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We consider hyper-differential sensitivity analysis (HDSA) of nonlinear Bayesian inverse problems governed by partial
differential equations (PDEs) with infinite-dimensional parameters. In previous works, HDSA has been used to assess
the sensitivity of the solution of deterministic inverse problems to additional model uncertainties and also different
types of measurement data. In the present work, we extend HDSA to the class of Bayesian inverse problems governed
by PDEs. The focus is on assessing the sensitivity of certain key quantities derived from the posterior distribution.
Specifically, we focus on analyzing the sensitivity of the MAP point and the Bayes risk and make full use of the
information embedded in the Bayesian inverse problem. After establishing our mathematical framework for HDSA of
Bayesian inverse problems, we present a detailed computational approach for computing the proposed HDSA indices.
We examine the effectiveness of the proposed approach on an inverse problem governed by a PDE modeling heat
conduction.

KEY WORDS: Bayesian inverse problems, post-optimality-sensitivity analysis, model uncertainty, de-
sign of experiments

1. INTRODUCTION

Many natural phenomena can be described by systems of partial differential equations (PDEs). The governing PDEs,
however, often include parameters that are unknown and challenging to measure directly. This gives rise to inverse
problems, in which one uses the PDE model and measurement data to estimate the unknown model parameters. In
this article we consider Bayesian inverse problems [1,2], whose solution is a posterior distribution that is informed
by our prior knowledge and the data measurements. Specifically, we focus on Bayesian inverse problems governed
by PDEs with infinite-dimensional parameters.

In addition to the parameters being estimated, the governing PDEs typically contain parameters that are uncertain
but needed for a full model specification. For clarity, we refer to the parameters being estimated by the inverse
problem as inversion parameters and call the additional model parameters the auxiliary parameters. Another source
of uncertainty in the inverse problem arises from the parameters specifying the experimental conditions, such as the
locations of measurement devices or their accuracy. We call these the experimental parameters. Throughout the article
we will refer to the union of auxiliary and experimental parameters as complementary parameters. Our goal in this
article is to develop methods for assessing the sensitivity of the solution of a Bayesian inverse problem with respect
to perturbations of complementary parameters; see Section 2 for a simple illustrative example.

Understanding the sensitivity of an inverse problem’s solution to complementary parameters is important. These
parameters may differ from their measured or estimated values, which in turn will result in a solution different from
the one we would obtain if we had access to perfect measurements and true auxiliary parameters. Determining the
sensitivity of the solution to perturbations in these parameters can inform our modeling assumptions and experimental
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design practices. Specifically, this can guide a goal oriented prioritization of resources and focus efforts on obtaining
accurate values for the important auxiliary parameters. Moreover, if one has data that are informative to the important
auxiliary parameters, the inverse problem may be redesigned to include these parameters in the set of inversion
parameters.

The present work builds on previous efforts in hyper-differential sensitivity analysis (HDSA) [3–12]. Traditional
HDSA uses the derivative of the solution of an optimization problem with respect to complementary parameters to de-
fine sensitivity indices. These indices measure how much the solution of the optimization problem changes when the
complementary parameters are perturbed. Specifically, in our previous work [3], which targets deterministic inverse
problems, we define two types of sensitivity indices: pointwise sensitivities, and generalized sensitivities. Pointwise
indices measure the sensitivity of the solution to perturbation in specific complementary parameters. Generalized
indices measure the maximum possible change in the solution with respect to any unit perturbation of groups of com-
plementary parameters. These indices provide a framework to study the sensitivity of the inverse problem solution;
see [3] for more details.

In the present work, we extend HDSA to the class of Bayesian inverse problems. This allows us to study the
change in the posterior distribution with respect to perturbations of the complementary parameters. We focus on
HDSA of Bayesian inverse problems governed by PDEs with infinite-dimensional parameters. Section 3 provides a
brief overview of the inverse problems under study. HDSA of a Bayesian inverse problem is difficult, because the
solution of such problems is a statistical distribution. In general, the posterior distribution is difficult to approximate;
this makes assessing the sensitivity of the posterior to complementary parameters challenging. A tractable approach is
to instead focus on certain key aspects of the posterior distribution. Namely, we consider specific quantities of interest
(QoIs) derived from the posterior distribution to perform HDSA on; we call such quantities the HDSA QoIs.

A first possibility, which we consider in this article, is to assess the sensitivity of the maximum a posteriori prob-
ability (MAP) point to the complementary parameters. This builds on the developments in [3]. Of greater difficulty
is obtaining sensitivities of a measure of the posterior uncertainty. A natural setting for defining such measures is
provided by the theory of optimal experimental design (OED) [13–18]. OED aims at finding experiments that min-
imize posterior uncertainty or, more generally, optimize the statistical quality of the estimated parameters. This is
done by optimizing certain design criteria. Examples include the A-optimality criterion, which quantifies the average
posterior variance, or the Bayesian D-optimality criterion, measuring the expected information gain; see, e.g., [16].
In the present work, we consider the Bayes risk, which has been used previously in OED for PDE-constrained inverse
problems [19–21], as an HDSA QoI. Our motivations for considering the Bayes risk as an HDSA QoI are twofold.
First, the Bayes risk is defined as an average error of the MAP estimator; see Section 4.1. Thus, HDSA of the Bayes
risk builds further on methods for HDSA of the MAP point. Moreover, it is well-known [16,22] that the Bayes risk,
with respect to the L

2 loss function, reduces to the A-optimality criterion, in the case of the Gaussian linear Bayesian
inverse problem. Hence, up to a linearization, the Bayes risk may be considered as a proxy for the average posterior
variance. Bayes risk is also a common utility function in decision theory.

In addition to the need for assessing the sensitivity of posterior uncertainty, there are other key differences be-
tween methods for HDSA of deterministic and Bayesian inverse problems. In the first place, in a deterministic formu-
lation, some experimental measurements are needed before conducting sensitivity analysis. In contrast, our proposed
framework does not require experimental measurements a priori, but uses the information encoded in the Bayesian
inverse problem to generate likely data realizations. Moreover, HDSA of Bayesian inverse problems with respect to
experimental parameters requires additional care. These parameters inform how data are collected and need to be ac-
counted for properly in the data likelihood as well as the generated data samples. These issues are detailed throughout
the article.

The contributions of this article are as follows:

• We develop a mathematical framework to assess the sensitivity of the Bayes risk and the MAP point in non-
linear Bayesian inverse problems with respect to complementary parameters; see Section 4.

• We present a scalable computational framework for computing the HDSA indices for the MAP point and the
Bayes risk; see Section 5. In that section, we also detail the computational cost of the various components of
the proposed approach.
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• We present comprehensive numerical results for a model problem of heat flow across a conductive surface
that examine the effectiveness and efficiency of the proposed approach; see Section 6 for the description of
the model under study and Section 7 for our computational results.

