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In recent years, analyzing the explanation for the prediction of Graph Neural
Networks (GNNs) has attracted increasing attention. Despite this progress,
most existing methods do not adequately consider the inherent uncertainties
stemming from the randomness of model parameters and graph data, which may
lead to overconfidence and misguiding explanations. However, it is challenging
for most of GNN explanation methods to quantify these uncertainties since they
obtain the prediction explanation in a post-hoc and model-agnostic manner
without considering the randomness of graph data and model parameters.
To address the above problems, this paper proposes a novel uncertainty
quantification framework for GNN explanations. For mitigating the randomness
of graph data in the explanation, our framework accounts for two distinct
data uncertainties, allowing for a direct assessment of the uncertainty in GNN
explanations. For mitigating the randomness of learned model parameters, our
method learns the parameter distribution directly from the data, obviating the
need for assumptions about specific distributions. Moreover, the explanation
uncertainty within model parameters is also quantified based on the learned
parameter distributions. This holistic approach can integrate with any post-
hoc GNN explanation methods. Empirical results from our study show that our
proposed method sets a new standard for GNN explanation performance across
diverse real-world graph benchmarks.

KEYWORDS

uncertainty quantification, graph neural network, variational mechanism, explanation
uncertainty, deep learning

1 Introduction

Explaining the prediction of deep graph models, e.g., Graph Neural Networks (GNNs),
is crucial for enhancing the model interpretability and trustworthiness of its prediction,
which has played a crucial role in various domains. For instance, in drug discovery, GNNs
can model molecular structures and interactions to identify potential drug candidates.
By explaining the prediction results, researchers can gain insights into the molecular
properties that drive drug effectiveness and safety for further improving the design
(Mastropietro et al., 2022). In social network analysis, GNN explanations can help analyze
user behaviors, preferences, and relationships in social networks. This information can
be used to improve user experience, detect malicious activities, and develop targeted
marketing strategies (Ying et al., 2019).

Existing techniques tend to explain the prediction of GNNs at the instance level. These
approaches (Pope et al., 2019; Ying et al., 2019; Schnake et al., 2021) focus on identifying the
importance of individual elements from the input graph, such as nodes (or node features),
subgraphs, or edges that have a substantial impact on the predicted labels, based on taking
the gradient of the output with respect to the input, effectively showing how much the
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output would change with small alteration of input. While
these techniques offer valuable insights into the decision-
making process of GNNs, these methods generally overlook the
potential uncertainty that may exist in the generated explanations.
Uncertainty in explanations can stem from various sources,
including the inherent noise in the input graph, model parameter
uncertainty, and the approximation techniques used in the
explanation methods themselves. Post-hoc explanations tend to be
sensitive to these uncertainties, and neglecting this uncertainty can
lead to overconfidence in the generated explanations, potentially
resulting in misguided decision-making in critical applications
where the stakes are high. For instance, a pharmaceutical company
may use GNNs to identify the most critical features of the
input protein graph, such as specific molecular substructures,
contributing to the targeted biology activities. If the GNN
explanation method neglects the uncertainty present in the
generated explanation, the company may be overconfident in
the identified critical features without considering alternative
explanations, which may lead to suboptimal real-world efficacy or
unforeseen side effects. Therefore, considering the uncertainty into
explainable GNNs would allow users to better assess the reliability
of the explanations, ultimately increasing their confidence in
making decisions for real-world applications.

However, quantifying the explanation uncertainty of GNN is
not a trivial task, and current uncertainty quantification methods
designed for GNNs cannot be simply adapted for two primary
obstacles. The first pertains to the difficulties of quantifying
uncertainties in explanations resulting from the intrinsic randomness
of graph data. Specifically, there is an inherent variability in
the attributes connected to the nodes and edges within the
graph. For instance, node features might contain unexpected noise
during measurement or yield an unsuitable node permutation.
Furthermore, the graph connectivity may also be uncertain, which
can result from missing nodes or edges, fluctuations in the
graph topology over time, or noise within the graph structure
itself. Such factors can introduce uncertainty into both the
model’s predictions and the explanations thereof. However, existing
uncertainty quantification methods for GNNs, as illustrated by
Zhao et al. (2020); Munikoti et al. (2023), are unable to account for
these complexities in the GNN prediction explanation, rendering
their simple adaptations to quantify the explanation uncertainty on
graph data unfeasible. The second obstacle involves the difficulty
of quantifying explanation uncertainty without making assumptions
about the distribution of model parameters. GNNs, similar to other
deep learning models, are subject to uncertainties regarding the
network parameters and architectures that optimally represent
the underlying graph data. Providing explanations of model
predictions without acknowledging this uncertainty could lead to
overconfidence in interpretation, particularly when the model has
not been trained on data that is representative of the task. Current
uncertainty quantification methods for GNNs are not readily
adaptable for quantifying the explanation uncertainty brought by
model parameters, as they generally assume a predefined (e.g.,
Gaussian) distribution that the model parameters are expected
to follow. However, the majority of techniques for explaining
GNNs are post-hoc, implying that they are implemented after
the model training. These techniques endeavor to elucidate the
model’s predictions based on its learned parameters, yet they do not
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explicitly account for the uncertainty present in these explanations.
In this context, to quantify the explanation uncertainty instigated
by model parameters, it is not feasible to make distribution
assumptions about model parameters.

In light of two predominant challenges, we introduce EU-GNN,
a novel and adept framework specifically designed to quantify the
uncertainty of explanations in graph classification. To meticulously
address the inherent randomness embedded within graph data, we
propose two distinctive and unique data uncertainties related to
graphs. These carefully formulated uncertainties are strategically
utilized to directly and precisely quantify the uncertainty present
in GNN explanations, an uncertainty that is induced by both of
these data uncertainties. When it comes to managing the parameter
distribution randomness, our approach astutely takes a slight,
but impactful, departure from conventional methods, which often
rely heavily on prescribed distributions. Instead, we introduce
an innovative end-to-end framework that learns the parameter
distribution directly from the data, thereby circumventing the need
to make presumptions about specific distributions. It’s noteworthy
that this framework, with its intuitive design, can be seamlessly
integrated with most post-hoc GNN explanation techniques,
thereby significantly enhancing their ability to provide both
reliable and uncertainty-aware explanations of GNN predictions.
This dual-pronged approach, not only addresses but ingeniously
navigates through the aforementioned challenges, offering a
comprehensive and thorough solution for quantifying explanation
uncertainty in GNNs. Our main contributions are summarily
encapsulated as follows.

e Problem. We formulate the problem of quantifying the
uncertainty in explanations of GNN prediction from the
perspective of the different inherent randomness of the graph
data and model parameters.

e Method. We identify two types of data uncertainty
originating from graph data and a novel way to quantify
parameter uncertainty. Specifically, we propose an end-to-end
framework to model the parameter distribution from a
generative learning perspective without making distribution
assumptions about model parameters. Meanwhile, the
framework supports most post-hoc GNN explanation
techniques to provide reliable explanations with uncertainty
quantification.

e Experiment. We conduct extensive experiments on three
molecule classification datasets. Compared with state-of-the-
art baselines, EU-GNN achieves the best performance on
both graph classification and misclassification detection. In
addition, EU-GNN is proven to be effective in quantifying the
various uncertainties of explanation.

