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Designing and generating new data under targeted properties has been attracting various critical applications
such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily
rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific
knowledge and low throughput to support effective and efficient data generation. Recently, the advancement
of deep learning has created the opportunity for expressive methods to learn the underlying representation
and properties of data. Such capability provides new ways of determining the mutual relationship between
the structural patterns and functional properties of the data and leveraging such relationships to generate
structural data, given the desired properties. This article is a systematic review that explains this promising
research area, commonly known as controllable deep data generation. First, the article raises the potential
challenges and provides preliminaries. Then the article formally defines controllable deep data generation,
proposes a taxonomy on various techniques and summarizes the evaluation metrics in this specific domain.
After that, the article introduces exciting applications of controllable deep data generation, experimentally
analyzes and compares existing works. Finally, this article highlights the promising future directions of con-
trollable deep data generation and identifies five potential challenges.
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1 INTRODUCTION

Data generation is an important field that aims to capture the inherent distribution of data to gen-
erate similar yet new data. The field is a long-lasting, fast-growing one with broad applications
in critical fields such as molecule design [1-3], image editing [4-6], text generation [7, 8] and
speech synthesis [9-11]. Data generation requires exploring and manipulating the complex data
structures which historically lead to high cost, intensive manpower, and rich domain knowledge
in large (and usually discrete) searching space. Partially because of this, traditional methods for
data generation are customized to specific domains so that domain-specific heuristics and engi-
neering can be more easily applied [12-15]. For instance, the process of drug design, which is to
generate new molecular structures, typically requires chemists to hand-craft candidate structures
and then test for desired properties such as solubility and toxicity. Computational methods such as
generic algorithms also may assist with combinatorial search for molecule structures by designing
molecular mutation and crossover rules based on domain knowledge [16]. The molecule structure
space is huge, however: for instance, the number of realistic drug-like molecules is estimated to
be around 103 [17], and they pose considerable difficulties to search and identify the structure
of interest. Moreover, in many domains such as neuroscience, circuit design, and protein struc-
ture, our domain knowledge is still quite limited and incomplete. The paucity of understanding on
the data generative process limits our capability in reproducing and even creating new ones with
desired properties. Another example is the logic circuit design which aims to output the desired
schematics of the integrated circuit. The traditional circuit design is a rather complex process that
relies on a large amount of mathematical modeling of the behavior of circuit elements based on
characteristics of charge [13, 18] and selecting appropriate materials for different circuit devices
according to their properties [13, 19]. Noticeably, detailed reviews for traditional data generation
techniques can be found individually in specific domains [13, 15, 20, 21].

In the recent years, the advancement of deep learning provides new opportunities to tackle
the aforementioned challenges in data generation. Deep learning techniques have exhibited
significant success in learning the representation of various data types including images, texts,
sequences and graphs [22-28]. This success further empowers us to fit the mapping from data
structures to their corresponding (latent) features, where the former can usually be discrete
and unstructured while the latter are continuous vectors or matrices. Hence, instead of directly
exploring the high-dimensional space of complex data structure with expensive combinatorial
algorithms, the latent features of the data are explorable in the continuous vector space with
efficient algorithms such as gradient-based ones. For instance, protein structure is formed by a
sequence of amino acids and therefore the distribution of the sequential data can be captured and
encoded by sequential deep learning models such as recurrent neural networks (RNNs) and
transformers [29]. Then the new sequence of amino acids can be autoregressively generated from
the learned latent space of protein structure [30]. Greater sequence diversity demonstrably has
been achieved by those deep learning-based methods for protein design than with the traditional
frameworks such as Rosetta [31]. Since deep learning extracts the latent features in end-to-end
fashion, moreover, the dependency on domain knowledge may be largely reduced. For example,
in the field of image synthesis, deep learning-based techniques can learn the latent semantic
representations of paintings of specific artists and readily fit the distribution in latent space and
hence synthesizing new paintings of the same artists is simply a sampling+decoding process [32].
Also because of this greater independence of domain knowledge, the data generation techniques
based on deep learning could have better potential in being more easily generalized or cross-used
in different data types or applications.

Despite the promise of black-box deep learning techniques in tackling the traditional hurdles
in data generation, how to fill the gaps between the learned latent features and the real-world
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properties of interest is critical to ensure the alignment between the generated data structures and
the desired properties. Generating data with desired properties is de facto prerequisite in typical
real-world applications, ranging from medicine design [33, 34], to circuit obfuscation [35], art
design [36, 37], and audio synthesis [38, 39]. For instance, chemists may not only generate novel
quaternary ammonium compounds (QACs), but also hope that generated QACs have strong
solubility in the water and minimum inhibitory concentration (MIC) smaller than 4mg/L to
ensure antibiocity [40]. The community of image captioning may expect to generate more human-
like texts from images with the length less than ten words in a humorous style [41, 42]. As a
result, to tackle this core crux in controlling the properties of the data generated by deep learning
techniques, fast-growing demand, and research body in controllable deep data generation have
been observed in recent years [1, 6, 43-45].

1.1 Challenges in Controllable Deep Data Generation

Despite its importance in making deep learning the de facto techniques for real-world, data-
generation tasks, controllable deep data generation is technically nontrivial to achieve because
of several major challenges:

— Large search space with property constraints. The structure of the data to be generated, such
as graph, image and text, can be highly complex, discrete and unstructured. Controllable deep
data generation, therefore, needs to search in a large, discrete, and unstructured data space to
identify the structure of data that satisfies desired property constraints. For instance, the number
of realistic drug-like molecules is large and estimated to be around 10%* [17] and poses significant
challenges on the efficiency of the generation model to search for the molecular structure that
possesses desired properties.

— Interference of multi-property control due to correlation among properties. Correlation
among properties of data is ubiquitous in many real-world settings. For instance, a scenery image
of “nighttime” is more likely to have low “brightness”. In addition, for molecules such as alkanes,
increasing molecular size will likely result in a decrease in their water solubility [46]. Neverthe-
less, these correlated properties are difficult to control, since controlling one will constrain the
others into some subspace such as a hyperplane or even a non-convex set, and that factor raises
the need to design the corresponding optimization and generation strategies [47, 48].

— Diversity in property types and heterogeneity in their control objectives. The stan-
dard deep learning framework is typically designed for continuous data and trained via back-
propagation. Nevertheless, discrete properties widely exist in real-world settings. For instance,
linguists may want to generate a piece of audio speech with a specific emotion (e.g., anger, hap-
piness, fear, sadness, neutral, etc.) while others also may want to synthesize a scenery image
in the “morning”. Difficulty to formularize and control different types of properties as multiple
objectives, including continuous or discrete property values, property values within a range or
maximizing (or minimizing) those properties, calls for various strategies and frameworks for
controllable deep data generation.

— Efficiency issues in representation of complex data. Deep data generation produces new
data from the latent representation learned to cover the distribution of observed data. The struc-
ture of observed data can be rather complex, however. For example, the average length of pro-
teins from eukaryote is 449, and each of these residues forms as any of 20 amino acids [49].
Complex molecules are typically made up of chains and rings that contain carbon, hydrogen,
oxygen and nitrogen atoms and may have millions of those atoms linked together in specific
arrays [50]. As properties of data are usually highly sensitive to small changes of structure [51],
efficiently and expressively learning the representation of data is critical to generating new data
with desired properties.
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— Difficulty in labeling ground-truth data properties. To train and evaluate the controllable
deep data generation models, comparing the properties preserved by the generated data and the
ground-truth properties is important. Although one can extract certain properties of generated
molecules relying on well-developed domain knowledge and tools such as chemoinformatics
toolkits [52], this way is usually not the case for many domains where properties are difficult to
be identified automatically for the data types such as text, audio, images, social networks, and so
on. For instance, the model will not know what style a piece of text preserves or what the emotion
a specific audio expresses unless it is annotated either by human labor or by pre-trained models.

1.2 Our Contributions

To date, a considerable amount of research has been devoted to controllable deep data genera-
tion to address the challenges. Understanding comprehensively the strengths and weaknesses of
existing works is important for advancing the state-of-the-art techniques and in order to fore-
see potential research opportunities. Also, broad interests exist in controlling data generation of
various domains. Although most proposed methods have been designed targeting individual ap-
plication domains, it is beneficial and possible to generalize their techniques to other application
domains. Hence, cross-referencing these methods that serve different application domains is tough
and needs to be addressed. The quality of results of controllable deep data generation, moreover,
requires specifically designed evaluation strategies in various application domains. Consequently,
systematic standardization and summarization of different evaluation strategies across various do-
mains is necessary. In addition, given the growing demand from both Artificial Intelligence (AI)
scientists who are looking for new available datasets to test their models for controllable deep
data generation and domain-specific communities who are looking for more powerful controlling
techniques to generate complex structured data with desired properties, the absence of a system-
atic survey of existing techniques for controllable deep data generation limits the advance of data
generation for both parties. To fill the gap, this survey will provide a systematic review of con-
trollable deep data generation techniques to help interdisciplinary researchers understand basic
principles of controllable deep data generation, choose appropriate techniques to solve problems
in their related domains and advance the research frontiers with standardized evaluation scenarios.
The major contributions of this survey are as follows.

— A systematic summarization, categorization, and comparison of existing techniques.
Existing techniques for controllable deep data generation are thoroughly categorized based on
how the generation process is triggered to form a novel taxonomy of a generic framework. Tech-
nical details, advantages, and disadvantages among different subcategories of the taxonomy are
discussed and compared. The taxonomy is proposed to enable researchers from various applica-
tion domains to locate the technique that best fits their needs.

— Standardized evaluation metrics and procedures. Historically, data generation methods and
their evaluations usually are customized to individual domains and are not well unified despite
their shared abstract problems and goals. To tackle this challenge, the paper summarizes com-
mon evaluation metrics and procedures for controllable deep data generation and standardizes
them from the perspective of both generated data quality and their property controllability.

