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Cognitive diagnosticmodels (CDMs) are a popular family of discrete latent variablemodels thatmodel
students’ mastery or deficiency of multiple fine-grained skills. CDMs have beenmost widely used to model
categorical item response data such as binary or polytomous responses. With advances in technology and
the emergence of varying test formats in modern educational assessments, new response types, including
continuous responses such as response times, and count-valued responses from tests with repetitive tasks
or eye-tracking sensors, have also become available. Variants of CDMs have been proposed recently
for modeling such responses. However, whether these extended CDMs are identifiable and estimable is
entirely unknown. We propose a very general cognitive diagnostic modeling framework for arbitrary types
of multivariate responses with minimal assumptions, and establish identifiability in this general setting.
Surprisingly, we prove that our general-response CDMs are identifiable under Q-matrix-based conditions
similar to those for traditional categorical-response CDMs. Our conclusions set up a new paradigm of
identifiable general-response CDMs. We propose an EM algorithm to efficiently estimate a broad class of
exponential family-based general-response CDMs. We conduct simulation studies under various response
types. The simulation results not only corroborate our identifiability theory, but also demonstrate the
superior empirical performance of our estimation algorithms. We illustrate our methodology by applying
it to a TIMSS 2019 response time dataset.

Key words: cognitive diagnostic model, diagnostic classification model, EM algorithm, exponential fam-
ily, general responses, generalized linear model, identifiability, Q-matrix.

1. Introduction

Cognitive diagnosticmodels (CDMs, also called diagnostic classificationmodels; seeRupp et
al. 2010) are a popular family of discrete latent variable models in educational and psychological
measurement. CDMs employ multiple discrete latent variables to model and diagnose students’
mastery or deficiency of a set of fine-grained skills. Popular examples in the literature include the
Deterministic Input Noisy output “And” gate model (DINA model; Junker and Sijtsma, 2001),
the log-linear CDM (LCDM; Henson et al., 2009), the additive CDM (ACDM; de la Torre, 2011),
and general diagnostic models (GDM; von Davier, 2008).

Originally, CDMs were developed mostly to model binary responses and later generalized
to polytomous responses, which are both categorical. Recently, with advances in technology and
the emergence of varying test formats in modern educational assessments, new response types
have become available. In particular, multivariate continuous and count responses are especially
common. Continuous responses arise in the following scenarios: (a) responses that place a mark
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on a line segment (such as the visual analog scale), (b) assessments that record the probability of
each option being correct (probability testing), (c) computer-based tests that record the response
time (Minchen et al., 2017) . In particular, modeling response times has received great interest
for a long time, and many different models have been proposed to this end; see De Boeck and
Jeon (2019) for an overview. Another common response type is count responses. They arise in the
following scenarios: (a) assessments with repetitive tasks where the number of correct responses
is recorded, (b) assessments where examinees read aloud a passage and the number of errors is
recorded, (c) modern exams with eye tracking sensors that record students’ visual fixation counts,
(d) computer-based tests that record the visit count per item (Man & Harring, 2019; Liu et al.,
2022) . Rasch (1993) first proposed a Poisson-based item response theory (IRT) model for count
data, and many other models have been proposed (Magnus & Thissen, 2017; Man & Harring,
2019, 2022) .

Many existing latent variable models for general responses are based on IRT that use con-
tinuous latent traits to model the unobserved constructs (Thissen, 1983; van der Linden, 2007;
Wang & Xu, 2015) . On the other hand, using discrete latent variables as in CDMs can provide
students with valuable personalized diagnoses of the mastery/deficiency profiles of the latent
skills. Currently, there are a few CDMs proposed for modeling non-categorical responses. For
instance, Minchen et al. (2017) proposed a DINA model with a lognormal link to model response
time data, whereas Liu et al. (2022, 2023) proposed GDMs (which include the DINA model as a
submodel) with a Poisson link and a negative binomial link, respectively, to model visual fixation
count data. It is desirable to propose a general modeling framework of CDMs for flexible types
of responses and their associated estimation methods.

When proposing new statistical models, identifiability is a crucial consideration, because it
is a fundamental prerequisite for valid statistical estimation and inference. A model is identifiable
if the parameters can be uniquely recovered from the observed data distribution. In recent years,
many identifiability results have been established for the categorical-response CDMs, including
both binary and polytomous cases (e.g., Chen et al., 2015; Xu and Zhang, 2016; Fang et al., 2019;
Gu and Xu, 2019, 2020; Culpepper, 2019, 2023). These studies typically show that CDMs for
multivariate categorical data are identifiable under structural constraints on the Q-matrix. The
Q-matrix here is a key component in a CDM that specifies how the observed responses depend on
the latent attributes (see its formal definition in Sect. 2). However, it is entirely unknown whether
or not those extended CDMs for continuous or count data (such as those in Minchen et al. (2017)
and Liu et al. (2022)) are identifiable, let alone identifiability of models for more general response
types.

This manuscript makes the following contributions. First, we propose a very general new
framework of Q-matrix-based CDMs for modeling rich types of responses. In particular, this
framework includes a sub-family of exponential family-based CDMs (ExpCDMs), which is a
wide class of parametric CDMs using exponential families to model general responses. Our gen-
eral modeling framework covers existing CDMs for continuous and count responses as special
cases (Minchen et al., 2017; Minchen & de la Torre, 2018; Liu et al., 2022, 2023) . Second,
we provide the crucial identifiability guarantees for the proposed new models. Somewhat surpris-
ingly, we prove that our general model is identifiable under similar structural conditions on the
Q-matrix, just as those for traditional categorical-response CDMs. This is the first identifiability
result for CDMs with non-categorical responses. Our conclusions set up a new paradigm of iden-
tifiable general-response CDMs and significantly advances the psychometric theory of diagnostic
modeling. Third, we propose an EM algorithm to efficiently estimate model parameters. As con-
crete demonstrations, we consider the DINA and main-effect-based CDMs for general responses
and derive explicit updates in the EM algorithms. Our simulation results corroborate the identifia-
bility theory, and also demonstrate the superior empirical performance of the proposed estimation
algorithms.
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The remainder of this manuscript is organized as follows. Section2 formally introduces our
general-response CDM framework and gives many examples of its parametric submodels. Sec-
tion3 provides conditions for model identifiability. Section4 proposes a general-purpose EM
algorithm to estimate the model parameters. Section5 presents simulation studies under various
response types. Section6 illustrates ourmethodology via application to a real-world response time
dataset from the Trends in International Mathematics and Science Study (TIMSS) in 2019. Sec-
tion7 concludes and discusses future research directions. The Supplementary Material contains
the proofs of the theorems and more details of the simulation studies and real data analysis.

2. General-Response Cognitive Diagnostic Models

2.1. General Model Setup

Consider an educational assessment with J items, and denote an observed response vector
by Y = (Y1, . . . ,YJ ) ∈ ×J

j=1Y j , where each Y j is the sample space of the random variable
Y j . In particular, our main examples are (a) continuous responses with Y j = R, and (b) count
responses with Y j = {0, 1, 2, . . .} being the set of all nonnegative integers. Beyond continuous
and count responses, our general modeling framework covers a much wider class of responses
with a general sample space Y j . This includes vector-valued responses that arise in the context
of modern assessment data, such as a joint vector of response accuracy, response time, and
visual fixation counts (De Boeck & Jeon, 2019; Man & Harring, 2022) . Another example
of responses is continuous features learned from process data via dimension reduction methods
(He & Von Davier, 2016; Tang et al., 2020) . For a more rigorous presentation with minimal
assumptions on Y j , measure-theoretic definitions are required, and we provide those details in
Supplementary Material S.1. Note that we also allow the response type Y j to differ across j =
1 . . . , J , that is, mixed-type responses (e.g., see Moustaki and Knott, 2000).

To define the general-response CDMs, we start by specifying the latent part. We model each
student’s latent skill profile A as a binary K -dimensional vector A = (A1, . . . , AK ) ∈ {0, 1}K
for diagnostic modeling purposes. Here Ak = 1 or 0 represents the presence or absence of the
kth latent skill. Following most existing studies on CDMs (Chen et al., 2015, 2018) , we adopt
the saturated model for the latent attributes; that is, for each skill profile α ∈ {0, 1}K , define its
population proportion parameter as pα = P(A = α), which satisfy

∑

α∈{0,1}K
pα = 1, pα > 0. (1)

We collect all proportion parameters in the vector p = (pα : α ∈ {0, 1}K ).

Next, we define the measurement model, which specifies the conditional distribution of the
observed responses Y given the latent skills A. The main ingredients in this definition are (a) the
local independence assumption, and (b) constraints induced by the Q-matrix (Tatsuoka, 1983) .
LetP j,α(Y j | A = α) (orP j,α for short) denote the conditional distribution ofY j givenA = α. For
any positive integer M , let [M] := {1, 2, . . . , M} denote the set of all positive integers no greater
than M . First, under local independence, the observed Y1, . . . ,YJ are conditionally independent
given the latent A1, . . . , AK , which implies:

P(Y ∈ ×J
j=1S j | A = α) =

J∏

j=1

P j,α(Y j ∈ S j | A = α), ∀S j ∈ F j , j ∈ [J ]. (2)
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Figure 1.
Graphical model of the general-response CDM with Y j ∈ Y j . White nodes are latent attributes, and gray nodes are
observed responses. The directed arrows from the latent to the observed capture the conditional dependence of Y given
A, which is exactly encoded in the Q-matrix QJ×K . There is an directed arrow from Ak to Y j if and only if q j,k = 1.

Here, the notationY ∈ ×J
j=1S j means that Y j ∈ S j for all j , andF j is a collection of measurable

subsets of the sample space Y j that determines a probability distribution on Y j . For continuous
responses, F j can be the collection of all open intervals in R; for count responses, F j can be the
collection of all subsets of Y j .

