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With the increasing popularity of Graph Neural Networks (GNNs) for predictive

tasks on graph structured data, research on their explainability is becomingmore

critical and achieving significant progress. Althoughmanymethods are proposed

to explain the predictions of GNNs, their focus is mainly on “how to generate

explanations.” However, other important research questions like “whether the

GNN explanations are inaccurate,” “what if the explanations are inaccurate,”

and “how to adjust the model to generate more accurate explanations” have

gained little attention. Our previous GNN Explanation Supervision (GNES)

framework demonstrated effectiveness on improving the reasonability of the

local explanation while still keep or even improve the backbone GNNs model

performance. In many applications instead of per sample explanations, we need

to find global explanations which are reasonable and faithful to the domain

data. Simply learning to explain GNNs locally is not an optimal solution to

a global understanding of the model. To improve the explainability power of

the GNES framework, we propose the Global GNN Explanation Supervision

(GGNES) technique which uses a basic trained GNN and a global extension

of the loss function used in the GNES framework. This GNN creates local

explanations which are fed to a Global Logic-based GNN Explainer, an existing

technique that can learn the global Explanation in terms of a logic formula.

These two frameworks are then trained iteratively to generate reasonable

global explanations. Extensive experiments demonstrate the effectiveness of

the proposed model on improving the global explanations while keeping the

performance similar or even increase the model prediction power.

KEYWORDS

graph, Graph Neural Networks, global explainability, human-in-the-loop, graphical

concepts

1 Introduction

As Deep Neural Networks (DNNs) are widely deployed in sensitive application areas,

recent years have seen an explosion of research in understanding how DNNs work under

the hood (e.g., explainable AI, or XAI; Adadi and Berrada, 2018; Arrieta et al., 2020) and

more importantly, how to improve DNNs using human knowledge (Hong et al., 2020).

In particular, Graph Neural Networks (GNNs) have been increasingly grabbed attention

in several research fields, including computer vision (Fukui et al., 2019; Pope et al., 2019),

natural language processing (Annervaz et al., 2018), medical domain (DeHaan et al., 2009),

and beyond. Such trend is attributed to the practical implication of graph data—many real-

world data, such as social networks (Fan et al., 2019), chemical molecules (Scarselli et al.,

2008), and financial data (Matsunaga et al., 2019), are represented as graphs.
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However, similar to other DNNs’ architectures, GNNs

also offer only limited transparency, imposing significant

challenges in observing when GNNs make successful/unsuccessful

predictions (Hong et al., 2020; Wu et al., 2021). Some real

world examples for adjusting model explanation to improve

Graph Neural Networks (GNNs) can be seen in Figure 1. This

issue motivates a surge of recent research on GNN explanation

techniques, including gradients-based methods, where the

gradients are used to indicate the importance of different input

features (Baldassarre and Azizpour, 2019; Pope et al., 2019);

perturbation-based methods, where an additional optimization

step is typically used to find the important input that influences

the model output the most with input perturbations (Ying et al.,

2019; Luo et al., 2020; Schlichtkrull et al., 2020); response-based

methods, where the output response signal is backpropagated as an

importance score layer by layer until the input space (Baldassarre

and Azizpour, 2019; Pope et al., 2019; Schnake et al., 2020);

surrogate-based methods, where the explanation obtained from

an interpretable surrogate model that is trained to fit the original

prediction is used to explain the original model (Huang et al., 2020;

Vu and Thai, 2020; Zhang et al., 2020); and global explanation

methods, where graph patterns are generated to maximize the

predicted probability for a certain class and use such graph patterns

to explain the class (Yuan et al., 2020a). Unlike local explanation

models which explain the model prediction per input sample,

global explanation techniques aim at providing the general insights

and high-level understanding of the predictions of a deep graph

model. Specifically, they investigate what input graph patterns can

lead to a certain GNN behavior or maximize a certain prediction.

This is essential in many real-world critical applications and can

substantially increase human trust in GNNs’ prediction ability.

As an example, consider classifying graph molecules as either

having a mutagenic effect or not (Azzolin et al., 2022). The

mutagenicity of a molecule is correlated with the presence of

electron-attracting elements conjugated with nitro groups (e.g.,

NO2). Accordingly, designing an explanation model that can

provide a global understanding of the GNN classification is an

urgent need. This could be achieved by designing an explainer

that manages to recover all the existing well-known NO2 motifs

as an indicator of mutagenicity. Additional examples include

gender (male vs. female) or age (young vs. old) classification of

human subjects based on structural or functional connectivity

matrices, obtained through magnetic resonance imaging of the

corresponding subjects. In this case, rather than a per sample

explanation, we need a per class explanation in form of high-level,

generic insight on differences in the input connectivity matrices of

these subjects.

Despite the recent fast progress on GNN explanation

techniques, the existing research body focuses on “how to generate

GNN explanations” instead of “whether the GNN explanations

are inaccurate,” “what if the explanations are inaccurate,” and

“how to adjust the model to generate more accurate explanations.”

Answering the above questions is highly beneficial to the model

developers and the users of GNN explanation techniques but is

also extremely difficult due to several challenges: 1) Lack of an

automatic learning framework for identifying and adjusting

unreasonable explanations on GNNs. Although there are plenty

of existing works on GNN explanations, they are not able to ensure

the correctness of explanations, not able to identify the incorrect

explanations, nor able to adjust the unreasonable explanations.

The technique that can enable this has not been well-explored yet

and is technically challenging due to the additional involvement

of another backpropagation originated from explanation error. 2)

Difficulty in aligning the node and edge explanations. Existing

GNN explanation works usually focus on either node and edge

explanation, while the interplay and consistency between the

explanations of nodes and edges are extremely challenging to

maintain and jointly adjusted. 3) Difficulty in jointly improving

model performance and explainability with limited explanation

supervision. Due to the high cost for human annotation, it

can be impractical to assume the full accessibility to the human

explanation label during model training. Thus, designing an

effective framework that can best leverage a partially labeled

dataset is on-demand yet challenging. 4) Lack of a learning

framework that can employ global explanation of a GNN

model to improve its performance and global explainability

through global explanation supervision. In many applications,

we have access to the ground-truth explanations annotated by

domain experts that can demonstrate the behavior of the data

as a whole, and hence, we are motivated to employ that as

the supervision signal to improve performance and global-level

explainability. Designing a learning framework that utilizes this

type of information is an interesting line of research which has yet

remained unexplored.

