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Abstract We propose second-order numerical methods based on the generalized positive auxiliary vari-
able (gPAV) framework for solving the Cahn-Hilliard-Navier-Stokes-Darcy model in superposed free flow
and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to
the modified energy law and take account into the interface conditions between the two subdomains. By
implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2
numerical methods e↵ected with the Galerkin finite element method. The fully discrete schemes satisfy
a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to
validate the methods and demonstrate the robustness. The application in filtration systems, the influence
of viscous instability, general permeability, curve interface, and di↵erent densities are discussed in details
to further illustrate the compatibility and applicability of our developed gPAV numerical methods.
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1 Introduction

The Cahn-Hilliard-Navier-Stokes-Darcy (CHNSD) model [32, 34] is an important di↵use interface
model that describes two-phase flow in superposed free flow and porous media. It has many applications,
including water management in proton exchange membrane (PEM) fuel cells [22, 60], industrial filtra-
tion, fluid displacement in oil reservoirs [9], groundwater contamination in karst aquifers, and droplet
formation in microfluidic technology [2, 72]. On the other hand, the CHNSD system is a typical multi-
physics, multi-domain problem that comprises the Cahn-Hilliard-Navier-Stokes equations governing two-
phase flow in free flow region, the Cahn-Hilliard-Darcy system for two-phase flow in porous media, and
a set of domain interface boundary conditions [25, 34]. Han [34] established global existence of weak
solutions and weak–strong uniqueness to the CHNSD system. One of distinct features of the model is
its automatic capturing of topological transitions of the interface [44, 50], at the expense of the sti↵ness
resulting from large spatial gradients across the thin interface layer [20].

In recent years many works have emerged for solving the CHNSD model [10, 12, 23, 25]. Chen
[10] proposed partially and totally decoupled numerical methods for Cahn-Hilliard-Stokes-Darcy system
by combining operator splitting, pressure stabilization and convex splitting methods, then rigorously
analyzed its unique solvability and energy stability. Gao [25] constructed a decoupled numerical method
to simulate CHNSD system taking account for two Cahn-Hilliard equations in free flow region and
porous media region, respectively. Chen [11] considered the CHNSD model with thermal convection of
two-phase flow, and proposed unconditionally stable numerical methods to independently solve Navier-
Stokes equations, Darcy equations, heat equations, and the Cahn-Hilliard equations at each time level.
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Even though e�cient numerical methods of first order accuracy exist, to the best of our knowledge, this
work contributes to the first second order accurate numerical schemes for the CHNSD model.

There are several techniques in the literature for dealing with the sti↵ness of phase field model,
such as convex-splitting strategy [3, 28, 55], stabilization method [21, 57, 63], the Invariant Energy
Quadratization (IEQ) approach [41, 62, 66, 51], scalar auxiliary variable (SAV) approach [53, 56, 64, 71],
generalized positive auxiliary variable (gPAV) approach [46, 52, 68], and the zero-energy-contribution
approach [65, 67, 69, 70]. The gPAV method has remarkable properties: resulting linear algebraic system
with constant coe�cient matrices, preserving positivity of the scalar variable , and simplifying treatment
complex interface conditions and boundary conditions [45, 52]. Therefore, we shall build a gPAV frame-
work taking into account interface conditions between free flow region and porous media to develop linear
numerical schemes for the CHNSD system. Furthermore, decoupled numerical schemes allowing larger
time step size are in great need to further improve the computational e�ciency and make long-time
simulations of more realistic problems feasible, especially for hydraulic conductivity tensor with small
eigenvalues [38, 43]. The decoupling of fluid equations can be achieved by exploiting pressure projection
[30, 58, 40, 48], artificial compressible method [18, 29, 37], artificial viscosity [42].

In this contribution we focus on the development of unconditionally stable, totally decoupled, second-
order in time and linear numerical schemes based on the gPAV framework for the CHNSD model. By
introducing an auxiliary scalar variable according to the modified discrete energy from the artificial
compression method, we reformulate the CHNSD system into an equivalent system that incorporates
interface conditions. We then exploit implicit-explicit discretization to deal with the coupling between
two di↵erent sub-regions and the coupling between the phase field equation and the fluid equations. Sta-
bilization via artificial viscosity is incorporated to further improve the accuracy and stability. Finite ele-
ment method is adopted for spatial discretization. By using the Crank-Nicolson leap-frog time-marching
(CNLF) and the second-order backward di↵erentiation formula (BDF2), respectively, we design two nu-
merical methods, termed as the gPAV-CNLF scheme and the gPAV-BDF2 scheme. We then rigorously
establish the unconditional stability, in the sense of monotonically decreasing of the modified discrete
energy, for both the gPAV-CNLF and the gPAV-BDF2 numerical schemes.

The rest of paper is organized as follows. In Section 2, we present the CHNSD model, derive the
equivalent gPAV system and propose its weak formulation satisfying a modified energy law. In Section
3, fully decoupled numerical schemes of second order accuracy, i.e. gPAV-CNLF and gPAV-BDF2 al-
gorithms, are constructed, the energy stability are then rigorously proved. In Section 4, we discuss the
implementations issues for both gPAV-CNLF and gPAV-BDF2 methods. In Section 5, ample numerical
experiments are carried out to illustrate the desirable features of proposed decoupled numerical methods.

2 Cahn-Hilliard-Navier-Stokes-Darcy model

In this section, we first give a brief introduction for the Cahn-Hilliard-Navier-Stokes-Darcy model,
derive the equivalent system based on gPAV framework and its weak formulation, and show the dissipative
energy law for the reformulated gPAV system.

2.1 Model system

Consider a bounded domain ⌦ = ⌦c

S
⌦m ⇢ Rd (d = 2, 3) consisting of free-flow region ⌦c and

porous media region ⌦m. We assume the Lipschitz continuous boundaries @⌦c and @⌦m, and form the
interface � = @⌦m \ @⌦c, �m = @⌦m\� , and �c = @⌦c\� . Let nc and nm be the unit outer normal to
the fluid and the porous media regions at the interface � , respectively. A typical geometry is illustrated
in Figure 1.

Consider homogeneous free energy F (�) with a double-well polynomial F (�) = 1
4✏ (�

2 � 1)2, and let
f(�) = F 0(�) associated with the capillary width ✏ of the thin interfacial region. Denote �j (j = c,m) be
a phase function indicating two di↵erent fluids by taking distinct ±1. Variable wj(j = c,m) represents
the chemical potential depended on phase variable �j . Mobility Mj(j = c,m) is a di↵usion coe�cient
and may related to phase function � [14]. Parameter � describes the elastic relaxation time.

Two-phase flow in porous media region ⌦m is assumed to satisfy the Cahn-Hilliard-Darcy (CHD)
equations

K�1um +rpm � wmr�m = 0, (2.1)

r · um = g(x), (2.2)
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Fig. 1: A sketch of the porous media domain ⌦m, free fluid domain ⌦c, and the interface � .

@�m
@t

+ um ·r�m �r · (Mm(�m)rwm) = hm(x), (2.3)

wm + �✏4�m � �

✏
f(�m) = 0, (2.4)

where um denotes the fluid discharge rate in the porous media, pm denotes the hydraulic head, and
K denotes the hydraulic conductivity tensor that satisfies the relation K = ⇧

⌫(�m) . (2.3)-(2.4) take into
account the di↵usion of the order parameter � and the interfacial energy between two phase, allowing
for simulation of phase separation and interface dynamics.

Two-phase flow in the fluid region ⌦c is governed by the Cahn-Hilliard-Navier-Stokes (CHNS)
equations

@uc

@t
+ (uc ·r)uc �r · T(uc, pc)� wcr�c = f(x), (2.5)

r · uc = 0, (2.6)

@�c
@t

+ uc ·r�c �r · (Mc(�c)rwc) = hc(x), (2.7)

wc + �✏4�c �
�

✏
f(�c) = 0, (2.8)

where T(uc, pc) = 2⌫(�c)D(uc)�pcI is the stress tensor with deformation tensor D(uc) = (ruc+rTuc)/2
and identity matrix I. Variables uc and pc are the fluid velocity and the kinematic pressure, and ⌫
prescribes the kinematic viscosity of the fluid, 0 < c  ⌫ with positive constant c.

The two systems are coupled though a set of domain interface boundary conditions along the interface
� as follows [10, 24, 32].

�m = �c, (2.9)

wc = wm, (2.10)

r�c · nc = �r�m · nm, (2.11)

Mc(�c)rwc · nc = �Mm(�m)rwm · nm, (2.12)

uc · nc = �um · nm, (2.13)

�nc · (T(uc, pc) · nc) = pm � 1

2
|uc|2, (2.14)

�⌧ j · (T(uc, pc) · nc) =
↵⌫

p
dp

trace(⇧)
⌧ j · uc, (2.15)

where ⌧ j (j = 1, · · · , d � 1) stands for mutually orthogonal unit tangential vectors, and ⇧ is the per-
meability of the porous media. (2.9)-(2.12) accounts for the continuity conditions for the phase field
function, the chemical potential, and their normal derivatives [32, 35]. (2.13) represents the continuous
of velocity, (2.14) describes the balance of the forces with the inertial forces [32, 6, 27], and (2.14) is the
well-known Beavers-Joseph-Sa↵man-Jones (BJS) interface condition [4].



4 Yali Gao and Daozhi Han

For simplicity, we consider the following boundary conditions

pm|�m = 0, r�m · nm|�m = 0, Mm(�m)rwm · nm|�m = 0, (2.16)

uc|�c = 0, r�c · nc|�c = 0, Mc(�c)rwc · nc|�c = 0, (2.17)

and initial conditions

�c(0,x) = �0
c
(x), �m(0,x) = �0

m
(x), uc(0,x) = u0

c
(x). (2.18)

Without loss of generality, we also assume that K is a bounded, symmetric and uniformly positive definite
matrix.

The total energy associated with the CHNSD system is [25]

eE(uc,�) =

Z

⌦c

1

2
|uc|2dx+ �

Z

⌦

✓
✏

2
|r�|2 + 1

✏
F (�)

◆
dx. (2.19)

2.2 Reformulated equivalent system

To facilitate the design of decoupled second-order numerical algorithms for the system (2.1)-(2.4),
(2.5)-(2.8) and (2.9)-(2.17), we reformulate it according to the gPAV framework. In general, we use the
standard Sobolev spaces, introduce Hm (⌦) = Wm,2 (⌦) with the norm k · km. Denote the essential
supremumm by k · k1, L2 norm by k · k.