Next, we describe the constraints on the conditional distributions P j,α imposed by the Q-
matrix. The Q-matrix was initially proposed by Tatsuoka (1983) for modeling binary responses
using the cognitive diagnostic assumption. The Q-matrix Q = (q j,k) is a J × K matrix with
binary entries, where the ( j, k)-th entry q j,k equals 1 if item j requires or measures the latent
attribute k, and 0 otherwise. Statistically, the entries in theQ-matrix describe how the J observed
item responses depend on the latent attributes. For convenience, we also use the notation pa( j) =
{k ∈ [K ] : q j,k = 1} to represent the set of attributes required/measured by item j . Here “pa”
is short for “parent”, motivated by the graphical model perspective of the proposed model; see
Remark 1 below for details. We write αpa( j) as the sub-vector of α = (α1, . . . , αK ) that contains
those entries indexed by k ∈ pa( j). Then, by the definition of the Q-matrix, the distribution
P j,α(Y j ∈ S j | A = α, Q) must satisfy

P j,α(Y j ∈ S j | A = α, Q) = P j,α(Y j ∈ S j | Apa( j) = αpa( j)), ∀S j ∈ F j ; (3)

that is, the conditional distribution of Y j given all the latent attributes is the same as the conditional
distribution of Y j given the required attributes of item j as indicated by the Q-matrix. To make
the Q-matrix play a meaningful role in describing the conditional distribution of the observed
variables given the latent variables, we make a mild assumption that for each j ∈ [J ], there exist
latent patterns α and α′ with αpa( j) �= α′

pa( j) such that P j,α �= P j,α′ . In the special case of binary
response CDMs, this assumption is readily satisfied by many popular existing models. In this
work, we consider the confirmatory modeling setting where the Q-matrix is known.

Remark 1. Viewed from a probabilistic graphical modeling perspective, the Q-matrix can also
be represented by a bipartite graph with directed arrows pointing from the latent variables to
the observed ones; see Fig. 1 for a graphical model illustration. Then, pa( j) exactly denotes the
parent attributes that have a directed arrow toward Y j , and Assumption (3) can be interpreted as
the graphical model being faithful (e.g., see Definition 3.8 in Koller and Friedman, 2009). For
example, in the setting of Fig. 1, A1 is the only parent attribute of Y2, thus pa(2) = {1}.

Now, we formally define the general-response CDM based on the above assumptions.

Definition 1. (General-response CDM) A general-response CDMwith K binary latent attributes
A = (A1, . . . , AK ), J observed responsesY = (Y1, . . . ,YJ ), and model components ( p, {P j,α})
is a statistical model for Y that satisfies (1), (2), and (3).
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Under Definition 1, the marginal distribution of Y in a general-response CDM is:

P(Y ∈ ×J
j=1S j | Q) =

∑

α∈{0,1}K
pα

J∏

j=1

P j,α(Y j ∈ S j | Apa( j) = αpa( j)), ∀S j ∈ F j . (4)

The proposed general-response CDMs form a very general and flexible framework of cognitive
diagnosticmodels.First, this framework includes existing popularCDMs such as theDINAmodel,
Reduced-RUM, LCDM, and GDM for categorical responses as submodels. This is because one
can let the conditional distribution P j,α(Y j | A = α) be a specific parametric distribution such
as the Bernoulli with a certain link function for modeling binary responses (elaborated in the
next paragraph). Second, our framework also includes those recently proposed specific CDMs for
continuous or count responses (e.g., Minchen and de la Torre, 2018; Liu et al., 2022) as special
cases, and is further able to model other response types.

As a concrete illustration,we next present the special case of ourmodel (4)when the responses
are all binary, which is the most widely considered scenario for CDMs. In this case, Y j = {0, 1}
for all j ∈ [J ] and P j,α is just the Bernoulli distribution. We write the Bernoulli parameter of P j,α

as θ j,α . Note that in the classical binary-response CDM literature, θ j,α is often called the positive
response probability. The conditional independence condition (3) boils down to the following
equality constraints on the parameters θ j,α:

θ j,α = θ j,α′ , ∀α,α′ ∈ {0, 1}K such that αpa( j) = α′
pa( j). (5)

The above constraints are satisfied in all existing CDMs for binary responses, and they also
appeared as assumptions in the study of identifiability for the related restricted latent class models
(Xu, 2017; Gu & Xu, 2020) . As a more concrete example, θ j,α under the DINA model with the
slipping parameter s j and guessing parameter g j can be written as

θ j,α = (1 − s j )
K∏

k=1

αq j,k + g j (1 −
K∏

k=1

αq j,k ) = (1 − s j )
∏

k∈pa( j)
αk + g j (1 −

∏

k∈pa( j)
αk),

where 1 − s j > g j is typically assumed. This parametrization clearly satisfies (5).

2.2. Parametric and Exponential Family-Based CDMs (ExpCDMs)

Wenext define parametric general-response CDMs, and illustrate how our general framework
can be specified according to variousmodeling assumptions and response types. In this section, for
notational simplicity, we additionally assume that the response types are the same across the items
(i.e., (Y j ,F j ) is the same for all j ∈ [J ]) and follow the same parametric family P = {g(·; η)}.
Under this assumption, we can further write P j,α as

P j,α(Y j ∈ S j | A = α) =
{∫

S j
g(y; η j,α)dy, if Y j = (a, b) or R,

∑
y∈S j g(y; η j,α), if Y j = {0, 1, 2, . . .}. (6)

Here, g(·; η) is the probability density/mass function of a specific identifiable parametric family
P (that is, η → g(·; η) is a one-to-one mapping), and η j,α’s are parameters that can be a scalar
or a vector. We next formally define a parametric CDM.
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Table 1.
Examples of exponential families, and their natural parameters and sufficient statistics.

Distribution family Natural parameter η Sufficient statistics T(Y )

Bernoulli(θ) log

(
θ

1 − θ

)
Y

Normal(μ, σ 2)

(
μ

σ 2 , − 1

2σ 2

) (
Y, Y 2

)

lognormal(μ, σ 2)

(
μ

σ 2 , − 1

2σ 2

) (
log Y, (log Y )2

)

Poisson(λ) log λ Y

Definition 2. (Parametric general-response CDM) Given an identifiable parametric family P =
{g(·; η)}, the parametric general-response CDMwith parameters ({η j,α}, p) is a general-response
CDM whose P j,α satisfies (6).

For parametric general-response CDMs, the Q-matrix constraints (3) reduce to the following
constraints on the parameters η, which are analogous to (5) in the binary-response case:

η j,α = η j,α′ , ∀α,α′ ∈ {0, 1}K such that αpa( j) = α′
pa( j). (7)

In the context of modeling response times in psychometrics, the Gamma (Maris, 1993) , Weibull
(Loeys et al., 2011) , and inverse Gaussian (Lo & Andrews, 2015) distributions have been com-
monly used in addition to the aforementioned lognormal distribution. In the context of modeling
visual fixation counts or correct answer counts, the negative binomial distribution is a popular
choice (Man & Harring, 2019; Liu et al., 2023) in addition to the aforementioned Poisson
distribution (Liu et al., 2022) . In the later sections on estimation methodology and simulation
studies,wewill consider a variety of distributions forP: Normal, transformed-Normal (lognormal,
logistic-Normal), Poisson, and negative binomial.

Except for the negative binomial distribution, all parametric distributions mentioned in the
previous paragraph are exponential family distributions (e.g., see Section 3.4 inCasella andBerger,
2021, for which the probability density/mass function can be written as:

g(y j ; η) = h(y j ) exp{η�T(y j ) − A(η)}. (8)

Following the convention for the exponential family distributions, η collects the natural parame-
ters,T(Y j ) collects the sufficient statistics, and A(η) is the log-partition function. Bothη andT(Y j )

are typically multidimensional in our general-response CDM context. Exponential families are a
natural and flexible choice to model rich types of responses and are widely used in statistics and
psychometrics. For example, the Bernoulli distribution with success parameter θ , commonly used
to model binary responses, is an exponential family with natural parameter η = log (θ/(1 − θ))

and sufficient statistic T (Y ) = Y . In Table 1, we also present the natural parameter and sufficient
statistics for the exponential families that we will later use to model general responses.

We next define parametric general-response CDMs based on the exponential families; we
call these models ExpCDMs.
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Definition 3. (ExpCDM)We define an ExpCDM as a parametric CDMwhose parametric family
P = {g(·; η)}η is an exponential family distribution.

The general framework of ExpCDMs encompasses models for various response types including
categorical, count, bounded and unbounded continuous data. In the end of this section, we will
also briefly mention how to deal with even more general distributions outside of the exponential
family, such as the negative binomial.

Remark 2. Using exponential family distributions to model general-response multivariate data
with latent variables has a long history. Moustaki and Knott (2000) extended the IRT model to
general responses, by modeling the natural parameter of the exponential family distribution as the
linear combination of the continuous latent traits. This approach extends the generalized linear
model (GLM) in Nelder and Wedderburn (1972) to the latent variable setting. In a similar spirit,
Dunson (2000) used continuous latent variables and exponential family distributions to model
multiple clustered outcomes.
In the context of factor analysis, Skrondal and Rabe-Hesketh (2004) extended the linear factor
analysis to model general responses by using exponential families and proposed the generalized
linear factor model. We emphasize that all these previous models use continuous latent variables,
and there do not exist works that adopt a framework as flexible as the exponential family with
multidimensional discrete latent variables that serve the diagnostic purposes.

To define a general-response CDM, there are two parts that need to be specified: (a) the type
of parametric family that models the response distribution, i.e., the forms of P and g(·; η); and
(b) the type of interactions between the latent attributes and the observed responses, i.e., in what
way η j,α are subject to the Q-matrix constraints, or equivalently, whether the parameters for Y j

are impacted by the main effects, or interaction effects, or both, of the required attributes. We
have already shown that the ExpCDM framework provides a flexible way of specifying part (a).
As for part (b), all the existing binary-response CDMs including the conjunctive DINA model,
disjunctive DINO model, additive models (ACDM, reduced RUM), and more flexible all-effect
models such as GDINA and GDM can be easily extended and incorporated into our ExpCDM
framework.

We next show how all the above different types of attribute-item interactions have their
ExpCDM counterparts for modeling rich types of data. In the remainder of this section, we
describe the exponential family-based DINA (ExpDINA) model and the exponential family-
based additive CDM (ExpACDM). We define these models by further specifying how the natural
parameters η j,α satisfy theQ-matrix constraints in (7). Specifically, for eachmodel, we present the
lognormal distribution and the Poisson distribution as example exponential families to illustrate
our general framework. These two distributions are suitable for modeling positive continuous data
and nonnegative count data, respectively.