To address the above challenges, beyond merely finding a

solution to produce global GNN explanations, this study focuses

on a global GNN explanation supervision framework for correcting

the unreasonable explanations and learning how to explain

GNNs from a global aspect correctly. Although the previously

proposed Graph Neural Network Explanation Supervision (GNES)

framework (Gao et al., 2021) has proved effective on improving

the reasonability of the model explanation per local samples, while

still keep or even improve the backbone GNN model performance,

it still lacks the ability to guide the global model explanation

generation. In many real-world decision-critical application, the

ability to explain the reason for each class prediction through a

single robust overview of the model is a critical requirement. To

address the inefficacy of the existing GNES model in improving

the global explainability through global explanation supervision, in

this study, we extend the GNES model by proposing the Global

GNN Explanation Supervision (GGNES), whose effectiveness is

similar to the GNES model but can improve the GNN model

global explanation generation (and potentially its prediction)

through guiding the global explanations generated while training

the model. The major contributions of this study are summarized

as follows: (1) Develop a generic framework for training GNNs

while improving the reasonability and faithfulness of the global

explanations generated for the model. We propose the GGNES

model built upon concept-based explainability and our previously

proposed GNES model. GGNES enables learning reasonable and

faithful global explanation, in terms of logic formulas, while

training a GNN model. These formulas are constructed from a

combination of learned graphical concepts which are derived from

local explanations. (2) Develop the formulation that can take the
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FIGURE 1

Cases for adjusting model explanation to improve Graph Neural Networks (GNNs). Scene graph (left three): from the left, an input image,

explanation before adjustment (1-a, inaccurate), and explanation after the adjustment (1-b, accurate). Note that the model explanation has been

shifted from puppy eyes and back, rods, and an artificial tree to curtains, a clock, and a rug. Molecular formula (right three): from the left, an input

formula, explanation before the adjustment (2-a, inaccurate), and explanation after the adjustment (2-b, accurate). Reactivity for this molecule is

mostly affected by benzene ring sub-components in the overall molecular structure. 2-b highlights the main benzene rings of the molecule more

effectively than 2-a.

model-generated global node (or edge) level explanation of a

GNN, and use that as additional supervision to train the GNN

model. The explanations generated by the GNN model remain

differentiable to the backbone model’s parameters. This makes the

global explanation supervision feasible as themodel parameters can

be affected and tuned during training. (3) Conduct comprehensive

experiments to evaluate the effectiveness of the proposed model.

Extensive experiments on three real-world datasets demonstrate

that the proposed model improved the backbone GNN model

both in terms of prediction power and global explainability

across different application domains. In addition, qualitative

analyzes, including case studies, are provided to demonstrate the

effectiveness of the proposed framework.

2 Related work

In this section, we first introduce our previously proposed

GNES framework. Then, we note that our work draws inspiration

from the research fields of graph neural network explanations

that provide the model generated explanations, and explanation

supervision on DNNs which enables the design of pipelines for

the human-in-the-loop adjustment on the DNNs based on their

explanations.

2.1 Our previously proposed GNES
framework

In our previous study (Gao et al., 2021), we proposed a

framework that learns how to jointly optimize both model

prediction and model explanation by enforcing both whole graph

regularization and weak supervision on model explanations. For

the graph regularization, we proposed a unified explanation

formulation for both node-level and edge-level explanations by

enforcing the consistency between them. The node- and edge-

level explanation techniques we proposed are also generic and

rigorously demonstrated to cover several existing major explainers

as special cases. However, in some applications, the ground

truth explanations demonstrate the behavior of the data as a

whole instead of each individual sample. Accordingly, we need a

learning framework that utilizes this type of information through

global explanation supervision and hence improves both model

prediction and global model explanation.

FIGURE 2

Proposed GNN Explanation Supervision (GNES) framework that

jointly optimized the GNN models based on (1) a prediction loss, (2)

an explanation loss on the human annotation and model

explanation, and (3) a graph regularization loss to inject high-level

principles of the graph-structured explanation. Notice that we only

assume limited accessibility to the human annotation for only a

small set of samples (10% in our experiments).

2.2 Graph Neural Networks explanations

Most of the existing GNN explanation methods are instance-

level methods, where themethods explain themodels by identifying

important input features for its prediction (Yuan et al., 2020b).

The first category is gradients-based methods, where the gradients

are used to indicate the importance of different input features.

Existing methods are SA (Baldassarre and Azizpour, 2019), Guided

BP (Baldassarre and Azizpour, 2019), CAM (Pope et al., 2019),

and GradCAM (Pope et al., 2019). In Etemadyrad et al. (2022),

the authors propose a novel post hoc explanation technique to

find the subgraphs in input that majorly influence one or more

subgraphs in the output domain by using gradient information and

solving a classical community detection objective (De Domenico

et al., 2015). The second category is perturbation-based methods,

where an additional optimization step is typically used to find

the important input that influences the model output the most

with input perturbations. Existing methods are GNNExplainer

(Ying et al., 2019), PGExplainer (Luo et al., 2020), and GraphMask

(Schlichtkrull et al., 2020). The third category is the response-

based method, where the output response signal is backpropagated
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as an importance score layer by layer until the input space.

Existing methods in this category include LRP (Baldassarre and

Azizpour, 2019), Excitation BP (Pope et al., 2019), and GNN-

LRP (Schnake et al., 2020). The last category is surrogate-based

methods, where the explanation obtained from an interpretable

surrogate model that is trained to fit the original prediction is

used to explain the original model. The surrogate methods include

GraphLime (Huang et al., 2020), RelEx (Zhang et al., 2020), and

PGM-Explainer (Vu and Thai, 2020). In addition to instance-

level explanation methods, very recently, the global explanation

of the GNN model has also been explored by XGNN (Yuan

et al., 2020a). Please see Yuan et al. (2020b) for a survey of

explainability in Graph Neural Networks. Even though there are

plenty of existing explanation methods for GNNs, most of the

methods above can not be applied to explanation supervision

mechanism as the goal is to apply supervision on the generated

explanation such that the backbone GNN model itself can be fine-

tuned accordingly to generate better explanations as well as keep

or even improve the model performance. To enable this fine-

tuning process over the explanation, the explanation itself needs

to be differentiable to the backbone GNN model’s parameters. In

other words, only the explanation that is directly calculated from

the computational pipeline (such as gradients-based and response-

based methods) can be used to apply this additional explanation

supervision to fine-tune the backbone GNN models explanation.

The perturbation-based and surrogate-based methods all require

additional optimization steps to obtain the explanation and thus are

unable to be end-to-end trained with the explanation supervision

on the backbone GNNs.

