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ABSTRACT

Contextual bandit algorithms have been popularly used to address
interactive recommendation, where the users are assumed to be
cooperative to explore all recommendations from a system. In this
paper, we relax this strong assumption and study the problem of
incentivized exploration with myopic users, where the users are
only interested in recommendations with their currently highest
estimated reward. As a result, in order to obtain long-term opti-
mality, the system needs to offer compensation to incentivize the
users to take the exploratory recommendations. We consider a new
and practically motivated setting where the context features em-
ployed by the user are more informative than those used by the
system: for example, features based on users’ private information
are not accessible by the system. We develop an effective solution
for incentivized exploration under such an information gap, and
prove that the method achieves a sublinear rate in both regret and
compensation. We theoretically and empirically analyze the added
compensation due to the information gap, compared with the case
where the system has access to the same context features as the
user does, i.e., without information gap. Moreover, we also provide
a compensation lower bound of this problem.
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1 INTRODUCTION

Contextual bandit algorithms have been popularly used to address
the interactive recommendation problems [24, 31, 34], where the
system learns the best recommendation policy by interacting with
users. Classical bandit research studies the single-party setting,
where the system has a full control over which arm to pull. In
interactive recommendation, this means all the system’s recom-
mendations will be taken by the users for feedback, which enables
the system to trade off between exploitation and exploration for
long-term optimality. However, in real-world recommender sys-
tems, one often faces a two-party game between the system and
its short-term users, who have different interests and roles in this
game. Specifically, the system aims at maximizing long-term cu-
mulative reward, which requires exploration in the entire problem
space. However, the decision about which recommendation to take
is made by the users, and the system can only observe the reward
feedback associated with the users’ decisions. To make things even
worse, the users often act as myopic agents, who only seek to
maximize their short-term utilities, i.e., exploit the item with the
currently best estimated reward. This division leads to the prob-
lems of under-exploration and selection bias: the best choice may
remain unexplored forever if it appears sub-optimal initially. To
align the two parties’ interest, the system has to offer compensa-
tion to users so that they are motivated to take the exploratory
recommendations, which in turn helps system maximize long-term
cumulative reward. This is known as the incentivized exploration
problem [14, 20, 27].

We take restaurant recommendation as an example to illustrate
the problem. Myopic agents (customers) tend to visit the restaurant
with historically high ratings on the platform. To incentivize explo-
ration, the platform can provide compensations, such as coupons
and discounts, to encourage users to visit restaurants currently
with lower ratings but also fewer reviews (and hence the estimation
might not be accurate there). Then by collecting more feedback on
such under-explored restaurants, both the system and the users can
better figure out which restaurant turns out to be the best choice.
Thus the system can improve its recommendation to other users,
while the myopic users may choose better restaurants in future.
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Besides recommender systems, incentivized exploration can be ap-
plied in a wide range of domains such as e-commerce platforms,
crowdsourced information discovery and citizen science (see Frazier
et al. [14] for more examples).

The system’s goal in incentivized exploration is to minimize total
compensation while maximizing cumulative rewards [14, 16, 32].
Existing solutions assume both parties maintain the same reward
estimation. This assumption is necessary for the system to compute
the compensation based on the difference of users’ estimated re-
ward between the currently best choice and the exploratory choice.
Under a context-free setting (aka. the Multi-armed Bandit (MAB)
[6, 21] in literature), this assumption naturally holds because both
parties maintain the same estimated mean reward on each candidate
arm. And most existing incentivized exploration solutions work
under this setting. However, under the contextual bandit setting
[1, 5, 24], the two parties may associate the same observed rewards
with different context features. For example, in restaurant recom-
mendation the users may access restaurant features related to their
dine-in experience such as difficulty of parking or waiting time,
which are not accessible by the system. To obtain the same quality
of reward estimation, the system has to resort to other observations
to infer such user-specific features [7, 33]. This situation can be
easily understood by an extreme setting with a finite number of
recommendation candidates: the system only observes the ID of
each candidate item, while the users employ informative features
about the items. As a result, the system suffers from a much slower
convergence rate in reward estimation than the users. We refer to
this representation asymmetry as the information gap between the
two parties, which brings in new challenges to incentivized explo-
ration. For example, the system no longer knows which candidate
item has the best estimated reward on the user side.

In this paper, we study the problem of incentivized exploration
in linear contextual bandits under information gap. We propose an
algorithm that effectively incentivizes the users to explore under the
information gap so that the system can maintain a sublinear regret
in collecting cumulative reward in recommendation. Our key idea
is that although the system suffers from information disadvantage
and cannot compute the minimum compensation precisely, offering
a larger amount of compensation guarantees sufficiency for users
to explore. And this added compensation should shrink fast enough
such that the total compensation is still sublinear. We prove that in
T rounds of interaction our algorithm achieves compensation and
regret both in the order of O(dy, VT log T) with information gap and
O(dxVT log T) without information gap, where dy and d, are the
dimensions of context features used by the users and the system,
respectively. The results suggest that incentivized exploration is
still possible under information gap, and the added cost is realized
by the extra compensation that is dominated by d,. We also prove
the compensation lower bound of incentivized exploration in linear
contextual bandits, which generalizes the result of compensation
lower bound in MAB settings reported in [32]. Our empirical studies
in both synthetic data and real-world datasets also validate the
effectiveness and cost-efficiency of the proposed algorithm.
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2 RELATED WORK

Contextual bandits are emerging solutions to recommender system
in both online [15, 24, 34] and offline settings [11, 12, 18, 26] set-
tings. We focused on on-policy bandit learning in this paper. The
incentivized exploration problem in multi-armed bandits has been
studied since [14, 20]. See Slivkins [30] for an overview. One line of
the studies assumes the system has information advantage on ob-
serving the full interaction history while users do not [17, 20, 27, 28].
The system leverages the information asymmetry to recommend
exploratory arms as long as the users do not have a better choice
from their perspective. Simchowitz and Slivkins [29] proposed the
first study of incentivizing exploration in reinforcement learning in
this line. Another line considers the setting where the interaction
history is publicly available to both system and users and the system
need to offer compensation to an arm for incentivized exploration
[10, 14, 32]. Our setting follows the second line of research.