2.2.1. ExpDINA for General Responses The DINAmodel was proposed by Junker and Sijtsma
(2001) for modeling binary responses using a conjunctive assumption. Define the ideal response
to item j given attribute pattern A = α to be

� j,α =
K∏

k=1

α
q j,k
k =

∏

k∈pa( j)
αk . (9)

In other words, � j,α is the binary indicator of whether skill pattern α masters all of the required
skills of item j and hence is “capable” of item j .
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Under the binary-response DINAmodel, the positive response probability θ j,α can be written
as

θ j,α =
{
1 − s j , if � j,α = 1,

g j , if � j,α = 0.
(10)

Following the conventional notation in the literature, s j is the slipping parameter that gives the
probability that a capable subject of item j provides an incorrect answer, and g j is the guessing
parameter that gives the probability that an incapable subject provides a correct answer.Continuing
from (10), we can also write the Bernoulli natural parameters in terms of the item parameters s j
and g j by using the following transformation:

η j,(h) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log

(
1 − s j
s j

)
, if h = 1,

log

(
g j

1 − g j

)
, if h = 0.

Here, h equals the value of the DINA model ideal response � j,α , and η j,(h) denotes the value
of the natural parameter η j,α given � j,α = h. We are now ready to define the general-response
ExpDINA model.

Definition 4. (ExpDINA) The ExpDINA model is a submodel of the ExpCDM for which the
natural parameters can be written as η j,α=η j,(� j,α) for j ∈ [J ] and α ∈ {0, 1}K . The parameters
in an ExpDINA include the item parameters {η j,(0), η j,(1) : j∈[J ]} and proportion parameters p.

Remark 3. We remark that for certain distributions there may exist a more conventional
parametrization than directly parametrizing the natural parameters to depend on the latent
attributes. For instance, in the ExpDINA with a normal distribution for Y j | A = α (see Example
1), it is more intuitive to parameterize using the mean μ and the variance σ 2 as depending on

α instead of assuming so for the natural parameters η = (
μ/σ 2,−1/2σ 2

)�
. Such equivalent

re-parametrizations still fit well into our definition of ExpCDMs.

Under an ExpDINA model, each natural parameter for each item j takes exactly two pos-
sible values, for capable (� j,α = 1) and incapable (� j,α = 0) subjects, respectively. Generally,
ExpDINA still adopts the conjunctive assumption of required attributes and can be used to model
rich types of response data. Under Definition 4, the conditional distribution Y j | A = α in (6) is:

Y j | A = α ∼
{
g
(
Y j ; η j,(1)

)
, if � j,α = 1;

g
(
Y j ; η j,(0)

)
, if � j,α = 0.

(11)

Therefore, ExpDINA essentially models each response Y j as a local mixture of two distributions,
similar in spirit to the binary-responseDINAmodel. Indeed, ExpDINAcovers the binary-response
DINA and polytomous-response DINA as special cases. From the definition of � j,α , it is clear
that the Q-matrix constraints (7) are satisfied.

Example 1. (Lognormal-DINA, Logistic-Normal-DINA, and transformed-Normal-DINA) As an
illustrative example, consider using the lognormal distribution to model positive continuous
response. The lognormal is very commonly used to model response times (van der Linden,
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2006, 2007; Minchen et al., 2017) . The lognormal density with mean parameter μ and variance
parameter σ 2 takes the form of

glognormal(y;μ, σ 2) = 1

y
√
2πσ 2

exp

[
− (log y − μ)2

2σ 2

]
, y ∈ (0,∞).

As mentioned in Remark 3, we directly parameterize the mean μ j,h and variance σ 2
j,h for the

capable or incapable students based on the DINA model ideal response values h = 1 or 0,

respectively, instead of using the less interpretable natural parameters η = (
μ/σ 2,−1/2σ 2

)�
.

Then, our lognormal-DINA model becomes the so-called C-DINA model proposed by Minchen
et al. (2017):

Y j | A = α ∼
{
lognormal(μ j,1, σ 2

j,1), if � j,α = 1,

lognormal(μ j,0, σ 2
j,0), if � j,α = 0.

(12)

Note that under the same parameter values (μ, σ 2), the lognormal distribution is just an
exponential transformation of the Normal distribution. Hence, the lognormal-DINA and normal-
DINA models are equivalent up to an invertible transform of Y . Importantly, ExpCDMs based
on any monotone-increasing transformation of the Normal are equivalent to the Normal-CDMs,
that is, when Y j | A = α follows a Normal distribution. This observation can be used to build
ExpCDMs for continuous responses that take values in a restricted range. For example, in addition
to lognormal-CDM, we can define logistic-Normal-CDM by applying a logit transform of a
Normal random variable to model bounded responses ranging in the interval (0, 1). Here, the
density function of the logistic-Normal(μ, σ 2) is

glogistic-Normal(y;μ, σ 2) = 1√
2πσ 2y(1 − y)

exp

[
− (log(y/(1 − y)) − μ)2

2σ 2

]
, y ∈ (0, 1).

The logistic-Normal-DINA model can be defined as:

Y j | A = α ∼ logistic-Normal(μ j,h, σ
2
j,h), h = � j,α.

This newly proposed logistic-Normal-DINA model may be useful for analyzing continuous
bounded responses in psychological or educational assessments.

Example 2. (Poisson-DINA) As another example, we consider using the Poisson distribution
to model count responses. The Poisson distribution is a canonical choice for modeling count
responses, and was recently used in Liu et al. (2022) to model the number of correct answers
in repetitive tasks under a diagnostic model. Poisson distribution with mean parameter λ has the
probability mass function

g(y; λ) = e−λλy

y! , y ∈ N,
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where N denotes the collection of all nonnegative integers. By defining the mean for h = 0, 1 as
λ j,h (or equivalently setting the natural parameters as η j,(h) = log λ j,h), the distribution Y j | A
can be written as

Y j | A = α ∼
{
Poisson(λ j,1), if � j,α = 1,

Poisson(λ j,0), if � j,α = 0.
(13)

This can be viewed as a reparameterization of the PDCM-DINA model in Liu et al. (2022).

2.2.2. ExpACDM for General Responses Wenext define the exponential family-based Additive
CDMs (ExpACDM) for general responses. The word additive refers to the assumption that the
required skills of item j enter the conditional distribution of Y j through an additive linear com-
bination of the latent attributes A1, . . . , AK . Variants of such additive diagnostic models are very
popular in the binary-response CDM literature. Examples include the reduced reparameterized
unified model (R-RUM; DiBello et al., 1995), the additive cognitive diagnostic model (ACDM;
de la Torre, 2011), and the logistic linear model (LLM; Maris, 1999).

We continue to work in the general framework of general-response CDMs in (6). Under the
additive assumption, we write the parameters η j,α as

η j,α = h

(
β j,0 +

K∑

k=1

β j,kq j,kαk, γ j

)
= h

⎛

⎝β j,0 +
∑

k∈pa( j)
β j,kαk, γ j

⎞

⎠ . (14)

We explain the notations in the above expression in turn. First, similar to binary-response additive
CDMs, the corresponding β j,k are not needed to define the model when q j,k = 0. So without
the loss of generality, we assume β j,k = 0 if q j,k = 0. If q j,k = 1, then β j,k is the main-
effect coefficient for the kth latent attribute. One can see that the linear combination β j,0 +∑K

k=1 β j,kq j,kαk depends only on those required attributes of item j , so η j,α defined by (14)
satisfies the Q-matrix constraints (7).
The γ j in (14) denotes potential additional model parameters that do not depend on the latent
attributes (e.g., γ j may be the dispersion parameter if an exponential family distribution is used),
and h in (14) is a link function that plays a very similar role as the link function in the generalized
linear models (e.g., Nelder and Wedderburn, 1972). Here, h is introduced to map the linear
combination of the required attributes to the natural parameters η, as the natural parameter space
may be different from the space of the linear combinations. Note that η may be multidimensional,
and hence h can be a mapping between multidimensional spaces.

With these notations at hand, we next formally define ExpACDMs.

Definition 5. (ExpACDM) An ExpACDM is a submodel of the ExpCDM for which the natural
parameters η j,α satisfy (7).

The parameters in an ExpACDM with a link function h include {β j,0 : j ∈ [J ]}, {β j,k :
q j,k = 1}, {γ j : j ∈ [J ]} and proportion parameters p.

Note that for the ExpDINA model defined earlier in Sect. 2.2.1, we have parameterized
the item parameters as (η j,(0), η j,(1)), because there are only two possible values of {η j,α :
α ∈ {0, 1}K } due to the conjunctive modeling assumption. In contrast, the ExpACDM has more
possible values of {η j,α} when the attribute profile α ranges in {0, 1}K . So in Definition 5, we
have parameterized ExpACDMs using the β- and γ -coefficients.
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Example 3. (lognormal-ACDM) Continuing from Example 1, we consider the lognormal distri-
bution for modeling the responses but now with an additive structure of the attributes.
For the lognormal parameters (μ j,α, σ 2

j,α), one can choose to model μ j,α as additive in αk’s and

σ 2
j,α to not depend on α:

μ j,α = β j,0 +
K∑

k=1

β j,kq j,kαk, σ 2
j,α = γ j .

Here, we can view the link function h as h(μ, σ 2) = (
μ/σ 2,−1/2σ 2

)
that maps the mean and

variance to the natural parameters under the lognormal distribution.
By plugging this parametrization in (6), Y j | A can be written as

Y j | A = α ∼ lognormal

(
β j,0 +

K∑

k=1

β j,kq j,kαk, γ j

)
. (15)

Note that there are multiple modeling choices regarding how to specify the dependence of μ j,α

and σ 2
j,α on the linear (i.e., additive) combinations of αk’s.

One could model an additive mean and a constant variance after the log transformation as done
in the above (15). Alternatively, one could even model the variance also as additive in αk’s.

Example 4. (Poisson-ACDM) As an counterpart of the Poisson-DINA model in Example 2, we
define an ExpACDM that uses the Poisson distribution to model count data.
Since Poisson only has one rate parameter, there is no need to introduce γ j and we only need to
express the rate parameter as the linear combination of those required attributes:

λ j,α = β j,0 +
K∑

k=1

β j,kq j,kαk .

Recall that the natural parameter under Poisson is η = log λ, so we define the link function h
as h(λ) = log λ. We additionally assume β j,k ≥ 0 to ensure that the rate parameters λ j,α are
nonnegative. By plugging the above expression in (6), Y j | A can be written as

Y j | A = α ∼ Poisson

(
β j,0 +

K∑

k=1

β j,kq j,kαk

)
.

Alternatively, one could let h to be the identity link h(λ) = λ without assuming β j,k ≥ 0.