2.3 Explanation supervision on DNNs

The potential of using explanation–methods devised for

understanding which sub-parts in an instance are important for

making a prediction–in improving DNNs has been studied in

many domains across different applications. In fact, explanation

supervision has been widely studied on image data by the computer

vision community (Das et al., 2017; Linsley et al., 2018; Qiao et al.,

2018; Mitsuhara et al., 2019; Zhang et al., 2019; Chen et al., 2020;

Patro et al., 2020). Linsley et al. (2018) have demonstrated that the

benefit of using stronger supervisory signals by teaching networks

where to attend, which looks similar to the proposed approach.

Moreover, Mitsuhara et al. (2019) have proposed a post-hoc fine-

tuning strategy where an end-user is asked to manually edit the

model’s explanation to interactively adjust its output. Such edited

explanations are then used as ground-truth explanations (from

humans) to further fine-tune the model. In addition, several works

in the Visual Question Answering (VQA) domain have proposed

to use explanation supervision to obtain improved explanation on

both the text data and the image data (Das et al., 2017; Qiao et al.,

2018; Zhang et al., 2019; Patro et al., 2020). In addition to image

data, the explanation supervision has also been studied on other

data types, such as texts (Ross et al., 2017; Jacovi and Goldberg,

2020), attributed data (Visotsky et al., 2019), and more.

Gao et al. (2024) provide a systematic survey on Explanation-

Guided Learning (EGL), a line of research that focuses on

leveraging additional supervision signals or prior knowledge

obtained from human explanations into machine learning models’

reasoning process. According to Gao et al. (2024), EGL methods

provide either global (Weinberger et al., 2020; Erion et al., 2021) or

local guidance (Gao et al., 2022a,b; Shi et al., 2023)) by injecting

prior knowledge or adding supervision signals to improve the

model’s global (or local) explanation. In Erion et al. (2021), the

authors introduce attribution priors to optimize for higher-level

properties of explanations, such as smoothness and sparsity. Lee

et al. (2022) illustrate how to upgrade a deep model to its self

explainable version that can predict and explain with logic rules

learned with widely-used deep learning modules. Gupta et al.

(2024) introduce Concept Distillation to create richer concepts

using a pre-trained teacher model. They demonstrate how concept-

sensitive training can improvemodel interpretability, reduce biases,

and induce prior knowledge. Sha et al. (2023) propose a rational

extraction technique built based on an adversarial approach that

calibrates the information between a guider, a typical neural model

that does the prediction, and a selector-predictor model that

additionally produces a rationale for the guider’ prediction. Shi

et al. (2023) develop the ENGAGE framework as a local guidance

EGL, built upon Explanation Guidance Data Augmentation, which

leverages explanation to inform graph augmentation, and uses

contrastive learning for training representations to preserve the key

parts in graphs while removing uninformative artifacts.

However, to our best knowledge, explanation supervision on

graph-structured data with graph neural networks through learning

logic-based concepts has not been explored before, and we are the

first to propose a framework to handle this open research problem.

3 Model

In this section, we introduce our proposed Global Explanation

Supervision framework for GNNs. First, we briefly summarize

the explanation regularizations (i.e., explanation consistency and

sparsity) proposed by Gao et al. (2021) and how these components

enhance the quality of model explanations in a global level. Then,

we will introduce the proposed Global node-level, in addition

to the Global edge-level explanation supervision definition and

formulation.

Formal definition of the problem: Let G = (X,A) denotes an

attributed graph with N nodes be defined with its node attributes

X ∈ R
N×din and its adjacency matrix A ∈ R

N×N (weighted or

binary), where din denotes the dimension of input feature. Let y be

the class label for graph G. The general goal for a GNN model is to

learn the mapping function f for each graph G to its corresponding

label y,

F :G −→ y

Following Kipf and Welling (2016) and similar to Gao et al.

(2021), we employ the basic definition of Graph Convolutional

Networks (GCN; Kipf and Welling, 2016), for an attributed graph

G = (X,A) with y as the class label for graph G, where a graph

convolutional layer can be defined as Equation (1).

F(l) = σ (D̃− 1
2 ÃD̃− 1

2 F(l−1)W(l)) (1)

where F(l) denotes the activations at layer l, and F(0) = X; Ã =

A + IN is the adjacency matrix with added self connections where

IN ∈ R
N×N is the identitymatrix; D̃ is the degreematrix of Ã, where
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TABLE 1 Raw formulas as extracted by the Entropy Layer.

Dataset Task Raw formulas

HCP

structural

Gender prediction Female

⇐⇒ P0 ∨ P1 ∨ P2

Male⇐⇒ P3

HCP

functional

Age prediction Old⇐⇒

P0 ∨ (P1 ∧ P2)

Young⇐⇒ P2 ∨ P3

ABIDE ASD classification Typical⇐⇒ P0 ∧ P1

Control⇐⇒ P2

D̃ii =
∑

j Ãij; The trainable weight matrix for layer l is denoted as

W(l) ∈ R
d(l)×d(l+1)

; σ (·) is the element-wise non-linear activation

function. Additionally, a similar design as in Pope et al. (2019)

is employed to this backbone GNN model in which using several

layers of graph convolutional layers followed by a global average

pooling (GAP) layer over the graph nodes can address any concerns

when working with variable input graph size.

3.1 GGNES framework

The goal here would be to design a framework that

can generate global explanations which are closer to the

human annotations through global explanation supervision. The

prediction performance is expected to stay the same or possibly

also improve. The global explanation supervision is possible via

defining the learning objective of the proposed framework as a

joint optimization. As shown in Equation (2) and following the

framework in Figure (2), the objective function is a combination

of model prediction loss (e.g., the cross-entropy loss), the global

explanation loss (which is a function of the absolute or squared

difference between class level human and model explanations), and

global model explanation regularizations (graph regularizations

that follow high-level graph-structured rules to the explanation).

These three terms are computed per class and combined thereafter

to form the global explanation supervision framework. Concretely,

we employ the objective function as

min LPred,c + LAtt,c(〈Mc,M
′
c〉, 〈Ec,E

′
c〉)

︸ ︷︷ ︸

global explanation loss

+ �c(Mc,Ec)
︸ ︷︷ ︸

regularization

(2)

where Mc ∈ R
N×1 and Ec ∈ R

N×N denote the model-generated

node-level and edge-level explanations of class c using a given

explanation method. And M′
c, E

′
c are the corresponding ground-

truth explanations of class c, marked by the human annotators.

The human annotations are provided globally for all samples and

are unique per class, but equal for the samples of each class.

