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Forecasting Bike Sharing Demand Using Quantum

Bayesian Network

Abstract

In recent years, bike-sharing systems (BSS) are being widely established in ur-

ban cities to provide a sustainable mode of transport, by fulfilling the mobility

requirements of public residents. The application of BSS in highly congested

urban cities reduces the e↵ect of overcrowding, pollution, and tra�c congestion

problems. The crucial role behind incorporating BSS depends on the prediction

of bike demand across all the bike stations. The bike demand prediction in-

volves real-time analysis for identifying the discrepancy between the bike pick-

up and drop-o↵ throughout all the bike stations in a given time period. To

enhance the prediction analysis of bike demand we propose quantum comput-

ing algorithms to provide computational speedup in comparison with classical

algorithms. In this paper, we illustrate the construction of Quantum Bayesian

Networks (QBN), for predicting bike demand. Furthermore, we provide a solu-

tion framework for implementing QBN for two case studies: (a) bike demand

prediction during weekdays, (b) bike demand prediction during weekends. We

have compared the quantum and classical solutions, by using IBM-Qiskit and

Netica computing platforms.
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1. Introduction

In recent times, the rapid spread of the coronavirus pandemic (COVID-

19) have created unique challenges and a↵ected the normal well-being of the

economy, society, and public health systems by generating scenarios never seen

before. The severity of the COVID-19 pandemic have drastically changed the

public residents lifestyle and traveling choices by imposing stringent restrictions

such as nationwide lockdown and tra�c-control measures to reduce the spread

of the pandemic (Villwock-Witte and van Grol, 2015; Krizek and Stonebraker,

2011; Lenton et al., 2008). Furthermore, through better air-flow ventilation,

timely disinfection, and avoiding close proximity with travelers, the urban resi-

dents have adopted BSS as the alternative safe mode of public transport when

compared to the use of subway in highly congested urban cities (Nikiforiadis

et al., 2020; Cantelmo et al., 2020).

The Bike-sharing system is represented as a mobility service where bicycles

are accessible to public residents for shared use. The bikes are available at a

given station that are located all over the urban city areas and every station

have the required number of docks. The residents can access the bikes from

a given station location and are charged according to the bike usage duration.

By engaging these bike-sharing systems the public transport administration

will ensure a sustainable mode of transportation by reducing tra�c congestion,

pollution, carbon emission, and over-crowding problems in urban cities (He

et al., 2018; Yang et al., 2020; Xie et al., 2023).

However, let us assume a scenario when the customer desired level of bike

usage is observed in the early morning hours in a given dock station, then the

demand for a number of bikes will change abruptly throughout the entire pe-

riod because of uncertainty in the demand pattern. Fig.1 illustrates an overview

of the BSS prediction problem. To resolve the bike-sharing demand problem,

we need to make sure that supply bike stations satisfy predicted demand at

any given location in real time. To, initiate this approach we have to focus on

improving the computational aspect of the analysis using quantum computing
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principles. Quantum technology has brought about a new paradigm shift in the

computing platform by implementing fundamentals of quantum mechanics like

entanglement, superposition, and measurement. The devices that have the po-

tential to interpret classical information into the quantum paradigm are called

quantum computing devices (McKay et al., 2018). The quantum computing

devices manipulates the quantum mechanical phenomenon by storing the infor-

mation in the units of qubit, which have the ability to store more information in

comparison to classical qubits (Ajagekar et al., 2020; Qiskit Community, 2017).

Quantum computing devices are categorized into two groups based on their sys-

tem architecture: gate-based quantum devices and quantum annealing devices

(Dallaire-Demers and Wilhelm, 2016; Osaba et al., 2022).

The gate-based quantum devices are represented by quantum gates to build

the desired quantum circuits. Thereby, the quantum gates are applied to the

individual qubit states to obtain the appropriate solution (Phillipson et al.,

2022; Gyongyosi and Imre, 2019). Whereas, the quantum annealing devices

are mainly used to solve NP-hard combinatorial optimization problems (Kad-

owaki and Nishimori, 1998). To evaluate the computational performance of

gate-based and quantum annealing devices researchers have implemented these

architectures in various complex domains to solve problems such as solving NP-

hard problem for identifying low cost nearest neighbour quantum circuits using

harmony search heuristic algorithm (Alfailakawi et al., 2016), to mitigate fos-

sil fuel consumption and environmental economic dispatch (EED) problem by

using di↵erential evolution crossover quantum particle swarm optimization (DE-

CQPSO) algorithm (Xin-gang et al., 2020), to prioritize dynamic unpredictable

events in a manufacturing shop floor using quantum firefly swarms for multi-

modal dynamic optimization (Ozsoydan and Baykasoğlu, 2019), to present data

clustering technique using quantum chaotic cuckoo search algorithm (Boushaki

et al., 2018), and to demonstrate smart rebalancing of bike sharing system under

uncertainty using gate based quantum Bayesian network across three bike sta-

tions (Harikrishnakumar et al., 2021). However, in this work we have adopted
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the gate based system architecture for representing the classical Bayesian net-

work as Compositional Quantum Bayesian Network (C-QBN) due to its compu-

tational benefits for solving complex probabilistic problems such as bike demand

forecasting.

Figure 1: Overview of BSS Prediction Problem

Primarily, Tucci (1995) implemented QBN as a quantum equivalent counter-

part to the Bayesian network to enhance the overall performance of algorithms

in comparison with classical counterparts such as Bayesian probabilistic models

(Nielsen and Chuang, 2002; Kopczyk, 2018; Low et al., 2014; Woerner and Eg-

ger, 2019). Moreira and Wichert (2016) implemented a quantum-like Bayesian

network for developing binary variable Bayesian networks by using heuristics

techniques. Borujeni et al. (2021) proposed Compositional Quantum Bayesian

Network (C-QBN) to represent a discrete Bayesian network using a quantum

gate-based method. She et al. (2021) discussed the application of a Quantum-

like Bayesian network by evaluating the interference between the attributes

obtained from the multi-attribute decision-making (MADM) model. In this pa-

per, we develop the Quantum Bayesian network by considering a generic 3-node

Bayesian network with 2 states and also validate the results by implementing

the circuit on a gate-based quantum platform.

