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Abstract—We develop a best-response algorithm for
solving constrained Markov games assuming limited vio-
lations for the potential game property. The limited viola-
tions of the potential game property mean that changes in
value function due to unilateral policy alterations can be
measured by the potential function up to an error o. We
show the existence of stationary c-approximate constrained
Nash policy whenever the set of feasible stationary policies
is non-empty. Our setting has agents accessing an efficient
probably approximately correct solver for a constrained
Markov decision process which they use for generating
best-response policies against the other agents’ former
policies. For an accuracy threshold ¢ > 4, the best-
response dynamics generate provable convergence to -
Nash policy in finite time with probability at least 1 — ¢§ at
the expense of polynomial bounds on sample complexity
that scales with the reciprocal of ¢ and 6.

Index Terms— Game theory, Constrained control, Opti-
mization, Machine learning

[. INTRODUCTION

Stochastic game involves repeated interactions among

several participants when the environment state is dy-
namic and evolves in response to the actions of the agents in
a stochastic fashion. Each player optimizes its own objective
function while considering the actions of others. For many
applications, such as in the case of modeling safety critical
behaviour for autonomous vehicles navigating crowded envi-
ronments, constraints are additionally needed on the evolution
of the game so that physical limitations (e.g., speed limits
for vehicles) or safety requirements (e.g., collision avoidance)
can be guaranteed (see [1], [2], [3]). Accordingly, here we
are interested in constrained Markov games, i.e. we consider
a stochastic dynamic game on an infinite time-horizon, with
the system state evolving according to a transition kernel.
The agents take actions after each transition of the system
with the goal to maximize their discounted infinite horizon
payoffs, while respecting constraints on potentially multiple
other criteria. The transition kernel is unknown to the agents,
but they can access a trajectory of sample paths and rewards by
making subsequent calls to a given simulation oracle. Our goal
is to design an algorithmic framework that can provably reach
an approximate Nash policy in finite time, while maintaining
strict feasibility throughout with bounded sample complexity.
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Constrained multi-agent reinforcement learning (RL) is
challenging. Most of the current results in multi-agent RL
are for the unconstrained setting. For example, policy gradient
(PG) methods are provably effective with good convergence
characteristics [4]. Examples include entropy regularized nat-
ural PG [5] for Markov decision processes (MDPs), inde-
pendent PG for Markov potential games (MPGs) [6], for
zero-sum stochastic games [7], among others. Further, de-
centralized value-based methods, such as two-time scale Q-
learning dynamics [8] are provably convergent to Nash in zero-
sum discounted Markov games. Constrained stochastic games,
however, present non-trivial challenges even in verifying the
existence of a stationary Nash Equilibrium (NE) solution
concept (see [9], [10], [11], [12] for existence results under
different assumptions on the game).

Here, we first establish that a stationary constrained e-
Nash policy exists whenever the game has an a-potential
[13], i.e, the maximum violation of the potential property
is confined to some finite o and non-empty set of feasible
policies (Theorem 1). Markov «-potential games is a new
framework for studying Markov games, formulated in [13] and
expanded upon in [14]. While the potential function furthers
understanding of non-cooperative behavior between agents by
relating the change in values to the change in potential as a
result of policy changes by the agents [15], the framework
does not extend easily to real world scenarios. Most Markov
games with Markovian transition and policies do not admit
such potentials. In addition, certifying whether a game is a
MPG can be challenging. However, every Markov game, is a
Markov a-potential game for some o > 0.

Thereafter we design a best-response framework where
agents consider their best feasible policy with respect to max-
imizing their value functions if the other agents’ policies stay
fixed to their current values. We hypothesize that agents have
access to an efficient probably approximately correct (PAC)
learner to solve the resulting single agent constrained MDP
sub-problem (CMDP) with arbitrary accuracy and confidence,
at the expense of a number of samples that grows polynomially
in the reciprocal of the accuracy and confidence parameters.
PAC learners have been successfully designed for the CMDP
problem in [16], [17], [18] with suitable restrictions on the
underlying constrained game. Under PAC accessibility, we
show that our algorithm converges to an e-Nash policy in
finite time with a probability that can be chosen arbitrarily at
the expense of a bounded sample complexity, the functional
form of which would depend on the particular PAC learner’s
characteristics (Theorem 2). The analysis develops on ideas
in [19], where Alatur et al. have a coordinate-ascent style



algorithm (see Song et al. [20]), albeit, for the non-discounted
finite horizon case with a stringent potential function assump-
tion, different restrictions on a constrained MDP solver, and a
single constraint on the game.

