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Abstract— We design a multi-agent and networked policy
gradient algorithm in Markov potential games. Each agent
has its own rewards and utility as functions of joint actions
and a shared state among agents. The state dynamics depend
on the joint actions taken. Differentiable Markov potential
games are defined based on the existence of a potential (value)
function having partial gradients equal to the local gradi-
ents of agents’ individual value functions. Agents implement
continuous parameterized policies defined over the state and
other agents’ parameters to maximize their utilities against
each other. Agents compute their stochastic policy gradients
to update their parameters with respect to their local estimates
of Q-functions and joint parameters. The updated parameters
are shared with neighbors over a time-varying network. We
prove the convergence of joint parameters to a first-order
stationary point of the potential function in probability for any
type of state and action spaces. Numerical results illustrate the
potential advantages of using networked policies compared to
independent policies.

I. INTRODUCTION

Networked systems are multi-agent structures in which
agents share their information (including but not limited
to observations, parameters, and actions) with each other
through a communication network. Typical examples of the
networked learning in multi-agent reinforcement learning
(MARL) include stabilization of the joint behavior [1] and
gaining more information about the overall system in the
case of partial observability by individuals [2] (see [3] for a
survey of Networked MARL). Recent success of networked
MARL in mobile robotics [4], navigation [5], and traf-
fic management [6] motivate understanding the theoretical
properties networked MARL in networked systems. In the
given settings, agents need to individually reason and make
decisions in dynamics environments. This renders game-
theoretical learning methods as natural options for solving
the aforementioned (dynamic) multi-agent problems.

Markov games represent competitive multi-agent interac-
tions in dynamic environments. In this study, we aim to
develop networked policy learning in the setting of Markov
potential games, a well-known class of Markov games,
defined by the existence of a global potential function aligned
with utility changes by unilateral policy updates. Markov
potential games provide a framework to design locally im-
plemented policies in various applications such as navigation
[7], path planning [8], and electricity demand management
[9].

We develop a new class of policy gradient algorithm where
agents take into account other agents’ parameters given the
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state. We propose a networked and parameterized multi-agent
policy structure based on episodic policy gradient methods
[10], [11].The underlying assumption here is that agents
sample actions from parameterized policy functions, which
define probability distributions over their action spaces.
Agents update their parameters with the gradient information
estimated. This requires estimations of discounted sum of
rewards, and score functions of policies. In more detail, the
gradients are computed through two consecutive episodes
whose lengths are randomly sampled from geometric distri-
butions. Agents take actions against each other by employing
their individual policy functions during the episodes. They
estimate their sum of discounted rewards at the first episode,
and then they sample the state-action pair to compute the
score functions at the second episode. By the definition
of their policies, agents need to gather information about
others’ parameters to sample their actions. Agents may not
have instantaneous access to others’ parameters. Instead,
agents keep local estimates of others’ parameters and share
information via a time-varying communication network.

Given the policy gradient play over a network, we prove
that the joint policy parameters converge to a stationary point
of the potential function in probability. This result exploits
the intermediate results that the stochastic gradients gen-
erated by random horizon sampling are unbiased estimates
(Lemma 3), and local beliefs on others’ parameters converge
to true parameter values (Lemma 4) thanks to Lipschitz
(Lemma 2) and bounded gradients (Lemma 3).

Early studies on policy gradient play in Markov potential
games consider continuous state and action spaces, but with
the restrictive assumptions that state dynamics and rewards
are known [12], [13]. A new generation of studies only
concentrates on the direct or softmax parameterization for
the problems with finite state and actions. They derive
gradient-based update schemes e.g., projected, natural by
enabling agents to take independent actions without any
communication in Markov potential or general-sum games
[14]–[19]. A recent paper [20] focuses on the setting of
networked Markov potential games where individual rewards
and state are affected only by the neighboring agents’ actions
and states with independent softmax policies.