Paper Contributions: The main technical contribution of this paper can

be summarized as follows-(a) Developed an ensemble forecasting model with

Long-short term memory (LSTM) and Gaussian process regression (GPR) as

individual models whose results are aggregated using a Quantum Bayesian net-
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work, (b) The weights for the individual models are calculated as being inversely

proportional to the root mean square error (RMSE) values, (c) Discretization

of the continuous-valued bike demand forecasts to enable the construction of

Quantum Bayesian networks, which can then be implemented on gate-based

quantum computing platforms, (d) Simulated both the weekday and weekend

QBN, using IBM Qiskit, (e) Validated the two Quantum Bayesian networks

against classical Bayesian networks implemented using Netica.

Paper organization: The following paper is organized as follows with a

bike demand prediction classification literature survey in Section 2. the back-

ground information of Bayesian networks, LSTM, and GPR models are pre-

sented in Section 3. A brief introduction to quantum circuits and quantum

gates are provided in Section 4. Section 5 explains the construction of the

Quantum Bayesian network. The methodology and framework of the proposed

BSS forecasting model are explained in Section 6. The numerical results of the

proposed approach are discussed in Section 7. Finally, Section 8 summarizes

the conclusion and future work.

2. Literature Review

Figure 2: BSS Demand Prediction Classification (Cantelmo et al., 2020)
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In recent years, many studies have considered bike-sharing systems as smart-

mobility transportation models to provide sustainable public transport for mit-

igating tra�c congestion and environmental pollution, and improving energy

conservation in highly congested urban cities (Singhvi et al., 2015). Since, the

BSS rental rates are subjected to temporal and spatial variations, the main chal-

lenge to operate BSS e↵ectively depends on understanding the discrepancy be-

tween the supply-demand uncertainties (Lin et al., 2018; Caggiani et al., 2018).

To illustrate and solve the existing supply-demand uncertainties in BSS,

the corresponding solution methods can be divided into two categories such as

demand rebalancing and demand forecasting methods as shown in Fig2. In

the former case of demand rebalancing, a redistribution strategy is applied to

determine the number and location of bike stations for allocating bikes to the

respective demand bike station. Furthermore, the rebalancing approach can

be divided into the operator and user-based approaches. In an operator-based

approach, a fleet of vehicle carriers are used to redistribute the bikes to the

respective demand bike station, whereas, in the user-based approach, incentives

are provided to rebalance the BSS.

The bike demand prediction methods can be classified as cluster-level, sta-

tion levels, and city-level prediction problems (Xiao et al., 2020; Chai et al.,

2018). Li et al. (2019) mentioned that city and cluster-level prediction models

assist to merge stations as separate groups, to facilitate scheduling in the pre-

diction process. Likewise, the station-level prediction model is unable to predict

bike demand trends due to its dynamic nature. The external factors such as

population, environmental factors, and work days contribute to the station-level

bike prediction problem (Hulot et al., 2018). Chen et al. (2017) and Lin et al.

(2018) proposed to implement deep neural network techniques to analyze the in-

teractions between deep neural networks and linear regression model to forecast

the hourly bike demand request at every station.

Dokuz (2021) proposed two novel algorithms to investigate the interest mea-

sures such as the frequency and continuity of bike usage frequency in Chicago
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Divvy bike big datasets. The proposed approach predicts the frequency of daily

bike usage in each of the bike stations and projects the overall demand across

the complete divvy dataset. Xie et al. (2023) modeled the censored semi-bandit

problem to optimize the number of pick-ups for multi-round bike demand alloca-

tion during unknown user demands. Ramesh et al. (2021) developed a real-time

demand-supply prediction model using machine learning models such as random

forest, linear regression, and boosting algorithms to forecast the bike demand

at a given bike station during a specific time period. Erdoğan et al. (2014) im-

plemented an integer programming model for static-bicycle relocation problems

with demand intervals (SBRP-DI) to redistribute the bikes among the respec-

tive bike stations to minimize the overall relocation cost. Gammelli et al. (2022)

presented a deep learning generative model by using a variational Poisson re-

current neural network (VP-RNN) to forecast the pick-up and drop-o↵ of the

bikes in the New York Citi-bike system. Li et al. (2023) utilized an irregular

convolutional network (IrConv) model to forecast the correlation of bike usage

amongst distant urban locations. The proposed model is evaluated and the

model performance of bike stations is compared across five cities; New York,

Chicago, Washington D.C., London, and Singapore respectively.

Recent studies have shown a great range of bike mobility prediction applica-

tions using graph theory and graph structures to analyze urban flows, spatiotem-

poral bike mobility patterns in di↵erent cities, urban tra�c flow assessments,

short-term bike demand forecasting, and examine urban travel flows in highly

congested cities (Zaltz Austwick et al., 2013; Zhong et al., 2014). Yang et al.

(2020) investigated the temporal transactions of bike tra�c flows encoded in

graphical structures for forecasting short-term BSS demand. Yang et al. (2019)

examined the spatiotemporal bike flow patterns and graph-based approach to

study the e↵ect of mobility patterns, travel behaviors, and last-mile flow of the

new metro line station in Nanchang, China. Zhang et al. (2017) utilized graph

structure models to analyze spatiotemporal travel patterns for understanding

tra�c demand prediction.
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Pan et al. (2019) proposed Long short-term memory,(LSTM) model for bike

demand prediction during the bike renting and returning process and showed

that the prediction model outperforms other deep learning models. Singhvi

et al. (2015) mentioned the station-level demand prediction problem to examine

the e↵ect of influence factors like holidays, weekdays, weekends, tra�c flow,

and weather information for estimating bike demand prediction using regression

models. Sathishkumar et al. (2020) used weather-related information along

with bike-ridership data to predict the hourly rental bike demand using support

vector machines, linear regression, and gradient boosting models. VE and Cho

(2020) studied the impact of weather-related information in two bike data sets,

Seoul bike data and capital bike share data for predicting bike demand using a

rule-based regression model such as Classification and regression trees (CART),

K-Nearest Neighbours (KNN), Randon forest, and conditional inference tree

models. El-Assi et al. (2017) analyzed the e↵ect of weather, socio-demographic,

and environmental data to investigate the bike demand frequency of bike share

in Toronto. Yu et al. (2022) proposed ensemble model using seasonal auto-

regressive integrated moving average (SARIMA) and long short-term memory

(LSTM) models to predict and optimize bike relocation around urban rail transit

station locations. Gao and Chen (2022) developed a machine learning model

using KNN, random forest, SVM, and linear regression to study the performance

of the demand prediction model under the influence of factors like weather

information, tra�c data, air pollution, and COVID-19 instances.

