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1 Introduction

Discoveries are often made by teams. Wuchty, Jones, and Uzzi (2007) trace 19.9 million
academic papers and 2.1 million patents over 5 decades; they demonstrate that teams
increasingly dominate individuals in the production of knowledge. Advances in motor
vehicles, communication devices, and pharmaceuticals frequently take place as joint ven-
tures. Understanding collective progress is therefore vital for the analysis of innovation.
What determines the pace of innovation? How does the composition of joint ventures af-
fect outcomes? When does product innovation stop? These questions are at the heart of
this paper.

Much of the literature on teamwork has focused on experimentation models, start-
ing from the canonical work of Bolton and Harris (1999) and Keller, Rady, and Cripps
(2005). Those models center on teams’ efforts to ascertain whether one direction or project
is superior to another. Nonetheless, many discovery processes follow a path of search,
with numerous alternatives. Building on past discoveries, teams come up with new ones.
Furthermore, there is a richness of dynamics in collective efforts not captured in prior
models—alliances tend to dissolve over time, with exiting members exploiting knowledge
accrued during their collaborations.'

This paper offers a new framework for studying collective progress based on a process
of search. We identify how the search speed and decisions to terminate search vary with
members’ characteristics and the synergies in place. We also show that exit waves, where
multiple members halt search simultaneously, are an inherent feature of such processes;
while their timing is stochastic, their order is deterministic. From a design perspective,
our results provide a characterization of the optimal joint venture operations.

Technological developments rarely occur in a vacuum: innovations build on one an-
other, and alliances dissolve with new discoveries over time. For example, when develop-
ing new car chassis for improved fuel efficiency, the Partnership for a New Generation of
Vehicles, which was formed in 1993 and comprised US government agencies and car man-
ufacturers, followed a pre-prescribed path of experimentation: each step in development
relying on previous insights. When the partnership dissolved in 2001, automakers used
the accumulated know-how to each produce new car models. Similarly, NGO and univer-
sity alliances are common for program advancement in the developing world. Experimen-
tation pertaining to social programs frequently follows a path—e.g., altering reminders
or the modes by which they are provided—and prior conclusions serve as stepping stones

for new discoveries. Furthermore, at any point, NGOs or researchers can weaken their

!For instance, Eftekhari and Timmermans (2021) use the Danish Integrated Database for Labor Market
Research to document joint ventures’ dissolution. They report over 18.3 percent of original joint venture
members shifting to a new, smaller, joint venture, while other members cease efforts.



involvement and issue “products” independently: implement a policy, write an academic
paper, etc. Such examples abound.

In our model, search results are correlated over time and follow a Brownian path as first
modeled by Callander (2011). This modeling approach captures the idea that future dis-
coveries build on current ones. Its axiomatic foundations in the innovation context appear
in Jovanovic and Rob (1990). The realized path represents the underlying “truth”—e.g.,
the link between car chassis composition and vehicle stability, the link between number
of text reminders and adherence to a particular policy, and so on. Traversing the realized
path provides information on the most promising discovery.

The search speed—the per unit of time volume of innovations attempted, or the dis-
tance traversed on the realized path of discoveries—is chosen at each moment by the
searching alliance. Each alliance member incurs a strictly positive cost that depends on
her chosen search speed, her current investment in the search. Individual search speeds
are aggregated to generate the alliance’s overall search speed. The aggregation format
captures the synergies in place, allowing for both substitutability and complementarity
between members’ search investments.

Any member can terminate her search at any point. A member ceasing her search re-
ceives a lump-sum payoff corresponding to the maximal value the search has produced till
her departure. For example, when automakers left their 1993 partnership, they each re-
tained the ability to use the most promising technologies and expertise developed jointly.”
As in this example, in many applications, departing members make investments to act
upon their discoveries. Adjustments due to others’ later innovations are costly in terms
of money, time, or legal constraints when patent protections are in place. For simplicity,
we assume benefits are reaped only from discoveries made during members’ active search.
Certainly, some alliance members may choose to continue their search even after other
members have exited. These remaining members experience prolonged search costs, but
benefit from any further breakthroughs, as reflected by search results that exceed the most
promising discoveries previously observed. As search progresses, members gradually ter-
minate their search until it halts altogether.’

We characterize equilibrium search in Markov strategies, where state variables corre-
spond to the current search results, the attained maximum, and the active alliance.

In any active alliance, we show that individual and aggregated alliance search speeds

are constant and independent of search results as long as no member leaves. When indi-

2General Motors developed the 80 MPG Precept, Ford designed the 72 MPG Prodigy, and Chrysler built
the 72 MPG ESX-3. They utilized the jointly-developed technology and featured similar construction and
performance; for details, see the US Department of Energy report from May 15, 2000.

3Most of our qualitative results carry over when introducing penalties for later exits; see our conclusions
and Online Appendix. Naturally, penalties for later exits can induce exit waves mechanically—once one agent
departs, others may follow suit to avoid arriving second to market.



vidual search speeds are substitutable, they increase when members depart, reflecting the
more limited free-riding opportunities present.

Product development speed has been a major focus of study in operation management
(see the meta-studies by Chen, Damanpour, and Reilly, 2010 and Cankurtaran, Langerak,
and Griffin, 2013). That literature inspects the link between speed and outcomes. Our
analysis sheds new light on the parameters affecting equilibrium speeds: actively search-
ing members’ investment costs and the complementarities between them. For any fixed
searching alliance, there is a positive relation between speed and the value of obtained
discoveries. However, equilibrium speeds adjust as members depart and alliance speeds
may decline over time. Since further discoveries tend to improve product values, naively
considering correlations between speeds and outcomes may yield misleading results.

The equilibrium time at which members depart and alliances shrink is governed by
a simple stopping boundary, often referred to as a drawdown stopping boundary. Such
boundaries are defined by one number, the drawdown size. Whenever search results fall
by more than the drawdown size relative to the maximal observation achieved, a subset of
members ceases search.

Our equilibrium characterization allows us to identify members’ exit times. For a large
class of speed aggregation formats, members exhibiting high ratios of marginal to fixed
costs leave early. Even when individual costs are fully heterogeneous, clustered exits, or
exit waves, may occur in equilibrium. Importantly, while the precise timing of exit waves
may depend on the realized path of discoveries, we show that their sequencing does not.
That is, who leaves first, second, etc., and with whom is deterministic.

The synergies between alliance members, the complementarities in their speed invest-
ments, govern both resulting equilibrium search speeds and drawdown sizes. Greater
complementarities lead individual speed choices to converge and can cause overall al-
liance speeds to decline. They are also associated with more incremental exits, whereby
agents exhibiting higher search costs depart before their lower-cost partners.

Our equilibrium characterization has clear empirical implications. It suggests the pos-
sibility of estimating costs and synergies from observed exit times and project valuations—
say, revenues in startup companies. As we show, alliance size is an important statistic to
control for, but historical performance is not.

Beyond its substantive implications, our characterization offers a technical contribu-
tion. As we detail in our literature review below, existent analyses of single-agent search
processes with correlated observations often resort to modeling short-lived agents, absent
any controls. In contrast, we analyze the evolution of collective search by forward-looking
and sophisticated agents who can utilize a costly control—the search speed.

We view correlation as an important feature of discovery processes. Nonetheless, it is



useful to contrast our results with those derived from settings with independent observa-
tions, in the spirit of McCall (1970) and Mortensen (1970). One can consider a discrete-
time model in which, at each period, the active alliance draws an independent value from,
say, a normal distribution with expectation or variance that depend on members’ invest-
ments. In such settings, agents depart whenever a sufficiently high value is realized, when
the immediate value surpasses the option value of waiting. With correlated discoveries,
agents depart when observing sufficiently low values: a disappointing discovery indicates
that far more research is required to obtain a breakthrough. Furthermore, contrasting our
setting, with independent samples, the order of exits is stochastic. Regardless of the cost
profile, whenever a sufficiently high observation is realized, all agents stop their search
at once. For moderate realizations, only a subset of agents may terminate search. As it
turns out, an analogous model to ours with independent discoveries is far less tractable.
We include details in the Online Appendix.*

In the last part of the paper, we characterize the socially optimal search speeds and
stopping policies. The socially optimal search speeds are also constant and independent
of search results within any active alliance. With substitutable individual speeds, the
positive externalities induced by each member’s investment in search speed imply that the
socially optimal level is higher than that chosen in equilibrium. Furthermore, in contrast
to equilibrium search speeds, as alliance members terminate their search, the optimal
speed of those remaining declines. Optimal exits are governed by drawdown stopping
boundaries, although the drawdown sizes corresponding to each active alliance differ from
those determined in equilibrium—optimal drawdown sizes are larger, corresponding to
longer search durations.” In terms of exit waves, clustered exits may be optimal even when
individuals incur fully heterogeneous costs. As in equilibrium, the sequence of optimal
exit waves is deterministic and independent of the realized search path. However, optimal
exit waves may differ substantially from those induced in equilibrium.

Finding the optimal sequence of exit waves is a challenging combinatorial problem. A
social planner needs to consider all possible ordered partitions of the original searching
team and assess search outcomes from the corresponding exit wave sequences. The num-
ber of these ordered partitions grows exponentially fast, posing a computational challenge.
We show a simple method for identifying the optimal sequencing for one class of settings,

when individual search costs are proportional to one another. Similar to equilibrium, the

4Discrete time is inherent with independent discoveries. With a continuum of independent observations,
extremely high draws occur within any infinitesimal period, and stopping is immediate. If we discretize our
setting, exit waves might exhibit some stochasticity, but their pattern converges to the one we characterize as
time intervals between observations shrink.

3 As we discuss in the paper’s last section, allowing for non-Markovian equilibria does not eliminate the
inefficiencies we highlight. Intuitively, excessively early search termination is impossible to punish.



social planner terminates the search of those with the highest search costs first. This limits
the exit wave sequences to consider. We illustrate a simple procedure, akin to a greedy
algorithm (see, e.g., Papadimitriou and Steiglitz, 1998) that yields the optimal exit wave
sequence. In rough terms, the social planner can use a recursive procedure, first iden-
tifying the optimal last alliance to search—the alliance that would generate the highest
welfare when all members are constrained to stop jointly. Once that alliance is identified,
the social planner can find the optimal penultimate alliance. And so on. The procedure
allows us to highlight settings in which equilibrium exit waves differ substantially from

those set optimally.

2 Literature Review

Since Weitzman (1979), much of the search with recall literature has focused on individ-
ual agents’ discovery process, where the set of options is independent of one another. Our
consideration of a Brownian path of discoveries, capturing intertemporal correlations, is
inspired by the setting of Callander (2011). He studies short-lived agents who decide
whether to choose an optimal, previously explored, result or experiment on their own.
Most of the ensuing work considers short-lived agents as well. Callander and Hummel
(2014) study long-run experimentation by a sequence of policymakers who operate over a
two-period horizon. They show that preemption motives induce policymakers to experi-
ment more than they would in isolation. Urgun and Yariv (2021) analyze an individual-
search setting similar to the one analyzed here, where agents are long-lived. See also
Décamps, Gensbittel, and Mariotti (2021) and Wong (2021). The current paper provides a
full characterization of collective search by forward-looking and sophisticated agents who
can utilize a costly control.

In recent years, substantial attention has been dedicated to the study of collective ex-
perimentation. Much of this literature focuses on learning spillovers between team mem-
bers. For instance, the classic papers of Bolton and Harris (1999), Keller et al. (2005)
extend the two-armed bandit problem to a team setting, where agents learn from others.
Information is a public good. Thus, there is a free-rider problem that discourages experi-
mentation. Nonetheless, there may also be an encouragement effect through the prospect
of others’ future experimentation. See Horner and Skrzypacz (2016) for a survey.

Another strand of literature inspects settings in which stopping is determined collec-
tively. Albrecht, Anderson, and Vroman (2010) and Strulovici (2010) consider sequential
search and experimentation, respectively, where a committee votes on when to stop. They
illustrate when collective dynamics impede on search or experimentation. Bonatti and

Rantakari (2016) offer a model in which agents exert effort on different projects but stop



experimentation jointly. Optimally, one agent advances her preferred project quickly. Her
opponent agrees to early advanced projects in order to limit effort. Deb, Kuvalekar, and
Lipnowski (2020) take a design perspective—for a given deadline at which a project has to
be chosen, the principal commits to a selection rule. Titova (2021) studies a public-good
setting in which a team decides whether to implement a public good. Payoffs are revealed
through a Pandora’s box problem a la Weitzman (1979). Optimal information and projects
are selected, but free-riding may generate inefficient delays.®

There are also several papers illustrating patterns reminiscent of the clustered exits
we characterize, mostly in settings in which agents have private information. Bulow and
Klemperer (1994) consider a seller who dynamically reduces the price of identical goods
until demand meets supply. Agents have independent valuations and decide if and when
to buy. In equilibrium, frenzies, where multiple agents buy at the same price, may oc-
cur. Caplin and Leahy (1994) study a three-period irreversible-investment game in which
each firm receives private information on the aggregate state of the economy and observes
others’ prior decisions. Firms’ actions reveal information and can generate a wave. Gul
and Lundholm (1995) analyze a model with two agents who predict the value of a project
using private information. Each decides when to issue a prediction, where delay entails
a flow cost. The timing of decisions is then informative, and clustered predictions occur
in equilibrium. Rosenberg, Solan, and Vieille (2007) study a multi-agent version of the
standard real-options problem (see Dixit and Pindyck, 1994). Agents observe private sig-
nals about common returns to a risky project, as well as the actions of others. If one agent
switches to a safe project—namely, exercises an option—this can lead others to immedi-
ately switch to the safe project as well. See also Murto and Valimaki (2011) and Anderson,
Smith, and Park (2017). In a static information-collection setting, Bardhi and Bobkova
(2021) characterize optimal subsets, or mini-publics, to be activated.”

