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a non-trivial level of noise.

Two particular orbit recovery problems of interest in this paper are multireference alignment
and single-particle cryo-EM modeling. In order to suppress the noise, we suggest using the
method of moments approach for both problems while introducing deep neural network priors.
In particular, our neural networks should output the signals and the distribution of group
elements, with moments being the input. In the multireference alignment case, we demonstrate
the advantage of using the NN to accelerate the convergence for the reconstruction of signals
from the moments. Finally, we use our method to reconstruct simulated and biological volumes
in the cryo-EM setting.

1. Introduction

Orbit recovery refers to a type of estimation problems that involve incorporating the effect of a group on a data model. The
resulting solution is determined up to an arbitrary group action, meaning that the solution forms an orbit. This class of estimation
problems is crucial in various fields of science and engineering, ranging from signal processing to structural biology. For instance,
medical tomography often collects imaging data that undergoes unknown transformations. Along with pixel-wise noise, each image
may experience rotation, translation, flipping, or other group actions in an unknown manner. This article examines two problems
in this category and proposes a new approach to solving them.

The first issue we discuss is Multi-Reference Alignment (MRA), which involves estimating a signal from the observation of noisy,
circularly shifted copies of it. This model, which has its origins in both signal processing [1] and structural biology [2,3], provides a
foundation for exploring the relationship between the group structure, noise levels, and the possibility of recovery [4-6]. The second
problem we consider is 3D volume reconstruction in Cryogenic Electron Microscopy (cryo-EM), as discussed in [7]. In cryo-EM, the
goal is to retrieve a 3D volume from 2D noisy images that result from rotating the volume and applying a fixed tomographic
projection. The outcome is a set of 2D images, which are usually heavily contaminated with noise.

The Method of Moments (MoM) is a classical estimation technique that has been adapted in modern forms to provide a powerful
computational tool for solving large-scale problems, especially when dealing with high noise levels. The MoM consists of two stages.
First, we compute the observable moments by averaging the low-order statistics of any observation. The second stage involves
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retrieving the required signal from the observable moments by analyzing the relationship between the observable and analytical
moments, applying moments-fitting, and deriving the unknown parameters from it. This second stage is the focus of this study.
The usage of MoM is advantageous in several ways. Its robustness is derived from the fact that noise is averaged out during the
computation of observable moments. Namely, given enough data, the effect of noise can be rendered insignificant. Also, MoM gleans
information about the data only through the moments, so it does not require multiple passes over the data set. This is beneficial
while dealing with huge data sets, as the moment calculation from the data takes place only in the first stage and in one pass [7,8].
However, this method does have a major drawback. We can lose resolution since we are not using information from all the moments.
MoM thus leads to low-dimensional reconstructions. Fortunately, our focus is mainly to recover an ab-initio model; hence a low-
dimensional reconstruction suffices. In the case of cryo-EM, this ab-initio model is used as an initialization for iterative refinement
algorithms, where reconstruction enables several possible conformations by further refinement [9].

This paper introduces a new version of the MoM that incorporates a neural-network prior to tackling orbit recovery problems.
In particular, we demonstrate the effectiveness of the amortized MoM for the two orbit recovery problems discussed earlier: Multi-
Reference Alignment (MRA) and single-particle Cryogenic Electron Microscopy (cryo-EM) modeling. Learning algorithms have
recently taken a central role in cryo-EM computational methods: a deep neural network for modeling continuous heterogeneity
(3DFlex) [10], ab initio neural reconstruction [11,12], and many other parts of the cryo-EM pipeline [13-15], to name a few.
Moreover, amortized learning has recently appeared in a study for 3D modeling in cryo-EM [16]. However, noise resilience remains
one of the most significant challenges in cryo-EM 3D reconstruction. The proposed ‘“amortized” MoM technique provides a genuine
alternative that addresses this challenge effectively while also addressing the additional challenge of ever-growing cryo-EM datasets.

In our method, we treat the group elements of each problem as random variables and consider them as nuisance parameters
or latent variables. Rather than estimating them directly, we aim to target their density function along with the unknown signal.
Our MoM incorporates neural networks to approximate the signal and distribution to achieve this. We demonstrate that in the
case of MRA, a neural network can encode existing algorithms for solving the inverse problem from the moments. Moreover, we
propose that the moment inversion process can be significantly improved by initializing the neural networks with those trained in
a supervised manner on similar instances of the recovery problem. Our approach to the MRA problem serves as a proof-of-concept,
and we extend these techniques to the case of cryo-EM.

