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SUMMARY

Cis-regulatory elements (CREs) are important sequences for gene expression and for plant biological pro-

cesses such as development, evolution, domestication, and stress response. However, studying CREs in plant

genomes has been challenging. The totipotent nature of plant cells, coupled with the inability to maintain

plant cell types in culture and the inherent technical challenges posed by the cell wall has limited our under-

standing of how plant cell types acquire and maintain their identities and respond to the environment via CRE

usage. Advances in single-cell epigenomics have revolutionized the field of identifying cell-type-specific CREs.

These new technologies have the potential to significantly advance our understanding of plant CRE biology,

and shed light on how the regulatory genome gives rise to diverse plant phenomena. However, there are sig-

nificant biological and computational challenges associated with analyzing single-cell epigenomic datasets.

In this review, we discuss the historical and foundational underpinnings of plant single-cell research, chal-

lenges, and common pitfalls in the analysis of plant single-cell epigenomic data, and highlight biological chal-

lenges unique to plants. Additionally, we discuss how the application of single-cell epigenomic data in

various contexts stands to transform our understanding of the importance of CREs in plant genomes.
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INTRODUCTION

Multicellular eukaryotes arose due to evolutionary pres-

sures driving the sub-functionalization of cells into dedi-

cated roles, allowing organisms to have functions that are

more advanced than its cellular components. Cellular spe-

cialization results from differential use of the genome

between cell types, which is partly driven by variable use

of cis-regulatory elements (CREs) that are important for

gene transcription and silencing. In plants, cell types have

evolved specialized metabolisms and unique cell wall mor-

phologies that link form to function enabling cells to fill

their structural and physiological roles in planta (Alberts

et al., 2002). Plant cell structures fascinated early plant sci-

entists; the observation of microscopic cell wall ‘cages’

within onion leaves led Robert Hooke to develop the term

‘cell’ and variable cell wall morphologies were first used to

classify plant cell types (Hooke, 1665). However, plant

cell-type definitions have been continually refined by

sequential scientific breakthroughs such as the increased

resolution of microscopy and advances in molecular

genetic techniques. Advances in single-cell genomics allow

measurement of cell-type-specific transcripts and CREs,

which is a bettering our understanding of the gene regula-

tory networks present in cells, and how they impact all

manner of phenomena in planta. However, there are

numerous technical and biological challenges associated

with single-cell genomics data that must be overcome

before these questions can be addressed.

In this perspective, we discuss the historical ways

plant cell types have been described and how cell-type

definitions have evolved. We examine how cell types

have been defined genetically, and how this identified

marker genes critical for cell-type function. Additionally,

we discuss current biological and technical challenges

associated with the single-cell genomics identification of

cell-type-specific regulatory sequences. Lastly, we high-

light how emerging technologies will overcome some of

these challenges, improving the ability to study the
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cellular context in which molecular processes affect plant

phenotypes.

PLANT CELL TYPES – A HISTORICAL PERSPECTIVE

Scientists have been describing the cellular makeup of

plants for centuries. Plant cell biology began with the

advent of microscopy and histology, with early descrip-

tions of stomata and guard cells dating back to 1671

(‘Anatomie des plantes’, n.d.). This research laid the

groundwork of plant anatomy and established early

models of plant cell types. Cells were classified based on

the structure of their cell walls, with parenchyma having

thin non-lignified cell walls, collenchyma having thick non-

lignified cell walls, and sclerenchyma having lignified cell

walls (Imperatorskaia ︡akadem�ıia ︡nauk (Russia) et al.,

1868). Although critical, these early descriptions of plant

‘cell types’ had limited resolution and overlooked cells with

unique structure and function. Advances in microscopy in

the following centuries facilitated more accurate descrip-

tions of plant cell types. Increasing microscopy resolution

produced descriptions of cell-type subclasses within the

classical definitions of parenchyma, collenchyma, and scle-

renchyma (Leroux, 2012). This led to the first described

companion cells, sieve tube elements, and bundle sheath

cells (Strasburger, 1888; Wilhelm, 1880). These newly

described cell types were not just categorized but were

described in their developmental and gross anatomical

contexts within the plant. Foundational work by Esau and

Sharman combined microscopy with serial sectioning

experiments, describing vascular development in multiple

plant species (Esau, 1939, 1954; Sharman, 1942). This com-

bination of techniques revealed the cellular patterns in

mature tissue, and how these arrangements emerge from

their cellular precursors (Esau, 1943; Sharman, 1942). Fur-

ther work focused on the meristem, a collection of plant

stem cells that divide to produce new growth. Tracking cel-

lular division and maturation from meristems provided an

early understanding of plant cell-type differentiation,

revealing how anatomical patterns are established by

development (Evert et al., 2006).

Early on it was understood that DNA encoded the

genetic instructions which give rise to plant form, but our

understanding of the genetic processes that controlled cell-

fate decisions were limited. Initial genetic analysis exploited

the clonal development of mutant sectors with visible phe-

notypes. In brief, these studies used mutagens, like X-rays,

to induce somatic mutations in progenitor cells to deter-

mine the cell’s contributions to organismal phenotype. In

plants, mutant-based studies demonstrated that manipula-

tion of DNA sequence could radically change plant pheno-

types and cell fates (Hake & Freeling, 1986; Sinha &

Hake, 1990). For instance, stable mutagenesis gave rise to

liguleless-1 mutants that have radically different leaf mor-

phology with a misplaced ligule on the margin of the leaf

blade (Becraft & Freeling, 1991). However, these studies

were limited in their capacity to identify the sequence caus-

ing these morphological alterations. This quickly changed

with advances in molecular genetic techniques that allowed

for pinpointed manipulation of plant DNA.

