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Abstract
We develop two totally decoupled, linear and second-order accurate numerical methods that are uncondition-
ally energy stable for solving the Cahn-Hilliard-Darcy equations for two phase flows in porous media or in a
Hele-Shaw cell. The implicit-explicit Crank-Nicolson leapfrog method is employed for the discretization
of the Cahn-Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique
and pressure correction methods are utilized, respectively, so that the Cahn-Hiliard equation and the update
of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the
schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the
numerical methods, including simulations of the Rayleigh-Taylor instability, the Saffman-Taylor instability
(fingering phenomenon).
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1 INTRODUCTION7

Interfaces of multiphase flows in porous media or Hele-Shaw cells are often times unstable. A prominent instability8

in this setting is the so-called Saffman-Taylor instability which occurs in the displacement a viscous fluid by a less9

viscous one in porous materials and exhibits fingering patterns–viscous fingering1,2. Such phenomena has important10

applications in oil recovery, infiltration, and many other fields including tumor growth in biomechanics3, crystal11

solidification4, electrowetting5 and polymer liquid crystal techniques6. Due to the instability and the resulting12

topological changes of the interface, classical sharp interface models such as the Muskat problem could be ill-posed.13

We refrain from reviewing the vast literature in this direction. An alternative relaxation approach is the diffuse14

interface method leading to models of the Cahn-Hilliard type. Diffuse interface models for two-phase flows in a15

porous medium could be derived from variational principles7,8, or from upscaling of the Cahn-Hilliard-(Navier)-16

Stokes equations9,10,11,12,13. See also14,15,16 for derivation of the Cahn-Hilliard-Hele-Shaw system in a Hele-Shaw17

cell.18

In this article we focus on developing efficient and high-order accurate numerical methods for solving the Cahn-19

Hilliard-Darcy equations (CHD), a popular phase field model for two-phase flows in porous media. The CHD20

system is a strongly coupled nonlinear system that models interfacial phenomena with sharp transitions in narrow21

layers (stiffness). There have been abundant numerical works addressing these challenges17,18,19,20,21,22,23,24. Feng22

and Wise21 analyzed a fully discrete implicit finite element method for studying the CHD system, establishing23
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unconditional unique solvability and convergence of the numerical scheme. Han and Wang19 proposed a second-24

order decoupled and unconditionally stable numerical method for solving the CHD system. The key idea for25

decoupled computation is the pressure correction technique, while second-order convex-concave splitting of the26

energy potential is utilized for maintaining the energy law. The scheme is however nonlinear requiring nonlinear27

iterative solvers. In recent years a class of Lagrange multiplier approaches are developed for the design of high-28

order, unconditionally stable, linear and decoupled time-stepping methods for gradient flow models. Popular29

methods in this class include the scalar auxiliary variable (SAV) method22, the invariant energy quadratization (IEQ)30

method25, and many other variants. For the CHD equations Yang18 constructed a fully-decoupled second-order31

linear numerical scheme in which zero-energy-contribution idea is introduced to break the coupling of velocity32

and phase-field variable. Yang and Kim17 exploited multiple auxiliary variables to conduct a simple and efficient33

decoupled second-order convergent numerical scheme for numerically simulating the dynamics of the CHD system.34

Despite the stability and high efficiency of Lagrange multiplier type approaches, they appear to suffer from poor35

accuracy in practice, especially for long-time simulations26. Moreover, the energy law satisfied by these methods36

is in general in terms of new Lagrange multipliers, hence not a direct approximation of the original energy law.37

Connecting the two forms of the energy law by post-processing is numerically demonstrated to improve the accuracy38

of the method27. The goal of this work is to develop a time-marching scheme with the following properties: linear,39

fully decoupled and second-order accuracy in time, energy stable, easy-to-implement; and to apply the proposed40

numerical scheme to gain insight into interfacial instability. There are two main ingredients in our design: the41

combination of Crank-Nicolson and leapfrog time-stepping (CNLF) that gives a linear discretization of the Cahn-42

Hilliard equation; the artificial compression and pressure projection techniques for incompressible flow leading43

to decoupled and fast algorithms for the update of Darcy pressure. These strategies have been widely employed44

in solving the Navier-Stokes equations28,29, the Stokes-Darcy equations30, and the Cahn-Hilliard-Navier-Stokes45

equations31,32,33. In particular, it is discovered in32 that the CNLF discretization of the nonlinear term yields a linear46

second-order accurate unconditionally stable algorithm for the Cahn-Hilliard equation. As far as we know, the CNLF47

method is the only way to obtain a linear second-order scheme without resorting to extra Lagrange multipliers.48

It is noted that our scheme does not need the grad-div stabilization in the fluid equations to obtain unconditional49

stability, in contrast to the case of Navier-Stokes equations. In addition to accuracy and stability tests, we employ50

the proposed numerical scheme in simulations of Rayleigh-Taylor instability and Saffman-Taylor instability in both51

two dimensions and three dimensions. The numerical results demonstrate the ability of the numerical method in52

capturing details of droplet splitting, the onset and evolution of viscous fingering.53

The rest of this work are organized as follows. In Section 2 we provide the Cahn-Hilliard-Darcy model. In54

Section 3, we present the second-order time-stepping methods and analyze their unconditional stability. In section 4,55

we introduce the fully discrete schemes with finite element method for spatial discretization. In Section 5, ample56

numerical experiments are reported to illustrate the accuracy and robustness of developed numerical method. Finally,57

a brief summary is concluded in the last section.58

2 THE MODEL EQUATIONS59

The dimensionless form of the Cahn-Hilliard-Darcy equations is as following19,17

ReDa

�

@u
@t

+ ⌫(�)⇧–1u = –rp –
✏–1

We
�rµ, (2.1a)

r · u = 0, (2.1b)