These are used as additional guidance to make the explanation

supervision possible. LPred,c is the typical prediction loss (such

as the cross-entropy loss) on the training set. The proposed

explanation loss LAtt,c measures the discrepancies between model

and human explanations globally both on node level and edge level,

as Equation (3)

LAtt(〈Mc,M
′
c〉, 〈Ec,E

′
c〉) = αndist(Mc,M

′
c)

︸ ︷︷ ︸

global node loss

+ αedist(Ec,E
′
c)

︸ ︷︷ ︸

global edge loss

(3)

where αn and αe are the scale factors for balancing global node-

level and global edge-level loss; the function dist(x, y) measures the

mean element-wise distance between the inputs x and y, a common

choose can be absolute difference or squared difference.

However, in practice, in many applications, it is not feasible to

obtain the human explanations for the whole dataset. As a remedy,

we only apply the global explanation loss to the classes that have

the ground-truth labels for the human explanations and apply

the high-level graph rules to regulate the model explanation for

each class even if the human annotation is unavailable (Gao et al.,

2021). Specifically, we employ the global explanation consistency,

in addition to the global sparsity regularization. The former can

regulate the global node and edge explanation simultaneously so

that the model is more likely to generate a globally consistent

and smooth explanation over nodes and edges. The global sparsity

regularization is designed to regulate the model to only focus on

a few important nodes and edges for the explanations. Thus, we

propose Equation (4) for global graph regularizations to obtain

more reasonable model explanations:

�c(Mc,Ec) = β�con
c (Mc,Ec)

︸ ︷︷ ︸

explanation consistency

+ γ�s
c(Mc,Ec)

︸ ︷︷ ︸

sparsity

(4)

where β is the scaling factor for the global explanation consistency

between node and edge explanations, γ is the scaling factor for

the sparsity constraints on both node and edge explanations. These

regularizations are described in more detail below:

3.1.1 Global explanation consistency
regularization

The global node explanation and edge explanation are

not independent, but rather highly correlated with each

other. One natural assumption about the global node

explanation smoothness is that the adjacent nodes should

share similar importance. However, this assumption can be

too strong and sometimes lead to over-smoothing of the node

explanation and tend to yield indistinguishable patterns for

the explanation. In addition, it ignores the connection between

the node and edge explanations, which can be a crucial factor

for the explanation model to generate a global consistent

explanation.

Here, we propose to take one step further regarding the

smoothness assumption about the explanation by considering both

node and edge explanations and making them more consistent

with each other. Concretely, instead of treating all pairs of

adjacent nodes equally important when enforcing the smoothness

constraint, we propose to weight them by the corresponding

edge importance such that the explanation consistency is

better enforced on those nodes and edges that are deemed

important. Mathematically, the global explanation consistency can

be measured by Equation (5)

�con
c (Mc,Ec) =

1

Tc

∑

k

1

2N2

∑

i,j

Ec,i,jA
k
i,j‖Mc,i −Mc,j‖

2 (5)

where k is the index of sample belonging to class c, Ak
i,j is the

adjacency matrix for sample k, and Tc is the total number of

samples in class c. The above regularization can be interpreted as
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FIGURE 3

Representative element of each learned concept for HCP Structural dataset. (A) P0. (B) P1. (C) P2. (D) P3.

follows: given a pair of nodes i and j that is adjacent (i.e.,Ai,j = 1), if

the edge that connects the two nodes is important (i.e., Ei,j is high),

then the nodes it connects also tend to be consistent.

3.1.2 Sparsity regularization
As sparsity is a common practice for the model explanation, we

apply the ℓ1 norm to regulate both the node-level and the edge-level

explanations, as Equation (6)

�s
c(Mc,Ec) =

1

N
‖Mc‖1 +

1

N2
‖Ec‖1 (6)

Overall, the benefits of applying the proposed regularization

terms are 3-fold. First, the regularization terms do not rely on the

specific human labels on the explanation, which can be very limited

and hard to acquire in practice. Thus, they can be very crucial in

the scenarios where the explanation labels are scarce. Second, since

the explanation for the node and edge can be highly relevant, the

proposed explanation consistency regularization can be critical for

enforcing the model to generate more reasonable and consistent

results that better align with the human explanation. Lastly, our

overall framework is very flexible such that the regularization terms

are not affected by changing the specification of the node and edge

explanation formulation in Equations (7, 12), respectively, making

the proposed framework easily applicable to give explanation and

apply explanation supervision on any downstream applications

with little to no overhead.

The regularization term in Equation (2) is employed to first

regulate the node and edge explanation and make them consistent

and smooth through considering the dependence of node and edge

explanations. Additionally, to lead the model to generate more

realistic explanations, the sparsity regularization is also applied

which can regulate the model to only focus on a few important

nodes and edges for the explanations.
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FIGURE 4

Representative element of each learned concept for HCP Functional dataset. (A) P0. (B) P1. (C) P2. (D) P3.

3.2 Global node explanation formulation
for global explanation supervision

In many applications, the ground-truth explanations (on

synthetic data) or the domain knowledge (on real-world data)

provides node-level explanation of the data in a global manner

rather than per sample/instance. In this case, we need to provide

a single robust overview of the model predictions. Accordingly, we

aim to propose a framework that can both generate the global node

explanation by capturing the behavior of the GNNmodel as a whole

(rather than providing instance-specific explanations which could

be noisy or not faithful to the model predictions) and also employ

it as a supervision signal to further improve the global node-level

explanations generated by the model.

To this end, we employ the gradient and the response/activation

information which are also the main components for local node

explanation supervision as described in Gao et al. (2021). We then

aggregate this information over all instances so we can produce

a model-generated global explanation that remains differentiable

to the backbone GNN model’s parameters. This makes the global

explanation supervision feasible as the model parameters can be

affected and tuned during training. Mathematically, given the

output yic on class c and sample i, the global explanation for node n

at layer l can be computed as follows:

M(l)
n,c = 9(

∂y1c

∂F
(l)
n

, ...,
∂yic

∂F
(l)
n

, ...,
∂yZc

∂F
(l)
n

, F(l)n ) (7)

where
∂yic

∂F
(l)
n

represents the gradient of the features of node n at

layer l given class c and sample i, Z is the total number of samples,

and F
(l)
n denotes the node activation at layer l. The function 9

in Equation (7) can generate any simple to more complicated

computations over the input gradients and the activation. Two

simple examples are shown in Equations (8, 9), where the gradients

are employed to generate simple gradient-based local explanation
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FIGURE 5

Representative element of each learned concept for ABIDE dataset. (A) P0. (B) P1. (C) P2.

