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Abstract
Physiologically-based pharmacokinetic (PBPK) modeling is important for studying
drug delivery in the central nervous system, including determining antibody expo-
sure, predicting chemical concentrations at target locations, and ensuring accurate
dosages. The complexity of PBPK models, involving many variables and parameters,
requires a consideration of parameter identifiability; i.e., which parameters can be
uniquely determined from data for a specified set of concentrations. We introduce the
use of a local sensitivity-based parameter subset selection algorithm in the context of
a minimal PBPK (mPBPK) model of the brain for antibody therapeutics. This algo-
rithm is augmented by verification techniques, based on response distributions and
energy statistics, to provide a systematic and robust technique to determine identifi-
able parameter subsets in a PBPK model across a specified time domain of interest.
The accuracy of our approach is evaluated for three key concentrations in the mPBPK
model for plasma, brain interstitial fluid and brain cerebrospinal fluid. The determi-
nation of accurate identifiable parameter subsets is important for model reduction and
uncertainty quantification for PBPK models.
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1 Introduction

Physiologically-based pharmacokinetic (PBPK) models commonly include a large
number of parameters and several model responses (dependent variables) of inter-
est. Calibrating model parameters can be challenging and depends on the number of
responses of physiological interest, the model’s inherent structure and the scope of
available data. Typically, many parameters cannot be directly measured and instead
must be specified at a set of nominal values obtained from or motivated by the avail-
able literature. Sensitivities of individual model responses near the set of nominal or
estimated parameter values are also of interest in many applications. However, these
sensitivities can be different depending on the particular response of interest and the
time at which it is evaluated. Overall, it is crucial to understand how variation or
uncertainty of the parameters in PBPK models affect individual responses across the
time domain of interest. Techniques that quantify such relationships enable one to fix
values of a subset of the parameters and lead to more robust optimization, statistical
inference or uncertainty quantification focused on these responses. Such techniques
can also inform the design of experiments when choosing one (or a few) data sources,
among several choices of observed responses, is advantageous.

Local sensitivity analysis has beenwidely used to study howPBPKmodel responses
depend on perturbations in parameter values relative to a set of baseline or nominal
values (Clewell et al. 1994; Evans et al. 2020; Evans and Andersen 1995; Matthews
et al. 2009). When parameter ranges across the scope of application of a PBPK model
are known, global sensitivity analysis methods can also be applied (Hsieh et al. 2018).
Identifiability refers to the ability to determine a unique set of parameter values given
a model response or a set of responses. Local identifiability analysis is carried out in
the context of data from experiments or for model responses of interest at a set of
nominal parameter values. Furthermore, the accuracy of a parameter subset deemed
to be locally identifiable for a particular response (based on its values across the full
time domain) can vary depending upon the time at which this response is evaluated.

Structural identifiability analysis has the objective of determining parameter depen-
dencies which are global in the sense that they persist over the full time domain of the
model. Several software packages exist for structural identifiability analysis of model
parameters in ODE systems (Bellu et al. 2007; Hong et al. 2019). Structural iden-
tifiability analysis has been widely used for noise-free PBPK models that are small
enough to be analytically manipulated or that can be linearized without loss of model
accuracy (Brown et al. 2022; Calvier et al. 2018; Carter et al. 2020; Kendrick et al.
2019; Slob et al. 1997; Kendrick et al. 2017; Yates 2006). Techniques for scaling up to
larger dynamical systems have also been developed, but may be challenging to execute
in practice, due to the large number of nonlinear algebraic equations that arise (Bellu
et al. 2007). Such approaches require assumptions that the functional dependence in
the system involves only polynomials or rational functions (Raue et al. 2014). Overall,
parameters deemed to be non-identifiable via structural identifiability analysismay not
capture variations in parameter identifiablilty that occur more locally in time, i.e. when
a particular response is evaluated within a subdomain of the full time domain, or for
different sets of nominal parameter values.
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Local identifiability analysis is well-suited to PBPK models since its partitioning
of parameters into identifiable and non-identifiable subsets can change when studying
different time regimes, for different model variables or quantities of interest, and
for differing nominal parameter values. This is due, in part, to the diverse range of
underlying time scales that are inherent to PBPK models. These approaches are based
on local sensitivities (Clewell et al. 1994; Evans et al. 2020; Evans and Andersen
1995; Matthews et al. 2009; Pearce et al. 2021), and can also involve properties of
the Fisher information matrix (Koyama et al. 2021; Lavezzi et al. 2018). Properties of
this matrix are also employed in the model sloppiness literature, using both standard
and Bayesian approaches (Apgar et al. 2010; Gutenkunst et al. 2007; Monsalve-Bravo
et al. 2022; Transtrum et al. 2015). However, this approach is strongly tied to the
data when sensitivity derivatives are applied to residuals for model responses relative
to data for the same responses. By contrast, our approach considers specific model
responses across all times in the domain of interest, and in the absence of data from
experiments.

Due to this variability in local identifiablity across both model responses and times,
techniques for evaluating the accuracy of identifiable PBPK parameter subsets are
needed. In this paper, we develop and evaluate such techniques and approaches in the
context of a minimal PBPK (mPBPK) model of the brain for antibody therapeutics
(Bloomingdale et al. 2021). This mPBPKmodel is a reduced form of a previous multi-
species platformbrainPBPKmodel comprising100differential equations (Chang et al.
2019); the mPBPK model contains 16 differential equations and 31 parameters.

We construct a local sensitivity-based parameter subset selection (PSS) algorithm
to determine subsets of identifiable parameters for three responses (concentrations)
of interest in the mPBPK model, relative to a set of nominal parameter values. In our
PSS approach, the user specifies a single time domain of interest for the identifiability
analysis. For the mPBPK model (Bloomingdale et al. 2021), this time domain is
0–1,000h (at 1h intervals), and captures the underlying dynamics for the three
responses of interest (see also Fig. 4). We also systematically evaluate the perfor-
mance of this PSS algorithm, comparing it to a more standard PSS approach using
qualitative and quantitative (energy statistics) methods. This includes considering both
the accuracy of the identifiable parameter subsets and the calibration of threshold val-
ues in our PSS algorithm for model predictions of key concentrations across the full
time domain of the simulations. In particular, for each of these three responses of
interest we evaluate the accuracy of the parameter subsets at each time point across
the full time domain.