2. MOTIVATING EXAMPLE

We consider a simple example to motivate the problem considered in this work, which is to conduct sensitivity
analysis on the solution of Bayesian inverse problems. Consider the heat equation,

@u(x, t)
@t

= exp(m)
@
2
u(x, t)
@x2

, x 2 (0,º), t 2 (0, 1), (1a)

u(0, t) = u(º, t) = 0, t 2 (0, 1), (1b)
u(x, 0) = sin(x) + exp(µ) sin(2x), x 2 (0,º). (1c)

We focus on the inverse problem of estimating the inversion parameterm using measurements of u at the final time.
In this problem, µ is an uncertain auxiliary parameter. For simplicity, we let m and µ be scalars here. Following a
Bayesian framework, we endow m with a Gaussian prior m ª N (1.3, 0.1). The problem (1) can be solved analyti-
cally, and the solution is given by

u(x, t) = exp(° exp(m)t) sin(x) + exp(°4 exp(m)t + µ) sin(2x). (2)

We collect data measurements with additive Gaussian noise at the final time t = 1 at six evenly spaced points
between x = 0 and x = 2º depicted in Fig. 1. The Gaussian noise is unbiased with a standard deviation of 0.004
in this example. By Bayes rule, the posterior probability density function (pdf) is proportional to the product of the
likelihood and prior pdfs. Because the auxiliary parameter is uncertain, we want to understand how the posterior
distribution changes as the auxiliary parameter is perturbed. We view the posterior pdf of m solved at the nominal
value of µ = 10 and a perturbed value of µ = 11 in Fig. 1.

We notice two primary changes in the posterior pdf as the auxiliary parameter is perturbed. First, there is a shift
in the location of the distribution’s peak, which equates to a change in the MAP point. Second, there is a change in
the spread or variance of the distribution which equates to a changing of the posterior uncertainty. We can see that
perturbations of auxiliary parameters can have significant impact upon both of these posterior quantities.
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FIG. 1: Left: the solution of the PDE at the final time with noisy data measurements. Right: the prior pdf of m and its posterior
pdf for both a nominal and perturbed value of the auxiliary parameter µ.
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3. BAYESIAN INVERSE PROBLEMS AND COMPLEMENTARY PARAMETERS

We let µa and µe denote the auxiliary and experimental parameters, and call the augmented parameter vector
µ =

£
µ>

a
µ>

e

§> the complementary parameters. Note that it is possible to have some auxiliary parameters that
are functions (see [3]) but to keep the presentation simple, we consider finite-dimensional complementary parame-
ters. The precise definition of the experimental parameters is, in general, application dependent, but in what follows
we consider a particular case. Our goal is to provide a comprehensive framework for analyzing the sensitivity of the
solution of the inverse problems under study to perturbations in µ.

We focus on Bayesian inverse problems governed by PDEs, with infinite-dimensional parameters. In our descrip-
tion of the computational methods, we will be working with discretized formulations. However, since the underlying
inverse problem is formulated in infinite dimensions, we will begin by formulating the Bayesian inverse problem in
a function space setting. This facilitates the discussion of the requirements on the prior distribution as well as the
discretization of the Bayesian inverse problem.

We assume that the governing PDE (the state equation), represented abstractly by

v(u,m, µa) = 0, (3)

has a unique solution u for a given m and fixed auxiliary parameters µa. The inversion parameter m belongs to an
infinite-dimensional Hilbert spaceM that is equipped with an inner product h·, ·iM and the induced norm k · kM.
The state variable u belongs to an infinite-dimensional reflexive Banach space U . In the present work,M = L

2(≠)
where ≠ is a suitable physical domain and h·, ·iM is the standard L

2 inner product.
To infer m, we solve a Bayesian inverse problem that uses observed measurements along with information

known about the governing system of PDEs. We assume that (noisy) measurement data are related tom according to
the following model:

y = F (m, µa) + ¥(µe), (4)

where y is a vector of ny experimental measurements, F the parameter-to-observable map that takes in the inver-
sion parameter m and maps it to a vector of measurements, and ¥ a vector that models additive Gaussian noise,
¥ ª N (0,°noise(µe)). Evaluating F (m,µa) requires solving the state equation (3) followed by application of an ob-
servation operatorO which evaluates the state u at the ny sensor locations. In the present work we let µe parameterize
the noise levels of the sensors. This can correspond to situations where the experimental error at various sensors can
be controlled either by repeated measurements or by choice of the measurement device, or possibly recalibration of
existing devices. Our model for the experimental parameters is detailed in Section 6.

The Bayesian inverse problem setup. To solve an inverse problem with the data model (4) we define the data
likelihood pdf ºlike(y|m; µ), which describes the distribution of data measurements y, given a particular inversion
parameter m. Given our assumption of an additive Gaussian noise model, we have y|m ª N (F (m),°noise) and,
thus,

ºlike(y|m;µ) / exp
µ
°
1
2
(F (m, µa)° y(µe))>°

°1
noise(µe)(F (m, µa)° y(µe))

∂
. (5)

Note that in Eq. (5) the auxiliary parameters appear in the parameter-to-observable map F while we assume the
experimental parameters for our problem appear only in the data measurements themselves and the noise covariance
matrix.

In a Bayesian paradigm, we model our uncertainty regarding the inversion parameter by modelingm as a random
variable. Accordingly, we endow the inversion parameter m with a prior distribution that reflects our knowledge of
m a priori. In the present work, we let the prior distribution law be a Gaussian µpr = N (mpr, Cpr), with mean
mpr and covariance operator Cpr. We let Cpr = A

°2 where A is a Laplace-like differential operator; see, e.g., [2,
18,23]. The Gaussian prior measure is meaningful since A°2 is a trace class operator which guarantees bounded
variance and almost surely pointwise well-defined samples. The prior measure induces the Cameron-Martin space
E = range(C1/2pr ), which is endowed with the following inner product:

hx, yiE = hAx,Ayi. (6)
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We assumempr 2 E .
The definitions of the prior measure and the data likelihood complete the description of the Bayesian inverse

problem. The solution of this inverse problem is the posterior measure µy
post, which describes the probability law of

m conditioned on experimental measurements y. We will often denote the posterior measure as µpost for notational
simplicity when no confusion arises from doing so. The Bayes formula takes the following form in the infinite-
dimensional Hilbert space setting [2]:

dµpost
dµpr

/ ºlike(y|m;µ). (7)