�
@�

@t
+ r · (�u) =

1
Pe

r · (m(�)rµ), (2.1c)

µ =
�
�3 – �

�
– ✏2��, (2.1d)

where u is the fluid velocity, p is the pressure, � is the order parameter taking values ±1 in the bulk of each phase,
respectively, µ is the chemical potential. Here Re represents Reynold’d number, Da is the Darcy number, ✏ measures
thickness of the transition layer between the two phases, Pe is the diffusion Peclet number, ⌫ is the viscosity, ⇢0 is



Decoupled schemes for Cahn-Hilliard-Darcy 3

the density, ⇧ is the permeability matrix, � is the porosity, We is the ratio of modified capillary number to Darcy
number, m is the mobility. Throughout, we assume ⌫(�) and m(�) are bounded below and above, i.e.,

0 < ⌫1  ⌫(�)  ⌫2, 0 < m1  m(�)  m2. (2.2)

When ReDa

� is small, one often neglects the transient effect in the flow field. In this study we take into account of the60

transient effects. The time derivative of the fluid velocity is necessary for the design of second-order decoupled61

time-stepping method, though the method also works for non-transient CHD albeit without decoupling. We note62

that the CHD system (2.1) is closely related to the Cahn-Hilliard-Hele-Shaw system23,21,16,34,35,36.63

Equipped with the following initial and boundary conditions

u · n = 0, on @⌦⇥ (0, T) (2.3a)

r� · n = rµ · n = 0, on @⌦⇥ (0, T) (2.3b)

(u,�)|t=0 = (u0,�0), in ⌦. (2.3c)

one can show that the system (2.1) satisfies an energy law:

d

dt
E(�) = –

Z

⌦
⌫(�)⇧–1|u|2 dx –

✏–1

WePe

Z

⌦
m(�)|rµ|2 dx, (2.4)

where the free energy functional E is defined as

E(�) = ReDa

Z

⌦

1
2�

|u|2 dx +
�

We

Z

⌦

�1
✏

F(�) +
✏

2
|r�|2

�
dx, (2.5)

with F(�) = 1
4 (�2 – 1)2.64

3 SECOND-ORDER TIME MARCHING METHODS65

In this section we present the semi-discrete time-marching schemes that are discrete in time and continuous in66

space. Borrowing the idea of Crank-Nicolson leap-frog (CNLF) method, we design two numerical schemes incorpo-67

rated with the artificial compression and pressure projection method, respectively, and analyze their unconditionally68

energy stability.69

Let (·, ·) and k ·k denote the usual L
2 inner product and norm. Let 0 = t0 < t1 < · · · < tN = T be a uniform partition70

of [0, T] into subintervals J
n = (tn, tn+1), n = 0, 1, . . . , N – 1, with time step size �t = tn+1 – tn = T

N
.71

3.1 The time-stepping scheme based on artificial compression approximation72

In order to break the coupling of phase field variables and pressure saving computation cost, we adopt the
following artificial compression approximation37,38 of the divergence-free condition

r · u = ��pt, (3.1)

with a small constant � (⇡ �t
2).73

The semi-discrete CNLF-AC scheme for solving the system (2.1) is: given �n–1,�n, un–1, and p
n–1, find the

solution �n+1,µn, un+1, p
n+1 such that

�
�n+1 – �n–1

2�t
+ r ·

⇣
�n

un+1 + un–1

2

⌘
–

1
Pe

r · (m(�n)rµn) = 0, (3.2a)

µn – (�n)2�
n+1 + �n–1

2
+ �n + ✏2 ��

n+1 + ��n–1

2
= 0, (3.2b)
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ReDa

�

un+1 – un–1

2�t
+ ⌫(�n)⇧–1 un+1 + un–1

2
+ rp

n +
✏–1

We
�nrµn = 0, (3.2c)

↵�t�(pn+1 – p
n–1) – r · un = 0, (3.2d)

where ↵ is a user-specified stabilization parameter.74

Remark 1. Through Eq. (3.2c) one can express the velocity un+1 in terms of p
n and �n, i.e.

un+1 =
�
�1 – �2⌫⇧

–1� un–1 – 2�2

✓
rp

n +
✏–1

We
�nrµn

◆
.

Upon substitution, we can derive the equivalent formulation of (3.2a),

�n+1 – �n–1

2�t
+ r ·

⇣
�n(�1un–1 – �2rp

n)
⌘

– r · (m̄(�n)rµn) = 0, (3.3)

where

�1(�n) =
ReDa

ReDa + ��t⌫(�n)⇧–1 ,

�2(�n) =
��t

ReDa + ��t⌫(�n)⇧–1 ,

m̄(�n) =
1
Pe

m(�n) + �2
✏–1

We
(�n)2.

