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Abstract

Rooftop solar adoption is critical for residential decarbonization and hinges on its value to households. Climate
change will likely affect the value of rooftop solar through impacts on rooftop solar generation and cooling
demand, but no studies have quantified this effect. We quantify household-level effects of climate change on
rooftop solar value and technoeconomically optimal capacities by integrating empirical demand data for over
2,000 U.S. households across 17 cities, household-level simulation and optimization models, and downscaled
weather data for historic and future climates. We find climate change will increase the value of rooftop solar
to households by up to 19% and increase technoeconomically optimal household capacities by up to 25% by
end-of-century in an RCP-4.5 scenario. This increased value is robust across cities, households, across future
warming scenarios, and retail tariff structures. Researchers, installers, and policymakers should capture this
increasing value to maximize household and system value of rooftop solar.

Main

Anthropogenic climate change has caused the world's temperature to increase by approximately 1.1°C since
preindustrial times, and additional warming is expected through midcentury'. Climate change will not only
affect air temperatures, but also other meteorological conditions and variability, thus bringing a series of
climate-change-related risks. To limit climate change, decarbonization of the global economy, particularly
through renewable energy deployment in the energy sector, is critical. Studies have emphasized the necessity
for rapid renewable growth to reach the net-zero future, both nationally or globally*?. A key part of current
and future renewable energy portfolios is residential rooftop solar photovoltaics (RSPV). The US Department
of Energy has projected that by 2050, almost 200 GW of RSPV will be installed as part of a national
decarbonization strategy, relative an 8-fold increase from 2022’s installed capacity of 26 GW®.

Increasing RSPV deployment requires increasing adoption by residential consumers. Among the many factors
that affect RSPV investments, economic feasibility is the most important’!!. Value of solar (VOS) is a
commonly used index for RSPV economic feasibility that covers various categories of RSPV benefits,
including financial, grid and environmental benefits'>!3. In this study, we specifically consider VOS as
household-level financial benefits from RSPV installation, or RSPV earnings (electricity bill savings plus
revenues from selling excess RSPV electricity) minus investment costs'*'8, In the early stage of RSPV
development, policymakers tend to stimulate RSPV uptake by increasing the VOS through subsidy, tariff
design, and tax exemption'®?°, But for RSPV to achieve high penetrations and play a major role in future
decarbonized systems, RSPV must achieve grid-parity*"*? through better economic competitiveness>*=.
RSPV economic competitiveness can improve through either lower costs or higher earnings. Technological
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innovation has significantly reduced PV hardware costs, such that soft costs currently account for roughly 65%
of US RSPV costs, the highest ratio among all PV types?. While technological innovation will continue to
reduce hardware costs, soft costs will pose an increasingly large barrier to significant future RSPV cost
reductions. Given declining net metering compensation across the US, future RSPV earnings will increasingly
depend on RSPV generation offsetting household electricity demand rather than being exported to the grid'.

Meteorological changes driven by climate change will likely affect the future value and investments of RSPV
by affecting household RSPV earnings. On the supply side, changes in solar radiation and ambient air
temperatures under climate change will likely reduce PV generation across large parts of the world, potentially
reducing the value of RSPV?%3°, On the demand side, rising air temperatures under climate change will shift
household electricity demand patterns, particularly through increasing space cooling loads. Climate change
could increase household total cooling energy by 40 -100%?>! and peak cooling by around 20%?>? for cities in
U.S. Increasing electricity demand from cooling loads could increase the VOS by increasing household
demand offset by, and consequently earnings from, RSPV, as cooling loads are one of the most temporally
synergistic electric loads with PV output!®3-* Transmission-scale studies indicate increasing electricity
demand under climate change in developing regions will incentive expansion of utility-scale PV3%37,

Collectively, this existing research suggests climate change could have a large impact on the future value of
RSPV at the household level, which could in turn have large consequences on its deployment and contribution
to achieving decarbonized power systems. Here, we quantify the future household value of RSPV under
climate change for over 2,000 households in 17 cities across the United States. We use empirical household
cooling data®® to capture interactions between future RSPV value and household space cooling needs given
heterogeneity in climate conditions, building stocks, and user behavior. To project hourly household cooling
demand under alternative climates (Methods), we train a series of household-specific regression models on
empirical data. We simulate hourly household RSPV generation potential using city-specific radiation and
temperature. To estimate the VOS and optimal RSPV deployment per household, we use a technoeconomic
optimization model that maximizes RSPV net value, or earnings minus costs. By quantifying VOS and optimal
RSPV deployment for historic versus future climates, we quantify the effect of climate change on each value.
We obtain county-level hourly downscaled climate data for the historic climate (1980-2019) and four future
climates for mid-century (2020-2059) and end-of-century (2060-2099) from the Thermodynamic Global
Warming (TGW) dataset®. (Figure S1) The four future climates include cooler and hotter versions of
Representative Concentration Pathways (RCPs) 4.5 and 8.5 that use warming signals with low and high
climate sensitivity from global climate models (GCMs), respectively.