We first exploit the artificial compressibility method and replace the divergence-free condition by
[18, 29]

2✏2
@pc
@t

+r · uc = 0,

where "2 is a constant to be determined later. Introducing the modified energy

E(uc,�) =

Z

⌦c

1

2
|uc|2dx+ �

Z

⌦

✓
✏

2
|r�|2 + 1

✏
F (�)

◆
dx+ "2

Z

⌦c

|pc|2dx, (2.20)

we introduce two scalar auxiliary variables such that

R(t) =
p

E(uc,�), ⇠ =
R2

E
,

then, taking the time derivative and using (2.20), R(t) satisfies following evolution equation

2R
dR

dt
= (

@uc

@t
,uc) + �✏(r�,r@�

@t
) + 2✏2(

@pc
@t

, pc) + ⇠
�

✏
(f(�),

@�

@t
). (2.21)

Following the idea of gPAV, we incorporate the zero terms into the right hand side of (2.21) to
obtain

2R
dR

dt
= (

@uc

@t
,uc) + �✏(r�,r@�

@t
) + 2✏2(

@pc
@t

, pc) + ⇠
�

✏
(f(�),

@�

@t
)

�

�2⌫(D(uc),D(uc)) + (pc,r · uc)� ⇠((uc ·r)uc,uc) + ⇠(wcr�c,uc)�

⇠

2
((r · uc)uc,uc)

�(r · uc, pc)� (K�1um,um)� (rpm,um) + ⇠(wmr�m,um) + (um,rpm)�M(rw,rw)

�⇠(u ·r�, w) + (f(x),uc) + (g(x), pm) + (h(x), w)] +
↵⌫

p
dp

trace(⇧)
hP⌧uc, P⌧uci

+⇠hpm � 1

2
|uc|2,uc · nci � ⇠huc · nc, pmi

+⇠


�2⌫(D(uc),D(uc)) + (pc,r · uc)� ((uc ·r)uc,uc) + (wcr�c,uc)�

1

2
((r · uc)uc,uc)

�(r · uc, pc)� (K�1um,um)� (rpm,um) + (rpm,um) + (wmr�m,um)� (Mrw,rw)

�(u ·r�, w)� hpm � 1

2
|uc|2,uc · nci+ huc · nc, pmi+ ↵⌫

p
dp

trace(⇧)
hP⌧uc, P⌧uci

+(f(x),uc) + (g(x), pm) + (h(x), w)] . (2.22)
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Utilizing integration by parts, and boundary conditions (2.16) and (2.17), we get the equality

((uc ·r)v,v) +
1

2
((r · uc)v,v) =

1

2
huc · v,v · nci, 8v 2 [H1

0 (⌦)]d. (2.23)

Due to the fact that

(wcr�c,uc) + (wmr�m,um) = (u ·r�, w) (2.24)

using (2.23), and collecting the similar terms, we transfer (2.22) into

2R
dR

dt
= (

@uc

@t
,uc) + �✏(r�,r@�

@t
) + 2✏2(

@pc
@t

, pc) + ⇠
�

✏
(f(�),

@�

@t
)

�
h
� 2⌫(D(uc),D(uc)) + (pc,r · uc)� ⇠((uc ·r)uc,uc) + ⇠(wcr�c,uc)�

⇠

2
((r · uc)uc,uc)

�(r · uc, pc)� (K�1um,um)� (rpm,um) + ⇠(wmr�m,um) + (um,rpm)�M(rw,rw)

�⇠(u ·r�, w) + (f(x),uc) + (g(x), pm) + (h(x), w)dx
i
+ ⇠hpm � 1

2
|uc|2,uc · nci

�⇠huc · nc, pmi+ ↵⌫
p
dp

trace(⇧)
hP⌧uc, P⌧uci

+⇠
h
� 2⌫(D(uc),D(uc))� (K�1um,um)� (Mrw,rw)� ↵⌫

p
dp

trace(⇧)
hP⌧uc, P⌧uci

+(f(x),uc) + (g(x), pm) + (h(x), w)
i

(2.25)

In sum, we reformulate the system (2.1)-(2.4), (2.5)-(2.8) into the following gPAV-based equivalent
form

@�

@t
+ ⇠u ·r��r · (M(�)rw) = h(x), (2.26)

w + �✏4�� ⇠
�

✏
f(�) = 0, (2.27)

K�1um +rpm � ⇠wmr�m = 0, (2.28)

r · um = g(x), (2.29)

@uc

@t
+ ⇠(uc ·r)uc �r · T(uc, pc)� ⇠wcr�c = f(x), (2.30)

2✏2
@pc
@t

+r · uc = 0, (2.31)

2R
dR

dt
= (

@uc

@t
,uc) + �✏(r�,r@�

@t
) + 2✏2(

@pc
@t

, pc) + ⇠
�

✏
(f(�),

@�

@t
)

�
h
� 2⌫(D(uc),D(uc)) + (pc,r · uc)� ⇠((uc ·r)uc,uc) + ⇠(wcr�c,uc)�

⇠

2
((r · uc)uc,uc)

�(r · uc, pc)� (K�1um,um)� (rpm,um) + ⇠(wmr�m,um) + (um,rpm)�M(rw,rw)

�⇠(u ·r�, w) + (f(x),uc) + (g(x), pm) + (h(x), w)
i
+ ⇠hpm � 1

2
|uc|2,uc · nci

�⇠huc · nc, pmi+ ↵⌫
p
dp

trace(⇧)
hP⌧uc, P⌧uci

+⇠
h
� 2⌫(D(uc),D(uc))� (K�1um,um)� (Mrw,rw)� ↵⌫

p
dp

trace(⇧)
hP⌧uc, P⌧uci

+(f(x),uc) + (g(x), pm) + (h(x), w)
i
+ (1� ⇠)|(f(x),uc) + (g(x), pm) + (h(x), w)|. (2.32)

The term | · | denotes the absolute value.
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2.3 The weak formulation

We now provide the weak formulation of the CHNSD model system (2.1)-(2.12).
Define the space

L̇2(⌦j) := {v 2 L2(⌦j) :

Z

⌦j

v dx = 0}. (2.33)

Then we denote Ḣ1(⌦j) = H1(⌦j) \ L̇2(⌦j), which is a Hilbert space with inner product (u, v)H1 =R
⌦j

ru ·rv dx due to the classical Poincaré inequality for functions with zero mean. Its dual space is

simply denoted by (Ḣ1(⌦j))0. For our coupled system, the spaces that we utilize are

Yj = H1(⌦j), Y = H1(⌦),

Xj,div = {v 2 Xj | r · v = 0}, j = c,m,

Xc = {v 2 [H1(⌦c)]
d | v = 0 on �c},

Xm = {v 2 [H1(⌦m)]d | v · nm = 0 on �m},
Qm = Ḣ1(⌦m), Qc = L2(⌦c).

P⌧ denotes the projection onto the tangent space on � , i.e. P⌧u =
P

d�1
j=1(u · ⌧ j)⌧ j . For the domain

⌦j(j = c,m), (·, ·) denotes the L2 inner product on the domain ⌦j decided by the subscript of integrated
functions, and h·, ·i denotes the L2 inner product on the interface � . Then it is clear that

(um, vm) =

Z

⌦m

umvmdx, (uc, vc) =

Z

⌦c

ucvcdx, (u, v) =

Z

⌦m

umvmdx+

Z

⌦c

ucvcdx,

kumk :=

✓Z

⌦m

|um|2dx
◆ 1

2

, kuck :=

✓Z

⌦c

|uc|2dx
◆ 1

2

, kuk2 =

Z

⌦m

|um|2dx+

Z

⌦c

|uc|2dx,

where um := u|⌦m and uc := u|⌦c . We also denote H 0 the dual space of H with the duality induced by
the L2 inner product.

By applying the seven interface conditions (2.13)-(2.12) and integration of parts, we give the weak
formulation of the proposed equivalent CHNSD system as follows: find

(um, pm,uc, pc,�, w) 2 (Xm, Qm,Xc, Qc, Y, Y )

such that

(
@�

@t
, ) + ⇠(u ·r�, ) + (M(�)rw,r ) = (h(x), ), 8 2 Y, (2.34)

(w,!)� �✏(r�,r!)� ⇠
�

✏
(f(�),!) = 0, 8! 2 Y, (2.35)

(um,v) +K(rpm,v)� ⇠K(wmr�m,v) = 0, 8v 2 Xm, (2.36)

�(um,rq)� ⇠huc · nc, qi = (g(x), q), 8 q 2 Qm, (2.37)

(
@uc

@t
,v) + ⇠ ((uc ·r)uc,v) +

⇠

2
((r · uc)uc,v) + (2⌫D(uc),D(v))� (pc,r · v)� ⇠(wcr�c,v)

+⇠hpm � 1

2
|uc|2,v · nci+

↵⌫
p
dp

trace(⇧)
hP⌧uc, P⌧vi = (f(x),v), 8v 2 Xc, (2.38)

2✏2(
@pc
@t

, q) + (r · uc, q) = 0, 8 q 2 Qc, (2.39)

2R
dR

dt
= (

@uc

@t
,uc) + �✏(r�,r@�

@t
) + 2✏2(

@pc
@t

, pc) + ⇠
�

✏
(f(�),

@�

@t
)

�
h
� 2⌫kD(uc)k2 + (pc,r · uc)� ⇠((uc ·r)uc,uc) + ⇠(wcr�c,uc)�

⇠

2
((r · uc)uc,uc)

�(r · uc, pc)�K�1kumk2 � (rpm,um) + ⇠(wmr�m,um) + (um,rpm)�Mkrwk2

�⇠(u ·r�, w) + (f(x),uc) + (g(x), pm) + (h(x), w)
i
+ ⇠hpm � 1

2
|uc|2,uc · nci

�⇠huc · nc, pmi+ ↵⌫
p
dp

trace(⇧)
hP⌧uc, P⌧uci
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+⇠
h
� 2⌫kD(uc)k2 �K�1kumk2 �Mkrwk2 � ↵⌫

p
dp

trace(⇧)
hP⌧uc, P⌧uci+ (f(x),uc)

+(g(x), pm) + (h(x), w)
i
+ (1� ⇠)|(f(x),uc) + (g(x), pm) + (h(x), w)|, (2.40)

where t 2 [0, T ], T is a finite time, um 2 L1(0, T ; [L2(⌦m)]d)\L2(0, T ;Xm), uc 2 L1(0, T ; [L2(⌦c)]d)\
L2(0, T ;Xc,div),

@uc
@t

2 L2(0, T ;X 0
c,div

), pj 2 L2(0, T ;Qj), j = {c,m}, � 2 L1(0, T ;Y )\L2(0, T ;H3(⌦)),
@�

@t
2 L2(0, T ;Y 0), w 2 L2(0, T ;Y ).
It is remarkable that the above weak formulation satisfies the dissipative energy law with the total

energy of the coupled system (2.34)-(2.40) as follows

E(t) = |R|2. (2.41)

Lemma 1 Let (um,uc,�m,�c, wm, wc) be a smooth solution to the initial boundary value problem (2.1)-
(2.18). Then (um,uc,�m,�c, wm, wc) satisfies the following basic energy law:

d

dt
E = �⇠D(t)� ⇠ [(f(x),uc) + (g(x), pm) + (h(x), w)] + (1� ⇠) |(f(x),uc) + (g(x), pm) + (h(x), w)| ,

(2.42)

where the energy dissipation D is given by

D(t) = k
p
2⌫D(uc)k2 + k

p
K�1umk2 + k

p
M(�)rwk2 + ↵⌫

p
dp

trace(⇧)
hP⌧uc, P⌧uci. (2.43)

This implies an energy-stable feature under the assumption of zero source terms f(x), g(x), and h(x).