The paper is organized as follows. Section 2 describes the problem formulation. Then, in Section 3, we present the method of
moments approach for the MRA model and cryo-EM model individually as special cases of our class of estimation problems (2). Next,
Section 4 introduces neural network priors for representing the volume and distribution of group elements for both models. Next,
Section 5 illustrates the performance of our neural network priors in the reconstruction of various simulated as well as real-world
biological volumes. Finally, we conclude with Section 6, including a summary of the next steps in this exciting line of research.

2. Problem formulation: orbit recovery

Let v be an unknown scalar-valued object defined as a function
v: Q2 ->R, @

and let G be a group with a well-defined action on v, that is G ~ Q. One class of estimation problems we are concerned with
consists of the following general formulation. Our goal is to estimate the function v, where we observe N samples,

Uj=A(gj°U)+6j’ &g~ P, j=1..,N, 2)

where (¢; }j]‘; is a set of ii.d. random noise terms, A is a known operator, and {g; }jN= | is a set of i.i.d. random group elements
distributed according to some distribution p on G. These are treated as latent variables or nuisance parameters for our problem
since the objective is to get v. Note that one can only estimate v up to a group action, since for any estimator o and {§; }j,i | for
the object and latent group elements respectively, goo and {§; g1} j"z , give another set of equivalent estimators for any fixed g € G.
Hence our goal becomes the orbit recovery of v.

Customarily, in the lower-noise regime, where the magnitude of ¢; is smaller than the magnitude of v, a solution to (2) is obtained
using the following scheme. First g;; ~ g; gj‘l is estimated from v; and v;. Then one recovers the group elements {g;} j\’= . from the set
of their ratios {gl-gj’l } :Yj:l’ i.e. solving a synchronization problem over G. Then with a good estimation for {g;} j\; > we solve for v in
problem (2) via solving a linear system of equations [17].

As the level of noise in the observations increases, the random noise heavily influences the alignment results so that even with
the ground truth v given, one would often be fooled to assign wrong group actions with large errors [8,18]. A different approach
consists of treating the group elements {gj}]]_i , as nuisance parameters and having the signal be the primary estimation target.
Therefore, when considering a high level of noise, we focus on methods that marginalize over the nuisance parameters by treating
them as random variables [19]. The estimation of v can be done via maximizing the marginalized posterior distribution that has v
being the random variable or using a method of moments with moments formed by averaging v;’s such that there is no dependency
on g;’s.
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3. Method of moments

The method of moments (MoM) is a classical technique to estimate parameters from observed statistics. Two recent models
where MoM was already successfully employed are multireference alignment (MRA) [5,20] and cryo-EM recovery [7], where the
operator A of (2) is the identity and a tomographic projection, respectively. The group consists of circular shifts on MRA and
3D rotations in cryo-EM recovery. Then, the mth moment is the expectation of the m-th-order tensor product of the samples with
themselves, i.e., v®". Interestingly, the minimal number of moments to guarantee uniqueness also determines the sample complexity
— the number of samples needed, as a function of noise level, in order to have a consistent estimation, see [5,21,22]. Therefore,
when studying (2), the MoM plays a significant role as a baseline for designing computational algorithms and analyzing the sample
complexity.

3.1. The MRA model

We begin with the MRA model, (2), where A is the identity. In this situation, the unknown signal v is defined on a unit, symmetric
segment 7 = L—% %] Namely, the signal is v : T — R, and we further assume it is a periodic, band-limited function. Let G be the

group of circular translations (rotations) on Z, whose elements s; shift v in the following manner,
s;00 1= v(- = ;). 3

Here, we interpret the difference as modulo the segment, namely - —s; is always in I.
We next formulate the MRA problem in the Fourier domain. For convenience, we discuss the case when there is no noise. Let
i)‘j be the Fourier transform of v}, in this case, a shift s; becomes a phase, i.e.

ﬁj(k) = exp(iksj)U(k), k € [-n,x]. 4

The frequency k has a natural bandlimit |k| < z since the signal v; is usually provided on r discretized points in Z, where # is chosen
to satisfy its Nyquist frequency. As for our observation, let K, be the set of n equispaced points between [—x, z]. Then, we have

0;(k) = exp(iks)0(k), k € K. ©)

Henceforth, for brevity, we use ﬁj(Kl) = exp(iK;s;) © 0(K,) instead of the pointwise notation, where “®” denotes the Hadamard
product.
Finally, in MoM for MRA, we let

z

o 20008 ko | ©)

N
~ 1 ~ ~
M0 p)k) =B, | ¥ 0k |, MLID. pl(ky. ky) = E
& j

J

Here, M ; and M% are functions of o, p. The goal is to retrieve ¥ from unbiased estimators ML M 12: of M ;, M 12: when having noisy
data via matching the moments.