Effects on residential cooling demand and RSPV potential

Throughout our main results, we present results for the hotter RCP-4.5 (“RCP-4.5-Hotter”) climate scenario
as a representative climate pathway, then detail the sensitivity of our results to other climate scenarios. Under
the RCP-4.5-Hotter scenario, electricity demand for space cooling increases across all households by 35% and
64% on average by mid and end-of century (Figure 1). Across households in cold, mild and hot cities, cooling
intensity (or the annual cooling consumption per floor area) will increase from 5, 11 and 24 kWh/m?,
respectively, under the historic climate to 7, 14 and 28 kWh/m?, respectively, by mid-century and 9, 16 and
31 kWh/m?, respectively, by end-of-century. Cooling electricity demand increases more in percentage terms
in cold cities (Figure 1b) for two reasons: (1) cooling increases are more significant for homes with lower
historic cooling intensity (Figure S11,12) and (2) houses in cold cities tend to have a longer extension of the
cooling season than hotter cities (Figure S13). Significant differences also exist among houses within each
city. For instance, household level cooling increase ranges between 45%-190% in Boston and 6%-52% in
Miami by end-of-century.
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Unlike cooling loads, which increase across all cities and climate scenarios, RSPV capacity factors exhibit
differing trends across cities and future scenarios. (Figure 1¢) Solar capacity factors vary positively with solar
radiation (due to increased panel-received energy) and negatively with air temperatures (due to declining panel
efficiency) (Figure S14). While climate change increases surface temperatures across our cities, it has
heterogeneous effects on ground received radiation intensity due to interactions between temperature,
moisture and precipitation changes?”*’. In Miami, Orlando and Atlanta, solar capacity factors increase across
climate scenarios, as impacts from increasing solar radiation outweigh impacts from increasing air
temperatures. For Ann Arbor, Austin, Chicago, Dallas, Detroit, Houston, Louisville and Milwaukee, solar
capacity factors have mixed effects across climate scenarios, as changes due to temperatures and solar
radiation are opposing but roughly comparable. For Baltimore, Boston, Los Angeles, Minneapolis, New Y ork
City and Phoenix, solar capacity factors significantly decrease, driven by increasing temperatures and
decreasing radiation.

Effects on households’ value of solar

Household cooling and solar generation potential changes driven by climate change can affect the value of
solar (VOS) in two ways: (1) affect the VOS per unit of deployed RSPV capacity, and (2) affect the
technoeconomically optimal capacity of RSPV that a household could deploy. In the next two sections, we
examine each effect in turn. To quantify changes in VOS per unit of deployed RSPV capacity, we maximize
each household’s VOS by optimizing its RSPV capacity under historic climate, then quantify the VOS of that
same RSPV capacity under future climates. As detailed in the methods, this RSPV optimization model
accounts for city-specific retail electricity prices, a solar feed-in price, households’ electricity demand and
RSPV generation potential profiles (see Methods). The change in VOS per unit of deployed RSPV capacity
is composed of two parts, the revenue per unit of RSPV electricity generation ($/kWh) and the RSPV capacity
factor (kKWh/W).