2 Related work

2.1 Uncertainty quantification in graph
neural networks

Uncertainty Quantification (Ling et al., 2024) aims to provide

a reliable estimation of uncertainties associated with data and
model predictions, which is crucial for decision-making (Ling
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et al., 2022, 2023a). Gal and Ghahramani (2016) first introduced
dropout as a Bayesian approximation to model uncertainty in
deep learning, providing an efficient and scalable framework for
uncertainty estimation in neural networks. Several recent studies
have focused on developing novel techniques for efficient and
accurate UQ, including Bayesian inference (Mobiny et al., 2021),
ensemble methods (Wen et al., 2020), and the single deterministic
network containing explicit components to represent aleatoric and
epistemic uncertainty (Raghu et al., 2019). With the development
of GNN, rising attention has been focused on the field of UQ for
GNNs. Zhang et al. (2019) treat observed graphs as realizations
from a parametric family, jointly inferring network structure
and GNN parameters, enhancing model robustness. Pal et al.
(2019) build upon this, using the MAP estimate of the graph for
learning tasks, capturing aleatoric uncertainty through the mode
of the graph structure’s probability density function. Munikoti
et al. (2023) propose a unified Bayesian approach, employing
Assumed Density Filtering for aleatoric uncertainty and Monte
Carlo dropout for model parameter uncertainty.

2.2 Explainable graph neural network

GNNs have attracted considerable attention in terms of
interpretability. The mainstream GNN explanation methods can
be broadly classified into four categories. First, gradient-based
methods utilize gradients as indicators of the importance of
different input features. Prominent examples of such methods
include Guided Backpropagation (Guided BP) (Baldassarre
and Azizpour, 2019) and Gradient-weighted Class Activation
Mapping (Grad-CAM) (Pope et al., 2019). The second category
comprises perturbation-based methods, which typically involve
an additional optimization step to identify the most influential
inputs by perturbing them. GNNExplainer (Ying et al, 2019)
and GraphMask (Schlichtkrull et al., 2020) are notable methods
in this category. Response-based methods constitute the third
category, wherein the output response signal is backpropagated
as an importance score layer-by-layer until it reaches the input
space. Representative methods include Layer-wise Relevance
Propagation (LRP) (Baldassarre and Azizpour, 2019) and
GNNLRP (Schnake et al., 2021). The fourth category encompasses
surrogate-based methods, which explain the original model by
deriving explanations from an interpretable surrogate model
trained to approximate the original model’s predictions, including
GraphLIME (Huang et al., 2022), RelEx (Schnake et al., 2021), and
PGM-Explainer (Vu and Thai, 2020).

3 Methodology

In this section, we propose the problem formulation along
with a novel concept of explanation uncertainty, which is derived
from two types of uncertainties in the graph classification task.
We first introduce how we can derive explanation uncertainty
based on the variance from graph data. We then introduce an
end-to-end framework to quantify the explanation uncertainty by
considering the inherent randomness of learned parameters from
the variational inference’s perspective.
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3.1 Problem formulation

Consider a graph G = (V, E, X, A) consisting of a set of nodes
V and a set of edges E C | V| x |V|]. Each node v; € V consists of a
feature x; € RYn_ and the feature set is represented as X € RIVIxdin,
where d;, is the dimension of raw node features. The connectivity
of G is recorded in an adjacency matrix A € {0, 1}VIVI 4; = 1
if there is an edge between node i and j, otherwise A;; = 0 denotes
the edge does not exist. The graph classification aims at learning a
mapping function G — ¢, ¢ € C that maps G to a class ¢ from a set
of labels C, where the mapping function is typically a Graph Neural
Network.

3.1.1 Aleatoric uncertainty on graph classification

AU refers to the intrinsic randomness of the graph data,
which can further be attributed to inaccurate measurements
of node features (i.e., measurement uncertainty) or volatile
graph structures (i.e., structural uncertainty). Specifically, (1)
Measurement Uncertainty refers to the associated error in the node
features, i.e., the observed node feature X is considered as the sum
of true feature X and a measurement error & sampled from a latent
distribution p(e). (2) Structural Uncertainty is associated with the
probabilities of link existence. Intuitively, the observed E may not
reflect the true connectivity between nodes. In the social network
scenario, User A and B are friends; User B and C are also friends.
Then, Users A and C are likely to be friends, but the connectivity
may not be reflected in the existing observation. It is worth noting
that both measurement and structural uncertainty do not impact
the graph label ¢ since these small deviations may not significantly
affect the broader patterns and structures that the graph G conveys
(Munikoti et al., 2023). However, the explanation of the GNN
prediction could be impacted due to these deviations.

3.1.2 Epistemic uncertainty on graph
classification

EU is the scientific uncertainty in the model that exists because
of model in-competency to completely explain the underlying
process. Let F(-) be an L-layer graph classification neural network
with the trainable parameters Q@ = {a)l}lel, where w; is
the parameter for the I-th layer. The epistemic uncertainty in
the context of GNN is referred to the parametric uncertainty.
Specifically, the parameters 2 of the GNN model F(-) are assumed
to be probabilistic with a probability density function p(£2).

