


language model (VLM, i.e. CLIP [36]) has encoded cat-

egories in a geo-specific manner, such that adding a coun-

try’s name to a prompt (e.g. ªA photo of a house in Chinaº)

elicits knowledge that improves recognition. Second, we

probe a large language model (LLM, i.e. GPT-3 davinci-

003) for geography-specific knowledge to obtain visual fea-

ture descriptors for an object in different locations. We an-

alyze results in zero-shot inference on geographically and

socioeconomically diverse data (DollarStreet [11]), finding

the combination of knowledge to often be complementary.

We further consider a practical scenario where CLIP is

optimized with soft prompting, using only a ªsourceº ge-

ography with easy-to-access data (e.g. Europe), while the

model is applied downstream on ªtargetº data from other

parts of the world (e.g. Africa, Asia, Americas). We propose

geography knowledge regularization, which uses knowl-

edge ensembled over countries to enable soft prompts to

achieve geographically generalizable class representations.

We test our method on the recent DollarStreet and GeoNet

[21] datasets. Our regularization boosts performance over

baseline soft prompting methods, and has benefits with

respect to few-shot target-specific training (a 16-shot-per-

class regularized model without any target data outperforms

a 12-shot-per-class target-trained model on DollarStreet).

Our method is the first to effectively address geo shifts in

object recognition. It outperforms zero-shot CLIP (assumed

to have some robustness) by 10.3% on Africa, CoOp [52] by

3.3%, and the best baseline by 4.6% on the hardest classes.

To summarize, we answer the following questions: (1)

Does adding geographical context (i.e. country names)

to CLIP prompts improve recognition across geographies?

(2) Can an LLM provide useful geographical descriptive

knowledge to improve recognition? (3) How can we opti-

mize soft prompts for CLIP using an accessible data source

with consideration of target geographies not represented in

the training set? (4) Where can soft prompts enhanced with

geographical knowledge provide the most benefits?

2. Related Work

Geographical domain shifts occur when the target set-

ting is in a different geography (e.g. continent, country,

city) than where the source data was acquired. Shifts in-

volve changes in object design (e.g. differences in house

architecture) and context (i.e. background/co-occurring ob-

jects vary). Datasets tailored to cross-country/continent ob-

ject recognition have recently been proposed, e.g. Dol-

larStreet [11], GeoNet [21], GeoDE [37], GeoYFCC [9],

and OpenImages-Extended [5]. Interestingly, [21, 33]

demonstrate that traditional methods in unsupervised do-

main adaptation [10, 19, 20, 27, 28, 38, 44, 45, 50] which

seek to bridge gaps based on visual features alone, do not

effectively address geographical domain shift. They achieve

negligible gains (e.g. 0.14 for [10] in [33]) or often drops

in performance (e.g. all methods tested in [21]), compared

to just using the source model. Attempts to specifically ad-

dress geographical robustness are limited: [43] corrects for

differences in the sizes of cars, [9] proposes a discriminative

domain embedding from target data, and GiVL [48] pre-

trains with knowledge from Wikipedia. In contrast, our de-

scriptive knowledge regularization works for different cate-

gories (not just cars); we do not require target domain data

to achieve gains cross-geography; we explore the strong ca-

pabilities of LLMs to gather relevant knowledge; and we

propose lightweight adaptation through soft prompting (un-

like GiVL’s expensive pretraining).

Vision-language (VL) models [17, 25, 26, 36, 49] excel on

a variety of tasks. CLIP [36] shows impressive zero-shot

object recognition across different settings. Yet its perfor-

mance given geographical shift is less apparent. GeoNet

[21] only shows finetuned performance, which is expensive

given CLIP’s large scale. GeoDE [37] only shows zero-shot

inference with CLIP’s default prompts. Neither work eval-

uates descriptive knowledge or soft prompting.