We first present a summary of the mPBPK model in Sect. 2, including its phys-
iological structure. In Sect. 3, we outline the methods and algorithms for parameter
subset selection, including two approaches for verifying accuracy of the subsets of
identifiable parameters. Our results are presented in Sect. 4, for three key responses
of interest in the model which are the plasma concentration, the brain interstitial fluid
concentration, and the brain cerebrospinal fluid concentration. We end with a brief
discussion and conclusions in Sect. 5.
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Fig. 1 Antibodies and antigens
(National Human Genome
Research Institute 2023)

2 Model

An antibody (Fig. 1) is an immune system protein that circulates in the blood, identifies
foreign molecules known as antigens (e.g. bacteria, viruses), and neutralizes them.
Therapeutic antibodies are used to treat a wide range of diseases including those
affecting the central nervous system (CNS), as well as cancer, autoimmune diseases,
cardiovascular diseases, inflammation, and allergy (Dwek 2009). The Food and Drug
Administration (FDA) authorized the first antibody in 1986 (Todd et al. 1989), called
muromonab-CD3, whose goal was to reduce acute rejection in recipients of organ
transplants. The development of novel therapeutic antibodies remains an active area
of research and development with many undergoing clinical trials and others still in
preclinical development.

Antibody therapies for CNS disorders are lacking, thus motivating the need for
drug discovery. One challenge in CNS drug development is that the blood-brain bar-
rier (BBB) prevents sufficient quantities of largemolecules and small compounds from
entering the brain to activate the desired target (Paul 2011). Furthermore, measurement
of antibody exposure is difficult due to the lack of knowledge concerning antibody
location in the brain. Thus, mathematical models that can predict antibody concen-
trations in CNS compartments, and exchange of antibodies across compartments are
important components of CNS research and development for novel antibody therapies.

Physiologically-based pharmacokinetic (PBPK) models are widely used for this
purpose (Jones and Rowland-Yeo 2013). PBPK models represent physiological struc-
ture and functions that influence a chemical’s disposition. Pharmokinetics accounts for
chemical absorption, distribution, metabolism, and excretion. PBPK models also use
parameters and equations that incorporate body weight, blood flow rate, andmetabolic
rate.

2.1 Model Structure

To develop our methods, we employ the minimal PBPK (mPBPK) model introduced
in Bloomingdale et al. (2021), which was constructed by reducing the full PBPK
model in Chang et al. (2019). As detailed in Bloomingdale et al. (2021), this reduction
decreases the complexity of the full model while retaining its primary physiological
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features. The mPBPK compartments are shown in Fig. 2, and many of the model sim-
plifications are obtained by combining compartments from the original model. For
example, a tissue compartment in the mPBPK model was formed by combining four-
teen non-brain organ compartments in the full model. In the reduced model, the tissue
compartment comprises three subcompartments: vascular, endosomal, and intersti-
tium. Furthermore, a cerebrospinal fluid (CSF) compartment was created by merging
four CSF compartments in the full model (lateral ventricle, third-fourth ventricle, cis-
terna magna, and subarachnoid space), while retaining the endosomal, interstitial and
brain vascular compartments. Nominal values of the model parameters for humans are
given in Table 5 in the Appendix. Note that three nominal parameter values in the full
PBPKmodel were obtained using maximum likelihood estimation based on published
and in-house pharamcokinetic data; the remaining values were fixed based on values
reported in prior literature (see Chang et al. 2019). We refer readers to Bloomingdale
et al. (2021) for further information about the structural reduction of the full PBPK
model to the mPBPK model.

2.2 Model Equation

Each response (dependent variable) in the model represents an evolving antibody
concentration, and the corresponding differential equation describes its rate of change
in the respective compartment (Fig. 2). To illustrate, the differential equation for the
change in plasma antibody concentration (CP ) is

VP · dCP

dt
= (QT −LT )·CTV +(QB−LB)·CBV +(LT +LB)·CL−QT ·CP−QB ·CP .

(1)
Each term on the right-hand side of (1) models the mass transport of plasma anti-

bodies into (postive terms) and out of (negative terms) the plasma compartment, based
on the rates specified in Fig. 2. Here, CP , CTV , CBV and CL , denote concentrations
in the plasma, tissue vascular, brain vascular, and lymph compartments, respectively.
QT , LT , QB , and LB are parameters governing the rates of transport, and VP is the
(fixed) volume of the plasma. The full mPBPKmodel is summarized in the Appendix.

The mPBPK model can be expressed in the following general form:

du
dt

= f (t, u(t),β), u(t0) = u0(β). (2)

Here u(t) = [u1, . . . , um]T (m = 16) are the model variables (or responses), β =
[β1, . . . , βr ]T (r = 31), and θ = [β, u0] comprises the full set of pmodel parameters.
Nominal values for these parameters, based on Bloomingdale et al. (2021), are given
in the Appendix. Note that, for this model, initial conditions for only three responses
are assumed to be nonzero, and sensitivites with respect to the initial conditions are
not incorporated in our identifiability analysis.
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Fig. 2 Brain mPBPK model structure (Bloomingdale et al. 2021). Compartments included in the model
represent antibody concentrations in (1) Plasma, (2) Tissue vascular, (3) Tissue endosome (unbound), (4)
Tissue endosome (FcRnbound), (5) Tissue interstitium, (6) Brain vascular, (7) BBB endosome (unbound),
(8) BBB endosome (FcRnbound), (9) Brain interstitium, (10) BCSFB endosome (unbound), (11) BCSFB
endosome (FcRnbound), (12) Brain CSF, (13) Lymph, (14) FcRn concentration in tissue endosome, (15)
FcRn BBB endosome, and (16) FcRn BCSFB endosome. This image is adapted from Bloomingdale et al
2021

3 Methods

In this section, we summarize techniques for parameter identifiability analysis, includ-
ing verification methods, based on local sensitivities about a set of nominal parameter
values and a specified time domain of interest. We outline two parameter subset
selection (PSS) algorithms to determine identifiable and non-identifiable subsets of
mPBPK model parameters for a chosen model response. We then summarize verifi-
cation techniques for evaluating the accuracy of identifiable parameter subsets for the
model response evaluated at each time across the prescribed time domain of interest
(0–1000h).