Climate change increases VOS on a per-capacity basis for most households and cities (Figure 2). Across all
cities except Minneapolis, the city-average VOS per W increases by 1-14% (or up to $0.20 per W) and 0-19%
(or up to $0.36 per W) by mid- and end-of-century, respectively, under RCP-4.5-Hotter climate(Figure 2,
Figure S16). In many of these cities, the VOS increases despite decreasing RSPV generation potential due to
greater revenue per unit of RSPV electricity generation. For instance, by end-of-century, greater household
cooling demand increases the average household VOS per unit of deployed RSPV capacity by 2-8% across
cities, since greater cooling demand increases the ratio of locally consumed RSPV generation (more valuable)
to exported RSPV generation (less valuable) (Figure S15). In contrast, by end-of-century, changes in RSPV
generation potential change the average household VOS per unit of deployed RSPV capacity by -19% to +12%
across cities. The largest increase across cities in household average VOS occurs in Miami, where a 19% VOS
increase is driven by a 7% VOS increase due to greater household cooling demand and a 12% VOS increase
due to greater RSPV generation. Conversely, in Minneapolis, the household average VOS decreases by
roughly 17%, as a 2% VOS increase from greater household cooling demand is countered by a -17% VOS
decrease due to less RSPV generation. Besides the limited cooling amount and decreasing solar potential, low
electricity retail prices in Minneapolis contributes to its reduced VOS (Supplementary R2). Significant
heterogeneity in VOS changes exists between households within each city due to differences in demand
profiles and responses to climate change (Figure S17). By end-of-century under our RCP-4.5-Hotter scenario
relative to historic, households see a 20% decrease to 30% increase in VOS across cities and see a 5% decrease
to 20% increase in VOS within LA.
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Effects on technoeconomically optimal solar capacity

Climate change will affect not only households’ VOS per unit of deployed RSPV capacity, but also households’
technoeconomically optimal solar capacity. To quantify such changes, we optimize household RSPV capacity
to maximize household VOS under future as well as historic climates (see Methods).

Technoeconomically optimal household RSPV capacities increase under climate change in 99% of households.
Under RCP-4.5-Hotter, the average optimal household RSPV capacity increases by 2-15% and by 3-25%
across households by mid- and end-of-century, respectively. (Figure S18) Climate change generally enhances
the technoeconomically optimal RSPV deployments continuously, as the optimal RSPV capacity increases
across all cities from cooler to hotter RCP scenarios and from mid-century to end-of-century. (Figure S19,
Figure S37) Households with larger solar radiation and particularly cooling intensity increases under climate
change tend to have larger increases in optimal RSPV capacity (Figure 3 (a,b,c)). Different retail electricity
prices in cities drive the economic value of RSPV in offsetting demand increases. Cities with higher power
retail prices (e.g., Boston, NYC, LA, Miami, and Orlando) within each climate zone tend to have larger RSPV
capacity increases per demand increases than cities with lower retail prices (Minneapolis, Louisville, and
Phoenix).

How much RSPV a household deploys will affect its VOS, i.e. the net economic value provided to the
household by the RSPV. We separate the effects of larger future RSPV capacities (“capacity effect”) from
load and PV generation changes assuming a fixed RSPV capacity (“direct climate effect”). (Figure 4) In
general, the capacity effect (or deploying more RSPV under climate change) increases the VOS, but has a
smaller effect across cities than the direct climate effect (Figure 4). From mid- to end-of-century, the capacity
effect plays a larger (but still secondary) role in driving the total VOS increase. (Figure 4, Figure S21).

Sensitivity analysis

Across analyzed climate scenarios, household VOS and technoeconomically optimal capacities tend to
increase under climate change. But these relationships are not uniformly increasing with warming level
(Figure 5), as higher warming levels increase cooling demand but decrease RSPV panel efficiency and
generation (Figure S35-S38). For instance, average household VOS increases by end-of-century are 7-109%
larger under RCP-4.5-Hotter than RCP-4.5-Cooler across cities. But 12 of 17 cities have a lower VOS increase
by end-of-century under RCP-8.5-Hotter than RCP-4.5-Hotter, since the consequences of panel efficiency
reductions (driven by panel output efficiency to temperature) outweigh those of cooling demand increases
(driven by household cooling sensitivity to temperature). VOS increases with warming level in hot cities (e.g.,
Orlando and Miami) and high-power-price cities (Boston, LA) (Figure 5a), where the panel efficiency losses
are outweighed by more locally-consumed power increases and higher revenues per kWh cooling increase,
respectively. However, future climates increase RSPV technoeconomically optimal capacities across
households (Figure 5b). Our finding of climate change increasing rooftop VOS except in Minneapolis is robust
across pairwise combinations of 5 PV tilt and 5 PV azimuth scenarios (Supplementary R8, Figure S44-45).
Changes in azimuth have a larger influence on VOS increases under climate change than changes in tilts. For
most cities, households encounter the highest VOS for per W panel on roof azimuths toward south or
southwest and flat tilts.

