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Forecasting Bike Sharing Demand Using Quantum
Bayesian Network

Abstract

In recent years, bike-sharing systems (BSS) are being widely established in ur-
ban cities to provide a sustainable mode of transport, by fulfilling the mobility
requirements of public residents. The application of BSS in highly congested
urban cities reduces the effect of overcrowding, pollution, and traffic congestion
problems. The crucial role behind incorporating BSS depends on the prediction
of bike demand across all the bike stations. The bike demand prediction in-
volves real-time analysis for identifying the discrepancy between the bike pick-
up and drop-off throughout all the bike stations in a given time period. To
enhance the prediction analysis of bike demand we propose quantum comput-
ing algorithms to provide computational speedup in comparison with classical
algorithms. In this paper, we illustrate the construction of Quantum Bayesian
Networks (QBN), for predicting bike demand. Furthermore, we provide a solu-
tion framework for implementing QBN for two case studies: (a) bike demand
prediction during weekdays, (b) bike demand prediction during weekends. We
have compared the quantum and classical solutions, by using IBM-Qiskit and

Netica computing platforms.

Keywords: BSS, QBN, IBM-QISKIT, Demand prediction, Model averaging

Preprint submitted to Elsevier February 21, 2023



1. Introduction

In recent times, the rapid spread of the coronavirus pandemic (COVID-
19) have created unique challenges and affected the normal well-being of the
economy, society, and public health systems by generating scenarios never seen
before. The severity of the COVID-19 pandemic have drastically changed the
public residents lifestyle and traveling choices by imposing stringent restrictions
such as nationwide lockdown and traffic-control measures to reduce the spread
of the pandemic (Villwock-Witte and van Grol, 2015; Krizek and Stonebraker,
2011; Lenton et al., 2008). Furthermore, through better air-flow ventilation,
timely disinfection, and avoiding close proximity with travelers, the urban resi-
dents have adopted BSS as the alternative safe mode of public transport when
compared to the use of subway in highly congested urban cities (Nikiforiadis
et al., 2020; Cantelmo et al., 2020).

The Bike-sharing system is represented as a mobility service where bicycles
are accessible to public residents for shared use. The bikes are available at a
given station that are located all over the urban city areas and every station
have the required number of docks. The residents can access the bikes from
a given station location and are charged according to the bike usage duration.
By engaging these bike-sharing systems the public transport administration
will ensure a sustainable mode of transportation by reducing traffic congestion,
pollution, carbon emission, and over-crowding problems in urban cities (He
et al., 2018; Yang et al., 2020; Xie et al., 2023).

However, let us assume a scenario when the customer desired level of bike
usage is observed in the early morning hours in a given dock station, then the
demand for a number of bikes will change abruptly throughout the entire pe-
riod because of uncertainty in the demand pattern. Fig.1 illustrates an overview
of the BSS prediction problem. To resolve the bike-sharing demand problem,
we need to make sure that supply bike stations satisfy predicted demand at
any given location in real time. To, initiate this approach we have to focus on

improving the computational aspect of the analysis using quantum computing



principles. Quantum technology has brought about a new paradigm shift in the
computing platform by implementing fundamentals of quantum mechanics like
entanglement, superposition, and measurement. The devices that have the po-
tential to interpret classical information into the quantum paradigm are called
quantum computing devices (McKay et al., 2018). The quantum computing
devices manipulates the quantum mechanical phenomenon by storing the infor-
mation in the units of qubit, which have the ability to store more information in
comparison to classical qubits (Ajagekar et al., 2020; Qiskit Community, 2017).
Quantum computing devices are categorized into two groups based on their sys-
tem architecture: gate-based quantum devices and quantum annealing devices
(Dallaire-Demers and Wilhelm, 2016; Osaba et al., 2022).

The gate-based quantum devices are represented by quantum gates to build
the desired quantum circuits. Thereby, the quantum gates are applied to the
individual qubit states to obtain the appropriate solution (Phillipson et al.,
2022; Gyongyosi and Imre, 2019). Whereas, the quantum annealing devices
are mainly used to solve NP-hard combinatorial optimization problems (Kad-
owaki and Nishimori, 1998). To evaluate the computational performance of
gate-based and quantum annealing devices researchers have implemented these
architectures in various complex domains to solve problems such as solving NP-
hard problem for identifying low cost nearest neighbour quantum circuits using
harmony search heuristic algorithm (Alfailakawi et al., 2016), to mitigate fos-
sil fuel consumption and environmental economic dispatch (EED) problem by
using differential evolution crossover quantum particle swarm optimization (DE-
CQPSO) algorithm (Xin-gang et al., 2020), to prioritize dynamic unpredictable
events in a manufacturing shop floor using quantum firefly swarms for multi-
modal dynamic optimization (Ozsoydan and Baykasoglu, 2019), to present data
clustering technique using quantum chaotic cuckoo search algorithm (Boushaki
et al., 2018), and to demonstrate smart rebalancing of bike sharing system under
uncertainty using gate based quantum Bayesian network across three bike sta-

tions (Harikrishnakumar et al., 2021). However, in this work we have adopted



the gate based system architecture for representing the classical Bayesian net-
work as Compositional Quantum Bayesian Network (C-QBN) due to its compu-
tational benefits for solving complex probabilistic problems such as bike demand

forecasting.
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Figure 1: Overview of BSS Prediction Problem

Primarily, Tucci (1995) implemented QBN as a quantum equivalent counter-
part to the Bayesian network to enhance the overall performance of algorithms
in comparison with classical counterparts such as Bayesian probabilistic models
(Nielsen and Chuang, 2002; Kopczyk, 2018; Low et al., 2014; Woerner and Eg-
ger, 2019). Moreira and Wichert (2016) implemented a quantum-like Bayesian
network for developing binary variable Bayesian networks by using heuristics
techniques. Borujeni et al. (2021) proposed Compositional Quantum Bayesian
Network (C-QBN) to represent a discrete Bayesian network using a quantum
gate-based method. She et al. (2021) discussed the application of a Quantum-
like Bayesian network by evaluating the interference between the attributes
obtained from the multi-attribute decision-making (MADM) model. In this pa-
per, we develop the Quantum Bayesian network by considering a generic 3-node
Bayesian network with 2 states and also validate the results by implementing
the circuit on a gate-based quantum platform.