3.1 Sensitivity Analysis

Sensitivity analysis is frequently used to quantify how changes in model parameters
impact the response(s). In this investigation, we quantify the impact of model parame-
ters on antibody concentrations using local (sensitivity-based) identifiability analysis
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(Burth et al. 1999). For models with a known set of nominal values and weak-to-
moderate levels of nonlinearity, local sensitivity analysis is a reliable and efficient
approach. In such problems, sensitivity analysis can achieve a variety of objectives,
including model reduction (by fixing non-influential model parameters), better strate-
gies for data collection in experiments, and identifying possible limitations of the
model (Brown et al. 2022). Note that our analysis of local sensitivities only consid-
ers the influence of one parameter at a time. By contrast, global sensitivity analysis
accounts for uncertainties in a response that depend on uncertainties in parameters.

3.1.1 Local Sensitivity Analysis

Local sensitivities quantify variability of the model responses u(ti )when input param-
eters θ are perturbed about nominal parameter values θ∗ (Smith 2014). Note that the
concentrations in themodel represent u(t) and θ = β. Local sensitivities are computed
at n discrete time points using the partial derivatives

s j (ti ) = ∂u(ti )

∂θ j
, i = 1, . . . n, j = 1, . . . p, (3)

of the model responses u(ti ) with respect to the individual parameters. Here, s j is
the local sensitivity with respect to the j th parameter θ j , ti is the i th time point,
p is the number of parameters in the model, and n is the number of time steps. In this
investigation, sensitivity analysis is applied only to parameters which are coefficients
in (2), not the initial states; henceforth, p = r and θ = β. Local sensitivities can be
computed by either solution of the sensitivity equations or via a numerical approxi-
mation. The former approach can be tedious for moderate to large size models usually
requiring the numerical solution of a system of ODEs, whereas the latter approach is
extensively utilized in practice.

We first demonstrate the process of deriving the sensitivity equations for the ODE
model (2). We differentiate equation (2) with respect to βk , and interchange the order
of differentiation to obtain

ds
dt

= ∂ f
∂u

s(t) + ∂ f
∂β

, s(t0) = ∂u0
∂β

, (4)

where s(t) = [s1(t), s2(t), ..., sp(t)]n×p is constructed from the sensitivity vectors
sk(t) = ∂u

∂βk
, k = 1, . . . , p. For brevity, the dependence of the sensitivities on the

model parameters is suppressed. Here, ∂ f
∂u is an (n · p)× (n · p) block diagonal matrix

having p blocks consisting of the n × n Jacobians on each block, and ∂ f
∂β

is a column
vector with np components. To illustrate, consider a case with n = 2 responses CP

and CTV , with p = 2 parameters β = [QT , FR]T . We obtain

s(t) =
[

∂Cp
∂QT

,
∂CTV
∂QT

,
∂Cp
∂FR ,

∂CTV
∂FR

]T
,
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∂ f
∂u

=
[
J 0
0 J

]
, J =

⎡
⎢⎣

−(QT +QB )
VP

(QT −LT )
VP

QT
VTV

− ((QT −LT )+(1−σTV )·LT +CLU PT )

VTV

⎤
⎥⎦ ,

∂ f
∂β

= [
CTV − CP , CP − CTV , 0, CLU PT · CTE,B

]T
.

Alternatively, one can employ numerical techniques, such as finite-difference or
complex-step approximations (Lyness and Moler 1967), or automatic-differentiation
(Gautschi 1997) to estimate local sensitivities. For a quantity of interest f (t j , θ∗)
evaluated about its nominal parameter values θ∗, finite-difference approximations are
evaluated by using

∂ f (t j , θ∗)
∂θi

= f (t j , θ∗ + eihi ) − f (t j , θ∗)
hi

+ O(hi ), (5)

where hi (� 1) is a scalar step-size and ei is i th unit vector. This numerical technique
has certain limitations. One potential issue is roundoff error due to subtractive can-
cellation, which occurs when both the denominator and the numerator are sufficiently
small. Another limitation is that the selection of hk must be determined while taking
the magnitude of the parameters into account.

The complex-step approximation (Banks et al. 2015; Martins et al. 2003) is a more
efficient and straightforward approach compared to deriving sensitivity equations for
complicated models. It is defined as

∂ f (t j , θ∗)
∂θi

= Im( f (t j , θ∗ + I eihi ))

hi
+ O(h2i ), (6)

where I ≡ √−1. Unlike the finite-difference method, it is nearly insensitive to
the step-sizes since it avoids subtractive cancellation. Furthermore, it is numerically
demonstrated to be accurate up to points of discontinuity.

3.1.2 Scaling Techniques for Parameters

Many models require scaling of local sensitivities prior to their use in identifiability
analysis. Two examples occur when one has a significant difference in the magnitude
of parameters or when local sensitivities do not have the same units. For this scaling,
since we have positive parameter values, we use a log transformation θ̂ j = log(θ j )

(Keene 1995). The log-scaled sensitivities about the nominal values θ∗ are

ŝ j (t) ≡ ∂u(t)

∂θ̂ j
= ∂u(t)

∂θ j
θ∗
j = s j (t)θ∗

j , j = 1, . . . , p. (7)

3.1.3 Identifiability of the Parameters

PBPKmodels consist of ordinary differential equations havingmany unknown param-
eters. Some of these parameters are often practically non-identifiable, implying that
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their values cannot be uniquely determined from experimental data or synthetic data.
An example of the latter is a simulated response based on perturbations of a subset
of parameters about their nominal values. There are several reasons for the lack of
influence on the measured outputs, such as algebraic dependencies among parameters
or poor data availability or quality.

3.2 Parameter Subset Selection

Once we obtain local sensitivities for specific model responses of interest using tech-
niques outlined in Sect. 3.1.1, we can use them to determine identifiable parameters for
each response. Fixing non-identifiable parameters at nominal values is useful for sub-
sequent optimization, frequentist or Bayesian inference, or uncertainty quantification.
Nominal values are often a starting point for such techniques. Fixing non-identifiable
parameters at their nominal values often leads to more accurate estimates of values
for the identifiable parameters. This is due to more robust performance of the associ-
ated algorithms since the computational cost of these procedures decreases as fewer
parameters need to be explored.

In this section, we present parameter subset selection (PSS) algorithms for deter-
mining identifiability of the model parameters for a particular response on a specified
time domain of interest. We also outline two techniques to verify accuracy of results
obtained from our PSS algorithms when simulating the same response at each time in
the domain of interest.

