Topic Introduction

Points to Consider When Establishing and Rearing Culex Mosquitoes in the Laboratory

Megan E. Meuti, ¹ Alden Siperstein, and Matthew Wolkoff

Entomology Department, The Ohio State University, Columbus, Ohio 43210, USA

Culex mosquitoes transmit several pathogens to humans and animals, including viruses that cause West Nile fever and St. Louis encephalitis and filarial nematodes that cause canine heartworm and elephantiasis. Additionally, these mosquitoes have a cosmopolitan distribution and provide interesting models for understanding population genetics, overwintering dormancy, disease transmission, and other important and ecological questions. However, unlike Aedes mosquitoes that produce eggs that can be stored for weeks at a time, no obvious "stopping" point exists in the development of Culex mosquitoes. Therefore, these mosquitoes require nearly continuous care and attention. Here, we describe some general considerations when rearing laboratory colonies of Culex mosquitoes. We highlight different methods so that readers may choose what works best for their experimental needs and laboratory infrastructure. We hope that this information will enable additional scientists to conduct laboratory research on these important disease vectors.

INTRODUCTION

Culex mosquitoes transmit viruses that cause West Nile fever (Goldberg et al. 2009; Andreadis 2012), St. Louis encephalitis (Bailey et al. 1978), and Japanese encephalitis (Wispelaere et al. 2017), as well as filarial nematodes that cause canine heartworm (Vezzani et al. 2011) and elephantiasis (Harb et al. 1993). Moreover, Culex mosquitoes are an important vector of Ross River virus in inland Australia (Russel 2002) and Sindbis virus in Egypt (Turell et al. 2002), and Culex tarsalis can transmit Rift Valley fever to humans and cattle in West Africa (Bergren et al. 2021). Admittedly, the global burden on human health by *Culex*-vectored diseases is far less than those transmitted by *Aedes* mosquitoes (e.g., dengue, Zika, yellow fever, and chikungunya) and Anopheles mosquitoes (e.g., human, avian, and murine malaria). Therefore, most mosquito research has focused on Aedes and Anopheles. However, members of the Culex pipiens complex that are highly competent vectors of West Nile virus extend further into temperate environments in North America, South America, Africa, Europe, Asia, and Australia (Ciota and Kramer 2013) than Ae. aegypti and Ae. albopictus (Kraemer et al. 2015). Therefore, a high proportion of the human population is at risk of contracting West Nile virus, as it is endemic or potentially endemic in at least 114 countries (Chancey et al. 2015).

THE CHALLENGES OF WORKING WITH CULEX

Apart from the differences in disease burden, another reason why researchers have gravitated to working with Aedes mosquitoes is likely because of the ease with which they are reared and maintained

¹Correspondence: meuti.1@osu.edu

From the Mosquitoes collection, edited by Laura B. Duvall and Benjamin J. Matthews.

© 2023 Cold Spring Harbor Laboratory Press

Cite this introduction as Cold Spring Harb Protoc; doi:10.1101/pdb.top107823

in the laboratory. The eggs of nearly all Aedes species can be stored under humid conditions for weeks, if not months, allowing researchers to hatch an appropriate number of larvae whenever they are ready to begin an experiment (Beckel 1958; Kalpage and Brust 1974; Shroyer and Craig 1983; Parker 1985). Unfortunately, *Culex* eggs are not as hardy and cannot be stored for any length of time. This is likely due to accelerated rates of embryogenesis relative to Aedes and Anopheles species, as well far lower levels of embryonic desiccation resistance (Vargas et al. 2014). Notably, Culex larvae will hatch in 24–72 h depending on temperature (Kiarie-Makara et al. 2015). Therefore, researchers who work with Culex mosquitoes must continuously maintain the mosquitoes in the laboratory. Additionally, because most existing laboratory strains of *Culex* have been established relatively recently, they are not as well adapted to artificial laboratory conditions. Finally, most *Culex* species are zoophilic, preferring to feed on live, nonhuman hosts (Schultz 1992; Tuno et al. 2017), and are not nearly as aggressive biters as Aedes or Anopheles mosquitoes (Hawley 1988; Wanji et al. 2003). These characteristics make rearing *Culex* in the laboratory more challenging, as it is often difficult to achieve high levels of blood feeding and egg production in laboratory colonies.

