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With the increasing popularity of Graph Neural Networks (GNNs) for predictive
tasks on graph structured data, research on their explainability is becoming more
critical and achieving significant progress. Although many methods are proposed
to explain the predictions of GNNs, their focus is mainly on "how to generate
explanations.” However, other important research questions like “whether the
GNN explanations are inaccurate,” “what if the explanations are inaccurate,”
and "how to adjust the model to generate more accurate explanations” have
gained little attention. Our previous GNN Explanation Supervision (GNES)
framework demonstrated effectiveness on improving the reasonability of the
local explanation while still keep or even improve the backbone GNNs model
performance. In many applications instead of per sample explanations, we need
to find global explanations which are reasonable and faithful to the domain
data. Simply learning to explain GNNs locally is not an optimal solution to
a global understanding of the model. To improve the explainability power of
the GNES framework, we propose the Global GNN Explanation Supervision
(GGNES) technique which uses a basic trained GNN and a global extension
of the loss function used in the GNES framework. This GNN creates local
explanations which are fed to a Global Logic-based GNN Explainer, an existing
technique that can learn the global Explanation in terms of a logic formula.
These two frameworks are then trained iteratively to generate reasonable
global explanations. Extensive experiments demonstrate the effectiveness of
the proposed model on improving the global explanations while keeping the
performance similar or even increase the model prediction power.

KEYWORDS

graph, Graph Neural Networks, global explainability, human-in-the-loop, graphical
concepts

1 Introduction

As Deep Neural Networks (DNNs) are widely deployed in sensitive application areas,
recent years have seen an explosion of research in understanding how DNNs work under
the hood (e.g., explainable AI, or XAI; Adadi and Berrada, 2018; Arrieta et al., 2020) and
more importantly, how to improve DNNs using human knowledge (Hong et al., 2020).
In particular, Graph Neural Networks (GNNs) have been increasingly grabbed attention
in several research fields, including computer vision (Fukui et al., 2019; Pope et al., 2019),
natural language processing (Annervaz et al., 2018), medical domain (De Haan et al., 2009),
and beyond. Such trend is attributed to the practical implication of graph data—many real-
world data, such as social networks (Fan et al., 2019), chemical molecules (Scarselli et al.,
2008), and financial data (Matsunaga et al., 2019), are represented as graphs.
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similar to other DNNSs GNNs
also offer only limited transparency, imposing significant

However, architectures,
challenges in observing when GNNs make successful/unsuccessful
predictions (Hong et al, 2020; Wu et al, 2021). Some real
world examples for adjusting model explanation to improve
Graph Neural Networks (GNNs) can be seen in Figure 1. This
issue motivates a surge of recent research on GNN explanation
techniques, including gradients-based methods, where the
gradients are used to indicate the importance of different input
features (Baldassarre and Azizpour, 2019; Pope et al., 2019);
perturbation-based methods, where an additional optimization
step is typically used to find the important input that influences
the model output the most with input perturbations (Ying et al.,
2019; Luo et al,, 2020; Schlichtkrull et al., 2020); response-based
methods, where the output response signal is backpropagated as an
importance score layer by layer until the input space (Baldassarre
and Azizpour, 2019; Pope et al,, 2019; Schnake et al., 2020);
surrogate-based methods, where the explanation obtained from
an interpretable surrogate model that is trained to fit the original
prediction is used to explain the original model (Huang et al., 2020;
Vu and Thai, 2020; Zhang et al., 2020); and global explanation
methods, where graph patterns are generated to maximize the
predicted probability for a certain class and use such graph patterns
to explain the class (Yuan et al., 2020a). Unlike local explanation
models which explain the model prediction per input sample,
global explanation techniques aim at providing the general insights
and high-level understanding of the predictions of a deep graph
model. Specifically, they investigate what input graph patterns can
lead to a certain GNN behavior or maximize a certain prediction.
This is essential in many real-world critical applications and can
substantially increase human trust in GNNs’ prediction ability.
As an example, consider classifying graph molecules as either
having a mutagenic effect or not (Azzolin et al, 2022). The
mutagenicity of a molecule is correlated with the presence of
electron-attracting elements conjugated with nitro groups (e.g.,
NO,). Accordingly, designing an explanation model that can
provide a global understanding of the GNN classification is an
urgent need. This could be achieved by designing an explainer
that manages to recover all the existing well-known NO, motifs
as an indicator of mutagenicity. Additional examples include
gender (male vs. female) or age (young vs. old) classification of
human subjects based on structural or functional connectivity
matrices, obtained through magnetic resonance imaging of the
corresponding subjects. In this case, rather than a per sample
explanation, we need a per class explanation in form of high-level,
generic insight on differences in the input connectivity matrices of
these subjects.

Despite the recent fast progress on GNN explanation
techniques, the existing research body focuses on “how to generate
GNN explanations” instead of “whether the GNN explanations

» o«

are inaccurate; “what if the explanations are inaccurate, and
“how to adjust the model to generate more accurate explanations.”
Answering the above questions is highly beneficial to the model
developers and the users of GNN explanation techniques but is
also extremely difficult due to several challenges: 1) Lack of an
automatic learning framework for identifying and adjusting

unreasonable explanations on GNNs. Although there are plenty
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of existing works on GNN explanations, they are not able to ensure
the correctness of explanations, not able to identify the incorrect
explanations, nor able to adjust the unreasonable explanations.
The technique that can enable this has not been well-explored yet
and is technically challenging due to the additional involvement
of another backpropagation originated from explanation error. 2)
Difficulty in aligning the node and edge explanations. Existing
GNN explanation works usually focus on either node and edge
explanation, while the interplay and consistency between the
explanations of nodes and edges are extremely challenging to
maintain and jointly adjusted. 3) Difficulty in jointly improving
model performance and explainability with limited explanation
supervision. Due to the high cost for human annotation, it
can be impractical to assume the full accessibility to the human
explanation label during model training. Thus, designing an
effective framework that can best leverage a partially labeled
dataset is on-demand yet challenging. 4) Lack of a learning
framework that can employ global explanation of a GNN
model to improve its performance and global explainability
through global explanation supervision. In many applications,
we have access to the ground-truth explanations annotated by
domain experts that can demonstrate the behavior of the data
as a whole, and hence, we are motivated to employ that as
the supervision signal to improve performance and global-level
explainability. Designing a learning framework that utilizes this
type of information is an interesting line of research which has yet
remained unexplored.