3.2. The cryo-EM model

The problem (2) also serves as a simplified model of single-particle cryo-EM, where the operator A is a tomographic projection
along a fixed axis. Cryo-EM is a prominent method for determining the high-resolution 3-D structure of biological macromolecules
from its 2-D noisy projection images [9].

For the cryo-EM model, we denote by v: R’ — R the Coulomb potential of the 3D volume we aim to determine, where we
assume that v is compactly supported in a ball of radius % around the origin, that is inside 73. We define the composition of R ;
with the volume v as

Rjov (x,y,2) =0 <R;-[x y z]T) , (2 el’, 7)

viewing R; as a 3 x 3 matrix in the right hand side of (7) since SO(3) c R®3. Let P: R® — R? be the operator that projects a 3D
volume along the z axis to a 2D image, i.e.

Pov (x,y) = /oo v(x,y,2)dz, (x,y) €I (8)

(S
Then, a standard image formation model in the absence of noise, after filtering the effect of the contrast transfer function (CTF),
image cropping, and centering, is (see [9,23]),

v; = PoR;ou, j=1,....,N, ()]

where R; € SO(3) are the unknown group elements. To avoid the computationally intensive integration in (8), we reformulate our
problem in the Fourier domain. There, we can exploit the Fourier Slice Theorem to speed up computation significantly. We define
0: [~ 7] = C as the Fourier transform of v, and S : [-7, z]*> — C as the slice operator given as

Sty ky) = 0 (o, 0) (10)

xRy
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Fig. 1. Overview of our MRA pipeline: The encoder ¢, takes moments (M}r, M%) as input, and outputs z, € R”, approximating a discretized probability density
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p(X,), and z, € R" that approximates a discretized Fourier signal 0(K,). Next, we use z, and z, to create (M;[z(,.,z‘,](l(,), M%[zl,,zp](Kl, K])) via Eq. (25), which
we then compare with the inputs to the encoder, i.e., (M, M?) via the loss function Lrecon (26).
i.e., So0 is obtained by slicing 0 across the plane given by z = 0. Then, the Fourier Slice Theorem states that:

FrpoPoR = SoRoF3p, an

where R € SO(3), F,p and F3p are the 2D and 3D Fourier transformations, respectively. Therefore, in the no-noise setting, the
equivalent of (9) becomes,

0;(ky. ky) = SoR;00(ky. ky), (ky.k,) € [-m, 7%, (12)

where 0; is the Fourier transform of v;. Let K, be a grid of n?* equispaced points on [—x, z]?, flattened as a one-dimensional vector.
Now our observations are

8,(Ky) = SoR;00(Ky), (13)

and the associated moments are

M=

~ 1 ~
MLD, pl(k,. k) =E, ~ 2 Otk k)
J

(14)
~ 1
MEID, pl(ky, Ky Ky k) = B, ¥

M=

0, (k. k)8, (KL, )" |

)

We aim to retrieve 0 by matching the moments M [0, pl(K,, K,) and M2[d, p(K,, K,) with some unbiased estimators M}, l\?li when
having noisy data.

4. Neural network priors for method of moments

This section presents neural network (NN) approaches for reconstructing the signal v and distribution p in MRA and cryo-EM
settings. The general strategy is to view both the signal and distribution as being mapped by a NN from the estimated moments
M}, and 1\71127, as various previous works have shown that for MRA, M1, Mﬁ are generically sufficient statistics for estimating the
unknowns [5], while for cryo-EM, they have enough information for recovering a low-resolution reconstruction [7]. In the MRA
case, we design an encoder that can map the empirical moments to discretized signal and density. In the cryo-EM case, we further
design an encoder-decoder structure that allows us to take the moments as input and give a continuous representation of a 3D
volume.

4.1. NN for MRA

In the MRA case, we want to train a NN that can take the moments as inputs and give the signal and density as outputs, which can
further be used to initialize an iterative reconstruction algorithm. More precisely, we define F € C™" as the matrix representation of
a normalized Fourier transform where F*F = I,,, and X, K, as sets of n equispaced points on T = [—% %] and [—z, 7] respectively.

The main component is an encoder, i.e., a neural network &, that takes the moments M 11, M% as inputs and outputs z,,z, € R",
where z, approximates a discretized density p(X,) and z, approximates a discretized signal D(K).