CURRENT CULEX-REARING PROTOCOLS

Despite the challenges, we were able to successfully establish a colony of Northern house mosquitoes, Cx. pipiens, from central Ohio in 2013 (Buckeye strain) (see Protocol: Establishing a Culex Colony from Field-Collected Eggs [Meuti et al. 2023a]) that we have continuously maintained (see Protocol: Rearing and Maintaining a *Culex* Colony in the Laboratory [Meuti et al. 2023b]). Several other researchers have also established colonies of Cx. pipiens, including the autogenous form Cx. pipiens molestus that can generate their first batch of eggs without a blood meal (Roubaud 1930; Dobrotworsky 1955; Spielman 1957; Mutebi and Savage 2009; Gao et al. 2019), the anautogenous form, Cx. pipiens pipiens (Paul et al. 2005; Yurchenko et al. 2020), and the Southern house mosquito, Culex quinquefasciatus (Sundararaman 1949; de Melo Chalegre et al. 2015). Additionally, Kauffman et al. (2017) have provided an excellent and detailed protocol for rearing Aedes and Culex mosquitoes and have used their protocol to successfully rear Cx. pipiens, Cx. quinquefasciatus, and Cx. tarsalis. Although this is more difficult, other researchers have established colonies of *Culex salinarius* (Wallis and Spielman 1953; Wallis and Whitman 1968; Eldridge et al. 1972), Culex territans (Desser et al. 1973), and Culex erraticus (Coon 2006), whereas limited numbers of Culex restuans have been reared in a laboratory but only after forcing males and females to copulate (Eldridge et al. 1972). The research that has been done on these species and strains has greatly enhanced our understanding of the physiology, ecology, and behavior of *Culex* mosquitoes. However, several important research questions remain, particularly about physiological and behavioral differences among different populations of Culex mosquitoes. Therefore, we need other researchers to rise to the challenge of working with Culex mosquitoes.

CONSIDERATIONS WHEN COLLECTING THE DESIRED CULEX SPECIES FROM THE FIELD

Different species of Culex mosquitoes vary in their geographic and temporal distributions, as well as their microhabitat preferences and which vertebrate hosts they prefer to bite. These factors should be kept in mind when trying to collect and/or establish a desired Culex species from the field. Here, we provide recommendations on how to collect the most common and medically important species of Culex in North America.

First, to collect Cx. quinquefasciatus, Cx. pipiens, Cx. restuans, and Culex erraticus, we would recommend using the gravid H₂O recipe included in our protocol (Protocol: Establishing a Culex Colony from Field-Collected Eggs [Meuti et al. 2023a]) without modification. Cx. quinquefasciatus occupies a southern range, whereas Cx. pipiens occupies a more northern range. However, these two

species have been known to hybridize between 34°N and 46°N (Yurchenko et al. 2020). Therefore, researchers living within the hybrid zone should be aware that they may not collect pure strains of either species and should check for hybridization by using previously described protocols (Smith and Fonseca 2004). Additionally, the time of year can greatly influence which species is collected. For example, east of the Mississippi River, Cx. restuans is far more abundant early in the year than Cx. pipiens, making mid-May through mid-July ideal for collecting Cx. restuans and mid-July through August ideal for collecting mostly Cx. pipiens (Jackson and Paulson 2006; Helbing et al. 2015; Meuti laboratory, unpubl. data). Similarly, Cx. erraticus is more abundant later in the year (August until mid-October; Meuti laboratory, unpubl. data). Therefore, if researchers wish to establish populations of Cx. erraticus, they should time their collections appropriately.

Within the southeastern United States, Culex nigripalpus is commonly collected from gravid traps across the urban-to-rural gradient (Hancock and Camp 2022). Notably, the range of this species has been expanding northward into the Midwest (Akaratovic et al. 2021). Therefore, researchers living within the current range can likely collect these mosquitoes using our accompanying protocol (Protocol: Establishing a Culex Colony from Field-Collected Eggs [Meuti et al. 2023a]) without modification.

