the prediction tasks and
thus naturally enhance both the explainability as well as the generalizability of the model. Based
on the way explanation is used for the data augmentation, existing techniques can be categorized
into two directions: (1) Rationale Inclusion/Amplification and (2) Rationale Exclusion/Masking.
Rationale Inclusion/Amplification: This line of works typically emphasizes the right ratio-

nales and de-emphasize other irrelevant features. The inclusion/amplification-based augmentation
function can be generally defined as follows:

augin(Xi ,д(f , 〈Xi ,Yi 〉)) = Xi × (γ + λд(f , 〈Xi ,Yi 〉))), (13)

where γ is used to set a default offset value to preserve all the feature values regardless of the
importance; λ is the scale factor that controls the degree of amplification of the important features.
Specifically, Sharma et al. [135] proposed to amplify the feature values of the right rationales

relatively higher by a certain degree. In their experiments, γ is set to 0.01 and λ is set to 1 to em-
phasize the rationale features in the augmented samples. The results demonstrated the general
effectiveness of the proposed method on several conventional ML models, such as Naive Bayes,
logistic regression, and SVM. In Saha et al. [127], only the important part of the image for network
prediction is selected using saliency-based explanations and stored in the episodic memory with
the corner coordinate for continual learning. Ismail et al. [69] proposed to minimize the KL diver-
gence between f (X ) and f (X ′), whereX ′ is augmented by masking the features with low gradient
values. These types of methods can be seen as a special case of Equation (13), where γ is set to 0
and λ is set to 1 to only include the rationale features in the augmented samples.
Besides the simple augmentation of the feature values, several other works have also proposed

some novel and unique ways to augment data to best leverage the extra information from the
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model explanation. In Pillai et al. [116], the saliency map explanation of the original sample and
other samples as a composed image is aligned with the model explanation of the original input
sample. In Teso et al. [149], the irrelevant features are perturbed, while the rationales and task
labels are preserved as new samples to guide the model attending the ground-truth rationales. In
Schneider et al. [128], the model explanation (generated by GradCAM) is treated as additional in-
put for model prediction and requires a specific change of the model architecture. In Gu et al. [60],
a Saliency-guided Data Augmentation (ESSA) framework is proposed for conducting explanation
supervision and adversarial-trained image data augmentation. It operates through a synergized
iterative loop that handles the translation from annotation to sophisticated images and the genera-
tion of synthetic image-annotation pairs, employing an alternating training strategy. In summary,
the general idea stays the same, which is to build additional samples and inform the model to bet-
ter learn which features are the right rationales to make the right prediction of the downstream
tasks.
Rationale Exclusion/Masking: Conversely to inclusion/amplification, this line of works typ-

ically teaches the model not to attend irrelevant rationales by excluding/masking out the right
rationales, as summarized by the following equation:

augex (Xi ,д(f , 〈Xi ,Yi 〉)) = Xi × (γ − д(f , 〈Xi ,Yi 〉))), (14)

where γ is typically set to be the maximum possible value of the importance, e.g., 1, to exclude
the value of the important features from X and thus serve as a masking function for the data
augmentation.
Specifically, Zaidan et al. [168] propose to construct some additional samples by masking out

those important features of some existing samples to simulate the loss of confidence (uncertainty
should raise) in predicting the right answer. A similar idea can be also found in Li et al. [89],
where the proposed self-guidance is basically using the model explanation as a mask to augment
the original image and thus construct an unsupervised loss based on the augmented image.
Overall, the unique advantages of explanation-guided data augmentation techniques can be sum-

marized as follows: (1) It takes the model behavior (i.e., rationale for the prediction) into consid-
eration; (2) it can be model agnostic with respect to the specific explainability techniques used
for calculating the model explanation; and (3) it can be used in combination with other conven-
tional data augmentation techniques and in parallel with other EGL techniques for model training.
However, the effectiveness of the existing works is mainly supported by intuitions and empirical
observations. Thus further development of quantitative evaluation metrics as well as theoretical
analysis and justification of the techniques can be essential to further advance this field of research.

4 APPLICATIONS

4.1 Computer Vision

Applying EGL to solve image classification problems has become a hot and attractive research area
in recent years [52, 54, 103], largely thanks to the popularity and advancement of visual explanation
techniques [131, 171]. Depending on the nature of the image source, existing works can be further
categorized into (1) general image prediction and (2) medical image analysis.

4.1.1 General Image Prediction. The application of EGL on general images typically involves
image classification tasks on natural image data such as ImageNet [78], Caltech-UCSD Birds [154],
Microsoft COCO [92], and Places365 [182], and some synthetic image data such as ToyColor [126],
MNIST [83], and many MNIST variants, including Fashion-MNIST [163], Decoy-MNIST [126], and
Color-MNIST [90]. The typical EGL technique used in this application domain is local explanation
supervision and regularization, where the sample level visual explanation of the model is jointly
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optimized together with the conventional prediction loss [39, 45, 52, 54, 80, 89, 103, 123, 125, 143,
146, 157]. When applying the explanation supervision techniques, the ground-truth explanation
labels are typically collected from human annotators, and the additional attention loss is typically
realized by a distance loss between the ground-truth and the model visual explanation at the sam-
ple level. For model explanation assessment, case studies are most commonly used for qualitative
analysis [52, 54, 103], while IoU score is for quantitative evaluation [52, 54, 89].

4.1.2 Medical Image Analysis. Besides generic image applications, EGL has also been widely
studied in the medical domain, thanks to the availability of domain-expert annotation on many
medical image datasets [31, 82, 156]. In general, we observed a variety of datasets studied by ex-
isting works, including but not limited to the ISIC Skin Cancer dataset [31], Iris-Cancer dataset,
scaphoid fracture detection dataset [82], Fundus image dataset [119], and the pneumonia detec-
tion X-ray dataset [156] for disease identification task [184]. Similarly to most EGL frameworks on
generic image data, an additional explanation loss is added to the model objective and is typically
realized by a distance loss between the ground-truth annotation collected from domain experts and
the model visual explanation [179]. However, compared with generic image data, several unique
challenges have been identified by existing works when applying EGL to medical images, such as
(1) difficulty in assessing the quality of the model explanation, and (2) the scalability of the sample
size of the annotation labels of the datasets.

4.2 Natural Language Processing

Interest has recently grown in applying EGL to designing NLP systems. Based on how the expla-
nation is acquired, we have two categories of the application: (1) using the attention mechanism
as the explanation and (2) using a generative model to generate the explanation.