The techniques we develop relate to the applied mathematics literature on optimal
stopping, see Azéma and Yor (1979) and Peskir and Shiryaev (2006) for particularly rele-

vant sources.

3 A Model of Collective Search

Consider a team of N agents—product developers, policymakers, academic researchers,

etc.—searching through a terrain of ideas in continuous time. Time is indexed by ¢ and

®Dynamic contribution games without experimentation or uncertainty have been studied by, e.g., Admati
and Perry (1991), Marx and Matthews (2000), Yildirim (2006), and Cetemen, Hwang, and Kaya (2020).

"There is also a literature that tries to explain industry “shakeouts,” corresponding to times at which firm
numbers plummet, absent a decline in output. For example, Jovanovic and MacDonald (1994) suggest shake-
outs result from exogenous technological shocks. Initially, firms enter new profitable markets. When there is
a technological shock, some firms become more productive than others, potentially leading to clustered exits.



runs through [0, ). Each seeks good outcomes and ultimately benefits from the maximal
value they have found when they stop their search. We assume all agents are risk neutral.

We model the progress of discoveries using a Wiener process, where the realized sam-
ple path describes the link between new technologies and their expected value to each of
the participating agents. We assume there is a natural progression of exploration. For ex-
ample, in technological development, incremental increases in the number of transistors
on microchips or number of pixels in digital cameras affect the plausibility of new de-
vices. In motor vehicle technology development, there is a natural order of investigation:
first, the composition and coating of the chassis might be considered, then different bat-
tery formats, followed by their combination. Similarly, in policy development, the order of
experimentation is often pre-specified; particular nudges may be considered in sequence,
followed by their various bundles. Such examples are ubiquitous across realms, from the
development of new food recipes to the academic accumulation of techniques using text-
books in which each chapter builds on the former. Modeling the link between technologies
via a Wiener process allows us to capture the correlation between expected values of simi-
lar technologies, and the impact of search speed of those who engage in search. Axiomatic
foundations in the innovation context go back to Jovanovic and Rob (1990).%

Formally, time proxies for the sequence of ordered technologies in our model. For any
time ¢, denote by B; the standard Brownian motion with By = 0. The realized sample path
captures the expected value of each (ordered) discovery.

Agents can affect the speed at which the path of discoveries is traversed. In the exam-
ples above, the investment of resources—money, lab space, human capital, etc.—affects
how rapidly search is conducted. At each time t, when alliance A C {1,...,, N} is actively
searching, each agent i € A decides on the speed or intensity of her search oi’,“} € [o,0],
where 0 > 0 >0and A C{1,..,N}. For i € A, any search speed ¢ comes at a cost of c;(0),
where ¢; is twice continuously differentiable, strictly increasing and convex on [g,7], and
c(o) > 0. The special case of ¢ = 0 corresponds to settings in which search speed is not
controlled and agents only choose when to stop search.

The individual search speeds determine the alliance’s overall search speed. Denote by
agA the vector of individual search speeds {aﬁ}ieA, where entries are ordered via agents’
indices. Whenever the alliance A of agents is searching, we let 6/ = f4(c/!), where for all
alliances A, the aggregator f4 is compact-valued, bounded away from zero, and strictly
increasing and differentiable in each of its arguments. The search speed of the alliance,

2
the distance traversed on the realized path per unit of time, is given by (6{‘) . While this

80ur assumption that search occurs in continuous time helps with tractability. It also approximates the
observation that in many search settings, particularly research endeavors, investigations are inherently in-
cremental. Agents are not aware of the full set of alternatives at the outset. As search progresses, more
alternatives enter the menu of possibilities.



notation simplifies our presentation, we will often slightly abuse terminology and refer to
67, rather than (oA‘tA)z, as the alliance’s search speed.

Speeding up search is tantamount to the “scaling” of time. We utilize the fact that such
scaling is equivalent to a change in the standard deviation of the original Wiener process
(see, e.g., Section 8.5 in Wksendal (2003)). That is, when an alliance’s speed is given by
(0‘54)2, we can describe the generated values observed at time t—the expected value of the

discovery—that we denote by X;, using the following law of motion:
dX, = 6/dB,,

with Xy =0.

In general, holding their contributions fixed, smaller alliances can be associated with
lower or higher aggregate speeds than larger alliances—more agents investing can be ben-
eficial, or cause various coordination challenges that hamper the alliance’s speed. For com-
parative statics and examples, we often focus on the special case of a (modified) Constant
Elasticity of Substitution (CES) aggregator, where larger alliances generate higher speeds:

v
fAety =) witaty|
i€A
where p € (-c0,0) U (0,1] and the weights satisfy w; > 0 for all i and } |, w; = 1.7 This
aggregator is useful for inspecting the effects of complementarities among alliance mem-
bers. As p — —oo, individual choices become perfect complements; when p = 1, individual
choices are perfect substitutes.'"

Discovery speeds are certainly of first-order importance when it comes to research and
development (see Chen et al., 2010 and Cankurtaran et al., 2013). There is, however, an
additional interpretation of the choices individuals make in our model. As we described,
from an ex-ante perspective, the choice of speed is equivalent to the choice of instanta-
neous standard deviation of the Wiener process. One could imagine individual choices
corresponding to the breadth, or scope, of search. These feed into the operating alliance’s
search scope. Indeed, investment in development, through acquisition of instruments or
expert time, often entails an increase in risk; it either leads to substantial leaps, or to more

pronounced losses, naturally translating into a greater variance of outcomes.

9We could also define speed aggregators to take the Cobb-Douglas form when p = 0. These aggregators
allow weights to not sum up to 1 in alliances that comprise a subset of agents. We could alternatively assume
alliance-specific weights that sum up to 1 in each alliance. In order to ensure that larger alliances have the
capacity to generate greater speeds, we could then include a productivity factor that depends on the alliance
size and increases at least linearly in it. We use this version for presentation simplicity.
101 Jine with many applications, we assume search termination is irreversible. We note, however, that with
CES speed aggregators, departing agents would never benefit from continuing the search in a smaller alliance:
the externalities offered by a larger alliance are always beneficial.



We assume the discovery process exhibits no drift: in applications, the mere passage of
time rarely improves or worsens search outcomes over standard horizons of research and
development. Naturally, one could consider a team that controls drift rather than search
speeds, which would also translate to the returns of search with recall. The analysis would
follow similar lines to those we describe, although with an important loss in tractability.'!
We view endogenous search speeds as natural for most applications, where investments in

innovation directly affect how quickly progress is made.

3.1 Payoffs

Each agent is rewarded according to the maximal project value observed up to her stop-
ping time. This assumption reflects the idea that alliance members making use of their
search discoveries make production investments that are difficult to alter as new innova-
tions emerge in the market—e.g., car manufacturers may invest in factories tailored to the
technologies they aim at utilizing, policymakers set policies in motion, and their academic
counterparts write papers based on discoveries they took part in. In addition, patent pro-
tections can increase the costs of borrowing innovations occurring after active search has
terminated. Formally, let M; denote the maximum value observed by time t. That is,
M; = maxg<,<; X,, with Mgy = Xy = 0.

For any aggregate fixed search speed 4, at time ¢, E(M;) = 6+2t/7. Thus, the choice of
search speed translates directly to the expected returns from search.

When any agent i stops at time 7, her resulting payoff is given by

T
M, - J; ci(oj)dt,

where o;, is the timed search speed of individual i, which may depend on the alliances
she is active in.'?
Agents observe one another’s search. In particular, whenever agents stop searching,

other agents realize their search will continue within a smaller alliance.

3.2 Strategies and Equilibrium

At any time t, the state of the environment is summarized by X;, M;, and A;, where A; is
the active alliance of agents still searching.

A strategy for agent i dictates her chosen search speed over time and her stopping
policy. Formally, it is a set of function pairs (0;,7;). In principle, (0;, 7;) may depend on

HTaylor et al. (1975) characterize the maximal value of search with constant drift. The resulting value is far
less amenable to further analysis than ours.

121n Section 7.1, we discuss an extension in which agents who stop later are penalized. We assume flow costs
for the sake of tractability. Discounting introduces novel technical challenges, see Urgun and Yariv (2021).



time, as well as the entire path of observed search values, corresponding maxima, and
active alliances. Let {#;} denote the natural filtration induced by the governing Brownian
motion. Agents’ strategies are adapted to this filtration.

We restrict attention to Markov strategies. That is, we assume each agent i uses a
strategy of the form (aiA, TlA) that depends only on the state variables X;, M;, and A,."?
Formally, UiA : R?> - [0,6], and TZA is a stopping time adapted to X; and M; such that
Pr(riA =tlFH) = Pr(TZ.A = t|X;, M;) for all i. Agent i’s resulting stopping time is t; = inf{t > 0:
t= TZA and A, = A}.

For any agent, a stopping time without a finite expectation is dominated: it gener-
ates unbounded negative expected payoffs. We therefore focus on strategies with finite
expected stopping times. We further assume that a continuous stopping boundary deter-
mines when each agent stops within any active alliance. Formally, for all i and all alliances

A such that i € A, the stopping policy takes the following form:
 =inf{t > 0: X, < g (M)},

where glA(-) is a continuous function. This formulation implicitly implies that, upon indif-
ference, agents exit the search.'* Our assumption that stopping boundaries are continuous
is without loss of generality as long as any agent is willing to search on her own, which we
show in the Online Appendix.
A strategy for an agent i is a collection of stopping times ’L’ZA and mappings that indicate
the individual speed O'Z-A for each alliance A such that i € A.
A A

For a given profile [(aj )T

payoff. It is determined by solving the following problem:

)l . ,agent i’s best-response strategy maximizes her expected
#i

Ti
sup IE{(GA o) M., —J C; (o*{i)dt , where t; =inf{t > 0:t = TlA and A; = A}.
Ay 1770 jeAvi) 0

Ti’{o_i,t

t=0
An equilibrium is a profile of Markov strategies satisfying the assumptions above and con-

stituting best responses for all agents.

4 Equilibrium Team Search

In this section, we characterize the outcomes of team search. We describe the equilibrium
search speeds and stopping boundaries. We also identify the sequencing of agents’ search

termination, and the patterns of equilibrium exit waves.

13The inefficiencies we highlight do not vanish when considering equilibria in non-Markovian strategies,
see our discussion in Section 7.2.
14This kind of stopping time TIA
with the function glA defining the corresponding stopping boundary.

is commonly known as an Azéma-Yor stopping time (Azéma and Yor, 1979),

10



4.1 Equilibrium Characterization

Given our restriction on agents’ strategies, it follows that any alliance A gets smaller at the
minimal stopping time of its members. That is, the time 74 at which the first members of

A stop search is given by 74 = min;c, TlA. Equivalently,
™ =inf{t>0: X, < r%xg;“(Mt)}.

Since agents use continuous stopping boundaries, we can write
™ =inf{t > 0: X, < g*(M,)},

where g*(M,) = max;c4 glA (M;) is continuous.
We start by identifying equilibrium search speeds. Individual search speeds depend

only on the active alliance and are constant as long as no member departs.

Proposition 1 (Team Search Speed). For any agent i in an active alliance A, at any point in
time, equilibrium search speeds satisfy the following system whenever interior:
2¢i(0f') df A (0?) _

c(od)  doA G

In general, there might be multiple solutions to the system in Proposition 1, some pos-
sibly corresponding to less efficient equilibria. With multiple solutions, our team search
problem is compounded with a coordination problem. In principle, agents could use pub-
licly observable Markov states—the achieved maximum or the current observation—to
coordinate on different solutions. When the system has a unique solution, the proposition
implies that equilibrium search speeds are constant. One restriction guaranteeing unique-
ness is what we term regularity. An environment is regular if the Jacobian of the system
in Proposition 1 is non-singular. In this system, marginal returns to individual speeds are
adjusted by agents’ cost to marginal cost ratios. In particular, regularity depends on both
speed aggregators and individual costs and holds as long as complementarities in speed
aggregation are not “too” strong. Indeed, regularity holds for a large class of settings, as

our examples below illustrate.'®

Corollary 1 (Constant Equilibrium Speed). In a regular environment, individual search speeds

are constant within an alliance. That is, for any i € A, we have aiA(Mt,Xt) = O'iA.