Our proposed algorithm does not make any assumptions
on the cardinality of the state and the action space in
addition to unknown rewards and state transition dynamics.
The contributions of this study are two-fold, i) we derive
the joint networked policy and its gradient, ii) we define an
information exchange protocol over time-varying networks.
Numerical results suggest that networked policies provide
numerically better results compared to independent policies
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with respect to average accumulated rewards (Q-functions)
and convergence of gradient estimations.

II. MARKOV POTENTIAL GAMES

In a Markov game, N agents defined by the set N :=
{1, . . . , N}, play against each other [21]. Agents decide their
actions ai 2 Ai ✓ RK from a subset of K 2 N+ dimensional
real space given a common state s 2 S , where the sets Ai and
S are not necessarily finite, and i 2 N denotes the individual
index of agents. We define the joint action profile corre-
spondingly as a = (a1, a2, · · · , aN ) 2 AN :=⇥i2N Ai.
The transition probabilities between states are dependent on
the joint action and prior state Pa

s00,s0 = P(s00|s0, a), and the
initial state s0 comes from a prior distribution ⇢ : S ! [0, 1].
Agent i collects reward ri,t : S ⇥ AN ! R at each time
t 2 N+ determined by the action profile and the state, with
the discount factor � 2 (0, 1). We formally state the game
by the tuple � := (N ,AN

,S, {ri,t}i2N ,P, �, ⇢).
Each agent owns a policy function ⇡i : S ⇥ �(A�i) !

�(Ai) as a mapping from the joint space of states and
other agents’ policies to a probability distribution from which
their actions are sampled, and �(.) indicates all probability
distributions on the given set, and �i := N \ {i} denotes
the set of all agents other than each agent i. We define the
value function V

⇧
i : S ! R of each agent i for each state

s 2 S , if agents implement the joint policy ⇧ =⇥i2N ⇡i

as a discounted sum of rewards over infinite horizon,

V
⇧
i (s) = E(s,a)⇠P

h 1X

t=0

�
t
ri,t(st, at)|s0 = s

i
, (1)

where P is the joint distribution of the sequence of states
and actions induced by the joint policy and state transition
probabilities 1. Note that we add time sub-index t 2 N+ into
at, and st, to indicate agent i’s reward is a function of joint
action and common state at decision epoch t. We also define
the Q-function of each agent i (Qi : S ⇥AN ! R) for each
state s 2 S , and joint action pair a 2 AN given the joint
policy ⇧ as below,

Q
⇧
i (s, a) = E

h 1X

t=0

�
t
ri,t(st, at)|s0 = s, a0 = a

i
. (2)

A potential game for static (one-shot) games assumes the
existence of a potential function mirroring the utility changes
as a result of unilateral action changes [22]. Markov potential
games suppose the existence of a potential value function that
captures the changes in the individual value functions at each
state s 2 S as a result of unilateral changes in policies.

Definition 1 (Definition 2 , [13]) A game � is a Markov

potential game, if there exists a potential value function

V
⇧(s) : ⇧⇥ S ! R that as the discounted sum of potential

rewards rt 2 R, i.e., V
⇧(s) = E

hP1
t=0 �

t
rt(st, at)|s0 = s

i
,

such that for all i 2 N

V
⇧̂
i (s)� V

⇧
i (s) = V

⇧̂(s)� V
⇧(s) for all s 2 S, (3)

1For brevity, we remove subscript from the expectation in the rest of the
paper, unless clarity necessitates it.

where ⇧̂ and ⇧ are two joint policies that differ only by

the policy of agent i 2 N only, i.e., ⇧̂ = (⇡̂i,⇡�i) and

⇧ = (⇡i,⇡�i).

We assume agents use parametrized policies defined by
unconstrained and continuous variables ✓ = (✓i, ✓�i) 2 RM

where individual policy parameters ✓i 2 RMi are such that
the following holds

P
i2N Mi = M , where Mi 2 N+. Given

the parametrized policies ⇧✓ : RM ⇥ S ! �(AN ), we
also suppose that agents have differentiable and parametrized
value functions ui : RM ! R defined as follows with respect
to (1),

ui(✓i, ✓�i) := V
⇧✓
i (s) = E⇧✓

h 1X

t=0

�
t
ri,t(st, at)|s0 = s

i
.