3.2.1 Parameter Subset Selection Algorithm (PSS)

We focus on the statistical observation model

yi = f (ti , θ) + εi , εi
i id∼ N (0, σ 2), i = 1, ..., n, (8)

where yi is experimental data or synthetic data, ti is time, θ is the parameter vector,
and εi is the observation error.

The mean squared error of the response relative to the data is

J (θ) = 1

n

n∑
i=1

[yi − f (ti , θ)]2 (9)

Now consider the Taylor series expansion of the response about the nominal param-
eter values; i.e.,θ = θ∗

f (ti , θ
∗ + �θ) ≈ f (ti , θ

∗) + ∇θ f (ti , θ
∗) · �θ
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Since yi ≈ f (ti , θ∗), substituting into (9) yields

J (θ∗ + �θ) ≈ 1

n

n∑
i=1

(∇θ f (ti , θ
∗) · �θ)2 = 1

n
(S�θ)T (S�θ) = 1

n
�θTSTS�θ ,

(10)

where the sensitivity matrix S is

S(θ∗) =

⎡
⎢⎢⎣

∂ f
∂θ1

(t1, θ∗) . . .
∂ f
∂θp

(t1, θ∗)
...

. . .
...

∂ f
∂θ1

(tn, θ∗) . . .
∂ f
∂θp

(tn, θ∗)

⎤
⎥⎥⎦ . (11)

Denoting an eigenpair of ST S by (λ,�θ), we obtain

J (θ∗ + �θ) ≈ λ

n
‖�θ‖22, (12)

where F = ST S is the scaled Fisher information matrix. This provides a way to quan-
tify information about parameter identifiability and correlations among parameters.
The eigenvalues of F are real and nonnegative since F is symmetric and nonnegative
definite. This implies that if we let λ ≈ 0 in (12), then J (θ∗ + �θ) ≈ 0 and respec-
tive parameters are non-identifiable at θ∗. We note that there are various theoretical
parameter subset selection algorithms (Burth et al. 1999; Cintrón-Arias et al. 2009;
Friswell et al. 1997; Kim and Lee 2019; Pearce et al. 2021; Quaiser and Mónnigmann
2009) which employ the eigenvalues of the Fisher information matrix. However, using
these methods may result in a loss of accuracy when computing the small eigenvalues
of F = ST S for certain matrices S (Ipsen 2009). We address this issue by computing
the singular values of S instead, as has been done in several other studies on parameter
identifiability (Monsalve-Bravo et al. 2022; Stigter and Molenaar 2015).

Consequently, we use the singular value decomposition (SVD) of the scaled sen-
sitivity matrix, based on (7), as Ŝ = U�VT , where the diagonal matrix � contains
the singular values of Ŝ, and the orthogonal matrix V T contains its right singular vec-
tors. The intuition behind the resulting algorithms is to sequentially remove the least
identifiable parameter and determine a subset of the uniquely identifiable parameters.

We consider two approaches termed all-at-once (AAO, Algorithm 1) and one-at-
a-time (OAT, Algorithm 2). In the former case, a threshold η is used once to partition
the singular values and use information in the singular vectors to flag parameters as
non-identifiable. In contrast, in the latter case the dimension of Ŝ is reduced by one at
each iteration, corresponding to labeling a parameter as unidentifiable and removing
it from the sensitivity matrix, also based on a prescribed threshold η. The SVD is
recomputed at each iteration. Each algorithm produces a subset θ id of identifiable
parameters; the complementary (non-identifiable) subset is denoted θnid .

In both algorithms, the SVD is used to determine which parameters have the
strongest effects on the outputs in the system. We compute the ratio of the largest
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to the smallest singular value, and if its square is greater than the threshold value, all
parameters are considered identifiable (line 5). If this ratio is less than the threshold,
some parameters are non-identifiable.

We choose the smallest singular value and its corresponding singular vector, for
whichwe find the position of the largest component in the singular vector; this position
corresponds to the least identifiable parameter. The algorithm then removes this param-
eter from the set of identifiable parameters and repeats the process, iteratively, for the
remaining parameters. We carry out this procedure either all-at-once by computing
the SVD one time (Algorithm 1), or one-at-a-time (Algorithm 2) by recomputing the
SVD at each iteration, with the number of columns in S decreasing by one at each
iteration.

There is no precise rule for choosing the threshold value η. Its value needs to be
calibrated in a problem-dependent manner. Therefore, the resulting subset of non-
identifiable parameters should be verified using the techniques presented in the next
section, ideally over a range of η values spanning a few orders of magnitude.

Algorithm 1 PSS AAO (all-at-once)
Input: Nominal p × 1 parameter vector θ∗, t > 0, and n > p values t
Output: Subset θi d ⊆ θ of identifiable parameters
1: Set threshold 0 < η << 1 and specify a nominal input vector θ∗.
2: Construct n × p scaled sensitivity matrix Ŝ(θ∗) having entries Ŝi j = θ∗

j
∂ f
∂θ j

(ti , θ)

3: Compute the scaled singular value decomposition Ŝ = U�VT , where the p × p diagonal matrix � contains the
singular values σ1 ≥ · · · ≥ σp ≥ 0 of Ŝ, and p × p orthogonal matrix VT contains the right singular vectors.

4: for k → p to 1 do:

5: if
(

σk
σ1

)2
> η then

6: Return θi d = θ , i.e. all parameters currently in θ are identifiable.
7: else
8: i) For the singular (column) vector 
vk ∈ VT associated with σk ,

determine the position l of component with the largest magnitude,
which corresponds to the least identifiable parameter.

9: i i) Remove the lth column in VT , and the corresponding parameter (θl )
from the identifiable subset.

10: end if
11: end for

3.3 Verification Techniques

In this section, we provide two techniques to evaluate accuracy of the PSS algorithm
outcomes and select appropriateη values.Oncewehave identifiable parameter subsets,
we can verify their accuracy using quantitative or qualitative methods across the time
domain of interest. Both approaches ensure the validity of the algorithm and the
selected threshold value.