Paper Contributions: The main technical contribution of this paper can
be summarized as follows-(a) Developed an ensemble forecasting model with
Long-short term memory (LSTM) and Gaussian process regression (GPR) as

individual models whose results are aggregated using a Quantum Bayesian net-



work, (b) The weights for the individual models are calculated as being inversely
proportional to the root mean square error (RMSE) values, (c) Discretization
of the continuous-valued bike demand forecasts to enable the construction of
Quantum Bayesian networks, which can then be implemented on gate-based
quantum computing platforms, (d) Simulated both the weekday and weekend
QBN, using IBM Qiskit, (e) Validated the two Quantum Bayesian networks
against classical Bayesian networks implemented using Netica.

Paper organization: The following paper is organized as follows with a
bike demand prediction classification literature survey in Section 2. the back-
ground information of Bayesian networks, LSTM, and GPR models are pre-
sented in Section 3. A brief introduction to quantum circuits and quantum
gates are provided in Section 4. Section 5 explains the construction of the
Quantum Bayesian network. The methodology and framework of the proposed
BSS forecasting model are explained in Section 6. The numerical results of the
proposed approach are discussed in Section 7. Finally, Section 8 summarizes

the conclusion and future work.

2. Literature Review
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Figure 2: BSS Demand Prediction Classification (Cantelmo et al., 2020)



In recent years, many studies have considered bike-sharing systems as smart-
mobility transportation models to provide sustainable public transport for mit-
igating traffic congestion and environmental pollution, and improving energy
conservation in highly congested urban cities (Singhvi et al., 2015). Since, the
BSS rental rates are subjected to temporal and spatial variations, the main chal-
lenge to operate BSS effectively depends on understanding the discrepancy be-
tween the supply-demand uncertainties (Lin et al., 2018; Caggiani et al., 2018).

To illustrate and solve the existing supply-demand uncertainties in BSS,
the corresponding solution methods can be divided into two categories such as
demand rebalancing and demand forecasting methods as shown in Fig2. In
the former case of demand rebalancing, a redistribution strategy is applied to
determine the number and location of bike stations for allocating bikes to the
respective demand bike station. Furthermore, the rebalancing approach can
be divided into the operator and user-based approaches. In an operator-based
approach, a fleet of vehicle carriers are used to redistribute the bikes to the
respective demand bike station, whereas, in the user-based approach, incentives
are provided to rebalance the BSS.

The bike demand prediction methods can be classified as cluster-level, sta-
tion levels, and city-level prediction problems (Xiao et al., 2020; Chai et al.,
2018). Li et al. (2019) mentioned that city and cluster-level prediction models
assist to merge stations as separate groups, to facilitate scheduling in the pre-
diction process. Likewise, the station-level prediction model is unable to predict
bike demand trends due to its dynamic nature. The external factors such as
population, environmental factors, and work days contribute to the station-level
bike prediction problem (Hulot et al., 2018). Chen et al. (2017) and Lin et al.
(2018) proposed to implement deep neural network techniques to analyze the in-
teractions between deep neural networks and linear regression model to forecast
the hourly bike demand request at every station.

Dokuz (2021) proposed two novel algorithms to investigate the interest mea-

sures such as the frequency and continuity of bike usage frequency in Chicago



Divvy bike big datasets. The proposed approach predicts the frequency of daily
bike usage in each of the bike stations and projects the overall demand across
the complete divvy dataset. Xie et al. (2023) modeled the censored semi-bandit
problem to optimize the number of pick-ups for multi-round bike demand alloca-
tion during unknown user demands. Ramesh et al. (2021) developed a real-time
demand-supply prediction model using machine learning models such as random
forest, linear regression, and boosting algorithms to forecast the bike demand
at a given bike station during a specific time period. Erdogan et al. (2014) im-
plemented an integer programming model for static-bicycle relocation problems
with demand intervals (SBRP-DI) to redistribute the bikes among the respec-
tive bike stations to minimize the overall relocation cost. Gammelli et al. (2022)
presented a deep learning generative model by using a variational Poisson re-
current neural network (VP-RNN) to forecast the pick-up and drop-off of the
bikes in the New York Citi-bike system. Li et al. (2023) utilized an irregular
convolutional network (IrConv) model to forecast the correlation of bike usage
amongst distant urban locations. The proposed model is evaluated and the
model performance of bike stations is compared across five cities; New York,
Chicago, Washington D.C., London, and Singapore respectively.

Recent studies have shown a great range of bike mobility prediction applica-
tions using graph theory and graph structures to analyze urban flows, spatiotem-
poral bike mobility patterns in different cities, urban traffic flow assessments,
short-term bike demand forecasting, and examine urban travel flows in highly
congested cities (Zaltz Austwick et al., 2013; Zhong et al., 2014). Yang et al.
(2020) investigated the temporal transactions of bike traffic flows encoded in
graphical structures for forecasting short-term BSS demand. Yang et al. (2019)
examined the spatiotemporal bike flow patterns and graph-based approach to
study the effect of mobility patterns, travel behaviors, and last-mile flow of the
new metro line station in Nanchang, China. Zhang et al. (2017) utilized graph
structure models to analyze spatiotemporal travel patterns for understanding

traffic demand prediction.



Pan et al. (2019) proposed Long short-term memory,(LSTM) model for bike
demand prediction during the bike renting and returning process and showed
that the prediction model outperforms other deep learning models. Singhvi
et al. (2015) mentioned the station-level demand prediction problem to examine
the effect of influence factors like holidays, weekdays, weekends, traffic flow,
and weather information for estimating bike demand prediction using regression
models. Sathishkumar et al. (2020) used weather-related information along
with bike-ridership data to predict the hourly rental bike demand using support
vector machines, linear regression, and gradient boosting models. VE and Cho
(2020) studied the impact of weather-related information in two bike data sets,
Seoul bike data and capital bike share data for predicting bike demand using a
rule-based regression model such as Classification and regression trees (CART),
K-Nearest Neighbours (KNN), Randon forest, and conditional inference tree
models. El-Assi et al. (2017) analyzed the effect of weather, socio-demographic,
and environmental data to investigate the bike demand frequency of bike share
in Toronto. Yu et al. (2022) proposed ensemble model using seasonal auto-
regressive integrated moving average (SARIMA) and long short-term memory
(LSTM) models to predict and optimize bike relocation around urban rail transit
station locations. Gao and Chen (2022) developed a machine learning model
using KNN, random forest, SVM, and linear regression to study the performance
of the demand prediction model under the influence of factors like weather
information, traffic data, air pollution, and COVID-19 instances.