In the 1990s, molecular genetic techniques allowed for

fine-scale alteration of DNA and inquiry into the genetic

processes driving the emergence of specific cell types.

Early genetic screens found that cell identity could be

ablated by single-gene knockouts. One excellent example

is shortroot (shr) in Arabidopsis thaliana (Benfey et al.,

1993). In shr mutant plants, root endodermis cells fail to

form, resulting in significantly stunted root growth and

illustrating that SHR is indispensable for endodermis cell-

type identity. Further analysis of SHR revealed it is a

mobile transcription factor critical for cell fate differentia-

tion (Helariutta et al., 2000). The identification of SHR and

other transcription factors that defined cell identity gener-

ated questions aimed at how cell fates were encoded

within the genome. These questions remain the subject of

active investigation, with ongoing experiments continually

offering deeper insights into the molecular events that

drive plant cell-fate decisions.

THE GENETIC UNDERPINNINGS OF PLANT CELL

IDENTITY

Plant cell development and function result from a complex

interplay of genes responsible for determining cell fate and

maintaining cellular identity. Identification of key develop-

mental regulators, like SHR, demonstrated that the develop-

ment of entire cell lineages depended on the expression of

a few genes. Determining how and where these essential

‘marker’ genes of cell identity were expressed became a

central question in plant genetics. Subsequently, molecular

genetic approaches such as mutagenesis screens, and

reporter gene assays, were developed to assess the cellular

context in which these marker genes were expressed. These

advancements resulted in the identification of many other

genes critical in cell-type identity. For example, GLABRA1

(GL1) in A. thaliana controls trichome fate, as gl1 null plants

generated by T-DNA insertion had no trichomes on the leaf

and stem (Figure 1a) (Herman & Marks, 1989; Oppenheimer

et al., 1991). Despite establishing the necessity of GL1 for tri-

chome formation, this finding did not elucidate its expres-

sion pattern or how GL1 facilitated trichome development.

This knowledge gap led to the creation of promoter-reporter

lines, in which a gene’s transcriptional regulatory

sequences (promoters and CREs) are fused to a reporter

(e.g., GUS, GFP) to illuminate where and when the gene is

expressed (Birnbaum et al., 2003; Brady et al., 2003; Helar-

iutta et al., 2000; Stadler et al., 2005). In GL1 reporters,

expression was found to change throughout development;

in early development, GL1 is expressed throughout the

early leaf primordia, but, as the epidermis matures, only
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trichomes precursors maintain high GL1 expression (Kirik

et al., 2001; Larkin et al., 1994; Oppenheimer et al., 1991).

Research into genes crucial for cell development expanded

reporter methods by combining cell-type reporters with

protoplast isolation to isolate cell populations and conduct

genome-wide identification of transcription factors associ-

ated with specific cell types (Birnbaum et al., 2005; Toufighi

et al., 2005). Application of these genome-wide assays iden-

tified genes crucial for the development of particular cell

types. Presently, cell-type-specific genetic inquiry in plants

has the potential to be significantly enhanced through

single-cell methodologies, allowing for refined discrete

measurement from individual cells and empowering our

understanding of plant cell fate decisions.

While genes important in the development of cell types

are critical to our understanding of how cell types differenti-

ate, they do not reveal much about plant cell-type function.

This has led to researchers looking for genes that are impor-

tant to the function of mature cell types. For instance, genes

such as SUGARS WILL EVENTUALLY BE EXPORTED

TRANSPORTER 13 (ZmSWEET13), a sucrose transporter, is

expressed specifically in bundle sheath cells and phloem

parenchyma (Bezrutczyk et al., 2018, 2021). Knockouts of

ZmSWEET13 impair phloem loading increasing sucrose

concentrations in leaves (Figure 1b). Although not required

for abaxial bundle sheath cell development, ZmSWEET13

represents a key gene required for cell-type-specific func-

tion. Similarly, Arabidopsis SUCROSE-PROTON SYMPOR-

TER 2 (SUC2) drives sieve element sucrose loading through

companion cell-specific expression (Stadler & Sauer, 1996).

suc2 knockout plants are stunted due to impaired sucrose

transport, but companion cell identity is unaffected

(Gottwald et al., 2000). Genes such as SUC2 and ZmSWEET

further our understanding of the genetic partitioning of

Figure 1. Plant cell-type markers define either unique developmental, metabolic, or physiological states.

(a) Model for proper function of GLABRA1 in Arabidopsis thaliana (GL1), which promotes trichome development (left). Knockouts of gl1 remove the capacity for

protoderm cells to differentiate into trichomes, generating additional pavement cells (right).

(b) ZmSWEET13s (purple) are required for the transport of sucrose from bundle sheath cells into the vasculature in Zea mays. zmsweet13 knockouts raise

sucrose concentrations in bundle sheath cells.