To address the above challenges, beyond merely finding a
solution to produce global GNN explanations, this study focuses
on a global GNN explanation supervision framework for correcting
the unreasonable explanations and learning how to explain
GNNs from a global aspect correctly. Although the previously
proposed Graph Neural Network Explanation Supervision (GNES)
framework (Gao et al., 2021) has proved effective on improving
the reasonability of the model explanation per local samples, while
still keep or even improve the backbone GNN model performance,
it still lacks the ability to guide the global model explanation
generation. In many real-world decision-critical application, the
ability to explain the reason for each class prediction through a
single robust overview of the model is a critical requirement. To
address the inefficacy of the existing GNES model in improving
the global explainability through global explanation supervision, in
this study, we extend the GNES model by proposing the Global
GNN Explanation Supervision (GGNES), whose effectiveness is
similar to the GNES model but can improve the GNN model
global explanation generation (and potentially its prediction)
through guiding the global explanations generated while training
the model. The major contributions of this study are summarized
as follows: (1) Develop a generic framework for training GNNs
while improving the reasonability and faithfulness of the global
explanations generated for the model. We propose the GGNES
model built upon concept-based explainability and our previously
proposed GNES model. GGNES enables learning reasonable and
faithful global explanation, in terms of logic formulas, while
training a GNN model. These formulas are constructed from a
combination of learned graphical concepts which are derived from
local explanations. (2) Develop the formulation that can take the
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Q: Is the picture in the left taken in indoor or outdoor? Q: Is the chemical formula in the left toxic?
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(1-a) Baseline: Outdoor (1-b) GNES: Indoor (2-a) Baseline: Non-toxic (2-b) GNES: Toxic

FIGURE 1

Cases for adjusting model explanation to improve Graph Neural Networks (GNNs). Scene graph (left three): from the left, an input image,
explanation before adjustment (1-a, inaccurate), and explanation after the adjustment (1-b, accurate). Note that the model explanation has been
shifted from puppy eyes and back, rods, and an artificial tree to curtains, a clock, and a rug. Molecular formula (right three): from the left, an input
formula, explanation before the adjustment (2-a, inaccurate), and explanation after the adjustment (2-b, accurate). Reactivity for this molecule is
mostly affected by benzene ring sub-components in the overall molecular structure. 2-b highlights the main benzene rings of the molecule more

effectively than 2-a

model-generated global node (or edge) level explanation of a
GNN, and use that as additional supervision to train the GNN
model. The explanations generated by the GNN model remain
differentiable to the backbone model’s parameters. This makes the
global explanation supervision feasible as the model parameters can
be affected and tuned during training. (3) Conduct comprehensive
experiments to evaluate the effectiveness of the proposed model.
Extensive experiments on three real-world datasets demonstrate
that the proposed model improved the backbone GNN model
both in terms of prediction power and global explainability
across different application domains. In addition, qualitative
analyzes, including case studies, are provided to demonstrate the
effectiveness of the proposed framework.

2 Related work

In this section, we first introduce our previously proposed
GNES framework. Then, we note that our work draws inspiration
from the research fields of graph neural network explanations
that provide the model generated explanations, and explanation
supervision on DNNs which enables the design of pipelines for
the human-in-the-loop adjustment on the DNNs based on their
explanations.

2.1 Our previously proposed GNES

framework

In our previous study (Gao et al, 2021), we proposed a
framework that learns how to jointly optimize both model
prediction and model explanation by enforcing both whole graph
regularization and weak supervision on model explanations. For
the graph regularization, we proposed a unified explanation
formulation for both node-level and edge-level explanations by
enforcing the consistency between them. The node- and edge-
level explanation techniques we proposed are also generic and
rigorously demonstrated to cover several existing major explainers
as special cases. However, in some applications, the ground
truth explanations demonstrate the behavior of the data as a
whole instead of each individual sample. Accordingly, we need a
learning framework that utilizes this type of information through
global explanation supervision and hence improves both model
prediction and global model explanation.
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FIGURE 2

Proposed GNN Explanation Supervision (GNES) framework that
jointly optimized the GNN models based on (1) a prediction loss, (2)
an explanation loss on the human annotation and model
explanation, and (3) a graph regularization loss to inject high-level
principles of the graph-structured explanation. Notice that we only
assume limited accessibility to the human annotation for only a
small set of samples (10% in our experiments).

2.2 Graph Neural Networks explanations

Most of the existing GNN explanation methods are instance-
level methods, where the methods explain the models by identifying
important input features for its prediction (Yuan et al., 2020b).
The first category is gradients-based methods, where the gradients
are used to indicate the importance of different input features.
Existing methods are SA (Baldassarre and Azizpour, 2019), Guided

P (Baldassarre and Azizpour, 2019), CAM (Pope et al., 2019),
and GradCAM (Pope et al, 2019). In Etemadyrad et al. (2022),
the authors propose a novel post hoc explanation technique to
find the subgraphs in input that majorly influence one or more
subgraphs in the output domain by using gradient information and
solving a classical community detection objective (De Domenico
et al,, 2015). The second category is perturbation-based methods,
where an additional optimization step is typically used to find
the important input that influences the model output the most
with input perturbations. Existing methods are GNNExplainer
(Ying et al., 2019), PGExplainer (Luo et al., 2020), and GraphMask
(Schlichtkrull et al.,
based method, where the output response signal is backpropagated

2020). The third category is the response-
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as an importance score layer by layer until the input space.
Existing methods in this category include LRP (Baldassarre and
Azizpour, 2019), Excitation BP (Pope et al., 2019), and GNN-
LRP (Schnake et al., 2020). The last category is surrogate-based
methods, where the explanation obtained from an interpretable
surrogate model that is trained to fit the original prediction is
used to explain the original model. The surrogate methods include
GraphLime (Huang et al., 2020), RelEx (Zhang et al., 2020), and
PGM-Explainer (Vu and Thai, 2020). In addition to instance-
level explanation methods, very recently, the global explanation
of the GNN model has also been explored by XGNN (Yuan
et al., 2020a). Please see Yuan et al. (2020b) for a survey of
explainability in Graph Neural Networks. Even though there are
plenty of existing explanation methods for GNNs, most of the
methods above can not be applied to explanation supervision
mechanism as the goal is to apply supervision on the generated
explanation such that the backbone GNN model itself can be fine-
tuned accordingly to generate better explanations as well as keep
or even improve the model performance. To enable this fine-
tuning process over the explanation, the explanation itself needs
to be differentiable to the backbone GNN model’s parameters. In
other words, only the explanation that is directly calculated from
the computational pipeline (such as gradients-based and response-
based methods) can be used to apply this additional explanation
supervision to fine-tune the backbone GNN models explanation.
The perturbation-based and surrogate-based methods all require
additional optimization steps to obtain the explanation and thus are
unable to be end-to-end trained with the explanation supervision
on the backbone GNNs.