To collect Cx. tarsalis, which is distributed throughout the western half of North America, we recommend creating more dilute gravid H₂O, using one-half to one-quarter of the ingredients included in Protocol: Establishing a Culex Colony from Field-Collected Eggs (Meuti et al. 2023a). As Cx. tarsalis is more halotolerant than other Culex species (Bohart and Washino 1978; Du and Millar 1999), researchers can add up to 0.5% saline (NaCl) to the gravid H₂O to increase the proportion of Cx. tarsalis collected relative to other species.

Cx. salinarius can be collected from almost any H₂O source, although they are most commonly found in high concentrations in salt marshes (Murphey 1961). Therefore, researchers who want to establish laboratory colonies of Cx. salinarius can easily collect them by placing gravid H₂O traps at these locales. If researchers are trying to collect Cx. salinarius outside salt marshes, it is important to note that females that have been raised in fresh H₂O prefer to oviposit in fresh H₂O. However, females of Cx. salinarius that have been reared in freshwater will still lay their eggs in H₂O with high salinity (Murphey 1961). Therefore, researchers can collect Cx. salinarius in areas where they are less abundant by filling tubs with gravid H_2O containing a \sim 3% saline solution (NaCl). Although this procedure may reduce the total number of *Culex* egg rafts that are collected, it will increase the proportion, and likely the total number, of Cx. salinarius egg rafts.

Cx. territans prefers to feed on amphibians (Burkett-Cadena et al. 2008). Adults of Cx. territans are therefore more abundant near creeks that have high frog populations and are easiest to find in late April through mid-May in Columbus, Ohio. During this time, gravid adult females of Cx. territans can be collected by aspirating them from culverts (A. Siperstein, pers. observations). Adult females can be placed directly into a cage and transported back to the laboratory where they will likely lay eggs in any nutrient-rich H₂O source that is provided to them.

CONSIDERATIONS WHEN ESTABLISHING REARING PROTOCOLS

Larval Growth and Development

Although Culex larvae are container breeders that are adapted to developing in nutrient-rich H_2O , they are highly susceptible to bacterial overgrowth, and entire pans of larvae can die within 24-48 h. To prevent this mortality, it is imperative that the larvae are not "overfed" (too much food is given to the larvae at any point in time). Underfeeding, although not ideal, will cause the mosquitoes to develop more slowly. Therefore, it is almost always better to underfeed (add slightly less food to larval containers) than to overfeed. The exception to this idea is when generating autogenously reproducing mosquitoes, which have higher nutritional requirements during their larval phase and where underfeeding reduces body size and overall fecundity and can increase mortality (Kassim et al. 2012). Please also note that larval growth and development are directly dependent on temperature. In the accompanying protocols (Protocol: Establishing a Culex Colony from Field-Collected Eggs [Meuti et al. 2023a]; and Protocol: Rearing and Maintaining a Culex Colony in the Laboratory [Meuti et al. 2023b]), we rear *Culex* mosquitoes under high temperatures (24°C–27°C). We also routinely rear Cx. pipiens at lower temperatures (18°C) that, in combination with short photoperiods (light:dark, 8 h:16 h), induce overwintering dormancy or diapause in the mosquitoes (Eldridge 1968; Sanburg and Larsen 1973; Spielman and Wong 1973). Culex mosquitoes reared at lower temperatures should be fed less frequently, ideally once every 2 to 4 d.

When feeding the larvae, one should check the color and scent of the mosquito-rearing H₂O. If it is dark brown/cloudy or highly pungent and/or if there are any dead larvae (bloated and white in appearance) floating near the bottom, it is best to immediately filter the mosquito larvae out of their old and dirty container and then place them into a new container with clean H₂O and fresh food. Additionally, if you see excessive biofilm accumulation on the sides of the pan or top of the H₂O, it is also a good idea to filter the H₂O. Please see Protocol: Rearing and Maintaining a Culex Colony in the Laboratory [Meuti et al. 2023b] for detailed instructions on how to filter mosquito larval water.