4.2.1 Attention Mechanism as the Explanation. NLP systems generally use variants of attention
mechanisms to get explanations. To evaluate the explanation, the ground-truth explanation labels
are typically collected from human annotators (Stacey et al. [142] use TextRank to get ground-truth
labels), and the evaluation metric can be the F1 score and IoU score based on token or snippet level.
In addition to the agreement with human rationales, a faithful explanation is related to the down-
stream task performance, so rationale-level supervision is widely applied [28, 55, 142, 144, 175, 180].
Comprehensiveness and sufficiency are two main metrics regarding the influence of the explana-
tion on the downstream task, Faithfulness, Data Consistency, and Confidence Indication are other
diagnostic properties [11]. Attention mechanisms can learn to assign soft weights to token repre-
sentations so that one can extract highly weighted tokens as rationales [38]. While this is intuitive
for most of the NLP systems, the weights can be useless to give a faithful explanation because of
the complex interaction of tokens. Another strand of works [24, 57] hard-select tokens or snippets
from the input and only uses the selected part for the downstream task to get untangled expla-
nation. This strand can be further divided into pipeline approaches and reinforcement learning
approaches according to how the models are trained. Aligning the explanation with human an-
notators is not necessarily the optimal objective for improving model accuracy, the various loss
strategies are proposed [24]. By, for example, masking out important explanation features of exist-
ing samples [168], one can augment the data. Liu et al. [94] propose global supervision by adding
feature attribution prior to the total loss.

4.2.2 Generative Model to Generate the Explanation. In addition to giving explanations directly
by the attention mechanism of NLP systems, a lot of works apply additional generative models to
generate natural language explanations [17, 70, 87]. Although the rationales acquired from atten-
tion mechanisms provide concise and quick explanations, they may not have the means to provide
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important details of the reasoning of a model. By using an additional natural language decoder,
one can generate a comprehensive description of the decision-making process behind a predic-
tion, some examples of the generative module include a CRF [167], a natural language decoder
[23, 95], a GRU following an MLP [177], BiLSTM, and Transformer [141]. The commonly used
datasets and corresponding tasks are ComVE [155] for commonsense validation, e-SNLI [23] for
natural language inference, COSe [121] for commonsense question answering, e-SNLI-VE [75] for
visual entailment, and VCR [169] for visual commonsense reasoning. The ground truth is usually
also natural language explanations provided by humans. To evaluate the quality of natural lan-
guage explanations, one can either use automatic metrics like METEOR [16], BERTScore [172],
and BLEURT [130] or use human evaluation with metrics like e-ViL score [75], confidence, and
readability. In terms of the faithfulness of the natural language explanations, Wiegreffe et al. [159]
provides two necessary conditions: feature importance agreement and robustness equivalence.

4.3 VisualQuestion Answering

Attention and reasoning are two intertwined mechanisms underlying VQA tasks. Thanks to the
widely used attention mechanism in VQA, applying EGL to help improve both the interpretability
and performance of VQA tasks have become an important research area in recent years. The typ-
ical EGL technique used in VQA tasks is local explanation supervision and regularization, where
the sample-level visual explanation of the model is jointly optimized together with the conven-
tional prediction loss. When applying the explanation supervision techniques, the ground-truth
explanation labels can be collected from human annotators [27, 50, 160] or generated by another
model [120, 176]. There have been a lot of VQA datasets with annotations; some are annotated
with human-generated questions and answers like MovieQA [148] and the VQA v1.0 dataset in
Reference [7], while others are developed with synthetic scenes and rule-based templates like
GQA [68], Clevr [73], and VCR [169]. VQA-2.0 [58] includes complementary images that lead to
different answers, reducing language bias by forcing the model to use visual information. The AiR-
D [27] is the first dataset of eye-tracking data collected from humans performing the VQA tasks.
The VQA-HAT dataset [35] is a visual explanation dataset that collects human attention maps by
giving human experts blurred images and asking them to determine where to deblur to answer
a given visual question. VQA-CP [4] contains QA pairs whose distribution is significantly differ-
ent between the training and test set. VQA-X [112] offers human textual explanations that can be
used to determine important objects and then are grounded to important regions in the image as
the explanation. The additional attention loss can be attention accuracy[27], false sensitivity rate
[160], rank correlation loss [120, 176], and IoU loss [50].

4.4 Healthcare

EGL techniques have also been well explored in general healthcare applications, such as on gene
interaction graph [59], Adult Changes in Thought [102], Mount Sinai Brain Bank, Religious Orders
Study/Memory and Aging Project [1], and healthcare mortality prediction [101]. Specifically, Erion
et al. [46] studied the tissue-specific gene interaction graph for the tissue most closely related to
acute myeloid leukemia (AML, a type of blood cancer) in the HumanBase database [59] on how
penalizing differences between the attributions of neighbors in an arbitrary graph connecting the
features can be used to incorporate prior biological knowledge about the relationships between
genes, yield more biologically plausible explanations of drug response predictions, and improve
test error. They tested the model performance on a healthcare mortality prediction dataset [101],
where the model inputs are 35 features representing patients’ demographic information and med-
ical data. Erion et al. [45] then further extended their previous study and proposed to add a
graph attribution prior regularization on explanation to a two-layer neural network. In addition,
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Weinberger et al. [157] extracted prior information from multiple gene expression datasets of
the Accelerating Medicines Partnership Alzheimer’s Disease Project portal, incorporated meta-
features in a gene–gene interaction graph and proposed a deep attribution prior framework to
Alzheimer’s disease biomarker prediction. More recently, Zhao et al. [179] proposed an EGL frame-
work for pulmonary nodule detection, utilizing public thoracic CT image datasets. This framework
integrates the robust explanation supervision technique to ensure the performance of nodule classi-
fication and morphology. The method aims to reduce the workload of radiologists, enabling them
to focus on the diagnosis and prognosis of potential cancerous pulmonary nodules at the early
stage to improve outcomes for lung cancer patients. Following a similar direction, Zhang et al. [173]
proposed aMulti-annotated Explanation-Guided Learning framework for explanation supervision,
incorporating comprehensive and high-quality generated annotations by learning the character-
istics of each annotator. Their experimental results demonstrate that the proposed method can
significantly outperform all other methods.