Notation: The notations R, N and Z represent, respectively, the
set of real numbers, natural numbers and integers. We define
Ry ={z € R:z >0} and N> = NU {0}. We use A(X)
to denote the space of probability distributions for any set X’
(the probability simplex). We use brackets around an integer
value k to refer to the set [k] := {1,2,...,k}. We will use
8(G) to refer to the element S of a tuple G, N'(G) to refer to
the element A of a tuple G, and so on.

[I. CONSTRAINED MARKOV GAMES
A. Game definition

The constrained Markov game can be specified by the tuple
G = (8,N . {Ai,ri}ien, P, {c;, 3;}%_,). Here S is a finite
state space of size S = |S|. We use N = [n] to denote the set
of n > 2 agents in the game. A; is the finite action space for
agent 1 € N with elements a; € A;. The notation r; : SxA —
[-1,1] is the individual normalized reward function of agent
i € N. The global dynamic state s € S is driven by P, the
transition probability kernel, i.e., P(s’|s,a) is the probability
of the state variable to move from state s to state s’ when
a € A is the action profile of the agents. We define v € (0, 1)
as the discount factor for future rewards and costs incurred
for agents. For each agent i € A, we consider a stochastic
stationary policy 7; : S — A(A;) where 7; € TI; := A(A;)S,
that determines a probability distribution over the actions of
agent ¢ at each state s € S. The constrained Markov game
G enforces k discounted cost constraints on the evolution of
the game for any joint policy profile 7 = (m;);en € II :=
x;enll; as given by

= E, {Z’y (st,a')|s" =s| <B; Vielk], (1)

where s € § is the initial state, s € S and o' € A(A)
denote the state and action profile at time ¢ € N>o U {oo},
¢+ 8 x A — [0,1] denotes the j-th cost function at time step
t, and 3; € (0, ﬁ] is the right-hand-side of constraint j. A
policy 7 is feasible, if it satisfies all k-constraints. We allow the
constraints to be coupled across agents and time, that is they
depend on the joint actions of all agents in the game, for all
times. We use II¢ C II to refer to the set of stationary feasible
policies in the game. Formally, II¢ = {7 € II : U;(7) <
ﬁj V] € [k]} We define HZC(’]T,Z) = {7'('7; e II; : (71'2',71',1') €
11} to refer to the set of feasible policies available to agent
i € N when the remaining agents play w_;. Similarly, we
define 119, (m;) := {r_; € U_; : (m;, m_;) € I}

B. Value functions

For any policy 7 € II, the value function V;* : II — R gives
the expected cumulative reward of agent ¢ 6 N when s¥ = s
and the agents draw their actions a* = (a a' ;) for time ¢ > 0
using the policies (7;,m_;). Define rf := r;(s?,a’). Then

w[z 7'rils® = s].
t=0

2

V. is a deterministic quantity, given fixed initial state s. Define
Vi(m) g == Yoil,y'rt as the random variable that captures
the horizon-truncated value for agent ¢ following policy 7w €
I1¢. We define the average horizon truncated value for agent

1 as the random variable

Vi

M:

X 1
Vi(m)a = U 3)
!

Il
—

where M € N is the number of episodes selected to perform
the average on, and ‘71-5(77)%) is V#(m) g for the I-th episode.
When H = oo, we drop H from notation in (3). Whenever
clear from the context, we drop the fixed initial state s from
the superscript of the value functions.

C. The a-potential

Definition 1 The function ® : S x II — R is an «a-potential
for game G if

[(®(s, 75, ) — B(s,m5,7—;))

— (VP (7o, m) = V(i) < @ 4)

is satisfied for some o > 0 forall s€ S, i € N, (m;,m_;) €
11, (77(1‘,7'(_1‘) e IL

Definition 2 A constrained Markov game is a constrained
Markov a-potential game, if it admits an «-potential function
for some o > 0.