(c) Hypothetical example of a de novo discovered marker gene identified by single-cell RNA-seq. Expression of the de novo discovered marker, Unknown, is lim-

ited to companion cells, as opposed to pavement cells, mesophyll cells, and bundle sheath cells. Single-cell RNA-seq reads are colored by their strand, with pur-

ple reads representing the positive strand and yellow reads representing the negative strands.
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functions between plant cell types. This genetic division

enhances our perspective of what constitutes a plant cell

type, transitioning from definitions based on histology to

those based on gene expression and the function of discrete

genetic loci. Although finding cell-type-specific functional

genes is valuable, their identification is generally done by

investigating a single gene at a time, requiring a significant

investment of time and resources. Single-cell genomics pro-

vides an opportunity to discover additional genes important

to the function of specific cell types on a genome-wide

scale, across all cell types sampled at a single time. This

influx of information will quickly evolve our understanding

of cell types from a few key loci to combinations of genes

critical for both development and function.

Single-cell genomics allows the measurement of chro-

matin states and mRNAs in thousands of individual cells

(Buenrostro, Wu, Litzenburger, et al., 2015; Cusanovich

et al., 2015; Jaitin et al., 2014). Plant single-cell genomics is

especially exciting given the lack of cell-type-specific geno-

mic measurements outside of model plant systems. The

information-richness and high complexity of single-cell

datasets are useful because it allows for a detailed under-

standing of how different cell types utilize the genome.

However, single-cell technologies remove cells from the

sampled tissue, erasing any knowledge about position or

identity, and complicating the identification of each cell’s

cell type. Therefore, annotation relies on molecular marker

genes to reveal cell identity post hoc. This annotation is

confounded by the gradient of transitional cell identities

that underpin differentiation. For instance, in A. thaliana

guard cell differentiation from protoderm involves five

state transitions, necessitating additional markers to accu-

rately delineate cellular states (Chen et al., 2020). These

transitory states make having well-established develop-

mental marker genes critical to the accurate annotation of

single-cell datasets. For this reason, the first plant

single-cell RNA-seq (scRNA-seq) analysis was conducted

on A. thaliana roots because root cell types have well-

described genes associated with specific cell types and

developmental stages (Ryu et al., 2019; Shulse et al., 2019).

Once single-cell datasets are accurately annotated, they

can be leveraged in powerful ways. Testing for differen-

tially expressed genes in annotated cell types allows for

the identification of novel genes potentially critical in

proper cell-type function. One scRNA-seq A. thaliana study

used annotated root cell types to discover 50 genes with

cell-type-specific expression patterns (Figure 1c) (Zhang

et al., 2019). This de novo discovery of cell-type-specific

genes provides a wealth of candidate genes to target and

study, which will further reveal their importance in specific

cell types of interest. Single-cell genomics will increase the

speed of cell-type-specific gene identification, improving

our understanding of which loci are critical for proper cell-

type function and development in plants.

THE REGULATORY GENOME SPECIFIES HOW CELL TYPES

ARE ESTABLISHED

Although scRNA-seq will improve our knowledge of cell-

type-specific gene expression, our understanding of the

processes driving these expression patterns remains poor.

Pairing of single-cell technologies with assays identifying

the regulatory genome stands to greatly enhance our under-

standing of how the genome can regulate the expression of

both developmental and functionally important genes. Cell-

type-specific expression is the result of different cells using

the same genetic blueprint encoded in the genome in differ-

ent ways. Cell fates are determined by the interpretation,

enhancement, or silencing of instructions encoded in DNA

which are driven by CREs (Andersson et al., 2015). CREs are

non-coding sequences of DNA composed of transcription

factor (TF) binding sites. TFs bind CREs within nucleosome-

depleted sequences, to recruit co-factors, remodel chroma-

tin, and regulate gene transcription (Lai et al., 2019). This

cis-regulation has implications for plant development, envi-

ronmental response, and evolution (Cramer, 2019).

CREs often work in concert and are then referred to as

cis-regulatory modules (CRMs) (Figure 2) (Schmitz et al.,

2022; Shlyueva et al., 2014). CRMs are further subdivided

as ‘enhancers’, or ‘silencers’, based on the ability to recruit

co-activators or co-repressors to genes (Gisselbrecht et al.,

2020; Pang & Snyder, 2020; Shlyueva et al., 2014). Identifi-

cation of CRMs genome-wide is routinely performed with

assays that measure accessible chromatin environments,

as these are the regions that are open to TF binding.

Methods such as DNase-seq, MNase-seq, as well as FAIRE-

seq have been used to study CRMs genome-wide (Boyle

et al., 2008; Giresi et al., 2007; Johnson et al., 2006). Cur-

rently, the most widely adopted method to investigate

accessible chromatin is Assay for Transposase-Accessible

Chromatin followed by sequencing (ATAC-seq) (Buenros-

tro, Wu, Chang, & Greenleaf, 2015). In brief, ATAC-seq

works by utilizing a hyperactive Tn5 transposase to directly

insert sequencing adapters into accessible chromatin

regions of DNA (Figure 2). The fragments generated are

then amplified, sequenced, aligned to the genome, and

areas more accessible than the genomic background are

computationally identified (Figure 2) (Yan et al., 2020).