Ma et al. (2022) implemented a spatiotemporal graph attentional long-term

short-term memory (STGA-LSTM) model to predict short-term bike demand

from station-level using data sets from multiple sources. The (STGA-LSTM)

model assists in extracting spatiotemporal information about bike mobility pat-

terns and predicting the bike pick-up and drop-o↵ demand patterns. Liu et al.

(2019b) introduced two new methods using LSTM that can utilize multiple fea-

ture inputs and multiple time step outputs to enhance the accuracy of bike

prediction in the first step and forecast the number of bikes in the second step.
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Thereby assisting in better decision-making to relocate the bikes to the docker

stations. Mehdizadeh Dastjerdi and Morency (2022) focuses on short-term bike

demand forecasting in Montreal using LSTM deep learning approach. The pro-

posed approach identifies six neighborhood communities using the Louvain al-

gorithm along with four groups of LSTM to forecast the bike demand across the

selected communities.

In addition, Gammelli et al. (2020) proposed censorship-aware demand mod-

eling using the Gaussian process regression method to estimate latent demand

of shared mobility during discrepancy in the supply. Cantelmo et al. (2020) im-

plemented data mining techniques to retrieve bike demand patterns using the

operational data of BSS. Likewise, Kaltenbrunner et al. (2010) also proposed

data-mining methods to determine spatiotemporal bike demand patterns using

the ARMA family of models and time series analysis. Additionally, machine

learning techniques combined with data mining methods for predicting bike de-

mands of dockless BSS (Ai et al., 2018; Liu et al., 2018). Zeng et al. (2016)

utilized an ensemble approach using a gradient boosting decision tree (GBDT)

and neural network methods to derive global features to enhance bike demand

prediction. Kaspi et al. (2016) used probabilistic Bayesian network modelling to

predict station bike demand using bike trip data. The above mentioned studies

are summarized in Table 1 respectively.

However, after analyzing all the existing methods we can infer that the bike

demand prediction requires real-time analysis to successfully predict the demand

across the bike stations. This attempt is only possible by adopting an advanced

computation platform that enables to increase in the e�ciency and accuracy of

prediction (Nielsen and Chuang, 2002). To enhance this new contribution, we

previously proposed the C-QBN methodology approach and presented the the-

oretical framework for bike demand prediction (Harikrishnakumar et al., 2020).

In this paper, we extend the proposed theoretical framework for New York Citi

Bike datasets and validated the proposed quantum methods against classical

Bayesian networks. We have included the following extensions as follows: (1)
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Development of classical ensemble framework using Long-short term memory

(LSTM) networks and Gaussian process regression (GPR) to represent Bayesian

network for bike demand prediction; (2) Development of quantum circuit con-

structed by integrating conditional probabilities of Bayesian network; and (3)

Illustration of the constructed QBN approach for predicting bike demand during

weekdays and weekends of New-York citi-bike sharing systems. Hence, we im-

plement the proposed solution approach for forecasting bike demand prediction.

The proposed application of C-QBN for bike demand prediction can enhance

other areas of Smart mobility in tra�c monitoring, and vehicle incident predic-

tion with a real-time solution by addressing these underlying issues related to

transportation networks in urban cities.

3. Background Information

3.1. Bayesian Networks

Bayesian networks are probabilistic graphical model to represent uncertainty,

evaluate risk and assist in decision making analysis. The Bayesian network is

also known as directed acyclic graph, (DAG) that represents conditional proba-

bilities with di↵erent variables of interest. The mathematical representation of

Bayesian network is shown in Eq., 1. Now let us assume network with n nodes,

where Z = {Z1, Z2, ..., Zn} represents a set of nodes. Zi represents parent node

and node Zj is called child node.

P (Z1, Z2, ..., Zn) =
nY

i=1

P (Zi|⇧Zi) (1)

Where ⇧Zi represents parent nodes with respect to Zi. The root nodes,

P (Zi|⇧Zi) is equal to marginal probability distribution, P (Zi). The Fig.3 illus-

trates the Bayesian network of Two-node network. Where, A denotes root node

and B represents the child node.
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Figure 3: Illustration of Bayesian Network(Harikrishnakumar et al. (2020))

3.1.1. LSTM Model (Long short term memory neural network):

Figure 4: Illustration of LSTM network

LSTM is a variant of recurrent neural networks (RNN) used to process se-

quential data and memorize data from previous time steps for solving time series

prediction problems (Goodfellow et al., 2016). The LSTM model is a di↵erent

form of RNN which is capable of learning from long-time dependencies and also

remain una↵ected from vanishing gradient problem (Hochreiter and Schmidhu-

ber, 1997). Fig.4 illustrates the complete mechanism and layers of LSTM model

that consist of internal recurrence, self loop and an outer recurrence, that allows

the network to store and update the information during the training process.

Thereby, assisting the model to make predictions form the previous learning

experiences (Wang and Kim, 2018). The mathematical expression of the LSTM

model can be denoted as follows and the Eq.(2-7) are referenced as mentioned

by Goodfellow et al. (2016):

12



ft = (Wf [ht�1, xt] + bt) (2)

it = �(Wi[ht�1, xt] + bi) (3)

C̃t = tanh(Wc ⇤ [ht�1, xt] + bc) (4)

Ct = ft � Ct�1 + it � C̃t (5)

Ot = �(Wo[ht�1, xt] + bo) (6)

ht = Ot � tanh(Ct) (7)

Where, t is the current time step , x is the input, o is the output,W is Weight

matrix , b is bias. Accordingly, ft , ht, it, Ct are four intermediate parameters

that store and remember the input data, while � is sigmoid activation function

and tanh denotes the hyperbolic tangent activation function respectively. The

LSTM model proposed in this paper consist of two input LSTM layers and the

output layer would make the final predictions of bike-sharing demands across

bike station during weekdays and weekends of New York Citi-Bike stations.