In Supplementary Material S.1, we define the exponential family-based general diagnostic
model (ExpGDM) for general responses, and also discuss how to define the general-response
DINAandACDMfor distributions outside of the exponential family, such as the negative binomial
distribution. In this section, we have focused on cases where the parametric families P do not
change across different items j ∈ [J ]. But it is actually straightforward to use our framework to
model different distribution families for different items.
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3. Identifiability of General-response CDMs

3.1. Strict Identifiability of General-Response CDMs

Model identifiability is a fundamental prerequisite for valid statistical estimation and infer-
ence. We will prove that our general-response CDMs are identifiable under transparent conditions
on theQ-matrix. In this subsection, we first define strict identifiability for general-response CDMs
and then propose conditions for strict identifiability.

Recall that ( p, {P j,α : j ∈ [J ],α ∈ {0, 1}K }) can be viewed as the model parameters
of a general-response CDM. We will say that ( p, {P j,α}) is equal to ( p, {P j,α}) up to a sign
flip for each coordinate of α, if there exist permutation maps τk : {0, 1} → {0, 1} such that
pα = p(τ1(α1),...,τK (αK )) and P j,α = P j,(τ1(α1),...,τK (αK )) for any j ∈ [p] and α ∈ {0, 1}K . The
sign flipping issue of the binary latent variables in Definition 6 is inevitable for general-response
CDMs under the minimal assumptions that we make on the response types. Nevertheless, sign
flipping is a trivial ambiguity and can be easily fixed in parametric submodels including most
ExpCDMs. For example, in traditional CDMs for binary responses, the sign of latent variables
is fixed by making the monotonicity assumption that students who possess all required skills
of an item are more likely to correctly answer it compared to those who lack some required
skills. Similarly, to resolve the sign flipping issue, in the lognormal-DINA model for continuous
responses, one can assume that the students who possess all skills required by an item have a
larger mean parameter in the lognormal distribution than those who do not: μ j,1 > μ j,0. More
generally, for ExpACDMs, assuming β j,k > 0when q j,k = 1 resolves the sign flipping issue. This
claim is formally presented in the later Proposition 1. However, it is less convincing to assume
monotonicity for every response type, as not all responses increase with more skill mastery, and
moreover, an ordering may not be defined on the sample space of the response Y j if it is not a
subset of the real line R. We next formally define strict identifiability up to the sign flipping.

Definition 6. (Strict identifiability) Consider a general-response CDM with a known Q-matrix.
The model is strictly identifiable if for any parameters ( p, {P j,α}) and ( p, {P j,α}) satisfying (3),
the following equations hold if and only if ( p, {P j,α}) is equal to ( p, {P j,α}) up to a sign flip for
each coordinate of α:

P(Y ∈ ×J
j=1S j | p,P,Q) = P(Y ∈ ×J

j=1S j | p,P,Q), ∀S j ∈ F j . (16)

Now we are ready to state the main theorem on strict identifiability. We emphasize that
no further parametric assumptions are imposed beyond the three assumptions for the general-
response CDM, given in Definition 1. Hence, the result applies for general-response CDMs with
an arbitrary response type Y j .1

Theorem 1. Under the general-response CDM, the model components ( p, {P j,α}) are strictly
identifiable if the following conditions hold.

A. The trueQ-matrix contains two identity submatrices IK after row swapping, i.e.,Q can
be written as

Q = [IK , IK ,Q∗�]�.

B. Suppose that theQ-matrix is written as in A. For any α �= α′, there exists j > 2K such
that P j,α �= P j,α′ .

1We prove Theorem 1 under the minimal assumption (in Supplementary Material S.1) that Y j is a separable metric
space.
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The conditions in Theorem 1 are similar in spirit to existing identifiability conditions for
CDMs with binary or polytomous responses, such as Xu (2017) and Culpepper (2019). When
consideringunidimensional responsesY j ’s for each item,wecan additionallymake amonotonicity
assumption to avoid the sign flipping issue. The following proposition establishes the strongest
possible notion of identifiability under a monotonicity assumption (17). Here, 0K and 1K denote
the all-zero and all-one vectors of length K , respectively.

Proposition 1. Suppose that a general-response CDM satisfies conditions A and B. Without loss
of generality, suppose the first K rows in Q form an identity matrix IK .
Additionally, suppose that Y j ⊆ R, and the conditional distributions {P j,α} satisfy the following
monotonicity assumption:

E(Y j | A = 0K ) < E(Y j | A = 1K ), (17)

for 1 ≤ j ≤ K.
Then, the model components ( p, {P j,α}) are strictly identifiable with no sign flipping issues.

In other words, (16) implies ( p, {P j,α}) = ( p, {P j,α}).
The proofs of all theoretical results are deferred to the Supplementary Material. We next

provide the high-level intuition of our proof argument. The main idea is to discretize all responses
by first constructing a partition of each sample space Y j into a finite number of categories, and
then defining surrogate categorical variables based on the partitions. In this case, our model in
(4) implies a tensor decomposition for the probability mass function of the surrogate categorical
variables. We then leverage Kruskal’s theorem (Kruskal, 1977) to establish uniqueness of this
tensor decomposition under the Q-matrix conditions. Finally, we link such uniqueness results
back to identifiability of parameters based on the original distribution of the general responses
Y j ∈ Y j . Our proof strategy is motivated by Theorem 8 in Allman et al. (2009) which established
identifiability of mixtures of products of nonparametric probability densities. However, Allman
et al. (2009)’s result cannot be directly applied to our setup as we consider more general response
types and our conditional distributions are subject to Q-matrix constraints.

As pointed out by a reviewer, our results extend identifiability conditions for finite mixtures
of product distributions for continuous/count responses to the more intricate setting of general-
response CDMswith theQ-matrix constraints.While those traditional mixturemodels also satisfy
our assumptions (1) and (2), there are no Q-matrix constraints (3) that restrict the space of
conditional distributionsP j,α’s. Hence, existing identifiability conditions for the general-response
finitemixture of products (Teicher, 1967;Yakowitz&Spragins, 1968;Allman et al., 2009) are not
directly applicable to general-responseCDMs. In particular, these results commonly assume linear
independence of the conditional distributions {P j,α : α ∈ {0, 1}K }, for each j ∈ [J ]. However,
for CDMs, {P j,α}α∈{0,1}K ’s are linearly dependent unless we consider the special case of the
GDINA model with q j = 1K for all j , corresponding to the case where the Q-matrix imposes
no restrictions at all. We remark that for certain parametric distributions, such as the exponential
distribution andNormal distribution, it is known thatmixturemodelswith independent conditional
distributions are identifiable (see Proposition 1 and 2 in Yakowitz and Spragins, 1968). However,
such results heavily depend on the specific parametric family under consideration whereas our
results generally apply under the minimal nonparametric assumptions.

Theorem 1 and Proposition 1 hold true without assuming a specific measurement model such
as DINA or ACDM. For binary responses, there is an extensive literature on model identifiability
under various assumptions (e.g., Chen et al., 2015; Xu, 2017; Xu and Shang, 2018;Chen et al.,
2020; Gu and Xu, 2021). It is worth noting that when not assuming a specific measurement
model, our results in Theorem 1 and Proposition 1 nearly match existing weakest identifiability
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conditions for categorical-response CDMs. For example, Theorem 1 in Xu (2017) stated that the
parameters ( p,�) in a restricted latent class model are strictly identifiable under condition A and
the following condition B1:

B1. For any k ∈ [K ], there exists one j > 2K such that θ j,ek �= θ j,0K .

Here, � = (θ j,α) j∈[J ],α∈{0,1}K is the positive response probability matrix with θ j,α = P j,α(Y j =
1 | A = α), and this determines the P j,α’s, as mentioned in Sect. 2. Also, ek is the standard basis
vector whose kth entry is 1 and other entries are zeros. For exploratory CDMs with polytomous
responses, Theorem 2 in Culpepper (2019) proved that themodel parameters are identifiable under
conditions A, B, and an additional condition C:

C. Each item j ∈ [J ] has distinct item response functions for at least two latent classes.

For general-response CDMs, the above additional assumption is equivalent to “for all j ∈ [J ],
there exist skill patterns α �= α′ such that P j,α �= P j,α′”. Our Theorem 1 does not impose such
an assumption for all items, but only implicitly imposes it for j = 1, . . . , 2K (because the first
2K rows inQ form two copies of the identity matrix IK ). As for j > 2K , we do not require there
exist α �= α′ such that P j,α �= P j,α′ for each j . In fact, Theorem 1 allows some Y j for j > 2K
to not depend on any attributes; or equivalently, the corresponding row vector q j in theQ-matrix
is an all-zero row vector. Such all-zero row vectors can be absorbed into the submatrix Q∗ in
condition A of Theorem 1.

Finally, in the following propositions, we propose variations of Theorem 1 by modifying
condition B to more easily checkable ones. In Proposition 2, we replace condition B in Theorem
1 by a stronger, but more intuitive condition. This condition has been previously proposed to
establish identifiability of exploratory diagnostic models for categorical responses (Fang et al.,
2019; Gu & Dunson, 2023) .

Proposition 2. Condition B in Theorem 1 holds when Q∗ contains an identity submatrix IK .
Hence, the general-response CDM is strictly identifiable when it vertically stacks three identity
submatrices IK after some row swapping.

In the next proposition, we consider the ExpACDMwith parameters ( p,β, γ ,Q), instead of
the general-response CDM, and show how condition B can be simplified.

Proposition 3. For the ExpACDM, condition B in Theorem 1 reduces to:

B2. For any α �= α′ ∈ {0, 1}K , there exists j > 2K such that
∑K

k=1 q j,kβ j,k(αk − α′
k) �= 0.

Hence, the ExpACDM is strictly identifiable when the Q-matrix satisfies condition A, and the
main-effect coefficients β satisfies condition B2.

3.2. Generic Identifiability of ExpACDMs

Although strict identifiability is the strongest possible identifiability notion, in practice it may
impose too stringent conditions on theQ-matrix. For instance, theQ-matrix for the TIMSS 2019
response time dataset analyzed in Sect. 6 requires one content skill and one cognitive skill for each
item (see Table 2 and related discussion there). ThisQ-matrix does not contain any K -dimensional
standard basis vectors as row vectors, and hence does not contain an identity submatrix IK . In
this subsection, we study generic identifiability, which is a slightly weaker notion than strict
identifiability proposed by Allman et al. (2009). Generic identifiability requires that the model
parameters are identifiable almost everywhere in the parameter space, in the sense that they are
identifiable except in aLebesguemeasure-zero subset of the parameter space. Existing studies such
as Gu and Xu (2020) and Chen et al. (2020) proposed practical generic identifiability conditions
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for binary-response CDMs that contain main effects of latent attributes. Those conditions are
much weaker than the strict identifiability conditions.