(4)
We further define differentiable Markov potential games

as follows.

Definition 2 (Differentiable Markov Potential Games)
A game � is a Markov potential game with differentiable

individual value functions ui, if there exists a potential value

function u : RM ! R having equivalent partial derivatives

of agents’ utilities as follows,

riui(✓i, ✓�i) = riu(✓) for all ✓ 2 RM (5)

where ri(.) =
@(.)
@✓i

denotes the partial derivative of a given

function with respect to the agent i
0
s parameters ✓i.

Note that the differentiable policies can be also imple-
mented in the case of finite actions, (e.g. softmax policies)
implying that they can provide a solution framework for both
continuous and finite action spaces. In the rest of the paper,
we use the parametrized value functions ui : RM ! R for
the analysis and refer to them as value functions.

III. POLICY GRADIENT PLAY WITH NETWORKED
AGENTS

We define the joint parameterized policy, ⇧✓ : RM ⇥
S ! �(AN ), agent i’s policy ⇡i,✓(ai|s) := ⇡i(ai|s, ✓) as
conditionally independent individual policies given the state
and joint policy parameters, i.e.,

⇧✓(a 2 AN
q |s) =

Y

i2N
⇡i,✓(ai 2 Ai,q|s) (6)

where AN
q =⇥i2N Ai,q and Ai,q are countable measurable

partitions over the joint and individual set of actions in
order. Note that the policy functions satisfy the axioms of
probability measures i.e, countable additivity, non-negativity,
and probabilities of empty sets and full spaces.

Note that each agent would like to maximize its cumulative
rewards against other agents’ policies given the joint action-
dependent state dynamics.

Next, we also define of the gradient of agent i’s value
function in terms of the Q-function and sum of log-policies—
see [23] for proof.

Lemma 1 (Lemma 1, [23]) Given the value functions ui :
RM ! R in (4) and the joint policy function ⇧✓ : RM⇥S !
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�(AN ) in (6) respectively, the policy gradient of each value

function ui with respect to agent i’s parameters ✓i is defined

as,

riui(✓i, ✓�i)=
1

(1� �)
E
⇥
Q

⇧✓
i (s, a)

X

n2N
ri log ⇡n,✓(an|s)

⇤
.

(7)

Since agents want to maximize their cumulative rewards
against other agents’ actions, in policy gradient play, each
agent uses stochastic gradients to update its policy parame-
ters,

✓i,t = ✓i,t�1 + ↵tr̂iui(✓i,t�1, ✓�i,t�1), (8)

where we assume that ↵t is a (common) step size, and
r̂iui(✓i,t�1, ✓�i,t�1) is the stochastic gradient computed
based on rewards collected through episodes. From a game
theoretic perspective, the gradient update in (8) can be
interpreted as a better-reply process on expectation given that
the gradient estimation is unbiased.

A. Policy Gradient Estimation

The definition of policy gradients riui depends on Q-
values Qi and the gradient of log policies ri log ⇡n,✓ as per
Lemma 1. The sequential nature of decision-making may
create bias in the estimation of true gradient direction with
standard approaches using fixed finite time horizons. We
follow and adapt the approach proposed in [24], to obtain
unbiased estimations Q̂i and r̂i log ⇡n,✓ that respectively
replace Qi and ri log ⇡n,✓ in (7). In particular, we gen-
erate two episodes with random horizon lengths from the
geometric distribution Geom(1 � �

0.5) such that P(Tk =
⌧) = (1 � �

0.5)�0.5⇥⌧ for k 2 {1, 2} in order to construct
estimates for Qi and ri log ⇡n,✓. The steps of the proposed
sampling are provided in Algorithm 1.