In [13], the authors show that for a Markov game G,
an a-potential is guaranteed to exist, under some continuity
conditions of the potential with respect to the policies. Thus,
any Markov game G is a Markov a-potential game for some
a. When a = 0, the corresponding ® is a candidate potential
function (see Leonardos et al. [15] for more exposition on
MPGs). In Markov games, verifying whether a potential
function exists or not can be prohibitive, and the potential
function assumption is not satisfied by most games. Thus we
relax the potential function assumption as in [13].

Assumption 1 The approximation value « is finite and known
for the constrained Markov game G.

Remark 1 In [13], the authors provide an optimization based
approach to find the value of o for different Markov games.
Clearly, from definition 2, every Markov game is a Markov o-
potential game for some o. The focus of this work, however,
is not to find the value of o for different games. Instead, we
assume we are given a constrained Markov game with an o-
potential. We need not necessarily know the exact functional
form of the a-potential, but we know that such a potential
exists for the given value of o > 0.

D. Solution concept: e-NE policy profile

Assumption 2 The initial state of the game is fixed to any
arbitrary state s € S.

The initial state serves as the boundary condition for the game
G. We define the solution concept that agents seek to achieve
in game G.



Definition 3 (Constrained Stationary e-NE) A policy profile
% = (nf,7*,) € 1Y is a constrained stationary e-Nash
Equilibrium (e-NE) of a constrained Markov game G, for some
€ > 0 if for any i € N and m; € TI (1* ) we have,

¥ VseS. )

When € = 0, we retrieve the stationary NE definition. The
NE is defined as a set of policies of the players which satisfy
simultaneously all the constraints and for which, in addition,
no player can improve his payoff when unilaterally modifying
his policy while still satisfying its own constraints. In the
following, we show that when the constrained Markov game
is an a-potential game, for some « > 0, we can claim that an
approximate stationary NE policy must exist.

V;S(T‘—;(ﬂrti) +e > V (7T“

Theorem 1 In a constrained Markov game G with a-potential
®, a constrained stationary e-Nash policy exists for all € > «,
when TI€ # () and ® is continuous in policies.

Proof: Given I1¢ # (), we have that G has stationary
feasible policies. Since the constraints in (1) can be satisfied
via equality, II€ is closed. Moreover, since II¢ C II =
Xien'A(A;)S, TI¢ is bounded. Therefore II¢ is compact,
which implies that 7* € argmax cpc ®(s,7) must exist
(using the extreme value theorem) for continuous ®, where
s is the arbitrary fixed initial state of the game. We claim
that 7* is a constrained stationary e-Nash policy profile for
€ > «. Assume for the sake of contradiction that 7* is not an
e-Nash profile, for € > «. Then, there exists i € A/ such that

; € argmax, cre (- ) Vi*(mi, m2;) such that
VE(fy,m™,) > VE(n") + € 6)
Now, because & is an a-potential for G, we have
(s, i, 7)) — (s, 77) =2 V¥ (i, mly) = VI¥(17) — «
>e—a (7)
where the second-inequality is due to (6). Since ¢ > « is
given, we have a contradiction, as (7) indicates that 7* is not
the maximizer for . [ |

Il. SEQUENTIAL BEST-RESPONSE DYNAMICS

The goal of the agents is to produce a constrained stationary
e-NE policy profile for the game G. We proceed to show that
our prescribed Algorithm 1, a sequential best-response dy-
namic, is guaranteed to converge to e-NE with high probability,
under some restrictions on accuracy e.

A. The constrained MDP sub-problem

Definition 4 The Slater condition states that T1¢ # 0, and

7B exists in the relative interior of II€. Given G, we define

its Slater constant ¢ = (Cj)?:l € R* as follows

max {8 —U(m;, m_;)}

¢ = min mln
—i m €Il

mig 1 ®)

Assumption 3 The constrained Markov game G is strictly
feasible, and satisfies the Slater’s condition.