The encoder ¢, := (&}, fg) consists of two NN & and .fg , which are two 1D convolutional NNs (CNNs) that take M ; eC" M % €
C"™" as input vector fields supported on » grid points. Fig. 1 provides an overview of our pipeline for MRA. While the details of
the architectures are provided in Appendix, here we provide motivations as for how a CNN has the capability to learn a mapping
from the moments M}F eC, M % € C™" to 0(K,). For simplicity, suppose |0(k)| = 1. Using the definitions in (6) and the fact that
translating v by s is equivalent to letting 0(k) — (k) exp(iks), one can show that

M0, p)(ky, ky) = D0k )Pk, — ky)Blky)", (15)



Y. Khoo et al. Journal of Computational and Applied Mathematics 444 (2024) 115782

as in [5]. In this case, M 12,[17, pl(K;, K;) admits the eigendecomposition
M3, pI(K;. Ky) = diag(@(K))F*(FIp(k, — ky)l, 5, F*)Fdiag(B(K,)")
= [diag(D(K )] F*diag(p(X,))[ Fdiag(t(K,)")] (16)

since [Fdiag(d(K;)*)] is an orthogonal matrix (due to the assumption |0(k)| = 1). From this form, it is clear that the eigenvalues
of M%[ﬁ, pl(K;,K;) are p(X,) and furthermore, the eigenvectors are Fdiag(d(K,)*). Since the spectral information of the second
moments contains information concerning the signal and density, if an NN can mimic a spectral method, then it can learn the
mapping from moments to the signal and density.

The form of M%[ﬁ, pl(K,K}) in (16) suggests that it is a circulant matrix. Therefore if we want to devise a neural network that
takes 1\3112r = M%[i}‘, pl(K;, K;) (when there is no noise) as input and output the eigenvectors Fdiag(d(K,)*), we can have a neural
network, composed of 1D convolutional layers, that takes M% as a 1D n-dimensional vector field supported on n grid points. For
example, to get an eigenvector of M%[ﬁ, pl(K;, K}), a convolutional layer /; : C" —» C" can take the form

MZu

hw = ———. a7)
1M zull,
One can think about M? as the weights of the convolutional layer /;, and the division by ||MZu||, as some nonlinearities in the
NN. Repeated applications of /;, gives an eigenvector of M %[ﬁ, pl(K;, K;). After obtaining an eigenvector, say F(:,1)0(K;(1)) where
F(:,1) is the first column of F, the NN can simply apply some pointwise nonlinearities layer /, : C" — C" that performs
u(i)

L (u(i)) = QD

i €[n]. (18)

Putting these elements together into a deep NN, i.e., [,0/;0 --- o/, should give 5(K(1)). Similar operations can be carried out for other
eigenvectors. We also use a similar structure for 55 to output z, that approximates p(X), since it is clear that if u = /;0l;0 -+ ol 1(M,2r)
is an eigenvector of M%, applying another nonlinearity

I3(u) = (u, M2u) (19)

gives the eigenvalue of M 12, which contains information of p(X) (as shown in (16)).
4.2. NN for cryo-EM

We make some alterations to our MRA architecture for cryo-EM reconstruction since we need to output a continuous represen-
tation of the volume to facilitate computing the moments involving the reconstructed volume. Just as in the case of MRA, we have
an encoder 5; that outputs information regarding the density. More precisely, let O ¢ SO(3) be a set of quadrature points on SO(3)
and g = |Q|. We want & : (M}, M2) - z, (M}, M?2) are estimators of (14)) where z, should approximate (p(R)) and p is a
density on SO(3).

However, unlike the case of MRA, we now want to have a continuous representation of the Fourier volume where the benefit is
explained as follows. Let D, : R? = C be an NN that represents a volume on the Fourier domain, and K, be n?> equispaced points
on [, x]%. Suppose D, = D and z, = p(Q), one can evaluate M L[5, pl(K,, K,), M}[ﬁ, pl(K,, K,) defined in (14) approximately via
the quadrature rule

ReQ

q
M [0, 2,1(Ky) & Y 2,(j)S00()oBy(Ky),

= (20)

q
M8y, 2,)(Kp K) % Y, 7,0 (500()004(K2) ) @ (500()00y(Ky))
=

where, by an abuse of notation, we think about z, = p(Q), i.e., the density p discretized on Q, as p itself and Q(/) is an element in
the set Q. For simplicity, in this paper, we consider a quadrature rule with uniform quadrature weights, as seen in (20). It is clear
that having a continuous 7, allows us to obtain ﬁ¢(Q(j)T(kx, ky,0)) for any (k,, k,) € K, easily.