Incentivized learning with compensation was first studied in
[14] in a Bayesian setting with discounted regret and compensa-
tion. Chen et al. [10] studied a heterogeneous users setting, where
user diversity led to their solution with constant compensation.
Agrawal and Tulabandhula [3] considered heterogeneous contexts
in a contextual bandit setting. In [32], the authors analyzed the non-
Bayesian and non-discounted reward case and showed O(logT)
regret and compensation in a stochastic MAB setting. Liu et al.
[25] considered the reward feedback is biased because of the com-
pensation. Kannan et al. [19] considered incentivized exploration
for fair recommendation. Our setting is mostly similar to [32], i.e.,
non-Bayesian and non-discounted reward, but is studied under the
linear contextual bandit setting. We should note all the aforemen-
tioned studies assume the system and the users share the same
information such as arm pulls, rewards and contexts, and the sys-
tem calculates the compensation based on the shared information.
Our setting is strictly more challenging, where the information gap
is caused by information asymmetry: the system cannot access the
feature vectors employed by the users. As a result, users’ reward es-
timation will be different from the system’s and the precise amount
of compensation is harder to compute.

3 PROBLEM DEFINITION

Notations and assumptions. We study the problem under a
linear contextual bandit setting, where the system interacts with
myopic users for T rounds. At each round ¢, a user u arrives at
the system, observes the system-provided recommendations A;
together with the associated compensation, and pulls an arm a; (i.e.,
takes a recommended item). Both the system and the user observe
the resulting reward rg,,; and update their estimations accordingly.
In reality, a recommender system interacts with thousands of users
whereas each user only occasionally interacts with the system to
meet their short-term information need. Therefore, their behavior
is naturally myopic. We thus refer to our users as short-term users.
In a contextual bandit setting, each arm a represents a recommen-
dation candidate and is associated with a context feature vector.
In our problem, for arm a € A, the system observes a feature
vector v, from a d,-dimensional subspace and the user u observes a
feature vector x, from a dy-dimensional subspace. Without loss of
generality, we assume {x,} spans R% and {v,} spans R% — if not,
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the standard PCA technique can be used to reduce the dimensions
of raw features to dx and d, [22]. Essentially we consider the fea-
tures span the whole vector space respectively, which means there
is no feature without support on both sides and the dimensionality
cannot be further reduced.

AssuMPTION 1 (INFORMATION GAP). There exists a linear trans-
formation P € R&Xdo (where d, > dy ) such that for any arm a,

Xq = Pv, (1)

Examples of information gap. We now describe a few real-world
examples where the gap exists and is inevitable in order to motivate
the above assumption on d, > dy, i.e., features used on the user
side belong to a lower dimensional space. A notable special case of
linear bandits with information gap is a K-armed contextual bandit
problem, where the system knows nothing beyond the indices of
arms. In this case, the context vectors used by the system are the
K-dimensional one-hot vectors e,, while the users may employ
dyx-dimensional feature representations of the same arms. The in-
formation gap (K > dy) is encoded in the transformation matrix P.
Another example we have discussed is the restaurant recommenda-
tion scenario where users may use features related to their dine-in
experience to represent the candidate choices. The users can em-
ploy these informative features and enjoy faster reward estimation
convergence; but the system suffers when it cannot access users’
features. In this example, the transformation matrix P hides the
user-side information from the system.

Note that having a larger number of features (longer feature
vector) is not equivalent to having a more informative represen-
tation. Another practical example is that the context vectors used
by the system may include many useless or redundant features,
which should not play any role in reward estimation, i.e., a sparse
regression setting. In this example, the system’s features are clearly
less informative, because of the useless features; but the system
does not know which features are useless. This unfortunately leads
to a slower convergence of parameter estimation and a wider confi-
dence interval of reward estimation on the system side, which is
the key challenge solved in our paper for incentivized exploration.

The information gap between the two parties is characterized
by matrix P. The linear transformation assumption is to guarantee
both parties face a linear reward mapping, which we state below.
Reward mapping. Following a linear contextual bandit setting,
the expected reward of arm a is determined by the inner product
between the context features and unknown bandit model param-
eter. From the user side, we have E[r,] = x. 0%, where 0% is the
unknown model parameter to be estimated by the user. From As-
sumption 1, we have x) 0% = v1PT0%, which suggests there always
exists a parameter 0}, = PTO; on the system side satisfying the
same linear reward mapping. We summarize the reward mapping
on the two sides as

E[ra] = xz0% = Va0,
After the user pulls arm ay, the reward rq, ; is observed by both
sides as
ra,t = E[rg,] +n¢ (2
where 7; is R-sub-Gaussian noise. Without loss of generality, we
assume that the norm of the features and parameters are bounded
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as ||xqll2 < [Ivallz < L110%]l2 < 1,]|63ll2 < 1, which naturally
bound the expected reward in the range of [—1,1] and simplify
the analysis later. Note that the assumption of ||x4||2 < [|vq4]l2 is
equivalent as assuming the largest singular value of P is upper
bounded by 1. Intuitively, this means the linear transformation
does not amplify the magnitude of the features. One can always
find the satisfying x, by re-scaling 0% accordingly.

The system and the users estimate their own model parameters

using ridge regression separately, denoted as év,t and éx’t, by the
same observed rewards {rg, ;} but different context features. As a
result, the two parties would predict different rewards for the same
arm a, denoted as fx g s = xZéx,t and fpqr = Vl—év,t.
Objective. The users and the system have different objectives in
this sequential decision making problem: a short-term user aims
to maximize his/her instantaneous reward, while the system aims
to maximize the long-term cumulative reward. At each round t,
without any incentive, a short-term user u will exploit the arm
with the highest estimated reward, i.e., a = argmax;¢ A, Px,ie- It
is well known that such exploitation-only decisions will lead to
sub-optimal cumulative reward in the long term. In order to balance
exploitation and exploration, the system has to provide compen-
sations to encourage the short-term user to explore. Specifically,
the system offers compensation ¢, for pulling arm a. Given the
incentives, the user maximizes the instantaneous utility by pulling
arm a; = arg maX;e 4, Pxit + Cig-

The system seeks to maximize the cumulative reward, or equiv-
alently, minimize the cumulative regret while also minimizing the
total compensation in expectation. The system’s regret is defined as

T
R(T) = )" (Elrg: ;] — Elra ) 3)
t=1
where aj is the optimal arm with the highest expected reward at
time t. The total compensation is defined as

T
C(T) = ) Elca] (4
t=1

An effective incentivized exploration method should balance the
trade-off among exploration, exploitation and compensation to ob-
tain sublinear cumulative regret and sublinear total compensation.

4 METHOD

We present our solution on incentivized exploration under informa-
tion gap when the system explores according to the Linear Upper
Confidence Bound (LinUCB) strategy [1, 13, 24]. Then we show
that the solution can be easily adapted to the simpler problem set-
ting of incentivized exploration without the information gap. We
leave the study of incentivizing other exploration strategies such
as Thompson Sampling [2, 4, 9] as future work.