3.1.2. Gaussian Process Regression Model:

Gaussian process regression (GPR) is an extremely useful tool which belongs

to the field of probabilistic machine learning method to perform non-parametric

regression with the Gaussian process (Rasmussen and Nickisch, 2010). For in-

stance, given a dataset D = (xi,yi) with n input vectors xi and output vectors

yi, the corresponding probability distribution over the function f(x) follows a

Gaussian distribution as follows:

f(x) ⇠ GPR(m(x), k(x, x
0
)) (8)

The Gaussian process models this distribution by means of multivariate

Gaussian distribution using the mean function m(x) and co-variance function

k(x,x
0
) expressed as follows:
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m(x) = E(f(x)) (9)

k(x, x
0
) = E[(m(x)� f(x

0
))(m(x)� f(x

0
))] (10)

where, E is the expectation value and k(x,x
0
) is the kernel function that

provides the relation between the training dataset and the predicted target

output. In solving a regression problem the target output y is expressed by

prior distribution as:

y ⇠ N(0,K(x, x
0
) + �2

nIn) (11)

While performing the Gaussian distribution between the testing set x
0
and

training set x , the predicted output y
0
is set to follow a joint prior distribution

with the target output y as follows:

2

64
y

y
0

3

75 ⇠ N(0,

2

64
k(x, x) + �2

nIn k(x, x
0
)

k(x, x
0
)T k(x

0
, x

0
)

3

75 (12)

N represents normal distribution , �n is the noise level term , k(x,x
0
), k(x

0
, x

0
)

is the co-variance matrices of the training and testing sets, and covariance matrix

k(x,x) is defined as:

k(x, x) =

2

66664

k(x1, x1) k(x1, x2) ..... k(x1, xn)
...

... ....
...

k(xn, x1) k(xn, x2) ..... k(xn, xn)

3

77775
(13)

The squared exponential kernel function is also called as radial basis function

(RBF) and represented as:

k(x, x
0
) = p1 ⇤ exp(�

(x� x
0
)2

2 ⇤ p2
) (14)

The hyper-parameters p1 represent the amplitude of the covariance, and p2

represent the length scale parameters which represent the correlation between

14



the highly spread points. After, performing the Gaussian distribution it is nec-

essary to measure and validate the performance of the GPR, by optimizing the

hyper-parameter p1 and p2 in the co-variance function during the training pro-

cess (Liu et al., 2019a). Finally, after optimizing the hyper-parameters of GPR,

the predicted target output y
0
can be derived by calculating the conditional

probability distribution p(y
0 |x0

,x,y) as follows:

p(y
0
|x

0
, x, y) ⇠ N(y

0
|ȳ0 , cov(y

0
)) (15)

Where, ȳ0 represents mean values of the predicted output and cov(y
0
) is the

co-variance matrix that measures the uncertainty in the predictions.

4. Quantum circuits and Quantum Gates

Quantum computation involves the manipulation of quantum systems used

to process quantum information. The generic computational basis of a quantum

system can be represented as:

| i = ↵ |0i+ � |1i (16)

In the quantum system mentioned in Eq. 16, the two systems; |0i and |1i

are the basic unit of computation for two-qubit system given in vector form such

as;

|0i =

2

64
1

0

3

75 |1i =

2

64
0

1

3

75 (17)

The states in Eq. 17 are similar to classical binary bits 0 and 1 used in clas-

sical systems. However, the classical bits are di↵erent from qubits due to the

principle of superposition between both states |0i and |1i respectively. These

qubits are used to execute quantum calculations which is accomplished by per-

forming series of fundamental mathematical operations called as Quantum logic

gates. These quantum gates are represented by an operator that transforms to
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map one quantum state into another quantum state (Nielsen and Chuang, 2002).

Here, we discuss single and multi-qubit gates to construct quantum circuit using

QBN approach.

4.1. Single and Multi-Qubit Gates:

The gates Hadamard (H), Pauli-X , Identity (I), and Pauli-Z are denoted by

the unitary operators that are represented in matrix form as shown below:

H = H =
1p
2


1 1
1 �1

�
Pauli�X = X =


0 1
1 0

�

I = I =


1 0
0 1

�
Pauli� Z = Z =


1 0
0 �1

�

Figure 5: Matrix form of H, X, I, Z Gates

The Hadamard gate or H-gate plays a critical role in quantum computing

systems, which assists in transforming a qubit from one computational basis

to a superposition of two states (Santos, 2016; Qiskit Community, 2017). The

Hadamard gate represents the possible combination of all the states of qubits

given in a quantum circuit. For instance in 2-qubit quantum system, | 0i where

| 0i = a0 |00i+ a1 |01i+ a2 |10i+ a3 |11i, the possible combination of quantum

states are 22 = 4. Hence, the resulting superposition of states when Hadamard

gate is applied to states |0i and |1i, is shown below:

H |0i = 1p
2

2

64
1 1

1 �1

3

75⇥

2

64
1

0

3

75 =
|0i+ |1ip

2
(18)

H |1i = 1p
2

2

64
1 1

1 �1

3

75⇥

2

64
0

1

3

75 =
|0i � |1ip

2
(19)

The X-gate flips the states of the qubit, the state |0i to |1i and |1i to |0i.

The X-gate operator flips the input state of the qubits as follows:
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X |0i =

2

64
0 1

1 0

3

75⇥

2

64
1

0

3

75 =

2

64
0

1

3

75 = |1i (20)

X |1i =

2

64
0 1

1 0

3

75⇥

2

64
0

1

3

75 =

2

64
1

0

3

75 = |0i (21)

The Z-gate is a unitary gate that is referred as phase-flip operator as it maps

1 to -1 as it flips the phase of the qubits and leaves the state |0i unchanged

(Qiskit Community, 2017), whereas the Z-gate transforms |1i to |�1i as shown

below:

Z |0i =

2

64
1 0

0 �1

3

75⇥

2

64
1

0

3

75 =

2

64
1

0

3

75 = |0i (22)

Z |1i =

2

64
1 0

0 �1

3

75⇥

2

64
0

1

3

75 =

2

64
0

�1

3

75 = |�1i (23)

4.2. Rotational Gates:

|q0i Rx(�1) Ry(�2)

Figure 6: Illustration for Qubit Rotation Bergholm et al. (2018)

