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The full Coriolis force consists of terms proportional to the sine and cosine of latitude. The latter, referred
to as the non-traditional Coriolis terms, couple the zonal and vertical momentum equations, and are often
neglected. When considering the incompressible Euler equations at the equator in the presence of the full
Coriolis force, it can be shown that all dynamical fields can be diagnosed from the velocity potential,
which itself is the solution to an elliptic equation that depends on latitude, momentum drag, and radiative
damping. In this work, we present solutions to these equations for several different types of momentum
drag and radiative damping. An important insight of our work is the combined effect that both rotation
and radiation have on providing a mechanism for ascent and descent of air away from a localized source of
heating.
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1. Introduction

In a companion paper (Marsico et al. 2023), we developed an approximation to the prim-
itive equations in order to derive a convective parameterization framework that we called
the Convective Weak Temperature Gradient equations (C-WTG). To do so, we examined
the incompressible Euler equations on convective length scales and sub-diurnal time scales.
Considering low Rossby number flows, we suggested a simple drag parameterization for the
turbulent damping associated with advective nonlinearity (Romps and Charn 2015, Jeevanjee
and Romps 2016). Since hydrostatic balance is not appropriate on horizontal length scales
associated with convection, we showed how both traditional and non-traditional terms in the
Coriolis force can have an effect on steady circulations. The C-WTG equations we derived
depend on latitude, 6, and take the form
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. 0¢p
=202 sin(0)v + 242 cos(0)w = 95 diu (la)

x
202 sin(f)u = —gf —dyv (1b)
—2{2 cos(f)u = _9 +b—diw (1c)

0z

N%w =S — dyb, (1d)
V-u=0, (le)

These equations constitute a steady, linear f-plane approximation of the stratified Euler equa-
tions. The zonal, meridional, and vertical components of the velocity are (u,v,w), the buoy-
ancy, b, and the pressure in the Boussinesq approximation is ¢ = p/pg, where pg is a reference
density. The latitude of the f-plane is 6, the rotation rate of the Earth, {2, the buoyancy
frequency is N ~ 2 x 1072 s~!, and the rate of input of buoyancy from latent heating is 5.
In this approximation (and in the actual atmosphere), non-linear turbulent dissipation far
exceeds molecular dissipation, and for convection, occurs below the scales considered by this
framework. Dissipative effects are approximated with Newtonian drag (with rate d;), and
cooling (rate dz).

Marsico et al. (2023) develop this approximation by considering a scale analysis and dom-
inant balance of the stratified, incompressible Navier-Stokes equations. Earth’s rotation rate
sets a time scale (202)~! of approximately 2 hours, the depth of the troposphere sets a length
scale on the order 7km, and together these yield a velocity of 1 ms™!. Momentum and radiative
damping time scales which are on the order of 2 hours are consistent with this approximation,
and are on the order of a convective turnover time for the troposphere. Marsico et al. (2023)
discuss how the drag damping can be straightforwardly generalized to turbulent dissipation
and how this linear framework can be extended to a non-linear, steady framework.

A case of particular interest occurs at the equator where only the non-traditional Coriolis
Terms (NCTs) are the only Coriolis terms present. Setting # = 0 in equations (1la)-(1le), we

obtain
0
20w = —a—i —dju (2a)
9¢
=——— 2
0 8y dlv ( b)
0
—2u = —a—f +b—dyw (2¢)
N2%w =S —dyb (2d)
V-u=0, (2e)

where d; and dy are the momentum and thermal damping terms. This set of equations forms
the basis for our current work, which is divided into three parts. First, we consider equations
(2a)-(2e) in the case when d; # 0 and da = 0. Second, we consider the case when both d; # 0
and dy # 0, and third, we extend the analysis to a case with linear thermal damping and
diffusive momentum damping. We provide this progression for two reasons. The first is that it
is not strictly obvious which case is the most relevant to atmospheric convective circulations.
The second is that by providing progressively more complicated solutions we develop a more
systematic understanding of the effect of each of the underlying physical processes.

We focus specifically on the linearized primitive equations with all Coriolis force terms
because we believe the NCTs have not been analyzed as well as is warranted. We begin
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by examining the solution in the case of a circular equatorial heating which is intended to
represent equatorial convective heating, either from a single deep convective cloud or an
organized convective system. We choose to present and contrast three different cases (as noted
above) since it is not obvious which description of damping and radiation is most relevant on
convective or mesoscales.

