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Abstract 13 

Rooftop solar adoption is critical for residential decarbonization and hinges on its value to households. Climate 14 
change will likely affect the value of rooftop solar through impacts on rooftop solar generation and cooling 15 
demand, but no studies have quantified this effect. We quantify household-level effects of climate change on 16 
rooftop solar value and technoeconomically optimal capacities by integrating empirical demand data for over 17 
2,000 U.S. households across 17 cities, household-level simulation and optimization models, and downscaled 18 
weather data for historic and future climates. We find climate change will increase the value of rooftop solar 19 
to households by up to 19% and increase technoeconomically optimal household capacities by up to 25% by 20 
end-of-century in an RCP-4.5 scenario. This increased value is robust across cities, households, across future 21 
warming scenarios, and retail tariff structures. Researchers, installers, and policymakers should capture this 22 
increasing value to maximize household and system value of rooftop solar. 23 

Main 24 

Anthropogenic climate change has caused the world's temperature to increase by approximately 1.1℃ since 25 
preindustrial times, and additional warming is expected through midcentury1. Climate change will not only 26 
affect air temperatures, but also other meteorological conditions and variability, thus bringing a series of 27 
climate-change-related risks2. To limit climate change, decarbonization of the global economy, particularly 28 
through renewable energy deployment in the energy sector, is critical. Studies have emphasized the necessity 29 
for rapid renewable growth to reach the net-zero future, both nationally or globally3-5. A key part of current 30 
and future renewable energy portfolios is residential rooftop solar photovoltaics (RSPV). The US Department 31 
of Energy has projected that by 2050, almost 200 GW of RSPV will be installed as part of a national 32 
decarbonization strategy, relative an 8-fold increase from 2022’s installed capacity of 26 GW6.  33 
 34 
Increasing RSPV deployment requires increasing adoption by residential consumers. Among the many factors 35 
that affect RSPV investments, economic feasibility is the most important7-11. Value of solar (VOS) is a 36 
commonly used index for RSPV economic feasibility that covers various categories of RSPV benefits, 37 
including financial, grid and environmental benefits12,13. In this study, we specifically consider VOS as 38 
household-level financial benefits from RSPV installation, or RSPV earnings (electricity bill savings plus 39 
revenues from selling excess RSPV electricity) minus investment costs14-18. In the early stage of RSPV 40 
development, policymakers tend to stimulate RSPV uptake by increasing the VOS through subsidy, tariff 41 
design, and tax exemption19,20. But for RSPV to achieve high penetrations and play a major role in future 42 
decarbonized systems, RSPV must achieve grid-parity21,22 through better economic competitiveness23,24. 43 
RSPV economic competitiveness can improve through either lower costs or higher earnings. Technological 44 
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innovation has significantly reduced PV hardware costs, such that soft costs currently account for roughly 65% 45 
of US RSPV costs, the highest ratio among all PV types25. While technological innovation will continue to 46 
reduce hardware costs, soft costs will pose an increasingly large barrier to significant future RSPV cost 47 
reductions. Given declining net metering compensation across the US, future RSPV earnings will increasingly 48 
depend on RSPV generation offsetting household electricity demand rather than being exported to the grid14. 49 
 50 
Meteorological changes driven by climate change will likely affect the future value and investments of RSPV 51 
by affecting household RSPV earnings. On the supply side, changes in solar radiation and ambient air 52 
temperatures under climate change will likely reduce PV generation across large parts of the world, potentially 53 
reducing the value of RSPV26-30. On the demand side, rising air temperatures under climate change will shift 54 
household electricity demand patterns, particularly through increasing space cooling loads. Climate change 55 
could increase household total cooling energy by 40 -100%31 and peak cooling by around 20%32 for cities in 56 
U.S. Increasing electricity demand from cooling loads could increase the VOS by increasing household 57 
demand offset by, and consequently earnings from, RSPV, as cooling loads are one of the most temporally 58 
synergistic electric loads with PV output16,33,34. Transmission-scale studies indicate increasing electricity 59 
demand under climate change in developing regions will incentive expansion of utility-scale PV35-37.  60 
 61 
Collectively, this existing research suggests climate change could have a large impact on the future value of 62 
RSPV at the household level, which could in turn have large consequences on its deployment and contribution 63 
to achieving decarbonized power systems. Here, we quantify the future household value of RSPV under 64 
climate change for over 2,000 households in 17 cities across the United States. We use empirical household 65 
cooling data38 to capture interactions between future RSPV value and household space cooling needs given 66 
heterogeneity in climate conditions, building stocks, and user behavior. To project hourly household cooling 67 
demand under alternative climates (Methods), we train a series of household-specific regression models on 68 
empirical data. We simulate hourly household RSPV generation potential using city-specific radiation and 69 
temperature. To estimate the VOS and optimal RSPV deployment per household, we use a technoeconomic 70 
optimization model that maximizes RSPV net value, or earnings minus costs. By quantifying VOS and optimal 71 
RSPV deployment for historic versus future climates, we quantify the effect of climate change on each value. 72 
We obtain county-level hourly downscaled climate data for the historic climate (1980-2019) and four future 73 
climates for mid-century (2020-2059) and end-of-century (2060-2099) from the Thermodynamic Global 74 
Warming (TGW) dataset39. (Figure S1) The four future climates include cooler and hotter versions of 75 
Representative Concentration Pathways (RCPs) 4.5 and 8.5 that use warming signals with low and high 76 
climate sensitivity from global climate models (GCMs), respectively.  77 
 78 

