
Incentivizing Exploration in Linear Contextual Bandits under
Information Gap

Huazheng Wang
∗

huazheng.wang@oregonstate.edu

Oregon State University

Corvallis, Oregon, USA

Haifeng Xu

haifengxu@uchicago.edu

University of Chicago

Chicago, Illinois, USA

Chuanhao Li

cl5ev@virginia.edu

University of Virginia

Charlottesville, Virginia, USA

Zhiyuan Liu

zhiyuan.liu@colorado.edu

University of Colorado, Boulder

Boulder, Colorado, USA

Hongning Wang

hw5x@virginia.edu

University of Virginia

Charlottesville, Virginia, USA

ABSTRACT
Contextual bandit algorithms have been popularly used to address

interactive recommendation, where the users are assumed to be

cooperative to explore all recommendations from a system. In this

paper, we relax this strong assumption and study the problem of

incentivized exploration with myopic users, where the users are

only interested in recommendations with their currently highest

estimated reward. As a result, in order to obtain long-term opti-

mality, the system needs to offer compensation to incentivize the

users to take the exploratory recommendations. We consider a new

and practically motivated setting where the context features em-

ployed by the user are more informative than those used by the

system: for example, features based on users’ private information

are not accessible by the system. We develop an effective solution

for incentivized exploration under such an information gap, and

prove that the method achieves a sublinear rate in both regret and

compensation. We theoretically and empirically analyze the added

compensation due to the information gap, compared with the case

where the system has access to the same context features as the

user does, i.e., without information gap. Moreover, we also provide

a compensation lower bound of this problem.
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1 INTRODUCTION
Contextual bandit algorithms have been popularly used to address

the interactive recommendation problems [24, 31, 34], where the

system learns the best recommendation policy by interacting with

users. Classical bandit research studies the single-party setting,

where the system has a full control over which arm to pull. In

interactive recommendation, this means all the system’s recom-

mendations will be taken by the users for feedback, which enables

the system to trade off between exploitation and exploration for

long-term optimality. However, in real-world recommender sys-

tems, one often faces a two-party game between the system and

its short-term users, who have different interests and roles in this

game. Specifically, the system aims at maximizing long-term cu-

mulative reward, which requires exploration in the entire problem

space. However, the decision about which recommendation to take

is made by the users, and the system can only observe the reward

feedback associated with the users’ decisions. To make things even

worse, the users often act as myopic agents, who only seek to

maximize their short-term utilities, i.e., exploit the item with the

currently best estimated reward. This division leads to the prob-

lems of under-exploration and selection bias: the best choice may

remain unexplored forever if it appears sub-optimal initially. To

align the two parties’ interest, the system has to offer compensa-

tion to users so that they are motivated to take the exploratory

recommendations, which in turn helps system maximize long-term

cumulative reward. This is known as the incentivized exploration
problem [14, 20, 27].

We take restaurant recommendation as an example to illustrate

the problem. Myopic agents (customers) tend to visit the restaurant

with historically high ratings on the platform. To incentivize explo-

ration, the platform can provide compensations, such as coupons

and discounts, to encourage users to visit restaurants currently

with lower ratings but also fewer reviews (and hence the estimation

might not be accurate there). Then by collecting more feedback on

such under-explored restaurants, both the system and the users can

better figure out which restaurant turns out to be the best choice.

Thus the system can improve its recommendation to other users,

while the myopic users may choose better restaurants in future.

415

https://doi.org/10.1145/3604915.3608794
https://doi.org/10.1145/3604915.3608794
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604915.3608794&domain=pdf&date_stamp=2023-09-14


RecSys ’23, September 18–22, 2023, Singapore, Singapore Wang et al.

Besides recommender systems, incentivized exploration can be ap-

plied in a wide range of domains such as e-commerce platforms,

crowdsourced information discovery and citizen science (see Frazier

et al. [14] for more examples).

The system’s goal in incentivized exploration is to minimize total

compensation while maximizing cumulative rewards [14, 16, 32].

Existing solutions assume both parties maintain the same reward

estimation. This assumption is necessary for the system to compute

the compensation based on the difference of users’ estimated re-

ward between the currently best choice and the exploratory choice.

Under a context-free setting (aka. the Multi-armed Bandit (MAB)

[6, 21] in literature), this assumption naturally holds because both

parties maintain the same estimatedmean reward on each candidate

arm. And most existing incentivized exploration solutions work

under this setting. However, under the contextual bandit setting

[1, 5, 24], the two parties may associate the same observed rewards

with different context features. For example, in restaurant recom-

mendation the users may access restaurant features related to their

dine-in experience such as difficulty of parking or waiting time,

which are not accessible by the system. To obtain the same quality

of reward estimation, the system has to resort to other observations

to infer such user-specific features [7, 33]. This situation can be

easily understood by an extreme setting with a finite number of

recommendation candidates: the system only observes the ID of

each candidate item, while the users employ informative features

about the items. As a result, the system suffers from a much slower

convergence rate in reward estimation than the users. We refer to

this representation asymmetry as the information gap between the

two parties, which brings in new challenges to incentivized explo-

ration. For example, the system no longer knows which candidate

item has the best estimated reward on the user side.

In this paper, we study the problem of incentivized exploration

in linear contextual bandits under information gap. We propose an

algorithm that effectively incentivizes the users to explore under the

information gap so that the system can maintain a sublinear regret

in collecting cumulative reward in recommendation. Our key idea

is that although the system suffers from information disadvantage

and cannot compute the minimum compensation precisely, offering

a larger amount of compensation guarantees sufficiency for users

to explore. And this added compensation should shrink fast enough

such that the total compensation is still sublinear. We prove that in

𝑇 rounds of interaction our algorithm achieves compensation and

regret both in the order of𝑂 (𝑑𝑣
√
𝑇 log𝑇 ) with information gap and

𝑂 (𝑑𝑥
√
𝑇 log𝑇 ) without information gap, where 𝑑𝑥 and 𝑑𝑣 are the

dimensions of context features used by the users and the system,

respectively. The results suggest that incentivized exploration is

still possible under information gap, and the added cost is realized

by the extra compensation that is dominated by 𝑑𝑣 . We also prove

the compensation lower bound of incentivized exploration in linear

contextual bandits, which generalizes the result of compensation

lower bound inMAB settings reported in [32]. Our empirical studies

in both synthetic data and real-world datasets also validate the

effectiveness and cost-efficiency of the proposed algorithm.

2 RELATEDWORK
Contextual bandits are emerging solutions to recommender system

in both online [15, 24, 34] and offline settings [11, 12, 18, 26] set-

tings. We focused on on-policy bandit learning in this paper. The

incentivized exploration problem in multi-armed bandits has been

studied since [14, 20]. See Slivkins [30] for an overview. One line of

the studies assumes the system has information advantage on ob-

serving the full interaction history while users do not [17, 20, 27, 28].

The system leverages the information asymmetry to recommend

exploratory arms as long as the users do not have a better choice

from their perspective. Simchowitz and Slivkins [29] proposed the

first study of incentivizing exploration in reinforcement learning in

this line. Another line considers the setting where the interaction

history is publicly available to both system and users and the system

need to offer compensation to an arm for incentivized exploration

[10, 14, 32]. Our setting follows the second line of research.

Incentivized learning with compensation was first studied in

[14] in a Bayesian setting with discounted regret and compensa-

tion. Chen et al. [10] studied a heterogeneous users setting, where

user diversity led to their solution with constant compensation.

Agrawal and Tulabandhula [3] considered heterogeneous contexts

in a contextual bandit setting. In [32], the authors analyzed the non-

Bayesian and non-discounted reward case and showed 𝑂 (log𝑇 )
regret and compensation in a stochastic MAB setting. Liu et al.

[25] considered the reward feedback is biased because of the com-

pensation. Kannan et al. [19] considered incentivized exploration

for fair recommendation. Our setting is mostly similar to [32], i.e.,

non-Bayesian and non-discounted reward, but is studied under the

linear contextual bandit setting. We should note all the aforemen-

tioned studies assume the system and the users share the same

information such as arm pulls, rewards and contexts, and the sys-

tem calculates the compensation based on the shared information.