4.5 Chemistry

EGL has also started to see emerging applications in the chemistry domain, especially formolecular
puppetry prediction tasks [97, 98, 145]. For instance, one recent work proposed an EGL framework
for Graph Neural Networks (GNNs) by supervising their node- and edge-level explanation to
align with domain expert annotation labels [53]. In this work, the authors studied three binary clas-
sification molecular datasets, namely (1) the Blood-brain barrier penetration (BBBP) dataset
comes from a recent study [97] on the modeling and prediction of barrier permeability, (2) the
BACE dataset provides quantitative and qualitative (binary label) binding results for a set of in-
hibitors of human b-secretase 1 [145], and the “Toxicology in the 21st Century” (TOX21) ini-
tiative created a public database measuring the toxicity of compounds [162]. The general goal for
each dataset is identifying functional groups on organic molecules for biological molecular prop-
erties. Each dataset contains binary classifications of small organic molecules as determined by
the experiment [67]. The experimental results suggest that the proposed GNES framework can
effectively improve the reasonability of the explanation while still keeping or even improving the
backbone GNNs model performance.

4.6 Crime

EGL has also been studied in the application of risk and crime-related applications, where it is im-
portant to check if the model is leveraging reasonable features when predicting crime incidences
or assessing the future risk of crime suspects. For instance, several works have studied the Propub-
lica’s COMPAS Recidivism Risk Score datasets,2 which contains data for predicting recidivism (i.e.,
whether a person commits a crime/a violent crime within 2 years) from many attributes [5, 123].
COMPAS dataset is designed for checkingwhether there exist biases in themode explanation, such
as the model’s treatment of the person’s race attribute when making the prediction. Specifically,
Rieger et al. [123] proposed contextual decomposition explanation penalization (CDEP), a
method that enables practitioners to leverage explanations to improve the performance of a deep
learning model. In particular, CDEP enables inserting domain knowledge into a model to ignore
spurious correlations, and correct errors, and demonstrates the ability to increase performance
on real datasets; Alvarez et al. [5] proposed an EGL framework by explicitly enforcing three ba-
sic desiderata for interpretability—explicitness, faithfulness, and stability—during training to en-
hance the robustness and interpretability of model explanations. Besides, Balayan et al. [15] stud-
ied a private online retailer fraud detection dataset with the proposed JOEL framework, a neural

2Available online at: github.com/propublica/compas-analysis/
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network-based framework to jointly learn a decision-making task and associated explanations that
convey domain knowledge. Specifically, JOEL is tailored to human-in-the-loop domain experts that
lack deep technicalML knowledge, providing high-level insights about themodel’s predictions that
very much resemble the experts’ own reasoning. Moreover, they collect the domain feedback from
a pool of certified experts and use it to ameliorate the model (human teaching), hence promoting
seamless and better-suited explanations.

4.7 Potential Future Domains of Applications

Despite the recent attention and major advance of EGL in the aforementioned popular application
domains, there are still a number of open problems and potentially fruitful directions for future
research and application of EGL, as follows:

4.7.1 FaccT. FaccT are becoming as important as—or depending on application areas—more
important than model accuracy as an evaluation metric. Since it is nearly not feasible to prepare
an impeccable dataset that can equally represent every possible feature related to a model’s task,
blindly pursuing a model’s accuracy cannot exclude the chance of causing “catastrophic conse-
quences” in critical circumstances [66]. One of EGL’s crucial application areas is to realize the
balance between the model accuracy and FaccT by allowing human users to elicit their perspec-
tives on steering the model. In shaping the balance, one crucial research direction is to understand
how to maximize the case where reasonable human reasoning can also cause accurate prediction.
There are several arguments discussing when human reasoning can cause a beneficial or detrimen-
tal effect on model prediction. While the debate is ongoing, we are gradually seeing more evidence
where human involvement can result in a positive effect [32, 56]. For example, Shao et al. find that
humans “arguing against” unreasonable explanation can benefit the model [134]. At the end of
the day, from the perspective of model accuracy and FaccT, a railroad should not the reason for
predicting a train [85], a snowboard cannot be a male class [64], and a shopping cart should not
only belong to a woman class [178].

4.7.2 Adversarial Learning. Adversarial perturbations can significantly drop the model’s accu-
racy. In a dramatic situation, it can reach nearly to 0%. Current ML models are vulnerable to ad-
versarial attacks. Since the majority of adversarial attack shift model’s attention, applying EGL
in detecting unusual shifts could be one of the solutions for developing a more robust ML model
against adversarial attacks. However, in pursuing such a direction, the change of the attention
map after the attack can be subtle from human eyes [20]. To apply EGL in the area of adversarial
learning, we see devising better solutions in the following areas to be crucial. First, providing ad-
ditional signals other than model attention can help human users effortlessly detect the attacked
cases. Second, devising an advanced EGL mechanism that can (1) guide the users to generate ef-
fective input (2) and applying such input to improve the model’s robustness would be essential.
Following this line of thought, very recently, Jeong et al. [71] proposed Generative Noise Injector
for Model Explanations, a novel defense framework that perturbs model explanations to minimize
the risk of model inversion attacks while preserving the interpretabilities of the generated expla-
nations. Thus, we believe future studies on model explanation defense and attack can be one of
the key research sub-areas of EGL domain.

4.7.3 Continual and Active Learning. EGL’s core principle is motivating ML engineers’ iterative
training, such as continual learning [43, 127] and active learning [26, 74]; helping them to figure out
the vulnerability through explanation and fixing the issue by providing a human-level guideline.
In supporting such an iterative training, we believe one of the promising areas is “data iteration,”
a design that can help ML engineers to fortify the dataset by adding more examples based on

ACM Comput. Surv., Vol. 56, No. 7, Article 188. Publication date: April 2024.



188:22 Y. Gao et al.

Table 2. A List of Publicly Available Datasets for EGL with Human Explanation Annotation Labels