Effects on residential cooling demand and RSPV potential 79 

Throughout our main results, we present results for the hotter RCP-4.5 (“RCP-4.5-Hotter”) climate scenario 80 
as a representative climate pathway, then detail the sensitivity of our results to other climate scenarios. Under 81 
the RCP-4.5-Hotter scenario, electricity demand for space cooling increases across all households by 35% and 82 
64% on average by mid and end-of century (Figure 1). Across households in cold, mild and hot cities, cooling 83 
intensity (or the annual cooling consumption per floor area) will increase from 5, 11 and 24 kWh/m2, 84 
respectively, under the historic climate to 7, 14 and 28 kWh/m2, respectively, by mid-century and 9, 16 and 85 
31 kWh/m2, respectively, by end-of-century. Cooling electricity demand increases more in percentage terms 86 
in cold cities (Figure 1b) for two reasons: (1) cooling increases are more significant for homes with lower 87 
historic cooling intensity (Figure S11,12) and (2) houses in cold cities tend to have a longer extension of the 88 
cooling season than hotter cities (Figure S13). Significant differences also exist among houses within each 89 
city. For instance, household level cooling increase ranges between 45%-190% in Boston and 6%-52% in 90 
Miami by end-of-century.  91 
 92 



Unlike cooling loads, which increase across all cities and climate scenarios, RSPV capacity factors exhibit 93 
differing trends across cities and future scenarios. (Figure 1c) Solar capacity factors vary positively with solar 94 
radiation (due to increased panel-received energy) and negatively with air temperatures (due to declining panel 95 
efficiency) (Figure S14). While climate change increases surface temperatures across our cities, it has 96 
heterogeneous effects on ground received radiation intensity due to interactions between temperature, 97 
moisture and precipitation changes27,40. In Miami, Orlando and Atlanta, solar capacity factors increase across 98 
climate scenarios, as impacts from increasing solar radiation outweigh impacts from increasing air 99 
temperatures. For Ann Arbor, Austin, Chicago, Dallas, Detroit, Houston, Louisville and Milwaukee, solar 100 
capacity factors have mixed effects across climate scenarios, as changes due to temperatures and solar 101 
radiation are opposing but roughly comparable. For Baltimore, Boston, Los Angeles, Minneapolis, New York 102 
City and Phoenix, solar capacity factors significantly decrease, driven by increasing temperatures and 103 
decreasing radiation.  104 
 105 

Effects on households’ value of solar  106 

Household cooling and solar generation potential changes driven by climate change can affect the value of 107 
solar (VOS) in two ways: (1) affect the VOS per unit of deployed RSPV capacity, and (2) affect the 108 
technoeconomically optimal capacity of RSPV that a household could deploy. In the next two sections, we 109 
examine each effect in turn. To quantify changes in VOS per unit of deployed RSPV capacity, we maximize 110 
each household’s VOS by optimizing its RSPV capacity under historic climate, then quantify the VOS of that 111 
same RSPV capacity under future climates. As detailed in the methods, this RSPV optimization model 112 
accounts for city-specific retail electricity prices, a solar feed-in price, households’ electricity demand and 113 
RSPV generation potential profiles (see Methods). The change in VOS per unit of deployed RSPV capacity 114 
is composed of two parts, the revenue per unit of RSPV electricity generation ($/kWh) and the RSPV capacity 115 
factor (kWh/W).  116 
 117 
Climate change increases VOS on a per-capacity basis for most households and cities (Figure 2). Across all 118 
cities except Minneapolis, the city-average VOS per W increases by 1-14% (or up to $0.20 per W) and 0-19% 119 
(or up to $0.36 per W) by mid- and end-of-century, respectively, under RCP-4.5-Hotter climate(Figure 2, 120 
Figure S16). In many of these cities, the VOS increases despite decreasing RSPV generation potential due to 121 
greater revenue per unit of RSPV electricity generation. For instance, by end-of-century, greater household 122 
cooling demand increases the average household VOS per unit of deployed RSPV capacity by 2-8% across 123 
cities, since greater cooling demand increases the ratio of locally consumed RSPV generation (more valuable) 124 
to exported RSPV generation (less valuable) (Figure S15). In contrast, by end-of-century, changes in RSPV 125 
generation potential change the average household VOS per unit of deployed RSPV capacity by -19% to +12% 126 
across cities. The largest increase across cities in household average VOS occurs in Miami, where a 19% VOS 127 
increase is driven by a 7% VOS increase due to greater household cooling demand and a 12% VOS increase 128 
due to greater RSPV generation. Conversely, in Minneapolis, the household average VOS decreases by 129 
roughly 17%, as a 2% VOS increase from greater household cooling demand is countered by a -17% VOS 130 
decrease due to less RSPV generation. Besides the limited cooling amount and decreasing solar potential, low 131 
electricity retail prices in Minneapolis contributes to its reduced VOS (Supplementary R2). Significant 132 
heterogeneity in VOS changes exists between households within each city due to differences in demand 133 
profiles and responses to climate change (Figure S17). By end-of-century under our RCP-4.5-Hotter scenario 134 
relative to historic, households see a 20% decrease to 30% increase in VOS across cities and see a 5% decrease 135 
to 20% increase in VOS within LA. 136 
 137 
 138 