Our setting is strictly more challenging, where the information gap

is caused by information asymmetry: the system cannot access the

feature vectors employed by the users. As a result, users’ reward es-

timation will be different from the system’s and the precise amount

of compensation is harder to compute.

3 PROBLEM DEFINITION
Notations and assumptions. We study the problem under a

linear contextual bandit setting, where the system interacts with

myopic users for 𝑇 rounds. At each round 𝑡 , a user 𝑢 arrives at

the system, observes the system-provided recommendations A𝑡

together with the associated compensation, and pulls an arm 𝑎𝑡 (i.e.,

takes a recommended item). Both the system and the user observe

the resulting reward 𝑟𝑎𝑡 ,𝑡 and update their estimations accordingly.

In reality, a recommender system interacts with thousands of users

whereas each user only occasionally interacts with the system to

meet their short-term information need. Therefore, their behavior

is naturally myopic. We thus refer to our users as short-term users.

In a contextual bandit setting, each arm 𝑎 represents a recommen-

dation candidate and is associated with a context feature vector.

In our problem, for arm 𝑎 ∈ A𝑡 , the system observes a feature

vector v𝑎 from a 𝑑𝑣-dimensional subspace and the user𝑢 observes a

feature vector x𝑎 from a 𝑑𝑥 -dimensional subspace. Without loss of

generality, we assume {x𝑎} spans R𝑑𝑥 and {v𝑎} spans R𝑑𝑣 — if not,
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the standard PCA technique can be used to reduce the dimensions

of raw features to 𝑑𝑥 and 𝑑𝑣 [22]. Essentially we consider the fea-

tures span the whole vector space respectively, which means there

is no feature without support on both sides and the dimensionality

cannot be further reduced.

Assumption 1 (Information Gap). There exists a linear trans-
formation 𝑃 ∈ R𝑑𝑥×𝑑𝑣 (where 𝑑𝑣 ≥ 𝑑𝑥 ) such that for any arm 𝑎,

x𝑎 = 𝑃v𝑎 (1)

Examples of information gap. We now describe a few real-world

examples where the gap exists and is inevitable in order to motivate

the above assumption on 𝑑𝑣 ≥ 𝑑𝑥 , i.e., features used on the user

side belong to a lower dimensional space. A notable special case of

linear bandits with information gap is a 𝐾-armed contextual bandit

problem, where the system knows nothing beyond the indices of

arms. In this case, the context vectors used by the system are the

𝐾-dimensional one-hot vectors 𝑒𝑎 , while the users may employ

𝑑𝑥 -dimensional feature representations of the same arms. The in-

formation gap (𝐾 > 𝑑𝑥 ) is encoded in the transformation matrix 𝑃 .

Another example we have discussed is the restaurant recommenda-

tion scenario where users may use features related to their dine-in

experience to represent the candidate choices. The users can em-

ploy these informative features and enjoy faster reward estimation

convergence; but the system suffers when it cannot access users’

features. In this example, the transformation matrix 𝑃 hides the

user-side information from the system.

Note that having a larger number of features (longer feature

vector) is not equivalent to having a more informative represen-

tation. Another practical example is that the context vectors used

by the system may include many useless or redundant features,

which should not play any role in reward estimation, i.e., a sparse

regression setting. In this example, the system’s features are clearly

less informative, because of the useless features; but the system

does not know which features are useless. This unfortunately leads

to a slower convergence of parameter estimation and a wider confi-

dence interval of reward estimation on the system side, which is

the key challenge solved in our paper for incentivized exploration.

The information gap between the two parties is characterized

by matrix 𝑃 . The linear transformation assumption is to guarantee

both parties face a linear reward mapping, which we state below.

Reward mapping. Following a linear contextual bandit setting,

the expected reward of arm 𝑎 is determined by the inner product

between the context features and unknown bandit model param-

eter. From the user side, we have E[𝑟𝑎] = xT𝑎𝜽
∗
𝑥 , where 𝜽

∗
𝑥 is the

unknown model parameter to be estimated by the user. From As-

sumption 1, we have xT𝑎𝜽
∗
𝑥 = vT𝑎𝑃T𝜽

∗
𝑥 , which suggests there always

exists a parameter 𝜽 ∗𝑣 = 𝑃T𝜽 ∗𝑥 on the system side satisfying the

same linear reward mapping. We summarize the reward mapping

on the two sides as

E[𝑟𝑎] = xT𝑎𝜽
∗
𝑥 = vT𝑎𝜽

∗
𝑣

After the user pulls arm 𝑎𝑡 , the reward 𝑟𝑎𝑡 ,𝑡 is observed by both

sides as

𝑟𝑎𝑡 ,𝑡 = E[𝑟𝑎𝑡 ] + 𝜂𝑡 (2)

where 𝜂𝑡 is 𝑅-sub-Gaussian noise. Without loss of generality, we

assume that the norm of the features and parameters are bounded

as ∥x𝑎 ∥2 ≤ ∥v𝑎 ∥2 ≤ 1, ∥𝜽 ∗𝑥 ∥2 ≤ 1, ∥𝜽 ∗𝑣 ∥2 ≤ 1, which naturally

bound the expected reward in the range of [−1, 1] and simplify

the analysis later. Note that the assumption of ∥x𝑎 ∥2 ≤ ∥v𝑎 ∥2 is
equivalent as assuming the largest singular value of 𝑃 is upper

bounded by 1. Intuitively, this means the linear transformation

does not amplify the magnitude of the features. One can always

find the satisfying x𝑎 by re-scaling 𝜽 ∗𝑥 accordingly.

The system and the users estimate their own model parameters

using ridge regression separately, denoted as
ˆ𝜽 𝑣,𝑡 and ˆ𝜽𝑥,𝑡 , by the

same observed rewards {𝑟𝑎𝑡 ,𝑡 } but different context features. As a
result, the two parties would predict different rewards for the same

arm 𝑎, denoted as 𝑟𝑥,𝑎,𝑡 = xT𝑎 ˆ𝜽𝑥,𝑡 and 𝑟𝑣,𝑎,𝑡 = vT𝑎 ˆ𝜽 𝑣,𝑡 .
Objective. The users and the system have different objectives in

this sequential decision making problem: a short-term user aims

to maximize his/her instantaneous reward, while the system aims

to maximize the long-term cumulative reward. At each round 𝑡 ,

without any incentive, a short-term user 𝑢 will exploit the arm

with the highest estimated reward, i.e., 𝑎 = argmax𝑖∈A𝑡
𝑟𝑥,𝑖,𝑡 . It

is well known that such exploitation-only decisions will lead to

sub-optimal cumulative reward in the long term. In order to balance

exploitation and exploration, the system has to provide compen-

sations to encourage the short-term user to explore. Specifically,

the system offers compensation 𝑐𝑎,𝑡 for pulling arm 𝑎. Given the

incentives, the user maximizes the instantaneous utility by pulling

arm 𝑎𝑡 = argmax𝑖∈A𝑡
𝑟𝑥,𝑖,𝑡 + 𝑐𝑖,𝑡 .

The system seeks to maximize the cumulative reward, or equiv-

alently, minimize the cumulative regret while also minimizing the

total compensation in expectation. The system’s regret is defined as

𝑅 (𝑇 ) =
𝑇∑︁
𝑡=1

(
E[𝑟𝑎∗𝑡 ,𝑡 ] − E[𝑟𝑎𝑡 ,𝑡 ]

)
(3)

where 𝑎∗𝑡 is the optimal arm with the highest expected reward at

time 𝑡 . The total compensation is defined as

𝐶 (𝑇 ) =
𝑇∑︁
𝑡=1

E[𝑐𝑎𝑡 ,𝑡 ] (4)

An effective incentivized exploration method should balance the

trade-off among exploration, exploitation and compensation to ob-

tain sublinear cumulative regret and sublinear total compensation.

4 METHOD
We present our solution on incentivized exploration under informa-

tion gap when the system explores according to the Linear Upper

Confidence Bound (LinUCB) strategy [1, 13, 24]. Then we show

that the solution can be easily adapted to the simpler problem set-

ting of incentivized exploration without the information gap. We

leave the study of incentivizing other exploration strategies such

as Thompson Sampling [2, 4, 9] as future work.