Algorithm 1 Gradient Estimation for Agent i 2 N
1: Input: The parameters ✓ initial state s0 and discount

factor �.
2: Draw T1 ⇠ Geom(1� �

0.5) and reset s0.
3: Sample actions ai,0 ⇠ ⇡i,✓(.|s0)
4: for ⌧ = 1, 2, · · · , T1 do
5: Reach state s⌧ ⇠ Pa⌧�1

s⌧ ,s⌧�1

6: Sample and take actions, ai,⌧ ⇠ ⇡i,✓(.|s⌧ )
7: end for
8: Compute ri log ⇡✓(aT1 |sT1)
9: Draw T2 ⇠ Geom(1� �

0.5) and set Q̂i = 0.
10: for ⌧ = 1, 2, · · · , T2 do
11: Receive rewards ri,⌧+T1

12: Collect rewards Q̂i = Q̂i + �
⌧/2

ri,⌧+T1

13: Reach state s⌧+T1+1 ⇠ Pai,⌧
s⌧+T1+1,s⌧+T1

.
14: Sample and take actions ai,⌧+T1+1 ⇠ ⇡i,✓(.|s⌧+T1)
15: end for
16: Compute Q̂i = Q̂i + �

⌧/2
ri,T1+T2+1

17: Return r̂iu(✓i, ✓�i) = (1/�)Q̂iri log ⇡✓(aT1 |sT1)

Remark 1 The existence of random horizon sampling re-

quires a higher degree of coordination among agents since it

needs agreement over the length of horizons during the play.

This issue can be solved using random number generation

with pre-determined seeds in practice.

B. Belief Exchange and Communication

Based on Eq. (6), agents need to access other agents’
policy parameters to compute their gradients r̂iui. In the
case that this information is not perfectly available, each
agent keeps estimates ✓̂

i
�i,t of other agents’ parameters

✓�i,t by communicating with their time-varying neighbors
Ni,t := {j : (i, j) 2 Et} at time step t created by the com-
munication networks Gt = (N , Et), where Et represents the
communication links with time-varying neighbors. Agent i

updates its estimate about agent j’s policy parameters ✓̂
i
j,t

locally as follows,

✓̂
i
j,t =

X

l2Ni,t
S
{i}

w
i
jl,t✓̂

l
j,t, (9)

where wjl,t � 0 is the weight that agent i puts on agent
l’s estimate of agent j’s parameters at time t. We have the
following assumptions on the structure of the communication
network between agents.

Assumption 1 The network G = (N , E1) is connected,

where E1 = {(i, j)|(i, j) 2 Et, for infinitely many t 2 N}.

This assumption implies the connectivity between any pair
of agents after some finite t.

Assumption 2 There exists a time step TB > 0, such that

for any edge (i, j) 2 E1 and t � 1, it holds (i, j) 2STB�1
⌧=0 Et+⌧ .

This assumption ensures the any edge (i, j) 2 E1 also
exists in a bounded time interval TB . Assumptions 1 and
2 are standard and named as connectivity and bounded

communication interval, respectively in [25].

Assumption 3 There exists a scalar h 2 (0, 1), such that

the following statements hold for all i 2 N , j 2 N and

t 2 N+
,

(i) If l 2 Ni,t [ {i}, then w
i
jl,t � h, else w

i
jl,t = 0,

(ii) w
i
ii,t = 1,

(iii)
P

l2Ni,t[{i} w
i
jl,t = 1.

Assumption 3(i) reflects that agents only assign positive
weights on their current neighbors’ estimates at each time
in (9). Assumption 3(ii) ensures that agents do not use
any information from other agents on their own parameters
✓̂
i
i,t = ✓i,t for all t > 0. Assumption 3(iii) implies that the

construction of N ⇥N and a row stochastic matrix weights
matrix Wj,t at any time t, associated with the updates of local
estimates on agent j’s parameters where [Wj,t]i,l = w

i
jl,t.