(3.4)

Then, one can solve the Cahn-Hilliard equations (3.2a)-(3.2b) independently. Finally one solves the pressure Poisson75

equation (3.2d). Therefore the scheme is a completely decoupled algorithm.76

Next we show that the scheme is unconditionally stable.77

Theorem 1. With ↵ � 2�
ReDa

, the CNLF-AC scheme (3.2) is unconditionally stable, and the following stability

estimate holds for N � 2

ReDa

8�
(kuNk2 + kuN–1k2) +

�

4We


1
✏
k�N�N–1k2 + ✏(kr�Nk2 + kr�N–1k2)

�
+
��t

2

2ReDa

⇥
krp

Nk2 + krp
N–1k2⇤

 ReDa

4�
⇥
ku1k2 + ku0k2⇤ +

�

4We


1
✏
k�1�0k2 + ✏

�
kr�1k2 + kr�0k2�

�
+
↵�t

2

2
⇥
krp

1k2 + krp
0k2⇤

+
�t

2
⇥
(u1,rp

0) – (u0,rp
1)
⇤

–
✏–1�t

PeWe

N–1X

n=1

k
p

m(�n)rµnk2 –
⇧–1�t

4

N–1X

n=1

k
p
⌫(�n)(un+1 + un–1)k2. (3.5)

Proof. Since

⇣
(�n)2�

n+1 + �n–1

2
– �n

⌘�n+1 – �n–1

2
=

1
4
⇥
(�n+1)2(�n)2 – (�n)2(�n–1)2 – 2�n+1�n + 2�n�n–1⇤

=
1
4
⇥
(�n+1�n – 1)2 – (�n�n–1 – 1)2⇤ , (3.6)

multiplying (3.2a) and (3.2b) with test function �t
✏–1

We
µn and –�✏–1

We

�n+1–�n–1

2 respectively, integrating and performing
integration by parts, adding the resultants together, one obtains

�

4We


1
✏

�
k�n+1�n – 1k2 – k�n�n–1 – 1k2� + ✏(kr�n+1k2 + kr�nk2) – ✏(kr�nk2 + kr�n–1k2)

�

+
✏–1

PeWe
�tk

p
m(�n)rµnk2 –

✏–1�t

2We

⇣
�n(un+1 + un–1),rµn

⌘
= 0. (3.7)
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Likewise, testing (3.2c) with �t
un+1+un–1

2 and (3.2d) with –�t
p

n+1+p
n–1

2 , performing integration by parts, one obtains
by combining the results

ReDa

4�
⇥
(kun+1k2 + kunk2) – (kunk2 + kun–1k2)

⇤
+
↵�t

2

2
⇥
(krp

n+1k2 + krp
nk2) – (krp

nk2 + krp
n–1k2)

⇤

= –
1
4
⇧–1�tk

p
⌫(�n)(un+1 + un–1)k2 –

✏–1�t

2We

⇣
�nrµn, un+1 + un–1

⌘

+
�t

2
{[(rp

n+1, un) – (rp
n, un–1)] – [(un+1,rp

n) – (un,rp
n–1)]}. (3.8)

Adding (3.8) to (3.7), we obtain

ReDa

4�
⇥
(kun+1k2 + kunk2) – (kunk2 + kun–1k2)

⇤
+
↵�t

2

2
⇥
(krp

n+1k2 + krp
nk2) – (krp

nk2 + krp
n–1k2)

⇤

+
�

4We


1
✏

�
k�n+1�n – 1k2 – k�n�n–1 – 1k2� + ✏(kr�n+1k2 + kr�nk2) – ✏(kr�nk2 + kr�n–1k2)

�

= –
✏–1�t

PeWe
k
p

m(�n)rµnk2 –
⇧–1�t

4
k
p
⌫(�n)(un+1 + un–1)k2

+
�t

2
{[(rp

n+1, un) – (rp
n, un–1)] – [(un+1,rp

n) – (un,rp
n–1)]}. (3.9)

Taking summation over n = 1 to n = N – 1, one derives

ReDa

4�
(kuNk2 + kuN–1k2) +

�

4We


1
✏
k�N�N–1 – 1k2 + ✏

�
kr�Nk2 + kr�N–1k2�

�
+
↵�t

2

2
⇥
krp

Nk2 + krp
N–1k2⇤

=
ReDa

4�
(ku1k2 + ku0k2) +

�

4We


1
✏
k�1�0 – 1k2 + ✏

�
kr�1k2 + kr�0k2�

�
+
↵�t

2

2
⇥
krp

1k2 + krp
0k2⇤

–
✏–1�t

PeWe

N–1X

n=1

k
p

m(�n)rµnk2 –
⇧–1�t

4

N–1X

n=1

k
p
⌫(�n)(un+1 + un–1)k2

+
�t

2
[(u1,rp

0) – (u0,rp
1)] +

�t

2
[(rp

N , uN–1) – (rp
N–1, uN)]. (3.10)

To conclude, one applies Cauchy-Schwartz inequality to the last two terms in (3.10)

�t

2
��(rp

N , uN–1) – (rp
N–1, uN)

��  ReDa

8�
⇥
kuNk2 + kuN–1k2⇤ +

��t
2

2ReDa

⇥
krp

Nk2 + krp
N–1k2⇤ .

Hence by taking ↵ � 2�
ReDa

, one obtains (3.5). This completes the proof.78

3.2 The time-stepping scheme based on pressure projection79

The numerical scheme (3.2) is totally decoupled and unconditionally stable rather than obeying the energy law of80

the original system. To design the second-order numerical scheme with energy law, we introduce the second-order81

pressure projection strategy19,39,40,41 to decouple the velocity and pressure in Darcy equation. In this subsection, we82

develop an alternative second-order decoupled CNLF scheme that satisfies the discrete energy dissipation law.83

The semi-disctre CNLF-PR scheme for solving the system (2.1) is: given �n–1,�n, un–1, and p
n–1, find the solution

�n+1,µn, un+1, p
n+1 such that

�
�n+1 – �n–1

2�t
+ r ·

⇣
�n

ūn+1 + un–1

2

⌘
–

1
Pe

r · (m(�n)rµn) = 0, (3.11a)

µn – (�n)2�
n+1 + �n–1

2
+ �n + ✏2 ��

n+1 + ��n–1

2
= 0, (3.11b)
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ReDa

�

ūn+1 – un–1

2�t
+ ⌫(�n)⇧–1 ūn+1 + un–1

2
+ rp

n–1 +
✏–1

We
�nrµn = 0, (3.11c)

ReDa

�

un+1 – ūn+1

2�t
+

1
2
r
�
p

n+1 – p
n–1� = 0, (3.11d)

r · un+1 = 0. (3.11e)

Remark 2. We remark here that Canh-Hiilliard equation (3.11a)-(3.11b) and Darcy equation (3.11c) can be solved
separately since that the intermediate velocity ūn+1 can be expressed explicitly by un–1, p

n–1 and �n, i.e.