4.1 Incentivized exploration under information
gap

We present Algorithm 1 to show how the system incentivizes
myopic users to follow the desired exploration strategy under in-
formation gap. At each round ¢, the system and the user u; observe
context features {v4}4e 5, and {X4}qe 7, respectively for the same
arm set A;. Both parties estimate their parameters using ridge
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Algorithm 1 Incentivized LinUCB under Information Gap

Inputs: 4,8

Initialize: A, = )LIdv,bz, =0

for t =1to T do
System and user u; observe context vectors {Vq}ge 5, and
{Xa}aea, respectively
System calculates compensation ¢4 = 4CBy (V) for arm a
(Eq (6)
// Ridge regression on the user side:
Ayt = Zf:_ll xal.x-ari + Aldx, by = Zl 11 Xa;Ta;
éx = A_lbx ¢
User pulls arm a; = arg maX,e g, Px.at + Cat
Reward rg, is revealed
// Ridge regression on the system side:

Apt+1 = Ay +Va, bv t+1 = byt +Va,1q,

90,t+1 = Av,t+1 bv,t+1
end for

regression with same reward observations and their own features.
The system needs to motivate the user to explore arm a; according
to the LinUCB strategy based on its current parameter estimation
év’t. To achieve so, the system offers compensation cg, ; to arm a;
according to Eq (6). Note that the system does not offer incentives
to the other arms and sets ¢;; = 0, Vi # a;. The myopic user pulls
the arm that maximizes the sum of his/her estimated reward 7y q ¢
and the compensation ¢, ;. We will see in Lemma 2 that the user is
guaranteed to pull the system desired arm a;.

Denote CBy ¢(x,) as the width of the user’s estimation confi-
dence interval of arm a at time ¢, which is computed as CBy s (x4) =

Qe t||xa||A-1 , where ay; = Rq/dx log l+t/’1 A. ax,t is the upper

bound of the width of confidence elllpso1d and is set according
to Theorem 2 of [1]. Similar to CBy ;(x,), we denote the width of
confidence interval on the system side as CBy(Va) = @y ||Vall 4-1,

ot

where ay; = RyJdy log ——= 1+t//1 + VA

The key challenge in 1ncent1vized exploration under information
gap is that the system does not maintain the same reward esti-
mation as the user’s, because the two sides use different features
to estimate rewards. This prevents us from computing the mini-
mum required compensation and makes the problem non-trivial.
We have to carefully determine the compensation: a larger amount
of incentive is required to guarantee that user will explore while
we also need to keep the incentives small to maintain a sublinear
total compensation. We first use the following lemma to show that
on the same arm, the confidence interval of the system’s reward
estimation is no smaller than the confidence interval of the user’s
estimate. This lemma guarantees in Algorithm 1 the system pro-
vides sufficient incentive for the user to pull its desired arms for
exploration.

LEMMA 1. Consider two ridge regression estimators that estimate
the model parameters with the same reward observations but different
features satisfying Assumption 1. For any t > 0 and arm a € Ay, we
have

CBy,t(Va) = CBx,t(Xa)s (5
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i.e., the confidence interval maintained on the system side is no smaller
than that on the user side.

Proor. Note that CB,;(vge) = ocz,t||va||A ! and CBy(x4) =
xt|1Xall ALl . In the following, we separately prove |[vgl| A7l >
”XGHA; and av,t > ax,t. By Eq (1), we have Ay; — /lI =
St xaxl = 50 PuavL PT = P(Ags — ADPT and [xa] Az =

A leA;}xa = \/v-arPT

prove

((P(Av,; - /lI)PT) + /lI) Pv,. In order to

-1
v AMVa >x Ax 1Xq = vTPT ((P(Av,t - AI)PT) + /lI) Pvg,

-1
we show that A;} -pT ((P(Au,t - AI)PT) + /ll) P is a positive

semi-definite matrix using the property of Schur complement.
Specifically, denote

Al pT
P (P(Av,,—)LI)PT)MI :

We have
M/AGE = (P(Age - ADPT) + A1~ (pT)T AurPT
= PA,P" — APP" + 21 - PA,,P"
=1 (I - PPT) >0

where the last inequality is because P’s largest singular value is
smaller than 1, the eigenvalues of PPT are smaller than 1 and
thus I — PPT > 0. As A_ > 0 and M/A]! > 0, according
to the property of Schur complement we have M > 0. Then as

(P(Az,,t —/lI)PT) + Al = Ayx;y > 0and M > 0, applying the

property again we have M/ ((P(Au,; - AI)PT) + AI) > 0, which

-1
gives us A;} - pT ((P(Az,’t - /lI)PT) +).I) P > 0. Therefore,

-1
we have v AU tVa — VTPT ((P(AUJ - AI)PT) + /lI) Pvg > 0 for

any v € RY% . Moreover, note that oo, t = Ry/dylog —= 1+t//l + VA,
ax,t = RyJdylog ——= l+t//l +V2 (see Lemma 3), and d, > dy, so

au, t > ax,t. Combmmg the two inequalities, we have CBy s (vq) >
CBy.t(Xq),Vt > 0,a € A;. o

Based on Lemma 1, we can prove the sufficient compensation to
incentivize user to pull the desired arm under information gap.

LEMMA 2. Forallt > 0, with probability at least 1 — 26, the users
are incentivized to pull the desired arm with compensation

Capt = 4CByt(va,) (6)
to arm
a; = arg max (vlév,t + 2CBUEt(va)) , (7)
a
i.e., the arm with the highest (relaxed) upper confidence bound ac-
cording to the system’s estimate. 1
'While we considered myopic users in the paper, this lemma and the following result

can be generalized to other user models. For example, explorative user who makes
decisions by maximizing upper confidence bound g = arg max; fx.; s + CBx ¢ (X;) can
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ProOF. In order to incentivize the user to pull arm a;, the mini-
mum required compensation is max; fx i+ — Fx,a,,+. However, since
the system cannot access the context features the user uses and
thus maintains different reward estimates, it has to provide com-
pensation larger than the minimum required amount.