Note that we also allow the flexibility to have an encoder & just as in the case of MRA. In this case, &; : (ML, M%) — z, where
z, is some latent variable of the volume. In this case, we simply let 7, : R3+1zl - C where the extra inputs of 0, corresponds to
the output of &;. The neural network pipeline we devise is shown in Fig. 2, where & = (fg ,ég). As for the architecture of .{:g,é;,
we adopt the type of architecture we use in Section 4.1, though one should be able to improve it according to the structure of the
cryo-EM problem. The details of &, and 0, are given in Appendix.

5. Numerical examples

This section presents the results of numerical experiments with our Method of Moments algorithm with NN prior done using
PyTorch [24].
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Fig. 2. Overview of our cryo-EM pipeline: The encoder &, takes moments (M ;M},) as input, and outputs z, € R!9l, approximating a discretized probability
density (p(R)) reo for some fixed set of quadrature points Q c SO(3). Next, we create copies of the grid K, rotated corresponding to the elements of Q and input

them to our neural representation @,, which outputs corresponding slices of a running estimate of . These slices {SoQ( j)oﬁd,(Kz)} along with z, are used to
J

create (M}r[ﬁﬂ, zp](Kz), Mlzr[ﬁp,za](Kz, Kz)> via equation (20), which we then compare with the inputs to the encoder, i.e., (M,]w M%) via the loss function £ ...,

in (28). Optionally, &, can also be used to output an extra z,, a latent variable of # that can be inputted into 7.

5.1. MRA

We first present results using the method for MRA in Section 4.1. There are two phases when using the NN detailed in
Section 4.1: training phase consisting of supervised learning (Section 5.1.1) and reconstruction phase consisting of unsupervised
learning (Section 5.1.2).

For evaluation purposes, we define the reconstruction error (also referred to as relative error) of an estimator u € R" of a signal
v (or a distribution p) discretized at X, to be

| o () -,

inf , in
el = e,

Note that in this case, we identify the group with X,. In addition, we define the relative errors for any moment estimators A, A,
for the first and second moments, respectively, as

e A A §
411l ’ [[42]|

5.1.1. Supervised training phase

The goal of the training phase is to use the encoder &, to predict p(X,) and v(X,) given moments. In other words, we demonstrate
that the moment inversion map can be learned by neural networks in a supervised way.

To this end, we draw the signal v and the density p from a distribution. After forming their corresponding first and second
moments, we train our encoder &, in a supervised way to take inputs of the form (M}[ﬁ, pl(K)), M%[’v‘, pI(Ky, Kl)) and output

sov (X,) - u”F

(21)

(22)

(p(X D, 0(K 1)). In our experiments, we let the distribution of v and p be a mixture of Gaussians on the interval 7, where we repeat
our training procedure separately for a different number of Gaussians. We take 1750k of input—output pairs to do the training. We
compute test error on 250k of samples using (21).

We now discuss the hyperparameters for training. We train the encoders 5;’ and & separately; let us consider fg . We take the
training set and feed the moments pairs (M ;[ﬁ, pI(K}), M%[ﬁ, p](Kl,K])> to 55, which outputs corresponding z, for each pair as
a prediction for p(X,). We train é:g over a total of 30,000 epochs with learning rates of 10~*,10~> and 10~® over 10,000 epochs
successively. We then repeat the same process for &;.

Table 1 summarizes the average relative error on the training and test sets, using (21), while evaluating our trained encoders
on mixtures of different numbers of Gaussians. The left and right columns of Fig. 3 show some comparisons of the encoder output
(z,, z,) with ground truth (p(X), 0(K,)) during prediction time.

5.1.2. Reconstruction phase

In the previous section, we discussed our process of training the encoder ¢, in a supervised way such that it learns the moment
inversion map. A useful application of this trained encoder is when supplied with new, possibly noisy, moments (M., N )%), we can
use its outputs as a good initialization for further refinement. In this section, we demonstrate that this procedure leads to faster
convergence.
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Fig. 3. Predictions for the distribution p (Left) and volume v (Right), outputted by trained encoders fg and & respectively, for p, v being mixture of 2 Gaussians.
The solid lines are the ground truth p and v, while the dotted lines are the corresponding predictions by an NN.

Table 1
Average reconstruction errors (defined in (21)) of predictions z, and z, on training and test sets for mixtures of
Gaussians.

No. of Gaussians z, (Train error) z, (Test error) z, (Train error) z, (Test error)

1 0.042 0.048 0.048 0.052

2 0.121 0.141 0.156 0.170

3 0.177 0.195 0.180 0.206

We first talk about how we obtain the estimators M }, M 12, from observations of the form

v;=so0X))+e;, j=1,...,N 23)

where e 5~ N, 621,). Let F € C"™" again be the Fourier matrix, we form unbiased moment estimators of the form

N | N

Y Fuv, Mp= ~ Y (Fv)(Fv)* - oI, e
j=1

by subtracting a constant term on the diagonal of the empirical second moment. These are used as input to the trained encoder &,
for prediction.