The intuition for Proposition 1 is the following. At almost all times throughout any

agent’s search, X; < M;. Thus, almost always, agents cannot affect the magnitude of the

150ur analysis is valid even absent the regularity assumption. If there is only a discrete set of solutions and
strategies are restricted to be continuous, the constant speed conclusion continues to hold. We note that absent
constraints on the environment’s fundamentals, speed maximization or Pareto optimality do not always select
a unique equilibrium. The Online Appendix provides a class of examples illustrating this point.

11



maximal value in any infinitesimal interval of time. Since we assume flow search costs,
agents then choose their speed to balance the time it takes to reach a transition—either
a new maximum, or search termination—and the speed cost, given the speed chosen by
other alliance members. The achieved maximum or the current observed value have no
bearing on this calculus.

More formally, consider an agent i in an active alliance A. Suppose i believes that all
other agents j in the alliance search with speed O']‘-A. When away from agent i’s stopping
boundary, agent i can contemplate a small interval of time in which she is unlikely to hit
her stopping boundary. For that small interval, agent i considers the induced speed of the
process: (fA(aA)) and the cost she incurs, ci(cfiA). Ultimately, the agent aims at minimiz-
ing the cost per speed, or the overall cost to traverse any distance on the path, (fii;%’j;)z.
The identity in the proposition reflects the corresponding first-order condition (naturally,
one needs to ensure the solution is indeed a minimizer; otherwise, under regularity, the
equilibrium individual speed is not interior).

Importantly, it is the ratio of costs to marginal costs that govern equilibrium search
speeds. In particular, in our setting, teaming up with agents who have both higher costs
and marginal costs can be beneficial in terms of externalities, a point we return to when
discussing comparative statics in our setting.

The proposition suggests that speed is constant within any active alliance. However,
the search speed adjusts as alliance members depart. This observation may play a role
when assessing the relation between search speed and search outcomes. As already noted,
there is a mechanical link between search speed and expected maximal values—for any
aggregate fixed search speed &, at time t, IE(M,) = 6V2t/mt. However, over the full path
of search, alliances may change and search speeds adjust. Thus, the link between aver-
age speed and the observed maximum at any time need not be linear and depends on
the searching team’s features. This may help explain why empirical studies correlating
average speeds and search outcomes yield inconclusive results (see Chen et al., 2010 and
Cankurtaran et al., 2013 for relevant meta-studies in the context of product development).

When costs are log-convex, the ratio of costs to marginal costs is monotonic. When
speed aggregators take the CES form, the environment is regular, and comparisons of

search speeds within various alliances follow directly from the proposition.

Corollary 2 (Search Speed and Alliance Size). Suppose speed aggregators take the CES form
with p > 0, costs are log-convex, and an interior solution exists for the system specified in Propo-

sition 1. As an alliance shrinks, individual members’ search speeds increase, while total search

A > crl-A while 64 > ¢A\i},

speed decreases. That is, for any i,j € A, we have o,

The corollary highlights a form of free-riding. When speed aggregators take the CES
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form with p > 0, search speed is substitutable across individuals. The more agents search-
ing, the less each one searches. Since individual search speeds decrease within an alliance,
the total search speed in any active alliance is smaller than that which would be generated
by the alliance’s members searching independently.'®

The implication of the corollary is that, with substitutability, breakthroughs—new
maximum values that exceed the previous maximum by a certain fixed amount—take
longer and longer to achieve. This observation is in line with some evidence from in-
dustries, products, and firms showing that, over time, research effort rises while research
productivity sharply declines, see Bloom, Jones, Van Reenen, and Webb (2020).

While free-riding in teams is a common phenomenon, in our setting, it occurs only in
particular settings. In general, with complementarities, agents’” individual search speeds
can go up or down as alliance members depart. We return to the effects of complementar-
ities in Section 5.1.

We now turn to the characterization of equilibrium stopping boundaries. We show that
agents cease their search whenever search results fall by more than a set amount relative
to the observed maximum. Consequently, the order in which agents terminate their search

is fixed and does not depend on the realized path of search values.

Proposition 2 (Alliance Stopping Boundary). In a regular environment, there exists an equi-

librium such that, for any agent i in any active alliance A,

(fA(o™)?
gy =m-L 220
2¢i(07")
. ) . (fFAM))? . . .
In particular, agent i € argmin; o) IS the first to stop in any alliance A. Furthermore,
%

given equilibrium search speeds, there is a unique equilibrium in which stopping boundaries are

weakly undominated.

Stopping boundaries of the form g(M) = M —d are often termed drawdown stopping
boundaries with drawdown size of d. In equilibrium, agents stop whenever the gap be-
tween the observed maximum and the current observation exceeds their drawdown size,
as identified in the proposition.

To glean some intuition for the structure of the equilibrium stopping boundary, con-
sider some alliance A and suppose all agents believe that other members of the alliance
will continue searching indefinitely with search speeds given by Proposition 1. Since the
environment is regular, agents use a constant search speed. Each individual agent i’s op-

timization problem then boils down to a solo searcher’s optimization, with others’ search

16Welfare is always lower when individuals search independently. Any agent receives a higher payoff within
an alliance than she would on her own. Indeed, any agent can emulate her solo-search policy in an alliance
and guarantee at least as high a payoff.
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simply affecting the experienced search costs. Namely, the induced cost of implement-
ing search speed 0 is ¢;(0 = )_jca j»i O‘]A). Since agent i’s optimization problem is identical
when observing X and M, or X + k and M + k for any arbitrary constant k, her stopping
boundary must coincide as well and hence takes the form of a drawdown stopping bound-
ary, see Urgun and Yariv (2021) for further details. Denote the corresponding drawdown
size by diA. Suppose dlA = minjey d]‘.é‘. Consider then another iteration of best responses,
where all agents use the drawdown stopping boundary calculated as above. Agent i would
still be best responding since, from her perspective, others in the alliance would continue
searching for as long as she does. Furthermore, while other agents may want to alter their
stopping boundary, intuitively, none would want to cease search before agent i since that
would contradict their desire to continue searching for at least as long as agent 7 in the
first place.

This line of argument suggests that, given equilibrium search speeds, the stopping
boundary of the first agent i to terminate search in any alliance A is determined uniquely
when focusing on equilibria in which stopping boundaries are weakly undominated.!”
Multiplicity of equilibria arises from the stopping boundaries of other agents j € A. In-
deed, any agent j who stops strictly after agent i is indifferent across all stopping bound-
aries g}q(') that satisfy gf(M) < glA(M) for all M. Naturally, all such choices of stopping
boundaries by agents other than i do not impact when the alliance first loses some of its
members, nor the search speed while it is fully active. Consequently, equilibrium out-
comes are unique.'®

When search is over independent samples, as in the classical models of McCall (1970)
and Mortensen (1970), agents stop when sufficiently high values are realized (see our
Online Appendix for details of a model analogous to ours exhibiting independence). In
contrast, when discoveries are correlated, as in our setting, low realizations indicate that
far more research is needed to accomplish a breakthrough. Agents therefore stop when
observing sufficiently low realized values. Nonetheless, the optimal policy has a similar
threshold flavor captured by the drawdown size.

When search speeds are substitutable, Corollary 2 provides sufficient conditions for in-
dividual speeds to increase and overall speeds to decrease as alliances shrink. Proposition
2 implies that the drawdown size corresponding to any individual is increasing in the al-
liance’s search speed and decreasing in her search speed. Therefore, under the conditions

of Corollary 2, individual drawdown sizes decrease as alliances shrink. Intuitively, when

17The focus on weakly undominated stopping boundaries—given the equilibrium search speeds—allows us
to rule out inefficient equilibria that are an artifact of coordination failures, with multiple agents stopping at
an earlier time than desired since other alliance members do so.

180ur analysis indicates a link to other cooperative solution concepts in the spirit of the core. At any point in
time, were active agents free to form any coalition to pursue search, or cease search, the externalities present
in our environment would imply a unique outcome corresponding to the equilibrium outcome we identify.
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search speed is substitutable across individuals, members departing from an alliance re-
duce free-riding opportunities and, consequently, the option value of continuing search.
This leads agents to be more demanding for their search to continue.

Propositions 1 and 2 suggest an approach for estimating a joint search process’ funda-
mentals, the relevant costs and complementarities. If one assumes a parametric family of
costs and speed aggregators, the discoveries at points of exit—say, the revenues generated
by members leaving an alliance and moving into production—and the times at which they
occur, can allow a researcher to restrict the set of plausible parameters. While it is crucial
to observe the composition of active alliances, historical features of the search would not

affect such an exercise. See our discussion in Section 5.1 as well.

4.2 Equilibrium Exit Waves

When all agents have the same costs and solutions are interior, equilibrium takes a simple
form. Team members choose identical search speeds, as determined by Proposition 1.
They also leave in unison—there is only one exit wave. Proposition 2 suggests that joint
departures may occur even when individual costs differ.

To see how those happen, consider any active alliance A. Suppose agent i is first to exit:
dlA =minjey d]A. Let Z! = {i}. Now consider the alliance A\ Z! resulting from i’s departure.
For all remaining agents, there is then a new drawdown size that governs the decision to

. 1
stop search. These new drawdown sizes are {d]A\Z }

jeaxzt- The discrete drop in overall
search speed induced by i’s departure may imply that d;“\zl < dlA for some j € AN\ Z!.
Let Z? correspond to all these agents together with agent i. It follows that, as soon as
agent i terminates her search, so will all other agents in Z2. We can continue this process
recursively to identify the clustered exits that occur in equilibrium. Their characterization
depends only on the magnitudes of the drawdown sizes identified in Proposition 2. In

particular, they are identified deterministically. Thus,

Corollary 3 (Equilibrium Exit Waves). In a regular environment, the order of exits is deter-

ministic, while exit times are stochastic.

Our description above suggests that one agent leaving may trigger the departure of
multiple agents—a form of snow-balling effect. This implies that targeted interventions,
subsidizing the search of only particular agents, may impact the entire path of exit waves.

The deterministic order of exits stands in stark contrast to what would occur with in-
dependent search observations a la McCall (1970) or Mortensen (1970). Consider a simple
setting in which, at every discrete period, agents in an alliance observe an independent
sample from a normal distribution whose expectation and variance depend on members’

costly investments. Moderately high realizations could lead to different sets of agents
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departing than extremely high realizations. Indeed, regardless of the cost profile, for suf-
ficiently high realizations, all members would depart at once. That is, with independent
samples, the order of exits is stochastic. See the Online Appendix for details. Discrete
time is inherent with independent discoveries. Indeed, with a continuum of independent
observations, extremely high draws occur within any infinitesimal period, and stopping is
immediate. However, the contrast with our setting is not a pure artifact of the continuous-
time setting we study. If we discretize time in our setting, exit waves might exhibit some
stochasticity, but their pattern converges to the one we characterize as time intervals be-

tween observations shrink; see Whitt (1980) for related approximation results.'’

5 Equilibrium Features

We now discuss several features of equilibria in our setting. To highlight the effects of
complementarities and the structure of exit waves, we assume speed aggregators take the

CES form with equal weights. That is, we assume w; = % for all 1.

5.1 Impacts of Complementarities and Costs

We start by analyzing how complementarities and cost differences across the agents affect
equilibrium features. For simplicity, we assume N = 2 and consider a special case of ex-
ponential costs: ¢;(0) = e’ and c;(0) = e*? with a > 1. Thus, agent 2 has higher costs and
marginal costs relative to agent 1.

For any level of complementarities, agent 1 selects a higher speed than agent 2, for
whom investments are more costly. Panel (a) of Figure 1 displays agents’ speed choices
for different cost functions of agent 2: @ = 2,5,10. As complementarities increase (p de-
creases), individual choices converge, with agent 1’s speed declining and agent 2’s speed
increasing. Intuitively, when p is high, agents’ speed investments are substitutes. The
high-cost agent 2 can then free-ride on the low-cost agent 1 and the wedge in investments
is pronounced. In contrast, when p is low, agent 2 cannot effectively free-ride on agent 1;
if agent 2 chooses a low speed, agent 1 would experience lower incentives to invest. As p
becomes unboundedly low, the speed aggregator takes a Leontief form, where the mini-
mum of the agents’ individual speeds determines the team speed. Agents then converge
to choosing the same individual speed.