3.1.3 Post-hoc explanation generation

To highlight components (e.g., nodes and edges) that
contribute significantly to the model’s final decision, existing
methods typically generate the importance based on the learned
GNN parameters €2 in a post-hoc way. Specifically, we differentiate
the output of the model with respect to the model input, thus
creating a heat-map (i.e., saliency map), where the norm of the
gradient over input variables indicates their relative importance.
Such a saliency map corresponding to class ¢ is denoted by §° =
g(X, A, Q), where g(-) is the explanation generation function, e.g.,
Grad-CAM (Pope et al., 2019). The shape of §° may vary depending
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FIGURE 1
The overall structure of EU-GNN. (A) Quantifying explanation uncertainty from aleatoric uncertainty. We obtain data through reversible
transformation and sampling from the edge distribution, respectively, calculate the saliency map and quantify the measurement uncertainty and
structure uncertainty through variance. (B) Decomposing explanation uncertainty. By learning the parameter distribution from the data, we compute
the total explanation uncertainty and decouple it into aleatoric uncertainty and epistemic uncertainty.

on the specific component (nodes or edges) that is intended to
be emphasized. For a node-level saliency map, $¢ € R!Vl, For an
edge-level saliency map, its dimension is RIVI*IV,

In this work, we focus on the problem of Uncertainty
Quantification in explaining graph learning tasks, especially on
graph classification, which involves obtaining the variance in the
graph classification predictions and corresponding explanations
caused by both aleatoric and epistemic uncertainties. However,
quantifying the explanation uncertainty entails solving two critical
challenges. First, the volatility of both X and A may propagate
through the layers of the GNN and ultimately affect the model
prediction as well as the corresponding explanation. Existing
methods lack a clear formulation to quantify the explanation
uncertainty caused by different aleatoric uncertainties. Second,
most explanation generation methods are post-hoc and do not
involve in training Q. However, existing uncertainty quantification
methods tend to assume an underlying distribution (e.g., Gaussian
Distribution) that the p(€2) may follow in order to address the
epistemic uncertainty. In this scenario, it is impractical to quantify
explanation uncertainty caused by model parameters by making
distribution assumptions about them.

3.2 Explanation uncertainty derivation
from the variance of graph data

Aleatoric (Data) Uncertainty often occurs when there is a
measurement error & or unobserved connections between the
observed graph G and the true graph G. To quantify the explanation
uncertainty brought by the aleatoric uncertainty, we introduce a
graph acquisition function to augment the observed graph data in
order to allow the GNN to encounter a diverse range of uncertain
graph data during both learning and inference phases. Specifically,

G=T:G) +e, (1)

where 7 is a reversible transformation operator that is applied to
G. & is the set of parameters of the transformation, and ¢ represents
the noise that is added to the transformed graph. For node
features, the reversible transformation operator adds white noises.
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For the adjacency matrix, we permute the order of nodes as the
transformation operator. Note that the reversible transformation
would not change the graph. We subsequently introduce
different ways of quantifying the Explanation Uncertainty from
the Measurement Uncertainty and the Structural Uncertainty,
respectively.

3.2.1 Explanation uncertainty from measurement
uncertainty

According to Equation 1, the measurement uncertainty exists
when we encounter deviation in measuring the node features or
getting an inappropriate node permutation. To reversely obtain
T (G — o).

Based on the calculation process of the saliency map, we also

the original graph instance, we have G =

have & = g(X,A, Q). Note that the corresponding saliency
map changes during the test phase when the input graph G is
transformed. However, the predicted classification label should
remain unchanged, i.e., y = y.

We aim to infer the explanation of the classification result of the
original graph G:
S=TeE)=Te c(%A49) =T (¢(T7' X -0.4.2)).

Note that we omit the subscripts and denote the saliency map
obtained at the last GNN layer S as S¢ for the sake of simplicity.
The distribution of the explanation given the input graph G is:

p16) =p (Te (¢ (77 X = £).4,2))) e ~p@).& ~ p ©).

The final prediction of the explanation is computed by the
expectation of §:

Esenp(sic) (S = f $p (5°1G) ds¢ @)
B // Te (¢ (76 X = ,4.2)) p()p &) dede.

The integration in Equation (2) can be approximated by Monte
Carlo integration. In the i-th simulation run, we first sample a noise
¢; from the prior distribution, then compute the i-th explanation
inference by S; = 7g(g(’7;1(X — &;),A,Q)). The expectation is
approximated by Ege~p(se|6)[S] ~ % Zle S;. Finally, the variance
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of explanation caused by the measurement uncertainty is computed
as:

1 I 2
777 2 (S0~ Espsia) [S1)”

3.2.2 Explanation uncertainty from structural
uncertainty

According to Bojchevski et al. (2018); Zhang et al. (2021); Ling
et al. (2021, 2023b), the structural distribution of a graph p(G) can
be approximated by the stationary distribution of random walks
on the graph. In this work, we utilize random walks to capture
the structural uncertainty. Suppose we could sample many graph
instances and corresponding labels {(Gi = (V,-,Ei,Xi,A,'),yi)},i €
1,---,I
could calculate the saliency map S5 of each sampled graph with §; =

} from the same distribution p(G). For each graph, we

g(Xi, Aj, Q). The variance of explanation caused by the structural
uncertainty can then be observed by:

Ly (s?—?)z
[—14i=1 \"! ’

where §° 1 Zl 1 S;. Both types of aleatoric uncertainties

are illustrated in Figure 1A. We first generate graphs from the
original graph via reversible transformation sampling and random
walk sampling, respectively, then feed them to the explanation
generation model to get saliency maps. Finally, the measurement
and structural uncertainties are quantified by computing the node-

level and edge-level variance of the saliency maps, respectively.

3.3 Variational inference-based
explanation uncertainty quantification

Other than aleatoric uncertainties, the explanation is also
sensitive to epistemic uncertainty, which is typically caused by the
mismatching between the distribution of learned model parameters
and the correct underlying distribution. In this subsection, we
consider quantifying both types of explanation uncertainties
jointly. Specifically, we will elaborate on quantifying the total
explanation uncertainty and further decomposing it into aleatoric
and epistemic uncertainties.

Let {G,)Y} denotes a training dataset, where G
WV, E XA = {(Vt,E,,Xt,A,)}Z;l = {Gt}z;l represents the
set of T training inputs, and ) = {y;}L_, are the corresponding
graph classification labels. We aim to obtain the posterior
distribution of the model parameter p(2| X, A, V), such that given
a test sample (X*, A*), the classification label of can be predicted
by:

pOFIXT AR XL, AY) = /p (1IX*, A%, Q) p (X, A,Y) dQ

:f/ff(@*l (X* —¢), 4%

Because the posterior p(2|X,.A,Y) in the above function
is intractable, it is further approximated with a variational

Q)P(QIX,A,)J)P(E)P(S) d2 dé de.

distribution gp(2|z), which is implemented as a decoder
responsible for decoding the network parameter 2 from z. In this
context, z is a sample drawn from a standard Gaussian distribution,

denoted as p(z) = N(0,1).
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Optimizing the decoder can be accomplished by minimizing
the Kullback-Leibler divergence (KL-divergence) between the
approximated posterior E;[q9(R|2)] = [ p(2)qs(Qlz) dz and the
true posterior p(2| X, A, )), which is deﬁned as:

KL[E;[qp (212)]lp (21X, A,N)] = Eq k. (49 (212)) log Ez[qp (R212)]

_]EQ’”]EZ[QH(QV)] logp (Q|X,./4, y) (3)

Note that Equation (3) is still intractable due to the unknown
p(QIX,AY). To address this problem, we rewrite the KL-
divergence as follows:

KL[E;[gp (2|2)]]Ip (21X, A, )] (4)
p(Q)p(VIX, A Q)
P IX,A)

Ez[gs (22(2)]
p(€2)

=logp (VIX, A) — (= KL[E;[qe (212)]llp ()] + Eq logp (V| X, A, Q)
=logp (VIX, A) — (= KL[E;[qe (212)]llp ()]

+Eq [ZLI log F (7-5—1 (Xt —€), A, Q)] ),

=EqlogE;[q (R2]2)] — Eq log

= logp (VI X, A) — (—EQ log +Eqlogp (VIX, A, 9))

where p(2) is the prior distribution for €2, and For the
sake of simplicity, we omit the subscript of Eq-~p, (g (22
as Eqg when the context is clear. Since the first term in
Equation (4) (i.e., the evidence) is constant w.r.t 0, minimizing
Equation (3) is equivalent to maximizing the second term, i.e.,
Evidence Lower Bound (ELBO). By introducing a weighting
factor y > 0 to the ELBO in Equation (4), we define the loss
function L, as:

Le =y - KL[Ezlgo (R2)]lp ()]

T -
~Eo~p, (g5(Q12)] [thl 10g}'(7§ o - 5)»At»9)i| -0
The L, is Equation (6) can further be approximated by:
p(FIX*, A%, X, AY) (6)

= %]—'(7;__1 (x* 7g),A*,Q)p(Q\X,A,y)P(S)P(%’) dQ dé de
sz(fgl (X* — &), 4%, 2) pl2)ao (212 p(€)pe) dz dS2 ¢ de
J K
1 *
S g 4.
j=1k=1

Similarly, we can obtain the saliency map from the following
distribution:

p(S¥IX*, A%, X, AY) 7)
= fﬁ- (g (7’{1 (X* —e¢) ’A*’Q»P(QlX,A,y)p(s)p(S) A dt de
]

j=1

1 K
R o X T (s (7 00— 4%.9y))

=~

=1

where in Equations (7) and (8) & ~ p(§), ex ~ p(e),zi ~ p(z), and
Qj ~ go(S2|z;) are Monte Carlo simulation samples.

Finally, the total explanation uncertainty is quantified by the
variance of the saliency map S$*¢ under the probability distribution
described in Equation (7), ie., Vgiepseixsa*x,.4,)[5%].
In the subsequent lemma, we show that the explanation
be
d epistemic uncertainty.

uncertainty  can decomposed  into  aleatoric  an
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Lemma 1. The explanation uncertainty can be decoupled into
explanation uncertainty attributed to data and to the model,
respectively:

Vigrenpiseeixe,ax,x,4,9) [S™]
= Eq~p@1x,40) [Vsempseeix,a%,0)[S*]]
+ Vap@ix,AY) [Escpiseixs.a=o) [S]] )

~ *C
~ EQ“Erqe[%(mzn [VS‘NP(S*“\X*)A*,Q)[S ]]

Aleatoric Uncertainty

+ Va0 [Esepeaxeana[S7]- ©)

Epistemic Uncertainty

The proof for Lemma 1 is given as follows:

Proof. We first prove Equation (9).

Eo~p@ix.A») [Vsc~p<s*qx*,m,9) [S*C]}

+Vap@x,.Ay) []E56~p(sc|x*,A*,g) [S*C]]

= Eqp@X,4) [IESCNP(SMX* s [(5*5)2]

Fpisexeae) [S*CH +Eo~p@ix.Ap) [E§c~p<sqx»<,A*,g> [S*Cl]
~Egp@ix.Ay) [ESCNP(S“\X*,A*,Q) [S*C]]

(Vipo %] = Exnp(a) [xz} —EZ_plaD)

=Eq~p@x,4) []Eswp(s*qu*,g) [(S*C)zﬂ (10)
- E?%p(m%,A,y) [ESCNP(S”\X*,A*,Q) [S*C]] .

Moreover,

Egrp1,4.) [Este~pisweixs v [57]

= / p(QIX,AY) / (8%)2p (S*|X*, A%, Q) dS* dQ

= f p(QIX, A,Y) / (8¥9)?p (S*IX*, A%, X, A, Y, Q) dS* dQ
(S*“and (X, A, ) are independent given £2)

= / / (S¥)2p (8%, QIX*, A%, X, A, ) dS* dQ

= f (§%)2p (S*IX*, A, X, A, V) dS*

= Egecnp(seelnas, v, A9 [57]. (11)

Plugging Equation (14) into Equation (11), we have:

Eo~p@lx,A) [ESf~p(S*C|X*,A*,9) [(S*”)Zﬂ
B Eéw(ﬂ\é\f,fl,y) [Esf~p(SC\X*,A*,Q) [S*C]]
= Egeep(srex,4%,X,4,Y) [(8*5)2]

B Eéw(mx,A,w [ESCNP(S‘\X*,A*,Q) [S*C]]
= Vrenp(sre|x,a%,2,4,) [S].

Hence, Equation (9) is proved. Finally, by approximating
p(QIX,AY) with Equation (10)
is proved.

E2~qe [a4(22|2)]>
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The explanation uncertainty decomposition is depicted in
Figure 1B. Generally, the top and down portions of Figure 1B
portray the estimation of epistemic and aleatoric uncertainties,
respectively. As shown in the top portion, we first sample an z from
a prior distribution p(z) that is then fed to the Decoder jointly
with the prior distribution of the GNN model parameter p(£2)
to output the estimated posterior distribution gg(£2|z). Next, we
sample a group of Qs in gg(2]z) to get a group of GNN models,
which further generate a group of explanations. The lower portion
of Figure 1B is the same as Figure 1A. Finally, the epistemic and
aleatoric uncertainties are computed with the guide of Lemma 1.

4 Experiment

In this section, we aim to establish a clear link between
methodological advancements and experimental validations. Our
experiments demonstrate that EU-GNN not only advances the
state-of-the-art in GNN explanation performance (Section 4.2)
but also provides a robust measure of uncertainty (Sections 4.3
and 4.4), leading to more trustworthy and interpretable GNN
models. We show the results of quantitative and qualitative
experiments that were performed to evaluate our method with
other comparison models. Three real-world graph classification
datasets are introduced in our experiments. The experiments in
this paper were performed on a 64-bit machine with 14-core Intel
Xeon(R) Gold 6330, 80 GB memory, and NVIDIA RTX 3090 GPU.