2.3 Explanation supervision on DNNs

The potential of using explanation-methods devised for
understanding which sub-parts in an instance are important for
making a prediction-in improving DNNs has been studied in
many domains across different applications. In fact, explanation
supervision has been widely studied on image data by the computer
vision community (Das et al., 2017; Linsley et al., 2018; Qiao et al,,
2018; Mitsuhara et al., 2019; Zhang et al., 2019; Chen et al., 2020;
Patro et al., 2020). Linsley et al. (2018) have demonstrated that the
benefit of using stronger supervisory signals by teaching networks
where to attend, which looks similar to the proposed approach.
Moreover, Mitsuhara et al. (2019) have proposed a post-hoc fine-
tuning strategy where an end-user is asked to manually edit the
model’s explanation to interactively adjust its output. Such edited
explanations are then used as ground-truth explanations (from
humans) to further fine-tune the model. In addition, several works
in the Visual Question Answering (VQA) domain have proposed
to use explanation supervision to obtain improved explanation on
both the text data and the image data (Das et al., 2017; Qiao et al,,
2018; Zhang et al., 2019; Patro et al., 2020). In addition to image
data, the explanation supervision has also been studied on other
data types, such as texts (Ross et al., 2017; Jacovi and Goldberg,
2020), attributed data (Visotsky et al., 2019), and more.

Gao et al. (2024) provide a systematic survey on Explanation-
Guided Learning (EGL), a line of research that focuses on
leveraging additional supervision signals or prior knowledge
obtained from human explanations into machine learning models’
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reasoning process. According to Gao et al. (2024), EGL methods
provide either global (Weinberger et al., 2020; Erion et al., 2021) or
local guidance (Gao et al., 2022a,b; Shi et al., 2023)) by injecting
prior knowledge or adding supervision signals to improve the
model’s global (or local) explanation. In Erion et al. (2021), the
authors introduce attribution priors to optimize for higher-level
properties of explanations, such as smoothness and sparsity. Lee
et al. (2022) illustrate how to upgrade a deep model to its self
explainable version that can predict and explain with logic rules
learned with widely-used deep learning modules. Gupta et al.
(2024) introduce Concept Distillation to create richer concepts
using a pre-trained teacher model. They demonstrate how concept-
sensitive training can improve model interpretability, reduce biases,
and induce prior knowledge. Sha et al. (2023) propose a rational
extraction technique built based on an adversarial approach that
calibrates the information between a guider, a typical neural model
that does the prediction, and a selector-predictor model that
additionally produces a rationale for the guider’ prediction. Shi
et al. (2023) develop the ENGAGE framework as a local guidance
EGL, built upon Explanation Guidance Data Augmentation, which
leverages explanation to inform graph augmentation, and uses
contrastive learning for training representations to preserve the key
parts in graphs while removing uninformative artifacts.

However, to our best knowledge, explanation supervision on
graph-structured data with graph neural networks through learning
logic-based concepts has not been explored before, and we are the
first to propose a framework to handle this open research problem.

3 Model

In this section, we introduce our proposed Global Explanation
Supervision framework for GNNs. First, we briefly summarize
the explanation regularizations (i.e., explanation consistency and
sparsity) proposed by Gao et al. (2021) and how these components
enhance the quality of model explanations in a global level. Then,
we will introduce the proposed Global node-level, in addition
to the Global edge-level explanation supervision definition and
formulation.

Formal definition of the problem: Let G = (X, A) denotes an
attributed graph with N nodes be defined with its node attributes
X € RN*4n and its adjacency matrix A € RN*N (weighted or
binary), where d;,, denotes the dimension of input feature. Let y be
the class label for graph G. The general goal for a GNN model is to
learn the mapping function f for each graph G to its corresponding
label y,

F:G—y

Following Kipf and Welling (2016) and similar to Gao et al.
(2021), we employ the basic definition of Graph Convolutional
Networks (GCN; Kipf and Welling, 2016), for an attributed graph
G = (X,A) with y as the class label for graph G, where a graph
convolutional layer can be defined as Equation (1).

FO = o(D~2 AD~2 FU-D WD) )

where FO denotes the activations at layer I, and FO — X; A =
A + Iy is the adjacency matrix with added self connections where
Iy € RN*N is the identity matrix; Disthe degree matrix of A, where
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TABLE 1 Raw formulas as extracted by the Entropy Layer.

Dataset Task Raw formulas

HCP Gender prediction Female

structural <= Py VP VP
Male < P;

HCP Age prediction Old <=

functional Py Vv (P A Py)
Young <= P, V P;

ABIDE ASD classification Typical <= Py A Py
Control <= P,

Dii = Zj Aij; The trainable weight matrix for layer [ is denoted as

wh ¢ Rd(l)x"l(lm; o (+) is the element-wise non-linear activation
function. Additionally, a similar design as in Pope et al. (2019)
is employed to this backbone GNN model in which using several
layers of graph convolutional layers followed by a global average
pooling (GAP) layer over the graph nodes can address any concerns
when working with variable input graph size.