Also, for a fixed µ, the maximum a posteriori probability (MAP) estimator ofm is found by solving

m
§(µ) := argmin

m2E
J(m,µ), (8)

where

J(m,µ) :=
1
2
°
F (m, µa)° y(µe)

¢>
°
°1
noise(µe)

°
F (m, µa)° y(µe)

¢
+
1
2
hm°mpr,m°mpriE . (9)

Discretization. In the present work, we follow a continuous Galerkin finite element discretization and letm and
u be the discretizations of their continuous counterparts m and u. We let nm be the dimension of the discretized
parameter. The discretized space is Rnm equipped with the inner product,

ha, biM = a>Mb, a, b 2 Rnm , (10)

whereM is the finite element mass matrix, and the norm k·kM induced by this inner product. Note that when working
with linear operators on (Rnm , k · kM) or linear transformations between (Rnm , k · kM) and (Rn

, k · k), where k · k
is the Euclidean inner product, the adjoint operators need to be defined appropriately; see [23] for this and further
details on discretization of different components of infinite-dimensional Bayesian inverse problems. In the remainder
of this article, we present the proposed methods in the discretized setting.

4. HDSA FOR NONLINEAR BAYESIAN INVERSE PROBLEMS

In this section, we outline our framework for HDSA of nonlinear Bayesian inverse problems.

4.1 The HDSA QoIs

As discussed in the Introduction, we consider two HDSA QoIs for a Bayesian inverse problem: (i) the MAP point,
which is obtained by minimizing Eq. (9), and (ii) the Bayes risk. For a fixed vector µ of complementary parameters,
the Bayes risk is defined by

™risk(µ) =
Z

M

Z

Rny

km§(µ)°mk
2
Mºlike(y|m; µ)dyµnm

pr (dm). (11)

Note that here we have expressed the Bayes risk for the discretized version of the Bayesian inverse problem, andm§ is
the discretized MAP point. The discretized prior measure, which we denote by µnm

pr , should be defined appropriately,
as described in [23].

In practice, Bayes risk is approximated via sample averaging. Namely, we draw ns samples {m1, . . . , mns}

from the prior distribution to compute data samples {y1, . . . , yns} with the forward data model,

yi = F (mi,µa) + ¥
i
(µe), i = 1, . . . , ns, (12)

where ¥
i
are draws from noise distribution N (0,°noise(µe)). We can then write the approximate Bayes risk as

b™risk(µ) =
1
ns

nsX

i=1

km§(yi,µ)°mik
2
M. (13)
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4.2 Sensitivity Operator of Bayes Risk

We assess the sensitivity of Bayes risk by computing the partial derivative of b™risk(µ) with respect to µj , the jth
component of µ, at a set of nominal complementary parameter values µ§:

D
R
j

:=
@

@µj

b™risk(µ§) =
2
ns

nsX

i=1

@

@µj

(m§(yi,µ
§))>Mm§(yi,µ

§)°
@

@µj

(m§(yi,µ
§))>Mmi. (14)

We define the discretized sensitivity operator of the approximate Bayes risk as

D
R =

£
D
R
1 D

R
2 . . . D

R
nµ

§
, (15)

where nµ denotes the dimension of the complementary parameter vector. Note that DRµ̃ can be interpreted as the
sensitivity of the approximate Bayes risk with respect to a perturbation of the complementary parameters in the
direction µ̃.

To compute the derivative of the approximate Bayes risk, we need (@m§)/@µ(yi, µ
§), i = 1, . . . , ns, which

measure the sensitivity of the MAP points (for each data sample yi) to the complementary parameters.† For clarity, we
denote the discretized cost functional in Eq. (9) by J . As discussed in [3], under mild regularity assumptions [4,5,24]
using the implicit function theorem, we obtain

D
Mi =

@m§

@µ
(yi, µ

§) = °H
°1
i

Bi, (16)

where Hi = (@2J/@m2)(m§(yi,µ
§),µ§) and Bi = (@2J/@m@µ)(m§(yi, µ

§),µ§) are evaluated at the solution
m§(yi, µ

§) with fixed nominal parameters µ§. By averaging these computed sensitivities over the number of data
samples ns, we can simultaneously measure both the average MAP point and Bayes risk sensitivities.

It is important to note the significance of this process. In a deterministic formulation [3], computing the sensitiv-
ities of the inverse problem solution requires data measurements. That is, some experimental measurements would be
needed before conducting sensitivity analysis. In contrast, the method proposed here does not require experimental
measurements and can be computed a priori by using the information encoded in the Bayesian inverse problem to
generate likely data realizations. This makes the methodology applicable to a broad range of problems where data are
not available at the time of performing HDSA.

4.3 Sensitivity Indices

Given a sensitivity operator, we define scalar sensitivity indices that measure the magnitude of the change in the
solution with respect to a particular perturbation of the complementary parameters. We first group related comple-
mentary parameters together into K subsets. For example, we group data measurements corresponding to the same
state variable together; scalar auxiliary parameters form their own group (of size 1), while all parameters defining the
discretization of an uncertain function may form another group. Let £k be the inner product space containing the kth
set of parameters for k = 1, . . . ,K and let {b1

k
, b2

k
, . . . , bnk

k
} be a basis for£k of dimension nk. We then define {ej

k
}

as the basis of £ = £1 ££2 £ · · ·££K for k = 1, . . . ,K and j = 1, . . . , nk where

ej

k
=

£
01 . . . 0k°1 bj

k
0k+1 . . . 0K

§>
. (17)

We define pointwise sensitivity indices to measure the sensitivity of the individual MAP points, average MAP point
sensitivities, and the sensitivity of the approximate Bayes risk, respectively, according to

S
j

k,i
=
kD

Miej

k
kM

kej

k
k£

, S
j

k
=
1
ns

nsX

i=1

S
j

k,i
, and Sj

k
=
|D

Rej

k
|

kej

k
k£

. (18)

†As discussed further in Section 5, we only need to compute the action of this sensitivity operator on vectors.
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Note that Sj

k,i
and Sj

k
, respectively, measure the change inm§(yi, µ

§) and the Bayes risk to a perturbation of the kth
parameter in the jth direction bj

k
.

