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ABSTRACT: The so-called traditional approximation, wherein the component of the Coriolis

force proportional to the cosine of latitude is ignored, is frequently made in order to simplify the

equations of atmospheric circulation. For velocity fields whose vertical component is comparable

to their horizontal component (such as convective circulations), and in the tropics where the sine

of latitude vanishes, the traditional approximation is not justified. We introduce a framework for

studying the effect of diabatic heating on circulations in the presence of both traditional and non-

traditional terms in the Coriolis force. The framework is intended to describe steady convective

circulations on an f-plane in the presence of radiation and momentum damping. We derive a

single elliptic equation for the horizontal velocity potential, which is a generalization of the weak

temperature Gradient (WTG) approximation. The elliptic operator depends on latitude, radiative

damping, and momentum damping coefficients. We show how all other dynamical fields can be

diagnosed from this velocity potential; the horizontal velocity induced by the Coriolis force has a

particularly simple expression in terms of the velocity potential. Limiting examples occur at the

equator, where only the non-traditional terms are present, at the poles, where only the traditional

terms appear, and in the absence of radiative damping where the WTG approximation is recovered.

We discuss how the framework will be used to construct dynamical, nonlinear convective models,

in order to diagnose their consequent upscale momentum and temperature fluxes.
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1. Introduction24

The full Coriolis force contains terms proportional to the sine and cosine of latitude. The former25

are referred to as the traditional Coriolis terms, and couple the zonal and meridional momentum26

equations. The latter, referred to as the non-traditional Coriolis terms (NCTs), couple the zonal27

and vertical momentum equations. Scaling arguments have often been used to justify the neglect28

of the NCTs. For instance, in midlatitude, synoptic scale meteorology, it can be shown that the29

non-traditional Coriolis term in the zonal momentum equation is relatively small, and in the vertical30

momentum equation, it is negligible compared to vertical accelerations, gravity, and the vertical31

pressure gradient. Under these circumstances, the “traditional approximation" is made, whereby32

the NCT are neglected but the traditional Coriolis terms (TCT) are retained. However, near the33

equator, the cosine and sine of latitude approach unity and zero, respectively, and it becomes more34

difficult to justify the outright neglect of the non-traditional terms for circulations which are not in35

hydrostatic balance.36

The effect of the non-traditional Coriolis terms have been studied in different contexts. They have37

been considered in convection (Igel and Biello 2020), tropical waves (Ong and Roundy 2020; Ong38

and Yang 2022), convective momentum transport (LeMone 1983), oceanic dynamics (Marshall39

and Schott 1999), and idealized studies of the planetary boundary layer (Dubos et al. 2008). The40

work of Igel and Biello (2020) shows how the NCT and the pressure field induced by convective41

circulations create a purely horizontal force which acts on the circulation. In the framework42

described below, this horizontal force will manifest as a secondary horizontal circulation added43

to the primary convective circulation. The non-traditional Coriolis terms have also shown to be44

important in shallow water approximations (Stewart and Dellar 2013, 2012, 2010). In addition, a set45

of equations that retain the non-traditional Coriolis terms, and possess conservation principles for46

mass, energy, and potential vorticity were derived in Tort and Dubos (2014). However, it is largely47

case that the influence of the NCTs on atmospheric flows remains incompletely understood and48

poorly appreciated. Studies of the non-traditional terms tend to conclude that, when considered49

diligently, the NCTs should not be ignored in low-latitude meteorological situations with the50

potential for or the occurrence of sustained vertical motion.51

Our original intention for this work was to study the NCTs only in a broad way. We wanted to52

introduce a mathematical framework for understanding tropical dynamics under the influence of the53
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NCTs that would be applicable from the synoptic scales to the mesoscales and would not necessarily54

invoke wave dynamics, the latter having been the focus of most previous work on the NCTs. To do55

so, we introduced a scaling of the incompressible Euler equations on an equatorial beta-plane that56

would allow us to study the NCTs’ effect on the corresponding steady state equations. However, we57

realized that our analysis could easily be extended to the Euler equations at an arbitrary latitude,58

and the case where only the non-traditional terms are present could be obtained by evaluating the59

theory at zero latitude.60

To yield a general, albeit linear, framework, we consider the impacts of radiation and dissipa-61

tion of momentum on the dynamics. The latter allows the possibility of steady state solutions.62

Consideration of the former is motivated by mesoscale studies of tropical systems which tend to63

emphasize the important role of radiation, especially in horizontal gradients of radiative heating64

(Wing et al. 2017), and by its fundamental role in the energy balance of the tropical atmosphere65

(Manabe and Strickler 1964). As a consequence of our choice of time and length scales, and in the66

absence of radiation, there is a simplification of our equations that yields one of the fundamental67

features of the weak temperature gradient (WTG) approximation: the direct diagnosis of vertical68

velocity from the heating. The WTG approximation has been applied on mesoscales and synoptic69

scales in the tropics to understand, among other things, tropical cyclone formation (Raymond et al.70