3.1 GGNES framework

The goal here would be to design a framework that
can generate global explanations which are closer to the
human annotations through global explanation supervision. The
prediction performance is expected to stay the same or possibly
also improve. The global explanation supervision is possible via
defining the learning objective of the proposed framework as a
joint optimization. As shown in Equation (2) and following the
framework in Figure (2), the objective function is a combination
of model prediction loss (e.g., the cross-entropy loss), the global
explanation loss (which is a function of the absolute or squared
difference between class level human and model explanations), and
global model explanation regularizations (graph regularizations
that follow high-level graph-structured rules to the explanation).
These three terms are computed per class and combined thereafter
to form the global explanation supervision framework. Concretely,
we employ the objective function as

min ‘CPred,c + LAtt,C(<MC) Mé)» (Eo Eé)) + QC(MC) Ec) (2)

global explanation loss regularization

where M. € RN*! and E. € RV*N denote the model-generated
node-level and edge-level explanations of class ¢ using a given
explanation method. And M/, E. are the corresponding ground-
truth explanations of class ¢, marked by the human annotators.
The human annotations are provided globally for all samples and
are unique per class, but equal for the samples of each class.
These are used as additional guidance to make the explanation
supervision possible. Lpreq. is the typical prediction loss (such
as the cross-entropy loss) on the training set. The proposed
explanation loss L. measures the discrepancies between model
and human explanations globally both on node level and edge level,
as Equation (3)

£Att(<Mc,Mé>> (Ec Eé» = O‘ndiSt(MC)Mé) + aediSt(EoEé) (3)

global node loss  global edge loss
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where o, and «, are the scale factors for balancing global node-
level and global edge-level loss; the function dist(x, y) measures the
mean element-wise distance between the inputs x and y, a common
choose can be absolute difference or squared difference.

However, in practice, in many applications, it is not feasible to
obtain the human explanations for the whole dataset. As a remedy,
we only apply the global explanation loss to the classes that have
the ground-truth labels for the human explanations and apply
the high-level graph rules to regulate the model explanation for
each class even if the human annotation is unavailable (Gao et al.,
2021). Specifically, we employ the global explanation consistency,
in addition to the global sparsity regularization. The former can
regulate the global node and edge explanation simultaneously so
that the model is more likely to generate a globally consistent
and smooth explanation over nodes and edges. The global sparsity
regularization is designed to regulate the model to only focus on
a few important nodes and edges for the explanations. Thus, we
propose Equation (4) for global graph regularizations to obtain
more reasonable model explanations:

QC(MD Ec) = ,BQEOH(MD Ec)

+ ¥ 2(Me, Ec) 4)

explanation consistency sparsity

where f is the scaling factor for the global explanation consistency
between node and edge explanations, y is the scaling factor for
the sparsity constraints on both node and edge explanations. These
regularizations are described in more detail below:

3.1.1 Global explanation consistency
regularization

The global node explanation and edge explanation are
not independent, but rather highly correlated with each
One the
explanation smoothness is that the adjacent nodes should

other. natural assumption about global node
share similar importance. However, this assumption can be
too strong and sometimes lead to over-smoothing of the node
explanation and tend to yield indistinguishable patterns for
the explanation. In addition, it ignores the connection between
the node and edge explanations, which can be a crucial factor
for the explanation model to generate a global consistent
explanation.

Here, we propose to take one step further regarding the
smoothness assumption about the explanation by considering both
node and edge explanations and making them more consistent
with each other. Concretely, instead of treating all pairs of
adjacent nodes equally important when enforcing the smoothness
constraint, we propose to weight them by the corresponding
edge importance such that the explanation consistency is
better enforced on those nodes and edges that are deemed
important. Mathematically, the global explanation consistency can

be measured by Equation (5)

1 1 k 2
(Mo B = - > on 2 BeijAiIMe; — Mefll® - (5)
k ij
where k is the index of sample belonging to class c, Affj is the
adjacency matrix for sample k, and T, is the total number of
samples in class ¢. The above regularization can be interpreted as
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FIGURE 3

Representative element of each learned concept for HCP Structural dataset. (A) Po. (B) P;. (C) P». (D) Ps.

follows: given a pair of nodes i and j that is adjacent (i.e., A;; = 1), if
the edge that connects the two nodes is important (i.e., E;; is high),
then the nodes it connects also tend to be consistent.

3.1.2 Sparsity regularization

As sparsity is a common practice for the model explanation, we
apply the £; norm to regulate both the node-level and the edge-level
explanations, as Equation (6)

1 1
Q:(Me, Ec) = N IMell + L7 [1Eelh (6)

Overall, the benefits of applying the proposed regularization
terms are 3-fold. First, the regularization terms do not rely on the
specific human labels on the explanation, which can be very limited
and hard to acquire in practice. Thus, they can be very crucial in
the scenarios where the explanation labels are scarce. Second, since

Frontiersin Big Data

the explanation for the node and edge can be highly relevant, the
proposed explanation consistency regularization can be critical for
enforcing the model to generate more reasonable and consistent
results that better align with the human explanation. Lastly, our
overall framework is very flexible such that the regularization terms
are not affected by changing the specification of the node and edge
explanation formulation in Equations (7, 12), respectively, making
the proposed framework easily applicable to give explanation and
apply explanation supervision on any downstream applications
with little to no overhead.

The regularization term in Equation (2) is employed to first
regulate the node and edge explanation and make them consistent
and smooth through considering the dependence of node and edge
explanations. Additionally, to lead the model to generate more
realistic explanations, the sparsity regularization is also applied
which can regulate the model to only focus on a few important
nodes and edges for the explanations.
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FIGURE 4

Representative element of each learned concept for HCP Functional dataset. (A) Po. (B) Py. (C) P,. (D) P3

35\;__‘1
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3.2 Global node explanation formulation
for global explanation supervision

In many applications, the ground-truth explanations (on
synthetic data) or the domain knowledge (on real-world data)
provides node-level explanation of the data in a global manner
rather than per sample/instance. In this case, we need to provide
a single robust overview of the model predictions. Accordingly, we
aim to propose a framework that can both generate the global node
explanation by capturing the behavior of the GNN model as a whole
(rather than providing instance-specific explanations which could
be noisy or not faithful to the model predictions) and also employ
it as a supervision signal to further improve the global node-level
explanations generated by the model.