3.3.1 Qualitative Method with Relative Error

To verify the PSS algorithm’s outcomes, we compare response distributions with all
parameters randomly sampled to thosewhen only identifiable parameters are randomly
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Algorithm 2 PSS OAT (one-at-a-time)
Input: Nominal p × 1 parameter vector θ∗, t > 0, and n > p values t
Output: Subset θi d ⊆ θ of identifiable parameters
1: Set threshold 0 < η << 1 and specify a nominal input vector θ∗.
2: Construct n × p scaled sensitivity matrix Ŝ(θ∗) having entries Ŝi j = θ∗

j
∂ f
∂θ j

(ti , θ)

3: for k → 1 to p do:
4: Compute the scaled singular value decomposition Ŝ = U�VT , where the

r × r diagonal matrix � contains the singular values σ1 ≥ · · · ≥ σr ≥ 0 of
Ŝ, and r × r orthogonal matrix VT contains the right singular vectors.
Here r = p − k + 1.

5: if (
σr
σ1

)2 > η then

6: Return θi d = θ , i.e. all parameters currently in θ are identifiable.
7: else
8: i) For the singular (column) vector 
vr ∈ VT associated with σr ,

determine the position l of component with the largest magnitude,
which corresponds to the least identifiable parameter.

9: i i) Remove the lth column in ŝ and the corresponding parameter (θl )
from the identifiable subset.

10: end if
11: end for

sampled about nominal values. In the latter case, the non-identifiable parameters are
fixed at their nominal values.

Plotting estimates of kernel density for these response distributions provides a qual-
itative comparison using this approach (Smith 2014). Randomly sampled parameters
are uniformly perturbed ±10% about their nominal values for each parameter. We
compute the responses by solving the model at times t between 1–1,000h, every hour.

We extend this qualitative approach to the full time interval by also computing
a relative error norm for a concentration of interest uk (k = 1, . . . ,m). This error
norm is based on a difference between model simulations of uk at randomly chosen
values of all parameters (θ∗(1 + εX)), and at randomly chosen values of identifiable
parameters (θ∗

i d(η)(1+ εX)), where X is a random variable such that X ∼ U (−1, 1).
In the second term of the numerator, non-identifiable parameters are fixed at their
nominal values (θ∗

nid(η)). We define this relative error norm by,

R(t; η) = ‖uk(t, θ∗(1 + εX)) − uk(t, θ∗
nid(η) ∪ θ∗

i d(η)(1 + εX))‖2
‖uk(t, θ∗(1 + εX))‖2 . (13)

3.3.2 Quantitative Method Based on Energy Statistics

A quantitative technique, based on energy statistics, determines if two sets of samples
are drawn from the same distribution. At a specified confidence level, we use this tech-
nique to accept or reject the null hypothesis H0 that two samples come from the same
distribution. Let X (size n1) and Z (size n2) be random independent samples drawn
from distributions GX and GY , respectively. Here, we associate X with randomly
sampling all parameters θ(η), whereas we associate Z with randomly sampling the
identifiable parameters θi d(η) with the non-identifiable parameters are fixed at their
nominal values.
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The null hypothesis is as follows:

H0 : GX = GY ,which identifies if the two sets of samples are drawn from the

same distribution

Using the strategy detailed in Székely and Rizzo (2013, 2004), we evaluate the energy
distance

εn1,n2(X, Z; η) = 2

n1n2

n1∑
i=1

n2∑
m=1

| Xi − Zm | − 1

n21

n1∑
i=1

n1∑
j=1

| Xi − X j |

and the test statistic
Tn1,n2 = n1n2

n1 + n2
εn1,n2 .

We reject the null hypothesis if Tn1,n2 > Tc, where Tc is defined as

Tc = p = 1

M

M∑
k=1

I (T k
n1,n2 ≤ Tc). (14)

The critical or p-value at the α significance level is the value of Tc for which
P(T k

n1,n2 ≤ Tc) = 1 − α. In (14), I (·) is a indicator function, and this method is
to use to approximate critical values via bootstrapping (Efron and Tibshirani 1993).

4 Results

We solve the initial value problem for themPBPKmodel numerically using theMatlab
(ver. 2022a) routine “ode15s", which utilizes a variable-step, variable-order ODE
solver. We employed this solver as the system of differential equations is stiff due, in
part, to the variety of time scales inherent to the model. Both the absolute tolerance
and the relative tolerance for this routine were set at the value 10−10. We calibrated
these two values to ensure that the final choice yielded accurate results, as determined
by the verification techniques outlined in Sect. 3.3 (see also the Discussion).

In Sect. 4.1, we illustrate our methodological approach for the concentration in
plasma (CP ) based on the nominal parameter values θ∗ for humans discussed in Table
5 in the Appendix. This approach is then applied for concentrations in the brain CSF
and interstitial fluid (ISF) in Sects. 4.2 and 4.3, respectively. We plot the response
curves for these dependent variables over a time interval from zero to 1000h in Fig. 3.

4.1 Concentration in Plasma

Prior to constructing a sensitivity matrix using nominal values θ∗, we compare the
numerical evaluation of scaled sensitivities (7) for the variableCP using both the sensi-
tivity equations and derivative approximations. Specifically, we first verify qualitative
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Fig. 3 Response plots for concentration in a plasma (CP ), b brain ISF (CBI ), and c brain CSF (CBCSF ) at
the set of nominal parameter values shown in Table 5

agreement between a complex-step derivative approximation (6) and solutions of the
sensitivity Eq. (4) for the scaled sensitivities with larger magnitudes in Fig. 4a and b.
We plot all 31 sensitivities of concentration in the plasma, grouped by magnitude, in
Fig. 4. We then create a sensitivity matrix S (11) using these sensitivities which we
use as input for the algorithms presented in Sect. 3.2.

4.1.1 Comparison of PSS Approaches

We implementedAlgorithm1 andAlgorithm2 for PSS, detailed in Sect. 3.2, inMatlab.
For a fixed value of η, typical run times to generate a plot of the relative error norm
(see Fig. 6) for both algorithms were under 30 s on a MacBook Pro laptop (1.7 GHz
Quad-Core Intel i7). We compare results for the sets of the identifiable parameters
determined by these two algorithms in Table 1. Specifically, we compare four values
of the threshold in the range η = 10−12 to η = 10−6. In the case η = 10−6, we
observe that the two subsets of identifiable parameters differ by two elements. We
also observe that the number of identifiable parameters increases as we decrease the
threshold. However, elements of the identifiable parameter subsets deviate further
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Fig. 4 Scaled local sensitivities for the concentration of plasma (CP ) with respect to the 31 parameters,
grouped by magnitude. Sensitivity equations (solid) vs complex-step derivative approximation (dashed) in
(a–d)

as the threshold value is reduced to 10−12. For this case (η = 10−12), the one-at-
a-time approach (Algorithm 2) includes LT , FR, kdeg in the identifiable parameter
subset, whereas the all-at-once approach (Algorithm 1) includes CLU PT , kof fFcRn ,
CLU PBBB in the identifiable parameter subset. Note that both identifiable subsets
contain the following parameters: VP , σTV , VTV , VTE , VTI , σBBB , and σBCSFB .