These peaks, named accessible chromatin regions (ACRs),

are well-accepted proxies for CRMs, and thus collections of

CREs (Bajic et al., 2018; Lu et al., 2017).

With the widespread adoption of ACR identification,

numerous discoveries have been made about the regula-

tory nature of DNA in plant genomes. For instance, it has

recently been revealed that ACRs frequently operate on

genes >50 kilobases away in plants with large genomes

(Ricci et al., 2019). Additionally, variable ACR usage has

been implicated in biotic and abiotic stress responses, pro-

viding more insights into how the genome tunes
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expression to the environment. (Han et al., 2020; Raju, 2020;

Zeng et al., 2019; Zhou et al., 2022). However, ACRs provide

no information about whether these regions are enhancing

or repressing transcription. This can be predicted by over-

laying ACRs with ChIP-seq data which measures the his-

tone modifications nearby (Lu et al., 2019; Oka et al., 2017;

Ricci et al., 2019). ACRs that are active are flanked by his-

tone acetylation, whereas those that are actively repressing

a target gene are flanked by histone methylation and Poly-

comb silencing (Lu et al., 2019; Ricci et al., 2019). Recently,

the ability to apply ATAC-seq to single cells (scATAC-seq)

was developed, allowing for cell-type-specific ACR identifi-

cation and measurement (Buenrostro, Wu, Litzenburger,

et al., 2015; Cusanovich et al., 2015).

SINGLE-CELL ATAC-SEQ, EMERGING PARADIGMS, AND

TANGIBLE VALUE

ScATAC-seq has revealed differential usage of ACRs in cel-

lular identity and development in plant models (Dorrity

et al., 2021; Farmer et al., 2021; Marand et al., 2021).

Although the application of scATAC-seq techniques to

plants stands to teach us much about cis-regulatory biol-

ogy, implementing these techniques are non-trivial and

come with a series of caveats and challenges. The ability

to deconvolute cellular heterogeneity in plant tissue allows

for the identification of cell-type-specific ACRs, which can

be used to identify TFs and CREs important to cell func-

tion. (Marand et al., 2021). Intriguingly, scATAC-seq also

offers a method to study developmental trajectories within

cell types. Key genes or CREs that operate differently

through development can be identified by ordering cell lin-

eages from progenitor to mature cell type (Nelms & Wal-

bot, 2019; Trapnell et al., 2014). This ‘pseudo time’ method

was applied to root hair development in Oryza sativa, as

well as phloem companion cell development in Z. mays

root. In O. sativa, pseudotime analysis found 13 000 ACRs

and 3000 genes important in the transition into root hair

cell-type identity (Zhang et al., 2021). In Z. mays, it was

found that as cells differentiate from quiescent center cells

to phloem companion cells the fractions of ACRs that were

accessible decreased significantly (Marand et al., 2021).

Pseudotime analyses is just one powerful example of the

usage of scATAC-seq. Additional application in plants will

reveal the importance cis-regulation plays in evolution,

stress responses, and adaptation. While exciting, the analy-

sis and annotation of these datasets are computationally

challenging and require awareness of current limitations.

The computational challenges associated with

scATAC-seq data analysis are primarily due to the low

number of Tn5 integration events per cell. For example,

upwards of 99% of the chromatin accessibility measure-

ments genome-wide are often missing from any particular

cell (Buenrostro, Wu, Litzenburger, et al., 2015). This data

scarcity has significant ramifications in scATAC-seq analy-

sis. The first step of scATAC-seq analysis is isolating high-

quality cells. One way of doing this is by ‘pseudo-bulking’,

Figure 2. Deciphering the regulatory genome with ATAC-seq. Top: Gene annotation TF Motifs: Transcription factor binding motifs. Colors represent different

motifs. Motifs occur in clusters referred to as cis-regulatory modules (CRMs). Gray arrow highlights a specific TF motif acting as a CRE. ATAC-seq: Example of

aligned reads from an ATAC-seq experiment. Note that reads align heavily with CRM regions. Depth: Histograms of the above read depth. ACRs: Identified

accessible chromatin regions from the read depth above. Chromatin looping: An example of how ACRs do not always operate on the closest gene. The line rep-

resents the chromatin interaction between two ACRs.
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which mimics bulk ATAC-seq by aggregating the reads

from all nuclei, to identify peaks (ACRs) (Chen et al., 2019).

Then broken nuclei are removed by estimating the Fraction

of Reads in Peaks (FRiP) per nucleus, and removing nuclei

with Tn5 integration events below a FRiP threshold (gener-

ally >0.25). Next, doublets, which are instances where two

cells are mistakenly sequenced as one are removed by

comparing them against an in silico generated doublet set

of cells (Wolock et al., 2019). Based on the single-cell tech-

nologies used, the top 5–10% of cells with the highest

‘doublet score’ are removed. The next steps annotate simi-

lar cells into cell types. Annotation starts by generating a

binary matrix of Tn5 insertions in ACRs by cells, which is

fed into dimensionality reduction algorithms. These algo-

rithms, such as singular value decomposition (SVD) or

principal component analysis (PCA), cluster cells into simi-

lar groups by identifying correlated features (ACR pres-

ence/absence), which reveal underlying patterns and

relationships among the cells (Figure 3a,b). The resulting

principal components, or meta-features, represent high-

dimensional data (ACR accessibility) in low-dimensional

space. Cell proximity in this low dimensional is a proxy for

cell relatedness, either biological or technical (Figure 3b).