— A comprehensive categorization and summarization of major applications. Major appli-
cations including molecule synthesis and optimization, protein design, image editing and emo-
tional speech generation are comprehensively introduced and summarized. A full comparison
and discussion includes various techniques that have been applied to these application domains.
The comprehensive categorization and summarization of these major applications will help the
Al researchers explore extensive application domains and + guide researchers in those domains
to generate data with appropriate techniques.
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— Systematic review of existing benchmark datasets and empirical comparison of exist-
ing techniques on them. Benchmark datasets borrowed in various application domains are
systematically summarized according to various data modalities. In addition, experimental re-
sults are conducted by peer-reviewed articles and us to compare representative models for con-
trollable deep data generation on those benchmark datasets. The systematic review of the exist-
ing benchmark datasets and the empirical comparison of representative techniques will enable
model developers to involve additional datasets to evaluate their models and compare the per-
formance of their proposed models with benchmark results.

— A helpful discussion of current research status and potential future directions. Based
on the comprehensive survey of various techniques for controllable deep data generation, stan-
dardized evaluation metrics, a broad spectrum of applications, systematic review of benchmark
datasets and empirical comparisons of existing techniques, this paper concludes by offering
profound insights into several open problems and outlining promising future directions in this
domain.

1.3 Related Works

Previously published surveys have some relevancy to controllable deep data generation. These
surveys can be classified into four topics: (1) deep learning, (2) deep representation learning, (3)
deep data generation, and (4) controllable data generation in specific domains.

Deep learning is a general topic that covers a broad range of neural network-based techniques
and includes two branches: (1) deep representation learning to embed complex data into expressive
and informative low-dimensional representation and (2) deep data generation to recover the data
from the low-dimensional representation. To date, the perspectives of deep learning have been
thoroughly surveyed, including its history [25, 53-56], objectives [25, 57], models [25, 53-60] and
so on [59, 61].

Deep representation learning has a huge impact on the downstream tasks, such as prediction
[62, 63], classification [64, 65] and self-supervision [66, 67]. Deep representation learning has been
surveyed from different perspectives, including history [68], motivation [69], learning strategies
[68, 69], models [68, 69], training [68, 69], challenges [69] and future directions [68]. Other surveys
instead summarize representation learning techniques intended for various types of domains. For
instance, Zhang et al. [70] proposed new taxonomies to categorize and summarize the informa-
tion network representation learning techniques, while Li and Pi [71] reviewed a large number of
network representation learning algorithms from two clear points of view of homogeneous net-
work and heterogeneous network. Chen et al. [72] reviewed a wide range of graph embedding
techniques. Ridgeway [73] instead surveyed various constraints that encourage a learning algo-
rithm to discover factorial representations that identify underlying independent causal factors of
variation in data. Zhang et al. [74] continued to expand the topic by exploring the advancement
of concept factorization-based representation learning ranging from shallow to deep or multilayer
cases.

For deep data generation, Oussidi and Elhassouny [75] gave an overview of the building blocks
of deep generative models, such as variational autoencoders (VAEs) and generative adversar-
ial networks (GANs), and pointed out issues that arise when trying to design and train deep gen-
erative architectures using shallow ones. Regenwetter et al. [76] further introduced key works that
have introduced new techniques and methods, and identified key challenges and limitations cur-
rently seen in deep generative models across design fields, such as design creativity and handling
constraints and objectives. Furthermore, Eigenschink et al. [77] proposed a data-driven evaluation
framework for generative models for synthetic data. Harshvardhan et al. [78] instead covered deep
generation as part of generation in machine learning and proposed future directions. In addition
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to surveys on general deep data generation, other surveys may focus on the deep data generation
in specific domains including graph generation [79-81], image synthesis [82, 83], text generation
[84, 85] and audio generation [86—88].

Surveys are available for controllable data generation techniques customized for specific do-
mains. For instance, Huang et al. [20] surveyed computational methodologies for de novo protein
design on the full sequence space guided by physical principles that underlie protein folding. Ped-
erson [89] reviewed circuit analysis and its applications to computer-aided circuit design. Guihaire
and Hao [90] reviewed crucial strategic and tactical steps of transit network design. In addition to
shallow models, deep models designed for controllable data generation were also reviewed in vari-
ous domains. For instance, Toshevska and Gievska [91] claimed to have systemically reviewed text
style transfer methodologies by deep learning, which covers controllable style generation on text
data. Jin et al. [92] is another survey that defined text style transfer aiming to control certain at-
tributes in the generated text, such as politeness, emotion, humor, and many others. Another field
related to controllable deep data generation is drug design, which usually controls properties of
generated drug molecules [93]. Kim et al. [94] discussed the conditional control of generated com-
pounds and the corresponding models for property control. Kell et al. [95] instead only focused
on the common-used model for drug design, VAEs, and provided examples of recent success of
VAE:s in terms of drug design. A recent effort by Gao et al. [96] benchmarks molecule optimization
task empowered by machine learning. In contrast, our survey reviews standardization, compar-
ison, unification, categorization, and taxonomy of controllable deep data generation techniques
spanning applications.

1.4 Outline of the Survey

We start the survey by first introducing the background of controllable deep data generation, chal-
lenges, our contributions, and the relationship between our survey and existing surveys in Sec-
tion 1. We next formally define the problem of controllable deep data generation (Section 2.1) and
propose the taxonomy according to various property control techniques (Section 2.2) in Section 2,
followed by the summarization of evaluation metrics in the same section. In Section 3, we intro-
duce techniques that have been developed for controllable deep data generation as well as detailed
explanation of the concepts and representative works of controllable generation from scratch (Sec-
tion 3.1) and controllable transformation from source data (Section 3.2) according to our taxonomy.
In Section 4, we showcase applications of models reviewed in Section 3.1 and Section 3.2 for various
domain-specific tasks, followed by popular datasets employed in these domains. Later in Section 5,
we introduce the potential challenges, opportunities of the domain and limitations of the existing
methods. We will conclude our survey in Section 6. In Appendix Section A, moreover, we introduce
common frameworks for deep data generation as preliminaries. We also performed experimental
comparison as well as analysis on popular molecular, image, text and audio datasets with common
models for controllable deep data generation in Appendix Section B.

2 PROBLEM FORMULATION, TAXONOMY AND PERFORMANCE EVALUATIONS

This section firstly formulates the problem of controllable deep data generation in Section 2.1. Next
we propose a taxonomy to summarize various techniques in this domain in Section 2.2. We then
unify standard metrics to evaluate the performance of these techniques for controllable deep data
generation in Section 2.3.

2.1 Problem Formulation

We formally define the controllable deep data generation as follows. Controllable deep data gen-
eration aims to generate data with desired properties based on latent features extracted by deep
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learning techniques. Define x € X as a data object such as an image, a graph, a text document, and
the like. Here X is the domain of the data. Also define c as a set of N properties of interest of x such
thatc = {c1,c2,...,cn}, where each ¢; (i = 1,..., N) is the i-th property value of x. Moreover, we
have ¢* = {c],c},...,cy} to hold the set of desired values (or ranges) of N properties. In some
situations, ¢} can be a binary value or real value. For example, when generating images of scenery,
one may want to generate a nighttime (instead of daytime) image such that ¢; = “nighttime”. In
another example, one may want to generate a molecule with weight of 100 (amu) so that ¢; = 100.
In some other situations, the desired property value ¢} can be a range or a set, for example, one
may want to generate a molecule with ClogP’ between 2 and 4. ¢} can have other forms depending
on the applications. For example, when we do not have a specific desired value of the property but
just want to maximize (or minimize) it, one could set it as (negative) infinite. Denote z € R™>K as
the latent representation of each data object x learned by deep learning models. The distribution
p(z) characterizes the semantic distribution of data objects in latent feature space.

Controllable deep data generation aims to learn a data generator g() that can generate data based
on the latent semantic features z ~ p(z) with its property values ¢ satisfying the user-desired c*:
x < g(z,x9) s.t., ¢ € ¢*, where x is an optional term when any “source data” is available for
new data object x to derive and transfer from. For example, one can transfer a photo (x,) into a
painting of Van Gogh’s style (x), or can edit a given molecule (x;) toward a new one (x) with better
properties. Such a scenario is called data transformation, which has wide, real-world applications
and can be considered as an extension of data generation.

2.2 Taxonomy

To have an overall view of this field and allow comparison of various techniques in a qualitative
way, we propose taxonomy to categorize the existing works of controllable deep data generation
techniques. Specifically, according to how the generation process is triggered, the proposed taxon-
omy has two main classes of works: 1) controllable generation from scratch and 2) transformation
from source data. Specifically, controllable generation from scratch aims to generate data where
specific attributes or features of the generated data can be controlled or guided by the user. Trans-
formation from source data, by contrast, aims to transform from the data in the source domain
to the data in the target domain while preserving target properties [98]. Each class is further di-
vided into subcategories based on how the property-control signal is introduced to the model. The
detailed taxonomy including the subcategories of each aspect is presented in Figure 1. The compre-
hensive introduction of controllable generation from scratch and transformation from source data
will be provided in Section 3.1 and Section 3.2, respectively. In addition to the proposed taxonomy,
we summarize the peer-reviewed publications following the aforementioned taxonomy in Table 1.

2.3 Performance Evaluations

The evaluation of the performance of controllable deep data generation consists of two parts:
(1) data-quality evaluation evaluates the general quality of generated data and (2) property-
controllability evaluation evaluates how well the properties are controlled.

Data-quality evaluation of controllable deep data generation is adapted from the evaluation
metrics for general deep generative models. The data-quality evaluation consists of two strate-
gies: (1) self-quality-based metrics and (2) distribution-based metrics. Self-quality-based metrics
are conducted to evaluate the overall quality of generated data including novelty, validity and
uniqueness. Novelty measures how different the generated data is from the training data. For

Here ClogP refers to the calculated value of partition coefficient (logP). logP of a material defines the ratio of its solubility
in two immiscible solvents [97].