Denote the user’s greedy choice as g = arg max; fx,;,;. To show
that cq,,; is sufficient, we need to prove that the user prefers the
exploratory arm a; with compensation over his/her greedy choice,
ie., fx,g,t < fx,a,,t +Cq,t-

Based on Lemma 3, for all t > 0 with probability at least 1 -3, we
have |#x,q,r — E[ra]| < CByx,t(Xq) and |fy,qr — E[rq]| < CByt(va)
hold for any arm a. Using the union bound, with probability at least
1 — 26 we have

< CBy t(%Xq)
(®)

Then we can bound the user’s reward estimate from the system
side as follows,

|fx,a,t - fv,a,t| < |fx,a,t —E[ra]| + [E[ra] - fv,a,t

+CByt (Va)

Frgt < Fogr+ CBet(Xg) + CByr(vy)

A

;'v,g,t + 2CBU,t("g> < f'v,a,,t + ZCBu,t(Vat)
’A“x,at,t + CBx,t(Vat) + CBv,t(Vat) + ZCBv,t(Vat)

’A‘x,at,t +4CBy ¢ (Vat )

IN

IN

©

where the first and fourth steps are based on Eq (8), the second and
last steps are based on Lemma 1, and the third inequality is based
on the UCB strategy in Eq (7). O

It is worth noting that the system follows a more optimistic arm
selection strategy in Eq (7) using a confidence interval twice larger
than the classical LinUCB algorithm’s. We follow this relaxed upper
confidence bound because we need to consider the uncertainty on
both parties as the first step of the derivation in Eq (9) suggested
(details can be found in the appendix). It is unclear whether we
can incentivize the user to follow the classical LinUCB algorithm.
Intuitively, our exploration strategy results in a twice larger regret
than the classical LinUCB’s, which is still in the same order for T.
We provide the detailed regret and compensation upper bound of
Algorithm 1 in the Analysis Section.

4.2 Incentivized exploration without
information gap

Our solution can be easily adopted to solve the incentivized
exploration for linear bandits without information gap, where the
system and the users observe same context features, i.e., P = L. It is
a simple derivation from our results in information gap setting, but
it is with independent interest to the community: this setting can
also be viewed as a contextual version of incentivized exploration
for MAB in Wang and Huang [32] where we generalize from x, =
ea € RK to a real vector, and has not been reported in existing
literature. In Algorithm 2, we show how the system incentivizes
the myopic users to follow the desired exploration strategy without
information gap.

Without information gap, the system and the users maintain the
same parameter and reward estimations, and the minimum required

be incentivized by ¢4, s = 5CByt (Va, ). This can be proved by adding a CBy.; (Va, )
to the LHS of Eq (9) and CBy ¢ (Vg ) to the RHS.
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Algorithm 2 Incentivized LinUCB without Information Gap

Inputs: 4,5

Initialize: Ay = ALby, =0

for t=1to T do
System and user u; observe context vectors {Xq}qe 4,
// Ridge regression:

— yit-1 T _ yit-1 0 — A1
Axt = Zi:l Xa;Xg; +/de’ by = Zi:l Xq;Ta; Oxt = Ax,tbx,t

System calculate compensation cq; = max; fx,;; — Fx,q,¢ for
arm a (Eq (10))
User pulls arm a; = arg max, ¢ 4 fx,at + Ca,t

Reward r, is revealed
end for

compensation to incentivize the user according to LinUCB equals
to the difference of the estimated rewards between the currently
best arm and the exploratory arm. The system thus only needs to
offer compensation by,

(10)

Cayt = MaX it — Fxa,t

1
to arm a; = argmax,, (xZGx,t + CBx,t(xa)). The user will pull the
exploratory arm, because a; = argmax; i s + ci, i.e., arm a; can
maximize user’s instantaneous utility. Since Algorithm 2 guarantees
the users are incentivized to pull arms according to LinUCB, its re-

gret follows LinUCB’s in the order of O(dy VT log T) (see Theorem
3 of [1]). Its compensation upper bound is stated below.

THEOREM 1 (COMPENSATION UPPER BOUND WITHOUT INFORMA-
TION GAP). With probability at least 1 — &, the total compensation
provided in Algorithm 2 is upper bounded by

C(T) < (R,/dx log # + «/I) [ Tdx log(2 + dl)

Proor SkeTcH. First, with a high probability the compensation
at round ¢ is upper bounded by the confidence interval, i.e., cg, s <
CBy,t(Xq, ). The total compensation can then be upper bounded by
2.t CBy t(Xq,), which can be bounded using Lemma 11 of [1]. O

Note that without information gap, both the regret and com-
pensation upper bounds are in the order of O(dy VT logT), with a
linear dependency on the feature dimension dyx.

Discussion. Without information gap, i.e., the two parties have
access to the same features and maintain the same reward estima-
tions, the system can offer the minimum required compensation
as shown in Eq (10) to incentivize exploration. With information
gap, compensate by Eq (6) can still successfully incentivize explo-
ration in a high probability manner, but it is inevitably larger than
the minimum amount. More specifically, without information gap
the required compensation can be computed deterministically in
Eq (10); otherwise, the system can only estimate the reward dif-
ference with a high probability (as shown in Lemma 2). We also
notice without information gap the system does not compensate
if the greedy choice also has the largest upper confidence bound,
which happens more often in the later rounds when the reward
estimation converges. But with information gap, our algorithm
always compensates, because CB,;(vg,) > 0, i.e., the system does
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not know if the user’s greedy choice is also preferred in terms of its
UCB. We will show in the next section that the total compensation
is still sublinear under information gap.

What if d, < dy. We have discussed the setting where the users
have information advantage, i.e., d, > dy, in Section 4.1. We now
discuss the setting where the system has information advantage,
ie., dy < dy, as a complement. In this setting, although the system
can learn faster than the users, such information advantage cannot
accelerate users’ reward estimation, i.e., confidence interval on user
side still depends on dy. Thus the amount of compensation required
to incentivize users to explore cannot be reduced to depend on d,
even if the system knows more information.

Computation complexity. The two presented algorithms have
similar time complexity as LinUCB algorithm. If applying Sher-
man-Morrison formula to accelerate matrix inverse with rank-one
update, the time complexities of Algorithm 1 and Algorithm 2 are
O(d2T) and O(d2T), respectively.

5 ANALYSIS

We first analyze the regret and compensation upper bound of Al-
gorithm 1, and then discuss the compensation lower bound of the
problem.

5.1 Regret and compensation upper bound

THEOREM 2. With probability at least 1 —36, the cumulative regret
of Algorithm 1 is bounded by

2Ry [dy log - +5TM + \/I) [ Tdylog(A + dl)
(]

Theorem 2 shows that the cumulative regret of Algorithm 1 is
in the order of O(dy+/T log T). The proof mostly follows the regret
analysis of LinUCB, though we have to use a wider confidence
interval for exploration. Note that the resulting probability is 1 — 36,
because the users will follow the system’s exploration strategy with
probability at least 1 — 26 as shown in Lemma 2 and the confidence
bound holds with probability at least 1 — 8.