To study generic identifiability, we next focus on parametric forms of P j,α and especially
consider ExpACDMs that model the main effects of latent attributes. For notational simplicity,
we let βmain = {β j,k}k∈[J ], k∈[K ] denote all main-effect coefficients, and β = βmain ∪ {β j,0} j∈[J ]
denote the collection of all intercepts and main-effect coefficients. Before defining the concept of
generic identifiability, we define the true parameter space �(βmain;Q) for βmain as follows:

�(βmain;Q) = {βmain : β j,k = 0 if q j,k = 0}. (18)

Here, we are using the previous assumption that β j,k = 0 if q j,k = 0 (see the text following
(14)). We also define the parameter space of γ = (γ1, . . . , γJ )

� as the set �(γ ). Recall that in
an ExpACDM, γ commonly denotes the dispersion parameters of the exponential family, so we
define �(γ ) as �(γ ) = {γ : γ j > 0 for all j ∈ [J ]}. Also, recall that p denotes the proportion
parameters of the latent attribute patterns. We define the joint parameter space of all parameters
p, β, and γ by

�( p,β, γ ;Q) = {( p,β, γ ) :
∑

α∈{0,1}K
pα = 1, pα ≥ 0, βmain ∈ �(βmain;Q), γ ∈ �(γ )}.

(19)

In order to define generic identifiability without the sign flipping issue, we next adopt the
monotonicity assumption in (17). In particular, we assume that β j,k > 0 when q j,k = 1, which
means that the main effects of the required attributes are all positive. Here, the actual sign of β j,k

is not important and one may assume β j,k < 0 for all j and k instead to achieve identifiability.
Now we are ready to define generic identifiability for ExpACDMs.

Definition 7. AnExpACDMwith parameters ( p,β, γ ) is generically identifiable if the following
set has measure zero with respect to the Lebesgue measure on �( p,β, γ ;Q):

{( p,β, γ ) ∈ �( p,β, γ ;Q) : there exist alternative parameters ( p,β, γ ) �= ( p,β, γ ) in

�( p,β, γ ;Q) such that P(Y | p,β, γ ) = P(Y | p,β, γ )}.

We next propose generic identifiability conditions for ExpACDMs that are substantially
weaker than the strict identifiability conditions in Sect. 3.1.

Theorem 2. Consider an ExpACDM. Assume that h is an analytic function, and that the true
parameters ( p,β, γ ) lie in �( p,β, γ ;Q). Then, the model parameters ( p,β, γ ) are generically
identifiable if the following conditions on the Q-matrix hold.

A
. The trueQ-matrix can be written asQ = [Q�
1 ,Q�

2 ,Q∗�]� after some row permutation,
where Q1,Q2’s are K × K matrices such that all diagonal entries are equal to one. In
other words, we can write

Qi =

⎛

⎜⎜⎜⎝

1 ∗ · · · ∗
∗ 1 · · · ∗
...

...
. . .

...

∗ ∗ · · · 1

⎞

⎟⎟⎟⎠

for i = 1, 2. Here, ∗ indicates an arbitrary value in {0, 1}.
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B
. Suppose that theQ-matrix is written as inA
, andQ∗ does not have any all-zero columns.
In other words, for any k, there exists j > 2K such that q j,k = 1.

Conditions in Theorem 2 only depend on the Q-matrix but not on other model components.
Theorem 2 is motivated by Gu and Xu (2020) and Chen et al. (2020), which are the first studies
that considered generic identifiability for CDMs. Theorem 4.3 in Gu and Xu (2020) and Theorem
1 in Chen et al. (2020) showed that binary-response CDMs are generically identifiable under
conditions A
 and B
.

Note that Theorem 2 holds without assuming (1) that pα > 0 for all α ∈ {0, 1}K . This is
because { p : ∃α such that pα = 0} is a measure-zero subset of { p : ∑α pα = 1, pα ≥ 0}, and
hence relaxing the condition from pα > 0 to pα ≥ 0 does not violate generic identifiability. In
addition, we point out that the exponential family assumption for P is not crucial for generic
identifiability to hold. In fact, P can be any parametric family as long as the model parameters
η j,α satisfy the additive assumption in (14). Hence, the conditions in Theorem 2 also guarantee the
generic identifiability of ACDMswith non-exponential family distributions; see more discussions
in Remark S.1 in the Supplementary Material S.2.

Theorem 2may be extended to the setting of ExpGDM and other all-effect CDMs for general
responses. This is because these models include the main effects of the latent attributes, which are
the key components underlying generic identifiability. We leave the rigorous statement of generic
identifiability of ExpGDMs as future work. On the other hand, Theorem 2 does not apply to the
DINA model, because the DINA model is conjunctive and does not include the main effects of
the latent attributes. Under the DINA model for general responses, we conjecture that another
identifiability notion similar to the p-partial identifiability in Gu and Xu (2020) for conventional
categorical-response CDMs can be studied.

4. Universal EM Algorithms for Estimating ExpCDMs

Our identifiability result in Theorem 1 has a nice consequence of statistical consistency of the
maximum likelihood estimator (MLE). We next formally establish this result. Consider a sample
with N independent and identically distributed response vectors Y1:N = {Y1, . . . ,YN } from an
ExpCDM in (6) with true parameters (η0, p0). Given the Q-matrix, the marginal log-likelihood
can be written as

�(η, p | Y1:N ,Q) =
N∑

i=1

logP(Y = Yi | η, p) =
N∑

i=1

log

⎛

⎝
∑

α∈{0,1}K
pα

J∏

j=1

g
(
Yi, j ; η j,α

)
⎞

⎠ ,(20)

where η is the collection of all η j,α’s that are subject to the Q-matrix constraints under the
considered ExpCDM. Define the MLE of model parameters as

(̂η, p̂) = argmax
η, p

�(η, p | Y1:N ).

Following from the identifiability conclusions, we have the following proposition on parameter
estimation consistency.

Proposition 4. (Parameter Estimation Consistency) Consider an ExpCDM in the form (6) where
the true parameters (η0, p0) lie in the interior of the parameter space. Suppose the strict iden-
tifiability conditions A and B in Theorem 1 hold. Then (̂η, p̂) converge to (η0, p0) almost surely
as N → ∞.
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Next, consider an ExpACDM with true parameters ( p0,β0, γ 0) where the generic identifia-
bility conditions A
 and B
 in Theorem 2 hold. Then, the MLE ( p̂, β̂, γ̂ ) converges to ( p0,β0, γ 0)

almost surely, for ( p0,β0, γ 0) ∈ �( p,β, γ ;Q)\N . Here,N is a negligible measure-zero set in
�( p,β, γ ;Q).

Next we propose an expectation-maximization (EM, Dempster et al., 1977) algorithm for param-
eter estimation. For the purpose of developing an EM algorithm, consider the log-likelihood for
the complete data (Y1:N ,A1:N ) = (Yi ,Ai )i=1,...,N :

�c(η, p | Y1:N ,A1:N ,Q) = log
[ N∏

i=1

P(Ai )P(Yi | Ai ,Q)
]

(21)

=
∑

α∈{0,1}K

N∑

i=1

1(Ai = α)

⎛

⎝log pα +
J∑

j=1

log g(Yi, j ; η j,α)

⎞

⎠ ,

whereAi ∈ {0, 1}K denotes the latent attribute profile of the i th subject in the sample. In Sects. 4.1
and Sect. 4.2, we present details of the EM algorithms for the general ExpDINA and ExpACDM
models.

4.1. EM Algorithm for the ExpDINA

Consider the ExpDINA model defined in Sect. 2.2.1, which is parametrized by item param-
eters {η j,(h)} j∈[J ],h=0,1 and p. In this subsection, for notational simplicity, we write η =
{η j,(h)} j∈[J ],h=0,1 to denote all item parameters. For the ExpDINA model, the complete data
log-likelihood (21) can be rewritten as:

�
ExpDINA
c (η, p | Y1:N ,A1:N ) =

∑

α∈{0,1}K

N∑

i=1

1(Ai = α) log pα (22)

+
∑

α∈{0,1}K

N∑

i=1

1(Ai = α)

J∑

j=1
[ (

η�
j,(0)T(Yi, j ) − A(η j,(0)) + log h(Yi, j )

)
(1 − � j,α)

+
(
η�
j,(1)T(Yi, j ) − A(η j,(1)) + log h(Yi, j )

)
� j,α

]
.

Recall that � j,α is the binary ideal response, which equals one if and only if the latent skill pattern
α possesses all skills required by item j . We next present details of the E step and M step in the
EM algorithm.
E step for ExpDINA In the E step of the t-th EM iteration, we calculate the conditional expectation
of �

ExpDINA
c in (22) given the current parameter values η(t), p(t). As Ai is discrete and ranges in

{0, 1}K , it suffices to evaluate ϕ
(t+1)
i,α := P(Ai = α | η(t), p(t)) for all α ∈ {0, 1}K . This can be

calculated by noting that

ϕ
(t+1)
i,α = pα

J∏

j=1

P(Yi, j | η(t), p(t),Ai = α)
/( ∑

α′∈{0,1}K
pα′

J∏

j=1

P(Yi, j | η(t), p(t),Ai = α′)
)
.
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The exact form of ϕ
(t+1)
i,α is given in Algorithm 1. Now using ϕ

(t+1)
i,α , we can calculate the condi-

tional expectation of �
ExpDINA
c as follows and denote it as Q(η, p | η(t), p(t)):

Q(η, p | η(t), p(t)) = E

[
�c(η, p | Y,A)

∣∣∣ η(t), p(t)
]

=
∑

α∈{0,1}K

N∑

i=1

ϕ
(t+1)
i,α log pα

+
∑

α∈{0,1}K

N∑

i=1

ϕ
(t+1)
i,α

J∑

j=1

[ (
η�
j,(0)T(Yi, j ) − A(η j,(0)) + log h(Yi, j )

)
(1 − � j,α)

+
(
η�
j,(1)T(Yi, j ) − A(η j,(1)) + log h(Yi, j )

)
� j,α

]
.