Ma et al. (2022) implemented a spatiotemporal graph attentional long-term
short-term memory (STGA-LSTM) model to predict short-term bike demand
from station-level using data sets from multiple sources. The (STGA-LSTM)
model assists in extracting spatiotemporal information about bike mobility pat-
terns and predicting the bike pick-up and drop-off demand patterns. Liu et al.
(2019b) introduced two new methods using LSTM that can utilize multiple fea-
ture inputs and multiple time step outputs to enhance the accuracy of bike

prediction in the first step and forecast the number of bikes in the second step.



Thereby assisting in better decision-making to relocate the bikes to the docker
stations. Mehdizadeh Dastjerdi and Morency (2022) focuses on short-term bike
demand forecasting in Montreal using LSTM deep learning approach. The pro-
posed approach identifies six neighborhood communities using the Louvain al-
gorithm along with four groups of LSTM to forecast the bike demand across the
selected communities.

In addition, Gammelli et al. (2020) proposed censorship-aware demand mod-
eling using the Gaussian process regression method to estimate latent demand
of shared mobility during discrepancy in the supply. Cantelmo et al. (2020) im-
plemented data mining techniques to retrieve bike demand patterns using the
operational data of BSS. Likewise, Kaltenbrunner et al. (2010) also proposed
data-mining methods to determine spatiotemporal bike demand patterns using
the ARMA family of models and time series analysis. Additionally, machine
learning techniques combined with data mining methods for predicting bike de-
mands of dockless BSS (Ai et al., 2018; Liu et al., 2018). Zeng et al. (2016)
utilized an ensemble approach using a gradient boosting decision tree (GBDT)
and neural network methods to derive global features to enhance bike demand
prediction. Kaspi et al. (2016) used probabilistic Bayesian network modelling to
predict station bike demand using bike trip data. The above mentioned studies
are summarized in Table 1 respectively.

However, after analyzing all the existing methods we can infer that the bike
demand prediction requires real-time analysis to successfully predict the demand
across the bike stations. This attempt is only possible by adopting an advanced
computation platform that enables to increase in the efficiency and accuracy of
prediction (Nielsen and Chuang, 2002). To enhance this new contribution, we
previously proposed the C-QBN methodology approach and presented the the-
oretical framework for bike demand prediction (Harikrishnakumar et al., 2020).
In this paper, we extend the proposed theoretical framework for New York Citi
Bike datasets and validated the proposed quantum methods against classical

Bayesian networks. We have included the following extensions as follows: (1)



Development of classical ensemble framework using Long-short term memory
(LSTM) networks and Gaussian process regression (GPR) to represent Bayesian
network for bike demand prediction; (2) Development of quantum circuit con-
structed by integrating conditional probabilities of Bayesian network; and (3)
Iustration of the constructed QBN approach for predicting bike demand during
weekdays and weekends of New-York citi-bike sharing systems. Hence, we im-
plement the proposed solution approach for forecasting bike demand prediction.
The proposed application of C-QBN for bike demand prediction can enhance
other areas of Smart mobility in traffic monitoring, and vehicle incident predic-
tion with a real-time solution by addressing these underlying issues related to

transportation networks in urban cities.

3. Background Information

3.1. Bayesian Networks

Bayesian networks are probabilistic graphical model to represent uncertainty,
evaluate risk and assist in decision making analysis. The Bayesian network is
also known as directed acyclic graph, (DAG) that represents conditional proba-
bilities with different variables of interest. The mathematical representation of
Bayesian network is shown in Eq., 1. Now let us assume network with n nodes,
where Z = {Z1, Zs, ..., Z,, } represents a set of nodes. Z; represents parent node
and node Z; is called child node.

n

P(Zy, Z3, ... Zn) = | [ P(ZilT1z,) (1)

i=1

Where IIz, represents parent nodes with respect to Z;. The root nodes,
P(Z;|1z,) is equal to marginal probability distribution, P(Z;). The Fig.3 illus-
trates the Bayesian network of Two-node network. Where, A denotes root node

and B represents the child node.
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Figure 3: Illustration of Bayesian Network(Harikrishnakumar et al. (2020))

3.1.1. LSTM Model (Long short term memory neural network):

LSTM is a variant of recurrent neural networks (RNN) used to process se-
quential data and memorize data from previous time steps for solving time series
prediction problems (Goodfellow et al., 2016). The LSTM model is a different
form of RNN which is capable of learning from long-time dependencies and also
remain unaffected from vanishing gradient problem (Hochreiter and Schmidhu-
ber, 1997). Fig.4 illustrates the complete mechanism and layers of LSTM model
that consist of internal recurrence, self loop and an outer recurrence, that allows
the network to store and update the information during the training process.
Thereby, assisting the model to make predictions form the previous learning
experiences (Wang and Kim, 2018). The mathematical expression of the LSTM

model can be denoted as follows and the Eq.(2-7) are referenced as mentioned

by Goodfellow et al. (2016):

Figure 4: Illustration of LSTM network
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fo = Welht—1, 2] + be) (2)

iy = o(Wilhi—1, x¢] + bi) (3)

Cy = tanh(W, % [hy_1, ;] + be) (4)
Ci=f0C_1+i,©Cy (5)
O = o(Wylhi—1, 2] + bo) (6)
hy = O © tanh(Ct) (7)

Where, t is the current time step , x is the input, o is the output, W is Weight
matrix , b is bias. Accordingly, f; , h, i, C; are four intermediate parameters
that store and remember the input data, while o is sigmoid activation function
and tanh denotes the hyperbolic tangent activation function respectively. The
LSTM model proposed in this paper consist of two input LSTM layers and the
output layer would make the final predictions of bike-sharing demands across

bike station during weekdays and weekends of New York Citi-Bike stations.