R(T) <

THEOREM 3. With probability at least 1-26, the total compensation
provided in Algorithm 1 is upper bounded by

o) < (4R\/dz, log LA, \/I) \/sz, log(A + dl)

o

Theorem 3 shows that the total compensation of Algorithm 1
is in the order of O(dy+/T log T). Combining Theorem 2 and 3, we
show that our proposed algorithm can incentivize exploration under
information gap and achieve both sublinear regret and compensa-
tion. We notice that the two upper bounds linearly depend on the
system’s feature dimension d,. Comparing to the no information
gap setting where we showed both the regret and compensation is
in the order of O(dx+/T logT), the added regret and compensation
are O((dy — dx)/T log T). And the corresponding high probability
guarantee drops a little. These results suggest that the complex-
ity/difficulty of the problem is characterized by the dimensionality
of the observed context features, which is exactly where the infor-
mation gap comes from.
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Remark. Our results can be generalized to the setting where users
observe different features for the same arm, i.e., X4y, is associated
with arm a for user u. In this setting, Algorithm 1 can still incentivize
users to explore and the theorems still hold, as long as Assumption 1
holds for every user, i.e., there exists a P,, for any user u.

5.2 Compensation lower bound

We now prove a gap-dependent asymptotic compensation lower
bound of incentivized exploration in linear bandits with finite
arms, and show that our result recovers the lower bound in non-
contextual bandits in [32].

Let Gy =E [Zthl Xa,XZ,]- Without loss of generality, assume
arm 1 is the best arm and A, = E[r1] — E[rq] = (x1 —Xq) ' 0" is the
reward gap between arm a and the best arm.

THEOREM 4 (COMPENSATION LOWER BOUND WITHOUT INFOR-
MATION GAP). Consider any consistent algorithm observing context
features {xq}qc 7 that guarantees an o(TP) regret upper bound for
anyT > 0 and 0 < p < 1. In order to incentivize a user with a least
square estimator of rewards to follow the algorithm’s choice, the total
compensation C(T) for sufficiently large T is

Q (cx (A, 0%) log(T)),

where cx (A, 0%) is the optimal value of the following optimization
problem

A
ex(A,07) = inf > ax, "
T aeA

AZ
s.t. ||xa||§{_1T < 7“,\%)(“ with Ag > 0
x,

— T
where Hy T = Y uc A Ox,XaXg-

While we cannot further simplify the expression of cx (A, 6*)
since this is an instance-dependent lower bound, we construct an
example to further illustrate the lower bound analysis.

Example. When {x, = ¢, € R} ¢ < are the basis vectors, the
problem reduces to a non-contextual K-armed bandit with K = dy.
By setting ”X“”iI‘IT = AZ/2, we have ay, = 2/A% and cx (A, %) =

Y ae AN,>0 —3§ . This gives us the compensation lower bound as
> a
follows,

5 logA;(T)

ac AN;>0 a

C(T)=Q

This result recovers the lower bound of incentivized exploration in
non-contextual bandits in [32]. We also notice that the result can
be further bounded as

o(T) = Q( dx log(T) )’

maxge 4 Aa

where we observe a linear dependency on dimension dx.

Note that our compensation lower bound has an order Q(log(T)),
because it is gap-dependent. We leave the question of whether one
can obtain an Q(VT) gap-independent compensation lower bound
for general infinite arm setting, which will match our upper bound
in Theorem 3, as an open problem.
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COROLLARY 1 (COMPENSATION LOWER BOUND UNDER INFORMA-
TION GAP). Consider any consistent algorithm observing context fea-
tures {Va}ac @ that guarantees an o(TP) regret upper bound for any
T > 0and0 < p < 1. To incentivize the user who observes con-
text features {Xq}qec 7 satisfying Assumption 1 with a least square
estimator, the total compensation C(T) for sufficiently large T is

Q (co(A, %) log(T)),

where ¢y (A, 0) is the optimal value of the following optimisation

problem
co(A,0) = inf E a =]
e T a>0 Va3
aeA

sz
s.t. ||va||?{_1r < TQ,Vva with Ag > 0
o,

— T
where Hy T = Y,0e 7 v, VaVg.

Considering a similar example of K-armed bandit setting where
dy = K, we can obtain

o(T) = Q( dylog(T) )

maxge A Aq

where we observe a linear dependency on dimension d,.

6 EXPERIMENTS

We evaluate the effectiveness of our proposed incentivized explo-
ration solution on both synthetic data and real-world datasets to
confirm our theoretical analysis about the proposed solutions.

6.1 Synthetic data

o Setup. In our simulations, we generate a size-K recommendation
candidate pool A, in which each candidate item a is associated with
a dy-dimension vector v, as the system observed features and a d-
dimension vector x, as the user observed features. Each dimension
of v is drawn from a set of zero-mean Gaussian distributions with
variances sampled from a uniform distribution U(0, 1). Each v, is
then normalized to ||v4||2 = 1. We then sample the elements of the
dyx X dy transformation matrix P from N (0, 1) and normalize each
row i by ||P;||2 = 1. Following Assumption 1, the user observed
features x, are generated as x, = Pv,. P guarantees that [|x4]|2 <
lvall2 = 1. User’s model parameter 6% is sampled from N (0, 1)
and normalized to [|6%||2 = 1. System’s model parameter is set
to 0} = POj. At each round ¢, the same set of recommendation
candidate pool were presented to all the algorithms, but the system
and the user observe their different features respectively. After the
user takes an item a;, both the user and the system observe its
reward following Eq (2). We set dyx to 5, dy to 100, the standard
deviation of Gaussian noise 1; to 0.1, and the arm pool size K to
100 in our simulations.

We compare the following algorithms: 1) ILinUCB-InfoGap: our
Algorithm 1 where {V4}4¢ 4, is observed by the system; 2) ILinUCB-
NoGap: our Algorithm 2 where both the system and the user ob-
serve {Xg}qe #; 3) NoCompensation: a baseline system that does
not offer any compensation to the user. The myopic user estimates
the reward with ridge regression and always take the current best
item considering the incentives. We set the probability § = 0.01
and regularization coefficient A = 0.1 for all the algorithms.
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e Results and analysis. We report the averaged results of 10
runs where in each run we sample a random model parameter 65.
In Figure 1(a), we observe that without providing any compensa-
tion, the myopic user suffers a linear regret, which emphasizes the
importance of incentivized exploration in interactive recommenda-
tion. Both ILinUCB-InfoGap and ILinUCB-NoGap enjoy sublinear
regret and compensation. The added regret of ILinUCB-InfoGap
shows the algorithm explores slower in the large R space because
of the information gap. We notice that the total compensation of
ILinUCB-InfoGap in Figure 1(b) is sublinear and keeps increasing.
The algorithm has to always compensate due to the information
gap as we discussed before. ILinUCB-NoGap, however, rarely com-
pensates in the later stage. This is because when system explored
sufficiently, greedy choice on the user side agrees with the UCB
strategy on the system side, and thus no compensation is needed.
In Figure 1(c), we vary the dimension of system’s feature d, from 5
to 200 while fixing dx = 5. We observe that both regret and com-
pensation increase linearly with d,, which confirms our theoretical
upper bounds.