ūn+1 = (�1 – ⌫⇧–1�2)un–1 – 2�2(rp
n–1 +

✏–1

We
�nrµn). (3.12)

In order to eliminate intermediate variable ūn+1, we substitute (3.12) into (3.11a) and (3.11d), then rewritten the
numerical scheme (3.11) as the equivalent formulation

⇠
�n+1 – �n–1

2�t
+ r ·

⇣
�n(�1un–1 – �2rp

n–1)
⌘

– r · (m̄(�n)rµn) = 0, (3.13a)

µn – (�n)2�
n+1 + �n–1

2
+ �n + ✏2 ��

n+1 + ��n–1

2
= 0, (3.13b)

ReDa

2��t
un+1 +

1
2
r
�
p

n+1 – p
n–1� –

ReDa

2��t

�
�1 – ⌫⇧–1�2

�
un–1 +

ReDa

��t
�2

✓
rp

n–1 +
✏–1

We
�nrµn

◆
= 0, (3.13c)

r · un+1 = 0, (3.13d)

where �1(�n), �2(�n) and m̄(�n) are defined as in (3.4). It can clearly observe that the numerical scheme does not84

involve intermediate velocity ūn+1, so there is no need to compute the intermediate variable in implementation.85

Moreover, one can decouple the velocity and pressure by utilizing divergence-free condition (3.13d) for (3.13c).86

Therefore, the presented CNLF-PR numerical scheme is totally decoupled in separately solving �n+1,µn, un+1, and87

p
n+1.88

The CNLF-PR scheme is totally decoupled, and unconditionally stable.89

Theorem 2. The CNLF-PR scheme (3.11) is unconditionally stable, namely , the solution �n+1,µn, un+1, p
n+1

satisfies the following energy dissipation law, for n � 2

En+1 – En  –
✏–1�t

PeWe
k
p

m(�n)rµnk2 –
⇧–1�t

4
k
p
⌫(�n)(un–1 + ūn+1)k2. (3.14)

with modified discrete energy law En+1
defined as

En+1 =
ReDa

4�

h
kun+1k2 + kunk2

i
+

�

4We


1
✏
k�n+1�n – 1k2 + ✏

�
kr�n+1k2 + kr�nk2�

�

+
��t

2

2ReDa

h
krp

n+1k2 + krp
nk2
i
. (3.15)

Proof. Taking the L
2 inner product of (3.11a) and (3.11b) with �t

✏–1

We
µn and –�✏–1

We

�n+1–�n–1

2 respectively, performing
integration by parts, adding the resultants, using (3.6), one obtains

�

4We


1
✏

�
k�n+1�n – 1k2 – k�n�n–1 – 1k2� + ✏

�
kr�n+1k2 + kr�nk2� – ✏

�
kr�nk2 + kr�n–1k2�

�

+
✏–1

PeWe
�tk

p
m(�n)rµnk2 –

✏–1

2We
�t

⇣
�n(ūn+1 + un–1),rµn

⌘
= 0. (3.16)
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Multiplying (3.11c) with test function
�t

2
(ūn+1 + un–1), and integrating, we obtain

ReDa

4�
[kūn+1k2 – kun–1k2] +

1
4
⇧–1�tk

p
⌫(�n)(un–1 + ūn+1)k2 +

✏–1

2We
�t

⇣
�nrµn, ūn+1 + un–1

⌘

+
�t

2
�
rp

n–1, ūn+1 + un–1� = 0. (3.17)

Now we deal with the last term (rp
n–1, ūn+1 + un–1) in (3.17). Taking the inner product of (3.11d) with

�

ReDa
�t

2rp
n–1, applying integration by parts, divergence-free condition (3.11e) for un+1 and un–1, and equality

2b(a – b) = a
2 – b

2 – (a – b)2, we derive

–
�t

2
�
ūn+1 + un–1,rp

n–1� +
��t

2

4ReDa

⇥
krp

n+1k2 – krp
n–1k2 – kr(pn+1 – p

n–1)k2⇤ = 0. (3.18)

By testing (3.11d) with r(pn+1 – p
n–1) and applying Cauchy-Schwarz inequality, one obtains

�

4ReDa
�t

2kr(pn+1 – p
n–1)k2  ReDa

4�
kun+1 – ūn+1k2. (3.19)

Taking L
2 inner product of (3.11d) with 2�trun+1, exploiting (3.11e) and 2a(a – b) = a

2 – b
2 + (a – b)2, we get

ReDa

4�
⇥
kun+1k2 – kūn+1k2 + kun+1 – ūn+1k2⇤ = 0. (3.20)