Pupal Development

Like most mosquitoes, Culex species generally only spend ∼36 h at 25°C in the pupal phase (Birley 1979). Therefore, when *Culex* mosquitoes are reared at high temperatures, it is necessary to remove pupae from the larval contains and place them into an adult cage at least once a day, which will ensure that no adult mosquitoes escape. In our experience, the pupal phase is the most sensitive period in mosquito development. Therefore, it is also important to ensure that cups containing pupae are not overcrowded; we recommend placing no more than 150 pupae in a plastic cup with a diameter of 11.4 cm and height of 4.4 cm. Placing small pieces of Styrofoam (~3 cm in diameter) in the pupal cup may also facilitate adult emergence by providing a platform for newly emerged adult mosquitoes, and placing a paper cone on the top of the deli cup may prevent adult mosquitoes from falling in and drowning in the pupal H₂O. Last, the pupal cup should be filled halfway using H₂O from the larval pan, as the use of fresh H₂O can result in high mortality, possibly because of osmotic shock.

Caring for Adult Mosquitoes

Adult mosquitoes require constant access to moisture, and they perform best in humid environments. If you are rearing *Culex* mosquitoes in an environmental chamber that does not have humidity control, the relative humidity within the cage can be increased by placing a wet sponge on top of the cage and covering the cage with a plastic bag. Moreover, both male and female mosquitoes need to have access to both H₂O and sugar sources for reproduction and fertility (Kassim et al. 2012). We have reared Culex mosquitoes on 10% sucrose solutions only, and they do quite well (Meuti et al. 2015a,b). However, to promote reproduction, we have found that it is better to offer them additional and more natural sugar sources, such as organic (pesticide-free) raisins and honey. The sucrose solution and H₂O source should be covered to prevent mosquitoes from drowning, and the liquid should be made available to the mosquitoes via a cotton dental wick, piece of cotton roll, or filter paper. This setup will permit adult mosquitoes to feed and hydrate freely, without any risk of drowning. Although adult mosquitoes require substantially less careful monitoring than the larval and pupal phases of mosquitoes, it is necessary to frequently check cages that contain adult mosquitoes to ensure that they have access to food and H₂O. Replace food and H₂O at least once per week to prevent mold growth or fermentation of the sugar solution. After blood feeding, it is best to check the cages every day, as females must have access to a sugar and H₂O source to produce a high number of egg rafts that will hopefully yield abundant viable larvae.

Blood Feeding Newly Established and Laboratory Strains of Culex

Blood Source

The best way to encourage mosquitoes to blood feed is to offer a live vertebrate host, as it will provide the mosquitoes with the necessary visual, olfactory, and temperature cues. Moreover, *Culex* species are well adapted to specific hosts and generally produce greater numbers of eggs when they are allowed to feed on avian hosts (Shroyer and Siverly 1972; Downe and Archer 1975; Nayar and Sauerman 1975; Lyimo and Ferguson 2009; Richards et al. 2012; Alto et al. 2014). Therefore, if animal use protocols are in place, it would be best to offer an appropriately restrained avian host, as any host movements will further deter biting (Edman et al. 1974; Darbro and Harrington 2007).

Another option is to use live humans. If the need to establish a colony outweighs the risks and annoyances of using human volunteers, we recommend that the volunteer offer an unwashed foot or arm to the mosquitoes. Additionally, we recommend that the volunteer avoid consuming foods that contain garlic or citrus, as they are repellents to mosquitoes (Bhuyan et al. 1974; Giatropoulos et al. 2012) and can be emitted in the sweat/pores of the host (Sato et al. 2020). However, field-collected females may be infected with viral pathogens that were vertically transmitted from their mothers. Generally, the rate of vertical transmission is quite low (0.3%–0.6% for West Nile virus; Goddard et al. 2003), but the potential for infection should be reflected in any biosafety protocols that are in place to protect human volunteers and should be clearly communicated to the person who is planning to put their foot, hand, or arm into the mosquito cage.