One of the main insights of our work is the importance of coupling between radiation
and rotation, and how they relate to the response to a localized heating. In the absence of
radiation, the equation for the vertical velocity simplifies to the fundamental equation of the
weak temperature gradient (WTG) approximation; the direct diagnosis of vertical velocity
from heating. In particular, a localized heating source results in a purely local response in the
vertical velocity. However, when radiation is present, it couples rotation to the circulation in a
way that induces a non-local response, and allows the flow to ascend and descend away from
the source of the heating.

Our paper is organized as follows. In each section, we attempt to illustrate the most critical
ways in which the energetics and flow responds to the relevant physics. We always show
the response of the vertical velocity to an imposed heating. In cases where it is relevant,
the horizontal flow will be discussed. In some cases, energetics will be mentioned. So, while
different aspects of the response will be discussed in different sections, these differences are
curated and intentional.

2. Linear Momentum Damping

As a first application, we consider equations (2a)-(2e) in the case that dy = 0, which is a
common assumption. The inclusion of a linear momentum damping will allow steady circu-
lations to be achieved as imposed heating is fully dissipated through friction. The shape of
the heating and the magnitude of the damping will fully determine the resulting balanced
flow. To solve the appropriate equations, we introduce the stream function, v, and velocity
potential, @, and decompose the velocity field as (Helmholtz 1867, Lebovitz 1989)

u = (=By — Py)i + (= Py +¢2)j + wk, 3)

where the subscripts « and y denote partial derivatives with respect to these variables. It is
then straightforward to show that

Vid = w,, (4)
or equivalently
S
25 Pz
Vie =15 (5)
and
202w
Vi = y L (6)
1

Here, V2 = 02 + 65 denotes the horizontal Laplacian. We use a simple choice of heating, S,
that is localized about the origin and that vanishes at the bottom and top of the troposphere.
In particular, we let

0 else,

S:{f(z) ifr <L ™)

where r = /22 + y?2 is the horizontal radial coordinate and L is the radius of the region where
the heating is applied. This form of the heating will allow us to write down exact solutions to
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equations (2a)-(2e). Equations (4) and (6) can be solved to yield

1
(r2 — L?)f'(2) ifr <L

b= "fj ®)

e —— f'(2)In(r/L) else

and

leQf( 2) ifr<L

i )
a N2r2f( 2) else.

Here, f'(z) denotes the derivative of f with respect to z. Therefore, the velocities are

T 0 .
_jf/(z) - mf(z) ifr <L
B 20 (L2 L2 (10)
— — 1
2N2r2 aned )~ <2d17~2 dyr > fz) - else
Y if r < L
_2N2f (2) if r <
U= yL? , 20xyL? (1)
“anz2l @) — gyma fR) else
To compute ¢, we integrate the meridional momentum equation. For » > L, we have
Y d1L2 2Qxy
S 12
When r < L, we have
b = /y dly /
d1y?
= el (2) + ool 2). (13)

To determine g; and g9, we substitute the zonal velocity, the vertical velocity, and ¢ into the
zonal momentum equation, (2a). For r > L, after some algebra and one integration we find

o= B P 1) - 2 f() + i), (14
Similarly, for r < L,
x dyz?
g2 =~ 3 () + Tz () + fale). (15)
For ¢ to be continuous across the heating discontinuity at r = L, we must have
di L?
fi(z) = S5 F1(2) + fal2). (16)

4N?2
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Choosing f1(z) equal to zero amounts to removing the geopotential term independent of z in
the far field, thus yielding a negative geopotential at the origin

dy (r* — L?) O .
Tf/(z) - Wf(z) ifr <L
. )
d1L2 QL2x
AN2 f/(Z) IH(T‘z/LQ) — N2 (2) else.
The buoyancy is readily computed from the vertical momentum equation (2c)
( ) )
22 ), (-1,
dN2 T N2) T 4Nz if r <L
1) <d1N2 . N2> P2 e
. (18)
402 L2 y2L2 d1L2 , b
N? <2d17ﬂ2 B d17"4 > f(Z) + AN?2 hl(?" /L )f (Z) else.