ACM Comput. Surv., Vol. 56, No. 9, Article 228. Publication date: April 2024.



228:8 S. Wang et al.

Property concatenation |

‘i Pre-generation control |-

Property mapping |

- Optimization in latent space |
Controllable generation

from scratch

-| Post-generation control |-

Optimization in data space |

Goal-oriented control |

-| Peri-generation control |-

1
1
1
1
4
Controllable deep || _I
I
1
[
1

Distribution-guided control l

data generation

Single-modality transformation |

Fixed transformation

X Cross-modality transformation I
l| Controllable Transformation Y

from source data

Control via reference data |

Steerable transformation

Control via latent space I

Fig. 1. The proposed taxonomy of controllable deep data generation.

Table 1. Publications for each Category of the Taxonomy

Taxonomy ‘ Representative publications
Pre-generation control Property concater‘lation [5, 38, 45, 99-118]
Property mapping [2, 6,43, 119-129]
Controllable generation Post-generation control Latent space optimization [130-165]
from scratch Data space optimization [33, 130, 166-169]
Goal-oriented control [1,3,7,170-178]

Peri-generation control

Distribution-guided control [10, 179, 180]
Fixed transformation Within-domain transformation | [168, 181-188]
Controllable transformation Cross-domain transformation [182, 183, 185, 189, 190]
from source data Steerable transformation Control via reference data [39, 190-211]
Control via latent space [11, 212-222, 222-226]

instance, in the task of graph generation, novelty measures the percentage of generated graphs
that are not sub-graphs of the training graphs. Validity, as its name suggests, measures whether
generated data preserves specific characteristics. For example, validity for molecule generation
tasks measures the percentage of generated molecules that are chemically valid based on domain-
specific rules [1]. Since ideally the generated data should be diverse but not identical, uniqueness
measures the diversity of generated data calculated by the percentage of unique data in all gener-
ated data. Distribution-based metrics measure the distance between the distribution of generated
data and the distribution of real data. Lower value of these metrics corresponds to similar distri-
bution preserved by the generated and real data and indicates better generation results. A few
metrics are designed to measure the distance between distributions, such as Kullback-Leibler
divergence (KLD) [146], Maximum Mean Discrepancy (MMD) [227, 228] and Fréchet Incep-
tion Distance (FID) [229]. Since data-quality evaluation can be applied to any generation tasks
and has been concluded in a few surveys [78, 79, 230], we will not regard it as the focus of our
survey, and details can be referred to these surveys.

Property-controllability evaluation that assesses how well the properties are controlled is a
critical but challenging task since generated data usually does not explicitly tell us if those prop-
erties are preserved. For instance, we can surely tell if an image contains a specific pattern by our
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Table 2. Metrics for Property-controllability Evaluation

Type ‘ Metrics ‘ Formula
MSE e =12
. . MAE Lle —c*
Distance-based metrics - — M lcl.c Il
) Cosine similarity R
Continuous ”‘H'”L*H
properties L2 norm Ile = ¢*||2
CLL log p(c|x)
Likelihood-based
Automated AMP AMP; = 30 pm(x).i=1,...,N
evaluation Hypothesis testing-based | p-value -
Accuracy IR
. . Precision o
Discrete Classification-based Lol
roperties Recall TP+FN
prop F1 precisionXrecall
score precision+recall
Entropy-based BCE —ﬁ /,\,/f:l{ci log p(ci) + (1 —¢;)log(1 — p(c;))}
MOS 130 RATE;
TPFTN
Score-based ACCI{I’%{CY -+
Manual Precision TP+FP
validation Recall J
TP+FN
precisionXrecall
F1 score 2x precision+recall
Rank-based Average human rank % Zf:l RANK;;

eyes, but we cannot tell directly the toxicity of generated molecules in this way. In general, metrics
for property-controllability evaluation are designed to measure the distance between properties
of generated data and target properties, which comprise two strategies: (1) automated evaluation-
based metrics and (2) human annotation-based metrics. The typical evaluation metrics in evaluat-
ing controllable deep data generation are summarized in Table 2.

Automated evaluation-based metrics are distance measures formularized to compute the similar-
ity of properties of the generated data and the target properties. Two steps are contained: property
calculation and property validation, which can be broken down to the validation of continuous and
discrete values. Specifically, the property values in this way are first extracted from the generated
data either by directly calculation or via pre-trained models to be compared with the target proper-
ties [5, 45, 101, 104, 111, 112]. Then, for continuous properties, automated evaluation-based metrics
include distance measures (e.g., mean squared error (MSE), mean absolute error (MAE), co-
sine similarity, and L2 norm) [5, 123, 138, 153, 213], likelihood-based metrics (e.g., conditional
log-likelihoods (CLL) and Attribute Mean Probability (AMP)) if properties are assumed to
follow a specific probabilistic distribution [6, 119, 133, 137] and hypothesis testing-based metrics
(e.g., p-values from A/B testing) to test if properties of generated data and real data are significantly
different [10, 103, 107] (Table 2). Note that to calculate AMP, M different classifiers are trained for
M different properties in c. Then for each data point x; in x, the classifiers could output the prob-
abilities p,,(x;) as presented in Table 2. For discrete properties, automated evaluation-based met-
rics include classification-based metrics (e.g., accuracy, precision and F1 score) [181, 190, 231] and
entropy-based metrics (e.g., binary cross entropy (BCE)) [141, 172]. Classification-based metrics
are computed based on true positive (TP), true negative (TN), false positive (FP) and false
negative (FN) when comparing predicted properties and true properties. Specifically, Accuracy is
calculated as the percentage of properties from the generated data that are in the same class as the
real properties. F1 score views the generator as a property classifier and measures how accurately
the properties of generated data can be classified into the same class of the real properties [232].
BCE compares each of the predicted probabilities for properties of generated data to the real binary
properties.
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Human annotation-based metrics are obtained by recruiting human evaluators to score man-
ually the properties of generated data [8, 104, 107, 120, 125, 233]. Strategies to obtain a human
annotated score can be classified into two types: (1) score-based metrics and (2) rank-based met-
rics. Score-based metrics directly measure the quality of the properties of generated data. For in-
stance, some works directly score the quality of generated speech such as the mean opinion
score (MOS), in which S evaluators are asked to rate the quality and naturalness of the stimulus
i (i.e., RATE;) on a Likert-type scale from 1 to 5 with scores labeled as Bad, Poor, Fair, Good and
Excellent, respectively [234]. Other works recruit human evaluators to classify generated data ac-
cording to their properties and calculate the classification-based score such as accuracy, precision,
and F1 score compared to real properties [186, 221]. Rank-based metrics compare performance
of controllable deep data generation across models. Human evaluators are asked to rank subjec-
tively the data generated by various models according to the quality of properties of generated
data. Then the average human rank is calculated for each model with RANK;; as the rank of the
evaluator i on the model j. The model with the lower average human rank should have better
performance.

3 TECHNIQUES FOR CONTROLLABLE DEEP DATA GENERATION

In this section, we introduce the techniques of controllable generation from scratch and the con-
trollable transformation from source data in detail in Section 3.1 and Section 3.2, respectively.

3.1 Controllable Generation from Scratch

According to which phase of the generation process the control is involved, controllable genera-
tion from scratch can be divided into three scenarios: (1) pre-generation control feeds the property-
control signal to the model before the data is generated; (2) post-generation control iteratively op-
timizes the properties of the data after the data is generated; (3) peri-generation control directly
generates data with desired properties by sampling from the data distribution learned during the
training process of the model.

These three tactics have their specific advantages and limitations. Pre-generation control sim-
ply manipulates the value of properties as the input of the generator before the generation process
and is relatively easy to implement. Besides, the generator takes the property-related information
along and disentangles it with the data representation as the input, preserving a high level of in-
terpretability in the model. Pre-generation control cannot guarantee that the target properties are
preserved by the generated data, however, since it does not evaluate and leverage the properties of
generated data in the generation process. By contrast, post-generation control evaluates the prop-
erties after the data is generated and leverages the properties to guide the generation process for
the next iteration, until the desired objective of properties is reached. Hence, the post-generation
control usually guarantees that generated data preserves desired properties. Nevertheless, post-
generation control requires that the properties are evaluated after the data is generated and serve
as the control signal to improve the generation process. This usually leads to a more complex gener-
ation architecture compared to pre-generation control-based techniques. Peri-generation control
directly generates data via the learned distribution, which owns a relatively simple architecture of
generation. Peri-generation control usually requires a relatively large dataset to train the model,
however, it entails that the model should learn the distribution of the data with desired properties
during the training process.

3.1.1  Pre-generation Control. Pre-generation control, as shown in Figure 1 and Figure 2 (1),
aims to control properties of generated data conditioning on target properties. In general, two
different ways are available for incorporating the control signal of desired properties as the input:
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(1) Pre-generation control (2) Post-generation control (3) Peri-generation control

’
\

Seo [ | ‘,'|"""|

~=1 Goal w===-a ¢* 1

! 1

(e) Goal-oriented control

Generator

(b) Property mapping (d) Data space optimization (f) Distribution-guided control

Fig. 2. Architecture of control via controllable generation from scratch. Green modules are where the control
signal is entailed.
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Fig. 3. Property concatenation-based models for controllable generation from scratch.

(a) property concatenation feeds the raw properties to the generator while (b) property mapping
first encodes the properties into their embedding and feeds the embedding to the generator.

Compared with property concatenation techniques, the structure of property mapping-based
models is usually more complex, since the embedding of the target properties is obtained by ei-
ther encoding the target properties into the latent space via an encoder, or optimizing the latent
space, based on the learned mapping between the latent space and properties. Nevertheless, dif-
ferent types of input properties (i.e., continuous or categorical properties) may cause difficulties
in the design of the generator of property concatenation-based techniques, which is instead not
a challenge for property mapping-based techniques since they only take continuous property em-
bedding as the input.