191f the sample-generating process entails independent, memory-less, and fixed positive jumps, where the
observed value might increase discontinuously at random times, we expect—using techniques introduced by
Gapeev (2007)—the deterministic order of exits to hold. In innovation processes, such positive jumps can
capture discrete breakthroughs. Nonetheless, with random negative jumps, where observed values might
randomly decline discontinuously, the order of exits need not be deterministic: sufficiently bad jumps can
induce multiple agents to cease search at the same time.
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Panel (a) of Figure 1 also illustrates the impact of increasing the costs of agent 2. As
agent 2’s costs increase, her chosen speeds decrease. The change in agent 1’s choices de-
pends on the complementarities in place. When speeds are substitutes (p > 0), the re-
duction in agent 2’s speed induces agent 1 to compensate by increasing her search speed.
When speeds are complements (p < 0), the reduction in agent 2’s speed disincentivizes
agent 1 from investing and leads to a decline in her search speed as well.

Panel (b) of Figure 1 depicts the aggregated team speed. For any level of comple-
mentarities, an increase in agent 2’s costs is not helpful to the team, and overall speeds
decline. Complementarities affect negatively the investment incentives of the high-cost
agent 2. Consequently, the team’s speed is higher as agents’ investments become more
substitutable (p increases). This observation highlights the role of complementarities in
our setting: they imply a form of dependence. When alliance members’ search activities
feed into one another, one agent speeding up can only take the alliance so far if others are
spending very little. Thus, complementarities are a limited “remedy” to free-riding effects
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in the presence of substitutabilities. This is reminiscent of observations in static contests,
see Kolmar and Rommeswinkel (2013).

Panel (c) of Figure 1 illustrates agents’ individual drawdown sizes. As agent 2’s cost
increases, since the overall speed decreases as seen in panel (b), the net value of continuing
search for both agents decreases and drawdown sizes decline in size—the alliance stops its
joint search sooner. The comparison of the drawdown sizes of the two agents depends
on complementarities. When agents’ speeds are complements, agents’ speed choices are
similar, and the high-cost agent 2 exhibits a lower drawdown size than agent 1. In contrast,
when agents’ speeds are substitutes, as described in panel (a), agent 2 can free-ride on
agent 1’s efforts. As a consequence, agent 1 is more keen to stop search and exhibits a
lower drawdown size.

Both agents benefit from the presence of another agent in our setting. The solo indi-
vidual drawdown sizes are therefore higher than those identified in panel (c) of Figure 1.
When speeds are substitutes, once agent 1 terminates her search, agent 2 cannot exploit
another’s efforts and terminates search as well: her solo-individual drawdown size is lower
than that of agent 1 in the team. Thus, with p > 0, there is an exit wave with both agents
leaving at once. In contrast, when speeds are complements, once agent 2 terminates her
search, the loss to agent 1 is less pronounced and she is willing to continue searching: her
solo-individual drawdown size is higher than that of agent 2 in the team. That is, when
p <0, agents stop their search sequentially.

The mirror image of these comparative statics emerges when considering changes in
agent 1’s cost relative to agent 2. Overall, increasing the costs of one agent is never helpful
to the other when costs are exponential. The effects of changes in the cost parameter «
are driven by the fact that increases in a increase costs and marginal costs, but decrease
their ratio. In general, a point-wise increase in ¢,(-) and c¢;(-) can be accompanied by a
decrease or increase in their ratio. From Proposition 1, since that ratio governs agents’
speeds in the alliance, and consequently their search duration, a partner with higher costs
and marginal costs can, at times, be beneficial. The Online Appendix provides details on
this observation.

From an empirical perspective, even with only two agents, observing the exit patterns
and the values generated by each agent upon search termination restricts the set of possi-
ble parameters. An exit wave occurs only when substitutability is in place; Sequential de-
partures occur only when there are speed complementarities. With sequential departures,
the relative values at departure times—say, revenues from products produced—further re-
strict the set of plausible parameters. These inferences are independent of what transpired

prior to the alliance searching on its own.
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5.2 Exit Waves with Well-Ordered Costs

In the setting considered in Section 5.1, the low-cost agent never terminates search strictly
before the other. However, the precise search speeds and drawdown sizes depend on the
profile of costs. We now consider another class of costs, where the identification of exit
waves and their comparative statics is particularly simple. Suppose agents’ cost functions
are proportional to one another: ¢ = ¢; 1 = ¢+ = cyPn, Where f; =1 < B, < ... < BN.
That is, agent 1 has the highest search costs, while agent N has the lowest search costs.
Suppose further that the environment is regular, and speed aggregators are symmetric.>"

Proposition 1 implies that all agents in an active alliance choose the same search speed,
assuming an interior solution exists.

Agents’ search speed changes only when their alliance shrinks. In this special case,
we can pin down the weak order by which agents stop their search without calculating
their corresponding drawdown sizes, which greatly simplifies the analysis. Specifically,
Proposition 2 implies that agent N exits no sooner than agent N — 1, who exits no sooner
than agent N — 2, and so on. In equilibrium, agents with higher costs terminate search
earlier. Can non-trivial exit waves occur when agents’ costs are strictly ordered?

Consider any active alliance {j,...,N}. If

{j,..N} {j+1,..N} {j+2,...N} ,{j+k,...N}

d; >diy " diy T T
then agents j,j+ 1,7+ 2,...,j + k will all terminate their search at the same time. Figure 2
depicts an example for N = 10 individuals. In the figure, once agent 1 leaves, agents 2 and
3 leave as well. Similarly, once agent 4 leaves, agent 5 leaves. And so on. Ultimately, the

drawdown sizes that govern agents’ departures correspond to the “upper envelope” of the
{j-N}
i

When costs are sufficiently close to one another, all agents exit at once. When costs are

graph depicting d as a function of j.

sufficiently far from one another, agents exit at different points. A decrease in f;, keeping
c1p1 and all other parameters fixed, increases the agent 1’s search costs and leads to her
earlier search termination, potentially too soon for other agents to exit. Consequently, the
number of exit waves weakly increases. In contrast, a decrease in fy, keeping cyfx and
all other parameters fixed, increase agent N’s search costs, making her more inclined to

exit when agent N — 1 does. Consequently, the number of exit waves weakly decreases.

20 A function f of m variables is symmetric if, for any permutation 7 : {1,...,m} — {1,..,m} and any (o1,...04)
in the function’s domain, (oy(1),---» Or(m)) is also in the function’s domain and f (o5 (1), .- Or(m)) = f(01,-..0m)
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6 The Social Planner’s Problem

We now consider a social planner who dictates agents’ search speeds and exit policies to
maximize overall utilitarian efficiency of the team. This analysis highlights the type of

inefficiencies that strategic forces in our joint search process imply.

6.1 The Social Objective

The social planner aims to maximize the agents’ expected utilitarian welfare. The instru-
ments at her disposal are the times at which various agents exit—the sequence of active
alliances—and the search speeds within each active alliance.

Standard arguments allow us to restrict attention to Markovian policies for the social
planner, see Puterman (2014). Formally, we consider a Markov decision problem in which
the state at each date t is three-dimensional and comprising (i) the set of active agents A,
(ii) the current maximum M;, and (iii) the current observed project value X;. The social
planner chooses a continuation alliance of agents—a subset of the current alliance A;—and
the search speed of each member in that alliance.

As before, o*tA denotes the vector of individual search speeds at time t, {02};ca, where

it
entries are ordered via agents’ indices. Whenever the alliance A of agents is searching, the
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alliance’s search speed is given by 6/ = f4(o/).

The social planner has two Markovian controls. The first pertains to the selection of a
continuation alliance, and denoted by G(M, X, A) : R? x 2N 1 24, The mapping G deter-
mines the subset of agents continuing the search as a function of the current state. In par-
ticular, if G(M, X,A) = A, the current alliance continues the search. If 0 # G(M,X,A) G A,
the alliance shrinks in size. Whenever G(M, X, A) = 0, no agent is left searching and the
search terminates.”!

The social planner’s second control is the profile of search speeds within any alliance A,
A
i

that agents that already exited cannot be induced to choose positive search speed and do

which can be written as 0/*(M, X) : R? > [o, &] for each i € A. We maintain the constraint
not participate in any future search: exit is irreversible. As a shorthand, we drop the
arguments when there is no risk of confusion.

Given these controls, we can now associate a stopping time for each active alliance A.

This is the first time at which the alliance shrinks in size. That is:
™ =inf{t > 0: G(M,, X, A) = A. (1)

If an alliance A is never reached, we set 74 = 0.
Let A, denote the induced process of active alliances. For any active agent i, the time

at which her search stops is given by

7, =inf{t > 0:i e G(M,;, X;, A;)).
This is the first time at which agent i is not included in an active alliance.

At any time t, the welfare of individual i € A;, given the controls {G, 0;}, is

T

_ A
W;(M;, X4, Alo;, G) = IE[MTZ_ —j ci(o; * (M, X;)ds|.
t

For any i ¢ A;, we set W;(M,, X, A;|0;,G) = 0. The social planner’s problem is then:

W(My, X;, A;) = sup Zwi(MtIXtrAtbil G).
{G’O'i} 1

Given a pair of controls (G, o), with slight abuse of notation, let A; = {1,..., N} denote

the first active alliance, containing all agents.?”> Using (1), let A, = A_4, be the alliance that

succeeds Ay, the alliance resulting from the first agents halting their search. In principle,

Aj; could entail some randomness—depending on the path observed, different agents may

2lFor simplicity, we restrict attention to deterministic continuation alliances. As our analysis shows, this
restriction has no bearing on the social planner’s welfare.

22We abuse notation by using subscripts to denote the alliance’s order in the sequence, rather than time, in
order to maintain clarity and simplified notation throughout our analysis.
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be induced to exit. We then use (1) to define 742, the (random) time at which the second set
of agents stops search and define A3 = A4, as the (potentially random) resulting alliance.
We continue recursively to establish the (random) time 7 at which the k’th set of agents
stops search and define Aj,; = A 4 as the (potentially random) resulting alliance. Let
K denote the (potentially random) number of different active alliances the social planner
utilizes till search terminates for all. For any controls {G, 0;}, we have a sequence of active

Al,TAZ,..., 4K,

alliances Ay, A,,..., Ax with associated stopping times
Suppose our team-search problem starts at the state (M,X,A). We set 74 = 0 and

A1 =0 so that the social planner’s problem can be written as:

K
W(M,X,A;) = supIE Z JAp\ Agy1IM 4 - j Z
k=

{G 01 lEAk
Equivalently, we can write the problem recursively starting from any state (M, X, Ay):

Ak
W(M,X,Ay) = sup E||Ag \ Ag1IM 4 —J Zci(glﬁk)dw W (M, X par, As1) |-
{G,ai} 0 A,

Suppose the social planner finds it optimal to halt the search of agent i in an active
alliance A when observing X and M. It would then also be optimal to halt the search for
this agent when observing X’ and M with any X’ < X. Intuitively, the social planner’s solu-
tion would be the same were the process shifted by a constant. Therefore, her choice when
observing value X’ and a maximum M is the same as when observing X and maximum
value M" = M + X — X’ > M. As we soon show, search speeds do not explicitly depend
on the achieved maximum. Hence, when observing X and M’, were the social planner to
continue agent i’s search for a small time interval, the optimal search speeds in the active
alliance would coincide with those she would pick for the same alliance were search con-
tinued when observing X and M. However, the likelihood of surpassing M’ in this small
time interval is lower than the likelihood of surpassing M. Furthermore, the social plan-
ner could gain M’ from releasing agent i with the current observed maximum relative to
the lower M she would get from releasing that agent when observing X and M. Thus, if it
is optimal to halt agent i’s search when observing X and M, it is also optimal to halt that

agent’s search when observing X and M’. We can therefore write
A=inf{t>0: X, < g*(M,)},

where g4 (M) = sup{X : G(M, X, A) = A}.”>
For any active alliance A, we note that g (M) < M for all M. In other words, it is never

23We implicitly assume, without loss of generality, that whenever the social planner is indifferent between
halting the search of a subset of agents or continuing their search, she chooses the former.
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optimal to stop that alliance at any f such that M; = X;. If an alliance searches for a non-
trivial amount of time at its inception, say at time #,, it must be that M; > X; . The alliance
would then continue searching jointly even were the planner to observe, at some time ¢,
the value X; and recorded maximum of M; with X; = M; = M, . But then the same should
hold when M; = X; = y, with arbitrary y; this corresponds to a shifted problem and does

not alter welfare considerations.?*

6.2 Optimal Team Search

Our first result illustrates that, as in equilibrium, the social planner chooses constant
search speeds for each active alliance. However, these search speeds differ from those

dictated by equilibrium.