For qubit rotation Bergholm et al. (2018), implement the qubit on the ground

state |0i and apply rotation around-x axis as shown below:

Rx(�1) = e�i�1�x/2 =

2

64
cos(�1/2) �i sin(�1/2)

�i sin(�1/2) cos(�1/2)

3

75 (24)

Here, we apply the rotation gate around y-axis as shown in Eq. 24:

Ry(�2) = e�i�2�y/2 =

2

64
cos(�2/2) � sin(�2/2)

sin(�2/2) cos(�2/2)

3

75 (25)
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After, applying the rotation along the x and y axis, the corresponding qubit

state is denoted as:

| i = Ry(�2)Rx(�1) |0i (26)

Finally, we apply the rotation along the Z-axis using the Pauli-z operator, �z

and based on the parameters of  1 and  2 the qubit state lies between 1( =|0i)

and -1( =|1i) and the corresponding qubit state is denoted as follows:

h |�z| i = h0|Rx(�1)
⇤Rx(�2)

⇤�zRx(�2)Rx(�1)|0i (27)

4.3. Multi-Qubit Gates:

•

(a) CNOT

•
•

(b) CCNOT

•
RY

(c) CRY

Figure 7: Representation of Multi-qubit gates

In this section we discuss the multi-qubit gates CNOT, CCNOT gate and

CRy gates as shown in Fig. 7. The CNOT gate is denoted as controlled-NOT

gate or Feymann gate. In general, the CNOT gate has one control qubit and

one target qubit. Whereas, the CCNOT gate is also denoted as to↵oli-gate and

in the case of CCNOT gate both the control qubits are in state |1i and we

apply X-gate to the target qubit. In case of CRy gate we apply rotation, Ry

during control qubits is |1i state. Hence, in a quantum circuit involving multi-

qubit gates can be decomposed into a series of single qubit gates and CNOT

gates. To, provide the computational basis when executed on actual quantum

hardware (Nielsen and Chuang, 2002).

5. Constructing of QBN circuit

In this section, we illustrate the Bayesian network in quantum paradigm

inspired from Borujeni et al. (2021). Here, we present crucial steps to construct

the quantum circuit for a Bayesian network:
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1. Relate each of node of the Bayesian network to the respective number of

qubits based on the discrete state of the nodes.

2. Outline the conditional probabilities of every node of Bayesian network to

the corresponding probability or probability amplitudes of qubit states.

3. Obtain the probability amplitudes of the associated quantum states by

applying CRy rotational gates.

From, the above mentioned principles regarding the construction of Quan-

tum Bayesian network we can develop a quantum circuit for two node Bayesian

network in Fig. 3. The nodes in the Bayesian network shown in Fig.3 consist of

two states 0 and 1, we can relate state 0 and state 1 of the Bayesian nodes to the

corresponding qubit states |0i and |1i. The two nodes A and B can be related

to two qubits q0 and q1. For qubits q0 and q1 we need to provide controlled

rotation gates CRy with angles ✓A and ✓B respectively. By doing so, we can

map the conditional probabilities of the nodes A and B to the corresponding

probabilities of the quantum states q0 and q1. Thereby, resulting in two rotation

values from its parent node, A. The two rotation for node B, (✓B,0 and ✓B,1)

illustrating its probabilities for A = 0 and A = 1. The controlled rotation is

applied when the control qubit is in |1i state. The conditional probabilities are

obtained when the parent node, (A) value is 0.This is when we apply the X-gate

as flip operator to transform state |0i to state |1i. In Fig.3, there is one parent

node, A and we apply CRy gate to obtain the conditional probabilities of the

parent node, A. For instance, when there are n parent nodes then the resulting

controlled rotation gate will be CnRy gate.

In Fig. 3, the parent node, A can be represented using a single qubit gate.

The probability of the parent node can be related to the probability amplitudes

of the States |0i and |1i by providing CRy gate with a desired rotation. After,

the application of the CRy, the ground state of qubit is transformed as follows:

Ground state, |0i = cos✓ |0i+ sin✓ |1i (28)

19



Where, ✓ denotes the angle of rotation corresponding to parent node. The

probabilities are denoted by cos2(✓/2) and sin2(✓/2) for the states |0i and |1i.In

Eq.29 (✓A) denotes The angle of rotation is obtained as follows:

✓A = 2⇥ tan�1

s
P (|1i)
P (|0i) = 2⇥ tan�1

s
P (A = 1)

P (A = 0)
(29)

The Fig.8 illustrates the schematic illustration of quantum circuit with series

of single qubits and rotation angles of two node Bayesian network.

|0i |1i
q0 : Ry(✓A) X • X •

q1 : Ry(✓B,0) Ry(✓B,1)

Figure 8: Representation of QBN circuit for two-node network in Fig. 3Harikrishnakumar
et al. (2020)

In the case, where n represents counts of parent nodes and when parent

node counts are more than 1. During, such a scenario, the probabilities of

the child node are obtained by applying controlled rotation, (CnRy(✓)). To,

implement (CnRy(✓)) gate we need to apply dummy qubits or ancilla qubits

(Nielsen and Chuang, 2002). The CnRy gate requires (n� 1) ancilla qubits,

by doing so the CnRy gate can be decomposed into series of 2(n� 1) CCNOT

gate, and one CRy gate respectively. Fig. 9, illustrates multi-qubit gate C4Ry,

In the following circuit, 4 control qubits and 3 ancilla qubits are required to

decompose the multi-qubit gate using a combination of single qubit gates and

CNOT gates.

q0 : • •
q1 : • •
q2 : • •
q3 : • •
a0 : • •
a1 : • •
a2 : • •

q4 : Ry(
✓
2
) Ry(� ✓

2
)

Figure 9: Ancilla qubit gates representing C4Ry gate Harikrishnakumar et al. (2020)
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If a variable in Bayesian network have more than two states. The qubit

representation of the discrete variable is given as dlog2 ne, where n denotes

various states of the variable. During such a scenario, transformation U -gate is

implemented for qubits of the corresponding variable in Bayesian network.

|q0i

U0,1...ni�1

|q1i
|q2i

· · · · · ·
|qni

|q0i Ry(✓) • X • X
|q1i

Uq0=|1i Uq0=|0i
|q2i

· · · · · · · · ·
|qni

Figure 10: U-gate Transformation for a variable with more than two states Harikrishnakumar
et al. (2020)

The transformation U -gate, with appropriate angle of rotations will trans-

form the qubits to get required probabilities. Fig. 10 depicts a scenario in

Fig.3 when variable B have more than two states. In such a scenario, U -gate is

decomposed into series of single qubit gates.