4.1 Experimental setup

4.1.1 Datasets

We investigate three binary classification molecular datasets:
BBBP (Martins et al., 2012), BACE (Subramanian et al., 2016),
and TOX21 (Mayr et al., 2016)*, focusing on the identification
of functional groups in organic molecules related to biological
molecular properties. Each dataset comprises experimentally
determined binary classifications of small organic molecules. All
three datasets are divided into training, validation, and testing sets
with a ratio of 8:1:1. the scaffold split method is employed for
both BBBP and BACE datasets, grouping molecules with similar
structures within the same division. Conversely, the TOX21 dataset
utilizes a random splitting approach. The detailed information for
these datasets is as follows:

e BBBP: The Blood-brain barrier penetration (BBBP) dataset
comes from a recent study (Martins et al., 2012) on the
modeling and prediction of barrier permeability. As a
membrane separating circulating blood and brain extracellular
fluid, the blood-brain barrier blocks most drugs, hormones,
and neurotransmitters. Thus, penetration of the barrier forms
a long-standing issue in the development of drugs targeting
the central nervous system. This dataset includes binary
labels for 2,053 compounds (graphs) on their permeability
properties.

1 Available online at https://moleculenet.org/datasets- 1
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TABLE 1 Graph classification performance comparison with white noise.

Method

BBBP

GCN 0.658 (0.0056) 0.612 (0.0047) 0.584 (0.0046) 0.581 (0.0092) 0.534 (0.0087) 0.515 (0.0084) 0.548 (0.0114) 0.503 (0.0108) 0.48 (0.0105)
GAT 0.656 (0.0051) 0.604 (0.0054) 0.578 (0.0042) 0.596 (0.0082) 0.525 (0.0082) 0.511 (0.008) 0.549 (0.0106) 0.503 (0.0114) 0.478 (0.0112)
GIN 0.661 (0.0047) 0.614 (0.005) 0.586 (0.0046) 0.582 (0.0088) 0.539 (0.0084) 0.523 (0.0084) 0.558 (0.0111) 0.506 (0.0103) 0.479 (0.0099)
Bayesian GCN 0.659 (0.0033) 0.613 (0.0031) 0.584 (0.0021) 0.604 (0.0048) 0.555 (0.005) 0.526 (0.0058) 0.56 (0.0076) 0.525 (0.0073) 0.486 (0.0069)
BGNN-AE 0.659 (0.0029) 0.613 (0.0034) 0.584 (0.0025) 0.599 (0.0054) 0.554 (0.0052) 0.529 (0.0047) 0.566 (0.0071) 0.529 (0.0072) 0.488 (0.0075)
GDC 0.662 (0.0026) 0.614 (0.0034) 0.587 (0.0032) 0.601 (0.0052) 0.553 (0.0042) 0.528 (0.0046) 0.554 (0.0058) 0.527 (0.0051) 0.483 (0.0054)
EU-GNN 0.665 (0.0012) 0.619 (0.0016) 0.589 (0.0011) 0.615 (0.0027) 0.576 (0.0033) 0.542 (0.003) 0.592 (0.0042) 0.536 (0.0043) 0.51 (0.0046)
BACE

GCN 0.704 (0.0054) 0.653 (0.0059) 0.615 (0.005) 0.632 (0.0084) 0.583 (0.0076) 0.525 (0.0087) 0.604 (0.0102) 0.543 (0.0106) 0.5 (0.0107)
GAT 0.708 (0.0055) 0.655 (0.0045) 0.616 (0.0057) 0.631 (0.0089) 0.575 (0.0089) 0.545 (0.0081) 0.603 (0.0108) 0.548 (0.011) 0.497 (0.01)
GIN 0.712 (0.0044) 0.659 (0.0049) 0.62 (0.0042) 0.626 (0.0094) 0.588 (0.0084) 0.536 (0.0089) 0.606 (0.0106) 0.55 (0.0113) 0.504 (0.0113)
Bayesian GCN 0.709 (0.003) 0.655 (0.0032) 0.617 (0.0022) 0.642 (0.0059) 0.586 (0.0058) 0.553 (0.0057) 0.629 (0.0076) 0.566 (0.0071) 0.531 (0.0079)
BGNN-AE 0.713 (0.0034) 0.66 (0.0027) 0.621 (0.0034) 0.642 (0.005) 0.596 (0.0045) 0.558 (0.0057) 0.628 (0.0077) 0.572 (0.008) 0.528 (0.0078)
GDC 0.712 (0.0018) 0.661 (0.0022) 0.619 (0.0028) 0.656 (0.0055) 0.611 (0.0052) 0.562 (0.0047) 0.641 (0.0049) 0.582 (0.0056) 0.535 (0.0053)
EU-GNN 0.726 (0.0014) 0.664 (0.0018) 0.624 (0.0018) 0.681 (0.0033) 0.623 (0.0033) 0.575 (0.0032) 0.651 (0.0046) 0.593 (0.0047) 0.548 (0.0042)
TOX 21

GCN 0.788 (0.0048) 0.744 (0.0048) 0.707 (0.0058) 0.699 (0.0086) 0.658 (0.0081) 0.618 (0.0082) 0.676 (0.0106) 0.635 (0.0109) 0.601 (0.011)
GAT 0.786 (0.005) 0.743 (0.0041) 0.707 (0.0044) 0.699 (0.0092) 0.663 (0.0083) 0.631 (0.0081) 0.686 (0.0109) 0.636 (0.0098) 0.597 (0.0112)
GIN 0.791 (0.0041) 0.747 (0.0051) 0.711 (0.004) 0.704 (0.0084) 0.663 (0.009) 0.639 (0.0078) 0.686 (0.0105) 0.637 (0.0096) 0.607 (0.0103)
Bayesian GCN 0.788 (0.0024) 0.744 (0.0029) 0.707 (0.0026) 0.721 (0.0048) 0.673 (0.0047) 0.635 (0.0046) 0.707 (0.0072) 0.647 (0.007) 0.621 (0.0069)
BGNN-AE 0.789 (0.004) 0.745 (0.0034) 0.708 (0.0025) 0.717 (0.0046) 0.681 (0.0057) 0.638 (0.0054) 0.706 (0.0079) 0.658 (0.0072) 0.62 (0.0072)
GDC 0.789 (0.0021) 0.749 (0.0032) 0.714 (0.0031) 0.724 (0.0053) 0.693 (0.0046) 0.654 (0.0048) 0.712 (0.005) 0.664 (0.0053) 0.632 (0.005)
EU-GNN 0.793 (0.0017) 0.758 (0.0027) 0.718 (0.0008) 0.745 (0.0034) 0.711 (0.0035) 0.669 (0.0032) 0.716 (0.0039) 0.674 (0.0044) 0.641 (0.0039)

The results are obtained from 10 individual runs for every setting. The best is highlighted in bold. The percentage means the rate of noise added to the dataset.
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FIGURE 2
The misclassification performance on graph classification. The x-axis represents the False Positive Rate, and the y-axis represents the True Positive
Rate. (A) BBBP. (B) BACE. (C) TOX 21.

e BACE: The BACE dataset provides quantitative (IC50) and
qualitative (binary label) binding results for a set of inhibitors
of human b-secretase 1 (BACE-1) (Subramanian et al.,
2016). This dataset contains a collection of 1,522 compounds
(graphs) with their 2D structures and binary labels.

e TOX21: The “Toxicology in the 2lIst Century” (TOX21)
initiative created a public database measuring the toxicity of
compounds. The original dataset contains qualitative toxicity
measurements for 8,014 compounds (graphs) on 12 different
tasks, here we selected the NR-ER task, which is concerned
with the activation of the estrogen receptor (Mayr et al., 2016).