Property concatenation conditions the generation process on the original target properties
simply by feeding property codes along with the data representation into the generator, as shown
in Figure 2(a) and Figure 3. As a result, given the target properties c*, the generation process can
be formulated as x ~ p(x|c = ¢*). In this process, the properties are independent of the latent
representation of the data.

In recent years, a huge amount of effort has been devoted to controllable generation from
scratch with the strategy of property concatenation. Techniques to achieve property concatena-
tion have been developed under popular existing deep generation frameworks, such as adversarial
training, variational inference, autoencoder and sequential model. For instance, the framework of
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adversarial training has been borrowed by works that control data generation by conditioning on
the auxiliary information [5]. As presented in Figure 3(a), several works feed handcrafted proper-
ties into the generator of GANS to realize property control on generated data [45, 112, 114], which
have the objective as follows:

L =Expllog D(x)] + E.-p(z)[log(1 — D(G(z]c)))], 1)

where D and G are discriminator and generator, respectively. Based on Equation (1), D and G are
trained together, in which G is trained conditionally on desired properties to produce realistic data
by having it compete against D in a game-theoretic framework. In addition to feeding properties
into the generator, some works also input the properties into the discriminator [45, 112, 114]. In
this case the D(x) of the Equation (1) can be rewritten as D(x|c) to condition the discrimination
process on the properties.

In addition to training on the adversarial loss, another way to train the objective is to maximize
the joint likelihood of data conditional on the target properties based on the variational inference.
The variational inference is proposed to approximate the intractable posterior density of the latent
variables for example, approximate the posterior p(z|x,c) when training conditional VAEs that
are broadly used for controllable generation from scratch-based frameworks. For implementation,
several works feed the properties into the decoder of VAEs along with the data representation
(Figure 3(b)) [38, 99, 107]. The objective can be formularized as follows:

L = —Ezpizn[log po(xlz, o)] + KL[gy (z|x)||p(2)], @)

where g4 (z|x) is the approximated posterior distribution of p(z|x) and ¢ is the parameter of the
encoder. pg(x|z, ¢) is the decoder that generates data from latents parameterized by 0, where prop-
erties c are concatenated with the latent representation of data z. Under the same framework, other
works feed properties both into the encoder with data and into the decoder with the data represen-
tation [107, 116]. For example, given target properties, RationaleRL encodes rational of properties
and data into latent space by the encoder. The decoder is initialized with both rational and latent
data representation to ensure that generated molecules contain the corresponding rational. In this
case, p(z|x) in the objective above becomes p(z|x, ¢) and the approximated posterior is changed to
qe(zlx,c).

Besides techniques under the framework of adversarial training and variational inference, au-
toencoder serves as another framework for controllable generation from scratch (Figure 3(c)). Sim-
ilar to the variational inference-based techniques mentioned above, several works directly feed the
target properties into the decoder [100] of autoencoder to generate data with desired properties.
The objective can be formulated as the reconstruction loss:

L= _Ez~p(z\x) [IOgPe(x|Zs C)], (3)

where pg(x|z,c) is the generator that is learned by optimizing Equation (3) and the concate-
nation of data representation and properties serve as the input. Another branch of property
concatenation-based techniques is implemented by sequential generative models, particularly for
generating sequential data. Sequential generative models condition the generation of the token
at the current stage on both previously generated tokens and the target properties (Figure 3(d))
[102, 110, 113, 115]:

xp ~ po(xelx<i—1,c), (4)

where x; is generated at the t-th stage and x<;_; is the set of data generated before the t-th stage.
The generator is parameterized by 6 and properties are concatenated with data generated at the
previous step. The condition sequential generation has a broad range of applications. For instance,
several deep text generative models view a sentence as a sequence of words and generate the
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(c) Conditional sequential generation (d) Conditional flow-based generation

Fig. 4. Property mapping-based models for controllable generation from scratch.

whole sentence word-by-word sequentially [102, 113, 115]. To realize the controllable data gener-
ation, the word to be generated at the current stage depends on both previously generated words
and the target properties. Controllable graph generation can also be conducted in a sequential
manner, where the node to be generated at the current stage relies on both previously generated
nodes, edges, and the target properties [110]. In addition to the autoregressive model, generative
diffusion is a rapidly emerging method for controllable data generation. Most strategies based
on property concatenation rely on classifier-free diffusion guidance [235]. This guidance blends
score estimates from both a conditional diffusion model and a concurrently trained unconditional
diffusion model. Specifically, rather than learning €y(x;,t), the classifier-free diffusion guidance
learns €y (x;, ¢, t) in which the property is concatenated with latents of the data (i.e., diffused data).
Hoogeboom et al. [105] generate molecules conditional on their properties by concatenating the
property values with the latents. Tevet et al. [108] generate human motion based on text descrip-
tions similarly following the property-concatenation strategy. Nichol et al. [106] proposed GLIDE,
which serves as a text-conditional diffusion model that has a superior performance by means of
classifier-free guidance training strategy. Huang et al. [118] generate speech based on the diffusion
model conditioning on the Mel-spectrogram at each step.

Property mapping first maps the target properties into latent space, as shown in Figure 2(b)
and Figure 4, and then enables property control by feeding the embedding of the target properties
into the generator. Suppose the mapping from the target properties to the corresponding latent
variables is achieved by the function f(c) and represented by z* = f(c*), then given the target
properties c*, generated process can be formulated as x ~ p(x|z* = f(c*)).

Similar to property concatenation, property mapping techniques designed for controllable gen-
eration from scratch are mostly under the framework of adversarial training [123, 125], maximizing
joint likelihood via the variational inference [2, 43, 119, 120, 124] and conditional sequential gener-
ation [121]. As illustrated in Figure 4(a), unlike the adversarial training-based models for property
concatenation that can feed the target properties into both generator and discriminator, the condi-
tional GANSs for property mapping only feed the embedding of target properties into the generator
since the discriminator of GANs aims to classify fake and real data rather than their embedding
[123, 125]. The objective function of conditional GANs can be adapted from Equation (1):

L = Exvpxlog D(x)] + Bz p(z)[log(1 = D(G(z, 2"|c)))], )

where z* is the embedding of the input properties obtained from z* = f(c). Models learned based
on the variational inference act in a similar way as in the property concatenation setting. As shown
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in Figure 4(b), the generation is controlled by feeding the embedding of the target properties into
the decoder [2, 43, 119, 120, 124]. Specifically, the objective can be formularized as:

L = =Bz p(zrjo)z-p(zlv) 108 po(xlz. 2)] + KLl gy, (z|x)[Ip(2)] + KL[gg,("[O)lIp(z")],  (6)

where ¢; and ¢, are parameters of posteriors to approximate p(z) and p(z*), respectively. The de-
coder is parameterized by 0. The existing works have shown considerable diversity in embedding
properties into latent space. For instance, some works pre-train a property encoder to extract and
embed the target properties into the latent space. Then the data can be generated by the decoder
that takes both the data and property embedding as the input [120, 124]. In some other works,
the mutual dependence between the individual property and the specific latent variable can be
realized via an invertible function [43]. Then in the generation process, latent variables can be
backtracked given target properties via the invertible function and serve as the input of the de-
coder. In addition, prediction models such as sparse Gaussian process can also be used to predict
properties from the data representation [2]. The corresponding latent variables can be optimized
based on techniques like Bayesian optimization [236] given target properties and are then fed into
the decoder to generate data. Particularly, for sequential data, as presented in Figure 4(c), condi-
tional information of properties are projected onto the input layer along with the data from the
previous stage to generate data at the current stage: x; ~ p(x;|x<;-1,2* = f(c)) [121]. In addition
to generating sequential data, Choi et al. [129] employ the diffusion model to generate images
while at each step the generation is conditioned on the control signal extracted from the reference
image.

In addition to the models described above, as shown in Figure 4(d), conditional flow-based mod-
els relying on the invertible constraint serve as another tool for property mapping-based control-
lable generation from scratch by learning the mapping between data distribution p(x) and prior
distribution p(z) using a bijective function z = F(x) [6, 122, 126, 127]. Then the data is generated
by the invertible mapping from the latent variables. One type of conditional flow-based generative
model encodes properties into the latent space z* via the encoder, and encodes the data into z via a
forward flow [6]. The distance of the distribution of the property embedding and data embedding
is minimized. Then the data can be generated from the embedding of the target properties. To train
this conditional flow-based generative model, we maximize the likelihood:

det OF(x)

: ™)

Another type of conditional flow-based generative model feeds properties as the parameter of
forward function, which is usually a neural network [122, 126, 127]. During the generation pro-
cess, the target properties are fed into the inverse function to generate corresponding data. In the
training process, we modify pg(x, ¢) to pe(x|c) and F(x) to F(x;c) in objective Equation (7) while
z = F(x;c).

log pg(x, c) = log ps(z,c) + log

3.1.2  Post-generation Control. Post-generation control, as suggested in Figure 2 (2), achieves
controllable generation from scratch by first generating data and then optimizing the properties
of generated data towards the target property c*. According to whether latent space is entailed dur-
ing the process of controllable generation from scratch, two common tactics have been employed:
(a) latent space optimization takes advantage of the continuous latent vectors learned by models
to avoid the combinatorial search of data structures. Specifically, it manipulates the learned latent
vectors by optimization methods or heuristics; by contrast, (b) data space optimization does not
embed data or properties into latent space, but rather directly generates data with target prop-
erties by searching over the original data space which is often high-dimensional and sometimes
discrete.
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The key difference between latent space optimization and data space optimization is whether a
latent space is entailed during the process of controllable generation from scratch. The benefit of
latent space optimization is that the latent space learned by models is usually continuous and low-
dimensional which makes the optimization phase an easier problem. In addition, regularization or
structure prior can be easily imposed while learning the latent space, which is particularly true
when the input data is highly discrete, high-dimensional and indifferentiable such as graphs, texts,
and so on. By contrast, data space optimization usually optimizes the property-related objective
based on the domain knowledge The objective function is usually easier to optimize than the
optimization on the latent space which is even non-convex.

