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Abstract

We develop two totally decoupled, linear and second-order accurate numerical methods that are uncondition-
ally energy stable for solving the Cahn-Hilliard-Darcy equations for two phase flows in porous media or in a
Hele-Shaw cell. The implicit-explicit Crank-Nicolson leapfrog method is employed for the discretization
of the Cahn-Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique
and pressure correction methods are utilized, respectively, so that the Cahn-Hiliard equation and the update
of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the
schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the
numerical methods, including simulations of the Rayleigh-Taylor instability, the Saffman-Taylor instability

(fingering phenomenon).
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1 | INTRODUCTION

Interfaces of multiphase flows in porous media or Hele-Shaw cells are often times unstable. A prominent instability
in this setting is the so-called Saffman-Taylor instability which occurs in the displacement a viscous fluid by a less
viscous one in porous materials and exhibits fingering patterns—viscous fingering2. Such phenomena has important
applications in oil recovery, infiltration, and many other fields including tumor growth in biomechanics”, crystal
solidification®, electrowetting® and polymer liquid crystal techniques®. Due to the instability and the resulting
topological changes of the interface, classical sharp interface models such as the Muskat problem could be ill-posed.
We refrain from reviewing the vast literature in this direction. An alternative relaxation approach is the diffuse
interface method leading to models of the Cahn-Hilliard type. Diffuse interface models for two-phase flows in a
porous medium could be derived from variational principles”®, or from upscaling of the Cahn-Hilliard-(Navier)-
Stokes equations? U2 See a]5ol4M0l for derivation of the Cahn-Hilliard-Hele-Shaw system in a Hele-Shaw
cell.

In this article we focus on developing efficient and high-order accurate numerical methods for solving the Cahn-
Hilliard-Darcy equations (CHD), a popular phase field model for two-phase flows in porous media. The CHD
system is a strongly coupled nonlinear system that models interfacial phenomena with sharp transitions in narrow
layers (stiffness). There have been abundant numerical works addressing these challenges [ //1811212021122125024 Fep o
and Wise“! analyzed a fully discrete implicit finite element method for studying the CHD system, establishing
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2 | Y. Gao and D. Han

unconditional unique solvability and convergence of the numerical scheme. Han and Wang"® proposed a second-
order decoupled and unconditionally stable numerical method for solving the CHD system. The key idea for
decoupled computation is the pressure correction technique, while second-order convex-concave splitting of the
energy potential is utilized for maintaining the energy law. The scheme is however nonlinear requiring nonlinear
iterative solvers. In recent years a class of Lagrange multiplier approaches are developed for the design of high-
order, unconditionally stable, linear and decoupled time-stepping methods for gradient flow models. Popular
methods in this class include the scalar auxiliary variable (SAV) method?2, the invariant energy quadratization (IEQ)
method??, and many other variants. For the CHD equations Yang'® constructed a fully-decoupled second-order
linear numerical scheme in which zero-energy-contribution idea is introduced to break the coupling of velocity
and phase-field variable. Yang and Kim''Z exploited multiple auxiliary variables to conduct a simple and efficient
decoupled second-order convergent numerical scheme for numerically simulating the dynamics of the CHD system.

Despite the stability and high efficiency of Lagrange multiplier type approaches, they appear to suffer from poor
accuracy in practice, especially for long-time simulations“®, Moreover, the energy law satisfied by these methods
is in general in terms of new Lagrange multipliers, hence not a direct approximation of the original energy law.
Connecting the two forms of the energy law by post-processing is numerically demonstrated to improve the accuracy
of the method. The goal of this work is to develop a time-marching scheme with the following properties: linear,
fully decoupled and second-order accuracy in time, energy stable, easy-to-implement; and to apply the proposed
numerical scheme to gain insight into interfacial instability. There are two main ingredients in our design: the
combination of Crank-Nicolson and leapfrog time-stepping (CNLF) that gives a linear discretization of the Cahn-
Hilliard equation; the artificial compression and pressure projection techniques for incompressible flow leading
to decoupled and fast algorithms for the update of Darcy pressure. These strategies have been widely employed
in solving the Navier-Stokes equations?3??, the Stokes-Darcy equations®’, and the Cahn-Hilliard-Navier-Stokes
equations®13233, In particular, it is discovered in“2 that the CNLF discretization of the nonlinear term yields a linear
second-order accurate unconditionally stable algorithm for the Cahn-Hilliard equation. As far as we know, the CNLF
method is the only way to obtain a linear second-order scheme without resorting to extra Lagrange multipliers.
It is noted that our scheme does not need the grad-div stabilization in the fluid equations to obtain unconditional
stability, in contrast to the case of Navier-Stokes equations. In addition to accuracy and stability tests, we employ
the proposed numerical scheme in simulations of Rayleigh-Taylor instability and Saffman-Taylor instability in both
two dimensions and three dimensions. The numerical results demonstrate the ability of the numerical method in
capturing details of droplet splitting, the onset and evolution of viscous fingering.