We add (3.17), (3.18), (3.19) and (3.20) together to obtain

ReDa

4�

h �
kun+1k2 + kunk2� –

�
kunk2 + kun–1k2�

i
+
��t

2

4ReDa

h �
krp

n+1k2 + krp
nk2� –

�
krp

nk2 + krp
n–1k2�

i

+
⇧–1�t

4
k
p
⌫(�n)(un–1 + ūn+1)k2 +

✏–1

2We
�t(�nrµn, ūn+1 + un–1)  0. (3.21)

Summing up (3.16) and (3.21), we obtain the modified energy law (3.14). Thus we complete the proof of Theorem90

2.91

4 FULLY DISCRETE NUMERICAL SCHEMES92

In this section, we further discretize the space by continuous Galerkin finite element method for semi-discrete93

scheme (3.2) and (3.11).94

Let =h be a quasi-uniform regular partition of the triangular element with mesh size h. We introduce the finite95

element spaces Xh ⇢ L2, Yh ⇢ H
1(⌦), Qh := Yh \ L

2
0(⌦) with L

2
0(⌦) the L

2 subspace whose elements are of mean96

zero. Furthermore, We assume that, rYh ⇢ Xh, and Xh and Qh satisfy the inf-sup condition for the divergence97

operator. Then, we construct the totally decoupled fully discretization CNLF-AC and CNLF-PR schemes as follows.98

Algorithm 1: CNLF-AC scheme99

Assuming that (un–1
h

, un

h
, p

n–1
h

, p
n

h
,�n–1

h
,�n

h
) are given for n � 1, we compute (un+1

h
, p

n+1
h

,�n+1
h

,µn

h
) by the following100

steps.101

Step 1: Find (�n+1
h

,µn

h
) 2 Yh ⇥ Yh, such that

�
⇣�n+1

h
– �n–1

h

2�t
, h

⌘
–
⇣
�n

h
(�1un–1

h
– �2rp

n

h
),r h

⌘
+
⇣

m̄(�n

h
)rµn

h
,r h

⌘
= 0, 8 h 2 Yh, (4.1)

(µn

h
,!h) – ✏2

⇣
r�n+1

h
+ �n–1

h

2
,r!h

⌘
–
⇣

(�n

h
)2�

n+1
h

+ �n–1
h

2
,!h

⌘
+ (�n

h
,!h) = 0, 8!h 2 Yh, (4.2)
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where �1(�n

h
), �2(�n

h
) and m̄(�n) are defined as

�1(�n

h
) =

ReDa

ReDa + ��t⌫(�n

h
)⇧–1 ,

�2(�n

h
) =

��t

ReDa + ��t⌫(�n

h
)⇧–1 ,

m̄(�n

h
) =

1
Pe

m(�n

h
) + �2

✏–1

We
(�n

h
)2.

(4.3)

Step 2: Find p
n+1
h

2 Qh, such that

↵�t

⇣
r(pn+1

h
– p

n–1
h

),rqh

⌘
– (un

h
,rqh) = 0, 8 qh 2 Yh. (4.4)

Step 3: Find un+1
h

2 Xh, such that

ReDa

�

⇣un+1
h

– un–1
h

2�t
, vh

⌘
+ ⇧–1

⇣
⌫(�n

h
)
un+1

h
+ un–1

h

2
, vh

⌘
+ (rp

n

h
, vh) +

✏–1

We

�
�n

h
rµn

h
, vh

�
= 0, 8 vh 2 Xh. (4.5)

Algorithm 2: CNLF-PR scheme102

Assuming that (un–1
h

, p
n–1
h

, p
n

h
,�n–1

h
,�n

h
) are given for n � 1, we compute (un+1

h
, p

n+1
h

,�n+1
h

,µn

h
) by the following103

steps.104

Step 1: Find (�n+1
h

,µn

h
) 2 Yh ⇥ Yh, such that

�
⇣�n+1

h
– �n–1

h

2�t
, h

⌘
–
⇣
�n

h
(�1un–1

h
– �2rp

n

h
),r h

⌘
+
�
m̄(�n

h
)rµn

h
,r h

�
= 0, 8 h 2 Yh, (4.6)

�
µn

h
,!h

�
– ✏2
⇣
r�n+1

h
+ �n–1

h

2
,r!h

⌘
–
⇣

(�n

h
)2�

n+1
h

+ �n–1
h

2
,!h

⌘
+
�
�n

h
,!h

�
= 0, 8!h 2 Yh, (4.7)

where �1, �2 and m̄ are given in (4.3).105

Step 2: Find p
n+1
h

2 Qh, such that

1
2

⇣
r
�
p

n+1
h

– p
n–1
h

�
,rqh

⌘
–

ReDa

2��t

⇣ �
�1 – ⌫⇧–1�2

�
un–1

h
,rqh

⌘
+

ReDa

��t

⇣
�2(rp

n–1
h

+
✏–1

We
�n

h
rµn

h
),rqh

⌘
= 0, 8 qh 2 Yh.

(4.8)
Step 3: Find un+1

h
2 Xh, such that

ReDa

2��t

⇣
un+1

h
, vh

⌘
+

1
2

⇣
r
�
p

n+1
h

– p
n–1
h

�
, vh

⌘
–

ReDa

2��t

⇣ �
�1 – ⌫⇧–1�2

�
un–1

h
, vh

⌘

+
ReDa

��t

⇣
�2(rp

n–1
h

+
✏–1

We
�n

h
rµn

h
), vh

⌘
= 0, 8 vh 2 Xh.