Effects on technoeconomically optimal solar capacity 139 

Climate change will affect not only households’ VOS per unit of deployed RSPV capacity, but also households’ 140 
technoeconomically optimal solar capacity. To quantify such changes, we optimize household RSPV capacity 141 
to maximize household VOS under future as well as historic climates (see Methods).  142 
 143 
Technoeconomically optimal household RSPV capacities increase under climate change in 99% of households. 144 
Under RCP-4.5-Hotter, the average optimal household RSPV capacity increases by 2-15% and by 3-25% 145 
across households by mid- and end-of-century, respectively. (Figure S18) Climate change generally enhances 146 
the technoeconomically optimal RSPV deployments continuously, as the optimal RSPV capacity increases 147 
across all cities from cooler to hotter RCP scenarios and from mid-century to end-of-century. (Figure S19, 148 
Figure S37) Households with larger solar radiation and particularly cooling intensity increases under climate 149 
change tend to have larger increases in optimal RSPV capacity (Figure 3 (a,b,c)). Different retail electricity 150 
prices in cities drive the economic value of RSPV in offsetting demand increases. Cities with higher power 151 
retail prices (e.g., Boston, NYC, LA, Miami, and Orlando) within each climate zone tend to have larger RSPV 152 
capacity increases per demand increases than cities with lower retail prices (Minneapolis, Louisville, and 153 
Phoenix).  154 
 155 
How much RSPV a household deploys will affect its VOS, i.e. the net economic value provided to the 156 
household by the RSPV. We separate the effects of larger future RSPV capacities (“capacity effect”) from 157 
load and PV generation changes assuming a fixed RSPV capacity (“direct climate effect”). (Figure 4) In 158 
general, the capacity effect (or deploying more RSPV under climate change) increases the VOS, but has a 159 
smaller effect across cities than the direct climate effect (Figure 4). From mid- to end-of-century, the capacity 160 
effect plays a larger (but still secondary) role in driving the total VOS increase. (Figure 4, Figure S21).  161 
 162 
 163 

Sensitivity analysis 164 

Across analyzed climate scenarios, household VOS and technoeconomically optimal capacities tend to 165 
increase under climate change. But these relationships are not uniformly increasing with warming level 166 
(Figure 5), as higher warming levels increase cooling demand but decrease RSPV panel efficiency and 167 
generation (Figure S35-S38). For instance, average household VOS increases by end-of-century are 7-109% 168 
larger under RCP-4.5-Hotter than RCP-4.5-Cooler across cities. But 12 of 17 cities have a lower VOS increase 169 
by end-of-century under RCP-8.5-Hotter than RCP-4.5-Hotter, since the consequences of panel efficiency 170 
reductions (driven by panel output efficiency to temperature) outweigh those of cooling demand increases 171 
(driven by household cooling sensitivity to temperature). VOS increases with warming level in hot cities (e.g., 172 
Orlando and Miami) and high-power-price cities (Boston, LA) (Figure 5a), where the panel efficiency losses 173 
are outweighed by more locally-consumed power increases and higher revenues per kWh cooling increase, 174 
respectively. However, future climates increase RSPV technoeconomically optimal capacities across 175 
households (Figure 5b). Our finding of climate change increasing rooftop VOS except in Minneapolis is robust 176 
across pairwise combinations of 5 PV tilt and 5 PV azimuth scenarios (Supplementary R8, Figure S44-45). 177 
Changes in azimuth have a larger influence on VOS increases under climate change than changes in tilts. For 178 
most cities, households encounter the highest VOS for per W panel on roof azimuths toward south or 179 
southwest and flat tilts.  180 
 181 
We also test the sensitivity of our results to a series of policy- and technology-related economic model input 182 
parameters, including a TOU price with lower off-peak prices during hours with high solar generation; lower 183 
and higher solar feed-in prices; and lower RSPV investment costs (see Methods). Under a TOU rate based on 184 
a current Southern California Edison TOU tariff design, the household average VOS per W panel across cities 185 



would be reduced by 15%-20% under historic weather (Figure S26), and all cities except Minneapolis see an 186 
increase of VOS under climate change holds under a TOU tariff (Figure S27). Our finding that the 187 
technoeconomically optimal solar capacity increases under climate change also holds under TOU tariffs. 188 
Higher feed-in prices generally yield higher optimal investment capacities and VOS under historic and future 189 
climates (Figure S24). Lower RSPV panel costs also generally increase the optimal investment capacity and 190 
VOS for residents. Furthermore, lower panel costs yield a greater increase in VOS due to climate change, such 191 
that Minneapolis shifts from a declining to increasing VOS under climate change (Figure S25).  192 
 193 
 194 