We then evaluate our results using the qualitative method discussed in Sect. 3.3.1.
We illustrate an underlying distribution plot at t = 100 hr in Fig. 5. These plots
demonstrate that, for the values η = 10−8 and η = 10−12 at t = 100, Algorithm 2
outperforms Algorithm 1 based on the fact that the distributions match more closely
for Algorithm 2. Table 1 also verifies this outcome since for all values of η, we achieve
the lowest average relative error normwithAlgorithm 2.Note that we compute average
relative error norms of concentration in plasma using Eq. (13).

Figure6 shows the relative error norm values of CP for the complete time interval
[0, 1000]. This more comprehensive comparison demonstrates that Algorithm 2 out-
performs Algorithm 1. Although both algorithms yield nested subsets of identifiable
parameters as η is decreased, Algorithm 2 has magnitudes of R that are significantly
lower over the full time interval. Furthermore, Algorithm 2 performs significantly bet-
ter for the cases η = {10−8, 10−10, 10−12} versus the case η = 10−6. However, error
values (R) increase sustantially for times beyond t ≈ 300 h.

We also verify our results with the quantitative energy statistic, summarized in
Sect. 3.3.2. In this case, GX is the distribution constructed by randomly sampling all
parameters, and GY is the distribution generated by randomly sampling identifiable
parameters with fixed unidentifiable parameters. We reject the null hypothesis that
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Table 1 Parameter subset selection result for CP , Id-number of identifiable parameters, R-relative error
norm

η values Id Identifiable parameters (θi d ) R̄1 R̄2

10−6 5 Alg 1: Vp , σTV , kof fFcRn , VTE ,
CLU PBBB Alg 2: VP , σTV ,
kdeg , VTE , VTI

0.17755 0.17642

10−8 7 Alg 1: VP , σTV , CLU PT ,
kof fFcRn , VTE , σBCSFB ,
CLU PBBB Alg 2: Vp , σTV ,
FR, kdeg , VTE , VTI , σBCSFB

0.18418 0.098272

10−10 9 Alg 1: VP , σTV , CLU PT ,
kof fFcRn , VTE , VTI , σBBB ,

σBCSFB , CLU PBBB Alg 2:
LT , VP , σTV , FR, kdeg , VTE ,
VTI , σBBB , σBCSFB

0.18013 0.10277

10−12 10 Alg 1: VP , σTV , CLU PT , VTV
kof fFcRn , VTE , VTI , σBBB ,

σBCSFB , CLU PBBB Alg 2:
LT , VP , σTV , FR, VTV , kdeg ,
VTE , VTI , σBBB , σBCSFB

0.11989 0.023192

Fig. 5 Response distribution plots for CP at t=100; a Algorithm 1 (R1 = 0.2238) versus b Algorithm 2
(R2 = 0.09364) for η = 10−8, (c) Algorithm 1 (R1 = 0.16041) versus (d) Algorithm 2 (R2 = 0.05795)
for η = 10−12
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Fig. 6 Concentration in plasma: a Algorithm 1 and b Algorithm 2

Fig. 7 Quantitative verification with energy statistics using Algorithm 2: a η = 10−6, b η = 10−8, c
η = 10−10, d η = 10−12

these two distributions are the same if test statistic is greater than the critical value
after calculating energy distance, test statistics, and critical values. Throughout the
time interval, we continue this process, marking each rejection with a 0 and each
acceptance with a 1. In Fig. 7, we observe that we reject the null hypothesis for η =
10−6 for almost the entire time interval, whereas we accept the null hypothesis for
{10−8, 10−10, 10−12} for the first 400 hr and reject it for the remainder of the time
interval. Hence, the quantitative and qualitative techniques are in agreement.
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4.2 Concentration in Brain ISF

In this section, we consider the concentration in the brain ISF (CBI ) and repeat the
analysis procedure in Sect. 4.1. The outcomes of the identifiability analysis for this
concentration are compiled in Table 2 for four values of the threshold in the range
η = 10−12 to η = 10−6. Based on these results, the concentration in ISF yields fewer
identifiable parameters than the concentration in plasma for different threshold levels.
Furthermore, as the values of η decrease, elements in the identifiable parameter subset
increase by one or two parameters.

Figure8 shows the relative error norm values of CBI for the complete time inter-
val [0, 1000], for both algorithms. Overall, we observe that both algorithms have
significantly lower relative error values for CBI as compared to CP over the time
domain of interest. We also observe that the error values in Algorithm 2 have mag-
nitudes of R that are lower than those for Algorithm 1 until t ≈ 300 hr for the cases
η = {10−8, 10−10, 10−12}. Furthermore the error curves become less sensitive to the
threshold values as the magnitude of η decreases.

We also verify our results with the quantitative energy statistic (Fig. 8c).We observe
that all four threshold values yield an identical plot, andwe can conclude thatwe always
accept our hypothesis for the full time interval. Hence, the quantitative and qualitative
techniques are in agreement.

4.3 Concentration in Brain CSF

Lastly, we consider the concentration in the brain CSF (CBCSF ) and repeat the analysis
procedure in Sects. 4.1 and 4.2. The outcomes of the identifiability analysis for this
concentration are compiled in Table 3 for four values of the threshold in the range
η = 10−12 to η = 10−6. We note that the results in Table 3 are very similar to those
in Table 2. In particular, the identifiable parameter subset for the case η = 10−12 is
identical to that corresponding entry in Table 2 forCI SF . This suggests that, in terms of
identifiability, the concentrations in ISF and CSF yield similar information regarding
the identifiable parameter subset.