2007; Adames et al. 2021), the Madden-Julian Oscillation (Chikira 2014), and the Walker Cell71

(Bretherton and Sobel 2002). At first glance, it may be counterintuitive that convection can be72

described by a diagnostic equation for the vertical velocity, since it is understood to be achieved on73

meso and synoptic scales in the tropics. However, balance of the form of WTG requires that the74

waves travel across the region of interest more quickly than the circulation transports the fluid. In75

this framework, the gravity wave travel time across an isolated convective element is much faster76

than a convective turnover time, which are the timescales under consideration. This time scale77

separation means that gravity waves quickly re-stratify the potential temperature (or buoyancy) in78

the vicinity of the convection, so that the time derivative of the buoyancy equation can be neglected79

in favor of its balanced state (a radiation modified version of WTG). A WTG balance on convective80

scales was first developed by Klein and collaborators and was summarized nicely by (Klein 2010).81

More recently, a diagnostic equation for the vertical velocity in deep convection was also derived82

by (Hittmeir and Klein 2018) using the method of asymptotic scale analysis.83

4



The derivation of our framework will begin with a nondimensionalization and scale analysis, but84

will set aside a systematic asymptotic analysis for the future. We split our work into two parts. Here85

in Part I, we derive sets of diagnostic equations for velocity, pressure, and buoyancy perturbation.86

We consider three distinct cases to elucidate the effect of the Coriolis force on convective flows;87

when the full Coriolis force, only the non-traditional terms, or only the traditional terms are88

retained. The last two cases occur at the equator and pole, respectively. Since the equatorial,89

non-traditional Coriolis case is of the most interest to us, it is presented fully in Part II (Marsico90

et al. In Preparation).91

This paper is organized as follows. In section 2, we discuss the velocity, and time scales for which92

the incompressible Euler equations yield solutions corresponding to equilibrated circulations on93

atmospheric convective length scales, as would be used for sub-grid convective parameterizations94

in large scale computations. Since this is a preliminary framework, we focus on flow strengths95

that can be described by linear theory because they are weak enough. The effects of turbulent96

dissipation on sub-grid scales are often approximated by drag damping, or enhanced, turbulent97

diffusivity. In our model, we will use linear dissipation on convective scales to account for the98

enhanced diffusivity associated with sub-grid turbulence. We also focus on time scales where99

the zonal and meridional components of the full Coriolis force balance the pressure gradients100

and damping, while the vertical component balances the vertical pressure gradient, damping, and101

buoyancy.102

In order to solve the resulting steady linear equations, it is necessary to introduce damping, and103

we consider two forms: first, constant drag damping in the momentum, and Newtonian cooling104

in the buoyancy equations; second, diffusive damping in the momentum equations and Newtonian105

cooling in the buoyancy equation. In section 3, we use the Helmholtz decomposition to separate the106

velocity field into two components. The poloidal component of the velocity field is horizontally107

convergent and directly responds to the heating; we thus describe it as the primary circulation108

(Zhang and Schubert 1997). A purely horizontal velocity field is generated from the poloidal109

circulation, the Coriolis force, and the momentum damping; we describe it as the secondary110

circulation.111

There are two significant physical predictions of our framework regarding the effect of NCT112

and radiation. The first is expressed by equation (18), which arises as a balance between the “net113
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Coriolis force” (Igel and Biello 2020) and momentum damping. It provides a simple relationship114

between the vertical derivative of the stream function of the secondary circulation and the derivative115

of the potential function of the primary (poloidal) circulation along the axis of rotation of the Earth.116

The second is expressed in equation (19), where the potential of the primary, poloidal circulation is117

related to the latent heating through an elliptic operator. In the absence of radiation, this expression118

reduces to the weak temperature gradient approximation; that is to say, the vertical velocity is119

proportional to the latent heating. Radiation allows the effect of latent heating to be felt away from120

its source, thereby providing a mechanism for descent or ascent away from the center of convection.121

In section 4, we contrast solutions to these equations at the equator (purely NCT) versus the poles122

(purely TCT). In section 5, our results are summarized.123

2. Length and time scales of the Primitive Equations appropriate to convective circulations124

Our framework describes steady, convective circulations under the influence of buoyancy, NCT,125

TCT, and damping. In this and our companion manuscript the framework will be linear. Our126

reasoning is that nonlinearity will primarily create turbulent dissipation (modelled as a linear127

damping), and can be mostly accounted for by eddy diffusivity. Future work will extend these128

results to circulations where advective nonlinearities cannot be neglected, yet the weak temperature129

gradient will be maintained. It is the versatility of the WTG simplification that allows for simple130

solutions in both linear and nonlinear steady circulations. Furthermore, in the linear regime, the131

various properties of the circulation and buoyancy response to diabatic heating can be straightfor-132

wardly associated with their sources and sinks, making this framework a natural starting point for133

a dynamical convective parameterization.134

In the following paragraphs, we non-dimensionalize the equations of motion and describe the135

relevant spatial, temporal, velocity and buoyancy scales. Although we will ultimately work with136

a linear and dimensional model, the discussion of non-dimensionalization is important to ensure137

our framework remains consistent with flows we seek to describe. Furthermore, we envision this138

framework as the first step toward a multi-scale analysis of the nonlinear effects of convection on139

meso- and synoptic scale circulations in keeping with (Klein 2010), (Hittmeir and Klein 2018), and140