We would also like to determine the importance of theK parameter subgroups relative to one another. To do so,
we define generalized sensitivity indices that provide a single measure of sensitivity for each parameter subgroup. Let
Tk : £ ! £ be a selection operator that zeros out components of µ not in £k. We define the generalized sensitivity
of the MAP points and approximate Bayes risk to the kth subgroup of complementary parameters according to

Sk,i = maxµ2£
kD

MiTkµkM
kµk£

and Sk = maxµ2£
|D

R
Tkµ|

kµk£
, (19)

respectively. We also define average generalized MAP point sensitivity indices by

Sk =
1
ns

nsX

i=1

Sk,i, k = 1, . . . , K. (20)

The generalized sensitivities in Eq. (19) measure the maximum change that can be observed in the HDSA QoIs
to a norm-1 perturbation of the kth parameter subgroup. We can interpret this as a “worst case scenario” sensitivity
because it measures the maximum change in the solution. More importantly, the generalized sensitivities provide a
single measure of sensitivity for each parameter subgroup that can be used to compare their relative importance, de-
spite their potentially diverse range of physical characteristics. Note that the parameter groupings should be specified
by the user and are problem dependent. In the model problem considered in Section 6 we allow scalar auxiliary pa-
rameters to each consist of their own subgroup while the experimental parameters, corresponding to noise in the data
measurements, are grouped together. It is important to note that if a subgroup consists of a single scalar parameter,
its pointwise and generalized sensitivities will be identical. We direct the reader to [3] for additional details on the
construction of these sensitivities.

To compare the MAP point and Bayes risk sensitivities it is important to note that each sensitivity is endowed
with specific units. If we were only concerned with a single HDSA QoI, this would not matter because we would be
primarily concerned with the relative differences between sensitivities of that measure. When comparing the sensitiv-
ities of the MAP point to Bayes risk, however, we must normalize with respect to the QoI to compare the sensitivities
to each other reasonably. To do so, we divide the sensitivities with respect to the MAP point by the average norm
of the computed MAP points, (1/ns)

P
ns

i=1 km
§(yi, µ

§)kM, and the sensitivities with respect to Bayes risk by the
computed value of Bayes risk, b™risk(µ§).

4.4 An Illustrative Example

Here, we present an illustrative example to demonstrate how our sensitivity analysis framework can be used practically
to improve the posterior distribution.

Consider a function u : [0, 1] ! R defined as

u(x) = µ1xm
3 + (0.1)µ2. (21)

Here, x 2 [0, 1] is the spatial coordinate,m 2 R is the inversion parameter, and µ = [µ1 µ2]> is the vector of auxiliary
parameters. We let the “ground-truth” values of m and µ be mtrue = 2 and µtrue = [1 1]>, respectively. To simulate
what happens in practical computations, rather than using the truth µ, we assume a nominal value of µ? = [1.4 1.4]>
for the auxiliary parameter vector. We assume that the value of u is observed at two spatial locations x = 0.5 and
x = 1.0. Using these data, we formulate a Bayesian inverse problem form with a mean zero normal prior distribution
whose variance is 5, and use a pointwise noise variance of 0.25.

Before collecting data, we analyze the sensitivity of the inverse problem by computing the average MAP point
sensitivity and the Bayes risk sensitivity using ns = 10,000 samples from the prior. This yields sensitivity indices

S1 = 0.43, S2 = 0.05, S1 = 0.03, and S2 = 0.0001.

Volume 14, Issue 2, 2024
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Observe that both the MAP point and Bayes risk sensitivities are much larger for µ1 compared to µ2. This is consistent
with intuition based on Eq. (21) since µ1xm

3 = O(1) and (0.1)µ2 = O(10°1). Furthermore, µ1 scales the influence
ofm on u, whereas µ2 shifts the value of y independent ofm.

Next, we assume that (noisy) data are generated by evaluating u(x,mtrue,µtrue) at the observation locations. We
solve the inverse problem using these data and the nominal auxiliary parameter vector µ? = [1.4 1.4]>. Based on the
sensitivity information computed prior to observing data, we conclude that it is advantageous to improve our estimate
of µ1. Thus, we also solve the inverse problem with an updated value of µ1 = 1; i.e., we consider the auxiliary
parameter vector µ(1) = [1 1.4]>. For comparison, we also solve the inverse problem by updating the “unimportant”
auxiliary parameter µ2, where we use µ(2) = [1.4 1]>. Figure 2 displays the three posterior PDFs.

We observe that using the nominal auxiliary parameters yields a poor estimate of m with the true value ly-
ing outside the posterior distribution’s support. Correcting µ2 yields a negligible impact. In contrast, correcting the
“important” auxiliary parameter µ1 significantly improves the posterior distribution.

5. COMPUTATIONAL METHODS

In this section, we present computational methods to implement the framework proposed in Section 4.

5.1 Computing the Sensitivity Indices

We can write the sensitivity operator of the approximate Bayes risk with respect to the complementary parameters
(15) as follows:

D
R =

2
ns

nsX

i=1

(DMi)>M(m§(yi, µ
§)°mi) =

2
ns

nsX

i=1

°B
>
i
H
°>
i

M(m§(yi, µ
§)°mi). (22)

Note that, as before, the subscript i on the operators DMi 2 Rnm£nµ , Bi 2 Rnm£nµ , andHi 2 Rnm£nm indicates
the dependence on the ith data sample [see Eq. (16)].

To compute matrix-free actions of H and B to vectors, we use a discretized formal Lagrangian approach. We
note that this method is utilized to both compute sensitivity indices and solve for the MAP point. Note also that, for
notational convenience, we suppress the index i in the Hessian and mixed derivative operators when describing the
adjoint based expressions describing their application to vectors. We begin by defining the discrete Lagrangian as

1.6 1.8 2 2.2 2.4
0

2

4

6

8

10
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P
o

s
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o

r 
 P

D
F

FIG. 2: Posterior PDFs corresponding to solving the inverse problem with nominal auxiliary parameters, µ? = [1.4 1.4]>, an
update of µ1, µ(1) = [1 1.4]>, and an update of µ2, µ(1) = [1.4 1]>. The true parameter value mtrue = 2 is indicated by the
vertical line.
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L(u, m, p; µ) = J(m, µ)° hp, v(u, m, µa)iM, (23)

where v(u, m,µa) is the discretized form of the PDE v, and p is the adjoint variable. Next, we use variational
derivatives to compute the action of the discretized gradient of the cost function. We let Lp[p̂] denote the variational
derivative of Eq. (23) with respect to p, acting on p̂, with the input arguments suppressed for brevity. A similar
notation is used for the variational derivatives with respect to u and m. We can also compute the action of the
Hessian by constructing a meta-Lagrangian,

L
H(u, m,p, û, m̂, p̂;µ) = Lp[p̂] + Lu[û] + Lm[m̂]. (24)

By computing variational derivatives of the meta-Lagrangian, we can evaluate the action of the discretized Hessian
to vectors. The basic steps of this solution process are outlined in Algorithm 1, and we direct the reader to [25,26] for
additional details.