In Figure 2(a) and Figure 2(b), we simulate a K-armed bandit
setting where only the indices of the items are available to the
system. The system sets v = e, € RK. The rest of the settings are
the same as described above. In this setting, our ILinUCB-InfoGap
explores almost equivalently to UCB1 [6] and can be viewed as a
more optimistic version of the Incentivized UCB algorithm in [32]
with a wider confidence interval due to the information gap. The
system observes the least information in this setting. We notice
that its regret and compensation are much larger than the results
in Figure 1 where {v;}4c # is more informative about the rewards.
This again confirms that the system inevitably suffers higher regret
and compensation when the features are less informative.

6.2 Real-world datasets

o Setup. We now evaluate our solution on two real-world datasets,
LastFM and Delicious. The LastFM dataset is extracted from the
music streaming service Last.fm, and the Delicious dataset is ex-
tracted from the social bookmark sharing service Delicious. The
two datasets are created by the HetRec 2011 workshop with the
goal of investigating the usage of heterogeneous information in rec-
ommender systems 2. The LastFM dataset contains 1,892 users and
17,632 items (artists). The Delicious dataset contains 1,861 users
and 69,226 items (URLs). We pre-process the datasets following
[8, 34]. Specifically, we build recommendation candidate pool with
size K = 25 by first selecting one item from those non-zero reward
items based on the observations in the dataset, and then randomly
selecting the other 24 from those zero-reward items. The reward
is defined as follows: on LastFM dataset, if a user listened to the
recommended artist at least once, the reward is 1, otherwise 0; on
Delicious dataset, the reward of recommending a bookmarked URL
is 1, otherwise 0. At each round, the system and the user observe
the same candidate pool but with different features. To construct
context features for the two parties, we first extract the TF-IDF fea-
ture vector of an item using all tags associated with the item, which
uniquely represents the content of that item. To create information

Datasets and their full description is available at http://grouplens.org/datasets/hetrec-
2011
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Figure 1: Simulation result on randomly sampled features with d, = 5 and d;, = 100;
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Figure 2: MAB setting where the system only observes the
indices of the arms.

gap between the system and the users, we apply PCA to map the
TF-IDF feature vectors to different dimensions. Users observe the
25-dimension context features, which are the same as those used
in the single-party setting [8, 34], i.e., dx = 25. In ILinUCB-NoGap,
the system observes the same features as the users with dy, = 25.In
ILinUCB-InfoGap, we test two different levels of information gap
by setting d, to 100 and 250. Note that the features with different
dimensions produced by PCA naturally satisfy our Assumption 1.
Since the real-world datasets did not include users’ response to in-
centives, we simulate users’ myopic decision with ridge regression.
We set the hyperparameters of all algorithms the same as what we
used for synthetic data if not specified.

e Result and analysis. In Figure 3 (a) & (c), we report the reward
ratio normalized by the reward collected from a random policy,
following the setting from [8, 34]; and the resulting performance
curve is thus the higher the better. We observe that ILinUCB-NoGap
achieves larger reward ratio than ILinUCB-InfoGap because of
more efficient exploration with more informative context features.
ILinUCB-InfoGap with dy = 250 obtains a smaller reward ratio than
the algorithm with d, = 100. This follows our theoretical analysis
that with larger information gap, it is slower to explore the R%
space.

We show the total compensation in Figure 3 (b) & (d). We no-
tice that ILinUCB-InfoGap requires significantly more compensa-
tion than ILinUCB-NoGap to incentivize the exploration, and the
difference in total compensation between ILinUCB-InfoGap with
dy = 250 and d, = 100 is much smaller than the difference between
ILinUCB-InfoGap with d, = 100 and ILinUCB-NoGap. This sug-
gests that the larger total compensation is not only because of the
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slow exploration in the R% space. The main reason is in ILinUCB-
NoGap, the system does not compensate if the user’s greedy choice
is the same as the system’s decision. ILinUCB-InfoGap, on the other
hand, has to always compensate due to information gap. This re-
sult suggests an interesting practical direction for future research:
the total compensation could be reduced if the system can deter-
mine which item is most preferred by the user with information
gap. Overall, the results validate our theoretical understanding that
the system suffers higher compensation and lower reward from
observing less informative features.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new and practically-motivated prob-
lem of incentivized exploration under information gap in linear
contextual bandits. The key challenge is the information asymme-
try in the observed context features between a system and a myopic
user. We proposed an algorithm that offers sufficient compensation
to guarantee users would follow LinUCB’s exploration strategy.
We proved the regret and compensation upper bound of our al-
gorithm are in the order of O(d,NT log T) under information gap
and O(dx VT log T) without information gap. We also analyzed the
compensation lower bound of the problem. In our future work, we
plan to study how to incentivize the users following other types
of exploration strategies such as Thompson Sampling [2, 4, 9]. Our
empirical study also suggests that even under the information gap,
the algorithm could still have a chance to stop the incentives ear-
lier to reduce the total cost. How to theoretically analyze this is
an interesting future direction. It is also important to investigate
whether we can obtain a gap-independent Q(VT) compensation
lower bound to match with the upper bound. Another interesting
direction is to consider non-linear feature transformation between
the system and the users.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.
This work was supported by NSF IIS 2007492, 1IS-2128019, IIS-
1838615, CCF-2303372, ARO W911NF-23-1-0030 and Bloomberg
Data Science Ph.D. Fellowship.



Incentivizing Exploration in Linear Contextual Bandits under Information Gap

RecSys ’23, September 18-22, 2023, Singapore, Singapore

120000

—e— ILinUCB-NoGap
ILinUCB-InfoGap-dim100
—— ILINUCB-InfoGap-dim250

71 —— ILiNUCB-NoGap

ILinUCB-InfoGap-dim100
] —— ILiNUCB-InfoGap-dim250 100000
| 80000

0000

40000

Reward Ratio

Compensation

20000

o 0

2001 —e— ILINUCB-NoGap 160000

ILinUCB-InfoGap-dim100
1751 —— ILinUCB-InfoGap-dim250

—e— ILinUCB-NoGap
ILinUCB-InfoGap-dim100
—— ILINUCB-InfoGap-dim250

140000

120000
3

Reward Ratio

20000 20600 60000 80000 20800 40600 60000 80600

20000 20600 60000

Iteration

80000 20000 40000 60000

Iteration

80000

(c) Delicious reward (c) Delicious compensation

Figure 3: Results on LastFM and Delicious datasets.
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A MISSING PROOFS

LEmMMA 3 (THEOREM 2 OF [1]). With probability at least 1 — 5, the
parameter 05, lies in the confidence ellipsoid of Oy satisfying

||9x,t - O;HAXJ < ax,tth >0

where atx; = Rq/dx log Ay V.