Dataset Type Link Annotation Type
Gender Classification Vision https://github.com/YuyangGao/RES Pixel level
Scene Recognition Vision https://github.com/YuyangGao/RES Pixel level
Face Glasses Recognition Vision https://github.com/carriegu0818/EGL_benchmark Pixel level
Prohibited Item Detection Vision https://github.com/carriegu0818/EGL_benchmark Pixel level
ACT-X Vision https://github.com/Seth-Park/MultimodalExplanations Pixel level and Textual
Caltech-UCSD Birds Vision https://authors.library.caltech.edu/27452/ Pixel level(bounding box)
The PASCAL VOC Challenge 2007 Vision http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ Pixel level
The PASCAL VOC Challenge 2012 Vision http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ Pixel level
ISIC2018 Challenge Vision https://challenge.isic-archive.com/landing/2018/ Pixel level(bounding box)
Pneumonia Detection Vision https://www.kaggle.com/c/rsna-pneumonia-detection-challenge Pixel level(bounding box)
Movie Review NLP https://github.com/jayded/eraserbenchmark Span–level rationale
MultiRC NLP https://github.com/jayded/eraserbenchmark Single sentence-level rationale
FEVER NLP https://github.com/jayded/eraserbenchmark Sentence-level rationale
BoolQ NLP https://github.com/jayded/eraserbenchmark Token-level rationale
Evidence inference NLP https://github.com/jayded/eraserbenchmark Sentence-level rationale
e-SNLI NLP https://github.com/jayded/eraserbenchmark Token-level rationale
Commonsense Explanations (CoS-E) NLP https://github.com/jayded/eraserbenchmark Sentence-level rationale
VQA-HAT VQA https://computing.ece.vt.edu/~abhshkdz/vqa-hat/ Pixel level
GQA VQA https://cs.stanford.edu/people/dorarad/gqa/about.html Pixel level
VQA-X VQA https://github.com/Seth-Park/MultimodalExplanations Pixel level and Textual
VQS VQA https://github.com/Cold-Winter/vqs Pixel level
BBBP Graph https://github.com/YuyangGao/GNES Node and edge level
BACE Graph https://github.com/YuyangGao/GNES Node and edge level
TOX21 Graph https://github.com/YuyangGao/GNES Node and edge level

detected vulnerabilities through explanation. In such a direction, we believe understanding the
pros and cons of retraining and continual learning can be crucial. For example, there can be a
case where newly found data points can be stacked up on an existing dataset and be used in
retraining [14]. Another case can be to iteratively update the last model through some of the
existing techniques in continual learning [111]. In general, in the world of EGL, understanding
when to apply retraining or continual learning and what are the pros and cons of each training
strategy are not well understood. Understanding which strategy can yield what strengths and
weaknesses in the scenario of data iteration would be one of the core future applications of EGL.

4.7.4 Contrastive Learning. Contrastive learning is a powerful self-supervised learning strategy
that encourages augmentations of the same input to have more similar representations compared
to augmentations of different inputs. In the field of EGL, we have started to see several works that
apply the contrastive objective to the model explanation between similar/dissimilar samples to
build up the explanation objective [40, 114, 139, 168]. The most significant advantage of leveraging
the contrastive learning paradigm for explanation guidance is that no ground-truth explanation
annotation labels are required for model training. However, designing an appropriate contrastive
framework for EGL can be more challenging due to the lack of a standard form of model explana-
tion under different application domains. Besides, how to define and formulate the positive and
negative explanation samples to contrast with the anchor sample’s explanation can be challeng-
ing without knowing the ground-truth labels. Thus, we believe the further development of the
contrastive EGL framework can be one of the core future directions in EGL, and it can lead to a
significant leap in the application of EGL to the domains where ground-truth explanation labels
are generally difficult to obtain in large scale.

5 EXPERIMENTS

This section aims at providing an extensive and comprehensive experimental study among exist-
ing EGL models in various popular application domains. Specifically, the comparative studies of
four datasets from the CV domain [174], namely (1) Gender Classification, (2) Scene Recognition,
(3) Face Glasses Recognition, and (4) Prohibited Item Detection, and three datasets from the NLP,
namely (1) Movie Review, (2) MultiRC, and (3) FEVER, are provided. The details about each dataset
are included in Table 2, where a full list of publicly available datasets for EGL is provided.
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5.1 Visual Explanation Guided Learning

5.1.1 Gender Classification [52]. The gender classification task is derived from the Microsoft
COCO dataset3 [92]. Images containing the keywords “men” or “women” in their captions were
initially selected. Subsequently, the dataset underwent a rigorous filtering process to ensure its
suitability for a single person gender classification task. Images were excluded if they exhibited
one or more of the following characteristics: (1) captions containing references to both genders,
(2) images featuring multiple individuals, or (3) images where humans were not clearly recogniz-
able [54]. To maintain data integrity and prepare it for human explanation annotation, a subset of
the images underwent manual annotation by human annotators. The resulting dataset comprises
a total of 1,736 images with human explanation annotations, demonstrating an even distribution
of female and male subjects. To simulate a scenario where human explanation annotation labels
are limited, only a random sample of 100 images was used for the training set, while the validation
and test sets each consists of 700 images.

5.1.2 Scene Recognition Dataset [52]. The scene recognition dataset is originally derived from
the Places365 dataset4 [182] and manually annotated by Gao et al. [52]. The task for this dataset
is a binary classification of scene recognition: nature vs. urban. Specifically, the categories used to
sample the data are as follows:

—Nature: mountain, pond, waterfall, field wild, forest broadleaf, rainforest
— Urban: house, bridge, campus, tower, street, driveway

The dataset consists of a total of 2,086 images with human explanation annotation labels. Similarly,
we split the data randomly with a sample size of 100/700/700 for training, validation, and testing.

5.1.3 Face Glasses Recognition. We construct the glasses recognition dataset from the
CelebAMask-HQ dataset5 [84] by categorizing face images with and without glasses. In
CelebAMask-HQ, masks were manually annotated with 19 classes including all facial components
and accessories. The rationale of the task is that we are able to obtain factual annotation labels by
the segmentation of eyes and glasses directly. While the original dataset is highly imbalanced in
the ratio between faces with and without glasses, we randomly select an equal number of images
in both classes, with a total of 100/393/392 images for training/validation/testing, respectively.

5.1.4 Prohibited Item Detection. The task is constructed from the Sixray dataset6 [100] by split-
ting images based on the presence of prohibited items. Sixray is highly imbalanced with 1,059,231
X-ray images, including six classes of 8,929 prohibited items.Merging the six prohibited classes, the
task of the new dataset is a binary prohibited item detection. Bounding boxes of prohibited items
are included in all images. Due to data imbalance, the dataset is further filtered into 100/5296/5298
images for training, validation, and testing, respectively.

5.1.5 Evaluation Metrics. We evaluate the model in terms of prediction performance as well as
in terms of explanation performance. For prediction performance, we use AUC and accuracy as
evaluation metrics. To evaluate explanation faithfulness, we employ the Matrix for comprehen-
siveness and sufficiency by ERASER [38]. For explanation alignment assessment, we compare the
saliency map generated by GradCAM with ground-truth annotation masks. Specifically, we use
the IoU score [18], the bitwise intersection and union operations between the ground-truth expla-
nation and the binarized model explanation. We further evaluate explanation performance with

3Available at: https://cocodataset.org/
4Available at: http://places2.csail.mit.edu/index.html
5Available at: http://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
6Available online at: https://github.com/MeioJane/SIXray
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Explanatory F1, precision, and recall by bitwise comparison between ground-truth explanation
and model explanation.