We also test the sensitivity of our results to a series of policy- and technology-related economic model input
parameters, including a TOU price with lower off-peak prices during hours with high solar generation; lower
and higher solar feed-in prices; and lower RSPV investment costs (see Methods). Under a TOU rate based on
a current Southern California Edison TOU tariff design, the household average VOS per W panel across cities
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would be reduced by 15%-20% under historic weather (Figure S26), and all cities except Minneapolis see an
increase of VOS under climate change holds under a TOU tariff (Figure S27). Our finding that the
technoeconomically optimal solar capacity increases under climate change also holds under TOU tariffs.
Higher feed-in prices generally yield higher optimal investment capacities and VOS under historic and future
climates (Figure S24). Lower RSPV panel costs also generally increase the optimal investment capacity and
VOS for residents. Furthermore, lower panel costs yield a greater increase in VOS due to climate change, such
that Minneapolis shifts from a declining to increasing VOS under climate change (Figure S25).

Discussions and Conclusions

As the first known research quantifying climate-induced changes in the value of residential rooftop solar
photovoltaics (RSPV), our assessment provides an important step forward for the evolving value of RSPV,
integrating climate-driven analysis on both RSPV supply and power demand. We found the value of RSPV
would increase by 5% -20% in a wide range of U.S. cities under climate change. Changing climate conditions
would also increase the technoeconomically optimal capacity by 5%-25%. Given an RSPV lifetime of around
30 years, RSPV investments today will operate through 2050, which will be a mid-century climate. Thus,
installers and policymakers should plan for future, not historic, climates in considering the value and sizing
of RSPV to maximize RSPV value for households and the power system.

Increasing RSPV value and technoeconomically optimal capacities for households driven by climate change
could lead to greater RSPV electricity penetration in the residential sector, furthering decarbonization goals.
If all of our analyzed households deployed their optimal RSPV capacity, they would generate annually 10.0,
10.9 and 11.6 kWh per m? of floor area on average under historic, RCP-4.5-Hotter mid-century and end-of-
century climates, respectively. This generation would reduce CO2 emissions by 3.6, 3.9 and 4.1 kg/(yr-m?)
CO2 emission reduction per floor area based on state-level grid emission factors*'. (Figure S30) If we scale
our households’ results to represent all households within the same census division, technoeconomically
optimal deployment and generation changes driven by climate change would increase solar generation by 12
and 20 GWh per year and reduce CO2 emissions by 4.3 and 7.1 Mt per year (Supplementary R6), with greater
generation and CO2 benefits in warmer scenarios (Figure S40). Thus, climate change will drive greater
decarbonization benefits from RSPV deployment.

Globally, climate change will increase cooling demand in many regions, particularly in areas with mild current
climates®', and have mixed effects on PV generation potential, with most regions seeing slight (less than 10%)
decreases?®2%424 but some regions, e.g. Southern Europe, Southwest China, and northern South America,
seeing increases. We find the VOS of RSPV increases under climate change in U.S. cities that have increases
or decreases in PV generation potential as long as cooling demand also increases. This suggests the VOS of
RSPV could increase across global regions, except in regions with limited future cooling demand and
significant PV potential loss, such as in Minneapolis in our results and potentially Scandinavia in another
global region. Increasing VOS could increase RSPV adoption globally, accelerating decarbonization. Our
results also suggest utility-scale PV would experience increased value under climate change across most of
the United States. For utility-scale PV, aggregated rather than household-level cooling demand increases
would affect its future value®>3’, moderated by regional changes in PV potential.

RSPV adoption will be influenced by many non-technoeconomic factors. Policy frameworks and
technological advancements aiming at a low-carbon future will influence retail rates, feed-in tariffs, and panel
costs. Our sensitivity analysis captures their multifaceted impacts on evolving RSPV value. A probable future
scenario features declining grid rates and feed-in tariffs, which could counterbalance the VOS enhancements
induced by climate change. Conversely, decreasing panel costs due to technological innovations could
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reinforce RSPV value, especially with a warming climate. As individuals adapt to warmer climates, their
habits and behaviors may evolve. They might set lower cooling setpoints during peak solar hours to fully use
the local solar power or pre-cool homes in the afternoon to reduce evening consumption®’. They may also
make extra investments on employing demand-response and integrating storage to maximize local energy use.
These adaptations, which could lead to higher household PV self-consumption, might enhance the value of
household RSPV and alter climate-related effects. Adjustments in cooling behaviors could intensify the
alignment between cooling demand and PV outputs, amplifying the climate-influenced VOS rise. Conversely,
integrating storage changes this alignment, moving the temporal synergy from an emphasis on cooling demand
to an overall demand shift. Therefore, the climate-induced VOS increase might be mitigated by the
incorporation of battery storage. Still, many of these behavioral shifts remain uncommon in the current U.S.
landscape, introducing considerable uncertainty due to evolving practices and varied user habits. For instance,
future reductions in battery costs will crucially determine their role in bolstering RSPV value, paralleling the
trajectory seen with panel costs. Individual receptiveness to behavioral adjustments also introduces variability,
which may further amplify the difference among households on their VOS increase along with climate change.