Discussions and Conclusions 195 

As the first known research quantifying climate-induced changes in the value of residential rooftop solar 196 
photovoltaics (RSPV), our assessment provides an important step forward for the evolving value of RSPV, 197 
integrating climate-driven analysis on both RSPV supply and power demand. We found the value of RSPV 198 
would increase by 5% -20% in a wide range of U.S. cities under climate change. Changing climate conditions 199 
would also increase the technoeconomically optimal capacity by 5%-25%. Given an RSPV lifetime of around 200 
30 years, RSPV investments today will operate through 2050, which will be a mid-century climate. Thus, 201 
installers and policymakers should plan for future, not historic, climates in considering the value and sizing 202 
of RSPV to maximize RSPV value for households and the power system.  203 
 204 
Increasing RSPV value and technoeconomically optimal capacities for households driven by climate change 205 
could lead to greater RSPV electricity penetration in the residential sector, furthering decarbonization goals. 206 
If all of our analyzed households deployed their optimal RSPV capacity, they would generate annually 10.0, 207 
10.9 and 11.6 kWh per m2 of floor area on average under historic, RCP-4.5-Hotter mid-century and end-of-208 
century climates, respectively. This generation would reduce CO2 emissions by 3.6, 3.9 and 4.1 kg/(yr-m2) 209 
CO2 emission reduction per floor area based on state-level grid emission factors41. (Figure S30) If we scale 210 
our households’ results to represent all households within the same census division, technoeconomically 211 
optimal deployment and generation changes driven by climate change would increase solar generation by 12 212 
and 20 GWh per year and reduce CO2 emissions by 4.3 and 7.1 Mt per year (Supplementary R6), with greater 213 
generation and CO2 benefits in warmer scenarios (Figure S40). Thus, climate change will drive greater 214 
decarbonization benefits from RSPV deployment. 215 
 216 
Globally, climate change will increase cooling demand in many regions, particularly in areas with mild current 217 
climates31, and have mixed effects on PV generation potential, with most regions seeing slight (less than 10%) 218 
decreases26,28,42-44 but some regions, e.g. Southern Europe, Southwest China, and northern South America, 219 
seeing increases. We find the VOS of RSPV increases under climate change in U.S. cities that have increases 220 
or decreases in PV generation potential as long as cooling demand also increases. This suggests the VOS of 221 
RSPV could increase across global regions, except in regions with limited future cooling demand and 222 
significant PV potential loss, such as in Minneapolis in our results and potentially Scandinavia in another 223 
global region. Increasing VOS could increase RSPV adoption globally, accelerating decarbonization. Our 224 
results also suggest utility-scale PV would experience increased value under climate change across most of 225 
the United States. For utility-scale PV, aggregated rather than household-level cooling demand increases 226 
would affect its future value35-37, moderated by regional changes in PV potential.  227 
 228 
RSPV adoption will be influenced by many non-technoeconomic factors. Policy frameworks and 229 
technological advancements aiming at a low-carbon future will influence retail rates, feed-in tariffs, and panel 230 
costs. Our sensitivity analysis captures their multifaceted impacts on evolving RSPV value. A probable future 231 
scenario features declining grid rates and feed-in tariffs, which could counterbalance the VOS enhancements 232 
induced by climate change. Conversely, decreasing panel costs due to technological innovations could 233 



reinforce RSPV value, especially with a warming climate. As individuals adapt to warmer climates, their 234 
habits and behaviors may evolve. They might set lower cooling setpoints during peak solar hours to fully use 235 
the local solar power or pre-cool homes in the afternoon to reduce evening consumption45. They may also 236 
make extra investments on employing demand-response and integrating storage to maximize local energy use. 237 
These adaptations, which could lead to higher household PV self-consumption, might enhance the value of 238 
household RSPV and alter climate-related effects. Adjustments in cooling behaviors could intensify the 239 
alignment between cooling demand and PV outputs, amplifying the climate-influenced VOS rise. Conversely, 240 
integrating storage changes this alignment, moving the temporal synergy from an emphasis on cooling demand 241 
to an overall demand shift. Therefore, the climate-induced VOS increase might be mitigated by the 242 
incorporation of battery storage. Still, many of these behavioral shifts remain uncommon in the current U.S. 243 
landscape, introducing considerable uncertainty due to evolving practices and varied user habits. For instance, 244 
future reductions in battery costs will crucially determine their role in bolstering RSPV value, paralleling the 245 
trajectory seen with panel costs. Individual receptiveness to behavioral adjustments also introduces variability, 246 
which may further amplify the difference among households on their VOS increase along with climate change. 247 
 248 
Several opportunities for future research exist. First, we assume a static building stock, but upgrades and 249 
renovations, e.g. through heat pump adoption or increased building insulation, would affect the relationship 250 
between household electricity demand and ambient air temperatures. Future research could capture this effect 251 
through building simulation tools or simplified building models. Second, we assume users to be perfect 252 
rational on RSPV adoption, while future study could capture how behavioral variability (e.g. the adoption of 253 
load management) may alter the climate effect on solar investments. Researchers could also model the 254 
evolving value of RSPV with distributed storage under climate change46. Third, climate change will affect 255 
more than rooftop solar and cooling demand in power systems, affecting utility-scale investment decisions 256 
and operations47. These changes could affect retail rate structures in the future, which could in turn affect the 257 
future value of rooftop solar. In particular, increasing value in utility-scale solar as noted above could increase 258 
utility-scale solar investments, which would likely reduce the alignment of high TOU rates with rooftop solar 259 
output. To capture these dynamics, future studies could combine household-level models like ours with 260 
transmission-scale planning to model future potential rate structures. Fourth, the evolving value of RSPV were 261 
predicted based on moderate (RCP-4.5) and radical warming pathways (RCP-8.5), and the VOS increase 262 
impact may mitigate under a conservative carbon-neutral pathway (e.g. RCP-2.6). Meanwhile, the RCP-4.5-263 
cooler version could partially reflect a carbon-neutral future, as it has average 1.30 and 2.12 ℃ temperature 264 
increase across cities in mid- and end-of-century, slightly higher than a lowest emission future (i.e. RCP-2.6) 265 
with an average temperature increase at about 1.6℃48. We also recommend a more reliable RSPV potential 266 
modelling under climate change with an ideal climate datasets that doesn’t require radiation decomposition, 267 
which is not available currently as pointed as a common challenge at the interface of energy system and climate 268 
analyses49. Despite these limitations, our results indicate that climate change will improve the economic value 269 
and deployment potential of rooftop solar, which could accelerate climate mitigation efforts.  270 
 271 
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Figure Legends/Captions 300 