G is strictly feasible if and only if ¢; > 0 for all
j € [k]. Thus ¢; € (0, ﬁ] for all j € [k], and % =
(1/(]-)?:1 is well-defined. We further assume that agents
do not have access to the state-transition distributions and
payoffs, but can learn by interacting with a sampling or-
acle of the game that returns a sample of the next state,
when given a state-action pair as input. Define I(G) :=
(8(G),N(G). {A}ien(G). {¢;. ;}i_1(G)) as the informa-
tion available to the agents i € A/ in constrained Markov game
G. Further, the sampling oracle available to learning agents M
takes input (s,a) and generates an immediate payoff 7;(s, a)
and a state transition to next state § such that the next state
is chosen with probabilities P(3|s,a)(G). Let G_; refer to
the constrained MDP (CMDP) obtained from the constrained
Markov game G when all agents other than 7 fix their policies
to m_; € I1_;. Then the solution to the CMDP G_; (the policy
m; that maximizes the value function for agent ¢ when other
agents play w_;), under the assumption that agent ¢ has access
to information I(G) and sampling oracle M, is a RL problem.

Definition 5 A learning algorithm L; is a (€, 5)-ejﬁcient prob-
ably approximately correct (PAC) learner for the RL problem
G—i, if for any approximation factor ¢ > 0 and conﬁdence
factor & € (0,1), ¢ > 0, L; produces policy 7; € I (7_;)
such that

Pg . [Vi(rl,mi) = Vi(Fnm_) < >1—-6 (9

where 7 is the optimal policy solution to G_; and L; produces
PO 111 1

#t; in time poly(|S|, | A, RN 7’dex> where 1oy is the
maximum immediate reward on any transition in the problem,

and s is the arbitrary fixed initial state.

Assumption 4 (PAC accessibility for agents) Agent i has
access to a (¢,0)-efficient PAC learner L; for solving RL
problem G_;, for any ¢ > 0 and 6 € (0,1) and i € N.

That is, L; solves the problem G_; with € accuracy, with
probability at least 1 — 4, while making at most a polynomial
number of calls to the sampling oracle. A higher accuracy
(smaller €) or a higher confidence (smaller §) causes the
number of samples required to grow. Under the assumption
that each call to the sampling oracle M can be resolved
in O(1), the sample complexity of the PAC-learner L; is

Ooly(S]. | Al £, 1,1, T ).

Remark 2 We remark here that not all constrained MDPs
have a sample efficient PAC solver. In [16], [17], [18], sam-
ple efficient PAC solvers have been designed under suitable
assumptions on the constrained MDP. Our main result (see
Theorem 2, section IV) holds whenever the constrained MDP
subproblem admits an efficient PAC solver.

B. Algorithm 1 under the lens

We are now ready to highlight the core components of
Algorithm 1. Starting with a feasible policy 77 (we assume
it exists, Line 2), the algorithm improves the policy through a
sequence of best-response steps, where each agent ¢ evaluates
its best-response policy, assuming the policies of other agents



Algorithm 1 Sequential Best-Response Dynamics
Require: G is a constrained Markov game, initial state s
Ensure: ¢ >0, TcZ,, 2 cll¢ sc S

1: function SEQUENTIAL-BR(G, ¢, T, w5)

2: 79— 7B

3 forallt=1,...,7 do
4 Estimate V*(7~1)y for all i € N.
5: for all agent:=1,....,n do
6: ﬁ'f — Lz(g_z,l(g),./\/l)
7
8
9

Estimate V;* (7t 7' ) g

t ’ ~t t—1 t—1
AL < Ve, g = V(' e
: end for
10: if max;epn Al > €/2 then
11: J < argmax;¢ s Al
t ~t t—1
12: o (T, m)
13: else
14: 7wt qt—1
15: return 7'
16: end if
17: end for

18: end function

remaining the same, via solving the RL problem G_; (see Line
6). Following Line 6, agents estimate their value functions
using the new policy (7;,7—;) in Line 7, and store the
improvement in the value function V;® in the variable A;. To
estimate the value function for a policy 7, an agent simulates
the system with actions sampled from the policy for M € N
episodes, starting from the fixed initial state s € S. Moreover,
for each episode, the agent terminates the simulation of the
policy after H € N discrete time steps. After all agents
calculate their individual improvements in estimated values,
the agent whose update provides the best improvement in
estimated values (Line 11) larger than ¢/2 gets to update the
policy, where € is the approximation parameter of the problem.