Presently, either Uniform Manifold Approximation and Pro-

jection (UMAP) or t-Distributed Stochastic Neighbor

Embedding (t-SNE) are used to visualize scATAC-seq data.

These techniques plot cells in 2D while trying to preserve

the high-dimensional space computed above (Figure 3b)

(Maaten & Hinton, 2008; McInnes et al., 2018). One should

not make biological conclusions about relative distance

and space between cells, as recent evidence points to the

inherent flaws in this approach (Chari et al., 2021). For

instance when using three-dimensional datasets with

known spatial relationships between points, t-SNE, or

UMAP processing scrambles the relative distance between

points, indicating that the 2D distances generated are arti-

factual (Chari et al., 2021). From this embedding, discrete

cell clusters are assigned using community detection

methods such as Louvain or Leiden algorithms (Blondel

et al., 2008; Waltman & van Eck, 2013). In brief, these

methods work by trying to identify clusters of cells in high-

dimensional space, which maximizes the differences

between groups and minimizes the differences within

groups based on a given parameter set. Clusters are then

analyzed with the assumption that they are representative

of roughly homogenous cell types. Annotating clusters to

a cell type involves approximating gene expression of cell-

type markers by summing gene body and promoter chro-

matin accessibility (Cusanovich, Hill, et al., 2018). This

approximation, while valuable, is imperfect, as chromatin

accessibility does not always correlate with gene expres-

sion (Figure 3d). Based on the specific chromatin accessi-

bility patterns of known marker genes, clusters are

assigned cell types (Figure 3c). The clustering and

annotation of cell types remain one of the most time-

consuming and difficult steps in scATAC-seq analysis. Cur-

rent heuristic methods rely on user-based decisions that

are often difficult to replicate (Gibson, 2022). As the field

matures, more consistent annotation metrics are needed to

ensure proper and timely cell-type assignment.

ScATAC-seq analysis is a deeply iterative process. For

instance, selecting different ACRs to include in dimension-

ality reduction can drastically alter cluster membership and

generate different results. This requires researchers to try

different selections of ACRs to find a set that reduces tech-

nical artifacts but maximizes biological interpretation. Tech-

nical artifacts can have significant effects on annotations

and interpretation of results. For example, cells with a high

density of Tn5 insertion events per cell can cluster together,

thus the underlying embedding does not represent one of

biological variation, but of technical variation (Figure 3b).

Technical artifacts can be even more misleading, with cells

being assigned specific clusters due to the lack of data,

rather than the presence of genuine differences.

Once annotations are finalized, cell-type-specific ACRs

are identified. Combining cells of the same cell type via ‘-

pseudo-bulking’ allows for the robust identification of

ACRs for individual cell types (Cusanovich, Reddington,

et al., 2018; Domcke et al., 2020). This deconvolution of

tissue-level chromatin accessibility to cell-type resolved

accessibility is where the power of a single cell lies. While

identifying ACRs from cell-type-level data is straightfor-

ward, classifying these ACRs as cell-type-specific or

broadly accessible is challenging and is heavily impacted

by the statistical approach chosen (Figure 3e). Making this

categorization more opaque is cell types that share devel-

opmental origins often have similar chromatin accessibility

patterns (Cusanovich, Hill, et al., 2018; Domcke et al.,

2020). This leads to an additional class of ACRs that are

cell-type-restricted or limited in their chromatin accessibil-

ity to a few cell types, but not truly cell–type specific.

Recent plant scATAC-seq studies have found between 23%

and 27% cell-type-restricted ACRs in given species (Marand

et al., 2021; Zhang et al., 2021). However, the number and

proportion of ACRs that are cell-type specific is unknown,

and being established in model systems with more

exhaustive sampling (Chen et al., 2018; Domcke et al.,

2020). Whether these cell-type-specific ACRs are critical to

cell-type function is uncertain and requires follow-up

molecular genetics studies. Finally, scATAC-seq provides

exciting opportunities to begin deciphering both cis and

trans regulators of the genome. Recent studies have

shown the ability to link TFs with their likely binding sites

in a cell-type-specific manner, by correlating the chromatin

accessibility of transcription factor gene bodies with the

accessibility of their corresponding binding sites (Marand

et al., 2021). This allows for the identification of cell-type-

specific gene regulatory networks which have been long

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 115, 1486–1499

Plant cis-regulatory elements at single-cell resolution 1491

 1365313x, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16351, W

iley O
nline Library on [05/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 115, 1486–1499

1492 John Pablo Mendieta et al.

 1365313x, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16351, W

iley O
nline Library on [05/07/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



elusive. While the computational workflow and challenges

labeled here may seem daunting, rigorous data analysis

avoids many of these pitfalls. However, it should be noted

that these specific computational challenges aren’t the only

issue. Quirks associated with evolution, genome structure,

and the unique ways plant cell-type identity can be modi-

fied also need to be considered.