3.1.2. Gaussian Process Regression Model:

Gaussian process regression (GPR) is an extremely useful tool which belongs
to the field of probabilistic machine learning method to perform non-parametric
regression with the Gaussian process (Rasmussen and Nickisch, 2010). For in-
stance, given a dataset D = (x;,3;) with n input vectors x; and output vectors
yi, the corresponding probability distribution over the function f(z) follows a

Gaussian distribution as follows:

f(x) ~ GPR(m(x), k(x,a")) (8)

The Gaussian process models this distribution by means of multivariate
Gaussian distribution using the mean function m(z) and co-variance function

k(z,z ) expressed as follows:

13



m(z) = E(f(x)) ©)

k(z,2 ) = El(m(z) — f(z))(m(z) - f(z))] (10)

where, E is the expectation value and k‘(a:,:c/ ) is the kernel function that
provides the relation between the training dataset and the predicted target
output. In solving a regression problem the target output y is expressed by

prior distribution as:

yNN(O,K(l‘,l‘,)+O'ELIn) (11)

While performing the Gaussian distribution between the testing set z and
training set x , the predicted output y, is set to follow a joint prior distribution
with the target output y as follows:

Y k(z,z)+ o021, k’iL‘,$/

| o, [Fe o)+ ko) )
y k(z,z )T k(z ,x)
N represents normal distribution , o,, is the noise level term , k(:z:,a:/ ), k(:::/7 z )

is the co-variance matrices of the training and testing sets, and covariance matrix

k(z,z) is defined as:

k(xi,21) k(z1,22) ... k(z1,2n)
k(z,z) = : : : (13)

E(xn,x1) k(xn,z2) ..o k(zpn,Tn)

The squared exponential kernel function is also called as radial basis function

(RBF) and represented as:

) (14)

The hyper-parameters p; represent the amplitude of the covariance, and ps

represent the length scale parameters which represent the correlation between

14



the highly spread points. After, performing the Gaussian distribution it is nec-
essary to measure and validate the performance of the GPR, by optimizing the
hyper-parameter p; and ps in the co-variance function during the training pro-
cess (Liu et al., 2019a). Finally, after optimizing the hyper-parameters of GPR,
the predicted target output y/ can be derived by calculating the conditional

probability distribution p(y/|x/,m,y) as follows:

p(v' |z, %, y) ~ Ny 'y, cov(y)) (15)

Where, y' represents mean values of the predicted output and cov( v ) is the

co-variance matrix that measures the uncertainty in the predictions.

4. Quantum circuits and Quantum Gates

Quantum computation involves the manipulation of quantum systems used
to process quantum information. The generic computational basis of a quantum

system can be represented as:

) = al0) + 8[1) (16)

In the quantum system mentioned in Eq. 16, the two systems; |0) and |1)
are the basic unit of computation for two-qubit system given in vector form such

as;

0
0)=1{ | 1) = (17)

The states in Eq. 17 are similar to classical binary bits 0 and 1 used in clas-
sical systems. However, the classical bits are different from qubits due to the
principle of superposition between both states |0) and |1) respectively. These
qubits are used to execute quantum calculations which is accomplished by per-
forming series of fundamental mathematical operations called as Quantum logic

gates. These quantum gates are represented by an operator that transforms to
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map one quantum state into another quantum state (Nielsen and Chuang, 2002).
Here, we discuss single and multi-qubit gates to construct quantum circuit using

QBN approach.

4.1. Single and Multi-Qubit Gates:

The gates Hadamard (H), Pauli-X , Identity (I), and Pauli-Z are denoted by

the unitary operators that are represented in matrix form as shown below:
e 1 I B e |
- “2 -1 autt =4 = 1o
I=—I}-= L0 Pauli — Z =—{ 7} = L0
0 1 0 -1

Figure 5: Matrix form of H, X, I, Z Gates

The Hadamard gate or H-gate plays a critical role in quantum computing
systems, which assists in transforming a qubit from one computational basis
to a superposition of two states (Santos, 2016; Qiskit Community, 2017). The
Hadamard gate represents the possible combination of all the states of qubits
given in a quantum circuit. For instance in 2-qubit quantum system, |¥¢) where
|[¥o) = ap |00) + a1 |01) + as |10) 4+ a3 |11), the possible combination of quantum
states are 22 = 4. Hence, the resulting superposition of states when Hadamard

gate is applied to states |0) and |1}, is shown below:

_ 1 1 1 8 1 :M

BTN L N I (1 RV
HiL = RN (19)

The X-gate flips the states of the qubit, the state |0) to |1) and |1} to |0).

The X-gate operator flips the input state of the qubits as follows:
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X|0) = X = =1 (20)

X1 = <[ =1]]= (21)

The Z-gate is a unitary gate that is referred as phase-flip operator as it maps
1 to -1 as it flips the phase of the qubits and leaves the state |0) unchanged
(Qiskit Community, 2017), whereas the Z-gate transforms |1) to |[—1) as shown

below:

1 0
210) = <|'|=11=0 (22)

1 0
Z1) = X = =[-1) (23)

4.2. Rotational Gates:

ld0) —— Ra(1) |— Ry (92) HA]

Figure 6: Illustration for Qubit Rotation Bergholm et al. (2018)

For qubit rotation Bergholm et al. (2018), implement the qubit on the ground

state |0) and apply rotation around-x axis as shown below:

A cos(¢1/2)  —isin(¢1/2)
Rx (¢1) = e_z¢1”m/2 — (24)

—isin(¢1/2)  cos(¢1/2)
Here, we apply the rotation gate around y-axis as shown in Eq. 24:

, cos(¢2/2) —sin(p2/2)
Ry(¢o) = e *9270/% = (25)

sin(¢2/2)  cos(¢2/2)
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After, applying the rotation along the x and y axis, the corresponding qubit

state is denoted as:

1) = Ry(¢2)Ra(61) |0) (26)

Finally, we apply the rotation along the Z-axis using the Pauli-z operator, o,
and based on the parameters of ¢ and 15 the qubit state lies between 1(¢)=|0))

and -1(1)=|1)) and the corresponding qubit state is denoted as follows:

(¢lo=|¢) = (0[Rz(61)" Ra($2)" 0= Ra(P2) Ra(61)]0) (27)

4.83. Multi-Qubit Gates:

.
—— ——
—— ——

(a) CNOT (b) CCNOT (c) CRy

Figure 7: Representation of Multi-qubit gates

In this section we discuss the multi-qubit gates CNOT, CCNOT gate and
CR, gates as shown in Fig. 7. The CNOT gate is denoted as controlled-NOT
gate or Feymann gate. In general, the CNOT gate has one control qubit and
one target qubit. Whereas, the CCNOT gate is also denoted as toffoli-gate and
in the case of CCNOT gate both the control qubits are in state |1) and we
apply X-gate to the target qubit. In case of C'R, gate we apply rotation, R,
during control qubits is |1) state. Hence, in a quantum circuit involving multi-
qubit gates can be decomposed into a series of single qubit gates and CNOT
gates. To, provide the computational basis when executed on actual quantum

hardware (Nielsen and Chuang, 2002).