Proof.

First, for the Cahn-Hilliard equation, we choose  = w and ! = �@�

@t
in (2.34) and (2.35), respec-

tively, and add these two equations to derive

�✏(r�,r@�

@t
) + ⇠

�

✏
(f(�),

@�

@t
) + ⇠Mkrwk2 + ⇠(u ·r�, w) = 0. (2.44)

Next, we consider the matrix part. By setting q = pm and v = um in (2.37) and (2.36), respectively,
and taking the summation, we obtain

k
p
K�1umk2 � ⇠(wmr�m,um)� ⇠huc · nc, pmi = 0. (2.45)

For the conduit part, taking the test function in (2.38) and (2.39) by v = uc and q = pc, adding the
resultants together, we get

(
@uc

@t
,uc) + ⇠((uc ·r)uc,uc) + k

p
2⌫D(uc)k2 +

⇠

2
((r · uc)uc,uc)� (pc,r · uc)� ⇠(wcr�c,v)

+✏2(
@pc
@t

, p) + (r · uc, p) + ⇠hpm � 1

2
|uc|2,uc · nci+

↵
p
dp

trace(⇧)
h⌫P⌧uc, P⌧uci = 0. (2.46)

To sum up of (2.40), (2.44), (2.46) and (2.45), we obtain

d

dt
|R|2 = �⇠

h
k
p
2⌫D(uc)k2 + k

p
K�1umk2 +Mkrwk2 + ↵

p
dp

trace(⇧)
h⌫P⌧uc, P⌧uci (2.47)

�(f(x),uc)� (g(x), pm)� (h(x), w)
i
+ (1� ⇠)|(f(x),uc) + (g(x), pm) + (h(x), w)|,

which implies that the energy of weak formulation is non-increasing (2.42) under the zero source terms.
This completes the proof of Lemma 1. ⇤
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3 Second order numerical schemes

In this section, we present the second-order fully discrete schemes for the weak formulation (2.34)-
(2.40) using finite element method for spatial discretization.

Let =h be a quasi-uniform mesh of size h for the domain ⌦. We introduce the finite element
approximation spaces Yh, Yjh, Xjh and Qjh of Y , Yj , Xj and Qj . Further, we assume the Xch and Qch

are stable pairs satisfying

inf
0 6=qh

sup
0 6=vh

(r · vh, qh)

kvhk1
> C kqhk , 8 qh 2 Qch,vh 2 Xch, (3.1)

Xmh and Qmh are stable in the sense that

inf
0 6=qh

sup
0 6=vh

(r · vh, qh)

kvhk
> C kqhk , 8 qh 2 Qmh,vh 2 Xmh. (3.2)

Then the semi-discretization of the system (2.37)-(2.35) is to find

(umh, pmh,uch, pch,�h, wh) 2 (Xmh, Qmh,Xch, Qch, Yh, Yh)

such that

(
@�h
@t

, h) + ⇠(uh ·r�h, h) + (M(�h)rwh,r h) = (h(x), h), 8 h 2 Yh, (3.3)

(wh,!h)� �✏(r�h,r!h)� ⇠
�

✏
(f(�h),!h) = 0, 8!h 2 Yh, (3.4)

(umh,vh) +K(rpmh,vh)� ⇠K(wmhr�mh,vh) = 0, 8vh 2 Xmh, (3.5)

�(umh,rqh)� ⇠huch · nc, qhi = (g(x), qh), 8 qh 2 Qm, (3.6)

(
@uch

@t
,vh) + ⇠ ((uch ·r)uch,vh) +

⇠

2
((r · uch)uch,vh) + (2⌫D(uch),D(vh))� (pch,r · vh)

�⇠(wchr�ch,vh) + ⇠hpmh � 1

2
|uch|2,vh · nci+

↵⌫
p
dp

trace(⇧)
hP⌧uch, P⌧vhi

= (f(x),vh), 8vh 2 Xch, (3.7)

2✏2(
@pch
@t

, qh) + (r · uch, qh) = 0, 8 qh 2 Qch, (3.8)

2R
dR

dt
= (

@uch

@t
,uch) + �✏(r�h,r

@�h
@t

) + 2✏2(
@pch
@t

, pch) + ⇠
�

✏
(f(�h),

@�h
@t

)

+
h
2⌫kD(uch)k2 � (pch,r · uch) + ⇠((uch ·r)uch,uch)� ⇠(wcr�ch,uch) + (r · uch, pch)

+
⇠

2
((r · uch)uch,uch) +K�1kumhk2 + (rpmh,umh)� ⇠(wmhr�mh,umh)� (umh,rpmh)

+Mkrwhk2 + ⇠(uh ·r�h, wh)� (f(x),uch)� (g(x), pmh)� (h(x), wh)
i

+⇠hpmh � 1

2
|uch|2,uch · nci � ⇠huch · nc, pmhi+

↵⌫
p
dp

trace(
Q
)
hP⌧uch, P⌧uchi

+⇠
h
� 2⌫kD(uch)k2 �K�1kumhk2 �Mkrwhk2 �

↵⌫
p
dp

trace(
Q
)
hP⌧uch, P⌧uchi+ (f(x),uch)

+(g(x), pmh) + (h(x), wh)
i
+ (1� ⇠)|(f(x),uch) + (g(x), pmh) + (h(x), wh)|. (3.9)

Let 0 = t0 < t1 < · · · < tM = T be a uniform partition of [0, T ] into subintervals Jn = (tn, tn+1),
n = 0, 1, . . . ,M � 1, �t = tn+1 � tn = T

M
be time step size. Then we develop the following second order

accuracy in time, decoupled, linearized and unconditionally stable full discretization.

3.1 Decoupled energy-stable gPAV-CNLF numerical scheme

Denoting

v̂n+1 =
vn+1 + vn�1

2
, vn+1 =

v̆n+1 + vn�1

2
, (3.10)
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⇠n+1 =
(Rn+1)2

E(un+1
ch

,�
n+1
h

)
, (3.11)

where v̆n+1 is the second-order approximation of vn+1 to be defined later (more details are presented in
(4.4) of Section 4.1 ).

The Crank-Nicolson Leap-Frog artificial compression (gPAV-CNLF) method is as follows:
Step 1: Find (�n+1

h
, wn+1

h
) 2 Yh ⇥ Yh, such that for all ( h,!h) 2 Yh ⇥ Yh

(
�n+1
h

� �n�1
h

2�t
, h) + ⇠n+1(un

h
·r�n

h
, h) + (M(�n

h
)r bwn+1

h
,r h) = (h(x), h), (3.12)

( bwn+1
h

,!h)� �✏(rb�n+1
h

,r!h)� ⇠n+1 �

✏
(f(�n

h
),!h)� S(�n+1

h
� �n�1

h
,!h) = 0, (3.13)

where S is a positive stabilized parameter, and

un

h
:=

(
un

ch
, x 2 ⌦c,

un

mh
, x 2 ⌦m.

(3.14)

Step 2: Find (un+1
mh

, pn+1
mh

) 2 Xmh ⇥Qmh, such that for all (vh, qh) 2 Xmh ⇥Qmh

K�1(un+1
mh

,vh) + (rbpn+1
mh

,vh)� ⇠n+1(wn

mh
r�n

mh
,vh) + �1h(r(un+1

mh
� un�1

mh
),rvh) = 0, (3.15)

�(run+1
mh

,rq)� ⇠n+1hun

ch
· nc, qhi = (g(x), qh), (3.16)

where �1 is a positive parameter to be specified later.
Step 3: Find un+1

ch
2 Xch, such that for all vh 2 Xch

(
un+1
ch

� un�1
ch

2�t
,vh) + ⇠n+1 ((un

ch
·r)un

ch
,vh) +

⇠n+1

2
((r · un

ch
)un

ch
,v) + 2⌫(D(bun+1

ch
),D(vh))

+�2h(r(un+1
ch

� un�1
ch

),rvh)� ⇠n+1(wn

ch
r�n

ch
,vh)� (pn

ch
,r · vh) + ⇠n+1hpn

mh
,vh · nci

�⇠
n+1

2
hun

ch
· un

ch
,vh · nci+

↵⌫
p
dp

trace(
Q
)
hP⌧ bun+1

ch
, P⌧vhi = (f(x),vh), (3.17)

where �2 is a positive parameter.
Step 4: Find pn+1

ch
2 Qch, such that for all qh 2 Qch

��t(pn+1
ch

� pn�1
ch

, qh) + (r · un

ch
, qh) = 0. (3.18)

Step 5: Find Rn+1, such that

(Rn+1)2 � (Rn�1)2

2�t
= (

un+1
ch

� un�1
ch

2�t
, bun+1

ch
) + �✏(rb�n+1

h
,r

�n+1
h

� �n�1
h

2�t
) + 2��t2(

pn+1
ch

� pn�1
ch

2�t
, bpn+1

ch
)

+⇠n+1 �

✏
(f(�n

h
),r

�n+1
h

� �n�1
h

2�t
) + S(�n+1

h
� �n�1

h
,
�n+1
h

� �n�1
h

2
) + �1h(r(un+1

mh
� un�1

mh
),rbun+1

mh
)

+�2h(r(un+1
ch

� un�1
ch

),rbun+1
ch

)

+
h
2⌫kD(bun+1

ch
)k2 � (pn

ch
,r · bun+1

ch
) + (rbpn+1

mh
, bun+1

mh
) +K�1kbun+1

mh
k2 + ⇠n+1((un

ch
·r)un

ch
, bun+1

ch
)

�⇠n+1(wn

ch
r�n

ch
, bun+1

ch
) + (r · un

ch
, bpn+1

ch
) +

⇠n+1

2
((r · un

ch
)un

ch
, bun+1

ch
)� ⇠n+1(wn

mh
r�n

mh
, bun+1

mh
)

�(bun+1
mh

,rbpn+1
mh

) + k
q
M(�n

h
)r bwn+1

h
k2 + ⇠n+1(un

h
·r�n

h
, bwn+1

h
)

�(f(x), bun+1
ch

)� (g(x), bpn+1
mh

)� (h(x), bwn+1
h

)
i

+⇠n+1hpn
mh

� 1

2
|un

ch
|2, bun+1

ch
· nci � ⇠n+1hun

ch
· nc, bpn+1

mh
i+ ↵⌫

p
dp

trace(
Q
)
hP⌧ bun+1

ch
, P⌧ bun+1

ch
i

+⇠n+1[�2⌫kD(un+1
ch

)k2 �K�1kun+1
mh

k2 � k
q
M(�

n

h
)rwn+1

h
k2 � ↵⌫

p
dp

trace(
Q
)
hP⌧u

n+1
ch

, P⌧u
n+1
ch

i]

+⇠n+1S0 + (1� ⇠n+1)|S0|, (3.19)

where

S0 = (f(x),un+1
ch

) + (g(x), pn+1
mh

) + (h(x), wn+1
h

), (3.20)

un+1
ch

, un+1
mh

, pn+1
ch

, and wn+1
h

are second order approximations of bun+1
ch

, bun+1
mh

, bpn+1
ch

and bwn+1
h

.
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Remark 1 Following the technique of artificial viscosity stabilization [39, 42], a term ��h4(un+1
ch

�un�1
ch

)
in (3.17) is introduced to improve the accuracy of gPAV schemes, particularly for high Reynolds number
flows. The stabilized gPAV algorithm has accuracy O(�t2 + h�t+ spatial error).