Learning soft textual prompts. Several recent works to

adapt CLIP have focused on parameter and data efficiency

using linear probing [36] and prompting [18, 23, 52]. Soft

textual prompting (e.g. CoOp [52]) is notable as it optimizes

class text embeddings (without manual tuning), which we

hypothesize is critical to adequately adapt for geographical

robustness. As CoOp overfits on base (seen) classes, Co-

CoOp [51] proposes to condition prompts on the image for

better generalizability. KgCoOp [47] alternatively guides

learned prompt embeddings towards CLIP’s manual prompt

embeddings through a distance constraint to avoid degrada-

tion on unseen classes. Our approach also uses a distance

constraint, but it differs from [47] with the purpose of regu-

larizing learned prompt representations for cross-geography

generalization instead of the base-to-new-class setting. We

also show novel benefits of regularization when used with

an ensemble of CLIP’s internal geographical knowledge

and external geographical descriptive knowledge. Our ap-

proach notably outperforms each of CoOp, CoCoOp, and

KgCoOp by at least +2.8 accuracy on target countries in

Africa in DollarStreet. External knowledge aids unseen

classes in KAPT [22], but not with respect to geographical

knowledge. Prompt tuning for adaptation has been tested in

[12, 40], but not with descriptive knowledge.

Knowledge probed from large language models like

[4, 6, 31, 32] has been used for visual reasoning [46],

embodied agent planning [15, 41], and to generate addi-

tional context for VLM class prompts in object recognition

[30, 34]. We uniquely probe LLMs for distinguishable vi-

sual descriptions for the same object class across different

geographical regions. We are also the first to incorporate

geographical knowledge from LLMs into soft prompting.
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Figure 2. Geography knowledge regularization. To ensure robustness in soft prompt learning, we (1) incorporate knowledge internal to

CLIP and externally obtained from an LLM. (2) This descriptive knowledge regularizes class representations when training on a specific

source geography (e.g. Europe), thus (3) increasing robustness when generalizing to target geographies (e.g. Vietnam).

3. Approach

We investigate geographical shift in object recognition with

VLMs. We posit that the manner in which classes are de-

scribed is critical due to cross-geography shifts in design

and context. We also hypothesize that CLIP’s default class

representations elicited through ªa photo of a/an <object>º

prompts may not adequately represent classes around the

world. Instead, they may be more aligned to high-resource

geographies due to Internet-based training data. Optimiz-

ing representations (with soft prompts) on a specific geog-

raphy (e.g. Europe) may exacerbate a lack of robustness.

Our main idea (Fig. 2) is to incorporate object-related ge-

ographical knowledge into prompting to ensure model ro-

bustness in different regions. We outline our mechanism to

obtain geography-specific context by probing CLIP’s inter-

nal knowledge and an external LLM’s descriptive knowl-

edge. We further propose geography knowledge regulariza-

tion to ensure soft prompts do not overfit when training data

is limited to certain geographies.

Preliminaries. We consider object recognition on a dataset

S containing a class set C (size Nc) over a set of geographies

G. We consider a geography g to be either a country or

continent. Our VLM is CLIP [36], with an image encoder f
and language encoder h. We incorporate knowledge of each

geography g into prompting using (1) zero-shot inference or

(2) soft textual prompting. Prompts are defined as t (each

is a set of tokens), and class embeddings w are calculated

as h(t). We refer to CLIP’s default prompt ªa photo of a/an

<object>º for a class c as tdefault
c .

3.1. Geographical Knowledge Probing

Probing CLIP’s internal geographical knowledge. Our

first strategy of investigation is to augment CLIP’s manual

prompts to include country names, as we surmise that some

of the resulting class representations may be better aligned

to how categories present in different regions. [3] inspires

this hypothesis, showing that adding country names to im-

age generation prompts can achieve gains in geographical

representativeness. However, it is an open question whether

adding country names in prompts improves recognition.