4.1.2 Compasion methods

In this work, we analyze the uncertainty of explanation
generated in the graph classification task. We analyze the
explanation uncertainty with respect to both aleatoric uncertainty
and epistemic uncertainty with two categories of methods:

e General GNNs that do not consider quantifying uncertainties:
(1) GCN (Kipf and Welling, 2016) is the classical graph
neural networks that specialize in learning representations and
patterns in graph-structured data, (2) GAT (Velickovi¢ et al.,
2017) leverages attention mechanisms to weigh and aggregate
neighboring node information effectively, (3) GIN (Xu et al.,
2018) is a powerful graph neural network architecture
designed to capture intricate structural information by
considering node and edge attributes for graph representation
learning.

e GNNs with uncertainty quantification mechanisms: (1)
Bayesian GCN (Pal et al, 2019) is a novel approach
that combines Bayesian inference and non-parametric
graph learning techniques to improve the robustness and
interpretability of GNNs, (2) GDC (Hasanzadeh et al,
2020) proposes a unified framework for adaptive connection
sampling that generalizes existing stochastic regularization
methods for training GNNs, (3) BGNN-AE (Munikoti et al.,
2023) proposes a unified framework to measure the aleatoric
and epistemic uncertainty for GNNs.
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TABLE 2 Explanation misclassification detection performance on BBBP
dataset.

Method Node Node Edge Edge
ACC AUC ACC AUC
BGCN 0715 0.678 0.844 0.803
(0.0033) (0.0041) (0.0027) (0.0036)
BGNN-AE | 0.722 0.687 0.852 0.825
(0.0043) (0.0045) (0.0038) (0.0035)
EU-GNN 0.746 0.703 0.877 0.846
(0.0015) (0.0017) (0.0017) (0.0021)

The results are obtained from 10 individual runs for every setting. The best is highlighted in
bold. The percentage means the rate of noise added to the dataset.

4.1.3 Implementation details

In this paper, our method is implemented in PyTorch. The
decoder network is a three-layer feed-forward network (FNN) with
a hidden size of 512, 256, 128, and the Sigmoid activation function.
The mean operator is utilized as the readout function and the
activation function is Softmax. For optimization, we use the Adam
optimizer (Kingma and Ba, 2014) with a learning rate of 0.001 for
all the baselines. The node-level explanation is calculated by the
Grad-CAM formulation, and the edge-level explanation is specified
following the gradient-based formulation in Gao et al. (2021). All
experiments are repeated 10 times for each method, and we report
the average results and the standard deviation in the following
quantitative analysis.

4.1.4 Evaluation metrics

Since we aim at the general graph classification problem. To
this end, we introduce three fundamental classification metrics,
carefully chosen to evaluate the methods in a comprehensive
manner: (1). Accuracy (ACC): ACC serves as an intuitive
performance metric to assess a models effectiveness in
distinguishing different graph structures. (2). F1 score (F1):
Given the potential class imbalance in graph classification tasks,
the F1 score, as a harmonic mean of precision and recall, offers
a more balanced evaluation of a model’s ability to correctly
classify graphs while minimizing both false positives and false

negatives. (3). Area Under Curve (AUC): AUC quantifies a
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model’s discriminative power between different graph classes, with
higher AUC values indicating superior classification performance
irrespective of varying class distributions.

4.2 Graph classification performance
analysis

To make a trustworthy prediction explanation, the first step
is to analyze the prediction accuracy. Following the experiment
setup in Munikoti et al. (2023), we manually add white noise (i.e.,
aleatoric uncertainty) to the test data and see how each model
resists the perturbation. Specifically, we add noise (sampled from
Gaussian Distribution) randomly to a portion of nodes” features
(i.e,, 0, 5, 10%) and demonstrate the performance comparison on
three molecule classification datasets.

According to Table I, our proposed EU-GNN constantly
achieves the best performance among all GNN models in three
molecule datasets. To be more specific, without any perturbations
(0%), our proposed EU-GNN can already surpass other methods.
For example, EU-GNN achieves the best results in all three datasets
by excelling other baselines on the most 1.8% in the BACE
dataset. With gradually adding perturbations, our method still
achieves the best classification accuracy and guarantees robustness.
Notably, Compared with the optimal baseline, EU-GNN achieves
the improvement of 5.8 and 3.9% under 5 and 10% perturbation,
respectively. The variance of 10 rounds of experiments on all
datasets is <0.002. The performance achievement is mainly due
to the unified uncertainty measurement and data-based parameter
generation reducing the risk of overfitting. An interesting finding is
that state-of-the-art GNN with UQ, BGCN, and BGNN-AE do not
always outperform GIN in low-noise conditions. This may benefit
from the ability of GIN to extract graph structure information,
while the introduction of randomness affects the accuracy of BCGN
and BGNN-AE.

4.3 Explanation uncertainty measurement

To evaluate the quality of the measured uncertainty, we
conduct the misclassification detection experiment. Specifically, the
misclassification detection experiment involves detecting whether
a given prediction is incorrect using an uncertainty estimate. The
misclassification detection experiment is used as an application to
test the performance of our method. Intuitively, if the explanation
of the prediction is wrong, our model should give a relatively higher
uncertainty score. Conversely, our model should give a lower
uncertainty score for those correctly classified samples. We regard
all misclassified samples as positive samples, use the uncertainty
score output by the model as the score and draw the ROC curve.
Figure 2 shows that our EU-GNN outperforms other UQ for GNN
methods with improvements of 11.9, 8.5, and 19.7% on BBBP,
BACE, and TOX21 datasets, respectively. The results prove that for
misclassified samples, our method has a good recognition ability
based on uncertainty measurement. Further, we decouple the total
uncertainty into aleatoric uncertainty and epistemic uncertainty. It
is clear that both aleatoric uncertainty and epistemic uncertainty
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TABLE 3 Ablation study for EU-GNN and the variants.
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The results are obtained from 10 individual runs for every setting. The best is highlighted in bold. The percentage means the rate of noise added to the dataset.
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FIGURE 3

Visualization of explanation uncertainty on molecule samples. For human notation, dark nodes and edges represent important explanations. For
EU-GNN, deeper nodes and edges represent greater uncertainty.

exhibit excellent misclassification detection capabilities. Moreover,
we observe that the performance of aleatoric uncertainty is
better, which indicates the importance of conducting explanation
uncertainty based on aleatoric uncertainty. Such a discerning
distinction in uncertainties facilitates an enriched understanding,
aiding in not only enhancing the predictive model but also in
providing a potential for explanation analysis.