In order to prove the energy stability of the CNLF numerical scheme, we first establish the following
identity.

Theorem 1 The approximation (un+1
mh

,un+1
ch

, pn+1
ch

,�n+1
h

) by the scheme (3.12)-(3.19) satisfies the fol-

lowing equality:

1

2
|Rn+1|2 � 1

2
|Rn�1|2 = �⇠n+1�t

⇥
Dn+1 � S0

⇤
+�t(1� ⇠n+1)|S0|, (3.21)

where Dn+1
is given by

Dn+1 = 2⌫kD(un+1
ch

)k2 + k
p
K�1un+1

mh
k2 + k

q
M(�n

h
)rwn+1

h
k2 + ↵⌫

p
dp

trace(
Q
)
hP⌧u

n+1
ch

, P⌧u
n+1
ch

i.

(3.22)

Hence the scheme is well-defined with ⇠n+1 > 0.

Proof. Taking  h = �t bwn+1
h

and !h = ��
n+1
h ��

n�1
h

2 in (3.12) and (3.13), respectively, adding these
resultants, we derive

�✏(rb�n+1
h

,r
�n+1
h

� �n�1
h

2
) + ⇠n+1 �

✏
(f(�n

h
),
�n+1
h

� �n�1
h

2
) +�t⇠n+1(un

h
·r�n

h
, bwn+1

h
)

+S(�n+1
h

� �n�1
h

,
�n+1
h

� �n�1
h

2
) +�t(M(�n

h
)r bwn+1

h
,r bwn+1

h
) = 0. (3.23)

Next, we consider the conduit part. Taking the test function vh = �tbun+1
ch

in (3.17), and qh = bpn+1
ch

in (3.18), respective, we take the sum to obtain

(
un+1
ch

� un�1
ch

2
, bun+1

ch
) + ⇠n+1�t

�
(un

ch
·r)un

ch
, bun+1

ch

�
+�t

⇠n+1

2

�
(r · un

ch
)un

ch
, bun+1

ch

�

+2⌫�tkD(bun+1
ch

)k2 + �2h�t(r(un+1
ch

� un�1
ch

),rbun+1
ch

)� ⇠n+1�t(wn

ch
r�n

ch
, bun+1

ch
)

+��t(pn+1
ch

� pn�1
ch

, bpn+1
ch

) +�t(r · un

ch
, bpn+1

ch
)��t

⇠n+1

2
hun

ch
· un

ch
, bun+1

ch
· nci (3.24)

��t(pn
ch
,r · bun+1

ch
) +�t⇠n+1hpn

mh
, bun+1

ch
· nci+

↵⌫
p
dp

trace(
Q
)
hP⌧ bun+1

ch
, P⌧ bun+1

ch
i = 0.

Then, we study the matrix part. Taking qh = �tbpn+1
mh

in (3.16), vh = �tbun+1
mh

in (3.15) add these
two equations to obtain

�tk
p
K�1bun+1

mh
k2 +�t(rbpn+1

mh
, bun+1

mh
)��t(wn

mh
r�n

mh
, bun+1

mh
)��t(bun+1

mh
,rbpn+1

mh
)

+�1h�t(r(un+1
mh

� un�1
mh

),rbun+1
mh

)� ⇠n+1�thun

ch
· nc, p

n+1
mh

i = 0. (3.25)

Multiplying (3.19) by �t, and adding (3.23), (3.24) and (3.25) together, we obtain

1

2
[kRn+1k2 � kRn�1k2] (3.26)

= �⇠n+1�t

"
2⌫kD(un+1

ch
)k2 + k

p
K�1un+1

mh
k2 +Mkrwn+1

h
k2 + ↵⌫

p
dp

trace(
Q
)
hP⌧u

n+1
ch

, P⌧u
n+1
ch

i
#

+�t⇠n+1S0 +�t(1� ⇠n+1)|S0|.

It follows that

(Rn+1)2
h
1 +

�t

E
(Dn+1 + |S0|� S0)

i
= (Rn�1)2 + 2�t|S0| > 0.

Hence the scheme is well-defined, and in particular ⇠n+1 > 0. This completes the proof of Theorem 1. ⇤
The modified energy law is stated in the following theorem.
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Theorem 2 Under the assumption that source terms f(x), g(x) and h(x) are zero, the CNLF numerical

scheme (3.12)-(3.19) is unconditionally stable with respect to the modified energy En+1
defined as

En+1 =
1

2
(|Rn+1|2 + |Rn|2), (3.27)

in the sense of that

En+1 � En = �⇠n+1�tDn+1  0, (3.28)

where the energy dissipation Dn+1
is defined as in (3.22).

3.2 Decoupled energy-stable gPAV-BDF2 numerical scheme

Denoting

evn+1 = 2vn � vn�1, (3.29)

⇠n+1 =
(Rn+3/2)2

E(un+3/2
ch

,�
n+3/2
h

)
. (3.30)

By combining the second-order backward di↵erentiation formula (BDF2) and the artificial com-
pressible method, we develop the following gPAV-BDF2 method:
Step 1: Find (�n+1

h
, wn+1

h
) 2 Yh ⇥ Yh, such that for all ( h,!h) 2 Yh ⇥ Yh

(
3�n+1

h
� 4�n + �n�1

h

2�t
, h) + ⇠n+1(eun+1

h
·re�n+1

h
, h) + (M(e�n+1

h
)rwn+1

h
,r h = (h(x), h), (3.31)

(wn+1
h

,!h)� �✏(r�n+1
h

,r!h)� ⇠n+1 �

✏
(f(e�n+1

h
),!h)� S(�n+1

h
� e�n+1

h
,!h) = 0, (3.32)

where

eun+1
h

:=

(
2un

ch
� un�1

ch
, x 2 ⌦c,

2un

mh
� un�1

mh
, x 2 ⌦m.

(3.33)

Step 2: Find (un+1
mh

, pn+1
mh

) 2 Xmh ⇥Qmh, such that for all (vh, qh) 2 Xmh ⇥Qmh

K�1(un+1
mh

,vh) + (rpn+1
mh

,vh)� ⇠n+1( ewn+1
mh

re�n+1
mh

,vh)

+�1h(r(3un+1
mh

� 4un

mh
+ un�1

ch
),rvh) = 0, (3.34)

�(run+1
mh

,rq)� ⇠n+1heun+1
ch

· nc, qhi = (g(x), qh). (3.35)

Step 3: Find un+1
ch

2 Xch, such that for all vh 2 Xch

(
3un+1

ch
� 4un

ch
+ un�1

ch

2�t
,vh) + ⇠n+1

��
eun+1
ch

·r
�
eun+1
ch

,vh

�
+
⇠n+1

2

��
r · eun+1

ch

�
eun+1
ch

,v
�

+2⌫(D(un+1
ch

),D(vh)) + �2h(r(3un+1
ch

� 4un

ch
+ un�1

ch
),rvh)� ⇠n+1( ewn+1

ch
re�n+1

ch
,vh)

�1

3
(4pn

ch
� pn�1

ch
,r · vh) +

1

3��t
(r · eun+1

ch
,r · vh)�

⇠n+1

2
heun+1

ch
· eun+1

ch
,vh · nci

+⇠n+1hepn+1
mh

,vh · nci+
↵⌫

p
dp

trace(⇧)
hP⌧u

n+1
ch

, P⌧vhi = (f(x),vh), (3.36)

where �2 is a positive parameter.
Step 4: Find pn+1

ch
2 Qch, such that for all qh 2 Qch

��t(3pn+1
ch

� 4pn
ch

+ pn�1
ch

, qh) + (r · eun+1
ch

, qh) = 0. (3.37)

Step 5: Find Rn+1, such that

(Rn+3/2)2 � (Rn+1/2)2

�t
= (

3un+1
ch

� 4un

ch
+ un�1

ch

2�t
,un+1

ch
) + �✏(r�n+1

h
,r

3�n+1
h

� 4�n
h
+ �n�1

h

2�t
)

+2��t2(
3pn+1

ch
� 4pn

ch
+ pn�1

ch

2�t
, pn+1

ch
) + ⇠n+1 �

✏
(f(e�n+1

h
),r

3�n+1
h

� 4�n
h
+ �n�1

h

2�t
)
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+S(�n+1
h

� e�n+1
h

,
3�n+1

h
� 4�n + �n�1

h

2
)

+�1h(r(3un+1
mh

� 4un

mh
+ un�1

mh
),run+1

mh
) + �2h(r(3un+1

ch
� 4un

ch
+ un�1

ch
),run+1

ch
)

+
h
2⌫kD(un+1

ch
)k2 � 1

3
(4pn

ch
� pn�1

ch
,r · un+1

ch
) + ⇠n+1((eun+1

ch
·r)eun+1

ch
,un+1

ch
) +Mkrwn+1

h
k2

+
1

3��t
(r · eun+1

ch
,r · un+1

ch
)� ⇠n+1( ewn+1

ch
re�n+1

ch
,un+1

ch
) +

⇠n+1

2
((r · eun+1

ch
)eun+1

ch
,un+1

ch
)

+(r · eun+1
ch

, pn+1
ch

) + (rpn+1
mh

,un+1
mh

)� ⇠n+1( ewn+1
mh

re�n+1
mh

,un+1
mh

)� (un+1
mh

,rpn+1
mh

)

+K�1kun+1
mh

k2 + ⇠n+1(eun+1
h

·re�n+1
h

, wn+1
h

)� (f(x),un+1
ch

)� (g(x), pn+1
mh

)� (h(x), wn+1
h

)
i

+⇠n+1hepn+1
mh

� 1

2
|eun+1

ch
|2,un+1

ch
· nci � ⇠n+1heun+1

ch
· nc, p

n+1
mh

i+ ↵⌫
p
dp

trace(⇧)
hP⌧u

n+1
ch

, P⌧u
n+1
ch

i

+⇠n+1

"
�2⌫kD(ŭn+1

ch
)k2 �K�1kŭn+1

mh
k2 �Mkrw̆n+1

h
k2 � ↵⌫

p
dp

trace(⇧)
hP⌧ ŭ

n+1
ch

, P⌧ ŭ
n+1
ch

i
#

+⇠n+1S̆0 + (1� ⇠)|S̆0|, (3.38)

where

S̆0 = (f(x), ŭn+1
ch

) + (g(x), p̆n+1
mh

) + (h(x), w̆n+1
h

), (3.39)

un+3/2
ch

, �
n+3/2
h

are second order approximations of un+1
ch

, �n+1
h

, i.e.

vn+3/2 =
3

2
v̆n+1 � 1

2
vn, v = uch, �h.