Several opportunities for future research exist. First, we assume a static building stock, but upgrades and
renovations, e.g. through heat pump adoption or increased building insulation, would affect the relationship
between household electricity demand and ambient air temperatures. Future research could capture this effect
through building simulation tools or simplified building models. Second, we assume users to be perfect
rational on RSPV adoption, while future study could capture how behavioral variability (e.g. the adoption of
load management) may alter the climate effect on solar investments. Researchers could also model the
evolving value of RSPV with distributed storage under climate change*®. Third, climate change will affect
more than rooftop solar and cooling demand in power systems, affecting utility-scale investment decisions
and operations*’. These changes could affect retail rate structures in the future, which could in turn affect the
future value of rooftop solar. In particular, increasing value in utility-scale solar as noted above could increase
utility-scale solar investments, which would likely reduce the alignment of high TOU rates with rooftop solar
output. To capture these dynamics, future studies could combine household-level models like ours with
transmission-scale planning to model future potential rate structures. Fourth, the evolving value of RSPV were
predicted based on moderate (RCP-4.5) and radical warming pathways (RCP-8.5), and the VOS increase
impact may mitigate under a conservative carbon-neutral pathway (e.g. RCP-2.6). Meanwhile, the RCP-4.5-
cooler version could partially reflect a carbon-neutral future, as it has average 1.30 and 2.12 °C temperature
increase across cities in mid- and end-of-century, slightly higher than a lowest emission future (i.e. RCP-2.6)
with an average temperature increase at about 1.6°C*®. We also recommend a more reliable RSPV potential
modelling under climate change with an ideal climate datasets that doesn’t require radiation decomposition,
which is not available currently as pointed as a common challenge at the interface of energy system and climate
analyses®. Despite these limitations, our results indicate that climate change will improve the economic value
and deployment potential of rooftop solar, which could accelerate climate mitigation efforts.
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Figure Legends/Captions

Figure 1

Boxplots of climate change induced residential cooling and solar potential change. (a) Boxplots of cooling
power intensity across households for 40-year average in RCP-4.5-Hotter in historic, mid-century and end-of-
century, sample size (n) for each city equals to the number of effective houses in each city in Table S1; (b)
Boxplots of cooling power increase across households for 40-year average in RCP-4.5-Hotter in historic, mid-
century and end-of-century, sample size (n) for each city equals to the number of effective houses in each city
in Table S1; (¢) Boxplots for residential solar capacity factor in each city for the distribution of 40 years in
RCP 4.5 Hotter in historic, mid-century and end-of-century (n = 40) . Boxplots indicate variability between
households by cities. In all boxplots, we present median (notch), first and third quantile (lower and upper
hinges of boxes) and 1.5 times the inter-quartile range (whiskers). City labels are as follows: AA — Ann Arbor,
BOS — Boston, CHI — Chicago, DET — Detroit, MIL — Milwaukee, MIN — Minneapolis, ATL — Atlanta, BAL
— Baltimore, LA — Los Angeles, LOU - Louisville, NYC — New York City, AUS — Austin, DAL — Dallas,
HOU — Houston, MIA — Miami, ORL — Orlando, PHX — Phoenix.

Figure 2

Waterfall charts showing the average changing ratio of VOS per W across households by city under
RCP-4.5-Hotter. (a) Mid-century relative to historic (b) End-of-century relative to historic. The blue columns
indicate the VOS change driven by the household cooling increase, which are calculated using residential
loads in mid- or end-of-century and hourly historic PV generation. The purple columns are the total household
average VOS change, which are calculated using both loads and generation profiles in mid-century and end-
of-century. The orange columns are the difference between the blue and purple columns, indicating the VOS
effect of PV generation changes under climate change.

Figure 3
Household level technoeconomically optimal RSPV capacity increase and VOS per W increase by
end-of-century under RCP-4.5-Hotter scenario relative to historic climate. (a-c) Scatter plot of
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technoeconomically optimal RSPV capacities increase versus annual cooling demand increase in cold (a),
mild (b) and hot (c) cities; (d-f) Scatter plot of household VOS increase versus power demand increase in cold
(d), mild (e) and hot (f) cities. Differences in trends between cities within subplots are mainly driven by
electricity retail price differences between cities, with higher retail price cities (e.g., Boston and New York
City) having larger investments and VOS increases than cities with lower retail prices.