An outline of Networked Policy Gradient Play is given in
Algorithm 2.
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Algorithm 2 Networked Policy Gradient Play

1: Input: Local estimates ✓̂
i
�i,0 and G = (N , Et), initial

state s0 and initial policy ⇧✓,0, and discount factor �.
2: for t = 1, 2 · · · , do
3: Run Algorithm 1 with local beliefs ✓̂

i
�i,t for i 2 N

4: Update parameters (8) for i 2 N
5: Update local copies ✓̂

i
j,t using (9) for j 2 �i and

i 2 N .
6: end for

IV. CONVERGENCE OF NETWORKED POLICY GRADIENT
PLAY IN MARKOV POTENTIAL GAMES

We introduce the assumption on the stepsize on gradient
updates.

Assumption 4 (Decaying Stepsizes) The step size ↵t satis-

fies ↵t = O(1/t).

It is a common assumption in optimization literature for the
analysis of the stochastic first-order methods [26]. The order
of step-size satisfies divergent infinite sum of step-sizes,
whereas the infinite sum of its square becomes convergent.
The next set of assumptions enforces the following regularity
conditions on rewards and policy functions.

Assumption 5 (Bounded Rewards) The absolute value of

rewards for any agent i at any state and joint action (s, a) 2
S ⇥ AN

at any time t 2 N+
is bounded, |ri,t(s, a)|  R

where R > 0.

Assumption 6 The gradient of log-policy of agent n 2 N ,

ri log ⇡n,✓ with respect to agent i’ parameters exists and

is bounded, ||ri log ⇡n,✓(ai|s)||  B for any ✓ 2 RM
,

state s 2 S and action ai 2 Ai, where B � 0. Further-

more, it is Lipschitz continuous, i.e., ||ri log ⇡n,✓1(ai|s) �
ri log ⇡n,✓2(ai|s)||  L||✓1 � ✓

2|| for any n 2 N and

✓
1
, ✓

2 2 R, where L � 0.

These assumptions are commonly used to show that value
functions and their gradients are bounded and Lipschitz
continuous.

Lemma 2 (Lipschitz-Continuity of Policy Gradients)
Suppose Assumptions 5-6 hold. The policy gradient of any

agent i 2 N , riui(✓i, ✓�i) is Lipschitz continuous with the

constant L > 0, i.e., for any ✓
1
i , ✓

2
i 2 RM

, defined as below,

||riui(✓
1
i , ✓

1
�i)�riui(✓

2
i , ✓

2
�i)||  L||✓1 � ✓

2||, (10)

where the value of the Lipschitz constant L is defined as,

L := NR

✓
1

(1� �2)
L+

(1 + �)B2

(1� �)3

◆
. (11)

With Assumptions 5-6, the proof depends on the change of
orders between expectation operators and the sum of rewards
by Fubini’s Theorem. Then, the proof utilizes Taylor expan-
sion of the difference between two discounted state-action
probability distributions defined by two arbitrary parameter
vectors ✓

1 2 RM and ✓
2 2 RM . The result implies that the

local gradient estimations with local beliefs are close to the
unbiased estimation as long as local beliefs are close enough
to their true values, along with the following result.

Lemma 3 (Unbiased and Bounded Stochastic Gradients)
Suppose Assumptions 5-6 hold. The stochastic estimate

r̂iui(✓i, ✓�i) of policy gradient rui(✓i, ✓�i) of any agent

i 2 N is unbiased and bounded. ET1,T2 [r̂iui(✓i, ✓�i)|✓] =
riui(✓i, ✓�i) and ||r̂iui(✓i, ✓�i)||  l̂ where

l̂ := NBR
(1��)(1��)1/2

, where T1 and T2 are the random

horizon lengths generated in Algorithm 1.

The proof uses the fact that the policy gradient is the product
of the Qi-function and the gradient of log-policy function
for each agent i 2 N (Lemma 1). The proof concludes the
result by showing that the estimations of each part computed
as per Algorithm 1 is unbiased. This lemma ensures that
agents update their parameters with the true ascent direction
in expectation, together with the next result that the local
beliefs converge to true parameters.