5.1.6 Comparison Methods. We compare the performance of several models as listed below:

— Baselines: Baseline 1 and 2 are pre-trained ResNet50 and VGG16 model that trains only on
prediction loss without explanation loss.

— Supervised EGL models:

— GRADIA [54]: A framework that trains the DNN model with both the prediction loss as
well as a conventional L1 loss that directly minimizes the distance between the continuous
model explanation and the binary positive explanation labels.

— RES [52]: A framework that trains the DNN with both factual and counterfactual annota-
tions with two imputation functions: д(·) as a fixed value Gaussian convolution filter and
learnable imputation function дϕ (·) via multiple layers of learnable kernels.

— CDEP [123]: A framework that incorporates Contextual Decomposition to penalize spuri-
ous correlations and therefore correct errors.

— RRR [129]: A framework that was initially introduced in Reference [126] and altered in
Reference [129], which aims to regularize the model to be right for the right reasons.

— Unsupervised EGL models:

— SGT [69]: A framework that introduces saliency-guided training for neural networks to
reduce noisy gradients in predictions.

— SENN [5]: A framework that applied two regularization terms on the model explanation:
(1) neighborhood-fidelity and (2) stability based on the neighborhood of input.

5.1.7 Implementation Details. All models are trained for 50 epochs with the same train/val/test
split as mentioned above. We use the ADAM optimizer with a learning rate of 0.0001 [77]. The ar-
chitecture of each model is listed in Table 3. To better compare the performance on explainability,
the model explanations are generated by GradCAM [131]. When calculating the explanation eval-
uation metrics, the explanation maps were further binarized by a fixed threshold of 0.5. We use a
batch size of 32 for training and 100 for testing. For GRADIA and RES, we set the slack variable α
to 0.1 and 0.01, respectively, and the regularization factor to 0. For RRR, we set the regularization
parameter to 1. For CDEP, we set the regularizer rate to 0, 0.1, and 10. For SENN, we set the ro-
bust regularization, sparsity regularization, and concept regularization hyperparameters to 0.0001,
0.00002, and 1, respectively. For SGT, we set features dropped to 0.1 and 0.3.

5.1.8 Quantitative Analysis. Model prediction performance and explanation quality in the do-
main of computer vision are presented in Table 3. We evaluate six models through gender classi-
fication, scene recognition, glasses identification, and prohibited item discovery. We evaluate two
baseline model performances: ResNet50 and VGG16, as they are employed by the selected paper.
Overall, supervised models demonstrate better prediction power and higher explanation quality
than unsupervised models. ResNet50 seems to perform slightly better in prediction, and signifi-
cantly better in explanation quality compared with VGG16.
For gender classification, GRADIA generally has the best prediction performance and presents

the highest explanation quality, with the best scores in all metrics besides comprehensiveness and
Exp recall, and minimal differences of 0.9% and 2.1% in comprehensiveness and explanatory recall.
For models with ResNet50 as the backbone architecture, GRADIA and RES significantly outper-
form SGT, since SGT is unsupervised. SGT presents a lower accuracy, comprehensiveness, IoU, and
explanatory F1 than the baseline model, which implies that the unsupervised model is not improv-
ing model performance and explanation quality. Yet SGT achieves the lowest sufficiency, which
measures how well the prediction aligns between the original input and an explanation-generated
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Table 3. The Classification Performance and Explanation Evaluation on

Visual Explanation Guided Learning

Prediction Exp Faithfulness Exp Alignment
Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑

Gender Classification
Baseline 1 ResNet50 0.680 0.664 0.048 0.105 0.147 0.470 0.554 0.525
Baseline 2 VGG16 0.637 0.671 0.048 0.051 0.058 0.155 0.340 0.132

GRADIA[54] ResNet50 0.695 0.764 0.107 0.090 0.243 0.625 0.787 0.608
RES [52] ResNet50 0.690 0.744 0.108 0.097 0.240 0.614 0.742 0.621

RRR[129] VGG16 0.624 0.628 0.027 0.015 0.091 0.270 0.424 0.257
CDEP [123] VGG16 0.628 0.635 0.014 0.010 0.100 0.254 0.419 0.231

SENN [5] SENN(CNN) 0.589 0.627 0.005 0.027 0.062 0.186 0.300 0.186
SGT [69] ResNet50 0.645 0.687 0.012 0.002 0.044 0.352 0.502 0.257

Scene Recognition
Baseline 1 ResNet50 0.947 0.965 0.068 0.255 0.397 0.702 0.906 0.628
Baseline 2 VGG16 0.953 0.988 0.134 0.117 0.191 0.324 0.890 0.226

GRADIA [54] ResNet50 0.952 0.987 0.255 0.073 0.378 0.606 0.912 0.501
RES [52] ResNet50 0.956 0.988 0.189 0.002 0.435 0.722 0.909 0.647

RRR [129] VGG16 0.953 0.987 0.014 0.019 0.224 0.364 0.925 0.250
CDEP [69] VGG16 0.934 0.952 0.026 0.039 0.127 0.232 0.807 0.153

SENN [123] SENN(CNN) 0.733 0.798 0.022 0.042 0.082 0.183 0.721 0.108
SGT [5] ResNet50 0.937 0.985 0.164 0.039 0.056 0.301 0.796 0.213

Face Glasses Recognition
Baseline 1 ResNet50 0.991 0.999 0.302 0.163 0.134 0.971 0.998 0.954
Baseline 2 VGG16 0.996 0.864 0.183 0.039 0.299 0.873 0.987 0.804

GRADIA [54] ResNet50 0.990 0.999 0.368 0.262 0.375 0.949 0.993 0.917

RES [52] ResNet50 0.991 0.999 0.396 0.128 0.302 0.932 0.997 0.887
RRR [129] VGG16 0.994 0.999 0.384 0.160 0.332 0.909 0.992 0.864
CDEP [123] VGG16 0.996 0.999 0.004 0.003 0.042 0.203 0.540 0.248

SENN [5] SENN(CNN) 0.797 0.873 0.002 0.023 0.045 0.202 0.639 0.134
SGT [69] ResNet50 0.996 0.999 0.083 0.106 0.292 0.671 0.974 0.556

Prohibited Item Detection
Baseline 1 ResNet50 0.961 0.992 0.161 0.053 0.195 0.823 0.870 0.784
Baseline 2 VGG16 0.917 0.988 -0.026 -0.010 0.147 0.330 0.788 0.241