Latent space optimization often requires a latent space learned by models which have an
encoder g4(z|x) that maps data from data space X to the learned latent space Z, and a decoder that
maps the latent vector back to the data space. The encoder and decoder usually are parameterized
by neural networks depending on the data type (e.g., GNN for graph data, CNN for image data,
etc.). As shown in Figure 2(c), Latent space optimization refers to optimizing the latent vectors z
by a heuristic function f(z) in the latent space to obtain optimized latent vectors z’ that can be
decoded to x” with desired properties, as follows:

z=qg(zlx); 2" =z+f(2); x'=pe(xI2), (®)

where f(z) can be in different formats and learned in different settings.

The first way to learn f(z) is to find meaningful latent directions aligned with the change of
properties, then controllable generation from scratch can be easily achieved by moving latent
vectors along the latent directions. Some works [136, 137, 143] simply interpolate linear direction
between the data with and without desired properties as the directions to control the properties
while others [141, 157, 159] also discover linear directions that control the properties but in an
end-to-end manner guided by a discriminator that predicts the properties. Harkonen et al. [160]
leverage PCA to decompose the latent space learned by the model to factorize controllable latent
directions. Shen and Zhou [144] discover latent directions that control semantically meaningful
properties of data by decomposing generator parameters without the need to access semantic
labels as in previous methods. Parthasarathy et al. [164] leverage a GANs-based model and linearly
interpolates in a metrics space which correlates with the properties instead of directly in the latent
space.

The second way to find f(z) is to leverage regularization over the latent space and manipulate
the latent vectors to achieve controllable generation from scratch by following the bias introduced
to the model. Johnson et al. [135] propose a new framework that learns a structured latent-variable
model for controllable latent variables in a structured representation. Ma et al. [140] aim to gener-
ate semantically valid graphs and formulate semantic constraints as regularization terms to gener-
ative models. Guo et al. [146, 154], Yang et al. [161], Li et al. [150] and Zhou et al. [153] introduce
inductive biases over the structure of the studied data and propose a structured latent-variable
generative model that learns controllable latent variables in an unsupervised learning manner.
Pati and Lerch [149], Du et al. [152] and Xu et al. [162] leverage a disentangled VAEs model that
regularizes the latent variables for controlling properties of data.

The third way to find f(z) is the optimization-based method, in which a heuristic function is
learned to estimate properties ¢ of a given z. With the learned heuristic functions, optimization-
based methods can be applied to search z’ with desired properties. For instance, Jin et al. [2] and
Zang and Wang [122] optimize the latent vectors learned by the generative models for generating
data with desired properties.

Data space optimization directly optimizes over the data space to obtain data x” with desired
properties instead of learning a continuous latent space, as illustrated in Figure 2(d), unlike latent
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space optimization. Even though data space optimization suffers from the high-dimensional and
usually discrete searching problem, it does not require the mapping to continuous space which
sometimes causes loss of information: x” = f(x).

Kang et al. [130, 169] and Nigam et al. [166] design a genetic algorithm with a neural network
(often as a property evaluator) to search data with desired properties. Xie et al. [33] devise an
MCMC-based approach for controllable generation from scratch that samples data maximizing the
distribution of desired properties. Fu et al. [168] formulate data in a differentiable format which
allows direct optimization over the data space. Song et al. [237] borrow a score-based generative
diffusion model to generate data conditioning on the target properties. The intuition is that at the
last step of the reverse diffusion process, the data is sampled from py(xo|c*). This only requires to
compute p,(c*|x;) at all steps that can be modeled as the property predictor using neural networks.
Additionally, classifier-guidance generative diffusion is another approach that guides the model to
generate data with desired properties by training a classifier and supervising the model with its
gradient [238]. For instance, Kim et al. [239] proposed Guided-TTS that achieved text-to-speech
generation while controlling the target speaker. For classifier guidance, Guided-TTS utilizes an un-
conditional diffusion model trained on untranscribed speech, combined with a phoneme classifier
from a large-scale speech recognition dataset. Kawar et al. [240] incorporated the time-dependent
classifier’s gradient into the diffusion process to encourage the generated image to be recognized
as the target class. Note that in general classifier-guidance generative diffusion is not efficient as
classifier-free diffusion guidance as it needs to compute gradient at each time step.

3.1.3  Peri-generation Control. Peri-generation control, as shown in Figure 2 (3), learns the dis-
tribution of data and its relation to desired properties c* by supervised learning during the training
process. In general, the distribution of data can be learned towards target properties in two ways:
(a) goal-oriented control initializes the generator with either random noise or an initialized sample,
and optimizes the goal calculated by the target properties of generated data in an iterative manner;
(b) distribution-guided control trains the generator learned from the data with the desired proper-
ties. As a result, the distribution of data with desired properties is preserved by the generator
during the training process. Since distribution-guided control generates data from the distribution
by the observations, it usually cannot generate out-of-sample data as goal-oriented control does.

Since the control signal is provided in the training process, moreover, distribution-guided con-
trol usually requires a more complicated training strategy such as transfer learning [241].

Goal-oriented control optimizes the goal regarding target properties and data, as shown in
Figure 2(e), which is either designed based on domain knowledge [131] or estimated from obser-
vations [242]. Define R(x, c) as the reward function, where x is the data and c is corresponding
properties, then the goal-oriented control can be formularized as:

x = argmax R(x,c); s.t. c¢=c, 9)

X

where ¢ is the target properties supposed to be preserved by the generated data. In implementa-
tion, R(x, ¢) can be in different forms depending on the application to various domains and different
generation techniques. For instance, Liu et al. [131] devise an energy-based model that regards the
reward function as the negative energy of molecules that incorporates the properties as part of
the energy terms. Dathathri et al. [170] take the likelihood of the desired attribute as the reward
function and introduce a plug-and-play method on a pre-trained language model that trains an ad-
ditional property classifier to guide the generation process. Yang et al. [176] deploy a distributed
MCTS to the molecule generation problem that searches for molecules with desired properties
where the reward score is provided by a chemistry simulator that evaluates the properties of the
generated molecules. Samanta et al. [177] manage to learn a property-optimized decoder for the
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VAEs-based model with a gradient-based algorithm to generate molecules with desired/optimal
properties. In addition, the reward function in Equation (9) can also serve as the reward optimized
by reinforcement learning-based techniques. For example, You et al. [1] utilize a reinforcement
learning approach to formulate the molecule generation problem which optimizes domain-specific
rewards via policy gradient. Hu et al. [172] expand the posterior regularization approach [243] that
imposes knowledge constraints on posterior distributions of probabilistic models with the inverse
reinforcement learning idea to allow the model to learn the constraints jointly with optimizing
the objective. De Cao and Kipf [3] formulate a GANs-based model under a reinforcement learning
framework that utilizes the discriminator to guide the process to generate molecules with desired
properties. Guo et al. [7] also formulate a GANs model under the reinforcement learning frame-
work but additionally incorporate the high-level features learned by the discriminator into the
generator to allow the control signal to be smooth over the long text rather than a single scalar
value. Sanchez-Lengeling et al. [244], Putin et al. [173] and De Cao and Kipf [3] formulate the
molecule generation problem under the reinforcement learning framework with a GANs model
which utilizes the reward or discriminator network to provide feedback to generate molecules
with desired properties. Tambwekar et al. [174] formulate text generation under the reinforce-
ment learning framework and introduce dense/intermediate reward rather than sparse reward at
the end. Shi et al. [175] focus on the problem of molecule generation with a reinforcement learning
framework that provides rewards for desired properties.

Distribution-guided control lies in the fact that data generation models learn the distribu-
tion of the data p(x) and bias the input data distribution towards the target distribution p(x|c*)
of desired properties (i.e., f(x|c*) in Figure 2(f)). Thus, the model can generate data under the
target distribution p(x|c) with desired properties. For instance, Gebauer et al. [179] employ an
auto-regressive model for 3D molecule generation and biases the distributions of the target prop-
erties for controllable generation from scratch. To be specific, this model pre-selects 3D molecules
with the target properties in desired ranges and fine-tunes the generative model with the subset
of the whole training set to generate molecules with the target properties similar to the selected
ones. Segler et al. [180] first pre-train an auto-regressive generative model with a large dataset
and then fine-tune the model with a small subset of molecules known to be active against given
biological targets. Yang et al. [10] focus on the problem to generate high-quality audios embedding
secret bits stream. Specifically, it proposes an auto-regressive model to generate audio based on
the encoded bits stream as conditions.

3.2 Controllable Transformation from Source Data

Depending on whether the desired values of the properties are prefixed or steerable by the users,
as presented in Figure 5, controllable transformation from source data can be classified into two
categories: (1) fixed transformation only allows the source data to be transformed into the data
with predefined value (or value change) of properties that are prefixed during model training. For
instance, one may train an image translator for daytime-to-nighttime transformation, so that it
can only transfer daytime scenery into its nighttime view. By contrast, (2) steerable transformation
enables users to input desired values (or value changes) of properties for guiding data transforma-
tion. For example, using steerable scenery-image transformation models, the model may take time
(e.g., 1:25 pm) as the input from the user and then generate the scenery at that specified time based
on the source scenery image.

Steerable transformation may stay more interpretable, given that the control signal is explicitly
fed into the model along with the source data during the generation process. By contrast, the fixed
transformation handles the control signal in an implicit way, in that it takes only the source data as
the input and instead learns the control signal during the training process. Nevertheless, the more
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Fig. 6. Single-modality transformation for controllable transformation from source data.

flexible controlling ability is normally achieved at the cost of a more complex model structure to
enable the properties to interact with the generator.

3.2.1 Fixed Transformation. Approaches for fixed transformation, as shown in Figure 5 (1),
can be divided into two categories based on domains of the source data and the target data:
(a) single-modality transformation conducts property-controllable data transformation within the
same modality, such as image-to-image, text-to-text, graph-to-graph, and so on; and (b) cross-
modality transformation translates the data from source modality to the data in another modality
while controlling its properties. For example, one may transform text to audio while controlling
the emotion expressed in the generated audio.