(4.9)

Remark 3. Both the CNLF-AC scheme and the CNLF-PR scheme can be discretized in space by any classical106

methods. Following the same argument as the semi-discrete scheme, we note that the CNLF-AC time marching107

combined with the finite difference method is provably unconditionally stable, while the CNLF-PR method with108

the finite element spatial discretization (or any other methods) satisfies a similar energy law. Due to the use of109

substitution of velocity in solving the Cahn-Hilliard equation, we are not able to prove energy stability for the110

CNLF-AC finite element scheme. In numerical experiments we observe that both time-marching schemes effected111

with finite element method are stable.112

Remark 4. The proposed completely decoupled CNLF-AC and CNLF-PR numerical methods are three-level113

methods. In order to start this numerical scheme, we need values from the first two steps. The approximation114

(u1
h
, p

1
h
,�1

h
,µ1

h
) should be precomputed in another suitable numerical scheme. For simplicity, we exploited backward115

Euler method to compute (u1
h
, p

1
h
,�1

h
,µ1

h
) during implementation as reported in Section 5.116
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Remark 5. The developed CNLF-AC scheme (4.1)-(4.5) and CNLF-PR scheme (4.6)-(4.9) are fully decoupled117

linear algorithms. The existence of solutions is a consequence of uniqueness which is in turned guaranteed by the118

unconditional energy stability.119

Remark 6. We note that error analysis of the CNLF type schemes is a challenge beyond the scope of this work. We120

defer the error analysis of fully discrete schemes to the future work. We refer to42,43,44,45,46 for convergence analysis121

work on phase field fluid, such as on Cahn-Hilliard-Hlew-Shaw system42,43, Cahn-Hilliard-Stokes-Darcy44, the122

magnetohydrodynamics equations45.123

5 NUMERICAL EXPERIMENTS124

In this section, we perform several numerical simulations to validate the characteristic features and compatibil-125

ity of the developed CNLF method for CHD system. We first verify the accuracy and discrete energy stability of the126

proposed numerical algorithms. Then, we test the spinodal decomposition in ring domain, and interface instability127

between binary fluids in two- and three-dimension, including interface pinch-off and viscous fingers phenomenon.128

Moreover, we extend our numerical methods to numerically investigate the rotational Hele-Shaw cell in two and129

three-dimensional spaces to further validate the good performance of the proposed CNLF method. Throughout, we130

take Taylor-Hood element for velocity and pressure, and P2 finite element pairs in two dimensions and P1 in three131

dimensions for �h and µh, respectively. The preconditioned conjugate gradient method is used to solve the linear132

elliptic equation with variable coefficient at each time step.133

Example 1: Convergence and accuracy. To illustrate the second-order accuracy in time of CNLF-AC scheme
and CNLF-PR scheme, we compute the numerical errors between numerical solutions and accurate solutions on a
unit square domain ⌦ = [0, 1] ⇥ [0, 1] for CHD system. Set parameters ReDa, �, �, ✏, m and stabilized parameters
↵ are one. We take the exact solution as follows

u(x, y, t) = (– sin2(⇡x) sin(2⇡y) cos(t), sin2(⇡y) sin(2⇡x) cos(t)),

p(x, y, t) = cos(t)(xy –
1
4

),

�(x, y, t) = cos(t) cos(⇡x) cos(⇡y).

The boundary condition functions and the source terms are chosen from the above exact solution.134

The finite element pair P2 – P1 – P2 – P2 is taken for variables u, p, � and µ. The simulation is carried out until135

T = 1.0. The refiner mesh size h = 1
128 is taken to guarantee that the error arising from spatial discretization is136

negligible compared to temporal error. Figure 1 displays the L
2 errors at t = 1.0 from time step size �t = 1

16 refining137

to �t = 1
128 . The numerical results clearly indicate that the proposed CNLF-AC and CNLF-PR schemes provide the138

expected second-order accuracy in time for all variables.139

Example 2: Energy dissipation on a disk domain.140

In this test, we numerically simulate the evolution of a ”flower” shape droplet to validate the energy dissipation of141

the developed numerical scheme. The initial conditions are chosen as142

� = – tanh((
p

(x – 0.5)2 + (y – 0.5)2 – r1)(
p

2✏)) (5.1)

with r1 = 0.25 + 0.1 cos(6✓). We choose parameters ReDa = 10–4, � = 1, ⌫
⇧ = 100, ✏ = 0.02, We = 100, � = 0.01,143

Pe = 1, m = 0.01, and ↵ = 2 on a disk domain with radius 1. The numerical simulation is done up to T = 10.144

The dynamical morphology of the phase variable are displayed in Figure 2 under �t = 0.005. As shown in Figure145

2, the flower firstly gradually evolves into a hexagon, then eventually deforms into a circle driven by surface tension146

effectively. Figure 3 plots the discrete energy under different time step sizes. One can clearly observe that the147

numerical scheme satisfies desired energy stability for all presented cases. Moreover, once the energy corresponding148

to the equilibrium state circle is reached, the energy does not change anymore. It demonstrates that the proposed149

decoupled numerical is unconditionally long time stable consistently well with the theory results.150

Example 3: Spinodal decomposition in ring computational domain.151



10 Y. Gao and D. Han

10
-2

10
-1

 t

10
-6

10
-4

10
-2

10
0

L
2
 e

rr
o
r

(a) LFCN-AC scheme
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(b) LFCN-PR scheme

F I G U R E 1 Log-Log plot of the error in L
2 norm with different time step size �t.

(a) t = 0.1 (b) t = 0.5 (c) t = 1.0 (d) t = 2.0

(e) t = 0.5 (f) t = 4.0 (g) t = 5.0 (h) t = 10.0

F I G U R E 2 Shape relaxation of surface tension.