A.1 Proof of Theorem 1

Proor. Following the definition of total compensation, we have

T

(1) = ZE[ca,[l >

(m?x Yx,i,t — rx,at,t)
i
t=1

(max (f“x,i,t + CBx.t (x, — Fxay, t)
1

T
(rx,at,t + CBx,t(xat) - ’:x,az,t) = Z CBx,t(Xaz)
t=1

where the third step holds with probability at least 1 — § and the
fourth step is based on the UCB arm selection strategy.

So with probability at least 1—38, we bound the total compensation
as follows,

T T
C(T) < )" CByr(Xar) < |T ) CB, (Xay)
t=1 t=1

T
J Zaﬁnxanz ) _Jra;Tanang_l
=1 %t

T
< @ty T Il
t=1 x.t

According to Lemma 11 of [1], Zthl [|1xq ||i _, <dyxlog(A+T/dy).
X,

Combining with ay,; = Ry/dx log —= 1+t//1 + VA, we can complete the

proof. ]
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A.2 Proof of Theorem 2
Proor. We bound cumulative regret by
T T
R(T) = ) (Elrg; ] ~ Elra, 1) = ) (vE. 05 -

=1

T g
Vg, 0

!

~
I
-

M=

(v} Oy, +2CBy s (var) = vI” 92)
t

T
0;) < ) 2CBus(va)
t=1

~
Il
-

DM~

(v{T” éﬂyt +2CByt (Va,) — V-‘I;t

~
Il
-

The third step holds with probability at least 1 — § according to
the definition of confidence interval. The fourth step holds with
probability at least 1 — 2§ according to Lemma 2, where the users
are incentivized to explore according to UCB strategy as shown
in Eq (7). Taking a union bound, the above inequality holds with
probability at least 1 — 34.

We continue bounding the cumulative regret with probability at
least 1 — 36 as follows,

T T
R(T) < ZJ TY CB,(va,) = zJ T a2, lval?_,
t=1 t=1 ot

IN

=1
1
(ZR\/dv log

T/A T
+5/ +\/I) \/Td,,log(,1+ )

where we finish the proof by combining Zt Iva ||2 < dylog(A+

T/dy) and ay s = RyJdy log 1+é//1 + VA O

A.3 Proof of Theorem 3
Proor. With probability at least 1 — 28, we have

T
C(T) < ) 4CBy(va,) <4
t=1

T
4T e vall,
t=1 ot

(4R\/dv log

T
T CB,(Va)
t=1

T
< dagr|T Y lIVall?,
t=1 ot

+ /1) \/Tdﬂ log(A + 1)
dy

IN

1+T/A
S
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A.4 Proof of Theorem 4

Proor. Our proof relies on the following lemmas: ]

LEMMA 4 (THEOREM 1 IN LATTIMORE AND SZEPESVARI [23]). As-
sume Gy 1 is invertible for sufficiently large T. For all suboptimal
a € A it holds that

. 2 Ba
hrTnj;plogTHxa - X1 ”G;,IT < 5
LEMMA 5 (THEOREM 8 IN LATTIMORE AND SZEPESVARI [23]). For
any d € [1/T,1), T sufficiently large and ty such that Gy, is almost
surely non-singular,

P{3t>0,x4: |fx,a,t - E[ra” > 1”'XaHZG—lfT,S <6
x,t

where for some ¢ > 0 universal constant frs =

2 (1 + bgﬁ) log(1/8) + cdy log(dx log(T)).

We first prove that after a fixed time point, with high probability
pulling arm a once requires compensation at least A, /3. The proof
idea is similar to the proof of Theorem 1 in [32]. We then derive
the asymptotic compensation lower bound.

Based on Lemma 4, we can obtain the following inequality for
all sub-optimal arms:

2

timsup log(T)llxall?, , < 54 (12)
T— xT

which is also stated in the Corollary 2 in [23].

Let Ng(T) be the number of times arm a is pulled in T rounds.
Since the algorithm has o(T) regret, we can find Tl’ (&) such that
the best arm is pulled at least T/2 times with probability 1 — §/2.
Using the concentration bound we know there exists ;" (6) such
that for ¢ > T}”(8) with probability 1 — §/2 the confidence interval
of the best arm’s reward estimation is smaller than Ay /3 where A
is the reward gap between the best arm and second best arm. Let
T1(6) = max(T{ (6), T’ (8)) and for all ¢t > T;(8), with probability
1— 6 we have 71 > E[r1] — A2/3.

We argue a similar result for any suboptimal arm a. Based on
Eq (12), there exists a T,(8) such that for any ¢ > T,(5), with
probability 1 —§

2 2
el < oot < 20
G4 = 2log(D) = s

Combining with the concentration bound in Lemma 5, we have for
any t > T,(8) with probability 1 — &, Fx qr — E[ra] < Aa/3.

Let T(8) = max; T;(6) and we know that for any ¢ > T(J), the
minimum required compensation to incentivize the user to pull
arm a is

N N N . AV A A
mlaxrx,i,t_rx,a,t 2 I'e 1t —I'xat = E[rl] - ? _E[ra] - ?a > Ta
(13)

with probability at least 1 — 4.

We then use the optimization problem in Eq (11) to obtain the
compensation lower bound, where the optimization minimizes the
total compensation and satisfies the consistent constraints that the
gaps of all suboptimal arms are identified with high confidence.
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With probability at least 1 — §, for sufficiently large T the total
compensation is

cm) = 3 BN 5
acA

ax, = E[Na(T)]/log(T) is asymptotically feasible for large T be-
cause it satisfies
: 2 _q 2 Ba
lim sup HX“HH;,IT = 11;11_11213 108(T)||Xa||G;»1T <5

T—o0

where Gy 7 = log(T)Hy, 1. Thus for any € > 0, ||xa||;rl < A2/2+€
x,T
and

)2 Y EINGDISE 2 cc(A 0 logT) (19
aeA

where cx (A, 0%) is the the optimal value of the optimization
problem in Eq (11) by replacing A%/2 with A%2/2 + e. Since
infesg cxe (A, 0%) = cx(A,0%) and T — oo we have the total
compensation as

Q (cx (A, 0) log(T))

and then built Theorem 4 based on this result and the known
lower regret bound of linear bandits in [23]. Theorem 4 can also
recover the compensation lower bound in non-contextual setting
in [32].