6. Methodology

Figure 11: Methodological Framework of the Proposed BSS Forecasting Approach

To accomplish a multi-dimensional perspective of the spatio-temporal pre-

dictions of bike sharing system, a framework model is proposed to forecast
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the bike predictions during di↵erent spatial and temporal periods. The pro-

posed framework encompasses (i) a deep learning technique using Long short

term memory,(LSTM) for better classifying, processing and predictions based

on the time-series data to understand the entire dynamics of the system, (ii)

the Gaussian process regression,(GPR) model to interpret the shared mobil-

ity predictions during di↵erent spatial and temporal scales, (iii) an ensemble

method of Bayesian Network, (BN) and Quantum Bayesian network, (QBN) to

perform uncertainty propagation to overcome the uncertainties in bike demand

forecasting, (iv) finally a set of visualization tools for illustrating the results of

bike demand predictions. A schematic illustration of the proposed approach is

shown in Fig. 11.

In the proposed approach, the raw data, which includes trip durations, start-

ing and ending geographical locations of bike stations.The dataset obtained are

initially preprocessed to make sure that there are no imperfections in the data

such as redundancies and missing information in the data that can a↵ect the

overall performance of the model.

Considering the broad scheme of variables contributing to bike sharing de-

mands, we mainly focus on predicting the availability of bike counts in the

respective station locations throughout the day during weekdays and weekends.

By doing so we are able to investigate on the dynamic aspect of bike demand

prediction in a real-time world scenario.A LSTM model is adopted to study the

bike mobility modelling during di↵erent time intervals and its impact over a

specific bike location zone.GPR, a supervised learning algorithm used for re-

gression and probabilistic classification problems is also used in this context.

A non-parametric machine learning model used for modelling spatial and time-

series data, makes GPR a robust technique for incorporating non-linear and

complex data. Furthermore, visualization tools such as spatio-temporal heat-

map, bubble-map showing high intensity bike demand locations, and box-plots

of average bike counts during weekdays and weekends are designed to provide

appropriate information regarding the associated spatial and temporal bike de-
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mand patterns.

6.1. Data-set Description:

In order to validate the e↵ectiveness of the proposed prediction model, we

verify it based on the bike-sharing system of New York City (NYC) and compare

the results with the proposed methods obtained in this section.

Figure 12: Distribution of Bike stations of NYC (Citibike)

NYC Data: We are considering the bike trip transaction data from March

to August 2020 which consist of 9556704 records. The bike dataset consist of

Influence factors such as bike data, number of stations, weekdays and weekends.

All the BSS data in New York City from January, 2020 to current time can be

downloaded from https://ride.citibikenyc.com/system-data. The statistics of

the corresponding data-set is described in Table2. In Fig.12, we illustrate origin

and destination trips from random citibike dock stations, to analyze the number

of trips received from the starting dock stations. Here, we present bike mobility
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modelling method for predicting bike demands during weekdays and weekends

from di↵erent stations at any given time.

Table 2: Information of Bike dataset

Influence Factors Variables
Bike Data ( March - August 2020)

No. of Records 9556704
No. of Stations 1054
No. of weekdays 130
No. of weekends 53

6.2. Bike Sharing Usage Patterns:

In this section, we develop a Sliced Spatial Heatmap generated from the

dataset to demonstrate the spatio-temporal patterns of bike sharing usage as

shown in Fig.13.It provides the bike usage demand patterns from morning, af-

ternoon and evening hours of NYC (citibike). It can be observed that the bike

usage is concentrated towards the Lower Manhattan downtown location sur-

rounding area of metro-stations, showing the intensity of peak bike demand

between (6:00-9:00 and 12:00-15:00) in the daytime and (22:00-24:00) in the

evening time respectively.

7. Results and Discussion

7.1. Bike Mobility Prediction Process

In this section, we present the bike mobility modelling method to predict

the bike demands across di↵erent stations of New-York Citi-bike sharing sys-

tem. The description of the bike data-set used for the prediction analysis is

shown in Table2. In Fig14, we show the distribution demand usage throughout

weekdays and weekends respectively. From the bike demand usage pattern, we

can interpret that a bigger radius of red circle represents more trips are received

by the corresponding bike stations in that location thereby creating high de-

mand of bikes as compared to the locations near the blue circle regions. For,

prediction analysis we have considered the bike sharing dataset from March till
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August, 2020(including both weekdays and weekends). The average bike count

demand across all the stations and during the weekdays and weekend is shown

in Fig 15.

During our initial analysis, we studied that bike usage trends to investigate

the time-series of bike usage data during the entire period of time. The Fig15(a)

shows adequate di↵erence in the bike trend usage in all the months that were

considered. To, study the variation in the bike trend, we have proposed individ-

ual prediction models for both weekdays and weekends bike prediction analysis.

Figure 14: Maximum Bike Demand Stations during Weekdays and Weekends

In Fig.16 we have explained the step-by-step procedure for bike prediction

analysis. Using the analysis pipeline, we have considered forecasting approaches

such as LSTM and GPR models by applying performance parameters like Mean

Square Error (MAE) and Root Mean Square Error (RMSE). In prediction anal-

ysis, we have proposed ensemble predictions of LSTM and GPR models, and

associated the prediction through discretized weighting method.

In the ensemble approach, we have used LSTM and GPR models using their

RMSE and MSE scores as the selection criteria. From the individual prediction

models, the discretized weighted approach can be used to obtain the overall
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Figure 15: (a):Average Bike Count during each Month; (b):Average Bike count during Week-
days; (c):Average Bike count during Weekends; (d):Hourly Bike count during Weekdays;
(e):Hourly Bike count during Weekends

Figure 16: Analysis Pipeline
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prediction at a given time, t is shown in Eq. 30

Zt = WA ⇤ Zt,A +WB ⇤ Zt,B (30)

Where, Zt,A and Zt,B denote predictions of LSTM and GPR. WA and WB

denotes weights corresponding to LSTM and GPR models.