Next, we discuss computing the action of the mixed derivative operator B>. We follow a similar approach as
one used to compute the action of the Hessian using the meta-Lagrangian LH . Namely, we differentiate the meta-
Lagrangian with respect to µ to obtain

L
H

µ (u,m, p, û, m̂, p̂; µ)[µ̃] = µ̃
>
B
>m̂, (25)

where û and p̂ satisfy the incremenal state and and adjoint equations, respectively.
Note that we can also compute the action of B by reversing the order of differentiation, deriving through the

Lagrangian by µ and the meta-Lagrangian bym, which will result in modified incremental equations. These adjoint
based methods provide a computationally efficient method to evaluate the sensitivity operatorsDM andD

R.
To compute the discretized sensitivity operator D

R, we must first generate data samples yi for i = 1, . . . , ns

and then evaluate Eq. (22), which involves a nontrivial computational cost. We also compute sensitivities of the MAP
point, efficiently reusing PDE solves whenever applicable. This process is summarized in Algorithm 2. Note that
for clarity, we have separated the processes of data generation and sensitivity operator computation in the algorithm.
Recall that the second subscript in sensitivity indices Sk,i denotes dependence of the index upon the ith data sample.

5.2 Computational Costs
Here we discuss the areas of high computational cost in Algorithm 2. To gain computational efficiency, we rely
on the following key tools from PDE-constrained optimization: inexact Newton-CG for MAP estimation, adjoint
methods gradient and Hessian computation, and low-rank approximations for efficient computation of inverse Hes-
sian applies [23,27–29]. By combining methods that make maximum use of the problem structure, we ensure that
the computational complexity of our approach, in the terms of the number of PDE solves, does not scale with the
dimension of the discretized inversion parameter.

Generating data samples. We solve the forward problem ns times and use the resulting solutions to generate
data.

MAP point solves. We solve the inverse problem ns times (line 9) using an inexact Newton-CG method with
backtracking Armijo line search. Each Newton step requires 2 PDE solves to compute the gradient and an additional
2I PDE solves to compute the Hessian apply where I is the number of iterations required by the CG solver to find

Algorithm 1: Compute the gradient g(m) and action of the HessianH in the direction m̂

1: Solve the state equation Lp = 0 for the state variable u
2: Solve the adjoint equation Lu = 0 for the adjoint variable p
3: Evaluate g(m)> = Lm

4: Solve the incremental state equation LH

p = 0 for the incremental state variable û
5: Solve the incremental adjoint equation LH

u = 0 for the incremental adjoint variable p̂
6: Evaluate the Hessian applyH(m)[m̂] = L

H

m
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Algorithm 2: Compute the sensitivity indices
1: % Data sample generation
2: for i = 1 to ns do
3: Draw prior samplemi

4: Solve the forward equation v(ui,mi,µ
§
a
) = 0 for ui

5: Synthesize data samples yi = Oui + ¥
i
(µ§

e
) {O observes u at measurement locations}

6: end for

7: % Computation of the Bayes risk sensitivities
8: for i = 1 to ns do
9: Solve the discretized inverse problem form§

i
(di,µ

§)
10: Solve °Hizi = M(m§

i
°mi) for zi

11: Compute ri = B
>
i

zi

12: end for
13: D

R = (2/ns)
P

ns

i=1 ri

14: Compute Sj

k
and Sk for all k = 1, . . . , K and j = 1, . . . , nµ, see Eqs. (18) and (19)

15: % Computation of the average MAP point sensitivities
16: for i = 1 to ns do
17: for j = 1 to nµ do
18: Compute S

j

k,i
for k = 1, . . . ,K, see Eq. (18)

19: end for
20: Compute Sk,i for k = 1, . . . ,K, see Eq. (19)
21: end for
22: Compute averaged pointwise sensitivities S

j

k
= (1/ns)

P
ns

i=1 S
j

k,i
, see Eq. (18)

23: Compute averaged generalized sensitivities Sk = (1/ns)
P

ns

i=1 Sk,i, see Eq. (20)

an appropriate search direction. Letting I denote a bound on the number of CG iterations over L (outer) Newton
iterations, the total cost is 2L + O(2LI) PDE solves. This cost in PDE solves multiplied by the number of samples
ns becomes quite significant. However, since the samples drawn from the prior are independent of each other, these
computations can be performed in parallel. We also note that we initialize the MAP point solves with the prior samples
used to generate data samples.

Evaluating inverse Hessian applies.We now address the problem of repeated application of the inverse Hessian,
which is required to compute both Bayes risk and MAP point sensitivities in lines 10, 18, and 20. We note that if
one only wishes to compute Bayes risk sensitivities, this will not require repeated use of the same Hessian inverse,
and line 10 can be evaluated with (preconditioned) CG. Assuming that MAP point sensitivities are also desired,
we can offset this cost by utilizing a low-rank approximation for the Hessian of the data-misfit term in definition
of the cost function J . Specifically, the Hessian Hi can be written as Hi = H

(i)
misfit + °

°1
pr where H

(i)
misfit is the

data-misfit Hessian and °pr is the discretized prior covariance operator. In ill-posed inverse problems, the prior-
preconditioned data-misfit Hessian °

1/2
pr H

(i)
misfit°

1/2
pr often admits a low-rank approximation. As detailed in [23], this

low-rank approximation, which can be computed efficiently using the Lanczos method, enables fast Hessian inverse
applies. After computing this low-rank approximation, application of the Hessian inverse can be approximated by
matrix-vector products. The computational cost of this process is O(2r) + 2 PDE solves, where r is the rank of the
desired approximation.

Computing Bayes risk sensitivities. The sensitivity operator of Bayes risk is a vector, so we built this operator
directly before computing indices. We begin this discussion by noting that we can solve the state and adjoint equations
around the MAP point once for each data sample, and reuse these solves for each Hessian Hi and mixed derivative
operator Bi or B

>
i
apply. Each Hessian apply requires two additional PDE solves (in addition to the forward and

adjoint solves) for the incremental state and incremental adjoint equations. These incremental equation solves can be
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reused to compute the application ofB>
i
, whileBi apply requires two more PDE solves for the modified incremental

equations.
Computing MAP point sensitivities. The greatest computational cost in estimating the MAP point sensitivities

comes in the repeated application of DMi to standard basis vectors ej (line 18) to compute nµ pointwise sensitivity
indices for all ns data samples. As mentioned previously, this cost is significantly reduced by precomputing a low-
rank approximation that allows for fast Hessian inverse applications. It is also important to note that we reuse the
inverse problem solves from computing the Bayes risk sensitivities in computing the MAP point sensitivities and
we do not require any additional inverse problem solves here. Due to these various computational savings, we can
estimate the MAP point sensitivities through sample averaging at a significantly reduced cost.