Notice that the solution to the MRA problem has a global translation ambiguity. Therefore, it is possible for the encoders 65, 5;,
to output an approximation to signal v and density p up to some arbitrary translations. While this is not a big issue if the predicted
signal is all we want, it becomes an issue if we want to refine the predictions further. More precisely, before deploying the encoder
for refinement with new incoming moments M ! ,M%, we conduct an alignment to ensure that the outputs z, = & (M! ,M%) and
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Fig. 4. Plots of logarithms (with base 10) of Sum of relative errors (defined in (22)) for M ,', and M; across 3000 iterations (Top), and Reconstruction error
(defined in (21)) across 3000 iterations (Bottom); averaged over 20 reconstructions of (p(X,), 0(K,)) pairs drawn from the family of a mixture of 2 Gaussians. In
both plots, the blue curve corresponds to the scenario where the encoder underwent supervised training, while the orange corresponds to the scenario where it
did not.

z, = g(M' s M%), upon forming
n
Mz, 2,J(Kp) = ) z,(j) exp(—iK;5()) © z,.
j=1
n
M3z, 2, )(K1, K)) = ) 2,()) (exp(—iK;5() © z,) (exp(=iK;5() © z,)" (25)
j=1
matches the inputs (M I,Mﬁ) of the encoder. Here by abuse of notation, we treat z,,z
functionals M 'F M % to them. With an alignment, we can make sure the initial loss

, as a continuous object and apply the

L

M. —M},[zu,z,,](Kl)”F + AHM% - M%[zv,zﬂ](Kl,K])HF, (26)

recon — |

is small. Recall that z, = 55’(1\3[ 1 M% .z, = & (M} ,Mf,), we further optimize the NN parameters 6 to refine z,,z, with the loss in
(26).

We now show the results of the deployment of our architecture & when working with noisy moments. We take 20 different
M }D M %, and determine z,, z » by minimizing (26) over the parameters of &,. The relative errors (defined in (21) and (22)) of the
reconstructed (p(X,),0(K;)) and the moments are plotted in Fig. 4. The errors are averaged over 20 different instances of (p,v)
combinations from mixtures of 2 Gaussians, and the empirical moments are formed from 1000k observations for each pair of (p, v)
as in (23), with Gaussian noise ¢ = 1.0. Depending on whether the encoder underwent supervised training, we observe the trajectory
of this “average” reconstruction error to be different. Fig. 4 illustrates that the average reconstruction error indeed converges faster
when the encoder is trained in a supervised phase.

5.2. Cryo-EM

We now present the results using our method for cryo-EM as illustrated in Section 4.2. Again for evaluation purposes, the relative
error for an estimate u € R” of a signal v discretized at n® equispaced points X5 on I3, is defined as

|

inf —m8 ———
ool

Roo() = ol @7)

The relative errors for moment estimators of the first and second moments are defined analogously to (22).

While we do not describe any supervised training phase like in the MRA case, our architecture keeps this option open. We believe
that even for cryo-EM, it would be possible to train our encoder ég in a supervised way to learn the moment inversion map, i.e., to
take inputs of the form (M}[ﬁ, pI(K5), Mﬁ[ﬁ, pI(Ks, Kz)) and predict (p(R))REQ
of quadrature points on SO(3) defined in 4.2. It would also be possible to train &, such that it outputs a discretized approximation
of the volume from the moments, or at least some vector containing important feature information about it.

The reconstruction is carried out by optimizing the NN parameters # and ¢ of our encoder z, = .’;’Z(M I,M%) and neural
representation o, respectively, to minimize the loss function

for training and reconstruction, where Q is the set

P

£rewn=”M}, —M},[ﬁd,,zl,](Kz)”F + A“M} - Mﬁ[ﬁd,,zp](Kz,Kz)”F. (28)

During reconstruction, one of the challenges we face is fixing a good set Q c SO(3) on which we shall use a quadrature rule with
uniform weights to evaluate the functionals M 1 ,M%, as described in (20). In our experiments, we do so in two steps. First, we
choose a ¢, -point spherical design on S?, see, e.g., [25]. A g,-point spherical t-design is a finite set of points with cardinality ¢, on
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Fig. 5. (Left) 1000 points sampled from a mixture of eight von Mises-Fisher random variables shown in different colors, and (Right) 100-point 13-design plotted
on a 3D unit sphere.