5. Constructing of QBN circuit

In this section, we illustrate the Bayesian network in quantum paradigm
inspired from Borujeni et al. (2021). Here, we present crucial steps to construct

the quantum circuit for a Bayesian network:
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1. Relate each of node of the Bayesian network to the respective number of

qubits based on the discrete state of the nodes.

2. Outline the conditional probabilities of every node of Bayesian network to

the corresponding probability or probability amplitudes of qubit states.

3. Obtain the probability amplitudes of the associated quantum states by

applying CRR, rotational gates.

From, the above mentioned principles regarding the construction of Quan-
tum Bayesian network we can develop a quantum circuit for two node Bayesian
network in Fig. 3. The nodes in the Bayesian network shown in Fig.3 consist of
two states 0 and 1, we can relate state 0 and state 1 of the Bayesian nodes to the
corresponding qubit states |0) and |1). The two nodes A and B can be related
to two qubits gg and ¢;. For qubits ¢y and ¢; we need to provide controlled
rotation gates C'R, with angles 04 and 0p respectively. By doing so, we can
map the conditional probabilities of the nodes A and B to the corresponding
probabilities of the quantum states gg and ¢;. Thereby, resulting in two rotation
values from its parent node, A. The two rotation for node B, (g and 65 1)
illustrating its probabilities for A = 0 and A = 1. The controlled rotation is
applied when the control qubit is in |1) state. The conditional probabilities are
obtained when the parent node, (A) value is 0.This is when we apply the X-gate
as flip operator to transform state |0) to state |1). In Fig.3, there is one parent
node, A and we apply C'R, gate to obtain the conditional probabilities of the
parent node, A. For instance, when there are n parent nodes then the resulting
controlled rotation gate will be C"R,, gate.

In Fig. 3, the parent node, A can be represented using a single qubit gate.
The probability of the parent node can be related to the probability amplitudes
of the States |0) and |1) by providing CR,, gate with a desired rotation. After,

the application of the C'R,;, the ground state of qubit is transformed as follows:

Ground state, |0) = cosf |0) 4 sinf |1) (28)
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Where, 6 denotes the angle of rotation corresponding to parent node. The
probabilities are denoted by cos?(#/2) and sin?(#/2) for the states |0) and |1).In

Eq.29 (64) denotes The angle of rotation is obtained as follows:

P(A=1)

) PA=0)

(29)

The Fig.8 illustrates the schematic illustration of quantum circuit with series

of single qubits and rotation angles of two node Bayesian network.
| |0) | 1)
qo: {R,(0
o (R

q 4%—{ R,(0B,0) }—H Ry(0B,1) %

Figure 8: Representation of QBN circuit for two-node network in Fig. 3Harikrishnakumar
et al. (2020)

In the case, where n represents counts of parent nodes and when parent
node counts are more than 1. During, such a scenario, the probabilities of
the child node are obtained by applying controlled rotation, (C"™R,(6)). To,
implement (C™R,(6)) gate we need to apply dummy qubits or ancilla qubits
(Nielsen and Chuang, 2002). The C™R, gate requires (n — 1) ancilla qubits,
by doing so the C™ R, gate can be decomposed into series of 2(n — 1) CCNOT
gate, and one C' R, gate respectively. Fig. 9, illustrates multi-qubit gate C*R,),
In the following circuit, 4 control qubits and 3 ancilla qubits are required to
decompose the multi-qubit gate using a combination of single qubit gates and

CNOT gates.

I
(=)
J4AN
'
fan)
%

w: —— R, Fe{R(-DFo—

Figure 9: Ancilla qubit gates representing C* R, gate Harikrishnakumar et al. (2020)
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If a variable in Bayesian network have more than two states. The qubit

representation of the discrete variable is given as [logyn], where n denotes

various states of the variable. During such a scenario, transformation U-gate is

implemented for qubits of the corresponding variable in Bayesian network.

q0) — ——  lqo)
q) —— —

2) — Uoi..m;—1 — gég
lgn) — —  gn)

Ry(0) | ?

q0=[1)

aq

0=[0)

Figure 10: U-gate Transformation for a variable with more than two states Harikrishnakumar

et al. (2020)

The transformation U-gate, with appropriate angle of rotations will trans-

form the qubits to get required probabilities.

Fig.

10 depicts a scenario in

Fig.3 when variable B have more than two states. In such a scenario, U-gate is

decomposed into series of single qubit gates.

6. Methodology

Trip Data:
Trip Duration
# of Stations

Start Station ID

End Station ID

—) LSTM Network to

LS Apply GPR model to

Step 1:
Apply Sequential

obtain Predictive
Distributions

~—

Step 2:

obtain Predictive
Distributions

N~ 7/

Step 3:
Develop BN based on

Predictions from
LSTM and GPR
Models

Step 4:
Construct QBN
from Probability

Predictions of BN

Step S:
Compare BN and
QBN Results to
determine Final
Predictions

Figure 11: Methodological Framework of the Proposed BSS Forecasting Approach

To accomplish a multi-dimensional perspective of the spatio-temporal pre-

dictions of bike sharing system, a framework model is proposed to forecast
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the bike predictions during different spatial and temporal periods. The pro-
posed framework encompasses (i) a deep learning technique using Long short
term memory,(LSTM) for better classifying, processing and predictions based
on the time-series data to understand the entire dynamics of the system, (ii)
the Gaussian process regression,(GPR) model to interpret the shared mobil-
ity predictions during different spatial and temporal scales, (iii) an ensemble
method of Bayesian Network, (BN) and Quantum Bayesian network, (QBN) to
perform uncertainty propagation to overcome the uncertainties in bike demand
forecasting, (iv) finally a set of visualization tools for illustrating the results of
bike demand predictions. A schematic illustration of the proposed approach is
shown in Fig. 11.