4.4 Uncertainty explanation performance

As depicted in Table 2, we employ the public human-annotated
explanations for the BBBP dataset from Gao et al. (2021) to assess
the explanation uncertainty of our model. Specifically, for each
molecule, we take the mean value of the calculated node-level and
edge-level saliency maps. We then normalize these values to a 0-
1 range and use 0.5 as the threshold for explanation classification.
Subsequently, we perform explanation misclassification detection
leveraging both measurement and structural uncertainties. For
BGCN and BGNN-AE, we directly employ the Grad-CAM
output on the node and edge feature maps and compute the
variance to represent uncertainty. The results indicate that EU-
GNN provides a more accurate and consistent performance in
explanation misclassification detection compared to other UQ for
GNN methods, underscoring the effectiveness of our explanation
uncertainty.

4.5 Ablation study

We further conduct the ablation study to investigate the
importance of the proposed components of EU-GNN. We
consider two variants: (1) EU-GNN-NT represents EU-GNN
without reversible transformation. (2) EU-GNN-NV removes
the Decoder and directly optimizes the parameters during
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training. The results shown in Table 3 prove the necessity of
our proposed components. Particularly, EU-GNN-NT outperforms
its counterpart albeit exhibiting a tangible limitation primarily
attributed to its inability to accurately capture data fluctuations,
which ostensibly hampers its predictive prowess in scenarios
characterized by volatile data points. Moreover, EU-GNN-NV,
even though it degenerates into a conventional GCN post the
Decoder’s removal, the intrinsic incorporation of the reversible
transformation fortuitously ensures it maintains a commendable
performance, especially when confronted with datasets suffused
with high noise levels. Thus, it outperforms the benchmark GCN
under, further corroborating the imperative role of the reversible
transformation in safeguarding model robustness and enhancing
performance efficacy.

4.6 Visualization

Finally, we visualize three samples to demonstrate the
effectiveness of both measurement uncertainty and structural
uncertainty in detecting misclassification explanations. As depicted
in Figure 3, it's evident that our explanation uncertainty effectively
identifies incorrect explanations. Taking a deeper dive into the
specificities, consider sample 1: the measurement uncertainty
notably brings to light an erroneous identification, wherein two
carbon atoms situated on the furan were mistakenly recognized as
valid structures with regard to barrier permeability. Furthermore,
the structural uncertainty embedded within EU-GNN comes
to the fore in sample 3: it projects a heightened uncertainty
for the furan and its interconnected edges. Notably, when
juxtaposed with human annotations, none of these highlighted
structures were deemed valid constructs, thereby underpinning
the precision and applicability of our model in discerning
and subsequently spotlighting the anomalies in classification
explanations.
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5 Conclusion

In this paper, we propose a novel framework «called
EU-GNN, which is the first to quantify uncertainties of
EU-GNN
is a unified framework to calculate different uncertainties

explanation on graph classification problems.
simultaneously, in which we add the measurement uncertainty
and structure uncertainty designed for graph data. Through
the parameter distribution learned from the data, EU-GNN
achieves to provide accurate uncertainty measure without prior
knowledge. Meanwhile, our method can incorporate any GNN
explanation techniques to measure explanation uncertainty.
Extensive experiments on real-world datasets demonstrate
the effectiveness and robustness of EU-GNN. Besides, our

method shows superiority in measuring the uncertainties

of explanation.

Future work can explore the following three directions:
(1) Future research can further explore the impact of
different types of uncertainties on GNN interpretability.

For example, model structure uncertainty and data quality
uncertainty, and study how they individually or jointly affect
the interpretability of GNN. (2) Future research can focus
on reducing the uncertainty faced in the GNN interpretation
process. This may be achieved by creating new explanatory
models that are able to minimize the impact of uncertainty
while maintaining high interpretability. (3) Consider extending
the EU-GNN framework to node classification tasks and
large-scale graphs while maintaining accurate quantification of
uncertainty.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://moleculenet.org/datasets- 1.

References

Baldassarre, F., and Azizpour, H. (2019). Explainability techniques for graph
convolutional networks. arXiv [preprint]. arXiv:1905.13686.

Bojchevski, A., Shchur, O., Ziigner, D., and Ginnemann, S. (2018). “Netgan:
generating graphs via random walks," in International Conference on Machine Learning
(PMLR), 610-619.

Gal, Y., and Ghahramani, Z. (2016). “Dropout as a bayesian approximation:
representing model uncertainty in deep learning," in International Conference on
Machine Learning (PMLR), 1050-1059.

Gao, Y., Sun, T, Bhatt, R,, Yu, D, Hong, S., and Zhao, L. (2021). “Gnes: learning to
explain graph neural networks," in 2021 IEEE International Conference on Data Mining
(ICDM) (IEEE), 131-140.

Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M., Duffield, N., Narayanan,
K., et al. (2020). “Bayesian graph neural networks with adaptive connection sampling,"
in International Conference on Machine Learning (PMLR), 4094-4104.

Huang, Q., Yamada, M. Tian, Y., Singh, D., and Chang, Y. (2022).
Graphlime: local interpretable model explanations for graph neural networks.

IEEE Trans. Knowl. Data Eng. 35, 6968-6972. doi: 10.1109/TKDE.2022.31
87455

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
[preprint]. arXiv:1412.6980.

Kipf, T. N., and Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv [preprint]. arXiv:1609.02907.

Frontiersin Big Data

10.3389/fdata.2024.1392662

Author contributions

JJ: Data curation, Methodology, Validation, Visualization,
Writing - original draft. CL: Conceptualization, Methodology,
Validation, Writing - original draft. HL: Conceptualization,
Formal analysis, Methodology, Writing - original draft. GB:
Conceptualization, Formal analysis, Methodology, Writing -
original draft. XZ: Conceptualization, Investigation, Methodology,
Validation, Writing - review & editing. LZ: Conceptualization,
Funding administration, Resources,

acquisition,  Project

Supervision, Writing - review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

XZ was employed by NEC Labs America.
The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Ling, C,, Jiang, J., Wang, J., and Liang, Z. (2022). “Source localization of graph
diffusion via variational autoencoders for graph inverse problems," in Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 1010-1020.