Figure 4

Scatter plot of household VOS increase due to direct climate effect versus due to capacity effect in mid-
century and end-of-century under RCP-4.5-Hotter scenario. Only houses with increasing VOS are
included here, so Minneapolis is excluded. Direct climate effect indicates the VOS increase due to
meteorological changes under climate change, while capacity effect indicates the VOS increase due to greater
RSPV investments.

Figure 5

Average household VOS and technoecomically optimal capacities increase across cities among climate
scenarios. (a) comparison of average household VOS per unit RSPV increase across cities by mid-century
under RCP-4.5-Cooler, RCP-4.5-Hotter and RCP-8.5-Hotter scenarios relative to historic; (b) comparison of
average household technoecomically optimal capacities across cities by mid-century under RCP-4.5-Cooler,
RCP-4.5-Hotter and RCP-8.5-Hotter scenarios relative to historic.
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Methods

We integrate household electricity demand and RSPV generation models to quantify the effect of climate change on the

value of RSPV. We first describe how we estimate hourly household electricity demand and PV generation potential for

historic and future climates, then formulate our household optimization model for quantifying the value of and

technoeconomically optimal deployment of RSPV.

Household cooling electricity demand model

To estimate hourly electricity demand for space cooling for each household in historic and future climates, we couple 3
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models including 1) a timeseries regression to predict hourly indoor air temperatures; 2) a control algorithm for
determining whether air conditioning (AC) turns on or off based on predicted indoor air temperatures; and 3) regressions
to predict AC capacity per household and power consumption when the AC is running. Meanwhile, we defined dynamic
cooling seasons for AC cooling operation each year at different cities, whose beginning and ending are the first and last
week with an average outdoor temperature above 65°F, respectively. The indoor temperature regression predicts the
indoor temperature for each 5-minute interval given the outdoor temperature, latest indoor temperature, and AC
operation status (Figure S3). The AC control algorithm then predicts whether the AC runs in each hour based on the
individual user habit and the predicted indoor temperature. Specifically, the user habits include the hourly cooling
setpoint, AC opening threshold (Supplementary M2) and hourly schedule (Home, Away and Sleep). Once AC system
parameters were sized through a regression-based household capacity prediction, the AC electricity consumption
regression model generated estimates of electricity usage for each AC operation time interval.

Multiple datasets are utilized in the household AC cooling consumption (HHAC) model. First, we trained the indoor
temperature regression and regressed the AC operation time for each household with Ecobee Donate Your Data dataset
and historic weather data from NOAA weather station®”. Ecobee data is collected and publicized by Ecobee Inc., a
Toronto-headquartered smart thermostat manufacturer whose products are widely used in US and Canada, and it
contains high quality and frequency household level energy usage data.*® From the Ecobee data, we specifically obtain
the AC cooling setpoint, indoor temperature, hourly schedule (Home, Away or Sleep) and cooling running time in 5-
minute intervals for 2121 households spanning 2019-2020 years. The Ecobee dataset also contains a self-reported
metadata document for household characteristics, including city, number of floors, and square footage, which we use to
estimate household solar potential. After filtering our dataset, we obtain data for 20-300 households across 17 cities (see
SI). (Table S1). We also use ResStock database’’ to provide information not included in the Ecobee data on two aspects.
First, we used the relationship between building floor area and AC capacity for millions of single-family houses in
ResStock to estimate the AC capacity for each Ecobee house. Second, we select 400 ResStock samples in each city and
simulate their other electric device demands (i.e. indoor lighting, outdoor lighting and interior electric equipment
consumption). We assume these demands are insensitive to ambient air temperatures and would not vary between history
consumption and climate scenarios. (Supplementary M3). Finally, to estimate AC electricity consumption in our HHAC
model, we construct linear regressions from the Goodman's AC product specifications catalog®®, which contains
observed AC electricity usage in kW for different AC capacities under different indoor and outdoor temperatures. This
linear regression specifically estimates electricity consumption as a function of AC run time and indoor and outdoor
temperatures. We apply this regression to each time interval in which the AC runs to estimate AC electricity consumption

in each interval®

(Supplementary M3) The additional details and the mathematical formulation of household cooling
demand model are listed in Supplementary M3. The regressions in the household cooling demand model produce robust
performances. Specifically, the indoor temperature regression has a range of average R-square from 0.97-0.99 across
cities (Figure S6), while the R-square range for hourly and daily cooling demand are 0.68-0.80 and 0.83-0.92,

respectively. (Figure S7-S8)