REFERENCES

[1] Yasin Abbasi-yadkori, David Pal, and Csaba Szepesvari. 2011. Improved Algo-
rithms for Linear Stochastic Bandits. In NIPS. 2312-2320.

[2] Marc Abeille and Alessandro Lazaric. 2017. Linear thompson sampling revisited.
In Artificial Intelligence and Statistics. PMLR, 176-184.

[3] Priyank Agrawal and Theja Tulabandhula. 2020. Incentivising Exploration and
Recommendations for Contextual Bandits with Payments. In Multi-Agent Systems
and Agreement Technologies. Springer, 159-170.

[4] Shipra Agrawal and Navin Goyal. 2013. Thompson sampling for contextual
bandits with linear payoffs. In International Conference on Machine Learning.
PMLR, 127-135.

[5] Peter Auer. 2002. Using Confidence Bounds for Exploitation-Exploration Trade-
offs. Journal of Machine Learning Research 3 (2002), 397-422.

[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235-256.

[7] Bin Bi, Milad Shokouhi, Michal Kosinski, and Thore Graepel. 2013. Inferring the
demographics of search users: Social data meets search queries. In Proceedings of
the 22nd international conference on World Wide Web. 131-140.

[8] Nicolo Cesa-Bianchi, Claudio Gentile, and Giovanni Zappella. 2013. A gang of
bandits. In Advances in Neural Information Processing Systems. 737-745.

[9] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson

sampling. In Advances in neural information processing systems. 2249-2257.

Bangrui Chen, Peter Frazier, and David Kempe. 2018. Incentivizing exploration

by heterogeneous users. In Conference On Learning Theory. PMLR, 798-818.

[11] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and

Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender

system. In Proceedings of the Twelfth ACM International Conference on Web Search

and Data Mining. 456-464.

Minmin Chen, Can Xu, Vince Gatto, Devanshu Jain, Aviral Kumar, and Ed Chi.

2022. Off-policy actor-critic for recommender systems. In Proceedings of the 16th

ACM Conference on Recommender Systems. 338-349.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual ban-

dits with linear payoff functions. In Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics. 208-214.

Peter Frazier, David Kempe, Jon Kleinberg, and Robert Kleinberg. 2014. Incen-

tivizing exploration. In Proceedings of the fifteenth ACM conference on Economics

and computation. ACM, 5-22.

Dalin Guo, Sofia Ira Ktena, Pranay Kumar Myana, Ferenc Huszar, Wenzhe Shi,

Alykhan Tejani, Michael Kneier, and Sourav Das. 2020. Deep bayesian bandits:

Exploring in online personalized recommendations. In Proceedings of the 14th

ACM Conference on Recommender Systems. 456-461.

=
A

[12

[13

[14

[15



Incentivizing Exploration in Linear Contextual Bandits under Information Gap

Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, and Andreas Krause.
2018. Learning user preferences to incentivize exploration in the sharing economy.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

Nicole Immorlica, Jieming Mao, Aleksandrs Slivkins, and Zhiwei Steven Wu.
2018. Incentivizing Exploration with Selective Data Disclosure. arXiv preprint
arXiv:1811.06026 (2018).

Olivier Jeunen and Bart Goethals. 2021. Pessimistic reward models for off-
policy learning in recommendation. In Proceedings of the 15th ACM Conference
on Recommender Systems. 63-74.

Sampath Kannan, Michael Kearns, Jamie Morgenstern, Mallesh Pai, Aaron Roth,
Rakesh Vohra, and Zhiwei Steven Wu. 2017. Fairness incentives for myopic
agents. In Proceedings of the 2017 ACM Conference on Economics and Computation.
369-386.

Ilan Kremer, Yishay Mansour, and Motty Perry. 2014. Implementing the “wisdom
of the crowd”. Journal of Political Economy 122, 5 (2014), 988-1012.

Tze Leung Lai and Herbert Robbins. 1985. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics 6, 1 (1985), 4-22.

Sahin Lale, Kamyar Azizzadenesheli, Anima Anandkumar, and Babak Hassibi.
2019. Stochastic linear bandits with hidden low rank structure. arXiv preprint
arXiv:1901.09490 (2019).

Tor Lattimore and Csaba Szepesvari. 2017. The end of optimism? an asymptotic
analysis of finite-armed linear bandits. In Artificial Intelligence and Statistics.
PMLR, 728-737.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. ACM, 661-670.

425

RecSys ’23, September 18-22, 2023, Singapore, Singapore

[25] Zhiyuan Liu, Huazheng Wang, Fan Shen, Kai Liu, and Lijun Chen. 2020. Incen-

tivized Exploration for Multi-Armed Bandits under Reward Drift. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34. 4981-4988.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong,
and Ed H Chi. 2020. Off-policy learning in two-stage recommender systems. In
Proceedings of The Web Conference 2020. 463-473.

Yishay Mansour, Aleksandrs Slivkins, and Vasilis Syrgkanis. 2015. Bayesian
incentive-compatible bandit exploration. In Proceedings of the Sixteenth ACM
Conference on Economics and Computation. ACM, 565-582.

Mark Sellke and Aleksandrs Slivkins. 2020. Sample complexity of incentivized
exploration. arXiv preprint arXiv:2002.00558 (2020).

Max Simchowitz and Aleksandrs Slivkins. 2021. Exploration and incentives in
reinforcement learning. arXiv preprint arXiv:2103.00360 (2021).

Aleksandrs Slivkins. 2017. Incentivizing exploration via information asymmetry.
XRDS: Crossroads, The ACM Magazine for Students 24, 1 (2017), 38-41.
Huazheng Wang, Qingyun Wu, and Hongning Wang. 2017. Factorization bandits
for interactive recommendation. In Thirty-First AAAI Conference on Artificial
Intelligence.

Siwei Wang and Longbo Huang. 2018. Multi-armed Bandits with Compensation.
In NeurIPS.

Ingmar Weber and Carlos Castillo. 2010. The demographics of web search.
In Proceedings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval. 523-530.

Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. 2016. Con-
textual bandits in a collaborative environment. In SIGIR 2016. ACM, 529-538.



	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Method
	4.1 Incentivized exploration under information gap
	4.2 Incentivized exploration without information gap

	5 Analysis
	5.1 Regret and compensation upper bound
	5.2 Compensation lower bound

	6 Experiments
	6.1 Synthetic data
	6.2 Real-world datasets

	7 Conclusions and Future Work
	Acknowledgments
	A Missing Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4

	References