In this numerical test, we consider the spinodal decomposition on a complex domain to further validate the152

efficiency of the proposed CNLF scheme.153

The computational domain is chosen as a ring domain ⌦ = {(x, y)|0.3 <
p

(x – 0.5)2 + (y – 0.5)2 < 0.5}. The154

parameters are taken as same as in Example 2. Parameters are chosen as ReDa = 10–4, � = 1, ⌫
⇧ = 100, ✏ = 0.02,155

We = 100, � = 0.01, Pe = 1, m = 0.01 , and ↵ = 2 on The average of phase variable � over the computational domain156

is approximately 0, for precisely, the initial value of � is specified by �0 = �̄ – 0.05(2r(x) – 1) with an average157

composition �̄ = –0.05 and random r(x) 2 [0, 1]. Time step size is taken �t = 0.005. The simulation is halted at158

time T = 20. Figure 4 shows the evolution of phase variable for binary fluids. As we observed, the phase separation159
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F I G U R E 3 Evolution of the discrete energy for flower under surface tension with different time.

is well done through the domain is a complex ring. The expected simulation results illustrate the efficiency of our160

numerical method.161

(a) t = 1.5 (b) t = 2.5 (c) t = 4 (d) t = 5

(e) t = 7.5 (f) t = 10 (g) t = 15 (h) t = 20

F I G U R E 4 Snapshots of phase variable on a computational ring domain.

Example 4: Interface pinchoff in two and three dimensions.162

In this test, we simulate the instability of fluid layers under Buoyancy-driven flow inside a Hele-Shaw cell47. The163

physical problem is illustrated in Figure 5(a), in which a lighter fluid layer is initially sandwiched by a heavy fluid164

layer. Under gravity, the upper interface is unstable, the heavier fluid flows downwards and penetrates the layer165

of light fluid. The lower interface is table and resits motion. Ultimately, the two interfaces meet and break up. To166
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perfectly capture the dynamics of the interface, we introduce the mesh adaptive technique in space taking advantage167

of the Galerkin finite element method.168

The computational domain is a square domain ⌦ = [0, 2⇡] ⇥ [0, 2⇡]. Assuming the small difference in densities,169

the Boussinesq approximation is applied to CHD system. More precisely, the buoyancy-driven term B := –g�(⇢1 –⇢2)170

is added to the right side of Darcy equation (2.1b), here ⇢(�) = ⇢1–⇢2
2 � + ⇢1+⇢2

2 , and g is the gravitational acceleration171

with g = [0, g]T .172

The initial condition for order parameter is chosen as173

�0(x, y) =
1
2
⇠+(x, y)⇠–(x, y) – 1, (5.2)

with174

⇠±(x, y) = 1 ± tanh

✓
y – ⇡ ± (0.5 + 0.1 cos(x))p

2✏

◆
,

where � = 1 is associated to the light fluid with density ⇢1, and � = –1 is associated to the heavy fluid with density175

⇢2. The contour of initial phase variable is exhibited in Figure 5(b). We take parameters ReDa = 0.005, � = 0.5,176

⇧ = 0.66, ✏ = 0.05, We = 4, Pe = 100, m = 1, ↵ = 2, ⇢1 = 1, ⇢2 = 5, and time step size �t = 0.001. We consider177

different viscosities ↵(�) = ⌫1–⌫2
2 � + ⌫1+⌫2

2 with ⌫1 = 1 corresponding to different viscous.178

The characteristic snapshots of phase variable are reported in Figure 6 under g = 0.7365 for ⌫1 : ⌫2 = 1 : 5 and179

⌫1 : ⌫2 = 1 : 2.5. We can clearly observe the rising of the bubble of light fluid, bridge rupture and the formation of180

satellite drops as expected. From Figures 6, we can observe that the small viscous ratio accelerates the dynamical181

process and leads to more satellite drops after rupture. The numerical results are very consistent with those reported182

in19,16,17,24.183

We also simulate the interface pinch-off in three dimensions for binary fluids by setting the initial phase variable184

⇠±(x, y, z) = 1 ± tanh

 
4
3✏

 r
(z –

1
3

)2 + (y –
1
3

)2 ± 1
4⇡

✓
1 +

cos(2⇡x)
2

◆!!
,

in computational domain [0, 1] ⇥ [0, 1] ⇥ [0, 1.5]. The physical parameters are the same as in a two-dimensional185

case except for ✏ = 0.03. Taking g = 0.7365, we draw the characteristic behaviors of iso-surface � = 0 in Figure 7 at186

different times. We clearly observe the topology transition of the interface, light bubble actually arise after pinchoff.187

The ability to automatically capture topological changes verifies the effectiveness of the proposed numerical method188

proposed CNLF method.189

fluid 1: light

fluid 2: heavy

fluid 2: heavy

1 2 3 4 5 6

1

2

3

4

5

6

(a) schematic illustration (b) initial contour of �0

F I G U R E 5 The configure of phase variable for the binary fluids.
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(a) µ1 : µ2 = 1 : 8 and snapshots are taken at t = 4.0, 7.0, 9.0, 9.2, 10.5.

(b) µ1 : µ2 = 1 : 5 and snapshots are taken at t = 3.0, 6.0, 6.5, 6.7, 8.0.

(c) µ1 : µ2 = 1 : 2.5 and snapshots are taken at t = 3.0, 4.0, 4.1, 4.2, 4.6.

(d) µ1 : µ2 = 1 : 2 and snapshots are taken at t = 3.0, 3.5, 3.7, 4.0, 4.2.

F I G U R E 6 The topology transition of phase variable for interface pinchoff behavior with respect to different
viscosity ratios under g = 0.7365.