WA +WB = 1 (31)

The true values of the predictions are compared with the individual predic-

tions to derive the weights, WA and WB . In, developing the prediction model

we have considered the bike dataset from (March - July), 2020 as the training

data set using LSTM and GPR prediction models and August 2020 as the test-

ing dataset respectively. For the analysis, bike station-id: 72 (52 street and 11

Avenue) is investigated for predicting the bike demand trends.

The LSTM and GPR model performs uncertainty propagation to obtain the

overall prediction from the model parameters. From the Eq. 31, we obtain the

individual weights and the average predictions of the models respectively. The

overall predictions depend on the probability distribution of the model param-

eters and the weights associated with the models (LSTM and GPR). Since the

predictions from both the individual and average predictions are probabilistic,

we have proposed probabilistic models such as the Bayesian network for the un-

certainty propagation approach. Fig. 17 illustrates the Bayesian network model

for average prediction for bike demands.

The following hyperparameters where selected during the empirical analysis.

For the LSTM model, with the dropout rate at 0.2, and the initial learning rate

at 0.01, the Adam optimizer provided the best-case results and showed a good

convergence rate when the training epochs were increased between 500 to 700

epochs. However, for the GPR model, we used the radial basis function kernel

to define the covariance function, the amplitude parameter (p1) at 2, and the

length scale parameters (p2) at 1 provided considerable good results during the
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Figure 17: Bayesian network for prediction

training process. The corresponding model performance metrics of LSTM and

GPR are shown in Table.3 and Table.4

Table 3: Weekday Model Parameters

S.No Model MAE RMSE R2

1 LSTM 2.151 2.959 0.88
2 GPR 3.447 4.688 0.83

Table 4: Weekend Model Parameters

S.No Model MAE RMSE R2

1 LSTM 1.674 2.734 0.92
2 GPR 4.255 5.803 0.80

Since QBN are quantum equivalent to the classical version of the Bayesian

network. It is possible to perform uncertainty propagation on a quantum com-

puting platform that improves the computational performance of classical algo-

rithms (such as Bayesian networks) (Woerner and Egger, 2019). The underlying

drawback in QBN is in presenting complex Bayesian network models with sev-

eral parent and child nodes.

However, we can counteract this issue by solving one part of the problem us-

ing classical Bayesian modelling and the consecutive part by QBN. In this paper,

we have solved the individual and weighted model predictions using classical ap-

proach,(BN) and the average predictions using quantum approach,(QBN). For

instance, the predictions that we obtained from LSTM and GPR models were

continuous variables, in order to convert the continuous variables to discrete

variables, we have assigned values to the respective states of the qubits that are
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required for constructing the Quantum Bayesian Network. In Table.5, we have

divided the values into four categories corresponding to four intervals of the two

qubits. The four intervals are |00i , |01i , |10i , |11i , which represents the states

of the Zt,A, Zt,B as shown in Fig.17 respectively.

Table 5: Discretized Values for Qubits

States Range Value
|00i (0 - 6) 0
|01i (6 - 12) 1
|10i (12 - 18) 2
|11i (18 - 24) 3

7.1.1. Constructing Quantum Circuit:

From Fig. 15 (d),(e) we can analyze that the bike demand fluctuates every

hour. For instance, there is a huge influx in bike demand in the morning hours

of weekdays and afternoon hours of weekends. Thereby, the discretized values

of the variables is represented in time (hours). As shown in Table.5, the bike

demand is divided into four interval periods. The four interval periods are

depicted as two-qubit system as |00i , |01i , |10i , |11i. The Bayesian network

with three nodes (Zt,A, Zt,B , and Zt) is transformed into the quantum Bayesian

network as shown in Fig. 18. The transformation U-gates, UA and UB represents

the probability of nodes Zt,A and Zt,B . Hence, the resulting probability of Zt

will have a total of 16 combinations (four values for both Zt,A and Zt,B), and

the probability of Zt is illustrated using controlled U -gate.
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Figure 18: QBN circuit of three-node network Harikrishnakumar et al. (2020)

In this quantum circuit Zt,A represents the parent node, and Zt,B rep-

resents the child node. Now, let us assume the probability of four states

|00i , |01i , |10i , |11i as pij , i = 0, 1 and j = 0, 1. We adopt the decomposi-

tion method as mentioned in Section 5 to fragment the U-gate of the root node.

The Fig. 8 illustrates the decomposition approach 8, where Ry(✓A) is simulated

such that the first qubit is |0i and |1i states. The rotation angle of the qubits

is calculated using the Eq. 29 as shown below:

Ry(✓) = 2⇥ tan�1

r
p10 + p11
p00 + p01

. (32)

Where, rotation angle is calculated when the qubit |1i is represented in both

|10i and |11i and qubit |0i in |00i and |01i states of the two-qubit system. In

the case, where the state |1i is in first qubit level, then the corresponding second

qubit will be in state |0i or |1i. To, obtain the probability of the second qubit

level we apply CRy gate as shown in (Fig. 8) respectively.

After, implementing the CRy gate when the qubit is in state |0i and |1i.

The decomposition method is used to decompose the UA and UB gates. In Fig.

17 Zt represents the child node, where the conditional gates depends on the

values of parent nodes. The conditional gates are fragmented into single gates.

This is accomplished using dummy qubits or ancilla qubits as shown in Fig. 9.
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Finally, the developed QBN is simulated to derive the probability of Zt based

on the probability of Zt,A and Zt,B .

7.1.2. Quantum Circuit Simulation for Weekday and Weekend Scenario:

After, the construction of QBN, the circuit is simulated in the IBM-Qiskit

platform for weekday and weekend bike prediction analysis. The simulation

analysis thereby measures the respective quantum states (|100010i)) as shown

in histogram Fig.19. The OBN circuit is simulated for 8192 shots or iterations,

which represents the possible number of iterations that can be performed on an

actual quantum device (Mandviwalla et al., 2018).

In the experimental case study, we have considered three node Bayesian

network (Fig.17), which represents a 6-qubit system with a total of (26) 72-

states. The variables Zt,A, Zt,B , and Zt are mapped to qubits |q9q8q3q2q1q0i

and |q4q5q6q7i correspond to ancilla qubits or dummy qubits. The probability

corresponding to states (|q9q8q3q2q1q0i) is calculated as shown below:

P (|q9q8q3q2q1q0i) =
|q9q8q3q2q1q0i

T
(33)

Where, T represents total number of states, in our case analysis (T =72)

respectively. The conditional or marginal probabilities of the three nodes is

obtained using the Eq.34.