(Hirt et al. 2023). A careful multi-scale analysis must begin with a clear non-dimensionalization141
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of the equations of motion in order to identify the relevant small parameters used in the asymptotic142

method. Therefore, with an eye to future applications, we proceed with the scale analysis.143

We begin with the incompressible, stratified, damped Euler equations on an f-plane at a latitude144

_,145

mD

mC
+u · ∇D−2ΩE sin(_) +2Ωcos(_)F = −

mq

mG
− 31D, (1a)

mE

mC
+u · ∇E +2ΩD sin(_) = −

mq

mH
− 31E, (1b)

mF

mC
+u · ∇F−2ΩD cos(_) = −

mq

mI
+ 1− 31F, (1c)

�1

�C
+#2F = ( (1d)

∇ ·u = 0, (1e)

where 1 = 6\/\0 is the buoyancy perturbation, \ is the potential temperature perturbation, \0 is a146

reference potential temperature, 31 is the damping coefficient due to the sub-cloud scale turbulent147

dissipation (or damping operator, if e.g. a drag parameterization is used), #2
= (6/\0) (3\̃/3I) is148

the squared buoyancy frequency of the unperturbed atmosphere, \̃ (I) is the background potential149

temperature stratification, and q = ?/d0 + 6I is the Montgomery potential for a constant density150

fluid, d0. The buoyancy source is related to the diabatic heating through ( = (6/\0)(\ . Since we151

consider an idealized theoretical framework, we use the incompressible equation (1e), instead of152

the anelastic continuity equation.153

To non-dimensionalize the equations, we introduce the length, time, velocity, buoyancy, pressure154

and latent heating scales, (!,),*, 10, q0, (0), as follows: (G, H, I) = ! (G′, H′, I′), C = )C′, (D, E,F) =155

* (D′, E′,F′), 1 = 101
′, q = q0q

′, and ( = (0(
′. Since the scaling is isotropic in the vertical156

and horizontal directions, the resulting vertical momentum equation will not express hydrostatic157

balance. Instead we allow for the possibility that all of the linear forces participate in the dominant158

balance at lowest order. Rewriting equations (1a)-(1e) in terms of the non-dimensional variables159

7



(and dropping primes for readability) we find160

mD

mC
+
*)

!
u · ∇D−2Ω) sin(_)E +2Ω) cos(_)F = −

q0)

!*

mq

mG
− 31)D, (2a)

mE

mC
+
*)

!
u · ∇E +2Ω) sin(_)D = −

q0)

!*

mq

mH
− 31)E, (2b)

mF

mC
+
*)

!
u · ∇F−2Ω) cos(_)D =

q0)

!*

(
−
mq

mI
+
10!

q0

1

)
− 31)F, (2c)

10

#2*)

[
m1

mC
+
*)

!
u · ∇1

]
+F =

(0

#2*
( (2d)

∇ ·u = 0. (2e)

As with all asymptotically inspired methods, one attains a simplified model by seeking a dominant161

balance between different terms in the primitive equations. However, the vertical and horizontal162

length scales under consideration are fixed by the troposphere height. Choosing ! = 7km allows163

for deep convective circulations (order 2!) as well as developing convection (order !/2).164

The Coriolis force participates in the dominant balance when 2Ω) ≥ 1, which means that we165

consider time scales of ) = (2Ω)−1 ≈ 2 hours or larger. Notwithstanding that on a 2 hour time scale166

the time derivatives in the momentum equation may not necessarily be negligible, the balanced167

circulations we consider herein can be thought of as either the equilibration of a convective168

circulation under Coriolis and damping, or a quasi-stationary, slowly evolving circulation pattern169

due to latent heating.170

The relative strength of the nonlinear terms to the linear terms is measured by the Rossby number171

*)

!
=

*

2Ω!
≡ Ro.

A linear regime is applicable if the Rossby number of the flow is less than one. So Ro < 1 implies172

the velocity * is less than the scale 2Ω! ≈ 1m/s. From the perspective of small scale turbulent173

motions in atmospheric convection, this is indeed a small velocity. However, we expect that this174

velocity scale is appropriate to the large scale envelope of convection, and that the smaller scale,175

faster motions contribute to the sub-cloud enhanced turbulent diffusion.176

Buoyancy driven circulations of low Mach number (the ratio of the characteristic speed to177

the speed of sound) result in incompressible (or anelastic) velocity fields to a high degree of178
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approximation, and this is maintained by the pressure gradient. Therefore we expect that the179

buoyancy and pressure perturbation are the same order of magnitude, 10 = q0/!. Indeed this is180

often observed in simulated active convection (Jeevanjee and Romps 2016; Peters 2016). We also181

expect that the pressure gradient and buoyancy be of the same order of magnitude as the Coriolis182

force, thereby q0 = (*!)/) = Ro(!2)/)2, which yields the buoyancy scale183

10 = Ro
!