Fig. 6. (Left) A clean projection, and (Right) its noisy counterpart with noise level ¢ = 0.5 as defined in (29), for EMD-0409.

52, such that their quadrature over .S with uniform unit weights is exact for any polynomial (spherical harmonics) with degree < r.
Then, for each point of the design, treating the axis connecting that point to the center as viewing direction, we consider in-plane
rotations with g, equally spaced angles in [0,27) radians. This gives us a set Q with |Q| = ¢,¢, quadrature points on SO(3). In
experiments, we take ¢; = 100 and ¢, = 12 for a total of |Q| = 1200 quadrature points. To illustrate these quadrature points, we use
a 100-point 13-design on S as the set of viewing directions, as seen in the right side of Fig. 5.

We now discuss our data generation process for cryo-EM and the moment estimators to be inputted into the encoders. In practice,
given real observations of the form

v; =PoRjou(Xy) e, j= 1,....,N (29)

where ¢; ~ N(0, 621,) and X, is n* equispaced points on I2, we could form unbiased moment estimators

N N
. 1 . 1
M= ~ ZIFzU-, MZ= ~ Zl(quj)®(F2uj) - %Iy, (30)
Jj= Jj=

letting F, € €7 be the two-dimension Fourier transform matrix. Clean observations v; are depicted alongside their noisy
counterparts in Figs. 6 and 7.

We next discuss our choices of ground truth volumes v and rotational distributions p. For our experiments, we use three volumes:
EMD-0409 and EMD-25892 taken from the Electron Microscopy Data Bank (EMDB); and a mixture of four Gaussians not lying on the
same plane in three dimensions. The dimensions of EMD-0409 are 128 x 128 x 128 with voxel size 1.117 A, while the dimensions
of EMD-25892 are 320 x 320 x 320 with voxel size 1.68 A. Both volumes were downsampled to 63 x 63 x 63 and scaled to have
norm 1. The mixture of Gaussians has dimensions 25 x 25 x 25, whose voxel size is taken to be 1 A since it is a simulated volume.
We represent the ground truth using 7y, and report the approximation error as defined in (27), between the original and this
neural ground truth as 0.043 for EMD-0409, 0.076 for EMD-25892, and 0.004 for the mixture of Gaussians. These NN-approximated
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Fig. 7. (Left) A clean projection, and (Right) its noisy counterpart with noise level ¢ = 0.5 as defined in (29), for EMD-25892.

Table 2
Final relative errors of moment estimates M} and MZ after reconstruction phase.
Volume Relative error in M, Relative error in M2
EMD-0409 0.003 0.013
EMD-25892 0.007 0.035
Mixture of Gaussians 0.007 0.016
Table 3

Optimal resolutions between ground truth vol-
umes and their reconstructions.

Volume Resolution (in A)
EMD-0409 16.86
EMD-25892 21.52

Mixture of Gaussians 4.45

volumes are then used as the ground truths for the rest of the simulations. The ground truth distribution of rotations p is chosen
in the following way. The viewing directions are distributed as a mixture of 8 von Mises-Fisher distributions with different mean
directions u and concentration parameters k, respectively, to ensure a sufficiently non-uniform distribution on S2. 1000 points from
this distribution are shown on the left side of Fig. 5. The in-plane rotations are uniform on [0, 2x) and independent of the viewing
directions. We then create moment estimators from N = 5,000,000 noisy observations with noise level ¢ = 0.5 using (30), where a
neural slice approximates F,v;.

We run our algorithm with learning rates 10~ and 10~ successively for 10,000 epochs each, to minimize the loss function
in (28). The reconstructed volumes are visualized in Figs. 8, 9, and 10, alongside their corresponding neural ground truth volumes
for EMD-0409, EMD-25892, and mixture of Gaussian volumes, respectively. Table 2 shows the relative errors of our moments from
the reconstructed volumes, defined analogously to (22), at the end of our reconstruction.

Finally to evaluate the quality of reconstruction, we first align the reconstructed volumes with the ground truth. For that purpose,
we run the algorithm for aligning three-dimensional density maps in [26] multiple times and pick the best alignment. We then
calculate the Fourier Shell Correlation (FSC) between the ground truth volumes and their corresponding aligned reconstructions.
We denote the resolution of the reconstructed volume as the point where the FSC curve goes below 0.5. The final resolutions between
the ground truths and reconstructed volumes are provided in Table 3.