Remark 2 Following the second order artificial compressible method, on can discretize (2.30)-(2.31) as

3un+1
ch

� 4un

ch
+ un�1

ch

2�t
+ ⇠n+1

�
eun+1
ch

·r
�
eun+1
ch

+
⇠n+1

2

�
r · eun+1

ch

�
eun+1
ch

+ 2r · (⌫(D(un+1
ch

)))

��2h�(3un+1
ch

� 4un

ch
+ un�1

ch
)� ⇠n+1 ewn+1

ch
re�n+1

ch
+rpn+1

ch
= f(x), (3.40)

��t(3pn+1
ch

� 4pn
ch

+ pn�1
ch

) +r · eun+1
ch

= 0. (3.41)

This system (3.40)-(3.41) seems to be a coupled system. However one can eliminate pn+1
ch

in (3.40) from
(3.41) and derive

pn+1
ch

=
1

3
(4pn

ch
� pn�1

ch
)� 1

3��t
r · eun+1

ch
, (3.42)

then plug (3.42) into (3.40) to obtain

3un+1
ch

� 4un

ch
+ un�1

ch

2�t
+ ⇠n+1

�
eun+1
ch

·r
�
eun+1
ch

+
⇠n+1

2

�
r · eun+1

ch

�
eun+1
ch

+ 2r · (⌫(D(un+1
ch

))) (3.43)

+
1

3
r(4pn

ch
� pn�1

ch
)� 1

3��t
�eun+1

ch
� �2h�(3un+1

ch
� 4un

ch
+ un�1

ch
)� ⇠n+1 ewn+1

ch
re�n+1

ch
= f(x).

Thereafter, by applying integration by parts and interface conditions, we obtain the full discretization
(3.36) and (3.37). One can independently compute un+1

ch
by solving (3.36) and pn+1

ch
by solving (3.37),

that is the decoupling of velocity and pressure in Navier-Stokes equation.

We first prove the following property for the BDF2 numerical scheme (3.31)-(3.38).

Theorem 3 The approximation (un+1
mh

,un+1
ch

, pn+1
ch

,�n+1
h

) by the scheme (3.31)-(3.38) satisfies the fol-

lowing equality:

|Rn+3/2|2 � |Rn+1/2|2 = �⇠n+1�t
h
D̆n+1 � S̆0

i
+�t(1� ⇠n+1)|S̆0|, (3.44)

where D̆n+1
is given by

D̆n+1 = 2⌫kD(ŭn+1
ch

)k2 + k
p
K�1ŭn+1

mh
k2 + k

q
M(�n

h
)rw̆n+1

h
k2 + ↵⌫

p
dp

trace(
Q
)
hP⌧ ŭ

n+1
ch

, P⌧ ŭ
n+1
ch

i.

(3.45)

Therefore the scheme is well-defined with ⇠n+1 > 0.
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Proof. We first consider the Cahn-Hilliard euqation on the whole domain ⌦. Taking  h = �twn+1
h

and

!h = � 3�n+1
h �4�n

h+�
n�1
h

2 in (3.31) and (3.32), respectively, adding these resultants, we derive

�✏(r�n+1
h

,r
�n+1
h

� �n�1
h

2
) + ⇠n+1 �

✏
(f(e�n+1

h
),
3�n+1

h
� 4�n

h
+ �n�1

h

2
) +�t⇠n+1(eun+1

h
·re�n+1

h
, wn+1

h
)

+�tk
q
M(e�n+1

h
)rwn+1

h
k2 + S(�n+1

h
� e�n+1

h
,
3�n+1

h
� 4�n + �n�1

h

2
) = 0, (3.46)

Next, we consider the conduit part. Taking the test function vh = �tun+1
ch

in (3.36), and qh = pn+1
ch

in (3.37), respective, we take the sum to obtain

(
3un+1

ch
� 4un

ch
+ un�1

ch

2
,un+1

ch
) +�t⇠n+1

��
eun+1
ch

·r
�
eun+1
ch

,un+1
ch

�
+�t

⇠n+1

2

��
r · eun+1

ch

�
eun+1
ch

,un+1
ch

�

+2�t⌫kD(un+1
ch

)k2 +�t�2h(r(3un+1
ch

� 4un

ch
+ un�1

ch
),run+1

ch
)��t⇠n+1( ewn+1

ch
re�n+1

ch
,un+1

ch
)

�1

3
(4pn

ch
� pn�1

ch
,r · un+1

ch
) +

1

3��t
(r · eun+1

ch
,r · un+1

ch
) + ��t(3pn+1

ch
� 4pn

ch
+ pn�1

ch
, pn+1

ch
)

+(r · eun+1
ch

, pn+1
ch

) +�t⇠n+1hepn+1
mh

,un+1
ch

· nci ��t
⇠n+1

2
heun+1

ch
· eun+1

ch
,un+1

ch
· nci

+�t
↵⌫

p
dp

trace(⇧)
hP⌧u

n+1
ch

, P⌧u
n+1
ch

i = 0. (3.47)

Then, we study the matrix part. Taking qh = �tpn+1
mh

in (3.35), vh = �tun+1
mh

in (3.34)add these
two equations to obtain

�tk
p
K�1un+1

mh
k2 +�t(rpn+1

mh
,un+1

mh
)��t( ewn+1

mh
re�n+1

mh
,un+1

mh
)��t(un+1

mh
,rpn+1

mh
)

+�t�1h(r(3un+1
mh

� 4un

mh
+ un�1

mh
),run+1

mh
)� ⇠n+1�theun+1

ch
· nc, p

n+1
mh

i = 0. (3.48)

Multiplying (3.38) by �t, and adding (3.46), (3.47) and (3.48) together, we obtain

(Rn+3/2)2 � (Rn+1/2)2

= ��t⇠n+1

"
2⌫kD(ŭn+1

ch
)k2 +K�1kŭn+1

mh
k2 +Mkrw̆n+1

h
k2 + ↵⌫

p
dp

trace(
Q
)
hP⌧ ŭ

n+1
ch

, P⌧ ŭ
n+1
ch

i
#

+�tS̆0⇠
n+1 +�t(1� ⇠n+1)|S̆0|. (3.49)

This completes the proof of Theorem 3. ⇤
Theorem 4 Under the auumption that source terms f(x), g(x) and h(x) are zero, the BDF2 numerical

scheme (3.31)-(3.38) is unconditionally stable with respect to the modified energy En+3/2
defined as

En+3/2 = |Rn+3/2|2, (3.50)

on the sense of that

En+3/2 � En+1/2 = �⇠n+1�tD̆n+1  0, (3.51)

where the energy dissipation D̆n+1
is defined as in (3.45).

Remark 3 Note that the above gPAV-CNLF and gPAV-BDF2 schemes are second-order accurate decou-
pled linear methods for the CHNSD system. In particular, (�n+1

h
, wn+1

h
), (un+1

mh
, pn+1

mh
), un+1

ch
, pn+1

ch
, and

Rn+1 can be solved individually. More details on the implementation are discussed in Section 4. There-
fore, one only needs to solve a sequence of small linear algebra systems, which renders very e�cient
computations in practice.

4 Implementation

We detail how to implement the gPAV-CNLF scheme (3.12)-(3.19) and the gPAV-BDF2 scheme
(3.31)-(3.38) in a parallel decoupled manner. Since ⇠ is a scalar variable independent of spatial variable,
we introduce the following splitting [68, 65]

wn+1
h

= wn+1
1h + ⇠n+1wn+1

2h , �n+1
h

= �n+1
1h + ⇠n+1�n+1

2h , (4.1)

pn+1
mh

= pn+1
1mh

+ ⇠n+1pn+1
2mh

, pn+1
ch

= pn+1
1ch + ⇠n+1pn+1

2ch , (4.2)

un+1
mh

= un+1
1mh

+ ⇠n+1un+1
2mh

, un+1
ch

= un+1
1ch + ⇠n+1un+1

2ch . (4.3)
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4.1 Implementation of the gPAV-CNLF numerical method

Denote

v̆n+1
h

= vn+1
1h + vn+1

2h , vh = wh, �h, umh, pmh uch, pch. (4.4)

Then, we have

vn+1
h

=
1

2
(vn+1

1h + vn
h
) +

1

2
vn+1
2h . (4.5)

Replacing (wn+1
h

,�n+1
h

, pn+1
mh

, pn+1
ch

,un+1
mh

,un+1
ch

) in (3.12)-(3.19) by using (4.1), (4.2) and (4.3), we
decompose the equations (3.12)-(3.19) according to ⇠n+1:

Step 1: Find (�n+1
1h , wn+1

1h ) 2 Yh ⇥ Yh, such that

(
�n+1
1h � �n�1

h

2�t
, h) + (M(�n

h
)r

wn+1
1h + wn�1

h

2
,r h) = 0, 8 h 2 Yh, (4.6)

(
wn+1

1h + wn�1
h

2
,!h)� �✏(r

�n+1
1h + �n�1

h

2
,r!h)� S(�n+1

1h � �n�1
h

,!h) = 0, 8!h 2 Yh. (4.7)

Find (�n+1
2h , wn+1

2h ) 2 Yh ⇥ Yh, such that

(
�n+1
2h

2�t
, h) + (un

h
·r�n

h
, h) +

1

2
(M(�n

h
)rwn+1

2h ,r h) = 0, 8 h 2 Yh, (4.8)

1

2
(wn+1

2h ,!h)�
1

2
�✏(r�n+1

2h ,r!h)�
�

✏
(f(�n

h
),!h)� S(�n+1

2h ,!h) = 0, 8!h 2 Yh. (4.9)

Step 2: Find (un+1
1mh

, pn+1
1mh

) 2 Xmh ⇥Qmh, such that

K�1(un+1
1mh

,vh) + (r
pn+1
1mh

+ pn�1
mh

2
,vh) + �1h(r(un+1

1mh
� un�1

mh
),rvh) = 0, 8vh 2 Xmh, (4.10)