)2
.

184

Using *) = Ro ! we can estimate the coefficient multiplying the temperature transport term on185

the left side of equation (2d) to be186

10

#2*)
=

Ro !

)2

1

#2Ro!
= (#))−2 ≡ n2,

where the last equality is the definition of n . Since the Brunt Vaisala frequency in the troposphere187

is approximately # = .02s
−1, and using a Coriolis time scale ) ≈ 7200s we find188

n ≈
1

144
,

so that the temperature advection term on the left hand side of (2d) is extremely small compared to189

the vertical transport of the background stratification (the F term on the left hand side of equation190

(2d)). Effectively this means that gravity waves are extremely fast compared with advection.191

Therefore, the weak temperature Gradient approximation, where the vertical velocity balances the192

diabatic heating in a diagnostic equation, is an excellent approximation even on convective scales.193

We also expect that the momentum damping will balance the Coriolis force, so that the damping194

rate, 3−1

1
, is of the order ) ≈ 2 hrs.195

These scale arguments establish the time, length, and diabatic heating scales for which the linear,196

steady approximation provides an excellent description of the circulation. Convective circulations197

do not necessarily satisfy these constraints throughout their development, but the linear steady198

theory can still provide insights to the induced circulation, even if nonlinear advection would tend199

to slowly evolve such a circulation.200
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201

a. Radiative Damping202

We are ultimately interested in the effect that radiative cooling has on steady state circulations203

and can model its effect by introducing a Newtonian cooling term of the form −321 to the right204

hand side of equation (1d). This term would then be non-dimensionalized as −(3210)/(#
2*)1205

on the right hand side of equation (2d). Inclusion of this radiative term in no way changes any206

of the previous scaling arguments. Now, if the diabatic heating source and radiative sink on the207

right hand side of the temperature equation are to be in balance with the vertical velocity, then208

(0 ≈ 3210 ≈*#2
= Ro×1m/s× (.02B−1)2

= 1.44 m/s2
hr

−1. At the small buoyancy perturbations209

considered here, this balance requires a somewhat large Newtonian cooling parameter, 32.210

3. Linear Convective WTG with full Coriolis force211

In this section we derive the framework of the Linear Convective WTG with the full Coriolis212

force. As we discussed above, we consider the linear, steady versions of equations (1a) - (1e) with213

a heating source and linear cooling in the temperature equation, and damping in the momentum214

equations. For the momentum equations, we will discuss both linear drag and enhanced turbulent215

diffusion.216

In order to elucidate the physics of the problem, as well as simplify the mathematics, we will217

begin by using the Helmholtz decomposition to separate the horizontally convergent flow which218

directly responds to diabatic heating from the horizontally non-convergent flow which arises as219

a balance between the Coriolis force, and the momentum damping. The theory will consist of220

an elliptic (Poisson-like) equation for the horizontal velocity potential with a source term given221

by the diabatic heating. We will show how the other variables, the horizontal stream function,222

pressure, buoyancy, and the three components of the velocity, can all be diagnosed from this223
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velocity potential. The linear convective WTG equations with Coriolis force are224

−2Ωsin(_)E +2Ωcos(_)F = −
mq

mG
− 31D (3a)

2Ωsin(_)D = −
mq

mH
− 31E (3b)

−2Ωcos(_)D = −
mq

mI
+ 1− 31F (3c)

#2F = (− 321, (3d)

mD

mG
+
mE

mH
+
mF

mI
= 0, (3e)

where 31 is the momentum damping coefficient, and 32 is the radiative damping coefficient. We225

first consider the case when 31 and 32 are due to Newtonian drag and radiative damping and then226

show how the theory can be easily extended to account for turbulent diffusion.227

To describe the analytic solution of these equations, we follow the Helmholtz decomposition228

(Helmholtz 1867; Lebovitz 1989), introducing the stream function, k, and velocity potential, Φ,229

and write the velocity field as230

u = (−ΦG −kH)i+ (−ΦH +kG)j+Fk (4)

The horizontally irrotational component, described by Φ, can converge in the horizontal direction231

(it was described as horizontally confluent in (Igel and Biello 2020)) and constitutes a poloidal232

vector field which is directly tied to the vertical velocity through a kinematic expression. The233

horizontally rotational component is described by a stream function, k, and therefore has no234

convergence in the horizontal plane. Its relationship to the velocity potential is a consequence of235

physics, as we will describe below. Setting the divergence of equation (4) to zero yields the well236

known Poisson equation for the velocity potential in terms of the vertical velocity237

∇2

ℎΦ = FI, (5)

where ∇2

ℎ
is the Laplacian operator in the horizontal (G, H) direction alone. Taking the vertical238

component of the curl of the velocity field, yields the (also) well known expression of the stream239
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function in terms of the vertical component of vorticity240