4.1 Incentivized exploration under information
gap

We present Algorithm 1 to show how the system incentivizes

myopic users to follow the desired exploration strategy under in-

formation gap. At each round 𝑡 , the system and the user 𝑢𝑡 observe

context features {v𝑎}𝑎∈A𝑡
and {x𝑎}𝑎∈A𝑡

respectively for the same

arm set A𝑡 . Both parties estimate their parameters using ridge
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Algorithm 1 Incentivized LinUCB under Information Gap

Inputs: 𝜆, 𝛿
Initialize: A𝑣 = 𝜆I𝑑𝑣 , b𝑣 = 0

for 𝑡 = 1 to 𝑇 do
System and user 𝑢𝑡 observe context vectors {v𝑎}𝑎∈A𝑡

and

{x𝑎}𝑎∈A𝑡
respectively

System calculates compensation 𝑐𝑎,𝑡 = 4CB𝑣,𝑡 (v𝑎) for arm 𝑎

(Eq (6))

// Ridge regression on the user side:

A𝑥,𝑡 =
∑𝑡−1
𝑖=1 x𝑎𝑖 x

T
𝑎𝑖

+ 𝜆I𝑑𝑥 , b𝑥,𝑡 =
∑𝑡−1
𝑖=1 x𝑎𝑖 𝑟𝑎𝑖

ˆ𝜽𝑥,𝑡 = A−1
𝑥,𝑡b𝑥,𝑡

User pulls arm 𝑎𝑡 = argmax𝑎∈A𝑡
𝑟𝑥,𝑎,𝑡 + 𝑐𝑎,𝑡

Reward 𝑟𝑎𝑡 is revealed

// Ridge regression on the system side:

A𝑣,𝑡+1 = A𝑣,𝑡 + v𝑎𝑡 v
T
𝑎𝑡
, b𝑣,𝑡+1 = b𝑣,𝑡 + v𝑎𝑡 𝑟𝑎𝑡

ˆ𝜽 𝑣,𝑡+1 = A𝑣,𝑡+1−1b𝑣,𝑡+1
end for

regression with same reward observations and their own features.

The system needs to motivate the user to explore arm 𝑎𝑡 according

to the LinUCB strategy based on its current parameter estimation

ˆ𝜽 𝑣,𝑡 . To achieve so, the system offers compensation 𝑐𝑎𝑡 ,𝑡 to arm 𝑎𝑡
according to Eq (6). Note that the system does not offer incentives

to the other arms and sets 𝑐𝑖,𝑡 = 0,∀𝑖 ≠ 𝑎𝑡 . The myopic user pulls

the arm that maximizes the sum of his/her estimated reward 𝑟𝑥,𝑎,𝑡
and the compensation 𝑐𝑎,𝑡 . We will see in Lemma 2 that the user is

guaranteed to pull the system desired arm 𝑎𝑡 .

Denote CB𝑥,𝑡 (x𝑎) as the width of the user’s estimation confi-

dence interval of arm 𝑎 at time 𝑡 , which is computed as CB𝑥,𝑡 (x𝑎) =
𝛼𝑥,𝑡 ∥x𝑎 ∥𝐴−1

𝑥,𝑡
, where 𝛼𝑥,𝑡 = 𝑅

√︃
𝑑𝑥 log

1+𝑡/𝜆
𝛿

+
√
𝜆. 𝛼𝑥,𝑡 is the upper

bound of the width of confidence ellipsoid and is set according

to Theorem 2 of [1]. Similar to CB𝑥,𝑡 (x𝑎), we denote the width of

confidence interval on the system side as CB𝑣,𝑡 (v𝑎) = 𝛼𝑣,𝑡 ∥v𝑎 ∥𝐴−1
𝑣,𝑡
,

where 𝛼𝑣,𝑡 = 𝑅

√︃
𝑑𝑣 log

1+𝑡/𝜆
𝛿

+
√
𝜆.

The key challenge in incentivized exploration under information

gap is that the system does not maintain the same reward esti-

mation as the user’s, because the two sides use different features

to estimate rewards. This prevents us from computing the mini-

mum required compensation and makes the problem non-trivial.

We have to carefully determine the compensation: a larger amount

of incentive is required to guarantee that user will explore while

we also need to keep the incentives small to maintain a sublinear

total compensation. We first use the following lemma to show that

on the same arm, the confidence interval of the system’s reward

estimation is no smaller than the confidence interval of the user’s

estimate. This lemma guarantees in Algorithm 1 the system pro-

vides sufficient incentive for the user to pull its desired arms for

exploration.

Lemma 1. Consider two ridge regression estimators that estimate
the model parameters with the same reward observations but different
features satisfying Assumption 1. For any 𝑡 ≥ 0 and arm 𝑎 ∈ A𝑡 , we
have

CB𝑣,𝑡 (v𝑎) ≥ CB𝑥,𝑡 (x𝑎), (5)

i.e., the confidence interval maintained on the system side is no smaller
than that on the user side.

Proof. Note that CB𝑣,𝑡 (v𝑎) = 𝛼𝑣,𝑡 ∥v𝑎 ∥A−1
𝑣,𝑡

and CB𝑥,𝑡 (x𝑎) =

𝛼𝑥,𝑡 ∥x𝑎 ∥A−1
𝑥,𝑡
. In the following, we separately prove ∥v𝑎 ∥A−1

𝑣,𝑡
≥

∥x𝑎 ∥A−1
𝑥,𝑡

and 𝛼𝑣, 𝑡 ≥ 𝛼𝑥, 𝑡 . By Eq (1), we have A𝑥,𝑡 − 𝜆I =∑𝑡
𝑖=1 x𝑎𝑖x

T
𝑎𝑖

=
∑𝑡
𝑖=1 𝑃v𝑎𝑖v

T
𝑎𝑖
𝑃T = 𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T and ∥x𝑎 ∥A−1

𝑥,𝑡
=√︃

xT𝑎A−1
𝑥,𝑡x𝑎 =

√︃
vT𝑎𝑃T

( (
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I

)−1
𝑃v𝑎 . In order to

prove

vT𝑎A
−1
𝑣,𝑡 v𝑎 ≥ xT𝑎A

−1
𝑥,𝑡x𝑎 = vT𝑎𝑃

T
((
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I

)−1
𝑃v𝑎,

we show that A−1
𝑣,𝑡 − 𝑃T

((
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I

)−1
𝑃 is a positive

semi-definite matrix using the property of Schur complement.

Specifically, denote

𝑀 =

[
A−1
𝑣,𝑡 𝑃T

𝑃

(
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I

]
.

We have

𝑀/A−1
𝑣,𝑡 =

(
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I −

(
𝑃T

)T
A𝑣,𝑡𝑃T

= 𝑃A𝑣,𝑡𝑃T − 𝜆𝑃𝑃T + 𝜆I − 𝑃A𝑣,𝑡𝑃T

= 𝜆

(
I − 𝑃𝑃T

)
⪰ 0

where the last inequality is because 𝑃 ’s largest singular value is

smaller than 1, the eigenvalues of 𝑃𝑃𝑇 are smaller than 1 and

thus I − 𝑃𝑃T ⪰ 0. As A−1
𝑣,𝑡 ≻ 0 and 𝑀/A−1

𝑣,𝑡 ⪰ 0, according

to the property of Schur complement we have 𝑀 ⪰ 0. Then as(
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I = A𝑥,𝑡 ≻ 0 and 𝑀 ⪰ 0, applying the

property again we have 𝑀/
((
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I

)
⪰ 0, which

gives us A−1
𝑣,𝑡 − 𝑃T

((
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I

)−1
𝑃 ⪰ 0. Therefore,

we have vT𝑎A−1
𝑣,𝑡 v𝑎 − vT𝑎𝑃T

((
𝑃 (A𝑣,𝑡 − 𝜆I)𝑃T

)
+ 𝜆I

)−1
𝑃v𝑎 ≥ 0 for

any v𝑎 ∈ R𝑑𝑣 . Moreover, note that 𝛼𝑣, 𝑡 = 𝑅

√︃
𝑑𝑣 log

1+𝑡/𝜆
𝛿

+
√
𝜆,

𝛼𝑥, 𝑡 = 𝑅

√︃
𝑑𝑥 log

1+𝑡/𝜆
𝛿

+
√
𝜆 (see Lemma 3), and 𝑑𝑣 ≥ 𝑑𝑥 , so

𝛼𝑣, 𝑡 ≥ 𝛼𝑥, 𝑡 . Combining the two inequalities, we have CB𝑣,𝑡 (v𝑎) ≥
CB𝑥,𝑡 (x𝑎),∀𝑡 ≥ 0, 𝑎 ∈ A𝑡 . □

Based on Lemma 1, we can prove the sufficient compensation to

incentivize user to pull the desired arm under information gap.