Figure 1  301 
Boxplots of climate change induced residential cooling and solar potential change. (a) Boxplots of cooling 302 
power intensity across households for 40-year average in RCP-4.5-Hotter in historic, mid-century and end-of-303 
century, sample size (n) for each city equals to the number of effective houses in each city in Table S1; (b) 304 
Boxplots of cooling power increase across households for 40-year average in RCP-4.5-Hotter in historic, mid-305 
century and end-of-century, sample size (n) for each city equals to the number of effective houses in each city 306 
in Table S1; (c) Boxplots for residential solar capacity factor in each city for the distribution of 40 years in 307 
RCP 4.5 Hotter in historic, mid-century and end-of-century (n = 40) . Boxplots indicate variability between 308 
households by cities. In all boxplots, we present median (notch), first and third quantile (lower and upper 309 
hinges of boxes) and 1.5 times the inter-quartile range (whiskers). City labels are as follows: AA – Ann Arbor, 310 
BOS – Boston, CHI – Chicago, DET – Detroit, MIL – Milwaukee, MIN – Minneapolis, ATL – Atlanta, BAL 311 
– Baltimore, LA – Los Angeles, LOU - Louisville, NYC – New York City, AUS – Austin, DAL – Dallas, 312 
HOU – Houston, MIA – Miami, ORL – Orlando, PHX – Phoenix.  313 
 314 
Figure 2  315 
Waterfall charts showing the average changing ratio of VOS per W across households by city under 316 
RCP-4.5-Hotter. (a) Mid-century relative to historic (b) End-of-century relative to historic. The blue columns 317 
indicate the VOS change driven by the household cooling increase, which are calculated using residential 318 
loads in mid- or end-of-century and hourly historic PV generation. The purple columns are the total household 319 
average VOS change, which are calculated using both loads and generation profiles in mid-century and end-320 
of-century. The orange columns are the difference between the blue and purple columns, indicating the VOS 321 
effect of PV generation changes under climate change.  322 
 323 
Figure 3  324 
Household level technoeconomically optimal RSPV capacity increase and VOS per W increase  by 325 
end-of-century under RCP-4.5-Hotter scenario relative to historic climate. (a-c) Scatter plot of 326 



technoeconomically optimal RSPV capacities increase versus annual cooling demand increase in cold (a), 327 
mild (b) and hot (c) cities; (d-f) Scatter plot of household VOS increase versus power demand increase in cold 328 
(d), mild (e) and hot (f) cities. Differences in trends between cities within subplots are mainly driven by 329 
electricity retail price differences between cities, with higher retail price cities (e.g., Boston and New York 330 
City) having larger investments and VOS increases than cities with lower retail prices.  331 
 332 
Figure 4  333 
Scatter plot of household VOS increase due to direct climate effect versus due to capacity effect in mid-334 
century and end-of-century under RCP-4.5-Hotter scenario. Only houses with increasing VOS are 335 
included here, so Minneapolis is excluded. Direct climate effect indicates the VOS increase due to 336 
meteorological changes under climate change, while capacity effect indicates the VOS increase due to greater 337 
RSPV investments. 338 
 339 
Figure 5  340 
Average household VOS and technoecomically optimal capacities increase across cities among climate 341 
scenarios. (a) comparison of average household VOS per unit RSPV increase across cities by mid-century 342 
under RCP-4.5-Cooler, RCP-4.5-Hotter and RCP-8.5-Hotter scenarios relative to historic; (b) comparison of 343 
average household technoecomically optimal capacities across cities by mid-century under RCP-4.5-Cooler, 344 
RCP-4.5-Hotter and RCP-8.5-Hotter scenarios relative to historic. 345 
 346 
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Methods 463 

We integrate household electricity demand and RSPV generation models to quantify the effect of climate change on the 464 
value of RSPV. We first describe how we estimate hourly household electricity demand and PV generation potential for 465 
historic and future climates, then formulate our household optimization model for quantifying the value of and 466 
technoeconomically optimal deployment of RSPV.  467 