∇2

ℎk = EG −DH . (6)

We now derive an equation for Φ in terms of ( by eliminating the pressure and buoyancy from241

the momentum equations. We will then use equations (4)-(6) to write this equation in terms of Φ.242

Differentiating equation (3a) with respect to I, and equation (3c) with respect to G and eliminating243

q yields244

31DI −2Ωsin(_)EI +2Ωcos(_)FI = −2Ωcos(_)DG − 1G + 31FG . (7)

Differentiating equation (3b) with respect to I, equation (3c) with respect to H and eliminating q245

yields246

2Ωsin(_)DI + 31EI = −2Ωcos(_)DH − 1H + 31FH . (8)

Now we use equation (3d) to eliminate 1 from (7)247

31DI −2Ωsin(_)EI +2Ωcos(_)FI = −2Ωcos(_)DG +
#2FG − (G

32

+ 31FG (9)

and from equation (8)248

2Ωsin(_)DI + 31EI = −2Ωcos(_)DH +
#2FH − (H

32

+ 31FH . (10)

Notice 32 appears in the denominator in both equations (9) and (10), and this term would be249

singular if 32 were zero. In this limit, the WTG approximation is recovered for F and therefore Φ,250

i.e. #2F = (. Upon differentiating equation (9) with respect to G, equation (10) with respect to H,251

adding the results, taking the I-derivative, and making some rearrangements we obtain252

31(DGI + EHI) +2Ω
{
sin(_) (DHI − EGI) + cos(_)

[
FGI +∇

2

ℎD
]}

=

(
#2 + 3132

)
∇2

ℎ
F−∇2

ℎ
(

32

. (11)

Using the incompressibility constraint, (11) simplifies to253

−3132FII −2Ω32

{
sin(_) (EGI −DHI) + cos(_)

[
EGH −DHH

]}
=

(
#2 + 3132

)
∇2

ℎF−∇2

ℎ(. (12)
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One can recognize the vertical component of vorticity, EG −DH, in both Coriolis terms on the left254

hand side of (12), which we will eliminate in favor of the Laplacian of the stream function. The255

vorticity is operated on by the derivative256

m

m=
≡ cos(_)

m

mH
+ sin(_)

m

mI
. (13)

This is the directional derivative parallel to the direction of the North polar axis (thus our choice257

of ‘=’) as viewed from the tangent plane at latitude _. A way to visualize this derivative is that, at258

an latitude _, the derivative is taken in a direction which points toward the North Star. Taking the259

derivative of (12) with respect to I, we can use (5) to replace F in favor of Φ, and upon rearranging260

the expression we find261

(
#2 + 3132

)
∇4

ℎΦ+ 3132∇
2

ℎΦII = ∇2

ℎ(I −2Ω32∇
2

ℎk=I . (14)

Next, we invert one instance of the horizontal Laplacian throughout the expression (14). The re-262

sulting expression would have an arbitrary harmonic function, which is the kernel of the Laplacian,263

added to the right hand side. However, all harmonic functions either grow at infinity (corresponding264

to solutions growing away from the source) or are singular at a point in the domain (corresponding265

to solutions which blow up at a point). Therefore we can set the harmonic function to zero, and we266

arrive at one expression which relates the horizontal stream function, the horizontal convergence267

(potential Φ), and the diabatic heating268

(
#2 + 3132

)
∇2

ℎΦ+ 3132ΦII = (I −2Ω32k=I . (15)

We have chosen to work with the potential for the horizontal convergence, Φ, in order to attain269

an expression which does not contain any horizontal derivatives of (. In the companion paper,270

we consider diabatic heating profiles with horizontal discontinuities, such as would be expected271

during cloud formation, and wish to avoid second derivatives of discontinuous functions. By272

setting 32 = 0, we recover the WTG approximation from (15).273

In order to construct a single elliptic PDE for Φ, we need another expression relating the stream274

function to the potential. Note that the derivatives we have used to arrive at (15) construct the275
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horizontal components of the vorticity equation. Subtracting the H-derivative of (3a) from the276

G-derivative of (3b) eliminates the horizontal pressure gradient and describes vertical component277

of the vorticity equation, which is not directly affected by buoyancy278

2Ω
{
sin(_)

[
DG + EH

]
− cos(_)FH

}
= −31

[
EG −DH

]
. (16)

Taking the I-derivative of (16) and replacing the components of the velocity with the stream279

function and potential280

−2Ω
{
sin(_)∇2

ℎΦI + cos(_)∇2

ℎΦH

}
= −31∇

2

ℎkI . (17)

Again, using the expression for the directional derivative along the north polar axis, inverting an281

instance of the horizontal Laplacian on each term, and swapping the sides of the equality yields282

the extremely simple relationship relating the stream function to the velocity potential283

31

mk

mI
= 2Ω

mΦ

m=
. (18)

Expression (18) is elegant, deceptively simple, and merits some elucidation. Although the284

right hand side is measured in units of acceleration, it arose from the vertical torque due to the285