GRADIA [54] ResNet50 0.974 0.997 0.176 0.272 0.213 0.703 0.928 0.610
RES [52] ResNet50 0.962 0.995 0.152 0.295 0.235 0.837 0.964 0.776

RRR [129] VGG16 0.950 0.995 0.055 0.128 0.155 0.343 0.448 0.320
CDEP [123] VGG16 0.959 0.992 0.038 0.021 0.061 0.403 0.615 0.298

SENN [5] SENN(CNN) 0.754 0.839 -0.026 0.095 0.042 0.152 0.584 0.098
SGT [69] ResNet50 0.962 0.993 0.027 0.066 0.062 0.552 0.648 0.481

The results are obtained from 3 individual runs and the best results of each metric are highlighted in bold.

input. Models with VGG16 as the backbone report lower sufficiency than those with ResNet50,
while models with ResNet50 generally hold higher accuracy, comprehensiveness, IoU, and explana-
tory F1. SENN, which develops its own architecture with a set of conceptizer, parametrizer, and
aggregator, underperforms in all metrics, since the backbone is a simple CNN model.
For scene recognition, the baseline VGG16 achieves better accuracy, comprehensiveness, and

sufficiency, compared with the baseline ResNet50. VGG16 has a significantly low explanatory re-
call and IoU, which results in 53.8% worse performance in explanatory F1. For the selected models,
RES yields the best performance on all metrics, slightly improving prediction performance and
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boosting explanation quality significantly, with 1.0%, 2.4%, 177.9%, −99.2%, 9.6%, 2.8% changes
in accuracy, AUC, comprehensiveness, sufficiency, IoU, and explanatory F1, respectively. SENN
consistently underperforms in all metrics. Among models with VGG16, RRR is able to maintain
a similar accuracy as the baseline while improving explanation alignment (IoU and Exp F1) by
17.3% and 12.3%, while CDEP results in worse explanation alignment. RRR and CDEP both obtain
a lower score in comprehensiveness and sufficiency, which suggests that even stripping off the
model-generated explanations, the models are able to generate similar predictions. The stripped
model-generated explanations are useful in terms of prediction, but not all useful information is
covered by the saliency map. Moreover, baseline ResNet50 under-performs in terms of explanation
faithfulness but outperforms in terms of explanation alignment. This implies that while ResNet50
is able to generate explanations that exhibit the pattern of human explanation annotation, the
generated explanations are not useful for the model in terms of prediction.
In the task of the glasses identification, all models achieve high performance besides SENN,

which consistently results in worse performance in all metrics. In terms of explanation compre-
hensiveness, and faithfulness, GRADIA, RES, RRR, and CDEP show (21.9%, 60.7%), (31.1%, −21.5%),
(109.8%, 310.3%), and (−97.8%, −92.3%) changes with respect to the baseline. RES holds the highest
comprehensiveness score and CDEP holds the lowest sufficiency score. This implies that GRADIA,
RES, and RRR are successful at extracting all useful attention for prediction, while GRADIA and
RRR sacrifice the prediction power if solely using generated attention as the input. Among su-
pervised models, GRADIA has the highest IoU as well as the highest percentage increase, which
implies that the model successfully learns the pattern of human explanation annotation and is
able to produce saliency maps that are most aligned with human explanation annotation. How-
ever, since GRADIA also has the highest sufficiency score, it further implies that learning from the
human explanation annotation may not be sufficient for the model to make correct predictions.
Meanwhile, SGT shows high accuracy and IoU even as an unsupervised model. Yet it suffers from
low Explanatory recall, low comprehensiveness, and high sufficiency score, indicating that the
model-generated attention is not successful in terms of prediction.
In the Prohibited Item Detection task, models generally exhibit a pattern of maintaining high

accuracy, better explanation alignment, and comprehensiveness but worse sufficiency. ResNet50
baseline achieves higher prediction and explanation robustness compared with VGG16. While
most models’ accuracy ranges from 0.917 to 0.974, SENN yields an accuracy of 0.754, which im-
plies that a CNN model is insufficient for the dataset. All models with VGG16 as the backbone
performs well in terms of low sufficiency but poorly in comprehensiveness and explanatory recall.
GRADIA yields the highest accuracy (0.974), AUC (0.997), and comprehensiveness score (0.176) but
poor sufficiency score of 0.272 when the baseline has a sufficiency of 0.053. RES shows the worst
good performance on sufficiency but second to best score on comprehensiveness among EGLmod-
els. The baseline model with VGG16 achieves the best sufficiency score of −0.010. This is because
the model sufficiency score is highly influenced by the size of generated annotation map, and the
VGG16 baseline model scarifies the sparseness of explanation to achieve a higher sufficiency and
consequently leads to the worst comprehensiveness score. To validate the above statement, we
further compute the proportion of attention map generated respectively to the entire image of the
VGG16 baseline, RES, and GRADIA models. We find that the average explanation map sizes of
the VGG16 baseline model are on average 84% and 33% greater than those of RES and GRADIA,
respectively. This additional observation provides additional support for our assumption that the
baseline model tends to generate larger explanation maps, leading to a much higher sufficiency
score but a much worse comprehensiveness score. In terms of explanation alignment, RES and
RRR are able to improve IoU from 0.195 to 0.101 and from 0.147 to 0.155, the best among each
architecture. RES improves explanatory F1 from 0.827 to 0.837 and CDEP improves explanatory F1
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Fig. 5. Selected explanation visualization results on four vision datasets: gender classification, scene recogni-

tion, face glasses detection, and prohibited item identification. The model-generated explanations are high-

lighted.

from 0.330 to 0.403. Overall, GRADIA achieves the best prediction accuracy and faithfulness while
RES achieves the best explanatory alignment among all models.