M step for ExpDINANext, in the M step in the t th EM iteration, we maximize Q(η, p | η(t), p(t))

with respect to (η, p) and update the model parameters as follows:

(η(t+1), p(t+1)) = argmax
η, p

Q(η, p | η(t), p(t)).

Since η j,(0), η j,(1), p are continuous parameters, we can set their partial gradients to zero and
update parameters as the solutions to the gradient equations. Specifically, we will solve

argmax
p

∑

α∈{0,1}K

N∑

i=1

ϕ
(t+1)
i,α log pα, subject to

∑

α∈{0,1}K
pα = 1, (23)

argmax
η j,(0)

∑

α∈{0,1}K

N∑

i=1

ϕ
(t+1)
i,α

J∑

j=1

(
η�
j,(0)T(Yi, j ) − A(η j,(0))

)
(1 − � j,α), ∀ j ∈ [J ], (24)

argmax
η j,(1)

∑

α∈{0,1}K

N∑

i=1

ϕ
(t+1)
i,α

J∑

j=1

(
η�
j,(1)T(Yi, j ) − A(η j,(1))

)
� j,α, ∀ j ∈ [J ]. (25)

The first optimization problem in (23) has a closed-form solution for p:

pα =
∑N

i=1 ϕ
(t+1)
i,α

∑
α∈{0,1}K

∑N
i=1 ϕ

(t+1)
i,α′

, ∀α ∈ {0, 1}K .

For optimization problems in (24) and (25) for the item parameters, there also often exist closed-
form updates for many distributions. Consider η j,(1) in (25) for some item j ∈ [J ].

Setting the partial gradient of (25) with respect to η j,(1) to zero, we obtain:

∑

α

∑

i

ϕ
(t+1)
i,α � j,α(T(Yi, j ) − ∇ηA(η)) = 0, �⇒ ∇η j,(1) A(η) =

∑
i,α T(Yi, j )ϕ

(t+1)
i,α � j,α

∑
i,α ϕ

(t+1)
i,α � j,α

.

(26)
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Now note that an exponential family distribution has a nice property that A(η) is always a convex
function of η (Casella & Berger, 2021) . This is because the Hessian matrix of A(η) equals the
covariance matrix of the sufficient statistics T and hence is always positive definite. This property
implies that η → ∇ηA(η) is always an invertible map of η and there exists a unique solution to
the gradient equation in (26). In fact, for many widely used exponential family distributions, (26)
has an explicit solution and hence the corresponding ExpDINA has explicit M step updates.

For example, under the Lognormal-DINA model, maximizing (24)–(25) gives the following
updates of the mean and variance parameters:

μ
(t+1)
j,1 =

∑
i,α ϕi,α� j,α log Yi, j∑

i,α ϕi,α� j,α
, (σ 2

j,1)
(t+1) =

∑
i,α ϕi,α� j,α(log Yi, j − μ

(t+1)
j,1 )2

∑
i,α ϕi,α� j,α

;

μ
(t+1)
j,0 =

∑
i,α ϕi,α(1 − � j,α) log Yi, j∑

i,α ϕi,α(1 − � j,α)
, (σ 2

j,0)
(t+1) =

∑
i,α ϕi,α(1 − � j,α)(log Yi, j − μ

(t+1)
j,1 )2

∑
i,α ϕi,α(1 − � j,α)

.

Updates for ExpDINA for other transformed-Normal distributions (e.g., logistic-Normal) can
be obtained by simply replacing the log Yi, j term in the above display with the corresponding
transform. As another example, under the Poisson-DINA model, maximizing (24)–(25) gives the
following updates for the Poisson rate parameters:

λ
(t+1)
j,1 =

∑
i,α ϕi,α� j,αYi, j∑
i,α ϕi,α� j,α

, λ
(t+1)
j,0 =

∑
i,α ϕi,α(1 − � j,α)Yi, j∑
i,α ϕi,α(1 − � j,α)

.

4.2. EM Algorithm for the ExpACDM

In this subsection, we propose an EM algorithm to estimate the model parameters under
the ExpACDM defined in Sect. 2.2.2. Recall that the ExpACDM is parametrized by η j,α =
h
(
β j,0 + ∑K

k=1 β j,kq j,kαk, γ j

)
with all parameters collected in (β, γ , p). The complete data

log-likelihood (21) under an ExpACDM can be written as:

�
ExpACDM
c (β, γ , p | Y,A) =

∑

α∈{0,1}K

N∑

i=1

1(Ai = α) log pα (27)

+
∑

α∈{0,1}K

N∑

i=1

1(Ai = α)

J∑

j=1

{
h(β j,0+

K∑

k=1

β j,kq j,kαk, γ j )
�T(Yi, j )

− A
(
h(β j,0 +

K∑

k=1

β j,kq j,kαk, γ j )
) + log h(Yi, j )

}
.

Based on the above expression, we can derive an EM algorithm to estimate parameters in an
ExpACDM. The detailed steps are summarized in Algorithm 2.

An interesting fact is that in Algorithm 2, maximizing (β j , γ j ) in each M step is similar
to obtaining the MLE of the regression coefficients in a generalized linear model, but with the
observed covariates replaced with the latent attributes evaluated in the E step. In particular, in
the special case of the transformed-Normal distributions, this maximization is similar to linear
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Algorithm 1: EM Algorithm for the General ExpDINA Model
Data: Responses Y = (Yi j )N×J , Q-matrix Q = (q jk)J×K .
Initialize parameters (η, p).
while log-likelihood has not converged do

In the (t + 1)th iteration,
// E step
for (i,α) ∈ [N ] × {0, 1}K do

ϕ
(t+1)
i,α = P(Ai = α | Y, η(t), p(t))

=
p(t)
α exp

(∑
j [η(t)�

j,(0)T(Yi, j ) − A(η
(t)
j,(0))](1 − � j,α) + [η(t)�

j,(1)T(Yi, j ) − A(η
(t)
j,(1))]� j,α

)

∑
α′ p

(t)
α′ exp

(∑
j [η(t)�

j,(0)T(Yi, j ) − A(η
(t)
j,(0))](1 − � j,α′ ) + [η(t)�

j,(1)T(Yi, j ) − A(η
(t)
j,(1))]� j,α′

) ;

// M step
for α ∈ {0, 1}K do

p(t+1)
α =

∑
i ϕ

(t+1)
i,α

∑
i,α′ ϕ

(t+1)
i,α′

;

for j ∈ [J ], h ∈ {0, 1} do

η
(t+1)
j,(h) = argmax

η

∑

i,α

[
(1 − � j,α)1−h�h

j,α(η�T(Yi, j ) − A(η))ϕ
(t+1)
i,α

]
;

Or equivalently, solve the following gradient equations for (η
(t+1)
j,(0) , η

(t+1)
j,(1) ):

(∇ηA
)
(η

(t+1)
j,(1) ) =

∑
i,α T(Yi, j )ϕ

(t+1)
i,α � j,α

∑
i,α ϕ

(t+1)
i,α � j,α

,

(∇ηA
)
(η

(t+1)
j,(0) ) =

∑
i,α T(Yi, j )ϕ

(t+1)
i,α (1 − � j,α)

∑
i,α ϕ

(t+1)
i,α (1 − � j,α)

.

Output: Estimated parameters (η, p).

regression and has a closed form solution. For example, when P is the Normal distribution, the
maximization for (β j , γ j ) in the M step can be written as:

(β j , γ j )
(t+1) = argmax

β j ,γ j

∑

i,α

(
− (Yi, j − β j,0 − ∑K

k=1 β j,kq j,kαk)
2

2γ 2
j

− 1

2
log γ 2

j

)
ϕ

(t+1)
i,α
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Algorithm 2: EM Algorithm for the General ExpACDM
Data: Responses Y = (Yi j )N×J , Q-matrix Q = (q jk)J×K

Initialize parameters β j , γ j , pα’s.
while log-likelihood has not converged do

In the (t + 1)th iteration,
// E step
for j ∈ [J ],α ∈ {0, 1}K do

η
(t)
j,α = h(β

(t)
j,0 + ∑

k β
(t)
j,kαk, γ

(t)
j )

for (i,α) ∈ [N ] × {0, 1}K do

ϕ
(t+1)
i,α = P(Ai =α | Y,β

(t)
j , γ

(t)
j , p(t)

α ) = pα exp(
∑

j [η(t)�
j,α T(Yi, j )−A(η

(t)
j,α)])

∑
α′ pα′ exp(

∑
j [η(t)�

j,α′ T(Yi, j )−A(η
(t)
j,α′)])

;

// M step
for α ∈ {0, 1} do

p(t+1)
α =

∑
i ϕ

(t+1)
i,α

∑
i,α′ ϕ

(t+1)
i,α′

for j ∈ [J ] do

(β j , γ j )
(t+1) = argmax

β j ,γ j

∑

i,α

[
h(β j,0 +

K∑

k=1

β j,kq j,kαk, γ j )
�T(Yi, j )ϕ

(t+1)
i,α

− A(h(β j,0 +
K∑

k=1

β j,kq j,kαk, γ j ))ϕ
(t+1)
i,α

]

Output: β j , γ j , pα’s.

for any j ∈ [J ]. So for those q j,k = 1, we can get the updates

β̂
(t+1)
j,k =

∑
i,α Yi, jαkϕ

(t+1)
i,α

∑
i,α αkϕ

(t+1)
i,α

, γ̂
(t+1)
j =

√∑
i,α(Yi, j − β j,0 − ∑K

k=1 β j,kq j,kαk)2ϕ
(t+1)
i,α

N
.

The updates under the transformed-Normal distributions can be obtained similarly by apply-
ing the corresponding transform of Yi, j . For other members in the exponential family beyond the
transformed-Normal, maximizing (β j , γ j )may not have closed forms and one may use available
optimization software to find (β̂ j , γ̂ j ) in the M step.

Although we have focused on describing EM algorithms for ExpDINA and ExpACDM in
this section, we remark that an EM algorithm with closed-formM step can be similarly developed
for the ExpGDM (ExpGDINA). Furthermore, the exponential family assumption in Algorithms
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1 and 2 is not essential to our EM procedures. In Supplementary Material S.4, we demonstrate
how our algorithms can be modified to estimate the negative-binomial-based DINA and negative-
binomial-based ACDM.