Proposition 3 (Optimal Search Speed). Search speeds within an alliance are constant and
depend only on the alliance’s composition. Furthermore, whenever interior, search speeds satisfy

the system:

2Y ieaci(0?) fA(0h)

c; (aiA) 801-A

= f4(o™).

The intuition for this result resembles that provided for equilibrium choices. For any
active alliance A, the social planner considers the induced speed of the process, given by
2
(fA(GA)) and the cost she incurs, ) ;.4 ck(a,?). The social planner then aims at minimiz-
Y keA Ck(o']f)

(fA@A)”
The identity in the proposition reflects the corresponding first-order condition (as in equi-

ing the cost per speed, or the overall cost to traverse any distance on the path,

librium, one needs to ensure this condition corresponds to a minimizer; otherwise, the
optimal speeds are not interior). As we soon show, the social planner’s problem has a
unique solution, up to relabeling of agents. In particular, the socially optimal speed is
constant even absent our regularity assumption.

When costs are log-convex and speed aggregators take the CES form with substitutes
(p > 0), the proposition implies that socially optimal search speeds are higher than those
prescribed in equilibrium. Furthermore, when alliance A is active, each alliance as a
whole searches weakly more under the social planner’s solution. Intuitively, agents’ ef-
forts exhibit two positive externalities. First, a greater search speed contributes positively
to other members of the current alliance. Second, increased search efforts improve future

alliances’” welfare. The social planner internalizes these positive externalities and thus

24This would not hold were the social planner’s objective concave in the maximum observed. Concavity in-
troduces new challenges, see Urgun and Yariv (2021) for its impact on single-agent decisions. Its investigation
would be an interesting direction for the future.
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specifies greater overall search investments. Corollary 2 indicates that, as alliances shrink,
remaining agents increase their search speed. The impacts of agents departing are quite
different in the social planner’s solution. As members depart, the externalities of each re-
maining agent decline: there are fewer others their search speed helps. Consequently, the

socially optimal search speed of each individual agent declines. That is:

Corollary 4 (Optimal Speed and Alliance Size). Suppose speed aggregators take the CES
form with p > 0, costs are log-convex, and the social planner’s search speeds are interior. Then,
in any alliance, an agent’s equilibrium search speed is lower than that agent’s search speed in
the social planner’s solution. Furthermore, in the social planner’s solution, each agent’s search

speed decreases as her alliance shrinks in size.

The sequencing of alliances and their search duration also differ between the social

planner’s solution and the corresponding equilibrium:

Proposition 4 (Optimal Alliance Sequencing). The socially optimal sequence of alliances is
deterministic, and unique up to agents’ relabeling. For any deterministic sequence of alliances
Aq,..., Ay exerting optimal search speeds, the socially optimal stopping boundaries are draw-
down stopping boundaries. That is, for each alliance Ay, g**(M) = M — da, with dy, € R,.

Furthermore, the drawdown sizes {d, } exhibit a recursive structure: for any k,

i, = |Ak \ Agial
kT A A :
ZieAk ci(o; ©) ZieAkH ci(o; )

(fAk(a-Ak))2 (fAk+1 (0%k+1 ))2

Why does the social planner use drawdown stopping boundaries for various alliances?
Intuitively, for any active alliance Ay, the social planner considers the marginal group of
agents Ay \ Ay, whose search will be terminated next. The relevant marginal added cost

per speed for that group is then:

A A
ZieAk Ci(Ul- “) ZieAM Ci(ai “h)

(fAk(o'Ak))z ) (fAk+1(o‘Ak+l))2

Each of these agents would receive the established maximum once they depart, thereby

generating a multiplier of |A; \ A, 1| of the maximum in the social planner’s objective. The
resulting stopping boundary then emulates that of a single decision maker, a special case
of Proposition 2, with scaled up returns to each maximum established when the alliance
shrinks, and adjusted costs as above.

To glean some intuition into the deterministic nature of the sequence of alliances, sup-
pose that the social planner, starting with some active alliance A, proceeds to either al-

liance A’ or alliance A”, depending on the realized path, with A’,A” C A. Following our
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discussion above, both transitions—from A to A’ and from A to A”—are associated with a
drawdown stopping boundary, with drawdown sizes of d” and d”, respectively. If 4’ < d”,
starting from alliance A, the social planner would always shrink the alliance to A’ as the
relevant stopping boundary would always be reached first. Similarly, if d” < d’, the so-
cial planner would always reduce the alliance to A”. In other words, different drawdown
stopping boundaries never cross one another, and so the path of alliances is deterministic.

To see how multiplicity might emerge, consider the following simple example. Sup-
pose N = 3 and that agents 2 and 3 are identical, with equal cost functions and inter-
changeable effects on speed aggregators. Suppose further that agent 1’s cost is substan-
tially lower than that of agents 2 and 3 and that speed aggregators take much larger values
for alliances of two agents than for any other alliance. The social planner would then
terminate the search of either agent 2 or agent 3 at the outset of the search—since these
agents are identical, which of the two does not matter. In this case, there are clearly multi-
ple solutions, but their resulting speed choices, alliance paths, and payoffs are equivalent
up to the relabeling of agents 2 and 3. The proposition shows that this is the only type of
multiplicity possible.

Propositions 3 and 4 suggest that the general structure of efficient search is similar
to that conducted in equilibrium. Agents depart the search process in a pre-specified
order and do so using drawdown stopping boundaries. Furthermore, within each active
alliance, search speeds are constant over time. Nonetheless, the optimal sequence of active
alliances, their corresponding drawdown sizes, and the search speeds do not generally
coincide with those prescribed by equilibrium. In equilibrium, Corollary 3 implies that
targeted subsidization of certain agents can dramatically alter the structure of exit waves.
Proposition 4 provides guidance on which agents should ideally be subsidized.?”

Certainly, agents who search exert positive externalities on others searching. Natu-
rally, then, the social planner exploits these externalities by extending the time individuals
spend searching. In fact, the expressions derived for the optimal and equilibrium alliance

drawdown sizes imply directly the following.

Corollary 5 (Longer Optimal Search). Suppose speed aggregators take the CES form with
p >0, costs are log-convex, and the equilibrium and social planner’s search speeds are interior.
Consider any alliance that is active on path in both the social planner’s solution and in equilib-
rium. Then, the drawdown chosen by the social planner for that alliance is weakly larger than

the equilibrium drawdown of the same alliance.

26

The results of this section provide some features of the optimal solution.”® However,

25Qutside the scope of the current paper, it would be interesting to analyze how a limited budget should be
utilized to subsidize searching agents efficiently.
26In addition, in the Online Appendix, we show a recursive formulation of the social planner’s objective—
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they do not offer a general characterization of the optimal sequence of alliances, which is
the result of a challenging combinatorial optimization problem—in principle, the plan-
ner needs to consider all possible exit patterns, corresponding to ordered partitions of the
team. A sharper characterization requires more structure on the environment’s funda-
mentals. In the next subsection, we impose such a structure and solve the social planner’s
problem completely, illustrating the optimal sequence of alliances and contrasting it with

that emerging in equilibrium.

6.3 Optimal Team Search with Well-Ordered Costs

Suppose, as in Section 5.2, that agents’ cost functions are proportional to one another and
point-wise ordered: ¢ 1 = ¢, =+ = cNy PN, Where 1 =1 < B, <... < Bn. Suppose further
that all speed aggregators are symmetric and that, for any alliance A, the speed aggregator
f# depends only on the alliance’s cardinality |A|.>’

We start by showing that the social planner uses a similar sequencing of active alliances

to that used in equilibrium.

Lemma 1 (Optimal and Equilibrium Alliance Sequence). In the social planner’s solution,
agent i never terminates search before agent j if i > j. In particular, whenever agent i terminates
search before agent j in equilibrium, the social planner terminates agent i’s search either with,

or before, agent j’s.

Intuitively, the social planner optimally terminates the search of agents with the high-
est search costs first, so agent 1’s search is terminated no later than agent 2’s search, which
is terminated no later than agent 3’s, etc. This mimics, “weakly,” the order governed by
equilibrium. Nonetheless, the social planner’s sequencing need not echo that prescribed
by equilibrium since clustered exits can differ dramatically, as we soon show.

It will be useful to introduce the following notation for our characterization of the so-
cially optimal sequence of alliances. Let By = {k,k+1,..,N} forallk=1,..,N. Lemma I
and our equilibrium characterization imply that the optimal sequence of active alliances
has to correspond to a subset of {Bk}lk\lzl. This already suggests the computational simplic-
ity well-ordered costs allow. For instance, instead of considering 2V -1 alliances that could
conceivably be the last ones active, we need to consider only N.

For B’ ¢ B, we denote by dp_,p the socially optimal drawdown size associated with

alliance B, when it is followed by alliance B’, as described in Proposition 4. In particular,

the resulting welfare—in terms of the optimal drawdown sizes and search speeds.

27The assumption that speed aggregators depends only on the alliance’s cardinality ensures that the social
planner does not terminate the search of certain agents only to increase the productivity of those remaining,
an externality that would trivially not be internalized in equilibrium.
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dp_,p denotes the optimal drawdown of an alliance B when it is the last active alliance. We

now characterize the optimal sequence of alliances.

Proposition 5 (Optimal Alliance Sequence with Well-Ordered Costs). The optimal sequence

of alliances is identified as follows:

* There is a unique maximizer of {dBk_>@}1kV:1. Let Ly = argmaxdp, 9. The last active
k=1,..,.N
alliance is By, with Ly < N. If Ly = 1, all agents optimally terminate their search at the

same time. Otherwise,

* There is a unique maximizer of {dBkHBL1 }ilz_ll. Let Ly = kargmax dBk_>BL1. The penulti-
=1,..,L;-1
mate active alliance is By, with Ly < L. If L, = 1, there are optimally only two active

alliances: By followed by By, . Otherwise,

* Proceed iteratively until reach L,, where L, = 1. The socially optimal order of alliances is
given by BllBLn,l" . "BLl'

The optimal sequence of alliances is constructed recursively. Consider first the case in
which an alliance’s search is terminated jointly. That is, once search terminates for one of
the alliance’s members, it is terminated for all others. Our analysis in the previous sec-
tion suggests that, restricted in this way, the social planner would optimally determine
the stopping time using a drawdown stopping boundary. Naturally, any possible alliance
would be associated with a different optimal drawdown size. Higher drawdown sizes cor-
respond to alliances the planner would prefer to have searching for longer periods. It is
therefore natural to suspect that the alliance corresponding to the highest such drawdown
size is the last active alliance. Since we already determined that optimal search exits occur
in “weak” order, with agent i never exiting after agent 7 + 1, it suffices to consider draw-
down sizes corresponding to each alliance By.?® This allows us to determine the last active
alliance chosen by the social planner, By, as in panel (a) of Figure 3.

Once By, is identified, we proceed to the penultimate active alliance. Namely, we con-
sider all plausible super-sets of By and assess drawdown sizes when the social planner is
constrained to transition directly to By , see panel (b) of Figure 3. The alliance generating
the maximal such drawdown size is the one the planner would want to keep searching the
longest, foreseeing her optimal utilization of the next alliance By . That is the penultimate
alliance. We continue recursively until reaching the maximal active alliance B;, see panel

(c) of Figure 3.

28 As mentioned, this simplifies the computation problem substantially. Instead of considering 2N -1 al-
liances, we need to consider only N.
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Ficure 3: Socially optimal exit waves

6.4 Comparing Exit Wave

s in an Exponential World

In order to contrast the structure of equilibrium and socially optimal exit waves, we now

consider a particular example. Suppose the team comprises three agents, N = 3, and

assume cost functions are exponential and well-ordered: c(o) = ¢;(0) = %7 = Baca(o) =

B3c3(0), where 1 < B, < B3. Suppose further that speed aggregators take the CES form,

with perfect substitutes (p = 1) and equal weights (w; = % for all i). There are four possible

exit wave structures: all agents can leave at once; agent 1 might leave first, followed by

the clustered exit of the lower-cost agents 2 and 3; agents 1 and 2 might leave together,

followed by agent 3; or agents

may exit at different points.

Figure 4 focuses on parameters under which the social planner clusters all agents’ exits

and, in equilibrium, agents implement a symmetric speed profile. The figure depicts the

different regions of , and f3 combinations that generate the four possible structures of
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Ficure 4: Equilibrium exit wave patterns when the optimal policy entails one exit wave
including all three agents

equilibrium exit waves. Since 3 > f8,, all regions are above the gray 45-degree line. We
use {1,2,3} to denote one clustered exit wave including all agents; {1,2},{3} to denote an
exit wave consisting of agents 1 and 2, followed by the exit of agent 3; and so on.