Household solar generation and deployment potential model

For each household, we estimate hourly RSPV per unit generation potentials (or capacity factors) and the maximum
potential RSPV deployed capacity. We calculate each household’s maximum RSPV deployment capacity as:

P Eq.1
CAPPL = RFL X STl X PFl XZ

where CAPP; is the solar capacity potential for Ecobee house i; RF; isrooftop area, which equals the household floor
area divide by the number of floors; ST; is the city-specific fraction of rooftop area suitable for PV panel installation
3% PF; is the packing factor, which quantifies the percentage of panel area to total suitable area; and P and 4 are the
rated power and area for the PV panel. We assume panels are installed at its optimal angle correlated with latitude on
flat roofs, and alongside half the roofs facing closer to south on tilted roofs. In the main results, the roofs are considered
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as southward with 28° incident angle, which is the most common rooftop observed by NREL?*. 20 other scenarios with
different azimuth and rooftop tilt are also detected (Supplementary RS8). Taking the main scenario as an example, PF
equals the half of the cosine of 28°, yielding a PF of 0.56. Meanwhile, we use a 375 W, 1.94 m* PV panel per
specifications of a modern Longi panel® (Table S3), the largest PV manufacturer globally.

We estimate hourly RSPV capacity factors by processing city-level meteorology in the PV1ib Python package™. First,
we decomposed hourly total shortwave downward radiation (i.e. global horizontal irradiance (GHI)) into direct normal
irradiance (DNI) and diffuse horizontal irradiance (DHI) using the Erbs model and solar altitude and azimuth>®
(Supplementary M4). Second, the hourly panel-received radiation was developed through PVlib package using the
hourly decomposed radiation, considering the azimuth and incident angle for PV panels. Finally, the hourly PV capacity
factor were calculated based on the panel-received radiation and the hourly temperature effect of panels, on a household-
by-household basis.

Household value of solar model

To estimate the value of RSPV for each household, we use an optimization model that maximizes the value of solar
(VOS), or solar earnings minus costs, by sizing the solar array (Equations 2-8). After setting the optimization RSPV
capacity in historic, the Equation 3-7 could then calculate the dynamic VOS across climate change with changing input
of hourly load and solar capacity factor. Given that each year within TGW 40-year spans manifests distinct weather
patterns, while only climate signals inform variations with 40- and 80-year offsets, we allocated the optimization model
on each 40-year TGW climate period to prevent biases linked to intra-annual weather fluctuations and the start year of
investments. Notably, while the 40-year period is earmarked for climate categorization, our model respects the widely
accepted 25-year PV panel lifespan. This distinction is underscored by the 'yr' variable in Equation 5, set at 25 years®’,
to transpose the lump-sum investment into its corresponding cost annuity.

maximize vos; Eq.2
40
vos; = Z SE;, — SCiy Eq.3
y=0
8760
SEi,y = Z ((Li,t,y - NDi,t,y) X Pgrid + EXSOLi,t,y X Pfeedin ) Eq-4
t=0
r
SCiy = cap; X Cx((r+ (—(1 YR = ) Eq.5
L,y —CF;,, Xcap;),VL;,, >CF;,, X cap;
NDy., = {( ity ity Pl) ity ity Di Eq.6
" 0,V L,y <CFy X cap;
CF;,, Xcap; — L;+,, YV CF;,, X cap; > L;
EXSOLy,, = { ity Di ity ity Di ity Eq.7
" 0, \v4 CFi,t,y X cap; < Li,t,y
s.t. 0 < cap; < CAPP; Eq.8

where vos; is the value of solar over a 40-year TGW climate cycle (historic, mid- or end-of-century) for house i. SE;,
and SC;, represents the total solar earnings and solar cost for house i in year y in each TGW climate period,
respectively. SE;,, consists of the saving of power expense from net demand load reduction and the revenue by selling
excess solar to grid. SC;, is the solar PV panel investment cost annuity across its lifetime year YR. This value is
adjusted for the time value of money from the initial panel investment, making it directly comparable to the annual
RSPV revenue SE;, . For solar revenue, L;;, ND;;, and EXSOL;., represents total power consumption, power
net demand and excess solar power in kW for house i at hour t in year y, respectively. CF;., is the hourly solar
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capacity factor house i athour ¢ inyear y. Pyrjq and Preeqin represent the unit price ($/kWh) of purchasing power
from grid (Table S1) and feed excess solar into grid. For solar cost, variable cap; represents the capacity (kW) of the
PV installation in home i, C is the PV panel investment cost ($/kW), YR is PV panel lifetime taken as 25 years for
the quantification on the financial time effect of PV investment and 7 is the interest rate at 4.5%°’. The optimization
considers the constraint that the PV capacity installed by each home, cap;, should not exceed its total solar potential,
CAPP;.