In the proposed approach, the raw data, which includes trip durations, start-
ing and ending geographical locations of bike stations.The dataset obtained are
initially preprocessed to make sure that there are no imperfections in the data
such as redundancies and missing information in the data that can affect the
overall performance of the model.

Considering the broad scheme of variables contributing to bike sharing de-
mands, we mainly focus on predicting the availability of bike counts in the
respective station locations throughout the day during weekdays and weekends.
By doing so we are able to investigate on the dynamic aspect of bike demand
prediction in a real-time world scenario.A LSTM model is adopted to study the
bike mobility modelling during different time intervals and its impact over a
specific bike location zone.GPR, a supervised learning algorithm used for re-
gression and probabilistic classification problems is also used in this context.
A non-parametric machine learning model used for modelling spatial and time-
series data, makes GPR a robust technique for incorporating non-linear and
complex data. Furthermore, visualization tools such as spatio-temporal heat-
map, bubble-map showing high intensity bike demand locations, and box-plots
of average bike counts during weekdays and weekends are designed to provide

appropriate information regarding the associated spatial and temporal bike de-
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mand patterns.

6.1. Data-set Description:
In order to validate the effectiveness of the proposed prediction model, we
verify it based on the bike-sharing system of New York City (NYC) and compare

the results with the proposed methods obtained in this section.

; Edgéwater N7 iu'ovg
Cliffside Park « / ’f
; 2/

=3 . Origin L.
/ Bike Route //"

N NYC Borough |

o West New York” ¢

B unicn el e
%AJ{ lemonClt);‘,_,"{

v i = st
o forreer ifip

/f
‘ i a0y
JHoboken' ji= 50 8

3
e

b=t MK

Figure 12: Distribution of Bike stations of NYC (Citibike)

NYC Data: We are considering the bike trip transaction data from March
to August 2020 which consist of 9556704 records. The bike dataset consist of
Influence factors such as bike data, number of stations, weekdays and weekends.
All the BSS data in New York City from January, 2020 to current time can be
downloaded from https://ride.citibikenyc.com/system-data. The statistics of
the corresponding data-set is described in Table2. In Fig.12, we illustrate origin
and destination trips from random citibike dock stations, to analyze the number

of trips received from the starting dock stations. Here, we present bike mobility
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modelling method for predicting bike demands during weekdays and weekends
from different stations at any given time.

Table 2: Information of Bike dataset

Influence Factors Variables
Bike Data ( March - August 2020)
No. of Records 9556704
No. of Stations 1054
No. of weekdays 130
No. of weekends 53

6.2. Bike Sharing Usage Patterns:

In this section, we develop a Sliced Spatial Heatmap generated from the
dataset to demonstrate the spatio-temporal patterns of bike sharing usage as
shown in Fig.13.1t provides the bike usage demand patterns from morning, af-
ternoon and evening hours of NYC (citibike). It can be observed that the bike
usage is concentrated towards the Lower Manhattan downtown location sur-
rounding area of metro-stations, showing the intensity of peak bike demand
between (6:00-9:00 and 12:00-15:00) in the daytime and (22:00-24:00) in the

evening time respectively.

7. Results and Discussion

7.1. Bike Mobility Prediction Process

In this section, we present the bike mobility modelling method to predict
the bike demands across different stations of New-York Citi-bike sharing sys-
tem. The description of the bike data-set used for the prediction analysis is
shown in Table2. In Figl4, we show the distribution demand usage throughout
weekdays and weekends respectively. From the bike demand usage pattern, we
can interpret that a bigger radius of red circle represents more trips are received
by the corresponding bike stations in that location thereby creating high de-
mand of bikes as compared to the locations near the blue circle regions. For,

prediction analysis we have considered the bike sharing dataset from March till
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August, 2020(including both weekdays and weekends). The average bike count
demand across all the stations and during the weekdays and weekend is shown
in Fig 15.

During our initial analysis, we studied that bike usage trends to investigate
the time-series of bike usage data during the entire period of time. The Figl5(a)
shows adequate difference in the bike trend usage in all the months that were
considered. To, study the variation in the bike trend, we have proposed individ-

ual prediction models for both weekdays and weekends bike prediction analysis.

(a) Bike Trip Demand during Weekdays (b) Bike Trip Demand during Weekends

Figure 14: Maximum Bike Demand Stations during Weekdays and Weekends

In Fig.16 we have explained the step-by-step procedure for bike prediction
analysis. Using the analysis pipeline, we have considered forecasting approaches
such as LSTM and GPR models by applying performance parameters like Mean
Square Error (MAE) and Root Mean Square Error (RMSE). In prediction anal-
ysis, we have proposed ensemble predictions of LSTM and GPR models, and
associated the prediction through discretized weighting method.

In the ensemble approach, we have used LSTM and GPR models using their
RMSE and MSE scores as the selection criteria. From the individual prediction

models, the discretized weighted approach can be used to obtain the overall
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Select two Forecasting Models (LSTM & GPR) based
on their model selection scores (RMSE,MAE)

Calculate model weights using Weighted Model
Average Method

Obtain a Classical/Quantum Bayesian Network with the
Individual Models and Averaged model

l

Perform Uncertainty Propagation to obtain overall
Prediction

Figure 16: Analysis Pipeline
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prediction at a given time, ¢ is shown in Eq. 30

Zt = WA * ZtA + WB * Zt,B (30)

Where, Z; 4 and Z; g denote predictions of LSTM and GPR. W4 and Wg

denotes weights corresponding to LSTM and GPR models.

Wa+Wgp=1 (31)

The true values of the predictions are compared with the individual predic-
tions to derive the weights, W4 and Wp. In, developing the prediction model
we have considered the bike dataset from (March - July), 2020 as the training
data set using LSTM and GPR prediction models and August 2020 as the test-
ing dataset respectively. For the analysis, bike station-id: 72 (52 street and 11
Avenue) is investigated for predicting the bike demand trends.

The LSTM and GPR model performs uncertainty propagation to obtain the
overall prediction from the model parameters. From the Eq. 31, we obtain the
individual weights and the average predictions of the models respectively. The
overall predictions depend on the probability distribution of the model param-
eters and the weights associated with the models (LSTM and GPR). Since the
predictions from both the individual and average predictions are probabilistic,
we have proposed probabilistic models such as the Bayesian network for the un-
certainty propagation approach. Fig. 17 illustrates the Bayesian network model
for average prediction for bike demands.