P (|qii) =
X

qj ,j=9,8,3,2,1,0,j 6=i

P (|q9q8q3q2q1q0i) (34)

Figure 19: IBM-Qiskit simulation of QBN
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7.1.3. Comparison of Results for Weekday and Weekend Scenario:

(a) Performance comparison: To validate and measure the di↵erence

between the classical results and quantum results from Netica and Qiskit is

calculated using Eq.35.

RMSPE = ✏T = 100%

sX

i

(pi � qi)2

4
(35)

Where, pi represents the true value obtained from Netica, qi are the expecta-

tion values from the IBM-Qiskit simulator. To validate the experiment analysis

we perform the validation across a weekday and weekend during the month of

August to compare the final prediction results obtained from the classical and

Quantum computations. For both scenarios we have chosen two-time windows,

during the morning and evening hours of bike station id: (72) to determine the

final prediction from Qiskit simulator and classical analysis.

(b) Weekday and Weekend Bike demand Forecasting Analysis:

In our work, the main focus is forecasting station-level demand, where bike

station-id: 72 (52 street and 11 Avenue) is investigated for forecasting the bike

demand trends. In the evaluation study for forecasting bike demand, we simu-

lated a 3-node Bayesian network as shown in 17 on IBM-Qiskit simulator, and

compared the results using classical analysis performed in Netica (Netica, 2019).

The states Zt,A, Zt,B correspond to four intervals of two qubits which provides

the forecasted range of bikes during every interval as shown in Table 5.

From the discretized values obtained from the states, we calculate the prob-

abilities of weekday and weekend bike forecasting for the month of August as

shown in Table 6 and 7. Based on the spatial-temporal heat map in Fig.13

two-time windows during morning and evening time slots were considered to

forecast the bike demands. The analysis for weekday at 9:00 AM state 1 pro-

vided the forecasted number of (6-12) bikes that need to be supplied to the bike

station during the respective time period, with a 67% accuracy from classical

analysis and 66% accuracy from the quantum analysis and, state 2 provided the
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forecasted number of (12-18) bikes with 33% accuracy from classical analysis

and 34% from the quantum analysis. However, at 9:00 PM state 0 showed the

forecast for (0-6) bikes with a 25% accuracy from classical analysis and 24% ac-

curacy from the quantum analysis, state 1 showed the forecast for (6-12) bikes

with a 25% accuracy from classical analysis and 23% accuracy from the quantum

analysis, state 2 showed the forecast for (12-18) bikes with a 25% accuracy from

classical analysis and 26% accuracy from the quantum analysis, state 3 showed

the forecast for (18-24) bikes with a 25% accuracy from classical analysis and

27% accuracy from the quantum analysis respectively. Likewise, the marginal

probabilities from Qiskit and classical analysis were evaluated for weekend bike

forecasting.

From the results obtained, we can observe that the results from the QBN

using the Qiskit simulator are almost similar to the results from the classi-

cal analysis. The error rate (RMSPE) calculated were within 2% interval for

the weekday and weekend bike prediction analysis for the entire day period (24

hours) as shown in Fig.20. Thereby, validating the applicability of QBN for pro-

viding e↵ective and accurate bike demand forecasting with computational speed

up when compared to the classical Bayesian model. The Appendix A provides

the quantum circuit corresponding to BN in Fig.17 developed for weekday and

weekend bike forecasting analysis.

Table 6: Values of Marginal Probabilities Compared with Qiskit and Classical Analysis for
Weekday Bike Forecasting

Day Time State Netica QBN RMSPE

8/3/2020

9:00 AM

state 0 0.0 0.0

0.7
state 1 0.67 0.66
state 2 0.33 0.34
state 3 0.0 0.0

9:00 PM

state 0 0.25 0.24

1.6
state 1 0.25 0.23
state 2 0.25 0.26
state 3 0.25 0.27
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Table 7: Values of Marginal Probabilities Compared with Qiskit and Classical Analysis for
Weekend Bike Forecasting

Day Time State Netica QBN RMSPE

8/8/2020

9:00 AM

state 0 0.0 0.0

1.41
state 1 0.45 0.43
state 2 0.55 0.57
state 3 0.0 0.0

9:00 PM

state 0 0.0 0.0

0.7
state 1 0.83 0.84
state 2 0.17 0.16
state 3 0.0 0.0

Figure 20: Bar plots associated with RMSPE of the Bike Predictions on Weekdays and Week-
ends on Qiskit.
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8. Conclusion & Future Work

This paper proposed a considered model averaging approach for bike demand

prediction at bike sharing system. This paper demonstrated the application of

time series forecasting models such as the neural network-based LSTM model

and Gaussian process model. The individual predictions from these models

are averaged using QBN approach. The weights corresponding to the individ-

ual models are calculated as being inversely proportional to their root mean

squared errors (RMSE).We demonstrated the QBN approach for model averag-

ing and e�cient predictions. This paper demonstrated the proposed approach

for bike demand prediction across both weekdays and weekends using NYC Citi

Bike data. This paper also compared the prediction performance of the Quan-

tum Bayesian networks against classical Bayesian networks and the RMSPE

values were within 2%. For future work, we will also investigate the solution

performance when implemented on quantum hardware. Since quantum hard-

ware solution performance is a↵ected by hardware noise and errors, we will

also investigate quantum error correction (QEC) techniques to further improve

solution performance.
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Appendix A. Quantum circuit for Weekday and Weekend scenario

Figure A.21: QBN of the three-node circuit.Nodes (Zt,A, Zt,B and Zt) are mapped to q9, q8,
q3, q2, q1, and q0 respectively, and q4, q5, q6 and q7 are the ancilla qubits.
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Highlights 

1. Propose a novel Quantum Bayesian ensemble approach for bike demand prediction during 
weekday and weekend scenarios. 

2. Discretization of the continuous-valued bike demand forecasts to enable the construction of 
Quantum Bayesian networks. 

3. Leveraging Quantum Bayesian Network with similar bike usage patterns to enable demand 
forecasting. 
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