468 

Household cooling electricity demand model 469 

To estimate hourly electricity demand for space cooling for each household in historic and future climates, we couple 3 470 
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models including 1) a timeseries regression to predict hourly indoor air temperatures; 2) a control algorithm for 471 
determining whether air conditioning (AC) turns on or off based on predicted indoor air temperatures; and 3) regressions 472 
to predict AC capacity per household and power consumption when the AC is running. Meanwhile, we defined dynamic 473 
cooling seasons for AC cooling operation each year at different cities, whose beginning and ending are the first and last 474 
week with an average outdoor temperature above 65℉, respectively. The indoor temperature regression predicts the 475 
indoor temperature for each 5-minute interval given the outdoor temperature, latest indoor temperature, and AC 476 
operation status (Figure S3). The AC control algorithm then predicts whether the AC runs in each hour based on the 477 
individual user habit and the predicted indoor temperature. Specifically, the user habits include the hourly cooling 478 
setpoint, AC opening threshold (Supplementary M2) and hourly schedule (Home, Away and Sleep). Once AC system 479 
parameters were sized through a regression-based household capacity prediction, the AC electricity consumption 480 
regression model generated estimates of electricity usage for each AC operation time interval.  481 

Multiple datasets are utilized in the household AC cooling consumption (HHAC) model. First, we trained the indoor 482 
temperature regression and regressed the AC operation time for each household with Ecobee Donate Your Data dataset 483 
and historic weather data from NOAA weather station50. Ecobee data is collected and publicized by Ecobee Inc., a 484 
Toronto-headquartered smart thermostat manufacturer whose products are widely used in US and Canada, and it 485 
contains high quality and frequency household level energy usage data.38 From the Ecobee data, we specifically obtain 486 
the AC cooling setpoint, indoor temperature, hourly schedule (Home, Away or Sleep) and cooling running time in 5-487 
minute intervals for 2121 households spanning 2019-2020 years. The Ecobee dataset also contains a self-reported 488 
metadata document for household characteristics, including city, number of floors, and square footage, which we use to 489 
estimate household solar potential. After filtering our dataset, we obtain data for 20-300 households across 17 cities (see 490 
SI). (Table S1). We also use ResStock database51 to provide information not included in the Ecobee data on two aspects. 491 
First, we used the relationship between building floor area and AC capacity for millions of single-family houses in 492 
ResStock to estimate the AC capacity for each Ecobee house. Second, we select 400 ResStock samples in each city and 493 
simulate their other electric device demands (i.e. indoor lighting, outdoor lighting and interior electric equipment 494 
consumption). We assume these demands are insensitive to ambient air temperatures and would not vary between history 495 
consumption and climate scenarios. (Supplementary M3). Finally, to estimate AC electricity consumption in our HHAC 496 
model, we construct linear regressions from the Goodman's AC product specifications catalog52, which contains 497 
observed AC electricity usage in kW for different AC capacities under different indoor and outdoor temperatures. This 498 
linear regression specifically estimates electricity consumption as a function of AC run time and indoor and outdoor 499 
temperatures. We apply this regression to each time interval in which the AC runs to estimate AC electricity consumption 500 
in each interval53 (Supplementary M3) The additional details and the mathematical formulation of household cooling 501 
demand model are listed in Supplementary M3. The regressions in the household cooling demand model produce robust 502 
performances. Specifically, the indoor temperature regression has a range of average R-square from 0.97-0.99 across 503 
cities (Figure S6), while the R-square range for hourly and daily cooling demand are 0.68-0.80 and 0.83-0.92, 504 
respectively. (Figure S7-S8) 505 

 506 

Household solar generation and deployment potential model 507 

For each household, we estimate hourly RSPV per unit generation potentials (or capacity factors) and the maximum 508 
potential RSPV deployed capacity. We calculate each household’s maximum RSPV deployment capacity as: 509 

𝐶𝐴𝑃𝑃𝑖 = 𝑅𝐹𝑖 × 𝑆𝑇𝑖 × 𝑃𝐹𝑖 ×
𝑃
𝐴

 
Eq.1 

 510 
where 𝐶𝐴𝑃𝑃𝑖 is the solar capacity potential for Ecobee house 𝑖; 𝑅𝐹𝑖 is rooftop area, which equals the household floor 511 
area divide by the number of floors; 𝑆𝑇𝑖 is the city-specific fraction of rooftop area suitable for PV panel installation 512 
54; 𝑃𝐹𝑖 is the packing factor, which quantifies the percentage of panel area to total suitable area; and P and A are the 513 
rated power and area for the PV panel. We assume panels are installed at its optimal angle correlated with latitude on 514 
flat roofs, and alongside half the roofs facing closer to south on tilted roofs. In the main results, the roofs are considered 515 