�(un+1
1mh

,rq) = (g(x), qh), 8 qh 2 Qmh. (4.11)

Find (un+1
2mh

, pn+1
2mh

) 2 Xmh ⇥Qmh, such that

K�1(un+1
2mh

,vh) + (rpn+1
2mh

,vh)� (wn

mh
r�n

mh
,vh) + �1h(run+1

2mh
,rvh) = 0, 8vh 2 Xmh, (4.12)

�(un+1
2mh

,rq)� hun

ch
· nc, qhi = 0, 8 qh 2 Qmh. (4.13)

Step 3: Find un+1
1ch 2 Xch, such that

(
un+1
1ch � un�1

ch

2�t
,vh) + ⌫(D(un+1

1ch + un�1
ch

),D(vh))� (pn
ch
,r · vh) + �2h(r(un+1

1ch � un�1
ch

),rvh)

+
↵⌫

p
dp

trace(⇧)
hP⌧

un+1
1ch + un�1

ch

2
, P⌧vhi = 0, 8vh 2 Xch. (4.14)

Find un+1
2ch 2 Xch, such that

(
un+1
2ch

2�t
,vh) + ((un

ch
·r)un

ch
,vh) + ⌫(D(un+1

2ch ),D(vh))� (wn

ch
r�n

ch
,vh) + hpn

mh
,vh · nci

+
1

2
((r · un

ch
)un

ch
,vh) + �2h(run+1

2ch ,rvh)�
1

2
hun

ch
· un

ch
,vh · nci

+
↵⌫

p
dp

trace(⇧)
hP⌧

un+1
2ch

2
, P⌧vhi = 0, 8vh 2 Xch. (4.15)

Step 4: Find pn+1
1ch 2 Qch, such that

��t(pn+1
1ch � pn�1

ch
, qh) + (r · un

ch
, q) = 0, 8 qh 2 Qch. (4.16)

Find pn+1
2ch 2 Qch, such that

��t(pn+1
2ch , qh) = 0, 8 qh 2 Qch. (4.17)
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Step 5: Find ⇠n+1, such that

⇠n+1 =
|Rn�1|2 + 2�tS0

E(un+1
ch

,�
n+1
h

) + 2�tDn+1 + 2�t(|S0|� S0)
, (4.18)

which is derive from (3.26) by plugging (3.11). Once we have ⇠n+1, we update Rn+1 by

Rn+1 =

q
⇠n+1E(un+1

ch
,�

n+1
h

), (4.19)

where un+1
ch

, �
n+1
h

is defined in (4.5), Dn+1 is given in (3.22), S0 is defined in (3.20), and

E(un+1
ch

,�
n+1
h

) =
1

2
kun+1

ch
k2 + �✏

2
kr�n+1

h
k2 + 1

✏
(F (�

n+1
h

), 1) + ��t2kpn+1
ch

k2.

Lemma 2 The scalar ⇠n+1
in (4.18) and Rn+1

in (4.19) are guaranteed to be positive at all time steps.

4.2 Implementation of the gPAV-BDF2 numerical method

Following the same splitting strategy we implement the BDF2 numerical scheme (3.31)-(3.38) as
follows:

Step 1: Find (�n+1
1h , wn+1

1h ) 2 Yh ⇥ Yh, such that

(
3�n+1

1h � 4�n + �n�1
h

2�t
, h) + (M(e�n+1

h
)rwn+1

1h ,r h) = (h(x), h), 8 h 2 Yh, (4.20)

(wn+1
1h ,!h)� �✏(r�n+1

1h ,r!h)� S(3�n+1
1h � 4�n

h
+ �n�1

h
, h) = 0, 8!h 2 Yh. (4.21)

Find (�n+1
2h , wn+1

2h ) 2 Yh ⇥ Yh, such that

(
3�n+1

2h

2�t
, h) + (eun+1

h
·re�n+1

h
, h) + (M(e�n+1

h
)rwn+1

2h ,r h)m = 0, 8 h 2 Yh, (4.22)

(wn+1
2h ,!h)� �✏(r�n+1

2h ,r!h)�
�

✏
(f(e�n+1

h
),!h)� S(3�n+1

2h , h) = 0, 8!h 2 Yh. (4.23)

Step 2: Find (un+1
1mh

, pn+1
1mh

) 2 Xmh ⇥Qmh, such that

K�1(un+1
1mh

,vh) + (rpn+1
1mh

,vh) + �1h(r(3un+1
1mh

� 4un

mh
+ un�1

mh
),rvh) = 0, 8vh 2 Xmh, (4.24)

�(run+1
1mh

,rq) = (g(x), qh), 8 qh 2 Qmh. (4.25)

Find (un+1
2mh

, pn+1
2mh

) 2 Xmh ⇥Qmh, such that

K�1(un+1
2mh

,vh) +K(rpn+1
2mh

,vh)�K( ewn+1
mh

re�n+1
mh

,vh) + �1h(r(3un+1
2mh

),rvh) = 0, 8vh 2 Xmh,

(4.26)

�(run+1
2mh

,rq)� heun+1
ch

· nc, qhi = 0, 8 qh 2 Qmh. (4.27)

Step 3: Find un+1
1ch 2 Xch, such that

(
3un+1

1ch � 4un

ch
+ un�1

ch

2�t
,vh) + 2⌫(D(un+1

1ch ),D(vh)) + �2h(r(3un+1
1ch � 4un

ch
+ un�1

ch
),rvh)

�1

3
(4pn

ch
� pn�1

ch
,r · vh) +

1

3��t
(r · eun+1

ch
,r · vh) +

↵⌫
p
dp

trace(⇧)
hP⌧u

n+1
1ch , P⌧vhi

= (f(x),vh), 8vh 2 Xch. (4.28)

Find un+1
2ch 2 Xch, such that

(
3un+1

2ch

2�t
,vh) +

��
eun+1
ch

·r
�
eun+1
ch

,vh

�
+

1

2

��
r · eun+1

ch

�
eun+1
ch

,v
�
+ 2⌫(D(un+1

2ch ),D(vh))

+�2h(r(3un+1
2ch ),rvh)� ( ewn+1

ch
re�n+1

ch
,vh) + hepn+1

mh
,vh · nci �

1

2
heun+1

ch
· eun+1

ch
,vh · nci
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+
↵⌫

p
dp

trace(⇧)
hP⌧u

n+1
2ch , P⌧vhi = (f(x),vh), 8vh 2 Xch. (4.29)

Step 4: Find pn+1
1ch 2 Qch, such that

��t(3pn+1
1ch � 4pn

ch
+ pn�1

ch
, qh) + (r · eun+1

ch
, qh) = 0, 8 qh 2 Qch. (4.30)

Find pn+1
2ch 2 Qch, such that

��t(3pn+1
2ch , qh) = 0, 8 qh 2 Qch. (4.31)

Step 5: Find ⇠n+1, such that

⇠n+1 =
|Rn+1/2|2 +�tS̆0

E(un+3/2
ch

,�
n+3/2
h

) +�tD̆n+1 +�t(|S̆0|� S̆0)
, (4.32)

which is derived from (3.49) by plugging (3.30). Once we have ⇠n+1, we update Rn+3/2 by

Rn+3/2 =

q
⇠n+1E(un+3/2

ch
,�

n+3/2
h

). (4.33)

Afterwards, Rn+1 is updated by

Rn+1 =
2

3
Rn+3/2 +

1

3
Rn. (4.34)

Lemma 3 The scalar ⇠n+1
in (4.32) and Rn+1

in (4.34) are guaranteed to be positive positive at all

time steps if the approximation Rn+1/2 > 0.

In summary the second order gPAV-CNLF and gPAV-BDF2 schemes can be implemented as follows:

Algorithm 1 Implementation of gPAV-CNLF numerical method

1: Solve (�n+1
1h , wn+1

1h ) from (4.6) and (4.7), independently;

Solve (�n+1
2h , wn+1

2h ) from (4.8) and (4.9), independently.

2: Solve (un+1
1mh

, pn+1
1mh

) from (4.10)-(4.11), (un+1
2mh

, pn+1
2mh

) from (4.12)-(4.13).

3: Solve un+1
1ch from (4.14), un+1

2ch from (4.15);

Solve pn+1
1ch from (4.16), pn+1

2ch from (4.17).

4: Solve ⇠n+1 from (4.18).

5: Update wn+1
h

and �n+1
h

from (4.1);

Update pn+1
mh

and pn+1
ch

from (4.2);

Update un+1
ch

and un+1
mh

from (4.3);

Update Rn+1 from (4.19).

5 Numerical examples

We first provide two examples to verify the convergence and energy dissipation as proved in Theo-
rem 2 and Theorem 4. Then, we perform the simulation of square drop under non-diagonal hydraulic
conductivity tensor with small eigenvalues. Finally, we simulate Sa↵man-Taylor instability, the dynamics
of droplet in filter problem, and rising bubble with di↵erent densities to illustrate the compatibility and
robustness of the gPAV schemes.

For Cahn-Hilliard equation in mixed formulation, we consider the linear finite elements. For Darcy
equation and Navier-Stokes equation, we exploit the celebrated Taylor-Hood elements. That is, for
� � w � um � pm � uc � pc, we consider the P1 � P1 � P2 � P1 � P2 � P1 elements. The stabilized
parameters are �1 = �2 = 0.5, S = 1 and � = 0.71 in the following numerical tests.
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Algorithm 2 Implementation of gPAV-BDF2 numerical method

1: Solve (�n+1
1h , wn+1

1h ) from (4.20) and (4.21), independently;

Solve (�n+1
2h , wn+1

2h ) from (4.22) and (4.23), independently.

2: Solve (un+1
1mh

, pn+1
1mh

) from (4.24)-(4.25), (un+1
2mh

, pn+1
2mh

) from (4.26)-(4.27).

3: Solve un+1
1ch from (4.28), un+1

2ch from (4.29).

4: Solve pn+1
1ch from (4.30), pn+1

2ch from (4.31).

5: Solve ⇠n+1 from (4.32).

6: Solve Rn+3/2 from (4.33);

Update wn+1
h

and �n+1
h

from (4.1);

Update pn+1
mh

and pn+1
ch

from (4.2);

Update un+1
ch

and un+1
mh

from (4.3).

7: Update Rn+1 from (4.34).