The following hyperparameters where selected during the empirical analysis.
For the LSTM model, with the dropout rate at 0.2, and the initial learning rate
at 0.01, the Adam optimizer provided the best-case results and showed a good
convergence rate when the training epochs were increased between 500 to 700
epochs. However, for the GPR model, we used the radial basis function kernel
to define the covariance function, the amplitude parameter (p;) at 2, and the

length scale parameters (p2) at 1 provided considerable good results during the
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Figure 17: Bayesian network for prediction

training process. The corresponding model performance metrics of LSTM and

GPR are shown in Table.3 and Table.4

Table 3: Weekday Model Parameters

S.No | Model | MAE | RMSE | R?
1 LSTM | 2.151 | 2.959 | 0.88
GPR | 3.447 | 4.688 | 0.83

Table 4: Weekend Model Parameters

S.No | Model | MAE | RMSE | R?
1 LSTM | 1.674 | 2.734 | 0.92
GPR | 4.255 | 5.803 | 0.80

Since QBN are quantum equivalent to the classical version of the Bayesian
network. It is possible to perform uncertainty propagation on a quantum com-
puting platform that improves the computational performance of classical algo-
rithms (such as Bayesian networks) (Woerner and Egger, 2019). The underlying
drawback in QBN is in presenting complex Bayesian network models with sev-
eral parent and child nodes.

However, we can counteract this issue by solving one part of the problem us-
ing classical Bayesian modelling and the consecutive part by QBN. In this paper,
we have solved the individual and weighted model predictions using classical ap-
proach,(BN) and the average predictions using quantum approach,(QBN). For
instance, the predictions that we obtained from LSTM and GPR models were
continuous variables, in order to convert the continuous variables to discrete

variables, we have assigned values to the respective states of the qubits that are
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required for constructing the Quantum Bayesian Network. In Table.5, we have
divided the values into four categories corresponding to four intervals of the two
qubits. The four intervals are |00),]01),]10),|11) , which represents the states
of the Z; a, Z; p as shown in Fig.17 respectively.

Table 5: Discretized Values for Qubits

States Range Value
|00) (0-6) 0
01) | (6 - 12) 1
10) (12 - 18) 2
11) (18 - 24) 3

7.1.1. Constructing Quantum Clircuit:

From Fig. 15 (d),(e) we can analyze that the bike demand fluctuates every
hour. For instance, there is a huge influx in bike demand in the morning hours
of weekdays and afternoon hours of weekends. Thereby, the discretized values
of the variables is represented in time (hours). As shown in Table.5, the bike
demand is divided into four interval periods. The four interval periods are
depicted as two-qubit system as |00),|01),]10),|11). The Bayesian network
with three nodes (Z; 4, Z; g, and Z;) is transformed into the quantum Bayesian
network as shown in Fig. 18. The transformation U-gates, U4 and Up represents
the probability of nodes Z; 4 and Z; g. Hence, the resulting probability of Z,
will have a total of 16 combinations (four values for both Z; 4 and Z, ), and

the probability of Z; is illustrated using controlled U-gate.
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Figure 18: QBN circuit of three-node network Harikrishnakumar et al. (2020)

In this quantum circuit Z; 4 represents the parent node, and Z; p rep-
resents the child node. Now, let us assume the probability of four states
|00),|01),]10),|11) as p;;,i = 0,1 and j = 0,1. We adopt the decomposi-
tion method as mentioned in Section 5 to fragment the U-gate of the root node.
The Fig. 8 illustrates the decomposition approach 8, where R, (64) is simulated
such that the first qubit is |0) and |1) states. The rotation angle of the qubits

is calculated using the Eq. 29 as shown below:

_ +p1n1
R,(0) = 2 x tan~! /21011 32
0(0) Poo + Po1 (32)

Where, rotation angle is calculated when the qubit |1) is represented in both
|10) and |11) and qubit |0) in |00) and |01) states of the two-qubit system. In
the case, where the state |1) is in first qubit level, then the corresponding second
qubit will be in state |0) or |1). To, obtain the probability of the second qubit
level we apply CR, gate as shown in (Fig. 8) respectively.

After, implementing the C'R, gate when the qubit is in state |0) and |1).
The decomposition method is used to decompose the U4 and Up gates. In Fig.
17 Z, represents the child node, where the conditional gates depends on the
values of parent nodes. The conditional gates are fragmented into single gates.

This is accomplished using dummy qubits or ancilla qubits as shown in Fig. 9.
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Finally, the developed QBN is simulated to derive the probability of Z; based

on the probability of Z; 4 and Z; p.

7.1.2. Quantum Clircuit Simulation for Weekday and Weekend Scenario:

After, the construction of QBN, the circuit is simulated in the IBM-Qiskit
platform for weekday and weekend bike prediction analysis. The simulation
analysis thereby measures the respective quantum states (|100010))) as shown
in histogram Fig.19. The OBN circuit is simulated for 8192 shots or iterations,
which represents the possible number of iterations that can be performed on an
actual quantum device (Mandviwalla et al., 2018).

In the experimental case study, we have considered three node Bayesian
network (Fig.17), which represents a 6-qubit system with a total of (2°) 72-
states. The variables Z; 4, Z; g, and Z, are mapped to qubits |g9gsg3g2q19o)
and |q4q596q7) correspond to ancilla qubits or dummy qubits. The probability
corresponding to states (|gogsqsgaqi1go)) is calculated as shown below:

P(|Q9Q8Q3Q2Q1Q0>) = w (33)

Where, T represents total number of states, in our case analysis (T =72)
respectively. The conditional or marginal probabilities of the three nodes is

obtained using the Eq.34.

P(lq:)) = Z P(|q9a393929190)) (34)
45,5=9,8,3,2,1,0,j#i
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Figure 19: IBM-Qiskit simulation of QBN
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7.1.3. Comparison of Results for Weekday and Weekend Scenario:
(a) Performance comparison: To validate and measure the difference
between the classical results and quantum results from Netica and Qiskit is

calculated using Eq.35.