IV. ANALYSIS OF BEST-RESPONSE

Theorem 2 (Main Result) Let Assumptions 1-4 hold. Given
any € > max(4a, S'If:l), e (0,1), M= [16?2810953(2’1240(‘;)]
we have that with probability at least 1 — 9, Algorithm 1
converges to an e-Nash policy in at most T = L%j steps
of the for-loop in Line 3, with a sample complexity of
141 1 8n2a’ M H

pOIy(|S|7 |A2|7 Ev Ev 57 mv"’max) + ﬁ

(10)

2§(e—4a) H+1
o

Here §' = =55, o/ = a+ 2= and € = e(1—~) —8y
7
and H is the simulation episode length for agents.

The theorem guarantees Algorithm 1 will converge to an
e-Nash in t = T steps (see Line 3) with probability at least
1 — 9, while consuming a bounded number of samples.

H+1
Remark 3 The technical assumption € > max(4a, 871—“7 ) in
Theorem 2 emphasizes the latent accuracy limitation of our
proposed best-response dynamic. Given the known o for the
game, Algorithm 1 is guaranteed to reach an e-NE policy for
€ > 4a. That is, the performance guarantee does not hold if

H+1
agents want to converge to € < 4a. The term 871_7 appears

as a result of the restriction that agents must estimate the
value by simulating the policy for a truncated horizon length
of H. For sufficiently large H, the term ~7+1 apgroaches 0
for v € (0,1). This implies that the restriction 871:;1 on the
accuracy threshold € for Nash policy becomes negligible when

agents use a sufficiently large horizon.

Remark 4 The sample complexity of Algorithm 1 is polyno-
mial in 1/¢', and &' grows linearly with 6. This implies a
higher confidence in convergence comes at the expense of
a larger sample complexity requirement. Moreover, ?’% =
—24(e + &)(no/)_2 which indicates the quadratic rate
of decline of &' with growth in a. Our provable guarantee
therefore highlights that for a fixed confidence level 9, games
which admit a-potentials for larger values of o would have a
more stringent requirement in terms of the sample complexity
of the best-response dynamic, as §' declines quadratically with

respect to « for the game.

To prove theorem 2, we shall first show a few auxiliary
results in what follows.

Lemma 1 Assume agents have access to a feasible policy
7B € % in game G. Then ®(7) — ®(xB) < na/, for all
policies 7, where ® is an a-potential.

Proof: Define {ﬁ(“)}uzo,..,n as

~(u) __ B B
7 = (2B, 7B 1, ..

(11

for u = 0,1,...n. Then, 7?(0)': 7 and 7}(”) = 78, For any
agent i € N, the policies 70~V and 7(¥) differ only in the
index for agent 7. Then, we know that

—a < ((FY) = @(7D)) — (Vi(70Y) = V(7)) <
(12)

since ® is an a-potential. Note that we dropped the fixed,
arbitrary initial state s from the superscript of the value
functions above. Summing over ¢ = 1,...,n, we have the
following upper bound

'77TTL)

n

@(r) < an+ 3 (Vi(F) - Vi(ED)) + @ (x").

i=1

(13)

Now, see that
—2(1 =77 < ViFEEY) - VD) <20 -9)7t (14)

holds because we work with normalized rewards between
[—1,1]. Thus the right hand side of inequation (13) is at most
an +2n(1 — )"t + &(7B), or ®(7) — ®(7B) < na’ holds,
substituting for o/ = o+ 2(1 — )~ L. |
Thus, the maximum increase in the potential value is bounded
by na/, for any a-potential ® € F. We shall now show that for
each step ¢ in line 3 of Algorithm 1, there is a strict increase
of the potential function value between ‘! and = for all
a-potentials. Recall here that V;(m)g is a random variable,
while V;(7) is a deterministic quantity.