for each sample, which are then aggregated using the min or max

function to form the final global explanation:

M(l)
n,c = min(‖ReLU(

∂y1c

∂F
(l)
n

)‖, ‖ReLU(
∂y2c

∂F
(l)
n

)‖, ..., ‖ReLU(
∂yZc

∂F
(l)
n

)‖)

(8)

M(l)
n,c = max(‖ReLU(

∂y1c

∂F
(l)
n

)‖, ‖ReLU(
∂y2c

∂F
(l)
n

)‖, ..., ‖ReLU(
∂yZc

∂F
(l)
n

)‖)

(9)

The other form of aggregation is to average over the local

explanations to get the global-level explanation:

M(l)
n,c =

1

Z

Z
∑

i=1

‖ReLU(
∂yic

∂F
(l)
n

)‖ (10)

More complicated technique, described as concept-based global

explainer in Azzolin et al. (2022), with some variations, can be used

and formulated as below:

M(l)
n,c = 3(P1, P2, ..., Pm) (11)

where Pi is the i − th learned prototype which is initialized

randomly from a uniform distribution and learned through

training the GLGExplainer framework described in Azzolin et al.

(2022) and m is the total number of prototypes which is a

hyperparameter and tuned separately for each dataset. 3 is also

a learnable Boolean function that generates a logical combination

of the learned prototypes following (Azzolin et al., 2022). In

this setting, Equation (11) is a logic formula constructed using

graphical concepts derived from local explanations. Concepts

can be described as intermediate, high-level and semantically

meaningful units of information commonly used by humans to
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TABLE 2 Performance and model-generated explanation evaluation among the proposed models and the baseline on two HCP, in addition to one ABIDE

graph classification tasks.

Dataset Global_exp
_method

ACC AUC Node
MSE

Node
MAE

Edge MSE Edge MAE

HCP functional

None 0.736 0.843 0.392 0.436 – –

Avg 0.741 0.854 0.311 0.394 – –

max 0.736 0.843 0.324 0.418 – –

min 0.738 0.845 0.321 0.414 – –

concept_based 0.759 0.899 0.311 0.372 – –

HCP structural

None 0.829 0.961 0.238 0.436 – –

Avg 0.833 0.965 0.224 0.322 – –

max 0.830 0.971 0.220 0.397 – –

min 0.833 0.971 0.217 0.323 – –

concept_based 0.838 0.971 0.101 0.223 – –

ABIDE

None 0.730 0.868 0.237 0.437 0.065 0.033

Avg 0.735 0.870 0.218 0.416 0.051 0.031

max 0.732 0.871 0.215 0.406 0.055 0.025

min 0.730 0.868 0.222 0.413 0.061 0.021

concept_based 0.744 0.885 0.191 0.331 0.043 0.024

The results are obtained from five individual runs for every setting. The best results for each task are highlighted with boldface font, and the second bests are underlined.

explain their decisions. More details for GLGExplainer are given

in Azzolin et al. (2022).

The training process based on Equation (11) consists of three

steps. First, a basic GCN is trained by optimizing only the first

term in Equation (3). Second, the local explanations generated by

this trained GNN are fed as inputs to the GLGExplainer which can

construct the logic formula of Equation (11). Last, the original GCN

is re-trained through the full loss function in Equation (3). For the

third or last step, we only employ the logic formula from step 2 and

discard the prototypes generated. Instead we randomly initialize

the values of prototypes from a uniform distribution. Accordingly,

the GCN and GLGExplainer are trained iteratively until the value

of prototypes would converge. Note that all the parameters of

GLGExplainer in step three are exactly equal to those in step 2,

except for the prototypes that remain learnable and are updated at

each iteration.

For all the functions in Equations (8–11), the results are

computed and included in the Experiments section with further

discussions.

3.3 Global edge explanation formulation
for global explanation supervision

While several works have studied global node-level explanation

topic, little to no work has explored the global edge-level

explanation and its applications. However, in many scenarios, the

latter can be more crucial and meaningful than the former as the

domain knowledge or human annotations describe the relationship

between nodes rather than the nodes in particular.

Similar to the global node explanation supervision, we need

to propose a unified edge-level explanation formulation which

generates explanations that are differentiable to the backbone

model’s parameters. Taking the gradient of each edge in the

input adjacency matrix, as well as the response/activation of the

pairs of nodes that are associated with that edge, and using the

chain rule, we can define suitable model generated explanations

for each instance. Concretely, given the output yic on class c

and sample i, the global edge explanation between node n and

node m at layer l can be computed as the aggregation of all

edge explanations for single instances. More precisely, this is a

function of the edge gradients for all samples, in addition to

node activations:

E(l)n,m,c = 8(
∂y1c
∂F(l)

·
∂F(l)

∂A1
n,m

, ...,
∂yic
∂F(l)

·
∂F(l)

∂Ai
n,m

,

...,
∂yNc
∂F(l)

·
∂F(l)

∂AN
n,m

, F(l)n , F(l)m )

(12)

where
∂yic
∂F(l)

· ∂F(l)

∂Ai
n,m

represents the gradient of the edge that

connects nodes n and m at layer l given class c and sample

i; F
(l)
n and F

(l)
m denote the activation of node n and node

m at layer l, respectively, and N is the total number of

instances. Similar to previous formulation in Equation (7), 8

can combine the local explanations of all samples, providing a

global explanation for the overall behavior of the GNN. A simple

example is the min or max value among all the gradient-based
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TABLE 3 Fidelity, accuracy, and concept purity computed over test sets

for all datasets.

Dataset Fidelity Accuracy Concept
purity

HCP

structural

0.91 0.89 0.82

HCP

functional

0.81 0.83 0.85

ABIDE 0.78 0.79 0.85

edge-level local explanations, which can be formulated as

Equation (13)

E(l)n,m,c = min(‖ReLU(
∂y1c
∂F(l)

·
∂F(l)

∂A1
n,m

)‖, ...,

‖ReLU(
∂yic
∂F(l)

·
∂F(l)

∂Ai
n,m

)‖, ...,

‖ReLU(
∂yZc
∂F(l)

·
∂F(l)

∂AZ
n,m

)‖)

(13)

where Z is the total number of samples, and a similar formulation

can be used to find the max value of the local explanations.

Averaging over the local explanations can also be another

aggregator to generate the global .explanation and can be shown

by Equation (14)

E(l)n,m,c =
1

Z

Z
∑

i=1

‖ReLU(
∂yic
∂F(l)

·
∂F(l)

∂Ai
n,m

)‖ (14)

Similar to Equation (11), the global edge explanation can also

be represented as a learnable logic combination of concepts. As

long as the GNN model can generate local explanations that are a

subgraph of the input data, these can be fed into the GLGExplainer

in Azzolin et al. (2022) which can learn the formula, and parameters

in Equation (11) and generate the global explanation per class.