2.1. Discussion

Considering flows in the absence of radiative damping means that equation (2d) amounts
to the weak temperature gradient approximation (WTG) on convective scales (Hittmeir and
Klein 2018). We choose a vertical heating profile, f(z), to be consistent with a mid tropospheric
extremum, and vanishing heating in the lower and upper troposphere, f(z) = Sysin(nz/H),
where Sy = 107*ms™3 = 0.36ms 2hr~!, z € (0,H), and H = 15 km is the height of the
troposphere. We also set L = H in equation (7), so that the radius of the region of non-zero
heating is equal to the height of the troposphere. We use damping coefficients of d; = 0.1s71,
and d; = 107°s™!, which correspond to the strong and weak damping limits. Plots are shown
at heights of 2 = 0, H/2, H. From figure 1, which corresponds to d; = 0.1s7!, we see that
the buoyancy, b, is zero at z = 0 and z = H, which correspond to the bottom and top of
the troposphere. From equation (18), we see that in the mid-troposphere, the buoyancy is
radially symmetric within the heating region, but non-symmetric outside of it. However, for
the relatively strong damping coefficient of d; = 0.1s™! we are considering, this asymmetry,
induced by the non-traditional Coriolis terms, is damped out, and the buoyancy is essentially
as symmetric in figure 1.

Again from figure 1, we see that at the bottom (top) of the troposphere, the horizontal
velocity converges toward (diverges away from) the heating region. The meridional winds are
confluent to the east of the heating and difluent to the west. This pattern closely resembles
that discussed as arising around a convective cloud under the influence of the NCT (Igel and
Biello 2020) or as a result of synoptic-scale equatorial heating (Hayashi and Itoh 2012). In the
mid-troposphere, the velocity is relatively weak, owing again to a strong damping coefficient
(equation 6).

Figure 2 more clearly illustrates the nature of the horizontal flow. At z =0 and z = H, the
flow is entirely described by the potential. This implies that the flow is purely confluent and di-
fluent. In the mid-troposphere, the potential is everywhere zero but the stream function is not.
This implies that the horizontal flow is entirely vortical at mid-levels as meridional planetary
vorticity has been tilted into the vertical direction by the buoyancy-driven convection.

Figure 3 mimics 1 but for d; = 107°s™!, corresponding to a damping timescale of approxi-
mately one day. At the bottom and top of the troposphere, the zonal and meridional velocities
are identical to what they are for d; = 0.1s™!, owing to the fact that here, they depend only on
the velocity potential, which is independent of momentum damping. In the mid-troposphere,
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they are qualitatively similar to what they are in figure 1, but differ in magnitude, which is
due to the inverse dependence of the stream function on d;. The buoyancy at the bottom and
top of the troposphere are zero, but in the mid-troposphere it is now manifestly asymmetric,
and zonal winds are westward everywhere there is positive buoyancy and negative everywhere
there is negative buoyancy.

We can again understand the behavior of the horizontal velocities by looking at the stream
function and velocity potential in figure 4. The velocity potential is independent of dy, but the
stream function is proportional 1/d;. So for weak momentum damping, the stream function
will produce the relatively strong horizontal velocities seen in the mid-troposphere in figure
3.

3. Linear Momentum Damping and Newtonian Cooling

We now incorporate a Newtonian cooling term in the form of a constant, non-zero do. As was
shown in Part I (Marsico et al. 2023), when dyda < N2, the equation for the velocity potential
is

402% dy S,

VhQ5+ N2 d @yy:m. (19)

3.1. Redevelopment
We now describe briefly how (19) was derived in (Marsico et al. 2023). First, we note that the

vertical component of the curl of equation (3) results in the equation
Vi = vy — uy. (20)

Next, we eliminate the horizontal pressure gradient from equations (la) and (1b) and use
equations (le), and (4) to obtain the extremely simple relationship between the velocity
potential and stream function

G o

= 20—, 21
hy, 0z on’ (21)
where
8?1 = COS(Q)aay + sm(@)ai. (22)
At the equator, where 6 = 0, we have &, = ¢,. Equation (21) then simplifies to
(9w od
=20—. 2
(92 dy (23)

We can use equations (20) and (21) as follows. Using equations (la)-(1c), as well as the
incompressibility equation (le), we eliminate the pressure gradient and buoyancy to derive an
equation for vertical velocity, w, in terms of the vertical component of vorticity, v, — u,, and
the heating S. We then use equations (4), (20), and (21) to eliminate the vertical velocity and
vorticity component in favor of the velocity potential, @. This results in the single equation
for @ at an arbitrary latitude 6:

dvd 202\ 2 S
24 N2 g () g, | = — 22 24
Vit g |\ (N2 1 dyd) (24)

At the equator, where § = 0, &, = ?,,. When didy < N 2 we can neglect the z-derivative
term @, in the previous equation, and equation (19) follows.
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3.2. Solution

To solve equation (19), we begin by defining

402%d
2 2
= — 2
S (25)
equation (19) becomes
S,
Dy + (1 + 042)¢yy = ﬁ (26)
We rescale the y variable as
Y
V=2 27
V1+a? (27)
to yield the Poisson equation
S,
Now we need to specify the heating function. Let’s choose
S(x,y,z) = So sin(rz/H) O(L — /22 +y?) (29)
where © is the function defined by
1 if 0
o) =4, 07 (30)
0 else.