Coriolis force acting on a poloidal velocity field described by Φ (Igel and Biello 2020). From the286

Helmholtz decomposition, the poloidal component of a velocity field is uniquely determined from287

its vertical component, yielding the convergence in the horizontal plane which compensates for288

the vertical circulation; that is to say it is the solution of equation (5) substituted into (4). This289

is a significant relationship between the convective, primary circulation described by Φ, and the290

horizontal, secondary circulation described by the stream function, k. Its derivation was motivated291

by the computation in (Igel and Biello 2020), of the divergence free portion of the Coriolis force292

induced by a convective velocity field. When this divergence free component of the Coriolis force293

is balanced by momentum drag (or dissipation), equation (18) results.294

The left hand side of equation (18) arises from the damping of the vertical component of the295

vorticity. That vertical component of vorticity is, itself, due to the secondary circulation, described296

by k, in the horizontal plane (again refer to equation (4)). Therefore, equation (18) is the statement297
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that the vertical torque due to the Coriolis force acting on the convective circulation must be in298

balance with the torque associated with vorticity damping (later dissipation); in the absence of299

this damping (31 = 0) there is no balanced circulation. Since we have chosen to model damping300

linearly, then the response, k, corresponds to a secondary horizontal circulation which is linearly301

related to the primary poloidal (convective) circulation. That the secondary circulation is singular302

in the damping coefficient, 31, is notable, but not surprising given that equilibrium flow must be303

in, or nearly in, force balance. Ultimately, in any convective model, it will be the upscale fluxes304

of momentum, and thermodynamic quantities that are of interest to convective parameterizations,305

and we will discuss these fluxes in a subsequent manuscript.306

We can now eliminate k from equation (15) using equation (18) to arrive at an elliptic equation307

for the velocity potential in terms of the diabatic heating308

∇2

ℎΦ+
3132

#2 + 3132

[

ΦII +

(
2Ω

31

)2

Φ==

]

=
(I(

#2 + 3132

) . (19)

From equations (19) and (18), along with the relations (4) and (5), we can construct all three309

components of the velocity field from a diabatic heating source. There only involves one elliptic310

inversion to compute Φ from equation (19), a vertical integration of equation (18) to compute k311

k = −
2Ω

31

∫ ∞

I

mΦ

m=
3I′ (20)

where the constant of integration is chosen so that the horizontal velocity vanishes at infinite height,312

and a vertical integration of equation (5),313

F =

∫ I

0

∇2

ℎΦ 3I′, (21)

where the constant of integration is chosen so the vertical velocity vanishes at I = 0. Taking the314

necessary partial derivatives of Φ and k in (4), we have then computed horizontal components of315

the velocity field.316

From the buoyancy equation (3d), we could easily compute 1 as the deviation of the vertical317

velocity from WTG, but this expression would be singular in the radiative damping parameter, 32,318

and not illuminating in the WTG limit. Instead, by subtracting the I derivative of the meridional319
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acceleration equation (3c) from the H derivative of the vertical acceleration equation (3d) eliminat-320

ing k using equation (18), and performing some antiderivatives, we arrive at the expression for the321

buoyancy in terms of the velocity potential322

1 = −31

∫ ∞

I

[

∇2

H
Φ+ΦII +

(
2Ω

31

)2

Φ==

]

3I′, (22)

where we have chosen the constant of integration so that the buoyancy vanishes at infinite heights.323

This equation (22) makes the effect of rotation on buoyancy explicit through the presence of the324

last term in the integral, and it will be useful when constructing upscale fluxes for convective325

parameterizations. To determine the pressure perturbation, q, we vertically integrate equation326

(3c) using the condition that q vanishes at infinite height327

q =

∫ ∞

I

[31F−2Ωcos(_) D− 1] 3I′. (23)

The exact expression for q in terms of Φ or ( is not particularly illuminating, so we leave equation328

(23) as it is. We note, however, that in the absence of buoyancy and damping, equation (23)329

expresses the vertical geostrophic balance discussed by Igel and Biello (2020).330

a. Diffusive Momentum Damping331

Now we briefly examine the equations when the damping in the momentum equations takes the332

form of enhanced turbulent diffusivity. Effectively, this corresponds to replacing the momentum333

drag coefficient with the diffusion operator; 31 →−`∇2 and every instance of 31 in the denominator334

should be interpreted as the inversion of the Laplacian. In this case, the equation for the velocity335

potential becomes336

[(
#2 − `32∇

2

)]
∇2∇2

ℎΦ−
32

`

[
`2∇4

ΦII + (2Ω)2
Φ==

]
= ∇2(I . (24)

The equations for the other variables follow in much the same manner, and we do not record them337

here as they don’t necessarily provide any more insights into the solutions. However, we note that338

in the case of diffusive damping, we must solve elliptic equations for all the variables, whereas for339

linear damping we need only solve a single elliptic equation for Φ.340
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4. The Traditional and Non-Traditional Coriolis Terms341