Lemma 2. For all 𝑡 ≥ 0, with probability at least 1 − 2𝛿 , the users
are incentivized to pull the desired arm with compensation

𝑐𝑎𝑡 ,𝑡 = 4CB𝑣,𝑡 (v𝑎𝑡 ) (6)

to arm
𝑎𝑡 = argmax

𝑎

(
vT𝑎 ˆ𝜽 𝑣,𝑡 + 2CB𝑣,𝑡 (v𝑎)

)
, (7)

i.e., the arm with the highest (relaxed) upper confidence bound ac-
cording to the system’s estimate. 1

1
While we considered myopic users in the paper, this lemma and the following result

can be generalized to other user models. For example, explorative user who makes

decisions by maximizing upper confidence bound 𝑔 = argmax𝑖 𝑟𝑥,𝑖,𝑡 + CB𝑥,𝑡 (x𝑖 ) can
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Proof. In order to incentivize the user to pull arm 𝑎𝑡 , the mini-
mum required compensation is max𝑖 𝑟𝑥,𝑖,𝑡 − 𝑟𝑥,𝑎𝑡 ,𝑡 . However, since
the system cannot access the context features the user uses and

thus maintains different reward estimates, it has to provide com-

pensation larger than the minimum required amount.

Denote the user’s greedy choice as 𝑔 = argmax𝑖 𝑟𝑥,𝑖,𝑡 . To show

that 𝑐𝑎𝑡 ,𝑡 is sufficient, we need to prove that the user prefers the

exploratory arm 𝑎𝑡 with compensation over his/her greedy choice,

i.e., 𝑟𝑥,𝑔,𝑡 ≤ 𝑟𝑥,𝑎𝑡 ,𝑡 + 𝑐𝑎𝑡 ,𝑡 .
Based on Lemma 3, for all 𝑡 ≥ 0with probability at least 1−𝛿 , we

have |𝑟𝑥,𝑎,𝑡 − E[𝑟𝑎] | ≤ CB𝑥,𝑡 (x𝑎) and |𝑟𝑣,𝑎,𝑡 − E[𝑟𝑎] | ≤ CB𝑣,𝑡 (v𝑎)
hold for any arm 𝑎. Using the union bound, with probability at least

1 − 2𝛿 we have

|𝑟𝑥,𝑎,𝑡 − 𝑟𝑣,𝑎,𝑡 | ≤ |𝑟𝑥,𝑎,𝑡 − E[𝑟𝑎] | + |E[𝑟𝑎] − 𝑟𝑣,𝑎,𝑡 | ≤ CB𝑥,𝑡 (x𝑎)
+CB𝑣,𝑡 (v𝑎) (8)

Then we can bound the user’s reward estimate from the system

side as follows,

𝑟𝑥,𝑔,𝑡 ≤ 𝑟𝑣,𝑔,𝑡 + CB𝑥,𝑡 (x𝑔 ) + CB𝑣,𝑡 (v𝑔 )
≤ 𝑟𝑣,𝑔,𝑡 + 2CB𝑣,𝑡 (v𝑔 ) ≤ 𝑟𝑣,𝑎𝑡 ,𝑡 + 2CB𝑣,𝑡 (v𝑎𝑡 )
≤ 𝑟𝑥,𝑎𝑡 ,𝑡 + CB𝑥,𝑡 (v𝑎𝑡 ) + CB𝑣,𝑡 (v𝑎𝑡 ) + 2CB𝑣,𝑡 (v𝑎𝑡 )
≤ 𝑟𝑥,𝑎𝑡 ,𝑡 + 4CB𝑣,𝑡 (v𝑎𝑡 ) (9)

where the first and fourth steps are based on Eq (8), the second and

last steps are based on Lemma 1, and the third inequality is based

on the UCB strategy in Eq (7). □

It is worth noting that the system follows a more optimistic arm

selection strategy in Eq (7) using a confidence interval twice larger

than the classical LinUCB algorithm’s. We follow this relaxed upper

confidence bound because we need to consider the uncertainty on

both parties as the first step of the derivation in Eq (9) suggested

(details can be found in the appendix). It is unclear whether we

can incentivize the user to follow the classical LinUCB algorithm.

Intuitively, our exploration strategy results in a twice larger regret

than the classical LinUCB’s, which is still in the same order for 𝑇 .

We provide the detailed regret and compensation upper bound of

Algorithm 1 in the Analysis Section.

4.2 Incentivized exploration without
information gap

Our solution can be easily adopted to solve the incentivized

exploration for linear bandits without information gap, where the

system and the users observe same context features, i.e., 𝑃 = I. It is
a simple derivation from our results in information gap setting, but

it is with independent interest to the community: this setting can

also be viewed as a contextual version of incentivized exploration

for MAB in Wang and Huang [32] where we generalize from x𝑎 =

𝑒𝑎 ∈ R𝐾 to a real vector, and has not been reported in existing

literature. In Algorithm 2, we show how the system incentivizes

the myopic users to follow the desired exploration strategy without

information gap.

Without information gap, the system and the users maintain the

same parameter and reward estimations, and theminimum required

be incentivized by 𝑐𝑎𝑡 ,𝑡 = 5CB𝑣,𝑡 (v𝑎𝑡 ) . This can be proved by adding a CB𝑥,𝑡 (v𝑎𝑡 )
to the LHS of Eq (9) and CB𝑣,𝑡 (v𝑎𝑡 ) to the RHS.

Algorithm 2 Incentivized LinUCB without Information Gap

Inputs: 𝜆, 𝛿
Initialize: A𝑥 = 𝜆I, b𝑥 = 0

for 𝑡 = 1 to 𝑇 do
System and user 𝑢𝑡 observe context vectors {x𝑎}𝑎∈A𝑡

// Ridge regression:

A𝑥,𝑡 =
∑𝑡−1
𝑖=1 x𝑎𝑖 x

T
𝑎𝑖
+𝜆I𝑑𝑥 , b𝑥,𝑡 =

∑𝑡−1
𝑖=1 x𝑎𝑖 𝑟𝑎𝑖 , ˆ𝜽𝑥,𝑡 = A−1

𝑥,𝑡b𝑥,𝑡

System calculate compensation 𝑐𝑎,𝑡 = max𝑖 𝑟𝑥,𝑖,𝑡 − 𝑟𝑥,𝑎,𝑡 for
arm 𝑎 (Eq (10))

User pulls arm 𝑎𝑡 = argmax𝑎∈A 𝑟𝑥,𝑎,𝑡 + 𝑐𝑎,𝑡
Reward 𝑟𝑎𝑡 is revealed

end for

compensation to incentivize the user according to LinUCB equals

to the difference of the estimated rewards between the currently

best arm and the exploratory arm. The system thus only needs to

offer compensation by,

𝑐𝑎𝑡 ,𝑡 = max

𝑖
𝑟𝑥,𝑖,𝑡 − 𝑟𝑥,𝑎𝑡 ,𝑡 (10)

to arm 𝑎𝑡 = argmax𝑎

(
xT𝑎 ˆ𝜽𝑥,𝑡 + CB𝑥,𝑡 (x𝑎)

)
. The user will pull the

exploratory arm, because 𝑎𝑡 = argmax𝑖 𝑟𝑥,𝑖,𝑡 + 𝑐𝑖,𝑡 , i.e., arm 𝑎𝑡 can

maximize user’s instantaneous utility. Since Algorithm 2 guarantees

the users are incentivized to pull arms according to LinUCB, its re-

gret follows LinUCB’s in the order of 𝑂 (𝑑𝑥
√
𝑇 log𝑇 ) (see Theorem

3 of [1]). Its compensation upper bound is stated below.