We define the setting CountryInPrompt, using the prompt

tCountryInPrompt
c with template ªa photo of a/an <object> in

<country>º, e.g. ªa photo of a stove in Burundi.º

Probing external LLM geographical knowledge. As

CLIP may not have sufficient knowledge of objects in some

regions, we consider further augmenting prompts with ex-

ternal knowledge. Motivated by probing LLMs for gen-

eral attribute-based object descriptions [30, 34] (e.g. a tiger

with ªstripes and sharp teethº), we probe GPT-3 (davinci-

003) for geography-specific descriptions of object styles,

contexts, and materials.1 We reason that since LLMs are

trained on large information sources (e.g. CommonCrawl

[1], WebText [35], Wikipedia [2]), they may have knowl-

edge about how an object presents in a region due to cli-

mate, economics, and/or cultural factors. For instance, roofs

may sometimes be ªthatchedº in tropical and temperate cli-

mates, and cutlery may sometimes be made of ªbambooº in

areas with bamboo forests. Our goal is unique vs. [30, 34]

in that we explore descriptive knowledge differences for the

same class to address domain shifts across regions.

Acquiring knowledge. We follow [30], but instead of gath-

ering one set of feature descriptors D(c) for each c, we col-

lect sets per country. For each class c and geography g, we

prompt the LLM to generate descriptor lists Dg(c), using

a template consisting of an example question, answer, and

format. We use 1-shot prompting to show how to capture

geographically representative object designs and contexts.

1We found ChatGPT to perform worse than GPT-3, also found in [34].
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Our prompt exemplifies this below, using the descriptors for

Japanese ofuro (お風呂, bathtub):

Q: What are useful features for distinguishing a

bathtub in a photo that I took in Japan?

A: There are several useful visual features to tell there

is a bathtub in a photo that I took in Japan:

- short in length and deep

- square shape

- wooden, plastic, or steel material

- white or brown color

- benches on side

- next to shower

Q: What are useful features for distinguishing

<category> in a photo that I took in <country>?

A: There are several useful visual features to tell there

is/are <category> in a photo that I took in <country>:

Using knowledge. To convert LLM outputs to CLIP

prompts, each descriptor d in Dg(c) serves in a prompt

tc,d. The format of tc,d is ªa photo of a/an <object> which

(is/has/etc.) <descriptor>º. The setting where geography-

specific LLM descriptors are used in prompting is referred

to as CountryLLM (prompts t
CountryLLM

c,d ), while [30] is

GeneralLLM (prompts tGeneralLLM
c,d ). To perform zero-shot

inference on an image I , each class score s(c, I) is com-

puted using the average of CLIP logits ϕ(I, d) over each d
in the set D. For GeneralLLM, the score is calculated as:

s(c, I) =
1

|D(c)|

∑

d∈D(c)

ϕ(I, d) (1)

For CountryLLM, we use the geo-specific set:

s(c, I, g) =
1

|Dg(c)|

∑

d∈Dg(c)

ϕ(I, d) (2)

The argmax of s with respect to c is taken as the prediction.

Due to averaging over descriptor scores, not every descrip-

tor needs to strongly activate in a correct prediction. The

model therefore can account for diverse features of objects

within a geography. These descriptors effectively serve as

complements to CLIP’s default knowledge of class names.

Combining knowledge. Our third method of exploration,

CountryInPrompt+LLM, combines both CLIP’s internal

knowledge and LLM external knowledge. The prompt tem-

plate t
CountryInPrompt+LLM

c,d is ªa photo of a/an <object> in

<country> which (is/has/etc.) <descriptor>º.

3.2. Regularizing Soft Prompts via Geo Knowledge

Adaptation scenario. In practice, one may want to fur-

ther optimize a VLM for a downstream task. To update

a model effectively, one promising strategy is soft textual

prompting. It is parameter-efficient [52] and avoids feature

distortion unlike finetuning [24]. Its mechanism is to learn

context parameters that directly change the class text em-

beddings used in inference. We posit that learning context

on a dataset with limited diversity (e.g. just Europe) may

tailor these class representations to the region and overfit.