Therefore the heating is non-zero in a disk of radius L and zero elsewhere. In the new coor-
dinates, the heating is nonzero when

.’IJ2 Y2
=1 (31)
(1+a?)

which is an ellipse of semi-major axis L and semi-minor axis L/(v/1+ «?). Notice that the
focus of the ellipse is located at aL/(v/1+ a?). So while our rescaling of the variables has
simplified the operator, we are left with an elliptical heating region instead of a circular one.
If we define ® such that

= T cos(nz/H) F(z.y), (32)
then the horizontal dependence of ®, F'(x,y), solves the equation
Fro+ Fyy =O(L — /22 4+ (1 +a2)Y?2). (33)
In order to solve equation (33), we introduce confocal elliptic coordinates:
al
xr = ——— cosh(u) cos(v 34
s coshi() cos(v) (34)
al
Y = ——sinh(u) sin(v 35
e sinh () sin ) (35)
where
2 2
x Y

aL cosh(u) o sinh(p)
V1+a? V1+a?
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and 0 < v < 27 and g > 0. Combining equations (34), (35), and (36) shows that the boundary
is given by the equation

sinh(p) = a™ L. (37)

We use pp to denote the solution to the previous equation. A particular solution to equation
(33) on the interior, that is, where 22 + (1 4+ a?)Y? < L?, is given by F},, where

F,= (2?2 + (1+%) V7). (38)

1
2(24 a?)
We will add another harmonic function to this particular solution later. Note that the value
of the particular solution on the boundary, Fp, is

L2
Fo=—— 39
07 22+ a2 (39)
which is constant.
In confocal coordinates, the value of F), in the interior is
a’L? cosh?(p) cos?(v) . . 9

F, = 2@t a2 [ 1+ a2 + sinh“(p) sin (1/)} , (40)

which, after some manipulation simplifies to

a’L?

F, = [cosh? (1) + (1 + a?) sinh?(u) + cos(2v) (1 — a®sinh®(p))] . (41)

1(1+0a?) (2 +a?)

The normal derivative at the boundary is

O0F, ) Q?L? [cos?(v) . 4
¥ = cosh(u) sinh(u) Gt |Tta? + sin*(v) |, (42)
which, evaluated at the boundary, becomes
OF,| L? [2 4 o* — a? cos(2v)]

43
o |, 2(2+a2)V1+a2 (43)

Notice that the boundary value of the particular solution of the interior is independent of v,
but the derivative depends on cos(2v). In the exterior, where 22 + (1 +a?)Y? > L2, equation
(33) is simply Laplace’s equation in confocal elliptical coordinates,

Fuu+F,, =0. (44)

Thus, the solution in the exterior, denoted by Fexterior, is @ linear combination of harmonic
functions, and the interior and exterior solutions take the form

Fexterior = o + €1 (,u - ,LLO) + 026_2“ COS(2V)

(45)
Finterior = F} + c3 cosh(2p) cos(2v)
Matching the exterior solution to the interior solution yields
Fy = cy, cg cosh(2pp) = coe M0, (46)
Matching the derivative yields
2+ a?)L?
Cc1 = ( ta ) (47)
2(2+a2)V1+a?
and
2L2
2¢3 sinh(2pu0) — a = —2cpe %M, (48)

2024+ a2)V1+a®
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Solving for co, c3 we find
212

L~ cosh(2

Cy = ( ,U,()) (49)
4(24a?)V1+a?
2172,-2

L Ho

3= —0o2 —° (50)

42+ a2)V1+a?
Therefore, the exterior solution is

L? 2+ a? o?
s |1 e (1 ) +
2(2+a?) V14 a? 2V1+ a?

and the interior solution is

Fexterior =

cosh(2pg)e 2 COS(ZV)] ,  (51)

Enterior =

oL h2 1+ a?) sinh?
4(1+a?)(2+a?) [cosh™(u) + (1 + o) sin (1) (52)

+ cos(2v) (1 + V1 + a2e 20 cosh(2u) — a? sinh%u))] )
which in terms of z and Y is
(L)Y VIR ot
x* — - .
2(2+a?) 2(2+a?) 4(14+a?)(2+a?)

The velocity potential is thus given by the equation (32) where F' is either the interior (equa-
tion 53) or exterior (equation 51) solution.