Theorem 1 (Compensation upper bound without informa-

tion gap). With probability at least 1 − 𝛿 , the total compensation
provided in Algorithm 2 is upper bounded by

𝐶 (𝑇 ) ≤
(
𝑅

√︂
𝑑𝑥 log

1 +𝑇 /𝜆
𝛿

+
√
𝜆

) √︂
𝑇𝑑𝑥 log(𝜆 +

𝑇

𝑑𝑥
)

Proof Sketch. First, with a high probability the compensation

at round 𝑡 is upper bounded by the confidence interval, i.e., 𝑐𝑎𝑡 ,𝑡 ≤
CB𝑥,𝑡 (x𝑎𝑡 ). The total compensation can then be upper bounded by∑
𝑡 CB𝑥,𝑡 (x𝑎𝑡 ), which can be bounded using Lemma 11 of [1]. □

Note that without information gap, both the regret and com-

pensation upper bounds are in the order of 𝑂 (𝑑𝑥
√
𝑇 log𝑇 ), with a

linear dependency on the feature dimension 𝑑𝑥 .

Discussion. Without information gap, i.e., the two parties have

access to the same features and maintain the same reward estima-

tions, the system can offer the minimum required compensation

as shown in Eq (10) to incentivize exploration. With information

gap, compensate by Eq (6) can still successfully incentivize explo-

ration in a high probability manner, but it is inevitably larger than

the minimum amount. More specifically, without information gap

the required compensation can be computed deterministically in

Eq (10); otherwise, the system can only estimate the reward dif-

ference with a high probability (as shown in Lemma 2). We also

notice without information gap the system does not compensate

if the greedy choice also has the largest upper confidence bound,

which happens more often in the later rounds when the reward

estimation converges. But with information gap, our algorithm

always compensates, because CB𝑣,𝑡 (v𝑎𝑡 ) > 0, i.e., the system does
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not know if the user’s greedy choice is also preferred in terms of its

UCB. We will show in the next section that the total compensation

is still sublinear under information gap.

What if 𝑑𝑣 < 𝑑𝑥 . We have discussed the setting where the users

have information advantage, i.e., 𝑑𝑣 ≥ 𝑑𝑥 , in Section 4.1. We now

discuss the setting where the system has information advantage,

i.e., 𝑑𝑣 < 𝑑𝑥 , as a complement. In this setting, although the system

can learn faster than the users, such information advantage cannot

accelerate users’ reward estimation, i.e., confidence interval on user

side still depends on 𝑑𝑥 . Thus the amount of compensation required

to incentivize users to explore cannot be reduced to depend on 𝑑𝑣
even if the system knows more information.

Computation complexity. The two presented algorithms have

similar time complexity as LinUCB algorithm. If applying Sher-

man–Morrison formula to accelerate matrix inverse with rank-one

update, the time complexities of Algorithm 1 and Algorithm 2 are

𝑂 (𝑑2𝑣𝑇 ) and 𝑂 (𝑑2𝑥𝑇 ), respectively.

5 ANALYSIS
We first analyze the regret and compensation upper bound of Al-

gorithm 1, and then discuss the compensation lower bound of the

problem.

5.1 Regret and compensation upper bound
Theorem 2. With probability at least 1−3𝛿 , the cumulative regret

of Algorithm 1 is bounded by

𝑅(𝑇 ) ≤
(
2𝑅

√︂
𝑑𝑣 log

1 +𝑇 /𝜆
𝛿

+
√
𝜆

) √︂
𝑇𝑑𝑣 log(𝜆 +

𝑇

𝑑𝑣
)

Theorem 2 shows that the cumulative regret of Algorithm 1 is

in the order of 𝑂 (𝑑𝑣
√︁
𝑇 log𝑇 ). The proof mostly follows the regret

analysis of LinUCB, though we have to use a wider confidence

interval for exploration. Note that the resulting probability is 1−3𝛿 ,

because the users will follow the system’s exploration strategy with

probability at least 1 − 2𝛿 as shown in Lemma 2 and the confidence

bound holds with probability at least 1 − 𝛿 .

Theorem 3. With probability at least 1−2𝛿 , the total compensation
provided in Algorithm 1 is upper bounded by

𝐶 (𝑇 ) ≤
(
4𝑅

√︂
𝑑𝑣 log

1 +𝑇 /𝜆
𝛿

+
√
𝜆

) √︂
𝑇𝑑𝑣 log(𝜆 +

𝑇

𝑑𝑣
)

Theorem 3 shows that the total compensation of Algorithm 1

is in the order of 𝑂 (𝑑𝑣
√︁
𝑇 log𝑇 ). Combining Theorem 2 and 3, we

show that our proposed algorithm can incentivize exploration under

information gap and achieve both sublinear regret and compensa-

tion. We notice that the two upper bounds linearly depend on the

system’s feature dimension 𝑑𝑣 . Comparing to the no information

gap setting where we showed both the regret and compensation is

in the order of 𝑂 (𝑑𝑥
√︁
𝑇 log𝑇 ), the added regret and compensation

are 𝑂
(
(𝑑𝑣 − 𝑑𝑥 )

√︁
𝑇 log𝑇

)
. And the corresponding high probability

guarantee drops a little. These results suggest that the complex-

ity/difficulty of the problem is characterized by the dimensionality

of the observed context features, which is exactly where the infor-

mation gap comes from.

Remark. Our results can be generalized to the setting where users

observe different features for the same arm, i.e., x𝑎,𝑢 is associated

with arm𝑎 for user𝑢. In this setting, Algorithm 1 can still incentivize

users to explore and the theorems still hold, as long as Assumption 1

holds for every user, i.e., there exists a 𝑃𝑢 for any user 𝑢.

5.2 Compensation lower bound
We now prove a gap-dependent asymptotic compensation lower

bound of incentivized exploration in linear bandits with finite

arms, and show that our result recovers the lower bound in non-

contextual bandits in [32].

Let 𝐺𝑥,𝑇 = E
[∑𝑇

𝑡=1 x𝑎𝑡 x
T
𝑎𝑡

]
. Without loss of generality, assume

arm 1 is the best arm and Δ𝑎 = E[𝑟1] − E[𝑟𝑎] = (x1 − x𝑎)T𝜽 ∗ is the
reward gap between arm 𝑎 and the best arm.

Theorem 4 (Compensation lower bound without infor-

mation gap). Consider any consistent algorithm observing context
features {x𝑎}𝑎∈A that guarantees an 𝑜 (𝑇𝑝 ) regret upper bound for
any 𝑇 > 0 and 0 < 𝑝 ≤ 1. In order to incentivize a user with a least
square estimator of rewards to follow the algorithm’s choice, the total
compensation 𝐶 (𝑇 ) for sufficiently large 𝑇 is

Ω
(
𝑐𝑥 (A, 𝜽 ∗) log(𝑇 )

)
,

where 𝑐𝑥 (A, 𝜽 ∗) is the optimal value of the following optimization
problem

𝑐𝑥 (A, 𝜽 ∗) = inf

𝛼≥0

∑︁
𝑎∈A

𝛼x𝑎
Δ𝑎
3

s.t. ∥x𝑎 ∥2𝐻 −1
𝑥,𝑇

≤ Δ2

𝑎

2

,∀x𝑎 with Δ𝑎 > 0

(11)

where 𝐻𝑥,𝑇 =
∑
𝑎∈A 𝛼x𝑎x𝑎x

T
𝑎 .

While we cannot further simplify the expression of 𝑐𝑥 (A, 𝜽 ∗)
since this is an instance-dependent lower bound, we construct an

example to further illustrate the lower bound analysis.

Example. When {x𝑎 = 𝑒𝑎 ∈ R𝑑𝑥 }𝑎∈A are the basis vectors, the

problem reduces to a non-contextual 𝐾-armed bandit with 𝐾 = 𝑑𝑥 .