Single-modality transformation instead translates the source data to target data in the same
modality while changing properties of generated data in a prefixed way, as shown in Figure 5(a)
and Figure 6. For example, one may transform an image of human pose into another one with
a predefined pose. As shown in Figure 6, single-modality transformation includes three types of
techniques: 1) goal-oriented transformation; 2) transfer learning-based transformation and 3) ad-
versarial training-based transformation. As shown in Figure 6(a), goal-oriented transformation
usually borrows the framework of reinforcement learning to generate data guided by the reward
constructed via target properties [168, 184, 188] with the same objective as Equation (10). For
instance, Deep Reaction Optimizer optimizes certain chemical reactions by combining reinforce-
ment learning with the domain knowledge of chemistry [188]. GraphDF was designed to enforce
optimized molecules to have desired properties by fine-tuning the model to optimize the score of
properties under a reinforcement learning framework [184]. In addition to optimizing the reward
with the reinforcement learning-based approach, other goal-oriented methods also have been ex-
plored for various tasks. The differentiable scaffolding tree controls the properties of generated
data by optimizing the composite objective under a multi-objective optimization framework [168]:
log £**Y = arg max_ Ny F(x), where % is the generated molecule at the ¢-th iteration. F(x)
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Fig. 7. Cross-modality transformation for controllable transformation from source data.

is the set of constraints related to target properties. N'(x*)) is the neighborhood set of molecules
% [168]. Instead, Prabhumoye et al. [181] designed a style classifier to guide the style-specific
generator to modify the style of the given text.

As presented in Figure 6(b), transfer learning-based transformation first trains the model in a
large corpus of the unlabeled dataset, and then fine-tunes the model using the small-sized dataset
x, with labeled properties c* [186]. Adversarial training-based transformation, as the name sug-
gests and shown in Figure 6(c), borrows the adversarial loss to enforce the model to learn the
distribution of the data with desired properties [182, 183, 185].

Cross-modality transformation translates the source data x, to the target data y while con-
trolling its properties, where x, and y are across different modalities. As shown in Figure 5(b)
and Figure 7, cross-modality transformation learns the distribution of the data with desired prop-
erties and generates from the source data directly without entailing information of properties
during the generation process. The techniques used in this area roughly are aligned with those
in peri-generation control discussed previously, except that it needs the source data as the input.
In general, as shown in Figure 7, two techniques are borrowed to learn the distribution of data
with desired properties to achieve cross-domain transformation: (1) reinforcement learning and
(2) transfer learning. Reinforcement learning iteratively optimizes the reward calculated based on
the target properties ¢ and other properties identified from the generated data y:

*

y =argmaxR(y,c,xo) s.t. cec’, (10)
y

In this process, as shown in Figure 7(a), the identifier that evaluates the generated data and cal-
culates the rewards can be pre-trained [190]. As illustrated by Figure 7(b), transfer learning-based
cross-modality transformation first trains the model in a large general dataset xj. Then the model
is fine-tuned by a small-sized dataset x; with desired properties ¢ [189]. As an example, Tits
et al. [189] leveraged fine-tuning on a pre-trained deep learning-based Text-to-Speech (TTS)
model to synthesize speech with specific emotions using a small-sized emotional dataset. Song
et al. [207] generated the talking face video given an arbitrary speech clip and an arbitrary face
image by encoding both image and speech via a recurrent adversarial network. In this work, the
recurrent network first will be pre-trained for several epochs and then fine-tuned by adding dis-
criminators to distinguish audio, image and lip reading.

3.2.2 Steerable Transformation. According to the source of the control signal, as shown in Fig-
ure 5 (2), steerable transformation techniques can be classified into two scenarios: (a) control via
reference data usually requires reference data in addition to the source data as the input to provide
the control guidance; (b) control via latent space controls the target properties via manipulating
the latent variables corresponding to the properties of interest.

The first scenario suffers from the challenge of obtaining the control signal as the reference data
may come from different data modalities. Nevertheless, the second scenario, control via latent
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(c) Transformation via conditional AE (d) Transformation via property replacement

Fig. 8. Control via reference data for controllable transformation from source data.

space, usually requires learning the relationship between the latent space and the properties of
generated data, which can be challenging too.

Control via reference data, as shown in Figure 8, requires both reference data and source
data with the aim of altering the source data into the target data with some specific properties the
same as those of the reference data. For instance, the style or emotion of synthesized speech via
text-to-speech (TTS) techniques can be controlled by adapting the style of a reference speech as
the input to the generator [190, 191, 196, 202, 205]. One can also transform the pose of a portrait
into another pose provided by a reference portrait [111]. Techniques for control via reference data
usually have an encoder-decoder structure, in which target properties are extracted and encoded
from the reference data while the data is generated conditional on the property representation
along with the embedding of source data. These techniques, however, differ in how the target
properties are fed into the generator. As shown in Figure 8(a), (b) and (c), some works extract and
encode target properties ¢ from the reference data y, and feed its representation z* along with the
embedding of source data into the generator. In this way the data is generated by conditioning on c.
This strategy involves three basic types of techniques: (1) adversarial learning (i.e., Figure 8(a)); (2)
variational inference (i.e., Figure 8(b)) and (3) conditional AE-based transformation (i.e., Figure 8
(c)). The objective of adversarial learning-based models (i.e., Figure 8(a)) can be formularized as:

L = Exp(x)[log D(x)] + Ezp(z)[log(1 — D(G(z. 2" [yo)))]. (11)

where z is the representation of the source data, z* is the representation of target properties from
the reference data yy. Under the framework of adversarial learning, Chen et al. [194] generate
talking face video first by learning audio and landmarks representations. CTAGAN anonymizes
the face of the image based on the identity that is encoded from reference data via CNN [195].
In this case, the objective function is aligned with Equation (11). In addition to models based on
adversarial learning, the framework based on the variational inference employed in control via
reference data (i.e., Figure 8(b)) can be formularized as:

L = —Ezp(elx).z~p(z* lyo) [10g o x|z, 27)] + KL[qg(z. 2" |x0. yo)l (2. 2" |yo)]. (12)

where the notation follows in the same role as in Equation (11). Specifically, Chen et al. [192] con-
trol the syntax of generated text by conditioning on the representation of a sentential exemplar
under the framework of conditional VAE. Hsu et al. [191] learn continuous attribute space of cat-
egorical observed labels, conditional on which the speech is generated from text. The learning
objective of both models follows Equation (12).

ACM Comput. Surv., Vol. 56, No. 9, Article 228. Publication date: April 2024.



Controllable Data Generation by Deep Learning: A Review 228:21

As illustrated in Figure 8(c), the third type of control via reference data-based technique
is conditional AE, which mainly serves the controllable text-to-speech (TTS) transformation
[196, 200-202, 204, 205, 245]. In this case the encoder and decoder can be an autoregressive model
that handles sequential data such as text, audio and speech. In general, the framework of con-
ditional AE aims to minimize the objective as follows: £ = |xo — G(z,z*|yo)|, where G(z, z*|yo)
corresponds to the decoder of the AE given the input of representations z and z*. The L; norm im-
plemented above can be replaced with other forms of reconstruction loss such as MSE depending
on different tasks. Under the framework of conditional AE, Valle et al. [200] generate speech in a
variety of styles conditioning on rhythm and continuous pitch contours from an audio signal or
music score. Kurihara et al. [201] proposed a model that controls prosodic features using phonetic
and prosodic symbols as input for TTS transformation. Inoue et al. [204] pre-trained emotional
expression models using speech uttered by a particular person, and applied it to another person
to generate emotional speech with the person’s voice quality. StyleTagging-TTS extracts style em-
bedding from reference speech via a reference encoder [202] while Cai et al. [205] average the style
tokens” weights for all reference audios to synthesize speech for this kind of audio. Li et al. [196]
instead designed emotion classifier connected to the reference encoder to learn discriminative emo-
tion embedding. UFC-BERT consists of modules of textual control, visual control, and preservation
control to handle class labels and natural language descriptions, style transfer and preserving given
image blocks, respectively [245].

By contrast, as shown in Figure 8(d), other works approach controllable transformation from
source data in an interpretable manner by decomposing both source data and reference data into
properties of interest, ¢ and c*, and other non-relevant properties ¢’. Then the representation of
¢, z, is replaced with z*, the representation of ¢*. The generator takes z* and the representation z’
of non-relevant properties ¢’ as the input to generate target data [193]. Therefore, the objective of
property replacement-based techniques can be concluded as follows:

L= E,, 2y ~p(2, 7, |x0)[10gp.9(x0|2 Zxo)] E, . ,~p(z* z, |x0)[logp9(x0|z Z )] (13)

= Ezp ~plz, Ixo), 2 ~p(z 1)) [log po(xlz . 2],

where x is the source data and x; is the reference data. x; and x; are usually of the same type.

z, and z’ ” correspond to the representation that is not relevant to the properties of interest of

X0
x9 and x;, respectlvely Minimizing the learning objective above learns latents of target properties
and other properties of interest by the first two terms, then the data is generated based on the last
term conditional on those latents. Yang et al. [199] transfer the style of the text by switching the
style code of two texts and generating target text along with the content vector z’. Li et al. [211]
transfer attributes of text by removing markers z of the original attribute, then generating a new
sentence conditioned on the remaining words and the target attribute z*.

Control via latent space. This type of method first maps the properties of interest either
learned from data or provided externally into the latent space, and then controls the target proper-
ties of generated data via manipulating the latent variables corresponding to these target proper-
ties. Techniques of control via latent space usually have an encoder-decoder framework, where the
information of (external) properties is embedded into the latent space. As shown in Figure 9, accord-
ing to how the properties serve as the input of the model, control via latent space-based techniques
can be classified into two categories: (1) learned property embedding (Figure 9(a)) learns the prop-
erties from the source data via the encoder of the model [11, 212, 215-217, 219, 220, 222, 225, 226]
and (2) external property embedding (Figure 9(b)) encodes the properties provided externally into
the latent space from which new data is generated [213, 214, 218, 221].