The discussed computational costs are summarized in Table 1 for clarity. We remark that for the problem con-
sidered in the present work nµ is not very large. For problems with a large number of complementary parameters,
computing a suitable low-rank approximation ofB may be helpful to reduce the cost of computing many MAP point
sensitivities. We plan to investigate this in our future work.

6. MODEL PROBLEM

In this section we consider a model inverse problem, involving heat flow across a conductive surface, that will be used
to study our HDSA framework. We begin by describing the forward problem in Section 6.1 followed by the setup of
the Bayesian inverse problem in Section 6.2.

6.1 Forward Model

Consider the problem of inferring the log-conductivity field of a medium from measurements of temperature. Focus-
ing on a cross section, we consider the problem in two space dimensions. The forward problem is governed by the fol-
lowing elliptic PDE, modeling steady state heat conduction on a unit square domain ≠ with boundary @≠ = [

4
i=1°i,

where °1, °2, °3, and °4 denote the bottom, right, top, and left edges of ≠ respectively,

°r · (em
ru) = f in ≠, (26a)

e
m
ru · n = 0 on °1 [ °3, (26b)

e
m
ru · n = Ø(Tamb ° u) on °2, (26c)

e
m
ru · n = s on °4. (26d)

In this model, the inversion parameter m(x) is a function representing the log of the heat conductivity of the non-
homogeneous two-dimensional surface. We let u(x) denote the temperature, f(x) the heat source in the domain, Ø
the heat transfer coefficient of the medium, Tamb the ambient temperature of the medium, and s(x2) a boundary heat
source function representing heat entering the domain from the left boundary. In this model problem, Eq. (26) are
dimensionless and we let Tamb = 22 and consider the heat transfer coefficient Ø to be an uncertain auxiliary parameter
with a nominal value of Ø = 1.

The boundary heat source s(x2) is modeled as follows:

TABLE 1: Computational costs summary
Computation Significant cost per sample (ns)
Data generation 1 PDE solve

Inverse problem solves 2L +O(2LI) PDE solves for L Newton steps
each having at most I CG iterations

Hessian inverse approximation O(2r) + 2 PDE solves where r is the rank of
the desired approximation

Bayes risk sensitivities 2 PDE solves
MAP point sensitivities 2nµ PDE solves
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s(x2) = s1 exp

√
°

µ
x2 ° s3

s2

∂2
!

, (27)

with auxiliary parameters s1, s2, and s3 fixed at nominal values s1 = 30, s2 = 0.1, and s3 = 0.65. The auxiliary
parameters consist of the amplitude, spread, and location of the boundary heat source, respectively. The heat source
in the domain f(x) is modeled as

f(x) = f1 exp
∑
°
1
2
(x°w)>C1(x°w)

∏
+ f2 exp

∑
°
1
2
(x° z)>C2(x° z)

∏
, (28)

with

C1=

2

664

cos2(∞1)
æ2

x1

+
sin2(∞1)

æ2
x2

sin(2∞1)
2æ2

x2

°
sin(2∞1)
2æ2

x1

sin(2∞1)
2æ2

x2

°
sin(2∞1)
2æ2

x1

sin2(∞1)
æ2

x1

+
cos2(∞1)

æ2
x2

3

775 and C2=

2

664

cos2(∞2)
æ2

x1

+
sin2(∞2)

æ2
x2

sin(2∞2)
2æ2

x2

°
sin(2∞2)
2æ2

x1

sin(2∞2)
2æ2

x2

°
sin(2∞2)
2æ2

x1

sin2(∞2)
æ2

x1

+
cos2(∞2)

æ2
x2

3

775. (29)

In this formulation, f1 and f2 control the amplitude of the heat sources,w and z control the centers of the two sources,
∞1 and ∞2 their respective tilt angles, and æx1 and æx2 the spread of the heat sources in the x1 and x2 directions,
respectively. For this problem we fix these parameters at the following nominal values: f1 = 100, f2 = 105,w =
(0.8, 0.25), z = (0.5, 0.8),∞1 = °º/4,∞2 = 0.15,æx1 = 0.8, æx2 = 0.1. We consider the amplitude, center point,
and angle of each bar to be uncertain and thus let f1, f2, w1, w2, z1, z2,∞1, and ∞2 be the auxiliary parameters for the
right-hand side heat source f(x). Figure 3 depicts this heat source in the domain.

We note that this model problem has been kept intentionally simple to aid in the interpretation and understanding
of the complicated algorithmic methodology. Even so, this example is motivated by many uncertainties surrounding
additive manufacturing processes (such as powered bed laser fusion) that cause high residual stresses and even defects
in the final parts. Variability in the powder material, boundary conditions, rasterization patterns, and laser power result
in uneven heat distribution with problematic microcrystallographic structures and inhomogeneous material properties.
Although the underlying physics for additive manufacturing is more complicated, our model problem conceptually
demonstrates the ability of our approach to provide insight into a complicated application area.

6.2 Prior Measure and State Solution

In many inverse problems a “true solution” is chosen to synthesize data and evaluate the accuracy of the proposed
methodology. We do not have any such “true solution” here and instead we compute data from samples of the prior

FIG. 3: The heat source function f(x)
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distribution. We specify the Bayesian prior on m as a Gaussian random field on ≠ with mean mpr and covariance
operator Cpr. We model the prior mean as a sinusoidal function:

mpr(x) = 1.5 sin(2ºx1) cos(2ºx2) + 2. (30)

Furthermore, we let the covariance operator Cpr be the inverse of a squared elliptic differential operator A, where
m = A

°1
s satisfies

Æ

Z

≠
(©rm) ·rq + mq dx =

Z

≠
sq dx, (31)

for all q 2 H
1(≠), with Æ = 5, and © = 0.01. This formulation of the prior covariance ensures that Cpr is trace class

and provides a computationally convenient formulation. For more details see [23].
Measurements are collected on an evenly spaced 5 £ 5 grid of observation locations depicted in Fig. 4. We

consider the standard deviation of the noise in each data measurement to be our uncertain experimental parameters.
Additive Gaussian noise models “error” in our data and we assume the measurements are uncorrelated, with nominal
standard deviations of æ = 0.1; thus °noise(µe) = diag(æ1(µe,1)2, ..., æny (µe,ny )2). Although we allow the measure-
ment standard deviations to take the same nominal value, we consider each standard deviation individually when
computing sensitivities of the solution.

Perturbing the noise standard deviation will also result in a perturbation of the noise realization ¥i ª N (0,°noise),
directly proportional to the multiplicative perturbation of æi. Therefore, the experimental parameters µe enter the in-
verse problem through the cost function (9), both in the noise covariance matrix °noise(µe) and the data measurements
y(µe) which depend on the noise realizations. The solution of the governing PDE system detailed in Eq. (26) at the
nominal parameter values withm fixed at the prior mean is depicted in Fig. 4.