Definition 6 (k-accurate value estimation) Agents are capa-
ble of k-accuracy for the value function estimation when for



all policies T € 11 encountered in the execution of Algorithm
1, the event |Vi(m)g — Vi(m)| < k for k € Ry happens with
probability 1 for all agents i € N, for all steps t in Algorithm
1, line 3.

Lemma 2 When agents are capable of €/8-accuracy in value
function estimation, then each step of line 3 in Algorithm 1
ensures a strict increase in the potential value of the current
policy as

O(r ) — @(n) > /4 — a (15)

for any a-potential ® € F, given finite o and € > 4au.

Proof: 1f the Algorithm 1 does not terminate at step ¢,
then there exists j € N such that A% > ¢/2. Since @ is an
a-potential, we have (7}, 7*1) — <I>(7r* D> Vi(at, 7t -
Vi(rt=1) — a. Conditioning on the event that agents have
€/8-accurate value estimations 1n the course of execution of
Algorithm 1, we have, V; (7, 7" ) >V (75, wtjl) —€/8
holds. Again, following the same conditioning argument, we
get V;(r'=1) < Vj(n'~1)y + €/8. Thus,

V(75 = Vi) — a

> Vj(ﬁjﬂTzl)H —€/8—

Vi
The right-hand-side of (16) is equal to A; —€¢/4 — a (See
Algorithm 1, line 8). Since Ai‘ > ¢/2, we have (15) from
(16). [ |

—¢/8—a. (16)

Corollary 1 When agents have k-accurate value estimatigns
for k = ¢€/8, Algorithm 1 converges in at most T = LE/’ZOLQJ
steps of the for-loop in line 3.

Proof: Since the maximum increase in the potential value
is bounded (Lemma 1), and there is a strict increase in the
potential value for every iteration of the for-loop in line 3
(Lemma 2), we have the desired result. [ |

Definition 7 (Event £~) We define E~ as the event where in
Line 6 of Algorithm 1, an agent i uses L; to produce an ¢ =
€/4-optimal policy for G_;, for all i € N, for all time-steps
t € [T] in Line 3.

Lemma 3 Conditioning on agents making €/8-accurate value

estimations and event Er, during the execution of Algorithm
T - . _ na’

1, @ is an e-Nash policy where T = L6/47aj.

Proof: For any i € N,
‘/;(ﬁ_T’ﬂ_Tfl) _ V( T—l)

K2 K2

< (Vilal 727 i+ e/8) = (Vile™ i — ¢/8)
G P G PR (17)
since agents make x-accurate value estimations, k = ¢/8.

Since at step ¢ = 7', the algorithm converges as per Corollary
1, we must have AT = V(7T 7TT YDy = Vi(mT Yy <€/2
for all ¢ € A/. This implies

V (ﬁ_T 7TT 1)

Vi(r' 1) < 3e/4 (18)

for all + € N/, from (17). Conditioning on £~, we get

max  Vi(m, 7l —Vi(w], 7l < e/4
TFEHC(ﬂ'T D)

i

19)

for all s € NV. Thus,

max
‘n'EHC(TrT )

<e€/d+3e/4+ Vi(rt™

Vi(m, ml

T < /A Vil AT

—1

1) — e+ V;‘(ﬂ'T_l),
(20)

where we use (18) to obtain the second inequality. Thus 77!

is an e-NE policy. Since at time ¢ = T, the policy is not
updated, 77 = 77—, ]

A. Proof of Main Result

Proof Define the events & {Vi € NVt €
[T], |V( i 1)H*V(7T b )|<e/8} and & = {Vze
NVt € [ ],|Vi(7rt_ Vo — V;( t=1)] < €¢/8} in which 7
is a solution to G_; obtained using the PAC learner L; and
T < 4"0‘ . Given the conditions on ¢, M and T, in the
f0110w1ng we show that

PlExNENE] >1—06. Q1)

where & is as given in Definition 7. Once we establish
the inequality (21), the convergence in 1" steps follows from
Lemma 3.