To investigate cross-geography generalization when using

soft prompting, we pose a domain generalization scenario

where we aim to learn only from a high-resource source set

of countries and generalize to a target set of countries at in-

ference time. A method that performs well in this setting

could provide a viable alternative to few-shot target training

when acquiring target data for training is not feasible.

Soft prompts. Our idea is to learn soft prompts while con-

straining the class text embeddings to be close to geograph-

ical knowledge of objects outside of source geographies. In

this way, we hope to learn class representations that are

more applicable to the rest of the world. Building from

CoOp [52], we assume there is a text prompt tc for each

class c. All prompts share M context vectors (each denoted

[V]m), which are the same size as the word embeddings (i.e.

512-D) and precede a class name token [CLASSc]:

tc = [V]1[V]2...[V]M [CLASSc] (3)

The respective class text embedding wc is produced as

h(tc), forwarding the prompt through the text encoder.

Learning proceeds by minimization of cross-entropy, for

image k with features fk, using ground-truth source labels

yk,c and temperature τ :

Lce = −

Nc∑

c=1

yk,c log
exp(cos (wc,fk)/τ)∑Nc

j=1 exp(cos (wj ,fk)/τ)
(4)

Geography knowledge regularization (gkr). We mini-

mize the cosine distance of normalized class embedding wc

and overall target class knowledge ktgt
c , over all c:

Lgkr = 1−
1

Nc

Nc∑

c=1

cos(wc,k
tgt
c ) (5)

Geo knowledge ensemble. To define ktgt
c , we identify that

a model may be deployed in various locations. Therefore,

we define a target geography set Gt, which can practically

be thought of as the countries that a model may be deployed

in that are not in the training set D (e.g. Africa, Asia, Amer-

icas in Gt if only Europe in D). Then for each geography g
in Gt, we define the corresponding class knowledge kg

c as:

kg
c =

1

|Dg(c)|

∑

d∈Dg(c)

w
CountryInPrompt+LLM

c,d (6)

This is defined analogously for CountryInPrompt and

CountryLLM. The final regularization target ktgt
c for class

c aggregates the set’s geographical knowledge:

ktgt
c =

1

|Gt|

∑

g∈Gt

kg
c (7)
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While the loss formulation includes cosine distance like

KgCoOp [47], it serves a different purpose: we regu-

larize for cross-geography domain generalization, while

KgCoOp regularizes for base-class-to-new-class inference.

Our method outperforms KgCoOp in cross-geography gen-

eralization due to its use of geo-specific knowledge.

Overall loss. The final loss L for learning soft prompts,

where λ controls the strength of regularization, is:

L = Lce + λLgkr (8)

4. Experimental Setup

Datasets. We use DollarStreet [11], which has 38,479

images of household objects across regions (Africa,

South/Central/North America, Asia, Europe) and incomes.

The classes may represent abstract concepts (e.g. most loved

toys), so we narrow focus to 95 object classes. We merge

especially close categories (light sources by bed/in living

room) and ignore multi-label examples, resulting in 23,114

total images. For zero-shot inference, the entire set is used.

For training, the source is Europe, and the target is Ameri-

cas, Asia, and Africa. 20% of source data, stratified based

on class proportions, is heldout for testing; target evalua-

tion is on all data from target continents. To set up ktgt
c ,

the 49 target countries in DollarStreet make up Gt. We also

use the GeoImNet benchmark of GeoNet [21], comprised of

171,692 images across 600 objects from the USA (source)

and 78,358 images across the same number in Asia (target).

We use existing train-test splits for soft prompt training. For

GeoNet, given the relatively large number of categories and

inference costs of davinci-003, ktgt
c and Gt use the top 10

most frequent countries in the GeoNet set.

Baselines. We evaluate geography knowledge regulariza-

tion vs. CoOp [52], CoCoOp [51] and KgCoOp [47]. For

zero-shot inference, we evaluate CLIP with default prompts

and the classification via description method of [30].