We now look at the two cases where either only the NCTs or the only the traditional Coriolis342

terms (TCTs) are retained in equations (3a)-(3e). The former case occurs at the equator, and is343

obtained by setting _ = 0, and m/m= = m/mH. The latter case occurs at the north pole, and is344

obtained by setting _ = c/2, and m/m= = m/mI. For the purposes of this discussion, instead of using345

the equation for the velocity potential (19), we will recast it in terms of the vertical velocity by346

substituting (5).347

Specifically, at the equator, only the non-traditional Coriolis terms are active, and the elliptic348

equation for the vertical velocity becomes349

[
#2 + 3132

]
∇2

ℎF + 3132

[

FII +

(
2Ω

31

)2

FHH

]

= ∇2

ℎ(, (25)

while the kinematic equation for the stream function in terms of the velocity potential becomes350

31

mk

mI
= 2Ω

mΦ

mH
. (26)

There are two cases of note that occur at the equator. In the case of 32 = 0, the equation for the351

vertical velocity is independent of latitude, and simplifies to ∇2

ℎ
F = #−2∇2

ℎ
(, whose solution is352

F = #−2(. Thus, in the absence of radiative damping, we obtain the WTG approximation (Hittmeir353

and Klein 2018), the direct diagnosis of vertical velocity from heating.354

The second case occurs if both 31 and 32 are non-zero, but their product is small enough to355

neglect 3132, corresponding to 3132 << #2. In this case, the equation for the vertical velocity at356

the equator becomes357

∇2

ℎF +
4Ω

2

#2

32

31

FHH =
1

#2
∇2

ℎ(, (27)

which is an equation that would allow for the vertical velocity to be diagnosed directly if not for358

the term proportional to 32/31. So in the case of non-zero radiation, we have an equation for the359

vertical velocity similar to WTG, but with a modification induced by the presence of radiation and360

the non-traditional Coriolis force terms that requires the inversion of an elliptic operator. Thus,361

radiation makes the velocity a non-local function of the heating, particularly in the meridional362

direction.363
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We point out that there are cases that we have not considered where vertical non-locality induced364

by the presence of the FII term in equation (25) is important (Kuo and Neelin 2022). Our focus,365

however, is on the impact of the non-traditional Coriolis terms, which manifest themselves through366

the FHH term in equation (25). By considering the case where 3132 << #2, we can isolate the367

impact of the NCTs alone.368

Irrespective of the momentum damping coefficient, at the equator the secondary horizontal369

circulation described by k is proportional to the meridional derivative of Φ - i.e. the horizontal370

circulation induced by the NCT at the equator is proportional to the meridional component of371

the poloidal circulation. Thus we expect poloidal flows which are symmetric about the equator to372

induce secondary circulations which are antisymmetric about the equator. This symmetry breaking373

has important implications for upscale momentum fluxes which we will pursue in future work.374

At the north pole, the vertical velocity satisfies375

[
#2 + 3132

]
∇2

ℎF + 3132

[

1+

(
2Ω

31

)2
]

FII = ∇2

ℎ( (28)

and the stream function is proportional to the velocity potential376

31k = 2ΩΦ. (29)

The relationship of the stream function to the velocity potential in equation (29) describes the377

well known behavior of geostrophically balanced flows: areas of horizontal convergence of the378

poloidal flow will drive cyclonic rotation. Usually this occurs in the lower troposphere where the379

flow is convergent, while the compensating, divergent, anticyclonic circulation occurs in the upper380

troposphere.381

In contrast to the NCT equation in (25), where the non-WTG terms (those proportional to 32)382

manifest as both horizontal and vertical derivatives of F in the elliptic operator, in the case of TCT,383

given in equation (28), the additional term is only proportional to vertical derivatives of F. This384

FII term generates a vertically non-local response to localized diabatic heating, and it is the effect385

of damped gravity waves generated by a convective heating source. The coefficient multiplying the386

vertical derivatives in equation (28) is a complicated combination of the rotation rate of the Earth,387

the momentum damping, and the ratio of thermal to momentum damping; that is to say that their388
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effects combine in a manner to be indistinguishable from one another in the solution to the vertical389

velocity.390

In the companion paper, we will present an extensive study of solutions to the balanced framework.391

But in order to provide a preliminary illustration of the phenomena that the balanced framework392

describes, we compute approximate solutions for the velocity potential and stream function at393

the equator (NCT) and the north pole (TCT), for a horizontally localized heating profile, which394

maximizes in mid troposphere, thereby resembling the latent heat released by a convective cloud,395

( =





(0

#2
sin(cI/�) if

√
G2 + H2 < !