5.1 Accuracy and stability

Example 1: Convergence and accuracy. Consider the CHNSD model problem on ⌦ = [0, 1]⇥
[0, 2] where porous region ⌦m = [0, 1]⇥ [0, 1] and free flow region ⌦c = [0, 1]⇥ [1, 2]. Set Mm = 1, � = 1,
✏ = 1, ⌫ = 1, Mc = 1 and K = I. The exact solutions are chosen as follows

8
>><

>>:

� = g(x)g(y) cos(⇡t),
pm = g(x)gm(y) cos(⇡t),
um = uc = [x2(y � 1)2,� 2

3x(y � 1)3]T cos(⇡t),
pc = g(x)gc(y) cos(⇡t),

(5.1)

where g(x) = x2(x � 1)2, gm(y) = y2(y � 1)2, gc(y) = (y � 1)2(y � 2)2. The boundary conditions and
source terms are given with respect to exact solution. Denote the numerical errors in L2– norm as as
kekv = kvn

h
� v(tn)k between numerical solution vn

h
and exact solution v(tn) as kekv = kvn

h
� v(tn)k,

where v = uc,um, pm,�. The numerical test is carried out up to terminal time T = 0.5. In order to ver-
ify the temporal convergence of proposed fully decoupled numerical method, we take mesh size h = 1

2k ,
k = 4, 5, 6, 7 and time step size �t = h. The numerical errors and convergence order listed in Tables 1
and 2 suggest that the fully decoupled gPAV-CNLF and gPAV-BDF2 method can achieve the expected
second order accuracy in time for variables uc, um, pm and �.

In order to further illustrate the accuracy of our proposed gPAV method, we compare the numerical
errors with those by the decoupled numerical method in [25] and auxiliary variable approaches developed
in [26], respectively. From Table 3, it is observed that the accuracy of gPAV-CN and gPAV-BDF2 methods
are comparable to that of numerical methods in [25] and [26] at larger mesh sizes, the numerical errors
are smaller than those by other methods at very small mesh size h = 1

256 . The advantage of gPAV method
becomes more obvious as the mesh size decreases. This is because that the gPAV-CN and gPAV-BDF2
methods are second order in time convergent while the designed numerical methods in [25] and [26] only
have first order convergence rate in time.

1/h ke�k order keuck order kepck order keumk order kepmk order

16 7.6634E-5 5.1473E-5 7.9111E-3 1.5940E-2 2.1904E-3
32 1.0054E-5 2.93 1.2085E-5 2.10 1.7785E-3 2.15 4.8954E-3 1.70 5.2490E-4 2.06
64 1.3590E-6 2.89 2.2318E-6 2.44 2.6615E-4 2.72 1.3717E-3 1.84 1.0749E-4 2.29
128 1.8138E-7 2.91 5.3820E-7 2.05 6.8983E-5 1.95 3.8496E-4 1.83 2.4783E-5 2.12

Table 1: The order of convergence for error norms of gPAV-CNLF algorithm with �t = h.

Example 2: Energy stability. In this test, we verify the energy stability of proposed gPAV-CNLF
and gPAV-BDF2 numerical methods by setting initial condition

�0 = 0.24 cos(⇡x) cos(2⇡y) + 0.4 cos(⇡x) cos(3⇡y) (5.2)
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1/h ke�k order keuck order kepck order keumk order kepmk order

16 2.6432E-4 4.1860E-5 1.3569E-3 1.6985E-2 7.4529E-3
32 8.5919E-5 1.62 1.0862E-5 1.95 5.6540E-4 1.26 5.1160E-3 1.73 2.2797E-3 1.71
64 2.3391E-5 1.88 2.7394E-6 1.99 1.1737E-4 2.27 1.3981E-3 1.87 5.5529E-4 2.04
128 6.0395E-6 1.95 6.8686E-7 2.00 2.8694E-5 2.03 3.6713E-4 1.93 1.1786E-4 2.24

Table 2: The order of convergence for error norms of gPAV-BDF2 algorithm with �t = h.

1/h
ke�k keuck

gPAV-
CNLF

gPAV-
BDF2

[25] [26] gPAV-
CNLF

gPAV-
BDF2

[25] [26]

32 1.0054E-5 8.5919E-5 2.0585E-5 8.0230E-6 1.2085E-5 1.0862E-5 4.2737E-5 1.5856E-5
64 1.3590E-6 2.3391E-5 1.1229E-5 4.0561E-6 2.2318E-6 2.7394E-6 1.6519E-5 6.5148E-6
128 1.8138E-7 6.0395E-6 5.7588E-6 2.0407E-6 5.3820E-7 6.8686E-7 6.1731E-6 2.9690E-6
256 2.3637E-8 1.5353E-6 2.9583E-6 1.0203E-6 1.3086E-7 1.7196E-7 2.2290E-6 1.4341E-6

Table 3: Numerical error norms of di↵erent numerical schemes with �t = h.

on the computational domain ⌦ = [0, 1]⇥ [0, 2] with ⌦m = [0, 1]⇥ [0, 1] and ⌦c = [0, 1]⇥ [1, 2]. Taking
parameters M = 0.01, � = 0.01, ✏ = 0.02, ⌫ = 1, and K = 0.1I, we set the initial velocity, pressure and
chemical potential to zero.

Figure 2 show the evolution of discrete energy E = (R(t))2 and true energy E(�) of gPAV-CNLF
and gPAV-BDF2 numerical methods with �t = 0.001. From Figure 2, we can clearly observe that both
(R(t))2 and E(�) decrease monotonically with time for both gPAV-CNLF and gPAV-BDF2 numerical
methods, which agrees well with the theoretical results proven in Theorem 2 and Theorem 4. The histories
curve of (R(t))2 and E(�) overlap with each other for both gPAV-CNLF and gPAV-BDF2 algorithms,
which indicates the accuracy of our developed numerical schemes.

We discuss the influence of artificial viscosity parameters �1 and �2 for time step condition for con-
vergence. Taking same parameters expect ⌫ = 0.01, we plot the evolution of discrete energy (R(t))2, true

energy E(�) and ⇠ = (R(t))2

E(�) in Figure 3 for both �1 = �2 = 0.5 and �1 = �2 = 0. When �t = 0.001, we

observe that the time histories of (R(t))2 and E(�) are in well agreement with each other for both with
and without stabilized parameters. For �1 = �2 = 0 in Figure 3(a), the gPAV-BDF2 numerical methods
gives accuracy results corresponding to �t = 0.001, it does not work with �t = 0.01 (the simulation
will blow up); whereas a simulation by gPAV-BDF2 with non-zero stabilized parameters is stable and
accurate under �t = 0.01 since the (R(t))2 and E(�) obtained with �t = 0.01 agree with quit well (with
slight di↵erence) as shown in Figures 3(b) and 3(c), thus, large �t = 0.01 is enough good for stable
simulation. This demonstrates the e↵ectiveness of relaxing the time step condition for convergence by
the artificial viscosity stabilization technique.

In order to improve the accuracy and e�ciency of proposed gPAV method, we perform the adaptive
mesh strategy with the fundamental uniform mesh h = 1

64 in the following experiments. The numerical
results are similar for gPAV-CNLF and gPAV-BDF2 method, so we only present the numerical results
of gPAV-BDF2 algorithm for the presentation compact in the following numerical tests.

Example 3: shape relaxation. In this test, we simulate the evolution of a square shaped circle
drop under surface tension [25, 23], and consider more realistic case of hydraulic conductivity tensor with
small eigenvalues. The hydraulic conductivity tensor is constructed as follows

K(x, y) =

0

@
k11(x, y) k12(x, y)

k21(x, y) k22(x, y)

1

A

where k11 = k22 6= 0 and k12 = k21 6= 0, i.e. K(x, y) is non-diagonal but symmetric and positive definite.
We take the initial condition as follows

�0 = � tanh
⇣
(0.15�

p
(x� 0.3)2 + (y � 0.5)2)/(

p
2✏)

⌘
,

in domain ⌦ = [0, 1] ⇥ [0, 2], ⌦c = [0, 1] ⇥ [1, 2] and ⌦m = [0, 1] ⇥ [0, 2] represent the upper and lower
half of the square, respectively.

Choosing parameters M = 0.1, � = 0.01, ✏ = 0.01, k11 = k22 = 10�3, k12 = k21 = 10�4, and
time step size �t = 0.001, the morphological patterns of phase function � is plotted in Figure 4 with
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(a) gPAV-CNLF method
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(b) gPAV-BDF2 method

Fig. 2: Evolution of discrete energy (R(t))2 and true energy E(�) for gPAV numerical schemes.
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(a) �1 = �2 = 0, (R(t))2, E(�)
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(b) �1 = �2 = 0.5, (R(t))2, E(�)
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(c) �1 = �2 = 0.5, ⇠ =
(R(t))2

E(�)

Fig. 3: Evolution of discrete energy (R(t))2, true energy E(�) and ⇠ = (R(t))2

E(�) .

⌫ = 0.1, ⌫ = 0.01 and ⌫ = 0.001, in which the red color and blue color respectively indicate � = 1 and
� = �1, the green line represents the interface � = [0, 1]⇥ {y = 1} between free fluid region and porous
media region. As shown in Figure 4, the square droplet gradually deforms into a stable equilibrium state
corresponding to a circle shape under the influence of surface tension for both cases of ⌫ = 0.1, ⌫ = 0.01
and ⌫ = 0.001.

By Comparing Figures 4(a), 4(b) and 4(c), we can see that as the viscosity decreases, the droplet
deforms more rapidly in the free flow region, resulting in a more conspicuous asymmetry of the droplet
shape on whole domain. This phenomenon shows that the relaxation in the free flow region is faster
than that of the porous media region because the free flow velocity increases with decreasing viscosity.
The relative discrete energy Rn/R0 and relative mass

R
⌦
�ndx/

R
⌦
�0dx of numerical results are plotted

in Figure 5. It reflects that the discrete mass is conserved and the discrete energy-decay property is
satisfied.

5.2 Application

Example 4: Viscous finger. Sa↵man-Taylor fingering pattern instability [54, 17, 8] is a manifes-
tation of a finger-shaped interface between displaced and displacing fluids that occurs in typical miscible
displacement projects for oil recovery. The viscous fingering phenomenon occurs when a viscous fluid is
displaced by another low-mobile fluid in the Hele-Shaw cell, which is of great significance to enhance
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(a) k11 = 10
�3

, k12 = 10
�4

, ⌫ = 0.1, t = 0.4, 0.6, 1.0, 1.5, 2.0

(b) k11 = 10
�3

, k12 = 10
�4

, ⌫ = 0.01, t = 0.4, 0.6, 1.0, 1.5, 2.0

(c) k11 = 10
�3

, k12 = 10
�4

, ⌫ = 0.001, t = 0.4, 0.6, 1.0, 1.5, 2.0

Fig. 4: Snapshots of phase variable for square drop with respect to di↵erent ⌫.
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Fig. 5: Evolution of relative discrete energy and mass conservation of square shape.

oil recovery. In this test, we undertake to simulate the viscous fingering pattern, and further discuss the
e↵ects of the di↵erent viscous ratios upon viscous finger length and growth.