as southward with 28° incident angle, which is the most common rooftop observed by NREL54. 20 other scenarios with 516 
different azimuth and rooftop tilt are also detected (Supplementary R8). Taking the main scenario as an example, PF 517 
equals the half of the cosine of 28° , yielding a PF of 0.56. Meanwhile, we use a 375 W, 1.94 m2 PV panel per 518 
specifications of a modern Longi panel55 (Table S3), the largest PV manufacturer globally. 519 
 520 
We estimate hourly RSPV capacity factors by processing city-level meteorology in the PVlib Python package55. First, 521 
we decomposed hourly total shortwave downward radiation (i.e. global horizontal irradiance (GHI)) into direct normal 522 
irradiance (DNI) and diffuse horizontal irradiance (DHI) using the Erbs model and solar altitude and azimuth56 523 
(Supplementary M4). Second, the hourly panel-received radiation was developed through PVlib package using the 524 
hourly decomposed radiation, considering the azimuth and incident angle for PV panels. Finally, the hourly PV capacity 525 
factor were calculated based on the panel-received radiation and the hourly temperature effect of panels, on a household-526 
by-household basis. 527 
 528 

Household value of solar model 529 

To estimate the value of RSPV for each household, we use an optimization model that maximizes the value of solar 530 
(VOS), or solar earnings minus costs, by sizing the solar array (Equations 2-8). After setting the optimization RSPV 531 
capacity in historic, the Equation 3-7 could then calculate the dynamic VOS across climate change with changing input 532 
of hourly load and solar capacity factor. Given that each year within TGW 40-year spans manifests distinct weather 533 
patterns, while only climate signals inform variations with 40- and 80-year offsets, we allocated the optimization model 534 
on each 40-year TGW climate period to prevent biases linked to intra-annual weather fluctuations and the start year of 535 
investments. Notably, while the 40-year period is earmarked for climate categorization, our model respects the widely 536 
accepted 25-year PV panel lifespan. This distinction is underscored by the 'yr' variable in Equation 5, set at 25 years57, 537 
to transpose the lump-sum investment into its corresponding cost annuity. 538 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 vos𝑖 Eq.2 

vos𝑖 =  ∑ 𝑆𝐸𝑖,𝑦 −  𝑆𝐶𝑖,𝑦

40

𝑦=0

 Eq.3 

𝑆𝐸𝑖,𝑦 =  ∑ ((𝐿𝑖,𝑡,𝑦 − 𝑁𝐷𝑖,𝑡,𝑦) × 𝑃𝑔𝑟𝑖𝑑  +  𝐸𝑋𝑆𝑂𝐿𝑖,𝑡,𝑦 × 𝑃𝑓𝑒𝑒𝑑𝑖𝑛 )
8760

𝑡=0

 Eq.4 

𝑆𝐶𝑖,𝑦 =  𝑐𝑎𝑝𝑖 ×  𝐶 × ((𝑟 + (
𝑟

(1 + 𝑟)𝑌𝑅 − 1
))  Eq.5 

𝑁𝐷𝑖,𝑡,𝑦 = {
(𝐿𝑖,𝑡,𝑦 − 𝐶𝐹𝑖,𝑡,𝑦 × 𝑐𝑎𝑝𝑖),  𝐿𝑖,𝑡,𝑦 > 𝐶𝐹𝑖,𝑡,𝑦 × 𝑐𝑎𝑝𝑖

0,  𝐿𝑖,𝑡,𝑦 ≤ 𝐶𝐹𝑖,𝑡,𝑦 × 𝑐𝑎𝑝𝑖  
 Eq.6 

𝐸𝑋𝑆𝑂𝐿𝑖,𝑡,𝑦 = {
𝐶𝐹𝑖,𝑡,𝑦 × 𝑐𝑎𝑝𝑖 −  𝐿𝑖,𝑡,𝑦,  𝐶𝐹𝑖,𝑡,𝑦 × 𝑐𝑎𝑝𝑖 > 𝐿𝑖,𝑡,𝑦

0,  𝐶𝐹𝑖,𝑡,𝑦 × 𝑐𝑎𝑝𝑖 ≤ 𝐿𝑖,𝑡,𝑦 
 Eq.7 

s. t.    0 ≤  𝑐𝑎𝑝𝑖  ≤  𝐶𝐴𝑃𝑃𝑖 Eq.8 

 539 
where vos𝑖 is the value of solar over a 40-year TGW climate cycle (historic, mid- or end-of-century) for house 𝑖. 𝑆𝐸𝑖,𝑦 540 
and 𝑆𝐶𝑖,𝑦  represents the total solar earnings and solar cost for house 𝑖  in year 𝑦  in each TGW climate period, 541 
respectively. 𝑆𝐸𝑖,𝑦 consists of the saving of power expense from net demand load reduction and the revenue by selling 542 
excess solar to grid. 𝑆𝐶𝑖,𝑦 is the solar PV panel investment cost annuity across its lifetime year 𝑌𝑅. This value is 543 
adjusted for the time value of money from the initial panel investment, making it directly comparable to the annual 544 
RSPV revenue 𝑆𝐸𝑖,𝑦. For solar revenue, 𝐿𝑖,𝑡,𝑦, 𝑁𝐷𝑖,𝑡,𝑦 and 𝐸𝑋𝑆𝑂𝐿𝑖,𝑡,𝑦 represents total power consumption, power 545 
net demand and excess solar power in kW for house 𝑖 at hour t in year y, respectively. 𝐶𝐹𝑖,𝑡,𝑦 is the hourly solar 546 