7. RESULTS

We focus on the model Bayesian inverse problem described in Section 6. Following Algorithm 2 to evaluate our
Bayesian hyper-differential sensitivities, we take samples from the prior distribution onm and push them through the
forward mapping to generate noisy data. Each data sample is then used to solve Eq. (8), giving a unique MAP point
reconstruction for each sample. To illustrate this process, we present three prior samples and their corresponding
MAP point reconstructions in Fig. 5.

Each MAP point is attempting to estimate the above prior sample from noisy data. This example is illustrative
in that it gives us some insight into Bayes risk, which measures the average difference in norm between the prior
samples (top) and the inferred MAP points (bottom).

FIG. 4: The state solution of the governing system of partial differential equations with the experimental sensor locations indicated
by filled black circles
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FIG. 5: Top: three samples from the log-conductivity prior. Bottom: inverse problem MAP point estimates solved using data
generated by the above prior sample.

In Section 7.1 we detail how perturbations of the complementary parameters are modeled. Following this we
present and discuss the significance of the generalized sensitivities of the complementary parameters as well as the
pointwise sensitivities of the experimental parameters with respect to Bayes risk (Section 7.2) and the MAP point
(Section 7.3). We note that the pointwise sensitivities of the auxiliary parameters are identical to their generalized
sensitivities as each auxiliary parameter is scalar valued in this model problem.

7.1 Modeling Parameter Perturbations

Suppose Ω is an uncertain scalar parameter. We model our uncertainty in Ω as

Ω = Ω̃(1+ aµ), (32)

where Ω̃ is the nominal value, a is a scaling coefficient quantifying our degree of uncertainty, and µ 2 [°1, 1] defines a
perturbation of Ω̃. Perturbations of vector valued complementary parameters, such as data measurements, are modeled
as componentwise scalar perturbations as in Eq. (32).

In this particular model problem we use a perturbation scaling coefficient of a = 0.05 for each auxiliary parame-
ter, which represents our uncertainty in that parameter’s estimate being 5% of the parameter’s nominal value. For the
experimental parameters we instead use a scaling coefficient of a = 1 to represent that our uncertainty in the standard
deviation of the data noise is the full quantity of the standard deviation.

7.2 Sensitivities of Bayes Risk

The approximate Bayes risk is computed via sample averaging as detailed in Eq. (13). We present the generalized
sensitivities of each complementary parameter with respect to Bayes risk in Fig. 6. We study the effect of the sample
size on the computed sensitivities by comparing generalized sensitivities for Bayes risk computed from ten groups of
20 samples, ten groups of 100 samples, and ten groups of 500 samples, each taken randomly from a group of 3000
precomputed samples.

First let us discuss the spread of the samples.
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FIG. 6: Generalized sensitivities of Bayes risk to complementary parameters computed for ten groups of samples of size 20, 100,
and 500

We can see that while the groups of 100 samples can sometimes vary significantly, such as in the case of ∞2, they
generally capture the rankings of the parameters relative to one another correctly. Thus, if we are primarily concerned
with determining the relative importance of the parameters compared to each other we may conclude that 100 samples
provide sensitivity estimates that suit our needs.

Next, we note that Bayes risk is most sensitive to the tilt angle of the second domain heat source ∞2. We observe
that as the tilt angles ∞1 and ∞2 are changed, they can overlap in the domain interior, causing a large increase in heat
where the overlap occurs and will result in a significant change in f . One possible reason ∞2 is so important is that even
a relatively small perturbation will result in increased or decreased overlap of these bars in the domain. Of secondary
importance are the heat amplitude (f2) and center in the x1 direction (z1) of the second domain heat source, heat
transfer coefficient (Ø), and the standard deviations of data noise (æ). This sensitivity information can then be used
by an experimenter to inform their experimental design choices for this problem. To accurately estimate the Bayes
risk for this problem as a measure of posterior uncertainty, it is more important to invest resources in ensuring that the
parameters ∞2, f2, z1,Ø, and æ are more accurately estimated than the other complementary parameters. Specifically,
we can interpret these sensitivities as “a 5% perturbation in the scalar auxiliary parameters or a norm-1 perturbation
in the experimental parameters (æ) will result in a perturbation of Bayes risk proportional to the sensitivity.”

While these sensitivities appear to be very small, we note that the problem is highly diffusive and steady state.
Both of these factors are likely making the problem highly insensitive to perturbations of complementary parameters.
This itself showcases the benefits of using HDSA. For such an insensitive problem, it would be extremely difficult
to gather any kind of intuition or conclusion as to the relative importance of various parameters a priori. With our
framework however, we can rigorously determine the relative importance of uncertain parameters before any phys-
ical experimentation is done, even for highly insensitive problems, which is valuable to experimenters who seek to
efficiently allocate experimental resources.

Next we study the pointwise sensitivities of Bayes risk to the experimental parameters, the standard deviation of
noise in the data measurements, presented in Fig. 7. By perturbing the noise, we model perturbations of each collected
data measurement in a way that we can experimentally control through sensor accuracy.

We first note the scale of sensitivities presented in Fig. 7. Although these sensitivities are very small (on the order
of 10°5 or 10°6), this is not entirely unexpected given the scale of the generalized sensitivities presented in Fig. 6.
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FIG. 7: Pointwise sensitivities of Bayes risk to experimental parameters computed from 1000 samples. Each bar represents the
sensitivity of perturbing the standard deviation of the data noise at that particular sensor location.

Indeed, we would expect that perturbing a single data measurement’s noise would not result in a very large change in
Bayes risk. We can see that the sensors grouped around small values of x1 and large values of x2 are most important
with respect to Bayes risk. Thus, we can conclude that the data measured at these sensors is the most important to
collect accurately for the purposes of estimating our measure of posterior uncertainty. We observe that these sensors
are located in the region where the state solution depicted in Fig. 4 is largest. This is also the region near the boundary
source term s. We also note that the sensors at (0.9, 0.1) and (0.9, 0.9) are relatively important, which are located in
the areas where the state solution is smallest. These results provide information that may not be obvious a priori and
helps practitioners understand what parameters and sensor measurements the solution is most sensitive to.

7.3 Sensitivities of the MAP Point

We now study the averaged generalized sensitivities of the MAP point. As was done previously, we study the effect
of the sample size on the generalized sensitivities. This is done by computing generalized MAP point sensitivities for
3000 data samples. We then randomly select and average ten groups of 20 sensitivities, ten groups of 100 sensitivities,
and ten groups of 500 sensitivities, which are plotted in Fig. 8.