0 otherwise,
(30)

where (0 = 10
−4

ms
−3

= 0.36ms
−2

hr
−1, � = 3 km, ! = 3 km, and 31 = 10

−4
s
−1.396

Figure 1 (a) shows a horizontal cross section of the secondary circulation, and the vector field397

(−kH,kG), at the north pole at the bottom of the troposphere, where only the TCT are present. In398

this case, heating drives a cyclonic secondary circulation whose maximum strength occurs at the399

bottom and top of the troposphere. Figure 1 (b) shows the secondary circulation at the equator in400

the middle of the troposphere, when only the non-traditional Coriolis terms are present. In this401

case, the secondary circulation is antisymmetric about the equator. In figure 1 (c), the velocity402

potential and vector field (−ΦG ,−ΦH) are plotted at the bottom of the troposphere at the north pole,403

where only the traditional Coriolis terms are present. Figure 1 (d) shows the velocity potential and404

vector field (−ΦG ,−ΦH) at the bottom of the troposphere at the equator. In both cases the flow is405

convergent at the bottom of the troposphere, and divergent at the top.406

5. Summary407

In this paper, we discuss a framework for studying convective dynamics under the influence408

of heating, the full Coriolis force, thermal, and momentum damping. The circulation strengths409

and length scales we consider allow for the study of steady, linear equilibrated convective flows,410

and constitutes the first step in studying momentum and buoyancy fluxes from the convective411

scales to the mesoscales. We use the Helmholtz decomposition of the velocity field as a tool412

to disentangle the effects of heating, Coriolis force, and damping on the convective circulation,413
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(a) Secondary Circulation (TCT)
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(b) Secondary Circulation (NCT)
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(c) Primary Circulation (TCT)
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(d) Primary Circulation (NCT)
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Fig. 1: Figures (a) and (b) show contours of the secondary circulation, k, and the vector field
(−kH,kG) at the bottom of the troposphere at the north pole, and in the middle of the troposphere
at the equator, respectively. Figures (c) and (d) show contours of the velocity potential and the
vector field (−ΦG ,−ΦH) at the bottom of the troposphere at the north pole, and at the bottom of the
troposphere at the equator, respectively. The axes and variables are scaled to the horizontal length
scale, !, and the colorbar is in m/s.

(−ΦG ,−ΦH,F), and the secondary horizontal velocity, (−kH,kG ,0), that arises in response to it.414

The schematic panels in figure 2 depict (left) the primary convective circulation in the absence of415

radiative damping and Coriolis force, (center) the symmetric primary circulation and the rotational416

secondary circulation in the presence of radiative damping and the traditional Coriolis force terms,417

and (right) the primary and secondary circulation in the presence of radiative damping and the418

non-traditional Coriolis force terms.419

The framework is encapsulated by two equations. The first equation arises from torque balance,420

described in (18), which determines the secondary horizontal circulation, k, given the velocity421

potential. The response of the secondary circulation depends on the latitude of the convection,422
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(a) (b) (c)

Fig. 2: Schematic representations of the solutions of the convective WTG framework. In purple
is the primary poloidal circulation, both the vertical velocity, F, and the horizontal velocity due
to the potential, Φ. In yellow is an indication of radiative cooling. Red depicts the secondary
circulation k, due to the Coriolis force and damping. (a) Shows the WTG without damping or
Coriolis force. (b) Shows WTG with radiative cooling and traditional Coriolis terms. (c) Shows
WTG with radiative cooling and non-traditional Coriolis terms.

in the absence of the Coriolis terms and radiation, there would only be a poloidal circulation,423

figure 2 (a). The TCT (poles, figure 2 (b)) drives a cyclonic circulation in response to horizontal424

convergence, while the NCT (equator, figure 2 (c)) drives an antisymmetric response proportional425

to the meridional component of the convective velocity field. The red curves in figures 2 (b) and (c)426

are placed at the heights where the maximum secondary circulation occurs for each case. For the427

TCT (panel b), equation (29) shows that the the secondary circulation is largest at heights where428

the horizontal convergence of the convection is largest. From equation (5) we see that this occurs429

where the vertical derivative of the vertical velocity (and thus the vertical derivative of the heating)430

is maximum; at the top and bottom of the troposphere. For the NCT (panel c), equation (26) shows431

the secondary circulation is largest at the height where the meridional velocity of the convection432

vanishes. At such elevations, the vertical component of the velocity is maximal, therefore the433

secondary circulation due to the NCT is maximal at the height of the maximum upward velocity434

in the convection.435

The second equation in this framework is an elliptic operator (equation (19)) whose solution436

yields the velocity potential, Φ, given the diabatic heating, (; if dissipation is used instead of drag,437

then the theory is described by equation (24). In the absence of radiative damping, the operator is438

exactly the weak temperature Gradient approximation, but on convective length scales. Radiative439

damping generates a response in the vertical component of the velocity field away from the diabatic440
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heating source, and thus we describe this as a non-local response. In the case of the NCT (equation441

(28)) the non-locality is in the vertical direction (figure 2 (c)) while in the case of the TCT (equation442

(25)) the non-locality is both in the vertical and meridional directions (figure 2 (b)).443

In a companion paper we study the solutions of this Convective-Coriolis balanced framework.444

Future work will describe the convective momentum and temperature fluxes which arise from445

diabatic heat sources, and the implications of these fluxes for the parameterization of convection446

in meso- and synoptic scale dynamics, especially in the tropics.447
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