To this end, we employ the gradient and the response/activation
information which are also the main components for local node
explanation supervision as described in Gao et al. (2021). We then
aggregate this information over all instances so we can produce
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a model-generated global explanation that remains differentiable
to the backbone GNN model’s parameters. This makes the global
explanation supervision feasible as the model parameters can be
affected and tuned during training. Mathematically, given the
output y. on class ¢ and sample i, the global explanation for node n
at layer [ can be computed as follows:

Iy dyt ayt FO) )
() RPN () B () R
aFD” " pD” " G R

I
()C:q/(

i
where ;Fy(”,) represents the gradient of the features of node n at

layer [ givnen class ¢ and sample i, Z is the total number of samples,
and F{” denotes the node activation at layer I. The function W
in Equation (7) can generate any simple to more complicated
computations over the input gradients and the activation. Two
simple examples are shown in Equations (8, 9), where the gradients
are employed to generate simple gradient-based local explanation
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FIGURE 5

Representative element of each learned concept for ABIDE dataset. (A) Py. (B) P;. (C) Ps.
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for each sample, which are then aggregated using the min or max
function to form the final global explanation:

. ay! ay? 3
MY, = min([ReLU(-25), [ReLU(-25 )., e
JF! aF! 9!
®)

ay! ay? 0
MY, = max(ReU(ZE ), RLUZE), . ReLUC 21
E aF F

)

The other form of aggregation is to average over the local

n

explanations to get the global-level explanation:

Z

1
My = 7 2 IReL( y;,) I (10)
=1
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More complicated technique, described as concept-based global
explainer in Azzolin et al. (2022), with some variations, can be used
and formulated as below:

M. = A(Py, Pa, ... Pyy) (1)

where P; is the i — th learned prototype which is initialized
randomly from a uniform distribution and learned through
training the GLGExplainer framework described in Azzolin et al.
(2022) and m is the total number of prototypes which is a
hyperparameter and tuned separately for each dataset. A is also
a learnable Boolean function that generates a logical combination
2022). In
this setting, Equation (11) is a logic formula constructed using

of the learned prototypes following (Azzolin et al,
graphical concepts derived from local explanations. Concepts

can be described as intermediate, high-level and semantically
meaningful units of information commonly used by humans to
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TABLE 2 Performance and model-generated explanation evaluation among the proposed models and the baseline on two HCP, in addition to one ABIDE

graph classification tasks.

Dataset Global_exp ACC AUC Node Node Edge MSE  Edge MAE
_method MSE MAE
None 0.736 0.843 0.392 0.436 - -
Avg 0.741 0.854 0.311 0.394 - -
HCP functional max 0.736 0.843 0.324 0.418 - -
min 0.738 0.845 0.321 0.414 - -
concept_based 0.759 0.899 0.311 0.372 - -
None 0.829 0.961 0.238 0.436 - -
Avg 0.833 0.965 0.224 0322 - -
HCP structural max 0.830 0.971 0.220 0.397 - -
min 0.833 0.971 0.217 0.323 - -
concept_based 0.838 0.971 0.101 0.223 - -
None 0.730 0.868 0.237 0.437 0.065 0.033
Avg 0.735 0.870 0.218 0.416 0.051 0.031
ABIDE max 0.732 0.871 0.215 0.406 0.055 0.025
min 0.730 0.868 0.222 0.413 0.061 0.021
concept_based 0.744 0.885 0.191 0.331 0.043 0.024

The results are obtained from five individual runs for every setting. The best results for each task are highlighted with boldface font, and the second bests are underlined.

explain their decisions. More details for GLGExplainer are given
in Azzolin et al. (2022).

The training process based on Equation (11) consists of three
steps. First, a basic GCN is trained by optimizing only the first
term in Equation (3). Second, the local explanations generated by
this trained GNN are fed as inputs to the GLGExplainer which can
construct the logic formula of Equation (11). Last, the original GCN
is re-trained through the full loss function in Equation (3). For the
third or last step, we only employ the logic formula from step 2 and
discard the prototypes generated. Instead we randomly initialize
the values of prototypes from a uniform distribution. Accordingly,
the GCN and GLGExplainer are trained iteratively until the value
of prototypes would converge. Note that all the parameters of
GLGExplainer in step three are exactly equal to those in step 2,
except for the prototypes that remain learnable and are updated at
each iteration.

For all the functions in Equations (8-11), the results are
computed and included in the Experiments section with further
discussions.

3.3 Global edge explanation formulation
for global explanation supervision

While several works have studied global node-level explanation
topic, little to no work has explored the global edge-level
explanation and its applications. However, in many scenarios, the
latter can be more crucial and meaningful than the former as the
domain knowledge or human annotations describe the relationship
between nodes rather than the nodes in particular.
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Similar to the global node explanation supervision, we need
to propose a unified edge-level explanation formulation which
generates explanations that are differentiable to the backbone
model’s parameters. Taking the gradient of each edge in the
input adjacency matrix, as well as the response/activation of the
pairs of nodes that are associated with that edge, and using the
chain rule, we can define suitable model generated explanations
for each instance. Concretely, given the output y. on class ¢
and sample i, the global edge explanation between node »n and
node m at layer I can be computed as the aggregation of all
edge explanations for single instances. More precisely, this is a
function of the edge gradients for all samples, in addition to
node activations:

I i I
0 _ dye  9FY dy.  9FY
e AFD  9AL " 9FD  9Al
n,m n,m (12)
ayN  oF®
w2 ——— FO F)y
T9FD  gAN CTmeTm
where 3%) . BBAF,-(Z) represents the gradient of the edge that

connects nodes n and m at layer | given class ¢ and sample
i Fﬁ,l) and F,(,lq) denote the activation of node #n and node
m at layer [, respectively, and N is the total number of
instances. Similar to previous formulation in Equation (7), ®
can combine the local explanations of all samples, providing a
global explanation for the overall behavior of the GNN. A simple
example is the min or max value among all the gradient-based
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TABLE 3 Fidelity, accuracy, and concept purity computed over test sets
for all datasets.

Dataset Fidelity Accuracy Concept
purity

HCP 091 0.89 0.82

structural

HCP 0.81 0.83 0.85

functional

ABIDE 0.78 0.79 0.85

edge-level local explanations, which can be formulated as

Equation (13)

, ayl  9FD
Ey e = min(IRELUCG - =)
n,m
ayl  aF®
IReLU( Ty M e (13)
AFD A,
] aF®
[ReLU( y% 'T)H)
aFD  9AZ

where Z is the total number of samples, and a similar formulation
can be used to find the max value of the local explanations.
Averaging over the local explanations can also be another
aggregator to generate the global .explanation and can be shown
by Equation (14)

gyl oFV
IFD DAL,

zZ
1
Ele = 5 D IReLU( ) (14)
i=1

Similar to Equation (11), the global edge explanation can also
be represented as a learnable logic combination of concepts. As
long as the GNN model can generate local explanations that are a
subgraph of the input data, these can be fed into the GLGExplainer
in Azzolin et al. (2022) which can learn the formula, and parameters
in Equation (11) and generate the global explanation per class.