BIOLOGICAL CHALLENGES ASSOCIATED WITH THE

ANALYSIS OF SCATAC-SEQ IN PLANTS

While the computational challenges associated with

scATAC-seq are laid out and addressable, certain unique

features of plant biology complicate analysis. Variable

genome sizes, rapid changes in gene function caused by

molecular evolution, and the totipotent nature of plant

cells all alter the interpretation of plant scATAC-seq data.

However, while analytically challenging, these features

offer unique opportunities to study CREs and their relation-

ship to plant biology generally.

Significant variations in genome size can add addi-

tional hurdles to analyzing scATAC-seq data. For instance,

genome size affects the use of gene proximal chromatin

accessibility as a proxy for gene expression. In compact

genomes, the reduced proximity between transcriptional

start sites (TSSs) means ACRs often encompass two pro-

moters, which convolutes correlating chromatin accessibil-

ity with gene expression (Figure 4a). This is in stark contrast

to larger genomes which result from the expansion of inter-

genic and intronic gene space often as a result of increased

transposon load (Lee & Kim, 2014; Lu et al., 2019). This size

expansion moves CRMs important for gene expression fur-

ther upstream of the TSS, increasing the prevalence of

gene-distal ACRs (Lu et al., 2019; Oka et al., 2017; Ricci

et al., 2019; Zhao et al., 2018). Linking these distal ACRs to

their target genes is challenging and requires additional

data from proximity-ligation-based methods. Hi-C is the

most commonly used, as it captures chromatin interactions

ranging from 1 kb to >100 kb depending on the experimen-

tal setup and sequencing depth. (Figure 2) (Eagen et al.,

2015; Lieberman-Aiden et al., 2009; Mifsud et al., 2015).

However, Hi-C remains restricted to bulk tissues, limiting

the detection or confirmation of gene-ACR interactions in

rare cell types. Predictions about chromatin contacts can be

made from scATAC-seq itself but requires further experi-

mentation for validation (Marand et al., 2021; Pliner et al.,

2018). Genome size variation necessitates adapting analysis

strategies on a per-genome basis, impeding the standardi-

zation of scATAC-seq analysis between species.

Although variation in plant genome size complicates

scATAC-seq, the lack of high-quality markers for plant spe-

cies remains the biggest challenge in the annotation and

analysis of single-cell ATAC-seq datasets. At present, no

species has a comprehensive list of genetic markers spe-

cific to each cell type. Consequently, researchers often use

markers from one species to aid in the identification of cell

types in another species. In the case of non model plants,

cell types are identified using gene orthologs borrowed

from known cell–type–specific markers in model plant spe-

cies. However, it is known that gene expression changes

rapidly due to molecular evolution (Hill et al., 2020). Gene

duplication followed by neo-functionalization, whole

genome duplications rewiring large-scale expression pat-

terns, and rapid gene family expansion is a few of the many

ways molecular evolution can reshape gene function, and

expression (Birchler & Yang, 2022; Hughes et al., 2014; Pan-

chy et al., 2016). Even in a relatively short evolutionary

period of 65–70 million years key developmental genes can

shift their cell-type expression context, complicating their

use in a cross-species context (Hughes & Langdale, 2022).

For example, SHR has different cell-type specificity in Z.

mays and O. sativa leaves; in Z. mays, expression of

ZmSHR1 is limited to the vasculature and bundle sheath

cells, whereas the O. sativa ortholog, OsSHR2, has limited

vasculature expression, and is absent from bundle sheath

cells (Figure 4b) (Schuler et al., 2018). Due to the unreliabil-

ity of individual markers, non-model systems need to use

sets of markers to annotate cell types in order to Minimize

incorrect cell annotation. However, to date the number of

markers per cell type is limited, restricting the ability to

apply single-cell techniques to non-model plants.

Plants cells have a unique relationship between cell

identity by descent, and cell position in the plant. Plant cell

fates are not genetically hardwired based off precursors.

For instance, although plant cell types generally develop in

Figure 3. Schematic of analysis paradigms and challenges of single-cell ATAC-seq data.

(a) An example binary matrix being transformed into a UMAP by means of SVD where rows are ACRs identified from a bulked dataset and columns are cells.

The input matrix is binary if a cell either has a Tn5 integration event in that ACR or not.

(b) (Left) An example of a good UMAP embedding where Tn5 insertion density is not driving the clustering of cells. (Right) An example of a poor UMAP embed-

ding where technical artifacts due to Tn5 insertion density are driving the clustering.

(c) An instance where chromatin accessibility of a gene (Gene Acc.) does not align with expectations based on gene expression (Gene Expression). Here, the

upstream region of the gene depicted could harbor a silencer that recruits TFs to repress its target gene.

(d) (Top) An example of where the UMAP embedding correlates well with the chromatin accessibility of multiple marker genes for a specific cell type. (Bottom)

Example of a poor UMAP embedding is where markers do not agree with each other. Whether this is due to poor markers or a poor selection of features to gen-

erate the embedding requires additional inquiry.