The rest of this work are organized as follows. In Section 2 we provide the Cahn-Hilliard-Darcy model. In
Section 3| we present the second-order time-stepping methods and analyze their unconditional stability. In section 4,
we introduce the fully discrete schemes with finite element method for spatial discretization. In Section[5, ample
numerical experiments are reported to illustrate the accuracy and robustness of developed numerical method. Finally,
a brief summary is concluded in the last section.

2 | THE MODEL EQUATIONS
The dimensionless form of the Cahn-Hilliard-Darcy equations is as following ?'7
ReDa Ou R el
o + (I u=-Vp- @WM, (2.1a)
V-u=0, (2.1b)
@+V-(¢)—iv-((¢)V) (2.1¢)
Xor "= Pe " 1, e
p= (¢’ -9) A9, 2.1d)

where u is the fluid velocity, p is the pressure, ¢ is the order parameter taking values +1 in the bulk of each phase,
respectively, p is the chemical potential. Here Re represents Reynold’d number, Da is the Darcy number, € measures
thickness of the transition layer between the two phases, Pe is the diffusion Peclet number, v is the viscosity, pg is
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the density, II is the permeability matrix, x is the porosity, We is the ratio of modified capillary number to Darcy
number, m is the mobility. Throughout, we assume v(¢) and m(¢) are bounded below and above, i.e.,

O<v) <v(p) <1y, 0<m <m(p) <my. (2.2)

When 224 s small, one often neglects the transient effect in the flow field. In this study we take into account of the
transient effects. The time derivative of the fluid velocity is necessary for the design of second-order decoupled
time-stepping method, though the method also works for non-transient CHD albeit without decoupling. We note
that the CHD system is closely related to the Cahn-Hilliard-Hele-Shaw system22/211013413336]

Equipped with the following initial and boundary conditions

u-n=0, ondx(0,7T) (2.3a)
Vo -n=Vu-n=0, ondQdx(0,7T) (2.3b)
(u9 (yb)ll‘:() = (u()’ ¢0), in Q (230)

one can show that the system (2.1) satisfies an energy law:

-1
iE(ng) =— / ATl dx — — / m(P)V ul? dx, (2.4)
dt Q Pe Q

where the free energy functional E is defined as

E(¢) = ReDa / —Iulz dx + — / —F(¢)+ = |v¢>|2) (2.5)
Q 2 Q
with F(¢) = 1(¢* - 1)
3 | SECOND-ORDER TIME MARCHING METHODS

In this section we present the semi-discrete time-marching schemes that are discrete in time and continuous in
space. Borrowing the idea of Crank-Nicolson leap-frog (CNLF) method, we design two numerical schemes incorpo-
rated with the artificial compression and pressure projection method, respectively, and analyze their unconditionally
energy stability.

Let (-,-) and || - || denote the usual L? inner product and norm. Let 0 = to < #; < - - - < ty = T be a uniform partition
of [0, T] into subintervals J" = (t,,t,41), n =0, 1,...,N — 1, with time step size At =ty — ¢, = %
3.1 | The time-stepping scheme based on artificial compression approximation

In order to break the coupling of phase field variables and pressure saving computation cost, we adopt the
following artificial compression approximation“/=8 of the divergence-free condition

V-u=05Ap, (3.1

with a small constant § (=~ Ar?).
The semi-discrete CNLF-AC scheme for solving the system (2.1) is: given ¢"!, ¢", u"', and p"~', find the
solution ¢™*!, ', ™!, p™! such that

n+1 711 n+l n-1 1
¢ 2A? ((ani) -5V - (@) V) =0, (3.2a)
n+1 n—1 n+1 A n—1
Lk i 2¢ N zuzo, (3.2b)
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ReDa un+l _ un—l — un+l + un—l ;
oA + v(¢™II — +Vp" + qS V' = (3.2¢)
aAtA@P™ —p"H -V .u" =0, (3.2d)

74 where « is a user-specified stabilization parameter.