These various functions for 8 are investigated in detail in the

Experiment section.

4 Experiments

We test our Global GNN Explanation Supervision framework

on the datasets extracted from two publicly available sources

including HCP (Human Connectome Project) and the ABIDE

(Autism Brain Imaging Data Exchange) database. These datasets,

in addition to the implementation details, evaluation metrics, and

comparison methods are described in turn below.

4.1 Datasets

4.1.1 Magnetic resonance imaging data
The (structural, diffusion, and functional) MRI data were

extracted from the Human Connectome Project website

(https://db.humanconnectome.org/), specifically, the 1,200

Subjects Release, February 2017 (Van Essen et al., 2013), which

provided (MRI) data from 1,200 young adult (ages 22–35) subjects.

Here, two tasks are defined as binary classification of a given

subject as Female vs. Male, in addition to Young (22–29) vs. Old

(29–35). The age and gender labels were provided as additional

meta features. For the ground-truth explanations of each class,

we refer to Gong et al. (2009), which has investigated age and

sex effects on the anatomical connectivity patterns of 95 normal

subjects ranging in age from 19 to 85 years. Accordingly, cortical

regions which show significant effect for young, old, male, or

female subjects were separately identified for each group for

Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002). To use these as annotations for HCP dataset, these

regions were then mapped to Desikan-Killiany (DK) atlas (Desikan

et al., 2006), by finding the closest node (Euclidean distance) in DK

to each identified node in AAL atlas. The resulting DK nodes are

provided in Supplementary material for each class under study.

The raw MRI data were then preprocessed using the HCP

pipeline (WU-Minn, 2017). For the diffusion MRI, this was

followed by the BEDPOSTX (Bayesian Estimation of Diffusion

Parameters Obtained using Sampling Techniques, modeling

crossing X fibers) algorithm in the FMRIB Software Library

(Jenkinson et al., 2012, FSL), which models white matter fiber

orientations and crossing fibers for probabilistic tractography.

The resting state blood-oxygen-level-dependent functional MRI (r-

fMRI) time series data were acquired from participants, in four

runs of ∼15 min for each participant, including two runs on

two different days (Day 1 and Day 2). These measurements were

collected with the subject supine and still, with eyes open, to track

physiological changes in the brain (i.e., changes in blood flow and

oxygen levels) that occur in resting state, when an explicit task is

not being performed (Biswal, 2012; Buckner et al., 2013).

Extracting SC and FC: To construct the SC matrix for each

subject, we ran Probtrackx in FSL with 68 regions of interest (ROIs)

obtained from the the DK atlas. For the remaining parameter

setting in Probtractx, we followed the recommendations of the

tutorial (in St.Louis, 2020) provided by HCP. Finally, the resulting

SC matrices were normalized by dividing the respective row sum

from each non-zero value.

Three steps were followed to extract the functional connectivity

from the r-fMRI time series data, for each day: 1. Concatenate

the time series for the two runs together; 2. For each of the

68 ROIs defined by the Desikan-Killiany atlas, average all the

time series to create a single ROI time series; and 3. obtain the

functional connectivities by either (a) Computing the pairwise ROI

time series’ Pearson correlations using FSLNets (of Heidelberg

Department of Neuroradiology, 2014) with the full correlation

option, thus generating Dataset 1; or following similar three steps

as mentioned for Dataset 1, except that we Concatenate the time

series for the two runs performed in day 2 together, thus generating

Dataset 2. In this study, we followed with the experiments only

using Dataset 1 due to the high amount of computation and

resources required for each Dataset.

4.1.2 ABIDE dataset
We analyzed r-fMRI in the Autism Brain Imaging Data

Exchange (ABIDE; Di Martino et al., 2014). It compiles a

dataset of 1,112 r-fMRI participants by gathering data from 16
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TABLE 4 Performance and model-generated explanation evaluation for two additional local explainers with GCN as the backbone model.

Dataset Local_exp
_method

Global_exp
_method

ACC AUC Node
MSE

Node
MAE

Edge MSE Edge MAE

HCP functional

Guided BP

None 0.736 0.843 0.392 0.436 – –

Avg 0.736 0.845 0.341 0.381 – –

max 0.736 0.843 0.355 0.410 – –

min 0.739 0.845 0.321 0.382 – –

concept_based 0.752 0.870 0.311 0.377 – –

Grad-CAM

None 0.736 0.843 0.392 0.436 – –

Avg 0.738 0.854 0.311 0.384 – –

max 0.737 0.845 0.338 0.422 – –

min 0.736 0.845 0.348 0.417 – –

concept_based 0.749 0.893 0.311 0.362 – –

HCP structural

Guided BP

None 0.829 0.961 0.238 0.436 – –

Avg 0.831 0.965 0.211 0.289 – –

max 0.833 0.970 0.224 0.318 – –

min 0.835 0.966 0.221 0.314 – –

concept_based 0.840 0.970 0.118 0.233 – –

Grad-CAM

None 0.829 0.961 0.238 0.436 – –

Avg 0.835 0.966 0.188 0.239 – –

max 0.833 0.968 0.124 0.228 – –

min 0.829 0.965 0.201 0.314 – –

concept_based 0.838 0.968 0.111 0.225 – –

ABIDE

Guided BP

None 0.730 0.868 0.237 0.437 0.065 0.033

Avg 0.735 0.873 0.230 0.416 0.055 0.030

max 0.732 0.874 0.227 0.416 0.053 0.025

min 0.730 0.869 0.222 0.403 0.061 0.027

concept_based 0.744 0.883 0.200 0.355 0.045 0.027

Grad-CAM

None 0.730 0.868 0.237 0.437 0.065 0.033

Avg 0.735 0.878 0.218 0.403 0.045 0.023

max 0.730 0.869 0.218 0.392 0.055 0.026

min 0.730 0.868 0.212 0.412 0.061 0.026

concept_based 0.741 0.885 0.195 0.337 0.045 0.025

The results are obtained from five individual runs for every setting. The best results for each task are highlighted with boldface font, and the second bests are underlined.

international imaging sites that have aggregated and are openly

sharing neuroimaging data from 539 individuals suffering from

ASD and 573 typical controls (TCs). The task is to classify a

subject as either belonging to ASD or the control group, based on

their r-fMRI data. Since there was no prior coordination between

sites, the scan and diagnostic/assessment protocols vary across

sites. Accordingly, we rely on a publicly available preprocessed

version of this dataset provided by the Preprocessed Connectome

Project (PCP) initiative. PCP preprocessed the data using four

different pipelines, all of which implemented fairly similar steps,

but varied in the algorithms used for each step and the parameters.