These various functions for @ are investigated in detail in the
Experiment section.

4 Experiments

We test our Global GNN Explanation Supervision framework
on the datasets extracted from two publicly available sources
including HCP (Human Connectome Project) and the ABIDE
(Autism Brain Imaging Data Exchange) database. These datasets,
in addition to the implementation details, evaluation metrics, and
comparison methods are described in turn below.

4.1 Datasets

4.1.1 Magnetic resonance imaging data

The (structural, diffusion, and functional) MRI data were
website
(https://db.humanconnectome.org/),  specifically, the 1,200
Subjects Release, February 2017 (Van Essen et al., 2013), which

extracted from the Human Connectome Project
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provided (MRI) data from 1,200 young adult (ages 22-35) subjects.
Here, two tasks are defined as binary classification of a given
subject as Female vs. Male, in addition to Young (22-29) vs. Old
(29-35). The age and gender labels were provided as additional
meta features. For the ground-truth explanations of each class,
we refer to Gong et al. (2009), which has investigated age and
sex effects on the anatomical connectivity patterns of 95 normal
subjects ranging in age from 19 to 85 years. Accordingly, cortical
regions which show significant effect for young, old, male, or
female subjects were separately identified for each group for
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al.,, 2002). To use these as annotations for HCP dataset, these
regions were then mapped to Desikan-Killiany (DK) atlas (Desikan
etal., 2006), by finding the closest node (Euclidean distance) in DK
to each identified node in AAL atlas. The resulting DK nodes are
provided in Supplementary material for each class under study.

The raw MRI data were then preprocessed using the HCP
pipeline (WU-Minn, 2017). For the diffusion MRI, this was
followed by the BEDPOSTX (Bayesian Estimation of Diffusion
Parameters Obtained using Sampling Techniques, modeling
crossing X fibers) algorithm in the FMRIB Software Library
(Jenkinson et al., 2012, FSL), which models white matter fiber
orientations and crossing fibers for probabilistic tractography.
The resting state blood-oxygen-level-dependent functional MRI (r-
fMRI) time series data were acquired from participants, in four
runs of ~15 min for each participant, including two runs on
two different days (Day 1 and Day 2). These measurements were
collected with the subject supine and still, with eyes open, to track
physiological changes in the brain (i.e., changes in blood flow and
oxygen levels) that occur in resting state, when an explicit task is
not being performed (Biswal, 2012; Buckner et al., 2013).

Extracting SC and FC: To construct the SC matrix for each
subject, we ran Probtrackx in FSL with 68 regions of interest (ROIs)
obtained from the the DK atlas. For the remaining parameter
setting in Probtractx, we followed the recommendations of the
tutorial (in St.Louis, 2020) provided by HCP. Finally, the resulting
SC matrices were normalized by dividing the respective row sum
from each non-zero value.

Three steps were followed to extract the functional connectivity
from the r-fMRI time series data, for each day: 1. Concatenate
the time series for the two runs together; 2. For each of the
68 ROIs defined by the Desikan-Killiany atlas, average all the
time series to create a single ROI time series; and 3. obtain the
functional connectivities by either (a) Computing the pairwise ROI
time series’ Pearson correlations using FSLNets (of Heidelberg
Department of Neuroradiology, 2014) with the full correlation
option, thus generating Dataset 1; or following similar three steps
as mentioned for Dataset 1, except that we Concatenate the time
series for the two runs performed in day 2 together, thus generating
Dataset 2. In this study, we followed with the experiments only
using Dataset 1 due to the high amount of computation and
resources required for each Dataset.

4.1.2 ABIDE dataset

We analyzed r-fMRI in the Autism Brain Imaging Data
Exchange (ABIDE; Di Martino et al, 2014). It compiles a
dataset of 1,112 r-fMRI participants by gathering data from 16
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TABLE 4 Performance and model-generated explanation evaluation for two additional local explainers with GCN as the backbone model.

Dataset Local_exp Global_exp Edge MSE Edge MAE
_method _method
None 0.736 0.843 0.392 0.436 - -
Avg 0.736 0.845 0.341 0.381 - -
Guided BP max 0.736 0.843 0.355 0.410 - -
min 0.739 0.845 0.321 0.382 - -
HOP functional concept_based 0.752 0.870 0.311 0.377 - -
None 0.736 0.843 0.392 0.436 - -
Avg 0.738 0.854 0.311 0.384 - -
Grad-CAM max 0.737 0.845 0.338 0.422 - -
min 0.736 0.845 0.348 0.417 - -
concept_based 0.749 0.893 0.311 0.362 - -
None 0.829 0.961 0.238 0.436 - -
Avg 0.831 0.965 0211 0.289 - -
Guided BP max 0.833 0.970 0.224 0.318 - -
min 0.835 0.966 0.221 0.314 - -
HOP structural concept_based 0.840 0.970 0.118 0.233 - -
None 0.829 0.961 0.238 0.436 - -
Avg 0.835 0.966 0.188 0.239 - -
Grad-CAM max 0.833 0.968 0.124 0.228 - -
min 0.829 0.965 0.201 0.314 - -
concept_based 0.838 0.968 0.111 0.225 - -
None 0.730 0.868 0.237 0.437 0.065 0.033
Avg 0.735 0.873 0.230 0.416 0.055 0.030
Guided BP max 0.732 0.874 0.227 0.416 0.053 0.025
min 0.730 0.869 0.222 0.403 0.061 0.027
concept_based 0.744 0.883 0.200 0.355 0.045 0.027
ABIDE
None 0.730 0.868 0.237 0.437 0.065 0.033
Avg 0.735 0.878 0218 0.403 0.045 0.023
Grad-CAM max 0.730 0.869 0.218 0.392 0.055 0.026
min 0.730 0.868 0212 0.412 0.061 0.026
concept_based 0.741 0.885 0.195 0.337 0.045 0.025

The results are obtained from five individual runs for every setting. The best results for each task are highlighted with boldface font, and the second bests are underlined.