Parameters are taken as ✏ = 0.01, � = 5 ⇥ 10�4, M = 0.1 and ⌫(�j) =
⌫1�⌫2

2 �j +
⌫1+⌫2

2 , j = 1, 2
corresponding to di↵erent viscosity ⌫1 and ⌫2 on a computational channel domain ⌦ = ⌦c

S
⌦m, ⌦c =

[0, 0.5] ⇥ [0, 1] and ⌦m = [0, 0.5] ⇥ [1, 2]. The initial configuration of the order parameter is given as
follows

�0(x, y) = � tanh

✓
4

3✏

✓
y � 0.8 +

cos(16⇡x)

100

◆◆
. (5.3)

The viscous fluid enters the free flow channel with a plug flow velocity of uin = 50 on �in = [0, 0.5]⇥{0}
(bottom boundary).
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Figure 6 exhibits the appearance and growth of finger pattern for di↵erent viscous ratios. Compared
Figures 6(a) and 6(b) (or Figures 6(c) and 6(d) ), we can find that the bigger viscous ratio, the longer
the fingers. The expected numerical phenomena are well consistent with the numerical results reported
in [19, 33]

(a) ⌫1 : ⌫2 = 0.02 : 1, t = 0.1, 0.2, 0.4, 0.6, 0.9, 1.2

(b) ⌫1 : ⌫2 = 0.1 : 1, t = 0.1, 0.2, 0.4, 0.6, 0.9, 1.2

(c) ⌫1 : ⌫2 = 1 : 5, t = 0.1, 0.2, 0.4, 0.6, 0.9, 1.2

(d) ⌫1 : ⌫2 = 1 : 20, t = 0.1, 0.2, 0.4, 0.6, 0.9, 1.2

Fig. 6: Snapshots of phase variable for viscous fingering with respect to di↵erent viscosity ratios.

Example 5: Boundary-driven flow in filter problem.

In this test, we interest in the application to simulating realistic problem found in industrial filtration
system [13, 36]. The coupled system consists of the fluid channel flow intercepted by a porous domain
in Figures 7(a) and 7(c).

The computational domain is ⌦ = [0, 3]⇥ [0, 1] plotted in Figure 7, ⌦ = ⌦c [⌦m, ⌦c = ⌦1c [⌦2c,
⌦1c = [0, 1] ⇥ [0, 1]. The interface between free flow region and porous media is � := �1 [ �2, where
�1 = {1} ⇥ [0, 1] between ⌦1c and ⌦m, �2 between ⌦m and ⌦2c. Two di↵erent types of interfaces are
simulated, more specifically, straight interface �2 = {2} ⇥ [0, 1] as depicted in Figure 7(a), curve line
�2 = {(x, y)|x = 3

20 sin(⇡y) cos(⇡y) + 2, (x, y) 2 ⌦} as shown in Figure 7(c).
Choosing M = 0.1, � = 0.001, ✏ = 0.01, and ⌫ = 0.1, the initial pressure and chemical are zeros,

and the initial configuration is defined as follows

�0 = � tanh
⇣
(0.15�

p
(x� 0.3)2 + (y � 0.5)2)/(

p
2✏)

⌘
, (5.4)

which is shown in Figures 7(b) and 7(d) for two cases of domain (i.e. Figure 7(a) and Figure 7(c)),
respectively. The parabolic inlet velocity uc = �4y(y � 1) is imposed on the left boundary �in :=
{0}⇥ [0, 1].
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Two types of computational domain are chosen as the free flow region and porous matrix region
coupled with interfaces: two interfaces are both straight in Figure 7(a), one of the two interfaces is
a straight line and the other is a curve in Figure 7(c). We extend numerical simulations that study
uniform permeability fields (e.g. Example 4) to a more complicated problem with heterogeneous, isotropic
permeability fields as plotted in Figure 8, including single crack permeability in Figure 8(a), trapezoid
channel permeability in Figure 8(b), where the warmer color indicates higher hydraulic conductivity. The
following three cases are simulated:

– Case I: computational domain is shown in Figure 7(a), meanwhile a porous medium has a single crack
permeability field (i.e. Figure 8(a));

– Case II: computational domain is shown in Figure 7(a), meanwhile a porous medium has a trapezoid
channel permeability field (i.e. Figure 8(b));

– Case III: computational domain is shown in Figure 7(c), meanwhile a porous medium has a trapezoid
channel permeability field (i.e. Figure 8(b)).

Figure 9 displays the morphological evolution of phase profile � from free flow region across the
matrix, finally entering the free flow region through interfaces for three cases, more precisely, Figure
9(a) for Case I, Figure 9(b) for Case II, Figure 9(c) for Case III, respectively. From Figure 9, we can
clearly see that the mobile moves toward the center region with high hydraulic conductivity at time
t = 0.5 and t = 0.6, and deforms into a flat shape at the front propagating in porous media. It is
evident that the mobile can seek pathways towards high permeability across the interface x = 1 as
expected due to the e↵ect of hydraulic conductivity in porous media domain. As graphed in Figures
9(a) and 9(b), the contour of phase variable are distinct for heterogeneous mediums with single crack
and trapezoid channel permeability. Therefore, the distribution of permeability fields has a significant
influence on the development of phase patterns in the three coupled domains. The behaviour of the
evolution is in good agreement with similar phenomena in [25, 47] illustrating the e↵ectiveness of the
proposed numerical methods. By comparing Figures 9(b) and 9(c), it is noticed that the appearance of
droplet has obviously deformed under the influence of interface as desired, such as the dynamical diagram
at t = 1 and t = 1.2. The reasonable numerical phenomena suggest the vital importance of the interface
structure in multi-domain coupling problems [1, 59].

The speed and streamlines of velocity field in two type of domains with non-uniform matrix are
graphed in Figure 10. It is obvious that the speed value in channel permeability and single crack is higher
than the surrounding matrix, and the fluid flow is expected to be attracted and directed towards the
higher permeability through the interface. These observations agree perfectly with the phase evolution
plotted in Figure 9. The reasonable numerical results show the robustness and compatibility of the
numerical algorithms proposed in this paper, as well as the importance of the interface between di↵erent
subdomains.

(a) Computational domain (b) Initial phase profile

(c) Computational domain (d) Initial phase profile

Fig. 7: Computational domains (left) and contour plots of initial phase functions (right).

Example 6: Buoyancy-driven flow.

In this test, we consider binary fluids with di↵erent densities to illustrate the e↵ectiveness of proposed
gPAV numerical method. We exploit Boussinesq approximation [16, 49] to deal with small ratio of density
between two fluids, and simulate the dynamics of bubble in a heavier medium. The buoyancy-driven term
B := �g�(⇢1 � ⇢2) to the right side of Darcy equation (2.1) and momentum equation (2.5) with respect
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(a) Crack permeability field. (b) Channel permeability field.

Fig. 8: Permeability fields for Example 5.

(a) Case I, t = 0.4, 0.6, 0.8, 1.0, 1.6 (b) Case II, t = 0.4, 0.6, 0.8, 1.5, 2.2 (c) Case III, t = 0.4, 0.6, 0.8, 1.5, 2.1

Fig. 9: The evolution of droplet in heterogeneous permeability medium for three cases from column by
column.

(a) Case I (b) Case II (c) Case III

Fig. 10: Velocity and streamlines at t = 1.0 for three cases in Example 5.

to di↵erent densities ⇢1 and ⇢2 of binary fluids, g is the gravitational acceleration with g = [0, g]T .
Choosing parameters � = 0.01, ✏ = 0.01, ⌫ = 1, K = 0.1I, ⇢1 = 1, ⇢2 = 5, g = 9.8 and M = 0.01 on
domain ⌦ = [0, 1]⇥ [0, 2] associated with the porous media region ⌦m = [0, 1]⇥ [1, 2] and free flow region
⌦c = [0, 1]⇥ [0, 1].

Firstly, we simulate a single rising bubble according to the following initial conditions for phase
variable

�0(x, y) = tanh
⇣
(0.2�

p
(x� 0.5)2 + (y � 0.3)2)/(

p
2✏)

⌘
. (5.5)

Figure 11 shows the phase patters of a rising bubble from free fluid region to porous medium across the
interface � = [0, 1] ⇥ {1}. The apparent deformation of the bubbles as they pass through the interface
under the buoyancy force is observed, which is similar to the numerical results recorded in [10].
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We further consider the evolutions of two coaxial bubbles [5, 61, 7] to verify the aptness of proposed
gPAV numerical method. The initial position of two bubbles is given by

�0
c
(x, y) = 1 +

2X

i=1

tanh
⇣
(0.15�

p
(x� xi)2 + (y � yi)2)/(

p
2✏)

⌘
, (5.6)

where (x1, y1) = (0.5, 0.22) and (x2, y2) = (0.5, 0.57). The other parameters are the same as in the case
of a single rising bubble. The typical morphotypes of two rising bubbles are displayed in Figure 12. As
expected, two bubbles rise dependently, coalesce to a single bubble, and eventually deform into a stable
pattern. Similar numerical processes are presented in [24]. The reasonable results illustrate the validity
of the numerical schemes.

The dynamics of bubbles are presented in Figure 12. One can clearly observe the coalescence of two
kissing bubbles and shape deformation, eventually rising of a single droplet across the interface between
two domains as recorded in Figure 11. From Figure 12, due to the di↵erence in density between two
fluids, we can see that the deformation of two droplets, then merge a single droplet, gradually evolve
into the stable appearance as time evolved. The reasonable results illustrate the validity of the numerical
schemes.

(a) t = 0 (b) t = 0.5 (c) t = 1.5 (d) t = 3.0 (e) t = 3.5 (f) t = 4.0 (g) t = 5.0 (h) t = 10.0

Fig. 11: The evolution of a rising bubble in a heavier medium from left to right row by row.

(a) t = 0 (b) t = 2.0 (c) t = 4.0 (d) t = 4.5 (e) t = 6.0 (f) t = 8.0 (g) t = 12.0 (h) t = 15.0

Fig. 12: The evolution of vertical rising bubbles in a heavier medium from left to right row by row.

6 Conclusions

In this paper, fully decoupled gPAV-CNLF and gPAV-BDF2 time-marching schemes are developed
for numerically solving the CHNSD system in coupled free flow and porous media regions. Following the
gPAV framework, we exploited the artificial compressible method to break the coupling of velocity and
pressure in the Navier-Stokes equations. The unconditional stability in terms of a modified discrete energy
is established for both the gPAV-CNLF and the gPAV-BDF2 algorithms. We only need to individually
solve a sequence of linear algebraic system at each time level after splitting the unknown variables. The
accuracy and energy stability of proposed gPAV methods are validated by numerical experiments. The
boundary driven flow in filtering problem, the phenomenon of viscous fingering, buoyancy-driven flow
with di↵erent densities are simulated to further verify the robustness of the numerical methods.
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