For learned property embedding-based techniques, the properties of interest are embedded into
the latent space and usually disentangled from the representation of other information of the data:
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(a) Control via learned property embedding  (b) Control via external property embedding

Fig. 9. Control via latent space for controllable transformation from source data.

L = |xo — G(z, z"|xp)|, where z* is the embedding of properties extracted from the source data xy.
Again, the Ly norm can be replaced with other forms of distance measures if needed. For instance,
FastSpeech controls the voice speed and prosody of generated speech by tuning the parameter of
the length regulator as a part of the encoder [222]. Differentiable Digital Signal Processing library
integrates audio with classic signal processing elements, in which the fundamental frequency is
learned from the source audio and embedded into the latent space [226]. EMOVIE achieves TTS
transformation while controlling the emotion via the emotion embedding supervised by emotion
labels [225]. Fabbro et al. [212] control TTS systems by decomposing the spectrogram into con-
trol variables, such as amplitude envelope, harmonic distribution, and filter coefficients. SCTKG
generates essays from given topics while controlling sentiment for each sentence by injecting the
sentiment information into the generator [220]. InterFaceGAN edits the face of the source image
by interpolating disentangled latent semantics learned by GANs [219]. Habib et al. [11] control the
prosody of the generated speech by manipulating the embedding of prosody learned by the TTS
model. Disentangled anatomy arithmetic disentangles images into spatial anatomy (tensor) factors
and accompanying imaging (vector) representations, and controls synthesized images by linearly
combining the representation of corresponding properties [217]. GANSs inversion inverts a given
image back into the latent space of a pretrained GANSs, then the image can be reconstructed from
the latent space and the target properties can be controlled by intervening the style code on the
latent space [216]. Low-rank subspaces enable more precise control of image generation via GANs
by relating the latent space to the image region with the Jacobian matrix and then using low-rank
factorization to discover steerable latent subspaces [215].

In addition to extracting the properties from the source data during the training process, external
property embedding employs the external control signal, such as different property codes, and em-
beds the property information into the latent space [213, 214, 218, 221]: £ = |xy—G(z, z¥|c)|, where
z* is the embedding of the external properties c. To distinguish the external property embedding-
based techniques from the control via reference data-based techniques (Figure 8), control via ref-
erence data-based techniques first extract these properties from the reference data whereas exter-
nal property embedding-based methods encode only the properties of interest. Specifically, the
prototype-then-edit model generates a sentence by sampling a random example from the training
set and then editing it using an edit vector encoding the type of edit to be performed [221]. Style-
Flow borrows conditional continuous normalizing flows in the GANs latent space conditioning on
attribute features [214]. Attribute-controlled editing on images is achieved by the conditional ex-
ploration of entangled latent spaces [214]. Chang et al. [218] can produce a set of candidate topics
by predicting the centers of word clusters, of which a user can select a subset to guide the gener-
ation of the text. John et al. [213] explicitly build a classifier on the style space that predicts the
style label, and combine the style representation with the source text representation to generate
text with the desired styles.

4 APPLICATIONS AND BENCHMARK DATASETS

Controllable deep data generation has been gaining increasing attention of the community from
various domains, enabling a broad range of applications including applications in molecule
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synthesis and optimization, protein design, image editing, text style transfer, and emotional speech
generation. In addition, more and more datasets are becoming available to the community to train
robust and expressive models for controllable deep data generation to advance the development
of this domain. This section provides details of different techniques used for each application do-
main as well as the representative datasets used in this domain. More detailed introduction of
benchmark datasets can be found in Appendix Section C.

4.1 Molecular Synthesis and Optimization

Molecules can be represented by several different data modalities, from sequence of charac-
ters [246], graphs [3] to point clouds [179], and so on. Designing molecules with desired prop-
erties, such as molecular weight, ClogP values, drug-likeness (QED), and the like, naturally aligns
with the goal of controllable deep data generation. Molecular design has been existing as a tough
problem because of the complex molecular structure, vast chemical space, and its relationship with
biological properties. This field can be divided into two types of problems: (1) molecular synthesis,
which corresponds to the de novo molecular design that requires designed molecule to preserve de-
sired properties; and (2) molecular optimization, which aims to optimize the structure of an existing
molecule towards the direction that specific properties are improved. The conventional methods to
approach the tasks usually rely on the expert-derived heuristics [247] and suffer from the daunting
computational complexity [248]. The rapid advances in the development of deep learning models
have been powering molecular design to generate molecules with desired biological and chemical
profiles.

Molecular synthesis refers to the de novo generation of novel chemical structures that sat-
isty a set of property constraints [249, 250]. Deep learning-based approaches have been used
by researchers to develop novel and expressive representation of molecular structures, cou-
pled with the ability to reveal relationships with properties [251, 252]. Then the molecular
structure can be generated from the representation using either one-shot [253] or autoregres-
sive [254] strategies. This process often coordinates with techniques for goal-oriented control,
such as reinforcement learning [1, 255], or multi-objective optimization to control the prop-
erties of generated molecules [34, 116]. Datasets that have been used for molecular optimiza-
tion include QM9 [3, 131, 140, 152, 177], ZINC250K [1, 2, 110, 131, 140, 152, 173, 175-177] and
ChEMBL [110, 116, 180, 255].

Molecular optimization can be viewed as a transformation problem that maps from the source
molecule to the target molecule that has high structural similarity with the original one but better
properties [98]. This task has been surmounted by extracting the signature of the target mole-
cule and encoding its discrete chemical structure into the continuous latent space, which allows
optimization in the molecular space. The control of properties of generated molecules requires
single-modality fixed transformation with various strategies such as goal-oriented transformation,
including reinforcement learning [256, 257] and multi-objective optimization [258], adversarial
training-based transformation against target properties [182], and others [259, 260]. Datasets that
have been borrowed for molecular optimization are aligned highly with those for molecular syn-
thesis, including QM9 [122, 128, 184], ZINC250K [2, 122, 128, 168, 182, 184, 185, 256, 257, 259, 260],
ChEMBL [33, 178, 256, 257] and MOSES [184].

4.2 Protein Design

Protein performs diverse physiological functions in a cell mediated by its three-dimensional struc-
ture composed of the sequence of amino acids [261]. Protein design is a fundamental challenge in
biology because of the costs both financially and timewise and has vast applications in domains
such as drug discovery. The goal of protein design is to arrange the sequence of amino acids that
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fold to a specific protein structure. Unlike text or graph, protein design requires two-fold informa-
tion, sequence design and structure design. While the fact that the protein sequence solely deter-
mines the protein structure and the big success of AlphaFold2 in predicting protein structures from
protein sequences [262], many works have been developed to design new sequences of protein and
utilize AlphaFold2 to produce 3D structures. Sequences can be determined by the probability of
20 amino acids on each residue on the sequences [263] or generated via property mapping-based
frameworks such as VAEs and GANs [264]. For some specific proteins, structures could be very
diverse so that sequence-structure co-design is needed via property concatenation-based deep gen-
erative models conditioning on the full structure of the protein [30]. Datasets regarding the protein
structure that are available for protein design include Protein Data Bank [30, 263], UniProt [264],
UniRef50 [264], UniParc [264] and Pfam [30].

4.3 Image Editing

By reason of the rapid growth of the internet and digital capture devices, a huge volume of images
has become available for public use that make the training of deep models possible. Meanwhile, the
advances of deep learning provide powerful tools such as CNN to process image data. The image
editing task aims to generate a new image from a source image by editing the contents of the source
image under certain guidance while keeping other properties unchanged [265]. The input and
output of the model for image editing are the images represented by the pixel matrix with multiple
color channels. The popular properties to be controlled under this scenario include but are not
limited to facial expression, age and illumination of human portraits, artistic style, angle, shape, and
color of the object, and so on. The most popular framework to manage image editing is property
concatenation or mapping-based techniques under the adversarial training of GANSs. For instance,
GAN-Control embeds the control signal in the latent space and achieves the controllability via
modifying the latent variables [125]. Song et al. [207] generate the talking face using the input
audio as the control signal. CPCGAN transforms the pose of a portrait into another pose provided
by a reference portrait [111]. In addition to adversarial training-based approaches, frameworks
based on variational inference [99, 119, 157, 158] or flow [6, 126, 137] are also borrowed for image
editing. Datasets that have been employed for image editing cover a wide range of types of image,
including digit image such as MNIST [6, 99, 119, 127, 134] and The Street View House Numbers
(SVHN) [99, 151], and human character, such as CelebA [6, 126, 126, 136, 137, 160], Flickr-Faces-
HQ (FFHQ) [125, 160], Helen [136], Labeled Faces in the Wild (LFW) [119] and Sprites [134],
shape images such as dSprites [157, 158], 3D shapes [158] and ShapeNet [111], fashion image such
as DeepFashion [172], animals such as Caltech-UCSD Birds 200 [119] and general scenes such as
ImageNet [127, 137, 151, 159] and LSUN [137, 151].

4.4 Text Style Transfer

Deep learning has enabled the rapid development of designing novel natural language process
(NLP) systems of controlling over various stylistic attributes of generated texts. Specifically, text
style transfer intends to transfer a text with one stylistic attribute (e.g., politeness, emotion, humor,
etc.) to another text with another stylistic attribute [92]. Text style transfer can borrow the con-
trol signal via reference data-based techniques under the scenario of steerable transformation. For
instance, Yang et al. [199] proposed an unsupervised model for text style transfer that uses the lan-
guage model to evaluate generated sentences. The control signal comes from reference sentences
with specific styles. In addition, control via latent space-based models are also used. [213] employed
an encoder-decoder structure to disentangle the latent variables of style and contents in language
models. The style of generated texts can be controlled by feeding latent variables of target styles
into the generator. CTRL instead is a conditional transformer language model trained to condition
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on control codes that govern style [113]. Text style transfer has been conducted on a few datasets in-
cluding Yelp [162, 186, 199, 211, 213, 221], Amazon [113, 162, 186, 211, 213], Wikipedia [113], Rotten-
Tomatoes [102], Project Gutenberg [113], OpenWebText [113], CAPTIONS [186, 211], EMNLP2017
WMT News [113, 181] and One Billion Word [221].