Claim [P[£; N &) > 1 — 6/2]: For some policy 7 € II and
k > 0, consider the event,

Go=Vimu —Vi(m =k, ViEN. @)

See that V() and Vj(r) (the non-truncated version) are
related as V;(m) g — V() < S M2 17t = IH—:I given
normalized rewards and recalling ‘7] () definition in (3). Thus,
we have

AH A

1_

Vi(m)a

Vj(m)| < (23)

See that event ¢, implies the event . : |V( ) = Vj(m)| >
k —1— Vj € N using (23). That is, P[x,] > IP[§ ]
Con51der the estimator of the value function in the I-
th episode V;(w)®) for some j € N and | € [M], for
which we have E[V;(m)")] = V;(x) by definition of the
(deterministic) value function in (2). Also, V;(m)® for | € [M]
are independent random variables, bounded between -1

1—v
and ﬁ Using Hoeffding’s inequality, we get

M _ _oM2e2
P Vi(m)® = MV;(m)] 2 MK < 25002
=1

(24)
where k' 1=
j( )— M Zl 1 ( ) ) after some arithmetic, we get
PE./s] < Plxess] < 2e~ % (55777 90— (25)



where we use the assumption € > 87;1;, Plx«] = P[&],
and ¢ = ¢(1 — ) — 8y 1. Now, using the union bound and
then (25), we obtain the following bound

P[ECUES] < PIEC] + PIES]

< ZZ[P Vit w5 m = Vilalal5h) > /]

t=1 =1
+ ZZ ”DHVi(Wt*l)H —Vi(r' ™| > ¢/8]
t=1 i=1
< AnTe~ 5’ (26)
Using T < ffz; and M = 1 32n” "‘)] >
2o 5’(26’171“0:), we get that P[EC U £F] S 5/2, which further

1mphes that P[£1NE3] > 1—0/2. Thus with probability at least
1—0/2 agents make €/8-accurate value estimations during the
course of Algorithm 1. At this point, also note that each value
estimation consumes M H samples, thus the total number of
samples used by the algorithm for value estimation is bounded
by 2nTMH < 8"6"‘ 4% H yusing the upper bound for 7.
Claim [P[€<] > 1 — §/2]: Using the union bound, we get

n T
< Z Z P[#! is worse than €/4 optimal.]  (27)

i=1 t=1

because £ = U, {7} is worse than ¢/4 optimal.} Since
agents have access to the PAC-learner for solving G_;, agents
are guaranteed to get an arbitrary accurate solution (¢ > 0)
with arbitrary confidence (6 € (0,1)), when the adequate
number of samples have been used. Plugging in é = ¢/4 and
b=4¢, agents are guaranteed to get an ¢/4-optimal solution to
G_; with probability at least 1 — §’ with a sample complexity
bounded by SC;; == poly(|S|, |Ail, & 3 6, 6'7 1i,y,rmax) This
implies that P[ES C] < nT¢', with agents consuming >, , SC; ;
samples overall. Plugging in §' = %, T %,
after some arithmetic, we have P[EC] < nT¢§ = §/2 or
PlEx] >1—4/2.

Since &, is independent of & N &, we have that the
probability in (21) is bounded by (1 — §/2)? from which we
have the inequality in (21) since (1 —§/2)% > 1 — 4.

Given (21), using lemmas 1, 2 and 3, we guarantee that
Algorithm 1 converges in at most 7' steps to an e-NE policy.
Noting that the sum of a finite number of polynomials is
a polynomial, we derive the sample complexity in (10) by
summing the sample complexity requirement of the PAC
solvers with the samples needed for the value estimations
obtained by multiplying M value with 7" bound. [ ]

V. CONCLUSION

In this paper, we showed that when the constrained Markov
game has an a-potential for finite «, and agents have an
efficient PAC learner for the constrained MDP sub-problem,
the sequential best-response algorithm provably converges to
a stationary e-approximate NE policy profile with probability
at least 1 — § in finite time. The sample complexity grows
as a polynomial of the reciprocal of specific accuracy and
confidence parameters and the reciprocal of the problem
dependent Slater’s constants.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

REFERENCES

S. Le Cleac’h, M. Schwager, and Z. Manchester, “LUCIDGames: Online
unscented inverse dynamic games for adaptive trajectory prediction and
planning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
5485-5492, 2021. [Online]. Available: https://arxiv.org/abs/2011.08152
M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game-
Theoretic planning for self-driving cars in multivehicle competitive
scenarios,” IEEE Transactions on Robotics, 2021.