Remark 1. Through Eq. (3:2c) one can express the velocity ™! in terms of p” and ¢", i.e

= (B1- BT ) u"' =28, (VP + <zS”V,u )

Upon substitution, we can derive the equivalent formulation of (3.2a)),

n+l n—1
2 7 Af) +V- (qﬁ”(ﬁlu"’l - Bsz”)> -V - (m(¢")\Vu'") =0, (3:3)
where
n ReDa
i@ = ReDa + xAtv(¢IT-!’
o XAt
(o) = ReDa + XAIV((;S”)H*I ’ (34)

m(@") = fm(tb") + 52 (¢”)
75 Then, one can solve the Cahn-Hilliard equations (3.2a)-(3.2b) independently. Finally one solves the pressure Poisson
76 equation (3.2d). Therefore the scheme is a completely decoupled algorithm.
77 Next we show that the scheme is unconditionally stable.

Theorem 1. With o >
estimate holds for N > 2

the CNLF-AC scheme (3.2)) is unconditionally stable, and the following stability

2x
ReDa’

ReDa
—— P+ [P + = [IIVP 17 +11vpN 7]

4We 2ReDa D

aAt

[ 1YV 2 + e[V + [V >}

ReDa
< 7
< 4X

—IA - A
[(u VpY) - @®, vph] - ZH\/m(qb" V| - ZH\/V((;S” Y™ +uh|2 (3.5)

[+ [ P] + % [||¢1¢°||2+e<||v¢l||2+ ||v¢°||2)} 195 12 + 19572

Proof. Since

|:(¢”+1)2(¢ ) (¢n)2(¢n—1)2_2¢n+1¢n +2¢n¢nflj|
(¢! =17 = (¢"¢™" - 1], (3.6)

¢n+l +¢n 1 ¢ )¢n+1 ¢n 1

(@ :

m_m~

~1 n+l n—1
multiplying (3.2a)) and (3.2b) with test function At— u™ and %% respectively, integrating and performing
integration by parts, adding the resultants together, one obtains

X

e (||¢”+l PP =@ = 1P) + e[ VP + V2 - e[V + V)

-1 -1
67 n n|2 _ e At n i+l n—1 n\ _
+ o AtV | = S (8w, Vi) = o. 3.7)
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Likewise, testing (3.2) with Ar““# and (3.2d) with A performmg integration by parts, one obtains
by combining the results

ReDa n+ n n n— aAtz 1+ n n n—
™ [l P+ (a1 = (|| + [u ‘Hz)]+—[(||Vp P+ IV 1D = AIve 1P + (VP P)]
- P TS B Nt S 'Ar 1, onel
I Arly /@@ | - S CAVRaeTa
At
+ 51 (VP u") - (Vp", u" ] - (@™, Vp") - @", Vp" )]} (3.8)

Adding (3.8) to (3.7), we obtain

ReDa
4x

aAt2

[(Ilu”“l\2+ e |[2) = Clla” > + [l )] + [V 2+ VP 1) = VP + (V")

4W (II¢””¢” 1P~ "o - 1H2)+6(HV¢"”||2+HV¢"||2)—€(IIV¢”IIZ+IIV¢”’III2)

IA —
= I Iu | - A /ot +ur|

+ 7 { [(Vp"” ") = (Vp"u ] - (@™, Vph) - @, Vp" 1} (3.9)

Taking summation over n = 1 to n = N — 1, one derives

ReD Ar?
T (P P+ [ EACA 1||2+e(||v¢N2+||v¢N-l||2>] e [\ A
RD At
jX“mu 12+ 1)+ [nas &~ 1+ (Vo' | + V6| )] == VP 1P+ 195°1P]
71At 3 + n—
PeWelem(w e wu«w @™ +uh?
[(u Vp') - @’ Vphl+ = [(VpN uN D=L M) (3.10)

To conclude, one applies Cauchy-Schwartz inequality to the last two terms in (3.10)

ReDa A
- I(VpN w1 - (VM) < S [P P+ S [N+ ([N
8 2ReDa
Hence by taking o > R .- one obtains (3.5). This completes the proof. O
3.2 |  The time-stepping scheme based on pressure projection

The numerical scheme is totally decoupled and unconditionally stable rather than obeying the energy law of
the original system. To design the second-order numerical scheme with energy law, we introduce the second-order
pressure projection strategy!?2?4U4l to decouple the velocity and pressure in Darcy equation. In this subsection, we
develop an alternative second-order decoupled CNLF scheme that satisfies the discrete energy dissipation law.