Given the velocity potential, we can easily solve for the vertical velocity, which is related to
the velocity potential by the equation

w—/vgﬁxy, " dZ'. (54)

(53)

Enterior =

From equation (19), we know that

Sz
N a? &y, (55)

Integrating both sides of this identity with respect to z, and making use of equation (54), we

obtain
? SZ 2 /
w = /0 |:]\72 — @yy:| dZ

% sin(rz/H)(O(L — /22 + y2) — a*F,), (56)

where F' is defined by equations (51) and (53). In terms of Y, w is expressed as

w = ;02 sin(mz/H) ( — Va2 +y?) " yy) (57)

Explicit expressions for the horizontal dependence of w given in confocal coordinates are
provided in the appendix.

(Aﬁzx + ¢yy -

3.3. Discussion

Here we describe the qualitative features of the velocities, stream function, and velocity po-
tential as functions of the parameter a? for a range of different values, as it is not necessarily
clear which values of this parameter would be relevant in the real atmosphere. In figure 5, we
plot the velocity potential at the bottom of the troposphere, z = 0, for increasing values of
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a?. Note that the velocity potential is anti-symmetric about the mid-troposphere, z = H/2,
where it is everywhere zero. For small values of o, we see that the velocity potential is similar
in structure to what it was in the absence of radiation. This is not unsurprising, as for fixed
dy, we can regard the regime o? < 1 as corresponding to a weak radiation limit. However, as
a? increases, that is to say, as the effects of radiation begin to be felt, the potential becomes
more elliptic in shape with a semi-major axis in the meridional direction.

Figure 6 shows the vertical velocity as a function of a?. On the interior, the velocity is
constant and decreases in magnitude as o increases. The vertical velocity outside of the
heating region displays a pronounced sensitivity to 2. In particular, for small values of o, the
solution resembles that of the WTG approximation: a constant nonzero value on the interior
and zero outside. However, as o increases, noticeable regions of negative vertical velocity
appear along the equator, and regions of positive vertical velocity appear poleward, with the
amplitude in each of the regions increasing as o increases. Furthermore, these exterior regions
of non-zero vertical velocity become more elliptical in nature.

In figure 7, we plot the deviation of the vertical velocity from the weak temperature gradient
solution, that is, the solution that is constant in the interior of the heating region and zero
outside of it. This allows us to examine the effect that the non-traditional Coriolis terms have
on the WTG solution. From figure 7, we see that the deviation is negative on the interior of the
heating region, and thus serves to damp the WTG solution on the interior. On the exterior,
we see the same regions of positive and negative vertical velocity that were observed in figure
6. Thus, it is the inclusion of the non-traditional Coriolis terms that provides a mechanism for
ascent and descent away from a localized source of heating. It is also important to recognize the
unique role that radiation plays in inducing this non-locality of the vertical velocity. Radiation
is necessary for the non-traditional Coriolis terms to affect the vertical velocity, as when we
set da = 0 in equation (19), we recover the WT'G solution for vertical velocity.

In figure 8, the interior velocity, a constant for any a?, and the normalized domain integrated
vertical velocity are plotted as a functions of a. The domain integrated vertical velocity is
normalized by the area of the heating region so that it is equal to the interior vertical velocity
for a®> = 0. Both the interior and domain integrated velocities monotonically decrease as
a function of a? because the increase in thermal damping (at least relative to momentum
damping) increasingly offsets the heating imposed in within » = L. As thermal damping
becomes large relative to momentum damping, the area surrounding the heated region can
cool and subside effectively without being influenced through momentum, as strongly as it is
within the heating region.

In figure 9, we plot the stream function in the mid-troposphere for increasing values of
a?, for a fixed momentum damping coefficient of d; = 1075s~!. For small values of o2, the
stream function is similar to what it was in the absence of radiation, as can be seen by
comparing it with the stream function in figure 4. The horizontal velocity can be understood
by looking at figure 10, which shows both the stream function and corresponding vector field
whose components are the zonal and meridional velocities. As was the case in the absence
of radiation, the horizontal velocity in the mid-troposphere displays a dipole structure, and
points westward within the heating region. Despite these similarities, the stream function
displays a sensitivity to a?. As this parameter increases, the stream function decreases more
rapidly along the zonal direction, but decreases more slowly in the meridional direction. It
also decreases in amplitude, which suggests a weakening of horizontal velocity as radiation
increases relative to momentum damping.