By setting ∥x𝑎 ∥2
𝐻 −1
𝑥,𝑇

= Δ2

𝑎/2, we have 𝛼x𝑎 = 2/Δ2

𝑎 and 𝑐𝑥 (A, 𝜽 ∗) =∑
𝑎∈A,Δ𝑎>0

2

3Δ𝑎
. This gives us the compensation lower bound as

follows,

𝐶 (𝑇 ) = Ω
©­«

∑︁
𝑎∈A,Δ𝑎>0

log(𝑇 )
Δ𝑎

ª®¬
This result recovers the lower bound of incentivized exploration in

non-contextual bandits in [32]. We also notice that the result can

be further bounded as

𝐶 (𝑇 ) = Ω

(
𝑑𝑥 log(𝑇 )
max𝑎∈A Δ𝑎

)
,

where we observe a linear dependency on dimension 𝑑𝑥 .

Note that our compensation lower bound has an orderΩ(log(𝑇 )),
because it is gap-dependent. We leave the question of whether one

can obtain an Ω(
√
𝑇 ) gap-independent compensation lower bound

for general infinite arm setting, which will match our upper bound

in Theorem 3, as an open problem.
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Corollary 1 (Compensation lower bound under informa-

tion gap). Consider any consistent algorithm observing context fea-
tures {v𝑎}𝑎∈A that guarantees an 𝑜 (𝑇𝑝 ) regret upper bound for any
𝑇 > 0 and 0 < 𝑝 ≤ 1. To incentivize the user who observes con-
text features {x𝑎}𝑎∈A satisfying Assumption 1 with a least square
estimator, the total compensation 𝐶 (𝑇 ) for sufficiently large 𝑇 is

Ω
(
𝑐𝑣 (A, 𝜽 ∗) log(𝑇 )

)
,

where 𝑐𝑣 (A, 𝜽 ∗) is the optimal value of the following optimisation
problem

𝑐𝑣 (A, 𝜽 ∗) = inf

𝛼≥0

∑︁
𝑎∈A

𝛼v𝑎
Δ𝑎
3

s.t. ∥v𝑎 ∥2𝐻 −1
𝑣,𝑇

≤ Δ2

𝑎

2

,∀v𝑎 with Δ𝑎 > 0

where 𝐻𝑣,𝑇 =
∑
𝑎∈A 𝛼v𝑎v𝑎v

T
𝑎 .

Considering a similar example of 𝐾-armed bandit setting where

𝑑𝑣 = 𝐾 , we can obtain

𝐶 (𝑇 ) = Ω

(
𝑑𝑣 log(𝑇 )

max𝑎∈A Δ𝑎

)
where we observe a linear dependency on dimension 𝑑𝑣 .

6 EXPERIMENTS
We evaluate the effectiveness of our proposed incentivized explo-

ration solution on both synthetic data and real-world datasets to

confirm our theoretical analysis about the proposed solutions.

6.1 Synthetic data
• Setup. In our simulations, we generate a size-𝐾 recommendation

candidate poolA, in which each candidate item 𝑎 is associated with

a 𝑑𝑣-dimension vector v𝑎 as the system observed features and a 𝑑𝑥 -

dimension vector x𝑎 as the user observed features. Each dimension

of v𝑎 is drawn from a set of zero-mean Gaussian distributions with

variances sampled from a uniform distribution 𝑈 (0, 1). Each v𝑎 is

then normalized to ∥v𝑎 ∥2 = 1. We then sample the elements of the

𝑑𝑥 × 𝑑𝑣 transformation matrix 𝑃 from 𝑁 (0, 1) and normalize each

row 𝑖 by ∥𝑃𝑖 ∥2 = 1. Following Assumption 1, the user observed

features x𝑎 are generated as x𝑎 = 𝑃v𝑎 . 𝑃 guarantees that ∥x𝑎 ∥2 ≤
∥v𝑎 ∥2 = 1. User’s model parameter 𝜽 ∗𝑥 is sampled from 𝑁 (0, 1)
and normalized to ∥𝜽 ∗𝑥 ∥2 = 1. System’s model parameter is set

to 𝜽 ∗𝑣 = 𝑃𝜽 ∗𝑥 . At each round 𝑡 , the same set of recommendation

candidate pool were presented to all the algorithms, but the system

and the user observe their different features respectively. After the

user takes an item 𝑎𝑡 , both the user and the system observe its

reward following Eq (2). We set 𝑑𝑥 to 5, 𝑑𝑣 to 100, the standard

deviation of Gaussian noise 𝜂𝑡 to 0.1, and the arm pool size 𝐾 to

100 in our simulations.

We compare the following algorithms: 1) ILinUCB-InfoGap: our

Algorithm 1where {v𝑎}𝑎∈A𝑡
is observed by the system; 2) ILinUCB-

NoGap: our Algorithm 2 where both the system and the user ob-

serve {x𝑎}𝑎∈A ; 3) NoCompensation: a baseline system that does

not offer any compensation to the user. The myopic user estimates

the reward with ridge regression and always take the current best

item considering the incentives. We set the probability 𝛿 = 0.01

and regularization coefficient 𝜆 = 0.1 for all the algorithms.

• Results and analysis. We report the averaged results of 10

runs where in each run we sample a random model parameter 𝜽 ∗𝑥 .
In Figure 1(a), we observe that without providing any compensa-

tion, the myopic user suffers a linear regret, which emphasizes the

importance of incentivized exploration in interactive recommenda-

tion. Both ILinUCB-InfoGap and ILinUCB-NoGap enjoy sublinear

regret and compensation. The added regret of ILinUCB-InfoGap

shows the algorithm explores slower in the large R𝑑𝑣 space because
of the information gap. We notice that the total compensation of

ILinUCB-InfoGap in Figure 1(b) is sublinear and keeps increasing.

The algorithm has to always compensate due to the information

gap as we discussed before. ILinUCB-NoGap, however, rarely com-

pensates in the later stage. This is because when system explored

sufficiently, greedy choice on the user side agrees with the UCB

strategy on the system side, and thus no compensation is needed.

In Figure 1(c), we vary the dimension of system’s feature 𝑑𝑣 from 5

to 200 while fixing 𝑑𝑥 = 5. We observe that both regret and com-

pensation increase linearly with 𝑑𝑣 , which confirms our theoretical

upper bounds.

In Figure 2(a) and Figure 2(b), we simulate a 𝐾-armed bandit

setting where only the indices of the items are available to the

system. The system sets v𝑎 = 𝑒𝑎 ∈ R𝐾 . The rest of the settings are
the same as described above. In this setting, our ILinUCB-InfoGap

explores almost equivalently to UCB1 [6] and can be viewed as a

more optimistic version of the Incentivized UCB algorithm in [32]

with a wider confidence interval due to the information gap. The

system observes the least information in this setting. We notice

that its regret and compensation are much larger than the results

in Figure 1 where {v𝑎}𝑎∈A is more informative about the rewards.

This again confirms that the system inevitably suffers higher regret

and compensation when the features are less informative.

6.2 Real-world datasets
• Setup. We now evaluate our solution on two real-world datasets,

LastFM and Delicious. The LastFM dataset is extracted from the

music streaming service Last.fm, and the Delicious dataset is ex-

tracted from the social bookmark sharing service Delicious. The

two datasets are created by the HetRec 2011 workshop with the

goal of investigating the usage of heterogeneous information in rec-

ommender systems
2
. The LastFM dataset contains 1,892 users and

17,632 items (artists). The Delicious dataset contains 1,861 users

and 69,226 items (URLs). We pre-process the datasets following

[8, 34]. Specifically, we build recommendation candidate pool with

size 𝐾 = 25 by first selecting one item from those non-zero reward

items based on the observations in the dataset, and then randomly

selecting the other 24 from those zero-reward items. The reward

is defined as follows: on LastFM dataset, if a user listened to the

recommended artist at least once, the reward is 1, otherwise 0; on

Delicious dataset, the reward of recommending a bookmarked URL

is 1, otherwise 0. At each round, the system and the user observe

the same candidate pool but with different features. To construct

context features for the two parties, we first extract the TF-IDF fea-

ture vector of an item using all tags associated with the item, which

uniquely represents the content of that item. To create information

2
Datasets and their full description is available at http://grouplens.org/datasets/hetrec-

2011
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(a) Regret (b) Compensation (c) Varying dimension 𝑑𝑣

Figure 1: Simulation result on randomly sampled features with 𝑑𝑥 = 5 and 𝑑𝑣 = 100;

(a) Regret (b) Compensation

Figure 2: MAB setting where the system only observes the
indices of the arms.

gap between the system and the users, we apply PCA to map the

TF-IDF feature vectors to different dimensions. Users observe the

25-dimension context features, which are the same as those used

in the single-party setting [8, 34], i.e., 𝑑𝑥 = 25. In ILinUCB-NoGap,

the system observes the same features as the users with 𝑑𝑣 = 25. In

ILinUCB-InfoGap, we test two different levels of information gap

by setting 𝑑𝑣 to 100 and 250. Note that the features with different

dimensions produced by PCA naturally satisfy our Assumption 1.