(e) Challenges associated with the assignment of single-cell ACRs. Whether the middle ACR is cell-type specific or restricted to a few key cell types is challeng-

ing to determine. This potentially reflects issues in annotation, or that related cell types share similar chromatin environments. The assignment of cell-type spe-

cific ACRs is non-trivial and requires careful considerations by the researcher of both biological and technical challenges.
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predictable lineages, such as the procambium giving rise

to the vasculature, exceptions can occur. Instead, the loca-

tion of a plant cell during development can have greater

impact on cell fate than their stem cell niche of origin

(Reinhardt et al., 2003). This has been shown in Z. mays,

where the mesophyll cells neighboring the bundle sheath

lineage may be derived from procambial cells, or ground

meristem cells (Figure 4d) (Esau, 1943; Langdale et al.,

1989; Sharman, 1942). This position-dependent effect is

well documented for vasculature and epidermal cell types

Figure 4. Biological challenges in single-cell ATAC-seq data take many forms and unique situations.

(a) The gene SHORT SUBUNIT (SSU) is known to have a specific function in bundle sheath cells in Zea mays. However, SSU may not behave as a useful marker

for annotation via scATAC-seq due to the proximity of its promoter to the start of an uncharacterized gene.

(b) Leaf cross sections of two species, Z. mays and Oryza sativa. Cell types are color-coded, and important marker genes are labeled in gray circles. Red lines

point to the cell types these genes are active in. Although SHR1 is expressed in bundle sheath and vascular cells in Z. mays, it is not found in O. sativa bundle

sheath cells.

(c) Leaf laid out from proximal to distal ends with developmental gradient overlaid on top, with the oldest cells being at the tip and the newest cells at the base.

It is currently unknown whether different regions of the leaf might have different regulatory chromatin environments and subfunctionalization (bottom).

(d) Leaf cross sections where colors indicate cells originating from either parenchyma (ground tissue) or procambium. (Left) Normal development and (Right)

abnormal development with position-dependent effects altering the origin of a mesophyll cell derived from the procambium.
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in species including cotton, tobacco, and sunflower (Dolan

& Poethig, 1998; Esau, 1954; Hung et al., 1998; Jegla &

Sussex, 1989; Poethig & Sussex, 1985a, 1985b). This

poses a challenge, as these cells which have undergone

position-dependent effects are likely to cluster with cells

that share the same precursor, and not with cells with the

same terminal identity. This makes annotation more diffi-

cult and increases the heterogeneity in identified cell types.

Finally, since these events are rare, isolating, and studying

these populations is challenging, but could pose a valuable

study system to understand the role of how variable pre-

cursors alter the chromatin environment of differentiated

cells.

Finally, the gradient nature of plant growth provides

additional challenges. Plant organs grow in a gradient of

development, with younger cells found closer to the divid-

ing meristem, and older cells further away. Continual

organogenesis and development result in gene expression

profiles that are dependent on the section sampled within

an organ (Figure 4c). In Z. mays this developmental pro-

gression yields differences in the expression of key carbon

metabolism enzymes at different sections of the leaf (Li

et al., 2010; Pick et al., 2011; Wang et al., 2013). Whether

these different sections of the leaf, and the cell types found

within, constitute different cell types or specific sub-

functionalization is up for debate, and further complicates

placing cells into discrete categories (Zeng, 2022). This het-

erogeneity has already been hinted at in some studies. A

combinatorial scATAC-seq and scRNA study of A. thaliana

roots, found unique genetic and epigenomic markers in

three different clusters of endodermal cells, illustrating that

discrete sub-functionalization may happen within previ-

ously described cell types (Dorrity et al., 2021). The extent

to which these clusters represent unique sub-functional

cell types remains open and requires further exploration.

THE AGE OF SINGLE-CELL REGULATORY GENOMICS

scATAC-seq enables the genome-wide investigation into

the function and importance of plant cell-type-specific

CREs. Although we can now identify cell-type-specific

CREs in plant genomes, our understanding of how these

regions interact with the coding genome is still quite lim-

ited. Leveraging intra- and inter-genetic diversity, along

with treatment conditions, stands to greatly improve our

understanding of CREs in plant biology and their role in

responding to environmental stimuli, population adapta-

tion, and diversity, as well as reveal their importance over

evolutionary time.

Performing scATAC-seq on a phenotypically diverse

intra-specific population will clarify the influence of genetic

CRE variation on phenotypes with cell-type resolution.

Genetic variation in regulatory sequences can result in spe-

cies adaptation to novel environments in both plant and

animal systems (Cleves et al., 2014; Studer et al., 2011;

van der Burg et al., 2020; Wucherpfennig et al., 2022). In

plants, CRE variation in the flowering time gene CON-

STANS underlies flowering time diversity in natural acces-

sions of A. thaliana (Rosas et al., 2014). However, most

studies addressing CRE genetic variation lack cell-type

resolved data and therefore may overlook genetic variance

in rare cell-type CREs that underpins local adaptation.

Combining quantitative genetic approaches, like genome-

wide association (GWA), with scATAC-seq, phenotypic

associations, and chromatin accessibility variation can be

correlated, potentially identifying the CREs, and cell types,

underpinning trait variation within distinct populations

(Das et al., 2022). Although a nascent area of study, the

combination of scATAC-seq and population diversity may

reveal how CRE genetic diversity alters the regulatory epi-

genome to shape species adaptation.