5. Simulation Studies

We conduct simulation studies under various models in the proposed family. We have two
goals in the simulations: (a) to empirically verify the theoretical results of identifiability and con-
sistency; and (b) to assess the computational performance of the proposed EM algorithms. Under
the ExpDINA and the ExpACDM, we consider the Normal and transformed Normal distributions
(i.e., lognormal and logistic normal) for continuous responses in Sect. 5.1, and the Poisson and
negative binomial distributions for count responses in Sect. 5.2. We remark that in addition to the
distributions considered in this section, it is also easy to use our framework and estimation pro-
cedures for other exponential family distributions such as Gamma and Beta to model continuous
positive, and continuous bounded data, respectively.

5.1. Simulations Under the Normal- and Transformed Normal-CDMs

We first describe the true parameter settings used in the simulations. In all simulations, we
set the Q-matrix and proportion parameter p as follows. Consider K = 5 latent attributes and
J = 20 items. The Q-matrix takes the form

Q =

⎛

⎜⎜⎝

IK
IK
IK
Q1

⎞

⎟⎟⎠ , where Q1 =

⎛

⎜⎜⎜⎜⎝

1 1 0

1
. . .

. . .

. . .
. . . 1

0 1 1

⎞

⎟⎟⎟⎟⎠

K×K

. (28)

The above Q-matrix satisfies our strict identifiability conditions in Theorem 1 and Proposition 2.
The proportion parameters are set to be uniformwith pα = 1/2K for all α ∈ {0, 1}K . We consider
varying sample sizes N = 100, 500, 1000, 1500, 2000. In each setting, 100 independent simula-
tion replicates are performed. Under the Normal-DINA model, we set the true item parameters
as

μ j,0 = −1, μ j,1 = 2, σ j,0 = 1, σ j,1 = 1.

Under the Normal-ACDM, we set the coefficients β j,k by

β j,0 = −1; β j,k = 3
∑K

k′=1 q j,k′
1(q j,k = 1), ∀ j ∈ [J ], k ∈ [K ].

The variance parameter γ j = σ 2
j is fixed to be 1 for all j .

Recall that in Example 1, we have mentioned that general-response CDMs based on any
transformed Normal distributions (such as lognormal and logistic Normal) are equivalent to the
Normal-based CDM. This fact implies that the estimation procedures for these models are iden-
tical up to an invertible transformation in the M step. In preliminary simulations, we have tried
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Figure 2.
RMSEs of parameters under the Normal-DINA (red) and Normal-ACDM (blue).

Figure 3.
RMSEs of p with respect to 1√

N
under the Normal-DINA model.

estimating theNormal-based and lognormal-based CDMs independently, and the estimation accu-
racies for the two models are exactly the same. Hence, we only report the estimation accuracy for
the Normal-based CDM in this section.

In each of the C = 100 independent replicates, we generate data using the above parameter
settings and fit our EM Algorithms 1 or 2 with a random initialization. We calculate the root
average mean squared error (RMSE) of the proportion parameters and item parameters based
on the simulation replicates. Figure2 displays the average RMSEs for the Normal-DINA and
Normal-ACDM. In each simulation setting, the RMSE is defined as

√√√√ 1

C

C∑

c=1

‖̂θ (c) − θ0‖22
dim(θ0)

,

where θ0 is the true parameter vector, θ̂
(c)

is the estimator in the c-th simulation replication, and
dim(θ0) denotes the dimension of the vector θ0. The exact RMSE values are included in Tables
S.1, S.2, and S.3 in the Supplementary Material.
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Figure2 clearly shows that the RMSE decreases as the sample size N increases. Furthermore,
in Fig. 3, we plot the average RMSE of p under the Normal-DINA model versus 1/

√
N , and it

is clear that the RMSE is linear with respect to 1/
√
N . This observation empirically validates

that our estimation procedure is statistically consistent and converges at the usual parametric rate
1/

√
N . In addition, the above simulation results also show that our EM algorithms have good

computational performance and can efficiently find the MLE.
In the Supplementary Material S.5.2, we conduct additional simulation studies with alterna-

tiveQ-matrices that do not satisfy the strict identifiability conditions in Theorem 1, but satisfy the
generic identifiability conditions in Theorem 2. The simulation results empirically show that in
such settings, the model parameters can still be consistently estimated by our proposed method.

5.2. Simulations Under the Poisson- and Negative Binomial-CDMs

We also conduct simulation studies for general-response CDMs for multivariate count data.
Here, we consider Poisson and negative binomial distributions to model the count responses. The
Q-matrix and the proportion parameters p are set to be the same as described in the previous
subsection. The distribution-specific item parameters are set as follows. For the Poisson-DINA
model, we set the item parameters as λ j,0 = 1 and λ j,1 = 3. For the Poisson-ACDM, we set the
true model parameters as

β j,0 = 1, β j,k = 2
∑K

k′=1 q j,k′
1(q j,k = 1), ∀ j ∈ [J ], k ∈ [K ].

For the negative binomial-DINAmodel (NegBin-DINA, defined in Supplementary Material S.1),
we set the item parameters as

r j,0 = 1, r j,1 = 3, π j,0 = 0.5, π j,1 = 0.5, ∀ j ∈ [J ],

where r j,0, r j,1 are the number of successes and π j,0, π j,1 are the success probability in a negative
binomial distribution. For the negative binomial-ACDM (NegBin-ACDM, defined in Supplemen-
tary Material S.1), we set the true model parameters as

β j,0 = 1, β j,k = 2
∑K

k′=1 q j,k′
1(q j,k = 1), γ j = π j = 0.5, ∀ j ∈ [J ], k ∈ [K ].

Figures4 and 5 report the RMSEs of the estimated parameters obtained from the replicated
simulations. Similar to the Normal-based CDMs, the RMSEs here also decrease as N increases,
at the typical 1/

√
N rate.

Finally, we remark that our estimation methods are computationally quite efficient. In the
simulation settings considered in this section, the computation time taken by our EM algorithm
is less than one minute on average even for a sample size as large as N = 2000. We present the
average number of EM iterations and computation time in Supplementary Material S.5.1.

6. Application to the TIMSS 2019 Response Time Data

We demonstrate the proposed general-responseCDMby applying it to a response time dataset
extracted from the TIMSS 2019 assessment (Fishbein et al., 2021) . This dataset is from the
mathematics assessment data of eighth-grade students in the United States. It consists of each
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Figure 4.
RMSEs of parameters under the Poisson-DINA (red) and Poisson-ACDM (blue).

Figure 5.
RMSEs of parameters under the NegBin-DINA (red) and NegBin-ACDM (blue).

student’s time spent on each item screen (in seconds). If a question has sub-questions that share
the same screen, all the sub-questions combined are regarded as a single question, and the overall
response time is recorded. We focus on the students who received booklet number 14. After
data preprocessing (see details in Supplementary Material S.5), the dataset consists of N = 620
students’ response times to J = 29 items.

The TIMSS 2019 mathematics assessment aims to measure four content skills (Number,
Algebra, Geometry, and Data and Probability) and three cognitive skills (Knowing, Applying,
and Reasoning). The TIMSS 2019 database specifies how each of the J = 29 items measures one
content skill and one cognitive skill. Based on this information, we construct a 29 × 7 Q-matrix
with K = 7 skill attributes: A1: Number, A2: Algebra, A3: Geometry, A4: Data and Probability,
A5: Knowing, A6: Applying, A7: Reasoning. Each row of thisQ-matrix has exactly two nonzero
entries in one content skill and one cognitive skill. We provide the details of this Q-matrix in
Table 2. It is not hard to verify that thisQ-matrix satisfies our generic identifiability conditions in
Theorem 2 under any general-response ExpACDMs, and we choose to use the lognormal-ACDM
to analyze this dataset. The TIMSS database also provides additional item information, including
a brief description of the item type (whether it is a multiple choice item or a constructed response
item), and the correct response percentage among the U.S. students. We present this information
in Table 3.

Given the Q-matrix in Table 2, we fit the lognormal-ACDM using Algorithm 2. In addition
to the identifiability consideration, our rationale for adopting the additive model assumption is
that in order to solve each problem, students need to perform operations (i.e., attributes) that are



PSYCHOMETRIKA

Table 2.
Q-matrix for the TIMSS 2019 math assessment booklet 14.

Item ID. Number Algebra Geometry Data and Prob. Knowing Applying Reasoning

1 1 0 0 0 1 0 0
2 1 0 0 0 0 1 0
3 1 0 0 0 0 1 0
4 1 0 0 0 1 0 0
5 0 1 0 0 0 1 0
6 0 1 0 0 1 0 0
7 0 1 0 0 0 0 1
8 0 1 0 0 0 1 0
9 0 0 1 0 0 0 1
10 0 0 1 0 0 1 0
11 0 0 1 0 0 1 0
12 0 0 0 1 0 1 0
13 0 0 0 1 0 1 0
14 1 0 0 0 1 0 0
15 1 0 0 0 1 0 0
16 1 0 0 0 0 0 1
17 1 0 0 0 0 1 0
18 0 1 0 0 1 0 0
19 0 1 0 0 1 0 0
20 0 1 0 0 0 1 0
21 0 1 0 0 1 0 0
22 0 1 0 0 0 1 0
23 0 0 1 0 1 0 0
24 0 0 1 0 0 0 1
25 0 0 1 0 0 0 1
26 0 0 1 0 0 1 0
27 0 0 0 1 0 1 0
28 0 0 0 1 0 1 0
29 0 0 0 1 0 0 1

specified by theQ-matrix additively. We assume that each operation is carried out separately, and
the total log-time is the sum of the log-times for each operation. For instance, the question “Value
of X in 10/15 = X/18” (this is the 15th question in our dataset; see Tables 2 and 3 for more
details) measures the content skill “Number" and cognitive skill “Knowing", and we assume that
the log-time is the sum of:

β j,0: how long it takes to read the problem and click/type the answer;
β j,K AK : how long it takes to re-formulate the problem as “10 × 18 ÷ 15 = X", regarding

whether a student “knows" the necessary concepts, i.e., whether the student possesses
the cognitive skill “Knowing”;

β j,N AN : how long it takes to compute and find the answer X = 12, regarding whether the student
possesses the content skill “Number".
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Table 3.
Additional item information for items in TIMSS 2019 math assessment booklet 14. Starred (∗) items are items that are
composed of sub-questions; for these items, we display the smallest correct response percentage among all sub-questions.