When the cost multipliers are sufficiently close to one another, agents exit in unison,
even in equilibrium. When g, is sufficiently close to 1, but S5 is sufficiently higher, agent
3 has substantially lower search costs. Since agents 1 and 2 do not internalize their ex-
ternalities on agent 3, they prefer to leave early on, generating two exit waves. Similarly,
when B, and fj; are sufficiently high but close to one another, two exit waves occur in
equilibrium. Last, when agents’ costs are sufficiently different, equilibrium dictates agents
exiting at different points, resulting in three exit waves, even when externalities are suf-
ficiently strong so that the social planner would prefer to have the agents search together
till they all exit. Naturally, for sufficiently high f, and f3, the wedge in costs is big, and
even the social planner would prefer to split agents” exits. The Online Appendix contains
detailed characterization of the equilibrium and social planner’s solutions, and displays

similar figures for other exit-wave structures chosen by the social planner.

7 Conclusions and Discussion

This paper analyzes team search patterns in a setting with long-lived and sophisticated
agents. We show that the equilibrium and socially optimal search speeds are constant
within an alliance. However, as alliance members depart, individual search speeds in-

crease in equilibrium and decrease under the optimal policy. We also characterize the
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deterministic path of exit waves generated in equilibrium. The optimal path of exit waves
shares features with the equilibrium path in terms of the structure of stopping boundaries
that govern departures. However, search externalities naturally prolong optimal search in
teams and alter resulting exit waves.

In what follows, we consider two extensions of our model, allowing for competitive
forces that generate explicit rewards for early innovation, and the utilization of non-
Markovian equilibrium strategies. In the Online Appendix, we also analyze the limita-
tions introduced by a fixed, non-alterable search speed, and our model’s implications for

settings with independent search observations.

7.1 Market Competition through Penalties for Later Innovations

Market competition could yield an advantage for those who stop their search early. For
example, a firm that produces the first product of its type might capture a market segment
that is later more challenging to capture. Similarly, researchers arguably get additional
credit for being the first to suggest a modeling framework or a measurement technique.

For simplicity, consider a team of two agents with speed aggregators that take the
perfect-substitutes CES form (p = 1) with equal weights (w; = % for i = 1,2). Assume
that the first agent to stop, say at time ¢, receives M;. The second agent to stop, say at time
s > t, receives aM;, with a < 1. If both agents stop at the same time ¢, they both receive
M;.”? As we show in the Online Appendix, the order of exits remains deterministic. Fur-
thermore, as long as both agents are searching, the search speed and the initial stopping
boundary are identical to those in our benchmark setting, where a = 1. Thus, if there is a
unique exit wave when a = 1, that is still the case when a < 1.

Suppose there are two distinct exit waves with a = 1. Then, there is a leader—the agent
who exits early—and a follower—the agent who exits later. The leader’s stopping boundary
gr(-) is governed by the equilibrium drawdown identified in Proposition 2 regardless of a.
The follower’s stopping boundary, however, may change with a.

To characterize the follower’s stopping boundary, denote the costs of the leader by c; ()
and those of the follower by c(-). Let o; denote the leader’s search speed when searching
within the full team, o7 denote the total search speed in the full team, and or denote the

follower’s optimal solo search speed. Similar calculations to those underlying Proposition

29The analysis naturally extends to N agents via a decreasing sequence of discounts: ag = 1> a; > ap >
.. 2 an. In addition, one could consider a continuous version of this setup, where the second agent who
stops at time s > t receives My + a(M; — M;). That model generates qualitatively similar results, but is more
cumbersome to analyze.
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2 yield the follower’s stopping boundary gg(-):

2 2
M- 2““F if M <M and 5~ > L,
gF(M): ¢ 2¢p(oF) cror)

g1 (M) otherwise,

where
2
oL celop) aof of
1-a g2 \2cp(op) 2cr(or)

F

To glean some intuition, consider the follower’s problem after the leader’s departure.
The follower faces a similar problem to the individual agent’s problem, with identical
search costs and rewards scaled down by a. This case falls within the analysis of Ur-
gun and Yariv (2021). The search speed is unaffected by the attenuated rewards, but the
drawdown size is scaled linearly by a—as a declines, the rewards from search become
less meaningful, and the follower ceases search more willingly. Naturally, for sufficiently
low a, search continuation would not be worthwhile altogether, regardless of the maxi-
mal observation achieved when the leader exits. That corresponds to the drawdown used
, 2:(( ‘ 5 being smaller than the full alliance’s drawdown, 2Cf(%GL). In

that case, the stopping boundary of the leader governs the exit of both. In addition, when

by the follower alone

the maximal observation M achieved when the leader exits is high enough, the loss from
leaving at a later point, (1 — @)M is substantial for any & < 1.°" For sufficiently high M,
search continuation would again not be profitable. As a increases, the threshold level M
increases. To summarize, for the follower to continue search after the leader, @ needs to
be sufficiently high and the current maximum sufficiently small.

Importantly, when later innovations are penalized, there are no preemption motives.
The main impact is on later innovators, who face weakened incentives to search. Me-
chanically, larger exit waves occur for a larger set of parameters. Nonetheless, the main
messages of the paper extend directly to such settings.

Certainly, market competition could affect search interactions in a variety of other
ways, through entry considerations, dynamic pricing schemes of products, and so on. In-

corporating these would be an interesting avenue for future research.

7.2 Non-Markovian Strategies

Our equilibrium analysis restricts attention to Markovian strategies. In our setting, the

use of non-Markovian strategies cannot yield the socially optimal solution in general.’!

30Speciﬁcally, the gain from continuation for the follower is given by (1 — a)M + (df — d]:)2 %, where dj and
F

dr are the drawdown sizes for the leader and the follower, respectively.
31This contrasts insights on collective experimentation, see Horner, Klein, and Rady (2021).
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To see why, consider a team of two agents and suppose the optimal search speed can be
implemented in equilibrium—say, when there is only one viable speed, ¢ = @. Our results
show that, in some settings, the social planner would like agents to search for a longer time
than the (Markovian) equilibrium we identify would prescribe. Suppose agent 1 is the first
to exit in such an equilibrium, where stopping strategies are not weakly dominated given
the search speeds. As long as agent 2 is searching, agent 1 has a unique best response.
She would like to use a drawdown size d;, while the social planner would like her to use
a drawdown size d; > d;. However, regardless of the space of strategies, there is no way to
punish agent 1 for leaving early, and no way to foretell that she will do so. When ¢ <o,
agents have room to punish one another for not using the efficient speed by reducing their
own. Nonetheless, there is still no way to punish agents for departing too soon. A full

analysis of equilibria in non-Markovian strategies is left for the future.

A Appendix

Corollary proofs are immediate and, for completeness, available in the Online Appendix.

In what follows, we provide proofs for the paper’s main results.

A.1 Proofs for Equilibrium Team Search

First, we note a useful lemma, commonly known as “reflection on the diagonal”. This
lemma allows us to omit the partial derivatives pertaining to M in the control problem
in the various Hamilton-Jacobi-Bellman (HJB) equations that we soon derive. Proofs of
this result can be found in various sources, including Dubins, Shepp, and Shiryaev (1994),
Urgun and Yariv (2021), and Peskir (1998), and hence omitted.

Lemma A.1. The infinitesimal generator of the two-dimensional process Z = (M, X) satisfies
the following for any C? function W:

1. IfMt > X;, then A? = A;’(’ — %(Ut)zaa_)(zz-

2. If M = X,, then 9% = 0.

Proof of Proposition 1. Let ViA(M,X) denote the continuation value of agent i in an active
alliance A when the observed maximum is M and the current observation is X. Given the
Markov structure of the problem and Lemma A.1, the Hamilton-Jacobi-Bellman (HJB)
equation for such an agent i in an active alliance A, before that alliance shrinks in size,

takes the following form:

sup(5(f4(o"(M,X)

,?VA(M, X)

%2 —¢i(0y)} = 0.
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The corresponding first-order condition then yields:

IfMo™(M,X) I*VAM,X) o)
ao-lA(M’X) 3X2 = Ci 0j).

A0t (M, X)

The next step is to characterize the second derivative of the value function. For any
agent 7 in an alliance A, the value function takes the following form:
A

T
VAM,X)=E -f ci(ofyIM, X)dt + V/H(Mea, g4 (Mga)) |-
0

The Green function on the interval [a, b] is defined as follows:

G=00=0) i <x<b
G x,p) = _b—a_ y
ab(%,9) {%_(;ca) ifa<x<y<b

Following standard techniques, we can write the equilibrium value function of agent i in
an alliance A as follows:

M-X
M - g4(M)

M 2
- A ,v)ci(0A(M, dy.
LA<M> Corunm XTI ez Tz e

X -g*(M)

A —yA A M — o AN
VAM,X) = VM, g*(M)) M - gA(M)

+ VAM, M)

Intuitively, there are two possible transitions agent i needs to contemplate that are re-
flected in the above formulation. The first term corresponds to the stopping boundary
being reached with the current maximum. The second term corresponds to a new max-
imum being achieved. Reaching either of these two states entails a flow of costs, which
corresponds to the third term.>?

For a given observed maximum M, there are two cases to consider for an active agent
i in A: either her stopping boundary is the highest within the active alliance, or not. We
discuss these in sequence.

Suppose first that gZA(M) = MaXjes g]A(M). Consider any observed value X such that
gZA(M) < X < M. By value matching, agent i’s value from reaching the stopping boundary
is the observed maximum, since she is the first to stop search. As above, we can write

the equilibrium value function of agent i as follows (regardless of whether other agents

32This way of writing the accrued costs is the consequence of a change of variables: instead of integrating
over time, we integrate over the states, adjusted by the measure of time spent in each state, which is captured
by the Green function.
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terminate search at the same time):

_ X -¢AM
VAM,X)=M—2 Xy \QA(M,M)#
M- g/ (M) M- gl (M)
M A 2
- G a (X, )C'(G' (M, )) dy.
L;w RSP I A A M )2
Rearranging terms, we get:
M-ghM
ViA(M,M)—M = %[VIA(M,X)—M
X-g (M)

M
+J Germ(Xo9)ei(of (M, y

2
dy|.
gAM) ))(fA(UA(M:}’)))z Y

Since agent i optimally terminates her search at glA(M), smooth pasting must hold at
gl.A (M). The derivative of the continuation value as X approaches g{‘(M ) can be written as

. VAM,X)-M . . ..
th_)gl_A( M) Xy By smooth pasting, it must equal the derivative of the value from

stopping, %M =0.
Consider the above equality for Vl.A (M, M). Taking the limit as X — glA(M ),

M

VAM,M)=M j M —v)c;(c2(M, dy.
P =M | MY M R e
This, in turn, implies that
X
VAM,X)=M f X —p)c; (6 (M, dy.
e P A LTI T

Taking the second derivative with respect to X and simplifying yields:

PPVAM,X)  2ci(0(M, X))

OX2 (fAMM, X))

Plugging the second derivative into the HJB for agent i and simplifying further generates:

2¢i(0(M, X)) df4(04(M, X))

_ A A
QX)) aepmax) M)

Suppose, instead, that agent i does not have the highest stopping boundary, maxycx gf (M) >
gZA(M). Let FIM)={jeN: makaAg,?(M) = g]A(M)}. Choose an arbitrary agent j € F(M).
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As above, we can write the continuation payoff of i as follows:

VAM,X)= VAM, g (M))M_g]A(M)H/i (M,M)M_g]A(M)
M 2
- G, a X,y)ci M, -
L;vM) gt (X9 o M) r dy

This expression echoes the one above. In particular, the first term corresponds to the case
in which agent j’s stopping boundary is reached before a new maximum. Certainly, in this

case, there might be a set B 2 {j} of agents, possibly random, that terminate search once g]’-“

is reached. In this case, ViA(M, g]A(M)) VA\B(M 8 A(M)). Rearranging terms, we get:

VA(M, M)~ VA(M, gA(M)) = w[vAMX> VAM, gA(M))
Y Y X -gh(M) J
M A 2
Goarn (X, 9)ci (oM, dy|.
+L;*<M) e TR TPETV hd

VA (M,g;(M))

X denote the

Again, taking the limit as X — g;(M) from above, and letting %

upper Dini derivative of ViA(M, gj(M)) at gj(M), we have:??

Ip VM, gj(M))
X

M
_ (A 2 d
+L;*<M>(M DIl M e,y

VAM, M) =

(M - g(M)) + VA(M, g (M)

Plugging this identity in VZ.A(M,X)’S expression and taking the second derivative:

*VAM,X)  2ci(af'(M, X))
X (fA M, X))
Plugging this back into the H]B for agent i and simplifying further generates:

2¢;(0{(M, X)) dfA(cA(M, X))
c;(o; AM,X)) do o; A(M, X)

= f4o* (M, X)).
[ |

Proof of Proposition 2. The statement of Proposition 2 follows from the following claims.

Claim A.1. For any given alliance A with i € A, ifglA(M*) = maXey g]A(M*)for some M*, then

33Since speeds and f are bounded, V is Lipschitz continuous, hence the Dini derivative is finite.
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g (M) = maxjes g/ (M) for all M.
Proof of Claim. The proof of the claim relies on the following lemma.