Metrics. We report balanced accuracy, which is the average

of per-class recall scores. We use this metric to account for

class imbalance in both DollarStreet and GeoNet. For zero-

shot inference, we also show top-3 accuracy as some similar

categories exist (e.g. cooking utensils, cutlery).

Experimental details. For all soft prompting experiments,

models are trained with 16 shots, context length M = 4,

and for 100 epochs, unless otherwise stated. The class token

position follows the soft prompts, and class-shared context

is used. Our method uses a batch size of 128 (same as Kg-

CoOp), while the batch sizes for CoOp and CoCoOp follow

[47] (i.e. 32, and 1 for CoCoOp due to memory limita-

tions). The encoders used for training include ViT-B/16 [8]

and ResNet-50 (RN50) [14] as reported in [47]. Both our

method and KgCoOp use a regularization weight λ. We set

λ = 4 for DollarStreet, and compare to KgCoOp at λ = 4

(which performs better than KgCoOp’s default λ = 8). For

GeoNet, we use λ = 8. Training is performed on 1 NVIDIA

Quadro RTX A5000 GPU with 24 GB of memory. All re-

ported soft prompt results are averages over 3 runs. For

experiments in the zero-shot setting, results are shown over

ViT-B/16, ViT-B/32, and RN50 encoders. LLM descriptors

for all experiments are generated from the davinci-003 ver-

sion of GPT-3, with max tokens 100 and temperature 0.7.

5. Results

5.1. Zero-shot CLIP Inference with Geo Knowledge

We gauge the effectiveness of three zero-shot strategies: (1)

CountryInPrompt (including countries in prompts to probe

CLIP’s knowledge), (2) CountryLLM (gathering descrip-

tive knowledge of objects with davinci-003), and (3) Coun-

tryInPrompt+LLM (using country names and LLM knowl-

edge). We compare to [30] (GeneralLLM) and CLIP with

manual prompts (i.e. ªa photo of a/an <object>º). Results

on DollarStreet are shown in Table 1.

Including country names in prompts can improve ob-

ject recognition, especially in Africa and Asia. This ob-

servation is supported by gains for CountryInPrompt vs.

Zero-Shot CLIP, especially in Africa and Asia (up to +5.4

and +2.6 top-1 gains for RN50, resp.). Such differences

may occur as country-specific context can align represen-

tations closer to these regions, while default prompts do

not adequately capture objects around the world (esp. from

non-Western regions). In Americas/Europe, adding country

names leads to gains with RN50, but slight drops with ViT-

B/16 and ViT-B/32. We reason that CLIP’s default prompts

may be already well-aligned to countries in these regions

for those encoders due to overrepresentation in training.

Prompting with country-specific descriptive knowledge

from LLMs outperforms general object knowledge. We

observe this from CountryLLM’s larger gains over default

CLIP than GeneralLLM’s for almost all encoders, regions,

and metrics. The largest top-1 difference is with ViT-

B/32 (in Total, 52.6% for CountryLLM vs. 51.4% for

GeneralLLM). In top-3 accuracy, the differences for Coun-

tryLLM/GeneralLLM in Total are 74.6/73.0 for ViT-B/32,

78.8/77.9 for ViT-B/16, 70.0/68.6 for RN50. These sug-

gest that default non-country-specific knowledge is less ad-

equate for various countries. The gains of CountryLLM vs.

Zero-Shot CLIP are generally largest on Africa and Asia,

as countries in these regions may have greater shifts vs.

the default prompts, but CountryLLM also performs well

on Europe. LLM description in general is less effective in

Americas, though Americas has a large proportion of USA

images, for which default CLIP may be well-aligned.