international imaging sites that have aggregated and are openly
sharing neuroimaging data from 539 individuals suffering from
ASD and 573 typical controls (TCs). The task is to classify a
subject as either belonging to ASD or the control group, based on
their r-fMRI data. Since there was no prior coordination between
sites, the scan and diagnostic/assessment protocols vary across
sites. Accordingly, we rely on a publicly available preprocessed
version of this dataset provided by the Preprocessed Connectome
Project (PCP) initiative. PCP preprocessed the data using four
different pipelines, all of which implemented fairly similar steps,
but varied in the algorithms used for each step and the parameters.
We specifically used the data processed with the Configurable
Pipeline for the Analysis of Connectomes, C-PAC (Craddock
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et al., 2013), which provides further minimally preprocessed data
through the python package, cpac. C-PAC comes pre-packaged
with a default pipeline, as well as a growing library of pre-
configured pipelines. These pipelines could be edited or built from
scratch, using the provided pipeline builder. For our experiments,
we used the default processing pipeline. For more details, please
see Craddock et al. (2013) on how we extracted time series for
the Harvard-Oxford atlas. We finally used the same steps as
HCP dataset, to compute the functional connectivity matrices.
Additionally, we used the biomarkers extracted by Kunda et al.
(2020), as the ground-truth labels for explanation supervision.
These include the top five most contributing FC edges for ASD and
TC classification, respectively (10 overall connections), built using
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TABLE 5 Performance and model-generated explanation evaluation for all three local explainers with DGCNN as the backbone model.

Dataset Local_exp Global_exp Edge MSE Edge MAE
_method _method
None 0.708 0.791 0.394 0.438 - -
Avg 0715 0.809 0.343 0398 - -
Gradient based max 0.708 0.792 0.344 0.402 - -
min 0.712 0.812 0.332 0.422 - -
concept_based 0.718 0.855 0.301 0.328 - -
None 0.708 0.791 0.394 0.438 - -
Avg 0712 0.832 0.342 0.400 - -
HCP functional Guided BP max 0.712 0.838 0.339 0.400 - -
min 0.708 0.805 0.337 0.391 - -
concept_based 0.715 0.861 0.319 0.370 - -
None 0.708 0.791 0.394 0.438 - -
Avg 0.721 0.844 0.330 0.375 - -
Grad-CAM max 0.708 0.843 0.308 0.390 - -
min 0.708 0.835 0.320 0.385 - -
concept_based 0.725 0.857 0.315 0.375 - -
None 0.803 0.941 0.279 0.446 - -
Avg 0.812 0.954 0.189 0.297 - -
Gradient based max 0.803 0.943 0.224 0.318 - -
min 0.808 0.945 0.185 0.314 - -
concept_based 0.812 0.958 0.145 0.298 - -
None 0.803 0.941 0.279 0.446 - -
Avg 0.808 0.953 0.231 0.294 - -
HCP structural Guided BP max 0.808 0.954 0.198 0.318 - -
min 0.803 0.945 0.221 0.314 - -
concept_based 0.814 0.961 0.161 0.286 - -
None 0.803 0.941 0.279 0.446 - -
Avg 0.811 0.962 0.201 0.304 - -
Grad-CAM max 0.806 0.953 0.228 0.388 - -
min 0.803 0.952 0.220 0.401 - -
concept_based 0.815 0.963 0.183 0.272 - -
None 0.730 0.860 0.292 0.446 0.065 0.033
Avg 0.741 0.868 0.221 0.394 0.045 0.026
Gradient based max 0.741 0.867 0.254 0.418 0.045 0.026
min 0.732 0.865 0.271 0392 0.054 0.029
concept_based 0.744 0.874 0.211 0.372 0.043 0.026
None 0.730 0.860 0.292 0.446 0.065 0.033
Avg 0.737 0.873 0.199 0.362 0.041 0.026
ABIDE Guided BP max 0.732 0.865 0.198 0.400 0.051 0.023
min 0.732 0.867 0.198 0.403 0.053 0.027
concept_based 0.742 0.880 0.197 0.343 0.048 0.026

(Continued)
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TABLE 5 (Continued)
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Dataset Local_exp Global_exp \[eYe[] Edge MSE Edge MAE
_method _method MAE
None 0.730 0.860 0.292 0.446 0.065 0.033
Avg 0.738 0.873 0.221 0.401 0.051 0.027
Grad-CAM max 0.734 0.872 0.221 0.398 0.056 0.027
min 0.735 0.870 0.219 0.415 0.060 0.028
concept_based 0.744 0.883 0.193 0.335 0.043 0.025

The results are obtained from five individual runs for every setting. The best results for each task are highlighted with boldface font, and the second bests are underlined.

the Harvard-Oxford (HO) brain atlas (Jenkinson et al., 2012) as a
point of reference.

4.2 Implementation details

Following the previous work on the explanation supervision
for GNNs, we used a 3 layer GCN as our backbone GNN model.
The hidden dimension size for the three graph convolutional layers
is tuned separately for each dataset/task. We used 2 for Gender
prediction and 3 for age prediction tasks. For the ASD classification
task, we found 3 to best classify the dataset. These hidden layers are
followed by a global average pooling (GAP) layer, and a softmax
classifier. Models were trained for 200, 300, and 260 epochs using
the ADAM optimizer (Kingma and Ba, 2014), respectively, with a
learning rate of 0.001 in all three cases. For the remaining details of
implementation and parameters, we followed all the settings in Gao
etal. (2021), unless otherwise specified.

For the GLGExplainer, we prepared the input using the simple
gradient-based local explainer in the backbone GNN. The number
of prototypes was set to 4 and 2 for the HCP dataset and the
ABIDE data, respectively. This explainer was trained using all
the remaining settings and parameters including the optimizer,
learning rate, batch size, focusing parameter, and auxiliary loss
coefficients, in addition to the E-LEN, from the original proposed
model (Azzolin et al., 2022).

4.2.1 Evaluation metrics

We evaluate the effectiveness of the proposed GGNES model
in terms of prediction performance as well as in terms of global
explainability. Specifically, for model performance assessment, we
use accuracy (ACC) and Area Under the Curve (AUC) scores to
measure the prediction power of the GNNs on the prediction tasks
for all the datasets. In addition, we leverage the human/domain-
labeled explanation on the test set to quantitatively assess the
goodness of the model explanation. Specifically, for both node-level
and edge-level global explanations, we treat the human explanation
as the gold standard and compute the distance between human
and global model explanation via Mean Square Error (MSE) and
Mean Absolute Error (MAE). Additionally, we evaluate our model
on: (i) FIDELITY, which represents the accuracy of the E-LEN
in matching the predictions of the GNN model to explain; (ii)
ACCURACY, which represents the accuracy of the formulas in
matching the ground-truth labels of the graphs; (iii) CONCEPT
PURITY, which is computed for every cluster independently and
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measures how good the embedding is at clustering the local
explanations (Azzolin et al., 2022), and is computed through
Equation (15)

count_most_frequent_label(C;)
|Gil

ConceptPurity(C;) = (15)
where C; corresponds to the cluster having p; as the learned
prototype, and count_most_frequent_label(C;) returns the number
of local explanations annotated with the most present label in
cluster C;. The Concept Purity results are reported by computing
the mean and the standard deviation across all clusters. For a more
detailed description of these metrics, see Azzolin et al. (2022).