M. Liu, I. Kolmanovsky, H. E. Tseng, S. Huang, D. Filev, and A. Girard,
“Potential game based decision-making frameworks for autonomous
driving,” arXiv preprint arXiv:2201.06157, 2022.

K. Zhang, A. Koppel, H. Zhu, and T. Basar, “Global convergence of
policy gradient methods to (almost) locally optimal policies,” SIAM
Journal on Control and Optimization, vol. 58, no. 6, pp. 3586-3612,
2020.

S. Cayci, N. He, and R. Srikant, “Linear convergence of entropy-
regularized natural policy gradient with linear function approximation,”
arXiv preprint arXiv:2106.04096, 2021.

D. Ding, C.-Y. Wei, K. Zhang, and M. Jovanovic, “Independent policy
gradient for large-scale Markov potential games: Sharper rates, func-
tion approximation, and game-agnostic convergence,” in International
Conference on Machine Learning. PMLR, 2022, pp. 5166-5220.

C. Daskalakis, D. J. Foster, and N. Golowich, “Independent policy
gradient methods for competitive reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 33, pp. 5527-5540, 2020.
M. Sayin, K. Zhang, D. Leslie, T. Basar, and A. Ozdaglar, “Decentralized
Q-learning in zero-sum Markov games,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18320-18 334, 2021.

A. S. Nowak, “Existence of equilibrium stationary strategies in dis-
counted noncooperative stochastic games with uncountable state space,”
Journal of Optimization Theory and Applications, vol. 45, pp. 591-602,
1985.

E. Altman and A. Shwartz, “Constrained Markov games: Nash equilib-
ria,” in Advances in Dynamic Games and Applications. Springer, 2000,
pp. 213-221.

F. Dufour and T. Prieto-Rumeau, “Stationary Markov Nash equilibria
for nonzero-sum constrained ARAT Markov games,” SIAM Journal on
Control and Optimization, vol. 60, no. 2, pp. 945-967, 2022.

A. Jaskiewicz and A. S. Nowak, “On approximate and weak correlated
equilibria in constrained discounted stochastic games,” Applied Mathe-
matics & Optimization, vol. 87, no. 2, p. 23, 2023.

X. Guo, X. Li, C. Maheshwari, S. Sastry, and M. Wu, “Markov a-
potential games: Equilibrium approximation and regret analysis,” arXiv
preprint arXiv:2305.12553, 2023.

X. Guo, X. Li, and Y. Zhang, “An a-potential game framework for
n-player games,” arXiv preprint arXiv:2403.16962, 2024.

S. Leonardos, W. Overman, I. Panageas, and G. Piliouras, “Global
convergence of multi-agent policy gradient in Markov potential games,”
arXiv preprint arXiv:2106.01969, 2021.

S. Vaswani, L. Yang, and C. Szepesvari, “Near-optimal sample com-
plexity bounds for constrained MDPs,” Advances in Neural Information
Processing Systems, vol. 35, pp. 3110-3122, 2022.

Q. Bai, A. S. Bedi, M. Agarwal, A. Koppel, and V. Aggarwal, “Achieving
zero constraint violation for constrained reinforcement learning via
primal-dual approach,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 4, 2022, pp. 3682-3689.

H. Wei, X. Liu, and L. Ying, “A provably-efficient model-free al-
gorithm for constrained Markov decision processes,” arXiv preprint
arXiv:2106.01577, 2021.

P. Alatur, G. Ramponi, N. He, and A. Krause, “Provably learning
Nash policies in constrained Markov potential games,” arXiv preprint
arXiv:2306.07749, 2023.

Z. Song, S. Mei, and Y. Bai, “When can we learn general-sum Markov
games with a large number of players sample-efficiently?” arXiv preprint
arXiv:2110.04184, 2021.