Since the real-world datasets did not include users’ response to in-

centives, we simulate users’ myopic decision with ridge regression.

We set the hyperparameters of all algorithms the same as what we

used for synthetic data if not specified.

• Result and analysis. In Figure 3 (a) & (c), we report the reward

ratio normalized by the reward collected from a random policy,

following the setting from [8, 34]; and the resulting performance

curve is thus the higher the better. We observe that ILinUCB-NoGap

achieves larger reward ratio than ILinUCB-InfoGap because of

more efficient exploration with more informative context features.

ILinUCB-InfoGap with 𝑑𝑣 = 250 obtains a smaller reward ratio than

the algorithm with 𝑑𝑣 = 100. This follows our theoretical analysis

that with larger information gap, it is slower to explore the R𝑑𝑣

space.

We show the total compensation in Figure 3 (b) & (d). We no-

tice that ILinUCB-InfoGap requires significantly more compensa-

tion than ILinUCB-NoGap to incentivize the exploration, and the

difference in total compensation between ILinUCB-InfoGap with

𝑑𝑣 = 250 and 𝑑𝑣 = 100 is much smaller than the difference between

ILinUCB-InfoGap with 𝑑𝑣 = 100 and ILinUCB-NoGap. This sug-

gests that the larger total compensation is not only because of the

slow exploration in the R𝑑𝑣 space. The main reason is in ILinUCB-

NoGap, the system does not compensate if the user’s greedy choice

is the same as the system’s decision. ILinUCB-InfoGap, on the other

hand, has to always compensate due to information gap. This re-

sult suggests an interesting practical direction for future research:

the total compensation could be reduced if the system can deter-

mine which item is most preferred by the user with information

gap. Overall, the results validate our theoretical understanding that

the system suffers higher compensation and lower reward from

observing less informative features.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced a new and practically-motivated prob-

lem of incentivized exploration under information gap in linear

contextual bandits. The key challenge is the information asymme-

try in the observed context features between a system and a myopic

user. We proposed an algorithm that offers sufficient compensation

to guarantee users would follow LinUCB’s exploration strategy.

We proved the regret and compensation upper bound of our al-

gorithm are in the order of 𝑂 (𝑑𝑣
√
𝑇 log𝑇 ) under information gap

and 𝑂 (𝑑𝑥
√
𝑇 log𝑇 ) without information gap. We also analyzed the

compensation lower bound of the problem. In our future work, we

plan to study how to incentivize the users following other types

of exploration strategies such as Thompson Sampling [2, 4, 9]. Our

empirical study also suggests that even under the information gap,

the algorithm could still have a chance to stop the incentives ear-

lier to reduce the total cost. How to theoretically analyze this is

an interesting future direction. It is also important to investigate

whether we can obtain a gap-independent Ω(
√
𝑇 ) compensation

lower bound to match with the upper bound. Another interesting

direction is to consider non-linear feature transformation between

the system and the users.
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(a) LastFM reward (b) LastFM compensation (c) Delicious reward (c) Delicious compensation

Figure 3: Results on LastFM and Delicious datasets.

A MISSING PROOFS
Lemma 3 (Theorem 2 of [1]). With probability at least 1 − 𝛿 , the

parameter 𝜽 ∗𝑥 lies in the confidence ellipsoid of ˆ𝜽𝑥,𝑡 satisfying

∥ ˆ𝜽𝑥,𝑡 − 𝜽 ∗𝑥 ∥𝐴𝑥,𝑡
≤ 𝛼𝑥,𝑡 ,∀𝑡 ≥ 0

where 𝛼𝑥,𝑡 = 𝑅
√︃
𝑑𝑥 log

1+𝑡/𝜆
𝛿

+
√
𝜆.

A.1 Proof of Theorem 1
Proof. Following the definition of total compensation, we have

C(𝑇 ) =
𝑇∑︁
𝑡=1

E[𝑐𝑎𝑡 ,𝑡 ] =
𝑇∑︁
𝑡=1

(
max

𝑖
𝑟𝑥,𝑖,𝑡 − 𝑟𝑥,𝑎𝑡 ,𝑡

)
≤

𝑇∑︁
𝑡=1

(
max

𝑖

(
𝑟𝑥,𝑖,𝑡 + CB𝑥,𝑡 (x𝑖 )

)
− 𝑟𝑥,𝑎𝑡 ,𝑡

)
=

𝑇∑︁
𝑡=1

(
𝑟𝑥,𝑎𝑡 ,𝑡 + CB𝑥,𝑡 (x𝑎𝑡 ) − 𝑟𝑥,𝑎𝑡 ,𝑡

)
=

𝑇∑︁
𝑡=1

CB𝑥,𝑡 (x𝑎𝑡 )

where the third step holds with probability at least 1 − 𝛿 and the

fourth step is based on the UCB arm selection strategy.

Sowith probability at least 1−𝛿 , we bound the total compensation

as follows,

C(𝑇 ) ≤
𝑇∑︁
𝑡=1

CB𝑥,𝑡 (x𝑎𝑡 ) ≤

√√√
𝑇

𝑇∑︁
𝑡=1

CB2𝑥,𝑡 (x𝑎𝑡 )

=

√√√
𝑇

𝑇∑︁
𝑡=1

𝛼2

𝑥,𝑡 ∥x𝑎 ∥2A−1
𝑥,𝑡

≤

√√√
𝑇𝛼2

𝑥,𝑇

𝑇∑︁
𝑡=1

∥x𝑎 ∥2A−1
𝑥,𝑡

≤ 𝛼𝑥,𝑇

√√√
𝑇

𝑇∑︁
𝑡=1

∥x𝑎 ∥2A−1
𝑥,𝑡

According to Lemma 11 of [1],

∑𝑇
𝑡=1∥x𝑎 ∥2A𝑥,𝑡

−1 ≤ 𝑑𝑥 log(𝜆 +𝑇 /𝑑𝑣).

Combining with 𝛼𝑥,𝑡 = 𝑅

√︃
𝑑𝑥 log

1+𝑡/𝜆
𝛿

+
√
𝜆, we can complete the

proof. □

A.2 Proof of Theorem 2
Proof. We bound cumulative regret by

R(𝑇 ) =
𝑇∑︁
𝑡=1

(
E[𝑟𝑎∗𝑡 ] − E[𝑟𝑎𝑡 ]

)
=

𝑇∑︁
𝑡=1

(
vT
𝑎∗𝑡
𝜽 ∗
𝑣 − vT𝑎𝑡 𝜽

∗
𝑣

)
≤

𝑇∑︁
𝑡=1

(
vT
𝑎∗𝑡

ˆ𝜽 𝑣,𝑡 + 2CB𝑣,𝑡 (v𝑎∗𝑡 ) − vT𝑎𝑡 𝜽
∗
𝑣

)
≤

𝑇∑︁
𝑡=1

(
vT𝑎𝑡

ˆ𝜽 𝑣,𝑡 + 2CB𝑣,𝑡 (v𝑎𝑡 ) − vT𝑎𝑡 𝜽
∗
𝑣

)
≤

𝑇∑︁
𝑡=1

2CB𝑣,𝑡 (v𝑎𝑡 )

The third step holds with probability at least 1 − 𝛿 according to

the definition of confidence interval. The fourth step holds with

probability at least 1 − 2𝛿 according to Lemma 2, where the users

are incentivized to explore according to UCB strategy as shown

in Eq (7). Taking a union bound, the above inequality holds with

probability at least 1 − 3𝛿 .