In figures 11 and 12, we plot the zonal and meridional velocities at the bottom of the
troposphere for increasing values of a?. As was the case for zero radiation, at the bottom of
the troposphere, the velocity flows into the heating region. Since the horizontal velocity is anti-
symmetric about the mid-troposphere, the circulation is directed out of the heating region at
the top of the troposphere. As o increases, the zonal velocity becomes more eccentric along the
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meridional direction while becoming weaker. Note, also, that the meridional velocity responds
to increasing o in the same way as the stream function does in the mid-troposphere. This is
to be expected, however, because from equation (3), the meridional velocity is proportional to
9y, and as was shown in (Marsico et al. 2023), the stream function is related to the velocity
potential by equation (23).

4. Diffusive Momentum Damping and Newtonian Cooling

In this section, we look at the case when d; = —uV?2. As was shown in (Marsico et al. 2023),
the vertical potential and vertical velocity satisfy the equations
2

and w, = V%@. At the equator, a straightforward non-dimensionalization shows that the
sixth order derivative on the left hand side of equation (58) is small relative to the second and
fourth order terms, and when neglected, equation (58) becomes

4022 d, 1

— Py = N2

212

Vv38S.. (59)

We do not attempt to find exact analytic solutions for @ or w, but rather we compute solutions
numerically. As in the analytic example above, we again assume that S is of the form S =
So O(x,y)sin(rz/H), The velocity potential is of the form

7So

Q= HNQB(m,y) cos(mz/H), (60)
where B(z,y) satisfies
2 2 2

which we solve by numerical inversion of the elliptic operator on the left hand side. In figure
13, the velocity potential is plotted as a function of the non-dimensional parameter \?, where

M= —=H% (62)

In figure 13, we plot the velocity potential as a function of A\?. Observe that as A? increases,
that is, as the effects of radiation become stronger, the velocity potential becomes highly
anisotropic. Similar behavior occurs in the case of linear momentum damping.

In figure 14, we plot the vertical velocity as a function of A\2. For small values of A2, the
vertical velocity is localized to the heating region. As A\? increases, the velocity becomes
negative along the equator, and positive poleward. This is again similar to what occurs in the
case of linear momentum damping. Hence, the linear approximation to momentum damping
yields a similar response to increased radiation relative to momentum damping as the diffusive
approximation to momentum damping.

It is also important to recognize the role of radiation. As was the case for linear momentum
and radiative damping, in the case of diffusive momentum damping the vertical velocity
satisfies the WTG approximation in the absence of radiation. Thus it is radiative cooling
that allows the non-traditional Coriolis force to have an impact on the convective circulation,
(w, ), causing the convection to respond to the heating in areas where there is no heating
(i.e. non-locally).
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5. Synthesis

In this section, we contrast the velocity potential given by equations (5), (19), and (58). In
the absence of radiation, the velocity potential is independent of the Coriolis force. Rotation
is present only in the equation for the stream function, and therefore its effect is seen only
in the horizontal velocities; the response of the vertical velocity to localized heating remains
local, that is to say, vertical velocity is non-zero only where heating is non-zero. However,
in the presence of radiation, rotation is folded back into the equation for velocity potential,
and the response of the vertical velocity to localized heating becomes non-local. In particular,
there exist regions away from the heating region where the flow ascends and descends. This
is a potential explanation for the horizontal growth of precipitating systems in previous three
dimensional modeling studies which included the NCT (and radiation) (Igel and Biello 2020,
Liang and Chan 2005)

In the two cases where radiation is present, the parameters a? (equation (25)) and A2
(equation (62)) are the important parameters for determining the structure of the atmospheric
response to localized heating. These terms are composed of a pair of ratios: the square of the
ratio of the buoyancy forcing timescale to that of the Coriolis parameter, and the ratio of the
radiative damping to the momentum damping. The response of the atmosphere to a localized
source of heating is most pronounced for large a? and A2, as can be seen in the asymmetry
of the meridional and zonal structure of the flow in figures 5 and 13. We expect such flows
to occur occur for weak stratification, weak momentum damping, or high radiative damping,
each of which would correspond to a high value of a? or A\2.