Example 5: Viscous fingering with uniform injection.190

We simulate the Saffman-Taylor instability15 to validate the effectiveness of our proposed CNLF method. The191

instability phenomenon also called viscous fingers, occurs when a less viscous fluid is invalided into a more viscous192

one, which significantly impacts the sweep efficiency of multiphase fluid through porous media.193

Choose ReDa = 0.005, � = 0.5, ⇧ = 0.01, ✏ = 1/128, We = 540, Pe = 100, m = 0.001, ↵ = 5, �t = 0.0001 and194

computational domain ⌦ = [0, 0.5] ⇥ [0, 1.0]. We consider different viscosities ↵(�) = ⌫1–⌫2
2 � + ⌫1+⌫2

2 corresponding195

to different viscous ratios under the absence of gravity. The initial conditions of the phase variable is given by196

�0(x, y) = – tanh
✓

4
3✏

✓
y –

1
10

+
cos(16⇡x)

100

◆◆
(5.3)
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(a) t = 0 (b) t = 0.3 (c) t = 0.5 (d) t = 1.0 (e) t = 1.4

F I G U R E 7 The topology transition of phase variable for interface pinchoff behavior in 3D at t = 0, 0.1, 0.2, 0.4, 0.6.

with a small perturbation on the fat interface between binary fluids. The boundary conditions for velocity are197

imposed, i.e. u|y=0 = (0, vinj) with the uniform injected rate vinj = 50 of less viscous fluid. Figure 8 exhibits the198

insurgency and elongation of the viscous finger phenomenon at different times.199

We compared the length of fingers with different viscous ratios ⌫1 : ⌫2 = 1 : 5, ⌫1 : ⌫2 = 1 : 10 and ⌫1 : ⌫2 = 1 : 20,200

and surface tension reported in Figure 8, which illustrates that the larger viscous ratio and small surface tension will201

pronounce the longer finger. The expected finger morphologies are in accord with the numerical results shown in16,19.202

(a) ⌫1 : ⌫2 = 1 : 5, t = 0.2, 0.4, 0.6, 0.9, 1.2

(b) ⌫1 : ⌫2 = 1 : 10, t = 0.2, 0.4, 0.6, 0.9, 1.2

(c) ⌫1 : ⌫2 = 1 : 20, t = 0.2, 0.4, 0.6, 0.9, 1.2

F I G U R E 8 Snapshots of phase variable for viscous fingering with respect to different viscosity ratios.

Example 6: Rotational Hele-Shaw cell. We investigate the interface instability between two fluids under203

rotational Hele-Shaw cell, culminating in the appearance of finger patterns48,17. In the simulation, we apply the204

extra rotational force on the right side of momentum equation (2.1a). More precisely, the momentum equation is205
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replaced by the following formulation206

ReDa

�

@u
@t

+ ⌫(�)⇧–1u + rp +
✏–1

We
�rµ = C(1 + �)(!2r + 2!(e⇥ u)),

where r = (x – ⇡, y – ⇡), e = (0, 0, 1). The initial condition for phase variable are used207

�0(x, y) = – tanh((
p

(x – ⇡)2 + (y – ⇡)2 – R)/(
p

2✏)) (5.4)

where R = 1.3 + 0.002(1 + cos(13✓)) and ✓ = arctan( y–⇡
x–⇡ ). The parameters are ReDa = 0.5, � = 0.5, ✏ = 0.035,208

We = 10, Pe = 100, m(�) = 1, ⌫⇧–1 = 20, C = 7.5, ! = 2 and �t = 0.001. The deformation and evolution of finger209

patterns, their corresponding velocity field, and pressure are displayed in Figure 9. We observed that on one hand,210

the pattern grows along the radial direction; on the other hand, the body appears to be rotated, exhibiting a distinct211

tilting of fingers at t = 0.6 and t = 0.8.212

We also discuss the influence of different viscous ratios for the fingering pattern by using ⌫(�) = ⌫1–⌫2
2 � + ⌫1+⌫2

2213

and ⇧ = 0.1. The pattern morphology of finger dynamics are drawn in Figure 10 associated with ⌫1 = 20, ⌫ = 15214

and ⌫1 = 10 under fixed ⌫2 = 1. From Figure 10, we can find that a smaller viscous ratio enhances the interfacial215

instability and finger competition dynamics. These numerical behaviors are in good agreement with the numerical216

findings obtained in17
217

F I G U R E 9 Snapshots of phase variable � at t = 0.2, 0.4, 0.5, 0.6, 0.8 in a rotational Hele-Shaw cell

6 CONCLUSIONS218

In this paper, we propose a second-order Crank-Nicolson leap-frog scheme for numerically studying Cahn-219

Hilliard-Darcy model, which describes two-phase flow in porous medium or a Hele-Shaw cell. We exploited the220

artificial compression method and pressure projection method to achieve the totally decoupled of phase variable,221

pressure and velocity. Therefore, the designed CNLF-AC and CNLF-PR numerical methods are totally decoupled,222

linearized, second-order and energy stable. We rigorously prove the unconditionally stability for both CNLF-AC and223

CNLF-PR time stepping numerical scheme. In order to efficiently capture the interface between binary fluids, we use224

the Galerkin finite element method in space to obtain the fully discretization. The typical numerical tests are given225

to validate the accuracy and efficiency. Several interesting phenomenon are simulated to illustrate the robustness of226

the developed CNLF method, including spinodal decomposition in complex domain, interface singularities during227

topology transition, and viscous fingers in unform injection and rotational Hele-Shaw cell.228
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