In this case we can see that even groups of 20 sensitivities produce little variation in the averaged sensitivity
measure. Thus, we can conclude that for this application, using a sample average of just 20 sensitivities provides
sufficient accuracy for our purposes. Furthermore, we notice that the generalized sensitivities of the MAP point are
significantly greater in magnitude than those computed for Bayes risk. For this problem, it appears that the MAP point
is more sensitive to perturbations in the complementary parameters than the posterior uncertainty is. We see that the
MAP point has the greatest sensitivity to ∞2, Ø, z1, and f2. It is interesting to note that for Bayes risk, æ and Ø had the
second and fifth greatest sensitivity, respectively. In contrast, the sensitivity rankings of these two parameters have
switched places with respect to the MAP point.

Finally, we examine the pointwise sensitivities of the MAP point to the experimental parameters depicted in
Fig. 9. Each pointwise sensitivity is computed as an average of 20 sensitivities computed from different data samples.
We compared these pointwise sensitivities with those computed from an average of 1000 sensitivities, and as our
study on sample size in Fig. 8 would indicate, there was minimal difference.

We can again see that the sensors grouped around small values of x1 and large values of x2 are most important
with respect to the MAP point. We observe that for this problem the sensors with greatest importance to the MAP
point coincide closely with those sensors that are important for Bayes risk.

International Journal for Uncertainty Quantification



HDSA for Nonlinear Bayesian Inverse Problems 17

FIG. 8:Averaged generalized sensitivities of the MAP point to complementary parameters computed for ten groups of sensitivities
of size 20, 100, and 500

FIG. 9: Pointwise sensitivities of the MAP point to experimental parameters computed as an average of 20 sample sensitivities

8. CONCLUSION

In this article we take foundational steps in applying HDSA to large-scale nonlinear Bayesian inverse problems. In
particular, we focus on HDSA of the MAP point and Bayes risk to the auxiliary and experimental parameters and
present efficient methods for computing the corresponding HDSA indices. Performing HDSA is important as it reveals
the auxiliary parameters the inverse problem is most sensitive to. Moreover, HDSA with respect to measurement data
helps identify the measurements that are important to the solution of the inverse problem, and can guide the design of
experiments by investing resources to obtain good quality data from important measurement points.
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It is also important to note that the Bayesian formulation allows for the computation of HDSA indices prior to
conducting experiments. Namely, we use the information encoded in the Bayesian inverse problem to obtain likely
realizations of measurement data, which are used to compute the Bayes risk sensitivities and average MAP point
sensitivities. This is a key factor that makes this approach attractive for HDSA of Bayesian inverse problems, while
minimizing experimental costs.

While the steady-state heat conduction model presented in Section 6 is an academic model problem, it has many
features that are seen in real applications. We found that the tilt angle, heat amplitude, and center in the horizontal
direction of volume heat source as well as the heat transfer coefficient and data noise were the parameters that both the
Bayes risk and the MAP point were most sensitive to. We also determined which sensors provide the most informative
data and found that for this problem the Bayes risk is generally less sensitive to perturbations of the complementary
parameters than the MAP point is. Such observations can be instrumental in areas such as additive manufacturing. By
applying the proposed methods to additive manufacturing problems, one can determine a priori which experimental
factors the inverse problem solution will be most sensitive to and thereby guide the calibration of equipment tolerances
with this information.

The MAP point is a key point estimator for the inversion parameters and performing HDSA on this quantity
provides valuable insight regarding the sensitivity of the inverse problem to complementary parameters. On the other
hand, Bayes risk provides a measure of the statistical quality of the estimated parameters, and is a common utility
function in decision theory. Additionally, up to a linearization, Bayes risk can be considered as a proxy for posterior
uncertainty. These considerations, coupled with the fact that the methods for HDSA of Bayes risk build on methods
for HDSA of the MAP point, made Bayes risk a suitable HDSA QoI in the first steps towards HDSA of Bayesian
inverse problems.

In our future work, we plan to investigate HDSA of different quantities such as average posterior variance or
expected information gain. Suitable approximations of the posterior, such as a Laplace approximation, can be con-
sidered, to mitigate the high cost of HDSA of such quantities in large-scale nonlinear inverse problems. Another
interesting line of inquiry is to use HDSA within the context of OED under uncertainty [30,31]. HDSA can reveal
model uncertainties that the OED criterion is most sensitive to and thus must be accounted for in the optimal design
process. On the other hand, model uncertainties the design criterion is less sensitive to may be fixed at some nominal
values, hence reducing the complexity of OED under uncertainty problems.
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17. Uciński, D., Optimal Measurement Methods for Distributed Parameter System Identification, Boca Raton, FL: CRC Press,

2005.
18. Alexanderian, A., Optimal Experimental Design for Infinite-Dimensional Bayesian Inverse Problems Governed by PDEs: A

Review, Inverse Probl., 37:043001, 2021.
19. Haber, E., Horesh, L., and Tenorio, L., Numerical Methods for Experimental Design of Large-Scale Linear Ill-Posed Inverse

Problems, Inverse Probl., 24(055012):125–137, 2008.
20. Haber, E., Horesh, L., and Tenorio, L., Numerical Methods for the Design of Large-Scale Nonlinear Discrete Ill-Posed Inverse

Problems, Inverse Probl., 26(2):025002, 2010.
21. Horesh, L., Haber, E., and Tenorio, L., Optimal Experimental Design for the Large-Scale Nonlinear Ill-Posed Problem of

Impedance Imaging, New York: Wiley, pp. 273–290, 2010.
22. Alexanderian, A., Gloor, P.J., and Ghattas, O., On Bayesian A- and D-Optimal Experimental Designs in Infinite Dimensions,

Bayesian Anal., 11(3):671–695, 2016.
23. Bui-Thanh, T., Ghattas, O., Martin, J., and Stadler, G., A Computational Framework for Infinite-Dimensional Bayesian Inverse

Problems. Part I: The Linearized Case, with Application to Global Seismic Inversion, SIAM J. Sci. Comput., 35(6):A2494–
A2523, 2013.

24. Ambrosetti, A. and Prodi, G., A Primer of Nonlinear Analysis, Cambridge: Cambridge University Press, 1995.
25. Villa, U., Petra, N., and Ghattas, O., hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Gov-

erned by PDEs: Part I: Deterministic Inversion and Linearized Bayesian Inference, ACM Trans. Math. Software (TOMS),
47(2):1–34, 2021.

26. Gunzburger, M.D., Perspectives in Flow Control and Optimization, Philadelphia: SIAM, 2003.
27. Petra, N., Martin, J., Stadler, G., and Ghattas, O., A Computational Framework for Infinite-Dimensional Bayesian Inverse

Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems, SIAM J. Sci. Comput.,
36(4):A1525–A1555, 2014.
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