Figure 9a and b demonstrate the relative error norm values for Algorithm 1 and 2,
respectively. Similar to concentration in brain ISF, the relative error norm for concen-
tration in brain CSF is also significantly smaller than for plasma across the full time
domain. In this case, these error values are also slightly smaller across time for Algo-
rithm 2 as compared to Algorithm 1. We present a quantitative validation in Fig. 9c.
We observe that the null hypothesis is accepted over the full time domain of interest.

5 Discussion and Conclusions

In this investigation, we presented a systematic approach for identifiability analysis
of PBPK models based on local sensitivities in the absence of experimental data,
but when a time domain of interest and a set of responses of interest are prescribed.
Techniques were also developed for evaluating the accuracy of identifiable parameter
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Fig. 8 Qualitative verification for concentration in brain ISFwith aAlgorithm1bAlgorithm2 c quantitative
verification with Algorithm 1

subsets with respect to random perturbations about a set of nominal parameter values.
These techniques were developed and evaluated in the context of a minimal brain
PBPK model for investigating antibody therapeutics in the CNS (Bloomingdale et al.
2021) We considered three key antibody concentrations: the antibody concentrations
in plasma (CP ), brain BSF (CBSF ) and brain ISF (CI SF ), over a time domain of
interest spanning up to 1000h. Our approach includes a highly accurate complex-step
approximation of local sensitivities. The verification component in our approach is
used to evaluate accuracy of the set of identifiable parameters using both a relative
error norm across the full time domain and energy statistics.

Our findings reveal that accuracy of our parameter identifiability analysis for CP

is much higher when using a one-at-a-time algorithm (Algorithm 2) versus an all-at-
once approach (Algorithm 1). However, for both approaches, parameter identifiablility
becomes less accurate for CP for times beyond t ≈ 300 h. By contrast, identifiability
analysis for CBSF and CBI demonstrated greater accuracy for all times and was also
less dependent on the choice of algorithm.

To investigate this difference further, we calculate average sensitivities across the
time interval for the set of all identifiable parameters (Algorithm 2, η = 10−12) in
Table 4. In particular, for each of the three concentrations of interest, we list the iden-
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Fig. 9 Qualitative verification for concentration in brain CSFwith aAlgorithm 1 bAlgorithm 2 c quantative
verification with Algorithm 1

tifiable parameters in decreasing order of the magnitude of their average sensitivities.
With this effective ranking and a screening threshold of 10−7, we observe that CP

retains 5 parameters (σT V , VP , VTE , kdeg, FR). In contrast, CBI retains two param-
eters (σBBB, σBCSFB) and CBCSF retains one parameter (σBCSFB). Furthermore, the
parameters retained for both CBI and CBCSF have an upper bound of 1 and nominal
values of 0.99 and 1. Taken together, these observations suggest that achieving low
relative error norms for CP is more challenging than for CBI and CBCSF . We believe
that this is due to the wider exploration of parameter space in the random perturba-
tions of the most sensitive parameters about the nominal values (Sect. 4.1); the most
identifiable parameters for CP are greater in number and less constrained.

Since PBPK models have a diverse range of inherent and interacting time scales,
determining an appropriate balance between analyzing quantities of interest on phys-
ically meaningful time domains, and robustly determining parameter identifiability is
an important consideration in applying this methodology. Our overall approach not
only permits the user to specify the time domain of interest for the PSS, but also
enables verification of identifiable parameter subset accuracy at an arbitrary time in
the domain. This is in contrast to structural identifiability analysis, which may not
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capture variations in parameter identifiablilty with respect to time and will not flag
parameters that are locally unidentifiable about a particular set of nominal values, but
not among the subset of parameters deemed to be (globally) unidentifiable. We note
that, for simpler dynamic models, the ability to identify a small number of time scales
can be used to devise a more tailored PSS approach that generates multiple sets of
identifiable parameter candidates (Pearce et al. 2021).

For all values of η considered, CP has a greater number of identifiable parameters
than CBI and CBCSF ; in the case η = 10−12, CP has 10 identifiable parameters while
CBI and CBCSF both have 7 identifiable parameters. This outcome is not unexpected
since the mPBPK model has more internal connections among compartments in the
brain compartment of the model as compared to the plasma component of the model
(Fig. 2).

Overall, our results demonstrate that our PSS algorithm based on local identi-
fiablity analysis, combined with verification techniques, provides a systematic and
robust assessment of identifiable parameter subsets. Furthermore, the accuracy of
these subsets depends on both the time at which predictions for key responses are
evaluated as well as the nominal parameter values. By contrast, structural identifi-
ablity analysis (Slob et al. 1997; Yates 2006) determines identifiable subsets that are
likely smaller, since they would necessarily need to be valid across the entire time
domain of interest. Future studies could combine the two approaches, but this may
be challenging since our attempt to perform structural identifiability analysis on our
model using the SIAN package (Hong et al. 2019) failed to yield results after running
for over 20h (MAPLE 2021, MacMini, Apple M1 Chip). Nominal parameter values
are often a starting point for parameter estimation in developing extended models;
accurately identifying subsets of non-identifiable parameters can lead to more robust
optimization during parameter estimation. Robust and accurate identifiability analy-
sis for PBPK models is also a crucial step prior to carrying out Bayesian methods
for parameter estimation or uncertainty quantification. The ability to accurately and
reliably fix a subset of parameters at their nominal values can improve and accelerate
performance of associated algorithms like Markov chain Monte Carlo (MCMC).

Funding This study was funded in part by grant DMS-1638521 from the National Science Foundation.

Availability of data andmaterials Data sharing is not applicable to this article as no datasets were analyzed
or generated during the current study.