Climate data and sensitivity analyses

We obtain hourly, county-level downscaled meteorological variables for historic and future climates from Casey et.al>®,
who performed climate projections and spatial analysis on county level based on the Thermodynamic Global Warming
(TGW) raw data® and methodology from Jones, Andrew D et. al**. The TGW raw data is generated through dynamically
downscaling a 40-year sequence of past weather from 1980-2019 in ERAS atmospheric re-analysis data to 12km? and
then repeating this 40-year sequence using a range of time-evolving thermodynamic warming signals that follow future
warming trajectories from mid-century (2020-2058) to end-of-century (2060-2099). (Figure S9). The county-level TGW
data is generated from the 12km* TGW raw data through spatial averaging of each of six meteorological variables
(temperature, specific humidity, shortwave radiation, longwave radiation, and east-west and north-south components of
wind speed). For future climate scenarios, it contains four climate simulations corresponding to cooler and hotter
versions of Representative Concentration Pathways 4.5 and 8.5 that sample variability across 8 global climate models
(GCMs) (Figure S31). Specifically, the cooler 4.5 and 8.5 pathways use warming signals from GCMs with low climate
sensitivity (and consequently low warming relative to other GCMs), while the hotter 4.5 and 8.5 pathways use warming
signals from GCMs with high climate sensitivity (and consequently high warming relative to other GCMs) (Figure S10).
Average mid- and end-of-century temperature increase across cities are 1.30°C and 2.12°C in RCP-4.5-Cooler scenario,
while in RCP-8.5-Hotter scenario they are 2.23°C and 5.14°C, respectively. As the input for HHAC and VOS models,
we obtain surface air temperatures and downward shortwave radiation intensity for counties that includes each city for
which we have household data. As the TGW dataset has not been bias corrected, we use quantile mapping® to bias
correct temperature and radiation data in the historic and future TGW datasets based on the relationship between the
historic TGW data and observed weather data (i.e. weather station data® for temperature and National Solar Radiation
Database (NSRDB) for radiation®'). Quantile mapping implements a statistical transformation on the modelled climate
data so that they agree with the distribution of observed data distribution of modelled climate variables to observational
ones. This bias correction allows us to use of TGW modelled data to predict the historic and future building energy
consumption based on with our regressions from fit on historic observational data.

In addition to alternative climates, we test the sensitivity of our results to rooftop shape variety, time-of-use (TOU) rates,
RSPV investment costs and feed-in prices, key technology- and policy-related uncertainties that will affect the value of
RSVP vis-a-vis earnings and cost impacts. Our main results assume feed-in prices of 0.04 $/kWh®? and RSVP investment
costs of 2.55 $/W®, while we consider a series of feed-in price scenarios (0.08, 0.06, 0.02, 0 $/kWh) and declining
investment costs scenarios (2.0, 1.6 $/W). Meanwhile, we regard a constant grid power retail price for each city from
the monthly average price for each state in the main results (Table S1), and we set two TOU rates scenarios in sensitivity
analysis for each city based a tariff by South California Edison® to reflect the potential influence of higher utility-solar
penetration in the grid.(Supplementary M7) While the shapes of roof are considered as most common at southward with
28° incident angle in the main results, we also test their uncertainty with a series of 21 scenarios including flat roofs
and pitched roofs with 5 azimuths (Eastward, Southeastward, Southward, Southwestward and Westward) and 4 tilts (15°,
28°,41°, 54°).

Data availability

The data containing individual hourly cooling behavior is from Ecobee inc upon requests®®. The data with future TGW climate
scenarios is from U.S. Department of Energy Office of Scientific and Technical Information® and publicly available. Other
data sources are provided in the Methods and Supplementary Information. We provided the household-level VOS, optimal



593
594

595

596
597
598

599

600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

solar capacity data through Figshare®.

Code availability

The codes (python scripts) are available at Figshare®, including model codes (HHAC model, solar potential mapping and

value of solar optimization) and figure production codes (Figure 1-5).
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