Item Description Item type % Correct response

1 Octagon with equivalent shading MC 55
2 Percentage of laps finished CR 32∗
3 Multiples of 3 MC 42
4 Convert decimal to a fraction CR 42
5 Expression for area of rectangle MC 51
6 Ratio of boys MC 56
7 Rule for number of matches CR 11∗
8 Graph of y = 2x MC 41
9 Rotation and reflection MC 34
10 Surface area of the prism MC 41
11 Value of angle x outside triangle MC 44
12 Number of balls in a bag MC 69
13 Liv’s smartphone use MC 35∗
14 Number with most factors MC 54
15 Value of X in 10/15 = X/18 CR 50
16 Make two fractions with largest product CR 41
17 Ratio of boys to girls - eighth grade CR 53∗
18 Expression for money in savings account MC 73
19 Value of k when (k + 7) / 3 = 6 CR 60
20 Formula for students’ overall scores in course CR 54
21 Expression equivalent to x + 2y + 6 MC 42
22 Pair of equations for ticket price (Derived) MC 30
23 Shape reflected over dotted line (Derived) MC 58
24 Value of angle x with parallel lines a and b CR 11
25 Areas of triangles ABC and ABD CR 8
26 Surface area of rectangular prism CR 19
27 Bar graph of Internet users in world MC 60
28 Graph that best shows favorite fruit MC 65
29 Mean heights of basketball team CR 30

Summing up the above components and adding a normal error gives the following response time
distribution, which corresponds to the lognormal-ACDM defined in Example 3:

log Yi, j | A = β j,0
intercept

+ β j,K AK
cognitive skill

+ β j,N AN
content skill

+ εi, j , where εi, j
i.i.d∼ N (0, γ j ).

Decomposing the response time into several components has a long history. Sternberg (1969)
and Sternberg (1980) considered a linear regression model based on a sequence of hypothetical
processes that students go through to solve a problem. However, these studies do not introduce
individual-level latent variables. Maris (1993) considered a latent variable model with Gamma
distribution for the response time, with a similar additive combination of the latent variables.
These models are also referred to as exploratory response time models in the literature (e.g., De
Boeck and Jeon, 2019). The recent papers Minchen et al. (2017) and Minchen and de la Torre
(2018) incorporate this line of thinking into a CDM framework with the lognormal distribution for
modeling the response times. The empirical results in these papers show that students possessing
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Figure 6.
Heatmap of the estimated β-parameters under the lognormal-ACDM for the TIMSS 2019 response time dataset.

more required attributes take a longer time to respond, so we anticipate that our main-effect
coefficients β j,k for the attributes are nonnegative.

We run our EM Algorithm 2 with 20 random parameter initializations with β j,k > 0. We do
not impose any strict constraints on the sign ofβ j,k and allow the algorithm to update parameters in
the unconstrained space. Among the resulting 20 parameter estimates, we select the estimate with
the largest log-likelihood. Figure6 presents the estimated main-effect coefficients. This figure
shows that students spend the most time reading the question and clicking/typing the answer
(represented by the intercepts in the first column), compared to the time it takes to re-formulate
and solve the problem (represented by the main-effect coefficients from the second column to the
last column). The intercept values vary a lot across different questions, ranging from 1.0 to 3.1.
This indicates that the length and the abstractness of the questions vary substantially across items.
One interesting observation is the relation between the magnitude of the estimated intercept β j,0
and the type of each item. Recall that Table 3 provides information about whether each item is
a multiple choice item or a constructed response item. Nonetheless, Fig. 6 reveals that, among
the first ten items, the three items that ask students to construct the response (items 2, 4, 7) have
the largest intercept values. This is clearly visible by looking at the darker-colored entries (or
the numbers shown in white) in the first column of Fig. 6. This result can be interpreted as that
students spend more time typing and checking the answer when solving constructed response
items. Note that the item type information is not used in our estimation procedure, but our method
can automatically distinguish the multiple choice items from the constructed response items via
the estimated parameters.

As for the main-effect coefficients β j,k for k ≥ 1, the computation time represented by the
content skills’ coefficients and formulation time represented by the cognitive skills’ coefficients
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Figure 7.
Correlation plot of the latent attributes under the estimated lognormal-ACDM for the TIMSS 2019 response time dataset.

also differ a lot across the items. These coefficients range from 0.03 to 2.3. Even though we do
not constrain β j,k to be positive, all estimated main-effect coefficients turn out to be positive,
which is consistent with empirical findings in previous studies of response time modeling. This
observation also indicates that our additive model assumption is indeed plausible and yields
interpretable parameter estimates.

We also provide the correlation plot of the estimated latent attributes in Fig. 7. The EM
algorithm does not estimate the individual latent attributes directly, but instead computes the
conditional expectations ϕ̂i,α = P(Ai = α | Y, η̂, p̂) for all i ∈ [N ] and α ∈ {0, 1}K .
Therefore, we estimate the latent attribute profiles Ai by

Âi = argmax
α∈{0,1}K

ϕ̂i,α,

and use these estimated Â1, . . . , ÂN to compute the sample correlation between the attributes.
Figure7 reveals interesting observations about the intrinsic dependence among the attributes.
There are higher correlations among the four content skills and also higher correlations among
the three cognitive skills, compared to the correlations between one content skill and one cogni-
tive skill. This phenomenon not only supports that our model is a reasonable choice as it outputs
interpretable correlation structures among latent attributes, but also implies that it may be plau-
sible to model high-order latent traits behind the seven fine-grained attributes (de la Torre &
Douglas, 2004; Zhan et al., 2018a) . Future studies are warranted to explore the identifiability and
interpretability of such high-order extensions of our general-response CDMs.

To assess the model fit, we use the popular Bayesian information criterion (BIC) and compare
the lognormal-ACDM to an alternative lognormal-DINA model in terms of the BIC values. In
order to satisfy the identifiability conditions in Theorem 1 under the lognormal-DINA model,
and also motivated by the high correlation among the cognitive skills in Fig. 7, we consider a
more parsimonious lognormal-DINA model with K = 4 content skills only. The corresponding
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Q-matrix for lognormal-DINA has four columns, which are the first four columns of theQ-matrix
for lognormal-ACDM in Table 2. The BIC value for the lognormal-ACDM is 17,005, whereas the
BIC for the lognormal-DINA (fitted via Algorithm 1) is 17,067. Based on this result, we conclude
that the lognormal-ACDM with seven attributes is more suitable and fits better to this dataset,
despite its higher model complexity.

Furthermore, in Supplementary Material S.6.2, we also provide an analysis of the binary
response accuracy data.We find an interesting relationship between the item parameters estimated
from the response time data and those from the response accuracy data, as well as a similar
connection between the intercept (guessing parameter) of an item and the type of the item; see
the Supplementary Material for details.

7. Discussion

In this paper, we have proposed a flexible new framework of cognitive diagnostic models
for multivariate general responses beyond the traditional binary or polytomous responses. Our
modeling framework incorporates the Q-matrix constraints in a unified way and covers popular
existing CDMs as submodels. An important contribution of this work is to provide the crucial
identifiability theory for all these general-response CDMs. Interestingly and somewhat surpris-
ingly, we have shown that the general-response CDMs are identifiable under similar conditions
on the Q-matrix as the binary-response CDMs. Our identifiability theory has the nice implica-
tion of consistent parameter estimation via the maximum likelihood. For computation, we have
proposed an efficient EM algorithm for parameter estimation under various response types. Exten-
sive simulation studies not only corroborate the identifiability conclusions, but also demonstrate
the favorable computational performance of our algorithms. We have analyzed a response time
dataset from the TIMSS 2019 assessment using the proposed lognormal-ACDM and obtained
interpretable results.

The proposed new paradigm of identifiable general-response cognitive diagnostic models
open up a number of interesting possibilities for future research. First, our current identifiability
results and estimation procedure assume that the Q-matrix is known. In practice, many mod-
ern assessment datasets may not come with a readily available Q-matrix. In these exploratory
settings, it would be interesting to directly identify and estimate the Q-matrix along with other
model parameters for general-response CDMs. In terms of identifiability, we conjecture that our
identifiability proof technique could be generalized to also handle the identifiability of the Q-
matrix. In terms of estimation, it may be possible to extend existing methods for estimating the
Q-matrix such as penalized likelihood methods in Chen et al. (2015) and Ma et al. (2023), or
Bayesian approaches in Chen et al. (2018) and Liu et al. (2020) from the binary-response CDMs
to general-response CDMs. We plan to pursue these directions of exploratory general-response
CDMs in the future.

Second, it would be interesting to explore possibilities of strengthening our identifiability
results by developing weaker identifiability conditions for special submodels of general-response
CDMs. Our main theorems provide transparent sufficient conditions for identifiability in a very
general setting.But for binary-responseCDMsunder some specialmodeling assumptions, existing
studies show that there exist weaker conditions that can guarantee identifiability. For example, for
the DINA model with binary responses, Gu and Xu (2019) proposed weaker conditions that are
necessary and sufficient for strict identifiability. Establishing necessary identifiability conditions
in the most general setting with arbitrary response types is a non-trivial but interesting future
direction.

Third, many educational assessments naturally contain multiple types of responses for each
item. For instance, it is common to record the response accuracy and visual fixation counts/visit
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counts in addition to the response time for each item (Zhan et al., 2022; Fishbein et al., 2021)
. Jointly modeling multiple types of responses has received great attention in the measurement
literature (van der Linden, 2007;Molenaar et al., 2015; Zhan et al., 2018b;Wang et al., 2018;Man
& Harring, 2022; Kang et al., 2023) . Among these modeling approaches, CDM-based methods
such as Zhan et al. (2018b) and Zhan et al. (2022) use binary latent variables to model the response
accuracy only (i.e., binary responses of correct or wrong answers to items), and use an IRT-based
model with continuous latent variables to model the response time and fixation counts. In fact, as
suggested by our analysis of the TIMSS response time data, using binary latent skills to model the
response time can also yield interpretable results. Therefore, this work offers useful insights for
future research to propose identifiable general-response CDMs to jointly model multiple types
of responses, such as one’s response accuracy, response time, and visit counts to an item. We
believe that our ExpCDM framework is flexible enough to allow for such extensions. Indeed,
one naive model would be to assume conditional independence between the response accuracy
(Yi j ) and the response time (Ti j ) given one’s latent attributes (Ai ), and we conjecture that similar
identifiability conditions as proposed in this work still suffice for identifiability in this setting.
More investigations about modeling methodology and identifiability theory along this line are left
for future research.
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