4.5 Emotional Speech Generation

Text to speech (TTS), also known as speech generation, aims to synthesize natural speech
from text [266]. Further, the naturalness of speech generation relies in its human-like, natural-
sounding voice with desired emotional expression generated by the model [190]. Recent advances
of emotional speech generation are overwhelmingly contributed by the development of deep
learning techniques, especially those designed for controllable transformation from source data,
which can learn expressive feature representations to characterize the emotional attributes of the
speech [267]. Control via reference data-based models is studied broadly to approach this task.
For example, Liu et al. [190] proposed i-ETTS which borrows the reference audio to extract the
emotion embedding. Then the speech is generated under the framework of reinforcement learn-
ing to ensure that it preserves the desired emotions. GST-Tacotron2 also borrows the reference
audio sequence to provide control signal and feed the embedding of both emotion and text to the
WaveNet vocoder to predict the mel-spectrogram used to synthesize a speech waveform [208]. Bian
et al. [203] designed a model that inputs multiple reference audios that independently disentangle
and control specific styles. By contrast, control via latent space-based models are also employed in
this application domain. Inoue et al. [204] proposed a deep neural network-based model to control
the emotion expressiveness of synthesized speech by directly feeding the emotional embedding
to an emotion additive model. Datasets that have been utilized for emotional speech generation
cover a broad range of languages including English such as LJSpeech [189, 209], LibriSpeech cor-
pus [209], LibriTTS [209], CMU-ARCTIC [209], The Interactive Emotional Dyadic Motion Cap-
ture (IEMOCAP) [205, 209], Catherine Byers [11], The RECOLA Database [205] and Emotional
Speech Database [190, 225], Chinese such as Baidu Speech Translation Corpus (BSTC) [203]
and Chinese professional actress [196], Japanese such as Japanese emotional speech database [107]
and French such as SIWIS French Speech Synthesis Database [209].

Together with the applications introduced above, more applications of controllable deep data
generation along with representative works are summarized in Appendix Section D.

5 OPPORTUNITIES AND CHALLENGES

All in all, controllable deep data generation is a fast-growing domain as it has a wide range of
applications across various domains with numerous models constantly developed. In this section,
we highlight a few promising future opportunities in this domain, followed by potential challenges
that remain to be studied further.

5.1 Opportunities
We highlight some promising future opportunities on controllable deep data generation as follows.

— Control multiple properties simultaneously. As far as we know, most of the existing works
designed for controllable deep data generation only control one property at a time. Though
technically challenging, simultaneously controlling multiple properties are commonly desired
in real-world applications. For instance, chemists may want to generate QACs that have a high
MIC value while preserving a small molecular weight. The task of simultaneously controlling
multiple properties can be formalized naturally under a multi-objective optimization framework
to enforce the generated data to satisfy multiple property constraints. A few works have been
done in this direction. Jin et al. [116] perform multi-objective optimization on the latent space
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using the gradient from the property predictors in their testing process. Wang et al. [178] ap-
proach the multi-objective optimization task for controllable molecule generation by combin-
ing conditional transformer and reinforcement learning through knowledge distillation. Some
more challenging tasks, however, such as constraining the property within a range during multi-
objective optimization, still are under-explored.

— Improve model interpretability. The interpretability of the model for controllable deep data
generation is critical for the community to understand data. For instance, chemists may want
not only to generate QACs with the desired value of MIC but also to know which substructure
of generated QACs contributes to the corresponding MIC value. Jin et al. [116] achieved the
interpretability by learning the property rationals (i.e., substructure of the molecule) first and
generating molecules with the specific property via assembling its rationals. In addition to in-
terpreting properties of generated data, how to synthesize these data also attracts the attention
of the community. For example, chemists may not be satisfied simply by generating molecules
that are supposed to preserve desired properties but also want to know how to synthesize these
molecules in the lab. Although some studies have been done regarding chemical reaction pre-
diction [268-270], few works are combined with the controllable deep data generation to infer
the concrete synthesis process of chemicals.

— Develop semi-supervised or unsupervised learning-based techniques. Existing datasets
available for controllable deep data generation usually are trained by supervised learning. These
properties, however, may not satisfy all needs of the community to generate data with proper-
ties of interest. For example, although one might generate QACs with specific MIC values, they
cannot control other properties not labelled in the dataset. The property annotations, more-
over, usually require significant time and labour costs, which are expensive for the community
to obtain. As a result, semi-supervised learning-based techniques serve as a powerful tool to
utilize sparsely annotated data. Unsupervised learning-based methods can also be designed to
capture automatically properties of interest from unlabeled data via some well-designed regu-
larization [139, 142, 149].

— Entangle with hard constraint on data validity. Data in some domains require strong valid-
ity constraint on their structure or properties. For instance, in molecular graph, the number of
chemical bonds around an atom cannot exceed the numerical valency of the atom. Also, the com-
bination of words in an sentence should follow specific grammar. Techniques for controllable
deep data generation may learn from traditional methods to involve constraints of the domain
knowledge when generating data with desired properties. Furthermore, these domain-specific
constraints may be helpful in guiding the generation process.

— Generate out-of-sample data. Current deep learning techniques for controllable deep data
generation are highly data-driven, basically learn the distribution of the observed data and tend
to generate similar data. The novelty of generated data, however, is highly desired but limited
to the distribution of the observed data and hence resistant to exploring unseen subspace that
may also have the potential of the desired value of properties. As a result, the extrapolation
ability to generate out-of-sample data is critical when designing the model for controllable deep
data generation. This task has been approached by some existing works via interpolating the
latent space that controls target properties towards a pre-defined direction [151, 157, 159]. These
methods, however, need to identify the pathway on the latent space where the properties are
controlled and thus require extra effort and is difficult to obtain if the pathway is non-linear.

5.2 Open Challenges

Despite numerous methods proposed for efficient and effective generation design, several open
challenges still remain on controllable deep data generation.
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— Lack of theoretical ground. Existing frameworks for controllable deep data generation, e.g.,
conditional GANs and conditional VAEs, learn and sample from the distribution of the obser-
vational data while neglecting domain-specific theories that potentially can improve the model
performance. By contrast, those domain-specific theories have been borrowed widely by tradi-
tional models to guide the optimization process of the model [12]. For instance, conventional
models for protein design borrow the energy functions such as those for nucleic acids and their
interactions with protein to examine large combinatorial collections of protein structure candi-
dates [12]. In this way, generated proteins theoretically can be guaranteed to have low energy.
As a result, how to contain and model those domain-specific theories into deep learning-based
frameworks to improve the performance of controllable deep data generation remains to be
explored further.

— Lack of interpretability. Many works have performed well in optimizing the well-designed
objective, while ignoring the interpretation of the design process. Specifically, some tasks con-
duct optimization on molecular structure only by searching structures that may cause specific
molecular properties while putting less effort on the understanding of active groups that corre-
spond to these properties. In addition, although generated molecules might own valid structures,
chemists might be more interested in how to synthesize them in the lab. The synthesis pathways
of these optimized molecules, however, still remain unknown or extremely hard to synthesize
and lead to unrealistic applications.

— Difficulty in capturing and optimizing correlated properties. Capturing and considering
the correlation among properties during controllable deep data generation can deepen our un-
derstanding of data. To date, most of works only consider controlling independent properties
of generated data, even though correlated properties are ubiquitous for data in the real world.
For instance, given two correlated properties such as molecular weights and solubility, chemists
may still want to increase the solubility of the generated molecules while keeping the molecular
weights unchanged. Optimizing correlated properties is challenging, since this process may lead
to the conflicting property constraints of the multi-objective optimization framework and thus
call for developing more advanced optimization techniques from the community.

— Paucity of labelled dataset. The property annotations of the datasets used to train the model
for controllable deep data generation usually require enormous financial, time and human costs.
For instance, the property of MIC of QACs that have been optimized to generate novel QACs
needs to be measured manually in the lab [40]. The expensive annotation, moreover, may lead
to other problems such as the small sample size of the available dataset (e.g., only 462 QACs are
processed and contained in the QAC dataset), which is hard for the supervised training of tech-
niques for controllable deep data generation such as those for goal-orientation transformation.
As a result, a semi-supervised or unsupervised approach for controllable deep data generation
is needed to learn and control the properties of small data.

— Difficulty in automatic validation of properties of generated data. Automatic validation of
properties of generated data is critical yet challenging for some domains. For instance, the task of
music generation often relies on manual validation, which requires a human evaluator to score
and rank the generated data based on some pre-determined rules. Validation of the bio-activities
of generated molecules instead requires conducting lab experiments. These downstream evalu-
ations hence suffer from the high cost of time and money, as well as the noise introduced by the
subjective evaluation or the batch effect of lab experiments.

6 CONCLUSION

This survey has provided a comprehensive review of existing techniques developed for control-
lable deep data generation. The first consideration is potential challenges and preliminaries. Then,
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the problem of controllable deep data generation receives a formal definition, followed by a
novel taxonomy of techniques designed for controllable data generation. The evaluation met-
rics in this specific domain, moreover, are summarized in terms both of data quality and prop-
erty controllability. After that, a systemic review and comparison of techniques involved in the
taxonomy are conducted, followed by their exciting applications and benchmark datasets bor-
rowed in the domain of controllable deep data generation. Finally, the survey concludes with the
highlight of promising future directions and five potential challenges in this domain. We believe
this survey will pave the way for the future study of controllable deep data generation in many
disciplines.
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