The semi-disctre CNLF-PR scheme for solving the system is: given ¢"!, ¢", u"!, and p"!, find the solution
¢n+l , un’ un+1 ’pn+l such that

n+1 n—1 —n+l n—1 1
615 2Af’ V. (d)n%) _ EV (V") =0, (3.11a)
ntl g gl n+1 71
_pPrre ¢ PP it A (3.11b)

2
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ReDa a"*' —u™! w4y !
A + (™! T +Vp 4 @WV/L" =0, (3.11¢)
ReDa un+l _un+1 1 " ol
z 7 4Z " =0, 3.11d
. NI (P =p"") ( )
V-u=0. (3.11e)

Remark 2. We remark here that Canh-Hiilliard equation (3.11a))-(3.11b) and Darcy equation (3.11c) can be solved
separately since that the intermediate velocity #"*! can be expressed explicitly by #"~!, p"! and ¢", i.e.

-1
@™ = (8) — vIT By — 2B,(Vp"! +;V—e¢"w"). (3.12)

In order to eliminate intermediate variable #™*', we substitute (3.12)) into (3.11a) and (3.11d), then rewritten the
numerical scheme (3.11) as the equivalent formulation

. — il : ((b”(ﬁlu”" —Bsz"’l)) -V - (n(@")Vu")=0 (3.13a)
2At ’
n+1 n—1 n+1 n—1
n_(¢n)2%+¢n+€2u:0’ (3.13b)
ReDa 1 . e ReDa - w1  ReDa €
IV A G A vy vl Gl e L W v <Vp TR ) =0,  (3.13¢)
V-u =0, (3.13d)

where 31(¢"), 52(¢") and m(¢") are defined as in (3.4). It can clearly observe that the numerical scheme does not
involve intermediate velocity &', so there is no need to compute the intermediate variable in implementation.
Moreover, one can decouple the velocity and pressure by utilizing divergence-free condition (3.13d) for (3 .
Therefore, the presented CNLF-PR numerical scheme is totally decoupled in separately solving qS"”, w, u”*l, and

pn+l .
The CNLF-PR scheme is totally decoupled, and unconditionally stable.

Theorem 2. The CNLF-PR scheme (3.11) is unconditionally stable, namely , the solution ¢"*', ", u™!, p™!
satisfies the following energy dissipation law, forn > 2

gn+l gn < _

n-1 +ﬁn+l)H2' (314)

m( ¢n

V(")

with modified discrete energy law ™" defined as

ReDa
n+l _ n+12 n||2 n+l n 2 n+112 n|2
1 = B2 a2+ 2 [ L6 1+ e (196 P+ (901
XA? " ’
+ o [V 2+ 9 ] (3.15)

Proof. Taking the L? inner product of (3.11a)) and (3.11b) with At6 - 1" and — XE ¢M£¢H respectively, performing
integration by parts, adding the resultants, using (3.6), one obtains

4We[ (||¢"+'¢” P =llg"e"™" = 117) + e (IVe™ 2 + [[Ve"[I*) — e (IVe" > + V" 1?)

m(@") S (@@ ), vut) =0 (3.16)
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At
Multiplying (3.11c) with test function 7(12"” +u""), and integrating, we obtain

ReD 1
ZXCZ[Hl—lnH”Z _ ||un—l||2] + ZH"lAtH /V(¢”)(un_1 +l—ln+1)H2 + ZWeAt(d),lvﬂn’ﬁm-l +un—l>
At n—-1 —n+l n—-1
+7(VP ,u +u ) =0. (317)

Now we deal with the last term (Vp"!, ™! + u"') in (3.17). Taking the inner product of (3.11d) with

R XD APVp! applylng integration by parts divergence-free condition (3.11¢)) for ™! and u™!, and equahty
e
2b(a - b) = a* - b* — (a — b)?, we derive

At YA

= (n+l n-1 n—1
2 (@™ +u, Vp )+4ReDa 1

vpn+1 ”2 _ ||vpn—1 ”2 _ Hv(pnﬂ _pn—l)HZ} =0. (318)

By testing (3.11d) with V(p™! — p"!) and applying Cauchy-Schwarz inequality, one obtains

ReDa
4x

X 2 n+1 n—1y12
A ||V - <
1ReDa V@™ =p" ) <

||un+1_l—ln+1H2. (3'19)
Taking L? inner product of (3.11d) with 2ArVu"™*!, exploiting (3.11e) and 2a(a — b) = a® — b* + (a — b)*, we get

ReDa
4x

We add (3.17), (3.18), (3.19) and (3.20) together to obtain

[||un+1 HZ _ ||ftn+l HZ + ||un+l _l—ln+l ”2] =0. (3.20)

ReD. Ar?
L7 ) = (| HZ)} + X [(nw“uz + VP 1) = (192712 + 190" 2)
H_l At n—1 711+1 2 n n-1
/(@ )P+ —Ar(qs Vi@ u <0, (3.21)
9 Summing up (3.16) and (3.21), we obtain the modified energy law (3.14)). Thus we complete the proof of Theorem
91 O
« 4 | FULLY DISCRETE NUMERICAL SCHEMES
93 In this section we further discretize the space by continuous Galerkin finite element method for semi-discrete

o+ scheme (3.2) and (3.11).