5.1.9 Qualitative Case Study. Figure 5 displays the visualization results of the four vision tasks:
gender classification, scene recognition, face glasses detection, and prohibited item identification.
Overall, RES and GRADIA have more overlap with the ground truth. CDEP is more fine-grained.
SENN generates a saliency map that highlights all areas instead of focusing on a particular place.
In the gender classification task, RES and GRADIA perform well in identifying the human body,
even with distractions. RRR, CDEP, and SGT sometimes highlight areas that are disruptive, such
as phones and kitchen stoves. In terms of saliency map size, CDEP generates a saliency map that
focuses only on a small area, whereas SENN generates a thin layer of attention all over the image,
which explains their low performance in IoU and explanatory F1. In the scene recognition task,
RES, GRADIA, and SENN have the most overlapping areas with the ground-truth label. RRR and
CDEP sometimes are biased. For example, in the last image, RRR considers the floor key elements
in scene recognition, whereas the ground-truth label is the trees. SGTmostly attends to areas other
than the ground truth, which explains its low IoU compared with other models. For face glasses
detection, all models generate saliency maps focused on the face area. While the baseline model
focus on the entire face, RES, GRADIA, RRR, and SGT generate maps that are more specific to the
eye areas. CDEP focuses more on the lower half of the face and SENN attends to all face parts, such
as the eyes, mouth, and so on. While all models are highly accurate at identifying the presence of
prohibited items, model-generated maps do not align with ground-truth labels. Most models are
able to focus on some small objects, not necessarily the prohibited items. SGT focuses on the white
area outside of the baggage, which accounts for its low accuracy and low explanation performance.

5.2 Rationale Attention Guided Learning

To evaluate the performance of EGL models on NLP tasks, three datasets with explanation ratio-
nales are selected for the experimental study [38], and the details about each dataset are presented
as follows.
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5.2.1 Movie Review [52]. The movie review dataset includes binary sentiment labels as well as
rationale annotations at the span level. The task is to classify movies with positive sentiments from
those with negative sentiments. We randomly split the data with a sample size of 1600/150/200 for
training, validation, and testing. The explanation label is the sentiment ∈ {positive, negative}.

5.2.2 MultiRC [76]. MultiRC is a reading comprehension dataset originally composed of a se-
ries of rationale/question/answer triplets. This is also a binary classification task where the pre-
diction label is True or False. The dataset is divided into 24029/3214/4848 for training, validation,
and testing. The ground truth for explanation indicates if the answer is correct.

5.2.3 FEVER [150]. FEVER is a fact verification dataset, where each claim can be classified
into supported, refuted, or not enough information. DeYoung et al. [38] further took a subset of
the dataset and included only support and refuted claims. The dataset is further separated into
97957/6122/6111 images for training, validation, and testing respectively. For explanation ratio-
nales, the model has to predict the veracity of a claim ∈ {support, refuse}.

5.2.4 Evaluation Metrics. We evaluate the model in two categories: (1) prediction performance
and (2) explanation performance. For prediction performance, accuracy and AUC are computed to
evaluate the predictive power of the model. For explanation evaluation, we incorporated six matri-
ces to fully examine the explanation robustness. Matrix for comprehensiveness and sufficiency are
derived from ERASER [38]. In addition, we measure the token level IoU [18] between ground-truth
rationale and predicted rationale through IoU, explanatory F1, precision, and recall.

5.2.5 Comparison Methods. We compare the performance of several models as follows:

— Baseline: Baselines 1, 2, and 3 are pre-trained models that train only using the prediction
loss without explanation loss. The pre-trained architecture for baselines 1, 2, and 3 are
BERT+MLP, BERT+LSTM, and BERT+BERT, respectively.

— ERASER [38]: A pipeline model that first trains the encoder to extract rationales and then
trains the decoder to perform prediction using only rationales.

— Glockner et al. [57]: A differentiable training framework that aims to output faithful ratio-
nales on a sentence level.

— Carton et al. [24]: A model that applies sentence-level rationale supervision, non-occluding
“importance embeddings” on selective rationales with high sufficiency-accuracy.

— Expred [177]: A novel explanation generation framework work using multi-task learning
that is task aware and can exploit rationales data for effective explanations.

— FRESH [70]: A model that aims to produce faithful rationales for neural text classification by
defining independent snippet extraction and prediction modules.

5.2.6 Implementation Details. The data preprocessing follows the setting of ERASER [38]. We
train all the models equally for 20 epochs, and Adam is used for optimization with a learning rate
of 2e-5. To evaluate the explanation performance, the threshold for the calculated rationales is set
to be 0.5. We follow the hyperparameter settings reported in the papers of the above methods.

5.2.7 Quantitative Analysis. Table 4 presents the model prediction performance and explana-
tion quality of the Movie Review, MultiRC, and FEVER datasets. The best results for each dataset
are highlighted with bold. In general, when comparing with the baseline, all models achieve bet-
ter accuracy and explanation alignment. The sufficiency score also decreases compared with the
baseline model, which implies that the model-generated rationale is representative of the entire
document.
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Table 4. The Classification Performance and Explanation Evaluation on NLP Tasks

Prediction Exp Faithfulness Exp alignment
Model Architecture Acc. ↑ AUC ↑ Comp. ↑ Suff. ↓ IoU ↑ F1 ↑ Precision ↑ Recall ↑

Movie Review
Baseline 1 BERT+MLP 0.516 0.478 0.086 0.145 0.242 0.365 0.441 0.312
Baseline 2 BERT+LSTM 0.622 0.591 0.027 0.126 0.043 0.112 0.462 0.064
Baseline 3 BERT+BERT 0.756 0.703 0.112 0.113 0.085 0.188 0.411 0.122

ERASER [38] BERT+LSTM 0.826 0.805 0.128 0.093 0.598 0.749 0.734 0.765
Glockner et al.[57] BERT+MLP 0.564 0.511 0.114 0.103 0.541 0.702 0.693 0.712
Carton et al. [24] BERT+BERT 0.834 0.812 0.138 0.084 0.585 0.738 0.726 0.751
Expred [177] BERT+GRU+MLP 0.794 0.779 0.094 0.076 0.639 0.779 0.781 0.779

FRESH [70] BERT+LSTM 0.678 0.653 0.144 0.093 0.569 0.726 0.745 0.707
MultiRC

Baseline 1 BERT+MLP 0.564 0.511 0.012 0.188 0.235 0.459 0.534 0.402
Baseline 2 BERT+LSTM 0.593 0.573 0.081 0.205 0.106 0.280 0.471 0.199
Baseline 3 BERT+BERT 0.627 0.580 0.054 0.154 0.076 0.234 0.485 0.154

ERASER [38] BERT+LSTM 0.639 0.615 0.039 0.132 0.448 0.618 0.615 0.622
Glockner et al. [57] BERT+MLP 0.587 0.547 0.065 0.136 0.409 0.580 0.576 0.585
Carton et al. [24] BERT+BERT 0.647 0.613 0.074 0.076 0.473 0.642 0.633 0.651

Expred [177] BERT+GRU+MLP 0.638 0.622 0.032 0.061 0.447 0.618 0.602 0.635
FRESH [70] BERT+LSTM 0.607 0.586 0.096 0.113 0.437 0.608 0.613 0.604