4.2.2 Comparison methods

Since there is no existing work on global explanation
supervision on GNNs, we demonstrate the effectiveness of our
model by comparing the evaluation metrics in the following
scenarios:

No explanation supervision technique is used.

min, max, or Average functions are used to generate global
explanation and perform explanation supervision.
Concept-based global explanation is constructed and further
used for supervision.

4.3 Experimental results

Table I presents the raw formulas extracted by the Entropy
Layer. Those formulas can be further described in a more human-
understandable format after finding the representative elements
of each cluster as shown in Figures 3-5, which correspond to
HCP structural, HCP functional, and ABIDE datasets, respectively.
Each of these Figures contains a number of sub-Figures that
show the learned prototypes described in Section 3.2. Specifically,
for each prototype pj, the local explanation G such that G
argmaxg ., d(pj, h(G') is reported. Here, D is a list of local
explanations obtained after the binarization step in GLGExplainer.
For details on this step, in addition to the definition for distance
function d(), please see Azzolin et al. (2022). The nodes in Figures 3,

4 refer to DK atlas and are labeled with numbers for better
readability, while the nodes in Figure 5 correspond to HO atlas. See
Supplementary material for the label names corresponding to the
labels we used in Figures 3, 4. For a list of HO atlas labels used in
Figure 5, see Atlas (2023).
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FIGURE 6

view. (E) Subject 56-Male-Axial view. (F) Subject 56-Male-Sagittal view.

Examples of input graphs with their explanations in bold as extracted by Gradient-based edge explanation technique, for HCP structural connectivity
dataset. (A) Subject 286-Female-Axial view. (B) Subject 286-Female-Sagittal view. (C) Subject 543-Female-Axial view. (D) Subject 543-Female-Sagittal

4.3.1 Performance

Table 2 shows the model performance and model-generated
explanation quality for the three described datasets. The results
are obtained from 5 individual runs for every setting. The best
results for each dataset are highlighted with boldface font, and
the second bests are underlined. For the HCP datasets, for both
Age and Gender prediction tasks, the human annotations contain
only node-level explanations, but for the ABIDE dataset we have
both ground-truth (domain-labeled) node-level and edge-level
explanations available for all samples. In general, our proposed
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Global Explanation Supervision model variations outperformed
the non-explanations supervision GNN model in terms of both
prediction power as well as explainability on all three datasets.
More specifically, the performance results for different variations
suggested that global explanation supervison can have positive
effects in all scenarios on both prediction power, in addition
to the explanation correctness. The most complicated model
(i.e., the concept-based supervision model) achieved the best
performance, out-performing baseline GNN by 1-6% and 1-3%
on AUC and ACC scores, respectively. In addition, in terms of
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explainability, there is significant improvement in both node and
edge-level explanations, when comparing the backbone GNN and
the concept-based supervision models. In particular, we observed
between 19-57% increase in node MSE and 14-48% in node
MAE, and more than 33% improvement for edge MSE and MAE
explanations.

These results demonstrate the general effectiveness of the
proposed framework both on largely correcting the model-
generated global explanation, in addition to improving the model
performance and prediction power. In addition, among different
variations used for global explanation generation, we observe
constant superiority of the more sophisticated concept-based
technique compared to the others, while no clear excellence of
Avg, max, or min methods when comparing one to the other was
remarkable.

To further evaluate the extracted global explanation formulas
presented in Table 1, we computed Fidelity, Accuracy, and Concept
Purity over the test set. The results are reported in Table 3 for the
three datasets. As it can be seen, on average, the clusters are quite
homogeneous, which means the model has learned a good mapping
from the local explanations to the concepts space. Also the concept
purity is at its lowest for HCP structural dataset while has the
highest value for the same set. The accuracy results demonstrate
that the formula in Table I can correctly match the behavior of
the model in most samples. Additionally, it is important to note
that by looking at the fidelity results, it is clear that the explainer
is generating an explanation for the ground-truth labeling of the
dataset, while capturing the underlying predictive behavior of the
GNN it is supposed to explain.

4.3.2 Effect of choice of local explainer and
backbone GNN model

To evaluate the proposed model more comprehensively, we
repeated experiments for the model performance and model-
generated explanation quality for all datasets for two additional
local explanation techniques, Guided BP and GradCAM, and
one other backbone GNN model, DGCNN (Zhang et al.,, 2018).
The results are shown in Tables 4, 5. As these results show, we
continue to see superiority of our proposed Global Explanation
Supervision model variations compared to non-explanation
supervised scenarios. The concept-based supervision model again
achieved the best performance, out-performing baseline GNN, for
the two backbone GNNs and all three local explanation techniques.
Additionally, we observe significant improvement in both node,
and edge-level MSE and MAE, when using the concept-based
supervision models. These improvements, both in explanation
quality and model performance, for the concept-based technique
largely exceed other simple aggregation methods (e.g., Averaging)
in almost all settings as well.

4.3.3 Qualitative analysis: case studies

Here, we provide some case studies of the input data and
the model explanation derived from gradient based explanation
technique and binarized following (Azzolin et al., 2022). We report
some random examples for each dataset, with their extracted
explanation in bold, as illustrated in Figure 6.
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5 Conclusion

In this study, we address an existing challenge for explainability
in GNNs, by proposing the Global GNN Explanation Supervision
(GGNES) technique which uses a basic trained GNN and
a global extension of the loss function used in the GNES
framework. This GNN creates local explanations which are
fed to a Global Logic-based GNN Explainer, an existing
technique that can learn the global Explanation in terms
of a logic formula. These two frameworks are then trained
iteratively to generate reasonable global explanations. Extensive
experiments demonstrate the effectiveness of the proposed
model on improving the global explanations while keeping
the performance similar or even increase the model prediction
power.
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