9 Let 3y be a quasi-uniform regular partition of the triangular element with mesh size 4. We introduce the finite
w element spaces X, C L2, Y, C H'(2), Q) := Y;, N L3(Q) with L3(Q2) the L* subspace whose elements are of mean
o7 zero. Furthermore, We assume that, VY, C X, and X, and Qj, satisfy the inf-sup condition for the divergence
98 operator. Then, we construct the totally decoupled fully discretization CNLF-AC and CNLF-PR schemes as follows.
99 Algorithm 1: CNLF-AC scheme

o  Assuming that (u}™', ull, pi=', pi, ¢!, @) are given for n > 1, we compute (ut!, pitt, ¢+l 1) by the following
101 Steps.

Step 1: Find (¢!, 1) € Y, x Yy, such that

x(%,w) - (¢z<ﬁ1uz" ~ BV, Vi) + (m@bwz,wh) =0.Vde¥, @D

n+1

— n+1 —
. + o , w,,) - ((¢")2¢ + o wh) + (@ w) =0, Yy € Y, (4.2)

R
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where 31(¢}), B2(¢}) and m(¢") are defined as

) = ReDa +§6ADIZ(¢Z)H‘1 :
Bah) = ;AA;( T 43)
D) = o me) + B ()
Step 2: Find pj*! € Q), such that
oA (V@ - pi). Van) - @, Vi) =0, Vay € Y (44

Step 3: Find u*! € X, such that

ReDa n+1 —u' 1 n+l1 +u —1
(B i) + T (u(m)i o)+ (Vpfvi) + o (1K) =0, ¥w € Xy (45)
X 2A¢
Algorithm 2: CNLF- PR scheme
Assuming that ()1, pi=1, pil, ¢!, @) are given for n > 1, we compute (u*!, pi+l, ¢i+!, i) by the following

steps.
Step 1: Find (¢*!, ) € Y, x Yy, such that

n+l n 1
x(Bo5 0 )~ (o - 529, Vo) + (m<¢z>vuz,w,,) =0, Ve, (46
n+1 n—1 ¢n+1
(,uz,wh) e (v%, th) - ((¢h)2 w,,) + (¢ wn) =0, Ve € ¥y, 4.7)
where 31, 5, and m are given in (4.3).
Step 2: Find pj*! € Q), such that
1 ReD D =
2 (VO =) Van) = 5k (8= B i V) o+ =7 (091 + {60V, Vi) =0, Yy € Y
4.8)
Step 3: Find u}*! € X, such that
ReDa /., 1 il ReDa 1
2xAt( vh) * 2 (V (p P ) vh) 2xAr ( (51 = 62) uj,v h) 49)
ReDa €N '
+ A (B(vpit + VD, v) =0, Vv € X,

Remark 3. Both the CNLF-AC scheme and the CNLF-PR scheme can be discretized in space by any classical
methods. Following the same argument as the semi-discrete scheme, we note that the CNLF-AC time marching
combined with the finite difference method is provably unconditionally stable, while the CNLF-PR method with
the finite element spatial discretization (or any other methods) satisfies a similar energy law. Due to the use of
substitution of velocity in solving the Cahn-Hilliard equation, we are not able to prove energy stability for the
CNLF-AC finite element scheme. In numerical experiments we observe that both time-marching schemes effected
with finite element method are stable.

Remark 4. The proposed completely decoupled CNLF-AC and CNLF-PR numerical methods are three-level
methods. In order to start this numerical scheme, we need values from the first two steps. The approximation
(u),p), ¢}, 1)) should be precomputed in another suitable numerical scheme. For simplicity, we exploited backward
Euler method to compute (u}, p}, &}, 1) during implementation as reported in Sectionlj
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Remark 5. The developed CNLF-AC scheme (4.1)-(4.5) and CNLF-PR scheme (4.6)-(.9) are fully decoupled
linear algorithms. The existence of solutions is a consequence of uniqueness which is in turned guaranteed by the
unconditional energy stability.