Ling, C,, Jiang, J., Wang, J., Thai, M. T., Xue, R., Song, J., et al. (2023a). “Deep graph
representation learning and optimization for influence maximization," in International
Conference on Machine Learning (PMLR), 21350-21361.

Ling, C., Yang, C., and Zhao, L. (2021). “Deep generation of heterogeneous
networks," in 2021 IEEE International Conference on Data Mining (ICDM), 379-388.

Ling, C., Yang, C., and Zhao, L. (2023b). Motif-guided heterogeneous graph deep
generation. Knowl. Inf. Syst. 65, 3099-3124. doi: 10.1007/s10115-023-01863-0

Ling, C., Zhao, X., Cheng, W., Liu, Y., Sun, Y., Zhang, X,, et al. (2024). Uncertainty

decomposition and quantification for in-context learning of large language models.
arXiv [preprint]. arXiv:2402.10189.

Martins, I. F., Teixeira, A. L., Pinheiro, L., and Falcao, A. O. (2012). A bayesian
approach to in silico blood-brain barrier penetration modeling. J. Chem. Inf. Model.
52, 1686-1697. doi: 10.1021/¢i300124c

Mastropietro, A., Pasculli, G., Feldmann, C., Rodriguez-Pérez, R., and Bajorath, J.
(2022). Edgeshaper: bond-centric shapley value-based explanation method for graph
neural networks. Iscience 25:105043. doi: 10.1016/j.is¢i.2022.105043

Mayr, A., Klambauer, G., Unterthiner, T. and Hochreiter, S. (2016).
Deeptox: toxicity prediction using deep learning. Front. Environ. Sci. 3:80.
doi: 10.3389/fenvs.2015.00080

frontiersin.org


https://doi.org/10.3389/fdata.2024.1392662
https://moleculenet.org/datasets-1
https://doi.org/10.1109/TKDE.2022.3187455
https://doi.org/10.1007/s10115-023-01863-0
https://doi.org/10.1021/ci300124c
https://doi.org/10.1016/j.isci.2022.105043
https://doi.org/10.3389/fenvs.2015.00080
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Jiang et al.

Mobiny, A., Yuan, P., Moulik, S. K., Garg, N., Wu, C. C., and Van Nguyen, H. (2021).
Dropconnect is effective in modeling uncertainty of bayesian deep networks. Sci. Rep.
11, 1-14. doi: 10.1038/s41598-021-84854-x

Munikoti, S., Agarwal, D., Das, L., and Natarajan, B. (2023). A general framework
for quantifying aleatoric and epistemic uncertainty in graph neural networks.
Neurocomputing 521, 1-10. doi: 10.1016/j.neucom.2022.11.049

Pal, S., Regol, F., and Coates, M. (2019). Bayesian graph convolutional neural
networks using non-parametric graph learning. arXiv [preprint]. arXiv:1910.12132.

Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., and Hoffmann, H. (2019).
“Explainability methods for graph convolutional neural networks," in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10772-10781.

Raghu, M., Blumer, K., Sayres, R., Obermeyer, Z., Kleinberg, B., Mullainathan, S., et
al. (2019). “Direct uncertainty prediction for medical second opinions," in International
Conference on Machine Learning (PMLR), 5281-5290.

Schlichtkrull, M. S., De Cao, N., and Titov, I. (2020). Interpreting graph neural
networks for nlp with differentiable edge masking. arXiv [preprint]. arXiv:2010.00577.

Schnake, T., Eberle, O., Lederer, J., Nakajima, S., Schiitt, K. T., Miller, K.-R,, et
al. (2021). Higher-order explanations of graph neural networks via relevant walks.
IEEE Trans. Pattern Anal. Mach. Intell. 44, 7581-7596. doi: 10.1109/TPAMI.2021.311
5452

Subramanian, G., Ramsundar, B., Pande, V., and Denny, R. A. (2016).
Computational modeling of pB-secretase 1 (bace-1) inhibitors using ligand

Frontiersin Big Data

12

10.3389/fdata.2024.1392662

based approaches. J. Chem. Inf. Model. 56, 1936-1949. doi: 10.1021/acs.jcim.6b
00290

Velitkovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2017). Graph attention networks. arXiv [preprint]. arXiv:1710.10903.

Vu, M., and Thai, M. T. (2020). Pgm-explainer: probabilistic graphical model
explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 33,12225-12235.

Wen, Y., Tran, D., and Ba, J. (2020). Batchensemble: an alternative approach to
efficient ensemble and lifelong learning. arXiv [preprint]. arXiv:2002.06715.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural
networks? arXiv [preprint]. arXiv:1810.00826.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). Gnnexplainer:
generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 32,
9240-9251.

Zhang, L., Zhao, L., Qin, S., Pfoser, D., and Ling, C. (2021). “Tg-gan: continuous-
time temporal graph deep generative models with time-validity constraints,” in
Proceedings of the Web Conference 2021, 2104-2116.

Zhang, Y., Pal, S., Coates, M., and Ustebay, D. (2019). “Bayesian graph convolutional
neural networks for semi-supervised classification,” in Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33, 5829-5836.

Zhao, X., Chen, F,, Hu, S., and Cho, J.-H. (2020). Uncertainty aware semi-
supervised learning on graph data. Adv. Neural Inf. Process. Syst. 33, 12827-12836.

frontiersin.org


https://doi.org/10.3389/fdata.2024.1392662
https://doi.org/10.1038/s41598-021-84854-x
https://doi.org/10.1016/j.neucom.2022.11.049
https://doi.org/10.1109/TPAMI.2021.3115452
https://doi.org/10.1021/acs.jcim.6b00290
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Quantifying uncertainty in graph neural network explanations
	1 Introduction
	2 Related work
	2.1 Uncertainty quantification in graph neural networks
	2.2 Explainable graph neural network

	3 Methodology
	3.1 Problem formulation
	3.1.1 Aleatoric uncertainty on graph classification
	3.1.2 Epistemic uncertainty on graph classification
	3.1.3 Post-hoc explanation generation

	3.2 Explanation uncertainty derivation from the variance of graph data
	3.2.1 Explanation uncertainty from measurement uncertainty
	3.2.2 Explanation uncertainty from structural uncertainty

	3.3 Variational inference-based explanation uncertainty quantification

	4 Experiment
	4.1 Experimental setup
	4.1.1 Datasets
	4.1.2 Compasion methods
	4.1.3 Implementation details
	4.1.4 Evaluation metrics

	4.2 Graph classification performance analysis
	4.3 Explanation uncertainty measurement
	4.4 Uncertainty explanation performance
	4.5 Ablation study
	4.6 Visualization

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