We continue bounding the cumulative regret with probability at

least 1 − 3𝛿 as follows,

R(𝑇 ) ≤ 2

√√√
𝑇

𝑇∑︁
𝑡=1

CB2𝑣,𝑡 (v𝑎𝑡 ) = 2

√√√
𝑇

𝑇∑︁
𝑡=1

𝛼2

𝑣,𝑡 ∥v𝑎 ∥2A−1
𝑣,𝑡

≤ 2𝛼𝑣,𝑇

√√√
𝑇

𝑇∑︁
𝑡=1

∥v𝑎 ∥2A−1
𝑣,𝑡

≤
(
2𝑅

√︂
𝑑𝑣 log

1 +𝑇 /𝜆
𝛿

+
√
𝜆

) √︂
𝑇𝑑𝑣 log(𝜆 +

𝑇

𝑑𝑣
)

where we finish the proof by combining

∑𝑇
𝑡=1∥v𝑎 ∥2A−1

𝑣,𝑡

≤ 𝑑𝑣 log(𝜆+

𝑇 /𝑑𝑣) and 𝛼𝑣,𝑡 = 𝑅
√︃
𝑑𝑣 log

1+𝑡/𝜆
𝛿

+
√
𝜆. □

A.3 Proof of Theorem 3
Proof. With probability at least 1 − 2𝛿 , we have

C(𝑇 ) ≤
𝑇∑︁
𝑡=1

4CB𝑣,𝑡 (v𝑎𝑡 ) ≤ 4

√√√
𝑇

𝑇∑︁
𝑡=1

CB2𝑣,𝑡 (v𝑎𝑡 )

= 4

√√√
𝑇

𝑇∑︁
𝑡=1

𝛼2

𝑣,𝑡 ∥v𝑎 ∥2A−1
𝑣,𝑡

≤ 4𝛼𝑣,𝑇

√√√
𝑇

𝑇∑︁
𝑡=1

∥v𝑎 ∥2A−1
𝑣,𝑡

≤
(
4𝑅

√︂
𝑑𝑣 log

1 +𝑇 /𝜆
𝛿

+
√
𝜆

) √︂
𝑇𝑑𝑣 log(𝜆 +

𝑇

𝑑𝑣
)

□
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A.4 Proof of Theorem 4
Proof. Our proof relies on the following lemmas: □

Lemma 4 (Theorem 1 in Lattimore and Szepesvari [23]). As-
sume 𝐺𝑥,𝑇 is invertible for sufficiently large 𝑇 . For all suboptimal
𝑎 ∈ A it holds that

lim sup

𝑇→∞
log𝑇 ∥x𝑎 − x1 ∥2

𝐺−1
𝑥,𝑇

≤ Δ2

𝑎

2

Lemma 5 (Theorem 8 in Lattimore and Szepesvari [23]). For
any 𝛿 ∈ [1/𝑇, 1), 𝑇 sufficiently large and 𝑡0 such that 𝐺𝑥,𝑡0 is almost
surely non-singular,

P

(
∃𝑡 ≥ 0, x𝑎 : |𝑟𝑥,𝑎,𝑡 − E[𝑟𝑎] | ≥

√︂
∥x𝑎 ∥2

𝐺−1
𝑥,𝑡

𝑓𝑇,𝛿

)
≤ 𝛿

where for some 𝑐 > 0 universal constant 𝑓𝑇,𝛿 =

2

(
1 + 1

log(𝑇 )

)
log(1/𝛿) + 𝑐𝑑𝑥 log(𝑑𝑥 log(𝑇 )).

We first prove that after a fixed time point, with high probability

pulling arm 𝑎 once requires compensation at least Δ𝑎/3. The proof
idea is similar to the proof of Theorem 1 in [32]. We then derive

the asymptotic compensation lower bound.

Based on Lemma 4, we can obtain the following inequality for

all sub-optimal arms:

lim sup

𝑇→∞
log(𝑇 )∥x𝑎 ∥2𝐺−1

𝑥,𝑇

≤ Δ2

𝑎

2

(12)

which is also stated in the Corollary 2 in [23].

Let 𝑁𝑎 (𝑇 ) be the number of times arm 𝑎 is pulled in 𝑇 rounds.

Since the algorithm has 𝑜 (𝑇 ) regret, we can find 𝑇 ′
1
(𝛿) such that

the best arm is pulled at least 𝑇 /2 times with probability 1 − 𝛿/2.
Using the concentration bound we know there exists 𝑇 ′′

1
(𝛿) such

that for 𝑡 > 𝑇 ′′
1
(𝛿) with probability 1 − 𝛿/2 the confidence interval

of the best arm’s reward estimation is smaller than Δ2/3 where Δ2

is the reward gap between the best arm and second best arm. Let

𝑇1 (𝛿) = max(𝑇 ′
1
(𝛿),𝑇 ′′

1
(𝛿)) and for all 𝑡 > 𝑇1 (𝛿), with probability

1 − 𝛿 we have 𝑟𝑥,1,𝑡 ≥ E[𝑟1] − Δ2/3.
We argue a similar result for any suboptimal arm 𝑎. Based on

Eq (12), there exists a 𝑇𝑎 (𝛿) such that for any 𝑡 > 𝑇𝑎 (𝛿), with
probability 1 − 𝛿

∥x𝑎 ∥2𝐺−1
𝑥,𝑡

≤ Δ2

𝑎

2 log(𝑇 ) ≤ Δ2

𝑎

9𝑓𝑇,𝛿

Combining with the concentration bound in Lemma 5, we have for

any 𝑡 > 𝑇𝑎 (𝛿) with probability 1 − 𝛿 , 𝑟𝑥,𝑎,𝑡 − E[𝑟𝑎] ≤ Δ𝑎/3.
Let 𝑇 (𝛿) = max𝑖 𝑇𝑖 (𝛿) and we know that for any 𝑡 > 𝑇 (𝛿), the

minimum required compensation to incentivize the user to pull

arm 𝑎 is

max

𝑖
𝑟𝑥,𝑖,𝑡 −𝑟𝑥,𝑎,𝑡 ≥ 𝑟𝑥,1,𝑡 −𝑟𝑥,𝑎,𝑡 ≥ E[𝑟1] −

Δ2

3

−E[𝑟𝑎] −
Δ𝑎
3

≥ Δ𝑎
3

(13)

with probability at least 1 − 𝛿 .
We then use the optimization problem in Eq (11) to obtain the

compensation lower bound, where the optimization minimizes the

total compensation and satisfies the consistent constraints that the

gaps of all suboptimal arms are identified with high confidence.

With probability at least 1 − 𝛿 , for sufficiently large 𝑇 the total

compensation is

𝐶 (𝑇 ) ≥
∑︁
𝑎∈A

E[𝑁𝑎 (𝑇 )]
Δ𝑎
3

𝛼x𝑎 = E[𝑁𝑎 (𝑇 )]/log(𝑇 ) is asymptotically feasible for large 𝑇 be-

cause it satisfies

lim sup

𝑇→∞
∥x𝑎 ∥2𝐻 −1

𝑥,𝑇

= lim sup

𝑇→∞
log(𝑇 )∥x𝑎 ∥2𝐺−1

𝑥,𝑇

≤ Δ2

𝑎

2

where𝐺𝑥,𝑇 = log(𝑇 )𝐻𝑥,𝑇 . Thus for any 𝜖 > 0, ∥x𝑎 ∥2
𝐻 −1
𝑥,𝑇

≤ Δ2

𝑎/2+𝜖
and

𝐶 (𝑇 ) ≥
∑︁
𝑎∈A

E[𝑁𝑎 (𝑇 )]
Δ𝑎
3

≥ 𝑐𝑥,𝜖 (A, 𝜽 ∗) log(𝑇 ) (14)

where 𝑐𝑥,𝜖 (A, 𝜽 ∗) is the the optimal value of the optimization

problem in Eq (11) by replacing Δ2

𝑎/2 with Δ2

𝑎/2 + 𝜖 . Since

inf𝜖>0 𝑐𝑥,𝜖 (A, 𝜽 ∗) = 𝑐𝑥 (A, 𝜽 ∗) and 𝑇 → ∞ we have the total

compensation as

Ω
(
𝑐𝑥 (A, 𝜽 ∗) log(𝑇 )

)
and then built Theorem 4 based on this result and the known

lower regret bound of linear bandits in [23]. Theorem 4 can also

recover the compensation lower bound in non-contextual setting

in [32].
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