Overall, the results presented above imply that rising air inside a region of thermal forc-
ing and the environmental air in which it is embedded interact in a number of important
ways in the presence of the NCT and radiation that are not considered in traditional treat-
ments (e.g. Arakawa and Schubert (1974)). The upward and downward flows are connected
meaningfully and feedback on one another. Broadly speaking, such feedbacks between cloudy
and environmental air are crucial to developing complex flow morphologies characteristic of
real-world clouds (Houze Jr. 2004). We can see clearly from Figures 6 and 14 that the shape
of convection can change from round, reminiscent of an isolated convective tower, to linear,
reminiscent of a squall line, with increasing a® or A2. Changes to morphology of convection
result in consequential changes to impacts like convective momentum transport which has
previously been observed to depend on the NCT (Lemone 1983). In what we have developed
here, the effect of the NCT on convective momentum transport can be seen by examining the
vertical transport of zonal momentum, uw, in the absence of radiation. Considering a heating
of the form used in section 2 (constant on the interior of a disk and zero outside), the vertical
transport of zonal momentum is

x 2 )
o) el B R - g ) et < L (63

0 else,

where we have used equation (10), and the fact that in the absence of radiation, w = f(z)/N2.
Now we are ultimately interested in the horizontal average, ww, as this term contributes to the
feed back of convective circulations onto larger scales. Integrating equation (63) about a disk
of radius L shows that in the absence of rotation (equivalent to taking 2 = 0), uw = 0. In the
presence of rotation, however, uw is equal to a non-zero constant. Thus, the NCT provides a
mechanism for sub-grid convective flows to force mean or grid-scale flows. The implications
of this, as well as a detailed discussion of momentum transport induced by the steady state
circulations studied here, is the subject of future work.
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6. Conclusion

We have solved the systems of equations derived in Part I (Marsico et al. 2023) which de-
scribe the linear atmospheric response to heating, damping, radiation and Coriolis force. Our
solutions show the response of a tropical atmosphere to an imposed horizontally localized,
positive signed heating. These solutions are relevant across a wide range of length scales and
timescales long enough that the steady state assumption is reasonable (Marsico et al. 2023).

For solutions in the absence of radiation, the non-traditional Coriolis Force begets a sec-
ondary horizontal circulation whose intensity is inversely proportional to the strength of the
momentum damping. In the presence of radiative damping, regardless of the form of the
momentum damping, strong zonal-meridional asymmetries develop as the intensity of the ra-
diative damping increases. The radiation causes the Coriolis force to modify the convective
circulation (w, @), and results in a non-local response of the vertical velocity to a localized
heating.

Our conclusion that the non-traditional Coriolis terms should not be ignored in cases of
weak stratification has been obtained by several previous authors (Liang and Chan 2005,
Hayashi and Itoh 2012, Ong and Roundy 2019, 2020, Igel and Biello 2020, Ong and Yang
2022). However, the interaction of the NCT with radiation is a unique result of our analysis.
The actual tropical atmosphere is certainly more complicated than equations (2a)-(2¢) and
therefore more complicated than our solutions suggest. But together, our conclusions suggest
that the NCT should be most important in moist convecting systems with weak stratification
and potentially strong radiative effects.
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Figure 1. Horizontal cross sections of the buoyancy, zonal, and meridional velocities at three different heights, for
d; = 0.1s571, and no radiation. The bottom row is for z = 0, the middle row is for z = H/2, and the top row is Z = H.
The spatial domain has been scaled to the height of the troposphere H = 15 km. Note that the buoyancy is identically
zero at the bottom and top of the troposphere (colour online).

Appendix A: Appendix

In this section, we write down an explicit expression for the horizontal dependence of the
vertical velocity that results from the localized heating that appears in equation (57). The
solution in the interior of the circle of radius L is denoted by winterior and the solution in

the exterior is denoted by Wexterior- TO determine wexterior, we differentiate equation (51) with
respect to Y':

L2 2+ a? a? ]
Fy = — cosh(2u0)e 2 cos(2v
v 2(2+a2)[\/1+a2 V1+a? o) 2 (A1)
202 ’
— cosh(2u)e 2 sin(2v)v
2@+ )T ar R po)e sy
F Gy b(zpn)e | cos(2u)y +sin(20)uy|
= COS e COS( 2V sinl 2V |V
YY (2 n aQ)m Ko my Y | Y
+ L7 [2 + o? — o cosh(2pp)e ™ cos(21/)] nyy (A.2)
2(2+ a?)V1+ ao?

L*a? 1
- @t a2)$1+7a2 cosh(2pg)e 2 [ — sin(2v) py vy + cos(2v)vd + 3 sin(2v)vyy
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Figure 2. The velocity potential, ®, at a height of z = 0, and stream function, v, at height of z = H/2. Both functions
are for the case of d; = 0.1s~!, and no radiation. The velocity and stream function have been normalized to the height

of the troposphere, and both are plotted on a spatial domain that has been scaled to the height of the troposphere H as
well (colour online).