Appendix A

The brain minimal PBPK (mPBPK)model (Bloomingdale et al. (2021)) comprises the
following system of ordinary differential equations for the 16 antibody concentrations:

1. Plasma (CP )

VP · dCP

dt
= (QT − LT ) · CTV + (QB − LB) · CBV + (LT + LB) · CL

−QT · CP − QB · CP (15)
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Table 5 Parameter values for
human in the model of
Bloomingdale et al. 2021

Parameter Human Unit

FR 0.715 –

FRB 0.715 –

kdeg 26.6 1/h

konFcRn 5.59E+08 1/M/h

kof fFcRn 23.85 1/h

VP 3.1259 L

VTV 1.6814 L

VTE 0.3352 L

VTI 11.0988 L

VBV 0.0319 L

VBEBBB 0.0066 L

VBEBCSFB 6.5904e−04 L

VBI 0.2610 L

VBCSF 0.1425 L

VL 0.2743 L

QT 160.4592 L/h

QB 21.4533 L/h

LT 0.3209 L/h

LB 0.0345 L/h

QBECF 0.0105 L/h

QBCSF 0.024 L/h

σTV 0.9233 –

σTL 0.2 –

σBBB 1 –

σBCSFB 0.9974 –

σBI SF 0.2 –

σBCSF 0.2 –

CLU PT 0.1844 L/h

CLU PBCSFB 2.0081e−05 L/h

CLU PBBB 2.0081e−04 L/h

CLU PB 2.2089e−04 L/h

FcRn 4.9820e−05 M

kCLU PT 0.55 1/h

kCLU PB 0.03047 1/h

SABBB 17 m2

SABCSFB 1.7 m2

fBBB 0.9091 –
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2. Tissue vascular (CTV )

VTV · dCTV

dt
= QT · CP − (QT − LT ) · CTV − ((1 − σTV ) · LT · CTV )

−CLU PT · CTV + CLU PT · FR · CTE,B (16)

3. Tissue endosome (unbound) (CTE,U )

VTE · CTE,U

dt
= CLU PT · (CTV + CTI ) − VTE · (konFcRn · CTE,U · CTFcRn,U

−kof fFcRn · CTE,B + kdeg · CTE,U ) (17)

4. Tissue endosome (FcRnbound) (CTE,B )

VTE · CTE,B

dt
= VTE · (konFcRn · CTE,U · CTFcRn,U − kof fFcRn · CTE,B )

−CLU PT · CTE,B (18)

5. Tissue interstitium (CTI )

VTI · CTI

dt
= (1 − σTV ) · LT · CTV − (1 − σTL ) · LT · CTI

+CLU PT · (1 − FR) · CTE,B − CLU PT · CTI (19)

6. Brain vascular (CBV )

VBV · CBV

dt
= QB · CP − (QB − LB) · CBV − (1 − σBBB) · QBECF · CBV

−(1 − σBCSFB) · QBCSF · CBV − CLU PB · CBV

+CLU PBBB · FRB · CBEBBB,B

+CLU PBCSFB · FRB · CBEBCSFB,B (20)

7. BBB endosome (unbound) (CBEBBB,U )

VBEBBB · CBEBBB,U

dt
= CLU PBBB · (CBV + CBI ) + VBEBBB · (−konFcRn ·

CBEBBB,U · CBBBBFcRn,U + kof fFcRn · CBEBBB,B

−kdeg · CBEBBB,U ) (21)

8. BBB endosome (FcRnbound) (CBEBB,B )

VBEBBB · CBEBBB,B

dt
= VBEBBB · (konFcRn · CBEBBB,U · CBBBBFcRn,U

−kof fFcRn · CBEBBB,B )

−CLU PBBB · CBEBBB,B (22)

123



Local Identifiability Analysis, Parameter... Page 27 of 30 12

9. Brain interstitium (CBI )

VBI · CBI

dt
= (1 − σBBB) · QBECF · CBV − (1 − σBI SF ) · QBECF · CBI

+CLU PBBB · (1 − FRB) · CBEBBB,B − CLU PBBB · CBI

−QBECF · CBI + QBECF · CBCSF (23)

10. BCSFB endosome (unbound) (CBEBCSFB,U )

VBEBCSFB · CBEBCSFB,U

dt
= CLU PBCSFB · CBV + CLU PBCSFB · CBCSF

+VBEBCSFB · (−konFcRn · CBEBCSFB,U

·CBBCSFBFcRn,U + kof fFcRn · CBEBCSFB,B

−kdeg · CBEBCSFB,U ) (24)

11. BCSFB endosome (FcRnbound) (CBEBCSFB,B )

VBEBCSFB · CBEBCSFB,B

dt
= VBEBCSFB · (konFcRn · CBEBCSFB,U

·CBBCSFBFcRn,U − kof fFcRn · CBEBCSFB,B )

−CLU PBCSFB · CBEBCSFB,B (25)

12. Brain CSF (CBCSF )

VBCSF · CBCSF

dt
= (1 − σBCSFB) · QBCSF · CBV − CLU PBCSFB · CBCSF

+CLU PBCSFB · (1 − FRB) · CBEBCSFB,B + QBECF · CBI

−(1 − σBCSF ) · QBCSF · CBCSF − QBECF · CBCSF (26)

13. Lymph (CL )

VL · CL

dt
= (1 − σTL ) · LT · CTI + (1 − σBCSF ) · QBCSF · CBCSF

+(1 − σBI SF ) · QBECF · CBI − (LT + LB) · CL (27)

14. FcRn concentration in tissue endosome (CTFcRn,U )

VTE · CTFcRn,U

dt
= −VTE · (konFcRn · CTE,U · CTFcRn,U − kof fFcRn · CTE,B )

+CLU PT · CTE,B (28)
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15. FcRn BBB endosome (CBBBBFcRn,U )

VBEBBB · CBBBBFcRn,U

dt
= VBEBBB · (−konFcRn · CBEBBB,U · CBBBBFcRn,U

+kof fFcRn · CBEBBB,B )

+CLU PBBB · CBEBBB,B (29)

16. FcRn BCSFB endosome (CBBCSFBFcRn,U )

VBEBCSFB · CBBCSFBFcRn,U

dt
= VBEBCSFB · (−konFcRn · CBEBCSFB,U ·

CBBCSFBFcRn,U + kof fFcRn · CBEBCSFB,B )

+CLU PBCSFB · CBEBCSFB,B (30)

This system of equations is augmented with initial conditions. The first concentration
is prescribed an initial value Dose0

VP
, where Dose0 = Bodyweight×Doseamount

Molecularweight
×1000 with

Bodyweight = 70kg, Molecularweight = 150kDa, Doseamount = 10mg/kg. The
subsequent 12 concentrations are prescribed initial values of zero, and the remain-
ing three concentrations (CTFcRn,U , CBBBBFcRn,U , CBBCSFBFcRn,U ) are all prescribed a
nonzero initial value of 0.4982 × 10−4. In this study, a 10mg/kg dosage was given
over 1000h to a 70kg individual using a 1-hour step size.
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