Lemma 4 (Consensus on Parameters) Suppose Assump-

tions 1-6 hold. If ✓̂
i
j0 = ✓j0 is satisfied for any pair of agents

(i, j) 2 N ⇥N \ {i}, then local copy ✓̂
i
j,t converges to ✓j,t

with the rate O(log t/t) on expectation, i.e. E(||✓̂ij,t�✓j,t||) =
O(log t/t).

The result follows from the analysis of [27] using the fact
that stochastic gradients are bounded. Provided the results of
Lemma 2-4, we now state the lower bound on the change in
potential values of the game in two consecutive time steps.

Lemma 5 ( [28], Lemma 7) Suppose Assumptions 1-6

hold. The potential function u : RM ! R has the following

relation between any consecutive time steps t and t+ 1,

ET1,t,T2,t [u(✓t+1)|✓t, ]�u(✓t) � ↵t||ru(✓t)||2�O(log t/t2),
(12)

where ET1,t,T2,t [.|✓t] is the expectation over the variables

T1,t, T2,t that are the lengths of random horizons generated

at time step t, given the parameters ✓t, and local beliefs ✓̂�i

for each agent i at time t.

Lemma 5 relies on the unbiasedness of estimations and
consensus on parameters together with Lipschitz continuity
of the gradients. We use the bound on the potential change
to prove the asymptotic convergence of the gradients.

Theorem 1 (Convergence of Gradients in Probability)
Suppose Assumptions 1-6 hold. For any T 2 N+

, let

T = {1, · · · , t, · · · , T}. If a time index t 2 N is randomly

chosen from the set T with the probabilities P(t = t
0) / ↵t0 ,

then the norm of the gradient ||ru(✓t0)|| converges to 0
in probability as T ! 1, i.e. the parameters {✓t}t�0 of

networked policies converge to a stationary of the potential

function in probability.

Proof: Summing both sides (12) for the iterations
{1, · · · , T} and using the fact that rewards are bounded
by usup (Assumption 5), we have a supremum value usup
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that bounds any value of the potential function satisfies the
following inequality,

usup � E[u(✓1)] � E[u(✓T+1)]� E[u(✓1)] (13)

�
TX

t=1

(↵t||r✓tu(✓t)||2 �O(log t/t2)).

(14)

Then, it yields by rearranging,
TX

t=1

↵t||r✓tu(✓t)||2  usup � E[u(✓1)] +
TX

t=1

O(log t/t2).

(15)
As T ! 1 the sum on the right-hand side converges to
a finite value and, the difference is usup � E[u(✓1)] is also
bounded as being the difference between geometric sums of
bounded rewards (Assumption 5). Therefore, the left-hand
side of the inequality is bounded from the upper side. Since
↵t = O(1/t), as T ! 1, the sum AT =

PT
t=1 ↵t diverges,

i.e. AT ! 1, and the following result holds below,

lim
T!1

E[
1

AT

TX

t=1

↵t||ru(✓t)||2] = 0. (16)

For any ✏ > 0, it holds, by Markov inequality,

lim
T!1

P(||ru(✓t0)|| � ✏) = lim
T!1

P(||ru(✓t0)||2 � ✏
2)

(17)
 lim

T!1
✏
�2E[Et[||ru(✓t)||2]] (18)

= lim
T!1

✏
�2E[

1

At

TX

t=1

↵t||ru(✓t)||2] = 0 (19)

The stationary points of the potential value function are
approximate-NE when no assumptions are made on the
structure of the potential function or the policy structure.
If the potential value function is convex and/or the policy
functions of agents are direct/softmax parametrization in
a tabular form with a finite number of state-action pairs,
then this result is equivalent to the convergence to NE in
probability.