Remark 6. We note that error analysis of the CNLF type schemes is a challenge beyond the scope of this work. We
defer the error analysis of fully discrete schemes to the future work. We refer to#243444316! for convergence analysis
work on phase field fluid, such as on Cahn-Hilliard-Hlew-Shaw system*2“2, Cahn-Hilliard-Stokes-Darcy“*, the

magnetohydrodynamics equations™>.

5 | NUMERICAL EXPERIMENTS

In this section, we perform several numerical simulations to validate the characteristic features and compatibil-
ity of the developed CNLF method for CHD system. We first verify the accuracy and discrete energy stability of the
proposed numerical algorithms. Then, we test the spinodal decomposition in ring domain, and interface instability
between binary fluids in two- and three-dimension, including interface pinch-off and viscous fingers phenomenon.
Moreover, we extend our numerical methods to numerically investigate the rotational Hele-Shaw cell in two and
three-dimensional spaces to further validate the good performance of the proposed CNLF method. Throughout, we
take Taylor-Hood element for velocity and pressure, and P, finite element pairs in two dimensions and P; in three
dimensions for ¢;, and uy, respectively. The preconditioned conjugate gradient method is used to solve the linear
elliptic equation with variable coefficient at each time step.

Example 1: Convergence and accuracy. To illustrate the second-order accuracy in time of CNLF-AC scheme
and CNLF-PR scheme, we compute the numerical errors between numerical solutions and accurate solutions on a
unit square domain €2 = [0, 1] x [0, 1] for CHD system. Set parameters ReDa, X, 7, €, m and stabilized parameters
« are one. We take the exact solution as follows

u(x,y,t)=(— sinz(wx) sin(2my) cos(?), sin2(7ry) sin(2mx) cos(t)),
1
p(x,y, 1) = cos(t)(xy — —),

4
o(x,y,1) = cos(t) cos(mx) cos(my).

The boundary condition functions and the source terms are chosen from the above exact solution.

The finite element pair P, — P; — P, — P, is taken for variables u, p, ¢ and u. The simulation is carried out until
T = 1.0. The refiner mesh size h = %28 is taken to guarantee that the error arising from spatial discretization is
negligible compared to temporal error. Figure ll‘ displays the L? errors at ¢ = 1.0 from time step size At = % refining
to At = %28 The numerical results clearly indicate that the proposed CNLF-AC and CNLF-PR schemes provide the
expected second-order accuracy in time for all variables.

Example 2: Energy dissipation on a disk domain.

In this test, we numerically simulate the evolution of a "flower” shape droplet to validate the energy dissipation of

the developed numerical scheme. The initial conditions are chosen as

¢ = —tanh((1/(x—0.5)2 + (y - 0.5)2 — 1 )(v/2¢)) (5.1

with r; = 0.25 + 0.1 cos(66). We choose parameters ReDa = 104 x=1, ﬁ =100, e = 0.02, We = 100, v = 0.01,
Pe =1,m=0.01, and a = 2 on a disk domain with radius 1. The numerical simulation is done up to 7' = 10.

The dynamical morphology of the phase variable are displayed in Figure 2]under A = 0.005. As shown in Figure
the flower firstly gradually evolves into a hexagon, then eventually deforms into a circle driven by surface tension
effectively. Figure [3 plots the discrete energy under different time step sizes. One can clearly observe that the
numerical scheme satisfies desired energy stability for all presented cases. Moreover, once the energy corresponding
to the equilibrium state circle is reached, the energy does not change anymore. It demonstrates that the proposed
decoupled numerical is unconditionally long time stable consistently well with the theory results.

Example 3: Spinodal decomposition in ring computational domain.
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FIGURE 1 Log-Log plot of the error in L? norm with different time step size At.
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FIGURE 2 Shape relaxation of surface tension.

In this numerical test, we consider the spinodal decomposition on a complex domain to further validate the
efficiency of the proposed CNLF scheme.

The computational domain is chosen as a ring domain Q = {(x,y)I0.3 < \/(x— 0.5)2+(y—-0.5)2 < 0.5}. The
parameters are taken as same as in Example 2. Parameters are chosen as ReDa = 107*, xy = 1, & = 100, € = 0.02,
We = 100, v =0.01, Pe = 1, m = 0.01 , and o = 2 on The average of phase variable ¢ over the computational domain
is approximately 0O, for precisely, the initial value of ¢ is specified by ¢ = ¢ —0.052r(x) — 1) with an average
composition ¢ = —0.05 and random r(x) € [0, 1]. Time step size is taken At = 0.005. The simulation is halted at

time 7 = 20. Figure ] shows the evolution of phase variable for binary fluids. As we observed, the phase separation
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FIGURE 3 Evolution of the discrete energy for flower under surface tension with different time.