Lemma A.2. Suppose agent i € A has the highest stopping boundary at a given observed M, X.
Then ng(M) is a drawdown stopping boundary.

Proof of Lemma A.2. Suppose maxca gJA(M) = giA(M). As shown in the proof of Proposition

1, we have

X
2
VAMX) =M+ | (X plelof M) y.
’ o T (FA0AM, )
Furthermore, using Proposition 1, we know that ¢4(M, X) = 04 for all M, X and o; AM,X) =
O‘iA for all M, X.
Now, differentiating ViA (M, X) with respect to M and evaluating the derivative at X =

M vyields the following ordinary differential equation (ODE) for gIA(M ):

dgl(M) _— (fA(e*)?
dM 2¢i(of) (M - g (M)

which leads to the following solution:

(fA(eh)?
gZA(M) =M - f—A-
2¢i(07")
L . . . A ._ (fAe™)?
This is a drawdown stopping boundary with drawdown size d;" := Tl |

We can now proceed with the claim’s proof. Suppose that gZA(M*) = maXjea ng(M*) for
some M* and let M’ = infyy_, . {Mli ¢ arg maxca g]A(M)}. Toward a contradiction, assume
that for some ¢ > 0 and k # i, for any M € (M’,M’ + ¢), we have maxjeAg]A(M) = g;:‘(M) >
g A(M). From continuity of the stopping boundary and Lemma A.2,

(fA(eh)? S o)
ng(M):M—f—A and g,f(M):M—f—A.
2¢i(07") 2¢k(0y)
Our choice of i and k yields (];/;(Z:A))) < (JZ:(U kA)) and (];:(Z:X))z > (];/:kf ?)) in contradiction. W
Claim A.2. Suppose that for some i in an active alliance of A L)’ o A for all j € A.
a .2. Supp * 2alel) S 2e(0) j

1

Then i is the first to exit alliance A.>*

341f there are multiple agents who satisfy the condition, all exhibiting the same drawdown size, they all exit
jointly, weakly before others.
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(fAe)? o (FAet)?
ci(aiA) - 24:]-((7]?“)
first agents to exit from alliance A for some path of observed values. For that path, agent i

Proof of Claim. Suppose for all j € A but that agent i is not one of the

ceases her search when active at a smaller alliance A\ B. Without loss of generality, suppose
agent j exits alliance A first (if there are multiple such agents, pick any) when observing

M and X. From Lemma A.2, agent j’s stopping boundary is characterized by a drawdown.

However, from the Claim’s restriction,

A(AY)2 A(AY)2
P T il il
2Cj(O‘j ) 2¢i(0f")
For each k € A, the stopping boundary g;:‘(M) = f;C(((UA)ZZ is identified by value
k\Ok
matching and smooth pasting. In particular, we have VA( ,‘:‘ M)) =M. If ng(M) >
A PR P A AM (fA(cfA))2 _ (o )
8 (M), this implies that V; (M,g] (M)+e)<Mfor0<e< 22,07 207 . Therefore,
]
agent i would prefer to stop strictly before agent j. ] |

The two claims and Lemma A.2" s characterization yield the proposition’s proof.

A.2 Proofs for the Social Planner’s Solution

As in the main text, we denote the social planner’s (possibly random) sequence of active
alliances by Ay, A5, ..., with A; ={1,..,N}.

Proof of Proposition 3. Let {o*iA(M, X,A)} and G(M, X, A) correspond to a solution to the so-
cial planner’s problem. Consider any alliance A; at some observed values and let Ay,
denote the potentially empty random alliance that optimally follows it. Optimality im-
plies that the induced search speeds with Ay should solve:

sup E

{Ui,:}ieAk

Ak
[A \ Ags1IMay — j Z Ci(Uz’,s)dS] :
0

iEAk

Using Lemma A.1, the continuation HJB for the social planner can be written as:

9? X,
sup [%(fA"(OA"))ZW— ZC:’(@')‘ = 0.

{Ui}ieAk icA,
Replacing the sup with the appropriate first-order condition yields:

Ak Ak) 82 (M,X,A ) A .
fa A X2 k =cj(0; ") VieA;
o;

1

fAk( Ak
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Analogous to Proposition 1’s proof, the social planner’s problem can be written as:

WM X, A= sup  E[IA\ Apt Mon + W(Mqae, g% (Mo ), Agar) | M, X]
TAkl{O-i,s}zeAk
Ak

T
J Zci(ai’i")ds | M, X
. ,

iEAk

-E

Since the solution is Markovian, by smooth pasting, we reach the following equation:

W(M, X, Ap) =|Ak \ Ag 1 IM + W(M, g%(M), Ag,1)

) A,
Kol mgiM) 25 54 cifo; " (M, u))

A j+1
+(X-gh ) J i @ L

=k \ 78
X 2 ien, Cil07H(M, )
- X - k1 d
LAk<M>( ?) (f A (04 (M, 7))

Taking the second derivative of the value function with respect to X, we have the following:

Aj A
I*W (M, X, Ay) 321‘3[ o Liea, Ci(o]*(M,X))ds|M, X

X2 0X?

Therefore,

2Y jen, Ci(07 F(M, X)) 9 A (04 (M, X))

= fA (0% (M, X)) VYje A
¢j(07" (M, X)) 907" (M, X) FHEHM X)) Vi€

Since there is no direct dependence on X on either side, optimal search speeds are inde-
pendent of observed values and constant over time for each active alliance.
|

As discussed in the text, there are two types of externalities agents exert on one an-
other. The first is an externality within the active alliance in which they operate. This
externality is reflected in the optimal search speed. The second externality is on ensu-
ing alliances. This externality is captured by the third term (on the second line) in the
expression for W(M, X, Ay) above. This externality is not reflected in the optimal search
speed—technically, it appears as a linear term in X and thus vanishes when we take the
second derivative. As we show below, this externality does impact the stopping boundary.

In what follows, we suppress the dependence of search speeds on the current maximum

and observed value, since we have shown they are constant within any active alliance.

Proof of Proposition 4. The proof follows from two lemmas:
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Lemma A.3. If the set of agents exiting an alliance is independent of the observed path, each

alliance has a drawdown stopping boundary identified by a drawdown size dy, .

Proof of Lemma A.3. Let Ak be the final alliance in the social planner’s problem, with car-
dinality |Ag|. The social planner’s problem when left with alliance Ag, and observing

maximum M and current value X, takes the following form:

A

74K
A
|AK|MTAK—fO Zci(()‘i “)ds | M, X]|.

iGAK

W(M, X,Ag) = supjea, E
TAK

This is tantamount to a single-searcher problem, where search rewards are scaled by |A]|.
From Urgun and Yariv (2021), the stopping boundary is given by:
_ |Akl(fA (0%))?
= e
2Zi€AK ci(o; “)

Consider the social planner’s problem when the penultimate alliance Ag_; is active

gAK (M)=M—d,,, wheredy,

and the observed maximum and value are M and X, respectively:

W(M, X,Ak_1) = sup lE[|AK—1 \AgIMyac s + W(Mpagy, 451 (Mpag 1 ), Ag) | M,X]

TAK-1

TAK-1
J- Z ci(o? " yds | M, X]|.
0

iEAK_I

By optimality of the stopping time 7/'x-1, we have value matching and smooth pasting of
W(M,X,Akx_1) and W(M, X, Ax). Therefore,

W (M, g1 (M), Ag_1) = |Ak_1 \ AxIM + W(M, g*1 (M), Ag),

IW (M, g1 (M)'AK—I)l ~ O(|Ak_1 \ AIM + W(M, gk~ (M);AK))l
oX X=g"-1(M)= oX X=gK-1(M):

Similar to our equilibrium analysis, and using the notation for the Green function intro-

duced there, we can write the welfare maximization problem as:

M-X
W(M,X,Ax_1) = |Ax_1 \AxIM + W (M, g1 (M), Ag ) ———————
( k-1) = |Ag_1 \ Ag[M + W(M, g"¥-1 (M) K)M—gAK—I(M)
Ag1
X —gak- (M) M 2 Z’iGAK—I Ci(ai )
+W(M,M;AK_1)m— g Goa-1 ()M (X,9) (FAx1(0Ax1))2 dy.

Letting X approach gx-1(M), following the analogous steps in our equilibrium analysis,

smooth pasting and rearrangement yield:

W(M,X,Ax_1) = |Ag_1 \ AgIM + W(M, g4x-1 (M), Ag)
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Ag. gAK-1(M) 2E e, cil07 X) X 2Y ienr . cilol K1)
# (X =g ) [y et 43 + Sy o)X =) RS e 4

Using the closed-form representation of the value function leads to:

1, a5 2 iea Cilo])
W(M»X;AK71)=|AK71|M+§(S (M) - g7 K (M) “(FAx(oA)2
2Y iea, ci(07%)

Ag_y Ag_y _ Ak
+(X—g (M))(g (M) -g"*(M)) (FAK (0AK))2
22X iy, ci(o])

— AK—]
(X =gt =

+

N | =

To generate an ODE that identifies g/'c-1(M), we take the derivative with respect to M that,
evaluated at X = M, equals 0. After algebraic manipulations, this ODE takes the form:

dgx-1(M) _ |Ag_1 \ Akl

dM Ticag_, (075 Tieap cilor™) .
2(M _gAK—l (M))( (fAA1g<_11<UAK_1 )2 - (fAAl<K(0A1<))2

It is straightforward to verify that the unique solution for this ODE satisfying the value-
matching condition takes the form g/x-1(M) =M — da,_,,» where

. |Ag_1 \ Akl
A Yicag_y ci(o; K1) Yicag ci(07%) ‘
2 (fAk-1(c%k-1))2  (fAK(c%K))2

In particular, the optimal stopping boundary is a drawdown stopping boundary.
Proceeding inductively, for any alliance indexed by m < K, the continuation value when

M and X are observed can be written as:

W (M, X, Ay) =|Ap \ Ayt [M + W(M, g (M), A1)

K-1 gk(M) 2y . ¢; O"AkH
+(X—8A’"(M))Z{f Lich, 10 )dx

gy (fA (k)2

k=m
_IX (X_y)22ieAm Ci(UZ-Am) )
gAm (M) (fAn(aAn))?

We repeat the steps above to generate an analogous ODE for g7 (M) and verify that it is
uniquely identified as a drawdown stopping boundary. Namely, g4 (M) =M —d a,» Where

W = |Am \ Am+1 |
" 2 ZieAm Ci(o'iAm) _ ZieAmH Ci(o’iAmH)
(fAm(o-Am))z (fAerl (aArr1+1))2
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Lemma A.4. The optimal alliance sequence is deterministic. Furthermore, the realized path of

alliances is unique up to agents’ relabeling.

Proof of Lemma A.4. The claim follows immediately for N = 1. In that case, the solo active
agent uses a drawdown stopping boundary, uniquely determining when the agent termi-
nates her search. This is the only possible alliance sequence.

Consider a team of size N > 1. Suppose alliances Al,A2,... are implemented. By
Lemma A.3, each of these alliances is associated with a drawdown stopping boundary.

With the entire team searching, the continuation value when M and X are observed is:

Aat.

1

T
W(M, X, A1) = E| max {lA; \ Ay[Ma, + W (Ma,, g4 (Mo, ), Ay)) —j ) cilo
A, CA, 0 :
1€Ak
Suppose that, for some path, the social planner optimally transitions from alliance A; to a
strictly smaller alliance A, # (. In particular, alliance A, contains fewer than N agents. By
the inductive hypothesis, the sequence that ensues is path independent and unique up to

agents’ relabeling. We can therefore write the continuation value as:

W(M, X, A;) =|A; \ Ay]M + W(M, g% (M), A,)

K-1 gAm(M) 22 C‘(O'-Amﬂ)
A i€A,,. “1\Yg
(X l(M));[LwM) (FAn (gBm ) "
X 2Y jen, cilo)
+ (X —y) b T g
LAL(M) V(Ao Y

As before, this yields an ODE characterizing g#1(M) and a unique solution of the form
A (M)=M-dy , whered, = 14,14,
§ ( ) A A1 YieA Ci(viAlJ Yiea, fi(o,'Az)
A2 (A2 0122

Towards a contradiction, suppose that, on some other path, a different alliance is opti-
mally chosen to follow the initial alliance A;. Call that alliance A, # A,. Similar arguments
would then implyﬂthat the stopping boundary for A, is given by g1(M) =M —d, 4,» where
dAA — |A1\A,| .