There are complementary effects when using CLIP’s in-

ternal and external LLM geo knowledge. This observa-

tion is supported by CountryInPrompt+LLM, the combina-
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Top-1 Accuracy Top-3 Accuracy
Encoder Prompting Method Europe Africa Asia Americas Total Europe Africa Asia Americas Total

Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆

ViT-B/32 Zero-Shot CLIP [36] 59.1 - 43.7 - 50.8 - 55.3 - 51.7 - 81.1 - 64.8 - 72.3 - 77.4 - 73.7 -

GeneralLLM [30] 57.3 -1.8 44.3 +0.6 50.9 +0.1 54.6 -0.7 51.4 -0.3 78.8 -2.3 64.5 -0.3 72.1 -0.2 75.7 -1.7 73.0 -0.7

CountryInPrompt 57.5 -1.6 45.2 +1.5 51.9 +1.1 55.0 -0.3 52.1 +0.4 80.2 -0.9 65.5 +0.7 73.3 +1.0 76.9 -0.5 73.9 +0.2

CountryLLM 59.4 +0.3 45.2 +1.5 52.1 +1.3 55.3 0.0 52.6 +0.9 80.9 -0.2 66.4 +1.6 73.6 +1.3 77.4 0.0 74.6 +0.9

CountryInPrompt+LLM 60.8 +1.7 45.3 +1.6 52.2 +1.4 55.0 -0.3 52.8 +1.1 81.5 +0.4 67.4 +2.6 73.6 +1.3 76.7 -0.7 74.7 +1.0

ViT-B/16 Zero-Shot CLIP [36] 64.3 - 46.9 - 53.9 - 60.1 - 55.5 - 84.3 - 69.3 - 75.9 - 81.1 - 77.2 -
GeneralLLM [30] 64.2 -0.1 48.8 +1.9 56.0 +2.1 58.5 -1.6 56.8 +1.3 83.9 -0.4 71.1 +1.8 76.3 +0.4 80.4 -0.7 77.9 +0.7

CountryInPrompt 63.9 -0.4 49.6 +2.7 55.7 +1.8 59.3 -0.8 56.6 +1.1 84.0 -0.3 71.3 +2.0 76.5 +0.6 80.0 -1.1 77.7 +0.5

CountryLLM 65.2 +0.9 49.6 +2.7 55.6 +1.7 59.7 -0.4 57.0 +1.5 84.3 0.0 71.8 +2.5 77.5 +1.6 81.5 +0.4 78.8 +1.6

CountryInPrompt+LLM 65.5 +1.2 50.8 +3.9 56.0 +2.1 59.7 -0.4 57.4 +1.9 85.5 +1.2 72.5 +3.2 77.0 +1.1 80.9 -0.2 78.7 +1.5

RN50 Zero-Shot CLIP [36] 53.0 - 38.0 - 44.4 - 49.8 - 45.7 - 76.5 - 60.2 - 66.4 - 72.7 - 68.1 -

GeneralLLM [30] 55.5 +2.5 40.9 +2.9 46.9 +2.5 50.3 +0.5 47.9 +2.2 76.0 -0.5 61.2 +1.0 67.7 +1.3 71.1 -1.6 68.6 +0.5

CountryInPrompt 54.5 +1.5 43.4 +5.4 47.0 +2.6 50.8 +1.0 48.4 +2.7 76.0 -0.5 64.0 +3.8 68.7 +2.3 72.7 0.0 70.0 +1.9

CountryLLM 56.2 +3.2 41.1 +3.1 47.3 +2.9 50.4 +0.6 48.3 +2.6 77.2 +0.7 62.5 +2.3 68.8 +2.4 72.4 -0.3 70.0 +1.9

CountryInPrompt+LLM 56.4 +3.4 43.0 +5.0 48.0 +3.6 50.9 +1.1 49.1 +3.4 76.7 +0.2 63.1 +2.9 68.3 +1.9 71.1 -1.6 69.4 +1.3

Table 1. Zero-shot CLIP inference with descriptive knowledge prompts, top-1/3 balanced accuracy (Acc) on DollarStreet. Strategies

to capture CLIP’s internal country knowledge (CountryInPrompt), external LLM country knowledge (CountryLLM), and their combination

(CountryInPrompt+LLM), often improve vs. the zero-shot CLIP baseline (prompt ªa photo of a/an <object>º), especially on Africa and

Asia; gains in green, drops in red. CountryLLM notably outperforms the GeneralLLM [30] baseline.