6. Conclusion and outlook

Single-particle cryo-EM is a prominent method for determining the atomic-resolution 3D structure of biological macromolecules.
This technique underwent a “resolution revolution” a decade ago [28], and three of its pioneers were awarded the 2017 Nobel Prize
in Chemistry [29]. These days, cryo-EM provides researchers access to some of the molecules’ tiniest and most essential building
blocks. In this paper, we addressed the reconstruction problem in cryo-EM as well as one of its simpler versions, namely, multirefence
alignment. Both cryo-EM and MRA fall under the class of orbit recovery problems.

Although deep NN-based methods have been successfully used in maximum likelihood estimation for orbit recovery problems,
they have not historically exploited the benefits offered by the MoM, like noise resilience, due to the central limit theorem when
averaging data. In this paper, we take a first step towards using NNs for solving moment systems in orbit recovery problems. In the
case of MRA, we demonstrate theoretically and numerically that a map can be learned to take moments as input and output the
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Fig. 8. Ground truth volume (in gray) and reconstructed volume (in yellow) for the EMD-0409 volume, visualized using UCSF Chimera [27].

Fig. 9. Ground truth volume (in gray) and reconstructed volume (in yellow) for the EMD-25892 volume, visualized using UCSF Chimera [27].

Fig. 10. Two views of recovery of a mixture of Gaussians. Ground truth volume (in gray) and reconstructed volume (in yellow) for a mixture of 4 Gaussians
in three dimensions, visualized using UCSF Chimera [27].

signal and density of translations, and develop novel neural network architectures for the same. This map can then be used as a
deep NN prior to accelerating convergence in unsupervised reconstruction from new incoming moments.

We also apply this approach to cryo-EM with encouraging results, but further work is needed to demonstrate the superiority of
supervised learning and tackle more general cryo-EM models, like those dealing with small translations in addition to the rotations,
and further image contamination due to aberrations (which would involve accounting for contrast transfer functions). Supervised
learning would effectively enable low-dimension reconstruction of volumes near-instantly and would serve as an inexpensive and
time-efficient method of generating ab-initio models for iterative refinement algorithms. Other future work includes investigating
the use of higher-order moments to improve reconstruction accuracy and parallelizing the model on multiple GPUs to enable
reconstruction with larger images and improve speed and accuracy. Additionally, tackling more general cryo-EM models will bring
us closer to operating on real-world datasets.

Data availability

Code hosted on Github.
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Fig. A.11. Architecture of &) in case of MRA.

Appendix. Architecture of neural networks

In this appendix, we describe the details of the NN for both MRA and cryo-EM. To facilitate the discussion, we first define
conviD,, . to be a 1D convolutional layer with periodic padding, kernel window size w and channel number c. In a similar way, we
also denote a 2D convolutional layer with window size wxw and channel number ¢ as conv2D,, .. Furthermore we define input1D,
to be an input layer that prepares the input as a length # 1D vector field with channel number c¢. We then define a fully connected
layer full,, that takes an input vector field and output a vector with size w. The nonlinearities we use in this paper are leaky ReLu
(LReLu) nonlinear activation with parameter 0.02, tanh(-) function, and just linear activation (without nonlinearities). We make no
distinction between real or complex input, since changing real to complex input only requires doubling the input or output channel
number.

A.1. MRA

In the MRA case, we present the proposed architecture for the encoder &,. An illustration of .fg is presented in Fig. A.11, and
the same architecture is used for £;. The input layers input1D,; and inputiD, , take the moments as inputs. After a few layers of
conv1D, we stack the output of the upper branch and lower branch in Fig. A.11 together into a 1D vector field of length n and 6
channels. Then after a few more layers of CNN conv1D and fully connected layers full, we output z,,.

A.2. Cryo-EM

The encoders éjg and & are very similar to the one presented in Fig. A.11 for MRA, except we replace all conv1D with conv2D
with the same window sizes and channel numbers. As for Dy currently, it is chosen to be the FourierNet of [16]. FourierNet finds
success in representing the Fourier transforms of three-dimensional volumes of molecules and other volumes arising in nature, with
values that often span multiple orders of magnitude. The main point of such a representation is that, instead of approximating v(x)
directly by an NN, it is often easier to approximate its Fourier coefficients 9(x) by an NN on k-space when v(x) exhibits oscillatory
patterns. This is also similar to the approach taken in [30] for solving high-frequency wave equations. More precisely, it lets

0(k) » Dyk) = ag, (k) exp(iby, (k) (A1)

with two NNs ay (k)€ C and by, (k) e C where ag, gives the amplitude of the Fourier coefficients and by, gives the phase variations.
By representing v in Fourier domain instead of real domain, one can bypass the oscillatory pattern caused by the Fourier series
exp(ikx) in v(x) = Y, D(k)exp(ikx). More details regarding the architecture, its effectiveness, and its memory requirements are
provided in [16].
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