10 1s well done through the domain is a complex ring. The expected simulation results illustrate the efficiency of our
161 numerical method.
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FIGURE 4 Snapshots of phase variable on a computational ring domain.

162 Example 4: Interface pinchoff in two and three dimensions.

163 In this test, we simulate the instability of fluid layers under Buoyancy-driven flow inside a Hele-Shaw cell*Z. The
1« physical problem is illustrated in Figure[5(a), in which a lighter fluid layer is initially sandwiched by a heavy fluid
s layer. Under gravity, the upper interface is unstable, the heavier fluid flows downwards and penetrates the layer
16 of light fluid. The lower interface is table and resits motion. Ultimately, the two interfaces meet and break up. To

o

o
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perfectly capture the dynamics of the interface, we introduce the mesh adaptive technique in space taking advantage
of the Galerkin finite element method.

The computational domain is a square domain 2 = [0, 27] x [0, 27]. Assuming the small difference in densities,
the Boussinesq approximation is applied to CHD system. More precisely, the buoyancy-driven term B := —g¢(p;—p2)
is added to the right side of Darcy equation (2.1b), here p(¢) = 252 $ + % and g is the gravitational acceleration
with g = [0, g]”.

The initial condition for order parameter is chosen as

1
Po(xy) = 5 &6, )& (% y) ~ 1, (5.2

with

€406,y = 1 + tanh <y ~m£(05+0.1 cos(x)))

V2e

where ¢ = 1 is associated to the light fluid with density p;, and ¢ = —1 is associated to the heavy fluid with density
p2. The contour of initial phase variable is exhibited in Figure[5(b)] We take parameters ReDa = 0.005, x = 0.5,
II=0.66,¢=0.05 We=4,Pe=100,m=1,a =2, p; =1, pp =5, and time step size Ar = 0.001. We consider
different viscosities al(¢) = “5%2 ¢ + “F*2 with vy = 1 corresponding to different viscous.

The characteristic snapshots of phase variable are reported in Figure[6 under g = 0.7365 for v : 1, = 1 : 5 and
vy : vp =1 :2.5. We can clearly observe the rising of the bubble of light fluid, bridge rupture and the formation of
satellite drops as expected. From Figures[6, we can observe that the small viscous ratio accelerates the dynamical
process and leads to more satellite drops after rupture. The numerical results are very consistent with those reported
in 19067124

We also simulate the interface pinch-off in three dimensions for binary fluids by setting the initial phase variable

4 1 1 1 (2
€x(x,y,2) = 1 &+ tanh <3€ (\/(2—3)2+()’—3)2:|: P (1 +C05(27rx)>>> ,

in computational domain [0, 1] x [0, 1] x [0, 1.5]. The physical parameters are the same as in a two-dimensional
case except for € = 0.03. Taking g = 0.7365, we draw the characteristic behaviors of iso-surface ¢ = 0 in Figure[7]at
different times. We clearly observe the topology transition of the interface, light bubble actually arise after pinchoff.
The ability to automatically capture topological changes verifies the effectiveness of the proposed numerical method
proposed CNLF method.

5 fluid 2: heavy

—_—m——
3 fluid 1: light
—/\

fluid 2: heavy

(a) schematic illustration (b) initial contour of ¢g

FIGURE 5 The configure of phase variable for the binary fluids.
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(a) p1 : po =1 : 8 and snapshots are taken at t = 4.0,7.0,9.0,9.2, 10.5.

'vmnl
I I

’
h

(d) w1 : p2 =1 : 2 and snapshots are taken at r = 3.0, 3.5,3.7,4.0,4.2.

(b) g1 : p2 =1:5 and snapshots are taken at ¢ = 3.0, 6.0, 6.5, 6.7, 8.0.

(c) 1 @ po2 =1:2.5 and snapshots are taken at r = 3.0,4.0,4.1,4.2,4.6.

FIGURE 6 The topology transition of phase variable for interface pinchoff behavior with respect to different

viscosity ratios under g = 0.7365.

Example 5: Viscous fingering with uniform injection.

We simulate the Saffman-Taylor instabilityl* to validate the effectiveness of our proposed CNLF method. The
instability phenomenon also called viscous fingers, occurs when a less viscous fluid is invalided into a more viscous
one, which significantly impacts the sweep efficiency of multiphase fluid through porous media.