Fever
Baseline 1 BERT+MLP 0.822 0.803 0.075 0.126 0.103 0.319 0.513 0.231
Baseline 2 BERT+LSTM 0.851 0.822 0.022 0.099 0.157 0.391 0.454 0.344
Baseline 3 BERT+BERT 0.872 0.856 0.017 0.117 0.036 0.145 0.612 0.082

ERASER [38] BERT+LSTM 0.874 0.867 0.036 0.053 0.679 0.808 0.805 0.812
Glockner et al. [57] BERT+MLP 0.835 0.813 0.122 0.066 0.672 0.803 0.833 0.776
Carton et al. [24] BERT+BERT 0.893 0.876 0.084 0.048 0.707 0.828 0.831 0.826

Expred [177] BERT+GRU+MLP 0.903 0.889 0.043 0.027 0.696 0.820 0.817 0.824
FRESH [70] BERT+LSTM 0.862 0.832 0.106 0.053 0.627 0.771 0.732 0.814

The best results of each metric are highlighted in bold.

For the Movie Review dataset, Carton et al. [24] yields the highest classification accuracy and
Expred [177] generates the explanations with the highest quality. Compared with the baseline ar-
chitecture BERT+LSTM, ERASER [38] improve the model accuracy and AUC by 32.8% and 36.2%
and boost the explanation quality by 374.1%, −26.2%, 1290.7%, and 568.8% in terms of compre-
hensiveness, sufficiency, IoU, and explanatory F1 scores, respectively, while FRESH [70] improves
model accuracy, AUC, Sufficiency, and Exp F1 by 9.0%, 10.5%, 433.3%, −26.2%, 1223.3%, and 548.2%
respectively. ERASER [38] has better performance in terms of both model performance as well
as explanation quality. Carton et al. [24], which employs the BERT+BERT architecture, increases
accuracy and AUC by 10.3% and 15.5%, and ERASER [38] achieves the second-best result with an
architecture of BERT+LSTM. Expred [177] obtain the highest explanation alignment and lowest
sufficiency with a model architecture of BERT+GRU+MLP, and FRESH [70](BERT+LSTM) holds
the highest comprehensiveness score among the selected models.
For the MultiRC dataset, Carton et al. [24] achieves the highest classification accuracy as well

as the highest explanation faithfulness and alignment. It improves the model accuracy and AUC
by 3.2% and 15.5%, lowers sufficiency score by 50.6%, and boosts IoU and explanation F1 by
522.4% and 174.4%, respectively, compared with the baseline. For all models with the architecture
BERT+LSTM, while they consistently obtain better results than baseline except for comprehen-
siveness ERASER [38], outperforms FRESH [70] by 5.3%, 4.9%, 2.5%, and 1.6% in terms of model
accuracy, AUC, IoU, and explanatory F1. FRESH [70] is more accurate when assessing explana-
tion faithfulness through the sufficiency and comprehensiveness score, with a 14.4% decrease and
146.2% boost compared with ERASER [38].

The performance varies for the FEVER dataset, as FRESH [70] achieves the highest accuracy,
AUC, and sufficiency scores, and Expred [177] yields the highest comprehensiveness, IoU, Explana-
tory F1, and Explanatory Recall. All the models perform generally well in the fact verification
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Fig. 6. Selected explanation visualization results on FEVER dataset. The model explanations are highlighted.

Fig. 7. Selected explanation visualization on Movie Review dataset. The model explanations are highlighted.

task in terms of accuracy, with a range of 0.835 to 0.903. In terms of explanatory faithfulness,
FRESH [70] performs worse than the baseline in comprehensiveness but reduces sufficiency by
46.5%. Expred [177] obtains the greatest boost in comprehensive and sufficiency, with a change
of 394.1% and −59.0% respectively. The baseline models generally show poor performance in ex-
planation faithfulness and alignment, which are improved significantly across all five models. Ex-
pred [177] is able to improve IoU by 1863.9% and Explanatory F1 by 471.0%.

5.2.8 Qualitative Case Study. Figures 6, 7, and 8 provide examples of visualization results on the
FEVER, Movie Review, and MultiRC datasets. The model-generated explanations are highlighted.
In general, the baseline model highlights areas that are scattered all around the corpus, whereas
trainedmodels generate explanation rationales that are more aggregated. In Figure 6, ERASER [38]
and Glockner et al. [57] are highly aligned with ground truth, aligned with their high performance
in IoU. While Expred [177] obtains the highest accuracy and comprehensiveness, its generated-
explanation does not align with the ground-truth annotations, which implies that the ground-
truth labels may not be sufficient for the model to learn the prediction. FRESH [70] generates
explanations that are poorly aligned with the ground truth and outputs a wrong prediction label.
In Figure 7, while Carton et al. [24] aligns well with the ground truth, it focuses on a higher

percentage of tokens, which explains why it slightly underperforms in explanatory precision and
comprehensiveness but outperforms in sufficiency. There exhibits a compromise between high
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Fig. 8. Selected explanation visualization results on MultiRC dataset. The model explanations are high-

lighted.

accuracy and high explanation quality, as Carton et al. [24] achieves the highest accuracy but
lowest comprehensiveness among the selected models. This examples shows how the amount of
attention may manipulate the result of explanation faithfulness. If a high amount of tokens are
considered important, then sufficiency will be close to 0 and comprehensiveness will be relatively
high. Therefore, it is necessary to consider both explanation faithfulness and alignment when
analyzing the explanation quality. This example also reveals the importance of a case study to
visualize the quantitative results and understand how attention performs in terms of alignment
and faithfulness.

6 CONCLUSION

This survey has presented a comprehensive survey of existing methodologies developed in the
field of EGL, a group of techniques that applies XAI-driven insights to steer the DNNs’ behavior
in realizing iterative model revision. It provides an extensive overview of the EGL challenges, tech-
niques, applications, evaluation procedures, as well as extensive experimental comparison among
existing techniques under popular application areas. It summarizes the findings of the research
presented in more than 150 publications on EGL, the majority of which were released since 2018.
Concretely, in this survey, the formal definition of EGL and its general learning paradigm is first
given, along with an overview of the key factors for EGL evaluation, as well as summarization and
categorization of existing evaluation procedures and metrics for EGL are provided. Based upon
the numerous historical and state-of-the-art works discussed in this survey, the article concludes
by discussing the current and potential future application areas of EGL and provides an exten-
sive experimental study that aims at providing the first comprehensive comparative study among
existing EGL models in various popular application domains, such as the CV and NLP domains.
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