capacity factor house 𝑖 at hour 𝑡 in year 𝑦. 𝑃𝑔𝑟𝑖𝑑 and 𝑃𝑓𝑒𝑒𝑑𝑖𝑛 represent the unit price ($/kWh) of purchasing power 547 
from grid (Table S1) and feed excess solar into grid. For solar cost, variable 𝑐𝑎𝑝𝑖 represents the capacity (kW) of the 548 
PV installation in home 𝑖, 𝐶 is the PV panel investment cost ($/kW), 𝑌𝑅 is PV panel lifetime taken as 25 years for 549 
the quantification on the financial time effect of PV investment and 𝑟 is the interest rate at 4.5%57. The optimization 550 
considers the constraint that the PV capacity installed by each home, 𝑐𝑎𝑝𝑖, should not exceed its total solar potential, 551 
𝐶𝐴𝑃𝑃𝑖. 552 
 553 

Climate data and sensitivity analyses 554 

We obtain hourly, county-level downscaled meteorological variables for historic and future climates from Casey et.al58, 555 
who performed climate projections and spatial analysis on county level based on the Thermodynamic Global Warming 556 
(TGW) raw data39 and methodology from Jones, Andrew D et. al59. The TGW raw data is generated through dynamically 557 
downscaling a 40-year sequence of past weather from 1980-2019 in ERA5 atmospheric re-analysis data to 12km2, and 558 
then repeating this 40-year sequence using a range of time-evolving thermodynamic warming signals that follow future 559 
warming trajectories from mid-century (2020-2058) to end-of-century (2060-2099). (Figure S9). The county-level TGW 560 
data is generated from the 12km2 TGW raw data through spatial averaging of each of six meteorological variables 561 
(temperature, specific humidity, shortwave radiation, longwave radiation, and east-west and north-south components of 562 
wind speed). For future climate scenarios, it contains four climate simulations corresponding to cooler and hotter 563 
versions of Representative Concentration Pathways 4.5 and 8.5 that sample variability across 8 global climate models 564 
(GCMs) (Figure S31). Specifically, the cooler 4.5 and 8.5 pathways use warming signals from GCMs with low climate 565 
sensitivity (and consequently low warming relative to other GCMs), while the hotter 4.5 and 8.5 pathways use warming 566 
signals from GCMs with high climate sensitivity (and consequently high warming relative to other GCMs) (Figure S10). 567 
Average mid- and end-of-century temperature increase across cities are 1.30℃ and 2.12℃ in RCP-4.5-Cooler scenario, 568 
while in RCP-8.5-Hotter scenario they are 2.23℃ and 5.14℃, respectively. As the input for HHAC and VOS models, 569 
we obtain surface air temperatures and downward shortwave radiation intensity for counties that includes each city for 570 
which we have household data. As the TGW dataset has not been bias corrected, we use quantile mapping60 to bias 571 
correct temperature and radiation data in the historic and future TGW datasets based on the relationship between the 572 
historic TGW data and observed weather data (i.e. weather station data50 for temperature and National Solar Radiation 573 
Database (NSRDB) for radiation61). Quantile mapping implements a statistical transformation on the modelled climate 574 
data so that they agree with the distribution of observed data distribution of modelled climate variables to observational 575 
ones. This bias correction allows us to use of TGW modelled data to predict the historic and future building energy 576 
consumption based on with our regressions from fit on historic observational data. 577 

In addition to alternative climates, we test the sensitivity of our results to rooftop shape variety, time-of-use (TOU) rates, 578 
RSPV investment costs and feed-in prices, key technology- and policy-related uncertainties that will affect the value of 579 
RSVP vis-à-vis earnings and cost impacts. Our main results assume feed-in prices of 0.04 $/kWh62 and RSVP investment 580 
costs of 2.55 $/W63, while we consider a series of feed-in price scenarios (0.08, 0.06, 0.02, 0 $/kWh) and declining 581 
investment costs scenarios (2.0, 1.6 $/W). Meanwhile, we regard a constant grid power retail price for each city from 582 
the monthly average price for each state in the main results (Table S1), and we set two TOU rates scenarios in sensitivity 583 
analysis for each city based a tariff by South California Edison64 to reflect the potential influence of higher utility-solar 584 
penetration in the grid.(Supplementary M7) While the shapes of roof are considered as most common at southward with 585 
28° incident angle in the main results, we also test their uncertainty with a series of 21 scenarios including flat roofs 586 
and pitched roofs with 5 azimuths (Eastward, Southeastward, Southward, Southwestward and Westward) and 4 tilts (15°, 587 
28°, 41°, 54°). 588 

Data availability 589 

The data containing individual hourly cooling behavior is from Ecobee inc upon requests38. The data with future TGW climate 590 
scenarios is from U.S. Department of Energy Office of Scientific and Technical Information39 and publicly available. Other 591 
data sources are provided in the Methods and Supplementary Information. We provided the household-level VOS, optimal 592 



solar capacity data through Figshare65. 593 
 594 

Code availability 595 

The codes (python scripts) are available at Figshare65, including model codes (HHAC model, solar potential mapping and 596 
value of solar optimization) and figure production codes (Figure 1-5). 597 
 598 
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