Choose ReDa = 0.005, x = 0.5, II = 0.01, e = 1/128, We = 540, Pe = 100, m = 0.001, o = 5, At = 0.0001 and

computational domain 2 = [0, 0.5] x [0, 1.0]. We consider different viscosities c/(¢) =

| A=) v+ s
572 ¢ + H572 corresponding

to different viscous ratios under the absence of gravity. The initial conditions of the phase variable is given by

1

4
¢o(x,y) = —tanh (36 (y— 10 +

cos(16mx)

100

))

(5.3)



14 Y. Gao and D. Han

200889

(@ 1=0 (b) 1=03 (©) 1=05 ) r=10 (&) t=14

FIGURE 7 The topology transition of phase variable for interface pinchoff behavior in 3D at # = 0, 0.1, 0.2, 0.4, 0.6.

197 with a small perturbation on the fat interface between binary fluids. The boundary conditions for velocity are
18 imposed, i.e. uly—o = (0,v;,;) with the uniform injected rate v;,; = 50 of less viscous fluid. Figure E exhibits the
199 insurgency and elongation of the viscous finger phenomenon at different times.

200 We compared the length of fingers with different viscous ratios vy : v, =1:5,v; : v, =1:10and vy 1 1, =1 : 20,
201 and surface tension reported in Figure 8] which illustrates that the larger viscous ratio and small surface tension will
200 pronounce the longer finger. The expected finger morphologies are in accord with the numerical results shown in1612,

'YY Y |
[T Uy ) (Y

(@) vy :vy=1:51=02,04,06,09,12

aYaYaYa

U Ty (e (o

(b) v : v, =1:10,1=0.2,04,0.6,09,1.2

(©) v v, =1:20,1=02,04,06,09,1.2

FIGURE 8 Snapshots of phase variable for viscous fingering with respect to different viscosity ratios.

203 Example 6: Rotational Hele-Shaw cell. We investigate the interface instability between two fluids under
204 rtotational Hele-Shaw cell, culminating in the appearance of finger patterns*®!Z, In the simulation, we apply the
205 extra rotational force on the right side of momentum equation (2.1a). More precisely, the momentum equation is
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replaced by the following formulation

-1
ReDa % +UGIT U+ Vp + o 6Vp = C1 +6)(wr +2u(e X ),
e

where r = (x — 7,y —m), e = (0,0, 1). The initial condition for phase variable are used
do(x,y) = —tanh((v/(x— )2 + (y — )2 = R)/(v/2€)) (5.4)

where R = 1.3 + 0.002(1 + cos(136)) and 0 = arctan(%). The parameters are ReDa = 0.5, x = 0.5, ¢ = 0.035,
We = 10, Pe = 100, m(¢) = 1, vII"! =20, C = 7.5, w = 2 and At = 0.001. The deformation and evolution of finger
patterns, their corresponding velocity field, and pressure are displayed in Figure[9} We observed that on one hand,
the pattern grows along the radial direction; on the other hand, the body appears to be rotated, exhibiting a distinct
tilting of fingers at t = 0.6 and ¢ = 0.8.

We also discuss the influence of different viscous ratios for the fingering pattern by using v(¢) = Y52 ¢ + “3%2
and IT = 0.1. The pattern morphology of finger dynamics are drawn in Figure [I0 associated with vy =20, v = 15
and vy = 10 under fixed v, = 1. From Figure @, we can find that a smaller viscous ratio enhances the interfacial
instability and finger competition dynamics. These numerical behaviors are in good agreement with the numerical
findings obtained in'/

= B B B B

FIGURE 9 Snapshots of phase variable ¢ at r = 0.2,0.4,0.5, 0.6, 0.8 in a rotational Hele-Shaw cell

6 | CONCLUSIONS

In this paper, we propose a second-order Crank-Nicolson leap-frog scheme for numerically studying Cahn-
Hilliard-Darcy model, which describes two-phase flow in porous medium or a Hele-Shaw cell. We exploited the
artificial compression method and pressure projection method to achieve the totally decoupled of phase variable,
pressure and velocity. Therefore, the designed CNLF-AC and CNLF-PR numerical methods are totally decoupled,
linearized, second-order and energy stable. We rigorously prove the unconditionally stability for both CNLF-AC and
CNLF-PR time stepping numerical scheme. In order to efficiently capture the interface between binary fluids, we use
the Galerkin finite element method in space to obtain the fully discretization. The typical numerical tests are given
to validate the accuracy and efficiency. Several interesting phenomenon are simulated to illustrate the robustness of
the developed CNLF method, including spinodal decomposition in complex domain, interface singularities during
topology transition, and viscous fingers in unform injection and rotational Hele-Shaw cell.
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