Source Target
Encoder Prompting Method Europe Africa Asia Americas Total

Acc ∆ Acc ∆ Acc ∆ Acc ∆ Acc ∆

ViT-B/16 CoOp [52] 72.2 - 53.9 - 61.5 - 68.6 - 61.7 -
CoCoOp [51] 73.2 - 54.3 - 61.2 - 68.3 - 61.4 -
KgCoOp [47] 73.1 - 54.4 - 62.6 - 68.7 - 62.4 -

CountryInPrompt Reg 71.8 -1.4 56.8 +2.4 63.0 +0.4 69.8 +1.1 63.5 +1.1
CountryLLM Reg 73.2 0.0 55.6 +1.2 63.0 +0.4 70.0 +1.3 63.2 +0.8

CountryInPrompt+LLM Reg 73.6 +0.4 57.2 +2.8 63.8 +1.2 70.3 +1.6 64.0 +1.6

RN50 CoOp [52] 64.6 - 45.2 - 51.6 - 59.5 - 52.2 -
CoCoOp [51] 62.9 - 44.5 - 51.0 - 58.3 - 51.4 -
KgCoOp [47] 63.5 - 46.3 - 53.9 - 60.5 - 53.9 -

CountryInPrompt Reg 63.5 -1.1 48.0 +1.7 53.9 0.0 60.3 -0.2 54.3 +0.4
CountryLLM Reg 64.5 -0.1 47.4 +1.1 54.2 +0.3 59.9 -0.6 54.3 +0.4

CountryInPrompt+LLM Reg 65.5 +0.9 48.1 +1.8 54.5 +0.6 60.4 -0.1 54.8 +0.9

Table 2. Regularizing soft prompts with geographical knowledge, top-1 bal. acc. on DollarStreet. We emphasize that our regulariza-

tion aims to improve target performance, rather than source (gray, italicized). Gains/drops are shown vs. the best of soft prompt baselines

(shaded). CountryInPrompt+LLM Reg achieves notable gains in target, especially on Africa. Methods use 16 shots per class.

tion of CountryInPrompt and CountryLLM, achieving the

best Total top-1 performance for every encoder. The Total

gains vs. default CLIP are as large as +3.4 (RN50). While

CLIP has internal knowledge of country-specific categories,

it may be incomplete and imprecise due to limited repre-

sentation in the image-text training corpus. Adding LLM

knowledge, trained on a purely textual corpus, may address

some gaps. CountryInPrompt+LLM is notably the top set-

ting in 3/4 regions for each encoder in top-1 accuracy.

5.2. Soft Prompting

We next evaluate geography knowledge regularization

(Sec. 3.2), our method to improve target performance by

ensuring that soft prompts do not overfit class text represen-

tations to a source dataset with limited geographical rep-

resentativeness (e.g. only data from Europe). We compare

regularization with ensembles of CountryInPrompt, Coun-

tryLLM, and CountryInPrompt+LLM prompts vs. state-of-

the-art soft prompting methods in Tables 2/3.

Regularizing soft prompts with target geographical

knowledge reduces overfitting to source geographies.

Our method effectively improves the ability of CLIP, with

prompts trained only on images from Europe, to general-

ize to target countries. This observation is supported by

Total Target gains for CountryInPrompt, CountryLLM, and

CountryInPrompt+LLM Reg on DollarStreet (+1.1/0.8/1.6

over the best soft prompt baseline for ViT-B/16). Im-

provements are notable in Africa: CountryInPrompt+LLM

achieves +2.8 for ViT-B/16 and +1.8 for RN50. The effec-

tiveness extends to GeoNet in Table 3: target gains are +1.3
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