We specifically used the data processed with the Configurable

Pipeline for the Analysis of Connectomes, C-PAC (Craddock

et al., 2013), which provides further minimally preprocessed data

through the python package, cpac. C-PAC comes pre-packaged

with a default pipeline, as well as a growing library of pre-

configured pipelines. These pipelines could be edited or built from

scratch, using the provided pipeline builder. For our experiments,

we used the default processing pipeline. For more details, please

see Craddock et al. (2013) on how we extracted time series for

the Harvard-Oxford atlas. We finally used the same steps as

HCP dataset, to compute the functional connectivity matrices.

Additionally, we used the biomarkers extracted by Kunda et al.

(2020), as the ground-truth labels for explanation supervision.

These include the top five most contributing FC edges for ASD and

TC classification, respectively (10 overall connections), built using
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TABLE 5 Performance and model-generated explanation evaluation for all three local explainers with DGCNN as the backbone model.

Dataset Local_exp
_method

Global_exp
_method

ACC AUC Node
MSE

Node
MAE

Edge MSE Edge MAE

HCP functional

Gradient based

None 0.708 0.791 0.394 0.438 – –

Avg 0.715 0.809 0.343 0.398 – –

max 0.708 0.792 0.344 0.402 – –

min 0.712 0.812 0.332 0.422 – –

concept_based 0.718 0.855 0.301 0.328 – –

Guided BP

None 0.708 0.791 0.394 0.438 – –

Avg 0.712 0.832 0.342 0.400 – –

max 0.712 0.838 0.339 0.400 – –

min 0.708 0.805 0.337 0.391 – –

concept_based 0.715 0.861 0.319 0.370 – –

Grad-CAM

None 0.708 0.791 0.394 0.438 – –

Avg 0.721 0.844 0.330 0.375 – –

max 0.708 0.843 0.308 0.390 – –

min 0.708 0.835 0.320 0.385 – –

concept_based 0.725 0.857 0.315 0.375 – –

HCP structural

Gradient based

None 0.803 0.941 0.279 0.446 – –

Avg 0.812 0.954 0.189 0.297 – –

max 0.803 0.943 0.224 0.318 – –

min 0.808 0.945 0.185 0.314 – –

concept_based 0.812 0.958 0.145 0.298 – –

Guided BP

None 0.803 0.941 0.279 0.446 – –

Avg 0.808 0.953 0.231 0.294 – –

max 0.808 0.954 0.198 0.318 – –

min 0.803 0.945 0.221 0.314 – –

concept_based 0.814 0.961 0.161 0.286 – –

Grad-CAM

None 0.803 0.941 0.279 0.446 – –

Avg 0.811 0.962 0.201 0.304 – –

max 0.806 0.953 0.228 0.388 – –

min 0.803 0.952 0.220 0.401 – –

concept_based 0.815 0.963 0.183 0.272 – –

ABIDE

Gradient based

None 0.730 0.860 0.292 0.446 0.065 0.033

Avg 0.741 0.868 0.221 0.394 0.045 0.026

max 0.741 0.867 0.254 0.418 0.045 0.026

min 0.732 0.865 0.271 0.392 0.054 0.029

concept_based 0.744 0.874 0.211 0.372 0.043 0.026

Guided BP

None 0.730 0.860 0.292 0.446 0.065 0.033

Avg 0.737 0.873 0.199 0.362 0.041 0.026

max 0.732 0.865 0.198 0.400 0.051 0.023

min 0.732 0.867 0.198 0.403 0.053 0.027

concept_based 0.742 0.880 0.197 0.343 0.048 0.026

(Continued)
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TABLE 5 (Continued)

Dataset Local_exp
_method

Global_exp
_method

ACC AUC Node
MSE

Node
MAE

Edge MSE Edge MAE

Grad-CAM

None 0.730 0.860 0.292 0.446 0.065 0.033

Avg 0.738 0.873 0.221 0.401 0.051 0.027

max 0.734 0.872 0.221 0.398 0.056 0.027

min 0.735 0.870 0.219 0.415 0.060 0.028

concept_based 0.744 0.883 0.193 0.335 0.043 0.025

The results are obtained from five individual runs for every setting. The best results for each task are highlighted with boldface font, and the second bests are underlined.

the Harvard-Oxford (HO) brain atlas (Jenkinson et al., 2012) as a

point of reference.

4.2 Implementation details

Following the previous work on the explanation supervision

for GNNs, we used a 3 layer GCN as our backbone GNN model.

The hidden dimension size for the three graph convolutional layers

is tuned separately for each dataset/task. We used 2 for Gender

prediction and 3 for age prediction tasks. For the ASD classification

task, we found 3 to best classify the dataset. These hidden layers are

followed by a global average pooling (GAP) layer, and a softmax

classifier. Models were trained for 200, 300, and 260 epochs using

the ADAM optimizer (Kingma and Ba, 2014), respectively, with a

learning rate of 0.001 in all three cases. For the remaining details of

implementation and parameters, we followed all the settings in Gao

et al. (2021), unless otherwise specified.

For the GLGExplainer, we prepared the input using the simple

gradient-based local explainer in the backbone GNN. The number

of prototypes was set to 4 and 2 for the HCP dataset and the

ABIDE data, respectively. This explainer was trained using all

the remaining settings and parameters including the optimizer,

learning rate, batch size, focusing parameter, and auxiliary loss

coefficients, in addition to the E-LEN, from the original proposed

model (Azzolin et al., 2022).

4.2.1 Evaluation metrics
We evaluate the effectiveness of the proposed GGNES model

in terms of prediction performance as well as in terms of global

explainability. Specifically, for model performance assessment, we

use accuracy (ACC) and Area Under the Curve (AUC) scores to

measure the prediction power of the GNNs on the prediction tasks

for all the datasets. In addition, we leverage the human/domain-

labeled explanation on the test set to quantitatively assess the

goodness of the model explanation. Specifically, for both node-level

and edge-level global explanations, we treat the human explanation

as the gold standard and compute the distance between human

and global model explanation via Mean Square Error (MSE) and

Mean Absolute Error (MAE). Additionally, we evaluate our model

on: (i) FIDELITY, which represents the accuracy of the E-LEN

in matching the predictions of the GNN model to explain; (ii)

ACCURACY, which represents the accuracy of the formulas in

matching the ground-truth labels of the graphs; (iii) CONCEPT

PURITY, which is computed for every cluster independently and

measures how good the embedding is at clustering the local

explanations (Azzolin et al., 2022), and is computed through

Equation (15)

ConceptPurity(Ci) =
count_most_frequent_label(Ci)

|Ci|
(15)

where Ci corresponds to the cluster having pi as the learned

prototype, and count_most_frequent_label(Ci) returns the number

of local explanations annotated with the most present label in

cluster Ci. The Concept Purity results are reported by computing

the mean and the standard deviation across all clusters. For a more

detailed description of these metrics, see Azzolin et al. (2022).