L )2
RMSPE = ep = 100%, |3 w (35)

Where, p; represents the true value obtained from Netica, ¢; are the expecta-
tion values from the IBM-Qiskit simulator. To validate the experiment analysis
we perform the validation across a weekday and weekend during the month of
August to compare the final prediction results obtained from the classical and
Quantum computations. For both scenarios we have chosen two-time windows,
during the morning and evening hours of bike station id: (72) to determine the
final prediction from Qiskit simulator and classical analysis.

(b) Weekday and Weekend Bike demand Forecasting Analysis:

In our work, the main focus is forecasting station-level demand, where bike
station-id: 72 (52 street and 11 Avenue) is investigated for forecasting the bike
demand trends. In the evaluation study for forecasting bike demand, we simu-
lated a 3-node Bayesian network as shown in 17 on IBM-Qiskit simulator, and
compared the results using classical analysis performed in Netica (Netica, 2019).
The states Z; 4, Z; p correspond to four intervals of two qubits which provides
the forecasted range of bikes during every interval as shown in Table 5.

From the discretized values obtained from the states, we calculate the prob-
abilities of weekday and weekend bike forecasting for the month of August as
shown in Table 6 and 7. Based on the spatial-temporal heat map in Fig.13
two-time windows during morning and evening time slots were considered to
forecast the bike demands. The analysis for weekday at 9:00 AM state 1 pro-
vided the forecasted number of (6-12) bikes that need to be supplied to the bike
station during the respective time period, with a 67% accuracy from classical

analysis and 66% accuracy from the quantum analysis and, state 2 provided the
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forecasted number of (12-18) bikes with 33% accuracy from classical analysis
and 34% from the quantum analysis. However, at 9:00 PM state 0 showed the
forecast for (0-6) bikes with a 25% accuracy from classical analysis and 24% ac-
curacy from the quantum analysis, state 1 showed the forecast for (6-12) bikes
with a 25% accuracy from classical analysis and 23% accuracy from the quantum
analysis, state 2 showed the forecast for (12-18) bikes with a 256% accuracy from
classical analysis and 26% accuracy from the quantum analysis, state 3 showed
the forecast for (18-24) bikes with a 25% accuracy from classical analysis and
27% accuracy from the quantum analysis respectively. Likewise, the marginal
probabilities from Qiskit and classical analysis were evaluated for weekend bike
forecasting.

From the results obtained, we can observe that the results from the QBN
using the Qiskit simulator are almost similar to the results from the classi-
cal analysis. The error rate (RMSPE) calculated were within 2% interval for
the weekday and weekend bike prediction analysis for the entire day period (24
hours) as shown in Fig.20. Thereby, validating the applicability of QBN for pro-
viding effective and accurate bike demand forecasting with computational speed
up when compared to the classical Bayesian model. The Appendix A provides
the quantum circuit corresponding to BN in Fig.17 developed for weekday and
weekend bike forecasting analysis.

Table 6: Values of Marginal Probabilities Compared with Qiskit and Classical Analysis for
Weekday Bike Forecasting

Day Time State | Netica | QBN | RMSPE
state 0 0.0 0.0
state 1 0.67 0.66
9:00 AM state 2 0.33 0.34 0.7
8/3/2020 state 3 0.0 0.0

state 0 0.25 0.24
state 1 0.25 0.23
9:00 PM state 2 0.25 0.26 1.6

state 3 0.25 0.27
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Table 7: Values of Marginal Probabilities Compared with Qiskit and Classical Analysis for
Weekend Bike Forecasting

Day Time State | Netica | QBN | RMSPE
state 0 0.0 0.0
state 1 0.45 0.43
9:00 AM state 2 0.55 0.57 141
state 3 0.0 0.0
8/8/2020 state 0 0.0 0.0
state 1 0.83 0.84
9:00 PM state 2 0.17 0.16 0.7
state 3 0.0 0.0
025
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Figure 20: Bar plots associated with RMSPE of the Bike Predictions on Weekdays and Week-
ends on Qiskit.
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8. Conclusion & Future Work

This paper proposed a considered model averaging approach for bike demand
prediction at bike sharing system. This paper demonstrated the application of
time series forecasting models such as the neural network-based LSTM model
and Gaussian process model. The individual predictions from these models
are averaged using QBN approach. The weights corresponding to the individ-
ual models are calculated as being inversely proportional to their root mean
squared errors (RMSE).We demonstrated the QBN approach for model averag-
ing and efficient predictions. This paper demonstrated the proposed approach
for bike demand prediction across both weekdays and weekends using NYC Citi
Bike data. This paper also compared the prediction performance of the Quan-
tum Bayesian networks against classical Bayesian networks and the RMSPE
values were within 2%. For future work, we will also investigate the solution
performance when implemented on quantum hardware. Since quantum hard-
ware solution performance is affected by hardware noise and errors, we will
also investigate quantum error correction (QEC) techniques to further improve

solution performance.
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Appendix A. Quantum circuit for Weekday and Weekend scenario
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Figure A.21: QBN of the three-node circuit.Nodes (Z¢ 4, Z¢, p and Z;) are mapped to qg, gs,
q3, q2, q1, and qo respectively, and q4, g5, g6 and g7 are the ancilla qubits.
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Figure A.21: QBN of the three-node circuit.Nodes (Zt7A, Zy,p and Z4) are mapped to qo, gs,
g3, 92, q1, and go respectively, and g4, g5, g6 and g7 are the ancilla qubits. (contd)
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Figure A.21: QBN of the three-node circuit.Nodes (Zt7A, Zy,B and Zy) are mapped to g9, gs,
g3, 92, q1, and qo respectively, and g4, g5, ge6 and g7 are the ancilla qubits.(contd)
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Figure A.21: QBN of the three-node circuit.Nodes (Z¢ 4, Z¢,p and Z;) are mapped to qg, gs,
43, G2, q1, and qo respectively, and ga, g5, g6 and g7 are the ancilla qubits.(contd)
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Figure A.21: QBN of the three-node circuit.Nodes (Z; 4, Z; p and Z;) are mapped to qg, gs,
q3, 92, q1, and qo respectively, and q4, g5, g6 and g7 are the ancilla qubits.
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Highlights

Highlights
1. Propose a novel Quantum Bayesian ensemble approach for bike demand prediction during

weekday and weekend scenarios.

2. Discretization of the continuous-valued bike demand forecasts to enable the construction of
Quantum Bayesian networks.

3. Leveraging Quantum Bayesian Network with similar bike usage patterns to enable demand
forecasting.