Equation (A.2) is complete once we determine vy, py, vyy, and pyy. To determine vy, we

differentiate the equation
2 2
x Y
)} = (——) =1 A.
(’YCOS(V)) (’Y Sin(V)> (4.9)

al

with respect to Y, where

v = e (A4)
This results in the equation
222 sin(v) vy B 272Y sin?(v) — 272Y 2 cos(v) sin(v)vy —0 (A5)
72 cos3(v) v sint(v)
After simplifying, we obtain the following expression for vy :
by — Y cos?(v) sin(v) (A6)

— 22sin*(v) + Y2 cost(v)

To determine uy, we differentiate the equation

(vc%m))z* (anh(u)y =1 (A7)
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Figure 3. Horizontal cross sections of the buoyancy, zonal, and meridional velocities at three different heights, for
dy = 1075571, and no radiation. The bottom row is for z = 0, the middle row is for z = H/2, and the top row is Z = H.
The spatial domain has been scaled to the height of the troposphere H = 15 km. Note that the buoyancy is identically
zero at the bottom and top of the troposphere (colour online).

with respect to Y. This results in

—2x2sinh(u)py ~ 2Y~?sinh?(u) — 272Y 2 sinh(p) cosh(p) py
V cosh (1) Y sinh (1)

—0, (A.8)

which, after simplifying, becomes

Y cosh? () sinh(p)
ny = 9 =14 9 1 . (Ag)
a2 sinh®(u) + Y2 cosh™ ()

The derivatives vyy and pyy are then obtained by differentiating equations (A.6) and (A.9).
The vertical velocity in the exterior is then given by the equation

Soa?
————F

Tr a2l vy
where Sy is a constant, and Fyy is given by equation (A.2). The expression the wingerior 18
simpler. It is obtained by differentiating equation (53), and is given by the equation

Wexterior = 90

(A.10)

— S(]Oé2 2 2
Winterior = S0 — (1 T a2)(2-|-a2)(1 +a"—V1i+a ) (Al].)
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Figure 4. The velocity potential, @, is shown at a height of z = 0. The stream function, 1, is shown at height of z = H/2.
Both functions are for the case of dy = 10~%s~1. The velocity and stream function have been normalized to the height
of the troposphere, and both are plotted on a spatial domain that has been scaled to the height of the troposphere H as
well (colour online).



July 5, 2024 Geophysical and Astrophysical Fluid Dynamics output

18 D. H. Marsico, J. A. Biello, and M. R. Igel

o’ =0.01

X (km)
a? =10

10.8

10.8

10.6 10.6

10.4 10.4

10.2

I 0
-2 -0.2 -2

-2 -1 0 1 2 -2
X (km) X (km)

Figure 5. The velocity potential at the bottom of the troposphere, z = 0, for increasing values of a?, in the case of
linear momentum drag and radiation (colour online).
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Figure 6. The vertical velocity in the mid-troposphere, 2 = H/2, for increasing values of a2, in the case of linear
momentum drag and radiation (colour online).
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Figure 7. The vertical velocity in the mid-troposphere, z = H/2, shown as the deviation from the WTG solution
(constant in the interior, and zero in the exterior). The deviation from the WTG solution for a2 = 0.01 and a? = 0.1 is
effectively zero, and so we only show the plots for a® = 1 and a? = 10 (colour online).
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Figure 8. The domain integrated vertical velocity and interior vertical velocity are plotted as a functions of o2, on a
log-log scale, in the case of linear momentum drag and radiation. The domain integrated vertical velocity is normalized
by the area of the heating region so that it is equal to the interior vertical velocity for a® = 0 (colour online).
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Figure 9. The stream function, v, in the mid-troposphere (z = H/2) in the case of linear momentum and radiative
damping for di = 1075 s~1, shown for increasing values of o (colour online).
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Figure 10. The solid contours show the stream function, ¢, and the horizontal velocity vector field in the mid-troposphere
(2 = H/2) in the case of linear momentum and radiative damping for d; = 1072 s~ (colour online).
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Figure 11. The zonal velocity, u, at the bottom of the troposphere (z = 0), for di = 1075 s~1, shown for increasing
values of a2 (colour online).
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Figure 12. The meridional velocity, u, at the bottom of the troposphere (z = 0), for dy = 1073 s~1, shown for increasing
values of a2 (colour online).
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Figure 13. The velocity potential at the bottom of the troposphere (z = 0), for linear radiation and diffusive damping
for increasing values of A% (colour online).
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Figure 14. The vertical velocity in the mid-troposphere (2 = H/2), for linear radiation and diffusive damping for
increasing values of A2 (colour online).