Beyond applying scATAC-seq to single species popu-

lations, comparative genomics focused on diverse species

offers the opportunity to examine plant CRE evolution at a

deeper timescale. Plant genomes exhibit a high rate of

structural variation and sequence turnover as compared to

animal genomes, causing rapid CRE turnover (Paterson

et al., 2010). Highlighting the high rate of CRE change

between even closely related species, a study comparing

distal CREs between sister species Z. mays and S. bicolor,

found approximately one-third of CREs were shared and

accessible in the same tissue, one-third were novel to each

lineage, and one-third shared sequence similarity but were

not within accessible chromatin in the tissue examined (Lu

et al., 2019). While CREs sequences change quickly, the

gene regulatory networks they influence may be more sta-

ble. Investigating root hair cell type development in four

eudicots found that although few orthologous CREs were

conserved across all species, TF binding at key genes was

preserved (Maher et al., 2018). Pairing comparative geno-

mics analyses with scATAC-seq will allow investigation

into the pace of CRE sequence changes in specific cell

types within individual plant lineages. This approach will

enhance both our understanding of plant CRE evolution

and uncover conserved mechanisms underpinning plant

adaptation and resilience to environmental changes.

Finally, CREs drive responses to environmental stim-

uli. Differential CRE usage is vital in response to disease,

cold, drought, and hormonal signals (Azodi et al., 2020;

Moore et al., 2022; Reynoso et al., 2019; Zou et al., 2011).

One comparative genomics study examined CRE usage

with a flooding treatment and identified root-specific

CREs associated with flooding, which revealed shared

motifs within flood-responsive CREs across four species

studied, representing 123 million years of evolutionary

divergence (Reynoso et al., 2019). This flooding research

suggests that regulatory networks behind abiotic stress

responses may be conserved for millions of years. Inte-

grating scATAC-seq with environmental treatments will
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identify the CREs crucial for cell-type-specific environ-

mental responses. Beyond discovering environmentally

dynamic CREs, this approach will find the cell types with

the most responsive CRE usage in different conditions,

revealing which cell types drive stress adaptation. This

focus on cell-type responses could have far-reaching

implications for our understanding of environmental

response in plants, as a previous study has traditionally

been restricted to organismal response.

PLANT CELL TYPES – DEFINITIONS IN FLUX

While the age of single-cell genomics stands to alter our

understanding of plant cell biology, it is important to

acknowledge that the definition of a cell type is in flux. In

this perspective, we define a ‘cell type’ as a cell with

unique molecular signatures, and that alteration of this sig-

nature modifies the form or function of a given cell type.

However, although valuable, this definition has limitations.

For instance, what is the threshold of molecular changes

needed to separate related cells into distinct cell types?

How many differentially expressed genes or differentially

accessible CREs are needed to constitute a novel cell type?

This problem becomes especially acute when trying to

delineate plant cells in transitional identities, as developing

plant cells exist along a continuum of maturity with few

discrete stages. While the discussions surrounding plant

cell-type classifications may appear semantical, it under-

pins real biological questions. How we define ‘cell types’

will have real implications for biologist moving forward

(Efroni, 2018; Zeng, 2022).

Despite their immense development, maturity, and

anatomical differences, inevitably, knowledge of plant cell

types will be compared to what we know about animal cell

types. In plants, there is wide variation in the number of

identified cell types, with 55 cell types being identified in a

recent Z. mays single–cell atlas and 180 cell types in

A. thaliana (Lee et al., 2023; Marand et al., 2021). This con-

trasts significantly with animals, as in mouse brains alone

there exists 45 types of inhibitory neurons (Hodge et al.,

2019). The existence of fewer plant cell types could be

explained by technological limitations and less intensive

study than that found in animal models. Alternatively, the

paucity of plant cell types may reflect real biological differ-

ences between plants and animals. Unlike mammals, plant

cell divisions result in the incomplete separation of nuclei;

cytokinesis ends with the deposition of a new cell wall (cell

plate) that contains plasmodesmata pores that retain cyto-

plasmic, and endoplasmic reticulum, connections between

the daughter cells (Burch-Smith & Zambryski, 2012). The

interconnectedness of plant cells through plasmodesmata

has large implications in plant biology and may fuel the

differences between plant and animal cell types, as plant

cells exist as a connected community, not individuals. This

interconnectedness has led some to propose a more

holistic ‘organism-level’ view. Instead of focusing on cells

or cell types as the biologically meaningful units of study,

the organismal theory proposes to focus on the entire

organism, as plant cells rarely work in isolation (Kaplan &

Hagemann, 1991). However, this organism-level perspec-

tive conflicts with the severe phenotypic alterations caused

by mutants that eliminate specific cell types as detailed

above. In either case, single-cell (epi)genomics will reveal

more about why plant cell types are less numerous than

their mammalian counterparts. These techniques provide

unprecedented cellular resolution, and if the lack of plant

cell types is driven by past technical limitations, single-cell

genomics will usher in an era of discovery wherein many

new discrete plant cell types will be unveiled. Alternatively,

if these new techniques confirm a relatively small number

of more homogenous plant cell types, it may provide cre-

dence to the notion that plant cells should be studied as a

physiological unit, highlighting the importance of intercel-

lular cooperation in plant biology. Single-cell regulatory

genomics stands to enliven plant research and provides

the toolset to address these basic questions about the cell-

type composition of plants.
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