V. NUMERICAL EXPERIMENTS

We use the Lake game which is shown to be a Markov
potential game with open-loop policies [29]. Each agent i 2
N decides on phosphorus rate ai,t 2 (0, 1), around a lake,
with the given state transition dynamics,

st = bst�1 +
s
c
t�1

sct�1 + 1
+

X

i2N
ai,t�1, (20)

where b and c are positive constants. The reward of each
agent i increases with the logarithmic rate of phosphorous
usage and observes a quadratic rate of decrease in the
phosphorus level,

ri,t = cr(log(dai,t)� s
2
t ), (21)

where we also scaled the reward values by the constant cr =
10�4 to obtain better numerical stability, and use d = 102

Fig. 1. Networked vs. independent policy gradient in lake game over 100
runs. (Top) Average Q-values of agents 1

N

P
i2N Q̂i,t, (Bottom) Average

local gradients ||riui(.)||

as the action coefficient. We experiment with N = 5 agents,
and game parameters b = 0.4, c = 2.

We utilize logit-normal distribution to let agents map the
unconstrained parameters to a bounded interval between 0
and 1. Logit-normal distribution is a continuous probability
distribution where the sampled values from a normal distri-
bution are transformed via the sigmoid function. Note that
moments of logit-normal distribution exist while they are
not analytically computable. Hence, agents use logit-normal
distribution Logit-Normal(µi,✓, I) where I is an identity
covariance matrix and µi is the parametrized mean of the
corresponding normal distribution. We first derived the policy
function for a no-communication scheme where agents only
learn from their rewards values and the independent policy
function has the following form,

µi,✓ = ✓is� �1✓i + cµ, (22)

where cµ is a constant set to 10�6 together with the penalty
term ��1✓i given �1 = 1. We employ these penalty and
constant terms to have stabilized behavior in addition to
the scaled rewards. Similarly, we can define the networked
policies as below,

µi,✓ = ✓is� �2 max(0, ✓i �
X

j2N\{i}

✓̂j) + cµ, (23)

where �2 = 10 and cµ = 10�6. The main difference between
the two policies is that the networked policy (23) includes
others’ parameters and penalizes the individual policies when
an individual policy parameter value ✓i is higher than the
average others’ policy parameters.

We initialize policy parameters with uniformly sampled
random values between [0, 0.5] and we set the initial state
variable s0 = 1. We chose the discount factor and stepsize
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as � = 0.99 and ↵t = (10�3
/t) in order for both sets of

experiments. Agents communicate over a ring network given
weights on local beliefs w

i
i,l = 0.30, and remaining weights

on information received from neighbors equally distributed,
i.e., wi

j,l = 0.70/|Ni| for all j 2 Ni.
Over 100 runs with 100 iterations, we eliminated the

instances in which agents gain accumulated rewards (Q-
functions sampled as in Algorithm 1) less than �50 on
average in 10 last iterations. In these instances, the parame-
ters did not converge to an acceptable region of parameters
due to the extreme behavior of at least one agent. These
extreme behaviors may stem from different factors. First,
unbiased estimation of policy gradients seems to lead to
higher variance due to the fact that the score function is
computed at a randomly chosen point, and also the episode
lengths are randomly distributed. The number of removed
cases for independent policies is 42, whereas this number is
reduced only to 9 cases for networked policies.

Networked policies yield a better solution on aver-
age by providing an opportunity for coordination among
agents.Fig. 1 (Top) indicates the average of estimated Q̂i

over 100 runs. We see that the average accumulated reward of
the system is better with networked policies. Fig. 1 (Bottom)
shows that the convergence of local gradients. We see that
the average gradient values converge to smaller values for
networked policies.

VI. CONCLUSION

We develop a policy gradient algorithm for Markov po-
tential games with a novel policy function structure where
the policies depend on the joint parameters. The proposed
algorithm has novel joint policy structure structure and novel
parameter exchange protocol over time-varying networks.
We show the convergence to a stationary point of potential
function with respect to joint policy parameters using the
results of unbiased gradients and consensus on local beliefs.
Numerical results show there is a performance gain when
networked policies are considered compared to independent
policies, in terms of average obtained rewards and norms of
estimated gradients.
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