! | Ziear (ol Lici, Ci("?z)]

(FALAT)2  (fA2(gh2))2
We consider three cases in turn. First, suppose d, #d; . In this case, the two stopping
boundaries identified above, M —d,, and M - d/il never intersect, in contradiction.
Second, suppose that d4 = d,, and |A,| # ]A,|. In this case, since both A, and A,
are optimal continuation alliances, W (M, g1 (M), A,) = W(M, gAl(M),Az). Furthermore,
since dy, = zfAl, the stopping boundary g/ is identical for either continuation alliances.

. . . . X
Therefore, the last term in the expression for the continuation value above, ngl X -

(M)(
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ZZIEAI
}’)fAl—
Optimality of both sequences then implies that

dy, is independent of whether the initial alliance is followed by A, or A,.

K 1

A A
m 22 (o m+1
|A1\A2|M+ M gh j ZjA L ;\( - )dx =
Al (M) f m+1 O~ m+1 ))

m:l

K-1 Am A
|A1\A2|M+(M_gA1(M))Z J 221€A (U )dx

w1 (gt () (fAm+1(0Am+l))

Therefore, for X € (g41(M), M), the continuation payoffs when either A, or A, ensue do not
coincide. In particular, one is higher than the other, contradicting the optimality of both.

Last, suppose that d4, = ‘jAl and |A,| = |A,|. Then, from optimality,
Am+1 ) K-1

- n’l "1 An’+
Kzli oA ZZleAmH 1(0’ il Z g4 221614 . i(G L)dx
2 B gA fAm+1 gAm+1 ))2

=5\ Jgimray (fAnr (oAma) ot (Jgime (m)

Therefore, the two candidate alliance sequences remain payoff equivalent for all X until
g1(M) is reached and differ only in the identity, but not the volume, of agents depart-
ing from A;. We can then recursively follow the above line of arguments starting from
alliances A, or A, to establish the claim.

[ |

Combining the two lemmas leads to the conclusion of the proposition. |

A.3 Proofs for Optimal Sequencing with Well-ordered Costs

Proof of Lemma 1. We use the superscripts eq and sp to denote the equilibrium and social
planner’s solution, respectively. When costs are well-ordered and speed aggregators are
symmetric, in equilibrium, in any alliance, all agents utilize the same search speed. In

Aseq

. . . .. A, .. .
particular, for any active alliance A and any 7,j € A, we have o; = 0.1 This implies

]
that, in equilibrium, each agent k exits no later than agent k—1, for all k =2,..., N. Indeed,

in any active alliance A, the equilibrium stopping boundary is governed by drawdown size

A A,eq 2
4 = max%‘
= 26(0)

This maximum is achieved for the lowest agent index in A.

Suppose, towards a contradiction, that there exists a pair i,j such that i > j, so that
Bi > Bj, and the social planner has agent i terminate her search strictly before agent j.
There are then indices k and m, k < m, such that in the social planner’s solution, i,j € Ax
buti¢ Ay,;and je A, butjeA, .
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As we showed, the social planner’s solution associates a drawdown stopping boundary
with each alliance. Denote the corresponding drawdown sizes d;p and d,} for Ay and
A,,, respectively. Suppose that, instead, the social planner swaps the exits of agents i and
j, exiting agent j from Ay whenever agent i was to cease her search and exit from Ay
and exiting agent i from A,, whenever agent j was to cease her search and exit from A,,.
Furthermore, the social planner can have agent i use the same search speed as agent j had
originally in the alliances that follow Aj. Since the speed aggregators depend only on the
cardinality of active alliances, the overall search speed in any alliance does not change
after this modification. Consequently, expected search outcomes are unaltered. However,
the overall cost decreases weakly in every alliance and strictly in all alliances Ay, 1,..., A,

contradicting the optimality of the proposed solution. |

Proof of Proposition 5. Recall that our results so far imply that the social planner can re-
strict attention to the choice between deterministic alliance sequences. Furthermore, given
a deterministic sequence of alliances, Proposition 4 identifies the optimal drawdown stop-
ping boundaries associated with that alliance sequence. For any feasible sequence of al-
liances (not necessarily optimal), our characterization implies that, whenever the draw-
down size associated with two consecutive alliances is negative or zero, the larger alliance
is utilized for no length of time. In contrast, when the drawdown size is strictly positive,
the social planner gains positive welfare from maintaining the larger alliance active for a
non-trivial amount of time. This observation helps us to identify the optimal sequence.
The proof of Proposition 5 follows from several lemmas. For any alliance By, regardless
of whether it is on the social planner’s optimal alliance sequence, we denote the optimal
overall search speed within the alliance by s*. That is, when o* is the vector of individual
speeds in alliance By, then s = (ka(cfk))z. The consequent overall search cost within that

alliance is denoted ék.

Lemma A.5. For any m, j, k with m < j <k, if the welfare-maximizing sequence is such that By,

is preceded by By, then for any sequence where By is preceded by Bj, we have dp,_,p, > dg,_,p,.

Proof of Lemma A.5. From the characterization of drawdown sizes in the well-ordered set-
ting, dg _.p, # dB],HBk. Suppose that dg _,p < dB],HBk. Since By is preceded by B,, in the
optimal sequence, dg _,p, > 0. It then follows that dB]-aBk > 0. Furthermore, since m < j,

Bul = 1Bl IBjl=IBel B[ B
2(em/sm —¢ck/sky  2(ei /sl —ék/sk)  2(él/sT — ek /sk)

= dB,,,—>B]~ > 0.

This implies that it would be beneficial for the planner to have alliance B,, first transition

to alliance B;, and only then transition to alliance By. |
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Lemma A.6. If m <k, dg _,g>dp, g impliesdp _,g >dp .

Proof of Lemma A.6. Since |B;| = N —i+1 for any i, dg _,9 > dp,_,p implies:

1 ém o] ck _ 1 (5m ek ] ek
N-m+1s" N-k+1sk k—m'sm sk/ " N—-k+1sk’
illustrating the claim. u

Lemma A.7. For any k such that dg__,9 > dp, 9 >dp, . we havedg __p_, >dp .

Proof of Lemma A.7. Observe that dp g >dp, 9> dp,_,_p implies:

Nkl ~k AN
¢ ¢ ¢ ¢
(N_k)s_N>SkT and 5_k>(N_k+1)S_N
Summing the inequalities and reorganizing yields the implied statement. |

Lemma A.8. Idek_,q) > dBk71_>Bk’ then dBk—>® > dkal_M > dBk71_>Bk'
Proof of Lemma A.8. From the first inequality, dg 9 > dp,_, _.p,, we have,

1 5’<<5’<—1 Ek:>N—k+25k<5k‘1
N-k+1sk sk-1 sk N-k+1sk gkl

But this inequality implies that

= dBk%@ > dBk_lﬂ(D'

1 5k 1 5k_1 C~:k—1 5k 1 5k—1
N_kelsf Noka2s1 1 F Noke2sbi  WBa—0> a5 on

Lemma A.9. If dp,_,p = max;dg,_.p, then any alliance B) with I < k cannot be the welfare

maximizing last alliance.

Proof of Lemma A.9. Suppose not, so that, form some | < k, alliance B, is the last. Since
By is strictly contained in B;, from the characterization of drawdowns in the well-ordered
setting, dp, g # dp,_p- Thus, dp __,9 > dp _p > 0. Following similar arguments to those in
the proof of Lemma A.5, the social planner would benefit from transitioning from B, to By

instead of exiting all members of B, in contradiction. |
Lemma A.10. If dp, _,p = max; dp. g, then any alliance B; with | > k cannot be the last.

Proof of Lemma A.10. We use induction on the cardinality of the set B;. The claim certainly
holds when |Bi| = 1, so that By = By = {N}.

Assume the statement is true for sets up to cardinality n. We show the statement holds
for |By| = n+1 (so that k = N —n). By Lemma A.9, the last alliance cannot be B; with j <k.

Towards a contradiction, suppose that a smaller set B,,, with m > k, is the last alliance.
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From the inductive hypothesis, we must have dg _,g > dp _,p for all I > m, as otherwise the
social planner would benefit by inducing B; to continue search instead of terminating it

for all agents in B,,.

Suppose that m < N. Consider an equivalent problem, where alliance B,, is replaced

with a single individual M that has cost function fc(:), where By > f,,,—1 arbitrarily cho-

sen. For each j < m, define C]- ={j,....m—-1,M}, fo, and an interior GMj so that the social

planner’s optimal speed vector for any set C; is given by (ij, e a:ij_l, aAij) and fC satisfies
all our original assumptions on speed aggregators.>”

We now face an equivalent problem with m agents 1,2,...,m—1, M. From our construc-
tion, in the optimal solution, for any j = 1,...,m — 1, the corresponding drawdown sizes
dyj,...mj—0 and djy)p coincide with the optimally-set drawdown sizes dBj—»(D and dp _ in
our original problem. Therefore, maxje1,..m-1,m) 4yj,...M}—0 = d{k,...M)—0- By our induction

hypothesis, {j,..., M} with j > k cannot optimally be the last alliance, in contradiction.

Suppose now that m = N and, towards a contradiction, assume By is the welfare max-
imizing last alliance. Now consider the sequence of welfare maximizing alliances B, such

that B, C By. There are three cases to consider.

Case 1: For all p € {k,.., N — 1}, the alliance B, is part of the welfare-maximizing se-
quence. That is, agents terminate their search one by one starting from By onwards. Since
By is the last alliance, we must have that dg ¢ > dp, B, >dp, ,—By, > --- > dB, B,
Applying Lemma A.8 repeatedly implies that dg _,g > dp, 0 >dp, ,—p--->dp,, -0

The assumed maximality of dg__,p implies, in particular, that dp, g > dp, ¢ that, com-
bined with the above, yields dp, ¢ > dp, g > dp,_, 9. By Lemma A.7, we then have that
dp,—B,,, > dp,—p- It follows that whenever agents in the active alliance By optimally stop
searching, the social planner would benefit from halting all agents’ search instead of pro-

ceeding with By, Bg2,..., By, in contradiction.

Case 2: There does not exist any p € {k,.., N — 1} such that B, is part of the optimal
sequence. Thus, the penultimate alliance in the optimal sequence is B; with [ < k. Max-
imality of dp, 9 implies that dp, 9 > dp, 9. By Lemma A.6, dp,_,p, > dp,_p and by
Lemma A.5, dp_,p, > dp,_,p, > dp,—p- Thus, whenever agents in active alliance B; op-
timally stop searching, the social planner would benefit from halting all agents’ search

instead of proceeding with By, in contradiction.

Case 3: There exist p,q € {k,..., N — 1} such that B, is part of the optimal sequence but
B, is not. Here we have two subcases:

35We only restrict fcf to lead to the original optimal speed choice by agents j,...,m — 1. This restriction
leaves us with a lot of freedom to select ij in this way.
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Subcase 1: By_; is the penultimate alliance. We must have dg | ¢ <dp, _p; otherwise,
by Lemma A.6, we would have dp,  _,p, > dp, _,p and it would be suboptimal to utilize
alliance By as the last alliance. From the maximality of dp,__,p and Lemma A.5, for any I <k
such that B) precedes By_; on the optimal path, dg _,p, , > dp _p, , > dp, ,p. Finally,
dp,—p > dp,_, g implies that

1 5N—1 =N 1 é:N—l C~N—1 ~N

SNT z—N = S NT SN Z—N = dp,_,—p > dp, ,—By-

Thus, dp, 3, , > dp,—B,_, > dp,_,—0 > dB,_,—B,- Lherefore, whenever agents in the active
alliance B; optimally stop searching, the social planner would benefit from transitioning to
By directly, thereby terminating the search of agent N —1 as well, instead of transitioning
to By_; first, in contradiction.

Subcase 2: The penultimate alliance is B, with p € {k, ..., N~2}. We can now emulate the
argument above pertaining to the construction of an equivalent problem in which agents
{p,... N —1} are viewed as one agent with appropriately induced search costs. We can then
consider an equivalent problem with fewer agents to achieve a contradiction through our

induction hypothesis. u

It follows that the last alliance is given by By with max; dg,_,9 = dp, .
The proofs of the following Lemmas are a consequence of identical arguments to those

in of Lemmas A.9 and A.10 and are therefore ommitted.

Lemma A.11. Consider By, where k is such that dBk—>BL1 > dB/—>BL1 forall j <Ly and By, is the
last alliance as identified above. Then any alliance with | < k cannot be the welfare maximizing

second to last alliance.

Lemma A.12. Consider By, where k is such that dBk*BLl > dB]._>BL1 forall j <Ly and By, is
the last alliance as identified above. Then any alliance B; with Ly > | > k cannot be the welfare

maximizing second to last alliance.

The proof of Proposition 5 then follows. Using the proposition’s notation, By is the last
alliance on the social planner’s optimal path. Similarly, the penultimate alliance is given
by By where k is such that dBk_)BLl > dB],_>BL1 for all j < L;. We can continue recursively to

establish the proposition’s claim. |
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