4.2.2 Comparison methods
Since there is no existing work on global explanation

supervision on GNNs, we demonstrate the effectiveness of our

model by comparing the evaluation metrics in the following

scenarios:

• No explanation supervision technique is used.

• min, max, or Average functions are used to generate global

explanation and perform explanation supervision.

• Concept-based global explanation is constructed and further

used for supervision.

4.3 Experimental results

Table 1 presents the raw formulas extracted by the Entropy

Layer. Those formulas can be further described in a more human-

understandable format after finding the representative elements

of each cluster as shown in Figures 3–5, which correspond to

HCP structural, HCP functional, and ABIDE datasets, respectively.

Each of these Figures contains a number of sub-Figures that

show the learned prototypes described in Section 3.2. Specifically,

for each prototype pj, the local explanation Ḡ such that Ḡ =

argmaxḠ′∈D d(pj, h(Ḡ
′) is reported. Here, D is a list of local

explanations obtained after the binarization step in GLGExplainer.

For details on this step, in addition to the definition for distance

function d(), please see Azzolin et al. (2022). The nodes in Figures 3,

4 refer to DK atlas and are labeled with numbers for better

readability, while the nodes in Figure 5 correspond to HO atlas. See

Supplementary material for the label names corresponding to the

labels we used in Figures 3, 4. For a list of HO atlas labels used in

Figure 5, see Atlas (2023).
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FIGURE 6

Examples of input graphs with their explanations in bold as extracted by Gradient-based edge explanation technique, for HCP structural connectivity

dataset. (A) Subject 286-Female-Axial view. (B) Subject 286-Female-Sagittal view. (C) Subject 543-Female-Axial view. (D) Subject 543-Female-Sagittal

view. (E) Subject 56-Male-Axial view. (F) Subject 56-Male-Sagittal view.

4.3.1 Performance
Table 2 shows the model performance and model-generated

explanation quality for the three described datasets. The results

are obtained from 5 individual runs for every setting. The best

results for each dataset are highlighted with boldface font, and

the second bests are underlined. For the HCP datasets, for both

Age and Gender prediction tasks, the human annotations contain

only node-level explanations, but for the ABIDE dataset we have

both ground-truth (domain-labeled) node-level and edge-level

explanations available for all samples. In general, our proposed

Global Explanation Supervision model variations outperformed

the non-explanations supervision GNN model in terms of both

prediction power as well as explainability on all three datasets.

More specifically, the performance results for different variations

suggested that global explanation supervison can have positive

effects in all scenarios on both prediction power, in addition

to the explanation correctness. The most complicated model

(i.e., the concept-based supervision model) achieved the best

performance, out-performing baseline GNN by 1–6% and 1–3%

on AUC and ACC scores, respectively. In addition, in terms of

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2024.1410424
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Etemadyrad et al. 10.3389/fdata.2024.1410424

explainability, there is significant improvement in both node and

edge-level explanations, when comparing the backbone GNN and

the concept-based supervision models. In particular, we observed

between 19–57% increase in node MSE and 14–48% in node

MAE, and more than 33% improvement for edge MSE and MAE

explanations.

These results demonstrate the general effectiveness of the

proposed framework both on largely correcting the model-

generated global explanation, in addition to improving the model

performance and prediction power. In addition, among different

variations used for global explanation generation, we observe

constant superiority of the more sophisticated concept-based

technique compared to the others, while no clear excellence of

Avg, max, or min methods when comparing one to the other was

remarkable.

To further evaluate the extracted global explanation formulas

presented in Table 1, we computed Fidelity, Accuracy, and Concept

Purity over the test set. The results are reported in Table 3 for the

three datasets. As it can be seen, on average, the clusters are quite

homogeneous, whichmeans themodel has learned a goodmapping

from the local explanations to the concepts space. Also the concept

purity is at its lowest for HCP structural dataset while has the

highest value for the same set. The accuracy results demonstrate

that the formula in Table 1 can correctly match the behavior of

the model in most samples. Additionally, it is important to note

that by looking at the fidelity results, it is clear that the explainer

is generating an explanation for the ground-truth labeling of the

dataset, while capturing the underlying predictive behavior of the

GNN it is supposed to explain.

4.3.2 Effect of choice of local explainer and
backbone GNN model

To evaluate the proposed model more comprehensively, we

repeated experiments for the model performance and model-

generated explanation quality for all datasets for two additional

local explanation techniques, Guided BP and GradCAM, and

one other backbone GNN model, DGCNN (Zhang et al., 2018).

The results are shown in Tables 4, 5. As these results show, we

continue to see superiority of our proposed Global Explanation

Supervision model variations compared to non-explanation

supervised scenarios. The concept-based supervision model again

achieved the best performance, out-performing baseline GNN, for

the two backbone GNNs and all three local explanation techniques.

Additionally, we observe significant improvement in both node,

and edge-level MSE and MAE, when using the concept-based

supervision models. These improvements, both in explanation

quality and model performance, for the concept-based technique

largely exceed other simple aggregation methods (e.g., Averaging)

in almost all settings as well.

4.3.3 Qualitative analysis: case studies
Here, we provide some case studies of the input data and

the model explanation derived from gradient based explanation

technique and binarized following (Azzolin et al., 2022). We report

some random examples for each dataset, with their extracted

explanation in bold, as illustrated in Figure 6.

5 Conclusion

In this study, we address an existing challenge for explainability

in GNNs, by proposing the Global GNN Explanation Supervision

(GGNES) technique which uses a basic trained GNN and

a global extension of the loss function used in the GNES

framework. This GNN creates local explanations which are

fed to a Global Logic-based GNN Explainer, an existing

technique that can learn the global Explanation in terms

of a logic formula. These two frameworks are then trained

iteratively to generate reasonable global explanations. Extensive

experiments demonstrate the effectiveness of the proposed

model on improving the global explanations while keeping

the performance similar or even increase the model prediction

power.
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