If Culex species can be induced to take a blood meal from an artificial source, we strongly recommend this option. Avian blood that is heated in an artificial membrane feeding system (e.g., Hemotek) can be offered. Artificial feeding systems are convenient and allow researchers to maintain mosquito colonies without creating extensive biosafety or animal use protocols. Sodium citrate-treated blood from a variety of sources, including chickens, can be easily purchased (e.g., Lampire Biological Laboratories and Pel-Freeze Biologicals). Additionally, Griffith and Turner (1996) reported that it is possible to induce females of Cx. quinquefasciatus to consume a blood substitute and continue to lay viable eggs. Note that other laboratories have had success using circulating H₂O baths to warm blood (Deng et al. 2012; Witmer et al. 2018), whereas Kauffman et al. (2017) described how to use sausage casings to warm and offer blood. Although circulating H₂O baths and sausage casings warmed in H₂O are less expensive, they are also slightly more challenging to use. These artificial feeding systems lack many of the necessary cues that mosquitoes need to orient to the blood source. Moreover, the artificial membranes (e.g., Parafilm, cellulose paper, and sausage casings) are quite different from the skin of vertebrate hosts. Therefore, it is not surprising that many if not most field-collected *Culex* females may fail to feed on blood offered through an artificial membrane. To help encourage newly collected Culex females to feed on artificial blood feeders, we recommend that the membrane for the system be rubbed against the skin of a bird or human (i.e., the foot and ankle) to transfer some of the host volatiles. We also recommend placing a source of carbon dioxide (e.g., dry ice) near the cage. Finally, we recommend that the blood be supplemented with adenosine triphosphate (ATP; Sigma-Aldrich; \sim 200 μ L of 0.1 M ATP per 15 mL of blood), as it encourages female mosquitoes that initially penetrate the membrane to feed to repletion (Galun 1967; Galun et al. 1985; Griffith and Turner 1996).

Timing of the Blood Meal

Mosquito species vary in the age at which they become competent to take a blood meal. Females of Aedes aegypti are ready to bite and lay eggs as early as 24 h after adult emergence (Howard 1923; Armstrong and West 1966) and most will bite 24-72 h after emergence (Christophers 1960). The age at which Culex mosquitoes first bite/blood feed has not extensively been investigated, although high rates of biting are achieved 5 d after adult emergence, especially when the mosquitoes have been reared under long photoperiods and high temperatures (Eldridge 1968). In our experience, females of Cx. pipiens blood feed well when they are 5–10 d old, and therefore we recommend this time frame when offering the first blood meal to adult mosquitoes.

Most Culex mosquitoes are crepuscular, and therefore offering a blood meal, whether avian, human, or artificial, at dawn or dusk will likely stimulate blood feeding. As field-collected Culex females will likely need several opportunities to blood feed before they bite, we recommend offering the first blood meal 3 d after adult emergence and every day or two thereafter. We also recommend leaving the blood source in the cage for as long as possible. If artificial blood feeders are being used, we recommend that they remain in the cage for at least 1-2 h to stimulate blood feeding; we have had the most success feeding mosquitoes with an artificial blood source overnight.

Offering Extra Blood Meals

Female Culex mosquitoes can take multiple blood meals and produce several batches of eggs (up to four batches according to Awahmukalah and Brooks 1985). Therefore, if researchers need to rapidly build up their populations of Culex, they can offer the same cage of Culex females multiple blood meals. We recommend waiting at least 1 wk between blood feedings for mosquitoes reared at 24°C-27°C to ensure that every female that initially took a blood meal has enough time to oviposit and reinitiate a subsequent gonotrophic cycle. Moreover, as the sex ratio becomes more male-biased in older females (Qutubuddin 1953; pers. observations) and because most female mosquitoes will only survive \sim 6 wk after adult emergence at 22°C–26°C (Oda et al. 1999; Alto et al. 2012), we recommend blood feeding each cage a maximum of four times. Additionally, whenever possible, we suggest rearing the offspring of 5- to 10-d-old females that have been blood fed for the first time, as it will yield a high number of larvae with a sex ratio of nearly 1:1 males to females (Gómez et al. 1977).

Working with Multiple Strains, Species, or Populations of Culex Mosquitoes

If you are rearing multiple strains or species of *Culex* mosquitoes, it is also very important to ensure that everything is properly labeled so that you do not unintentionally cross laboratory strains. Several members of the Cx. pipiens complex (e.g., Cx. pipiens molestus, Cx. pipiens pipiens, and Cx. quinquefasciatus) can produce fertile hybrids (Smith and Fonseca 2004; Bahnck and Fonseca 2006). To avoid such a problem, we recommend using a set of separate and clearly labeled containers to collect egg rafts, rear larvae, and allow pupal emergence within adult cages. We also suggest that separate labeled disposable pipettes are used for different strains and species. Whenever possible, it is best to work with different mosquito strains in separate rearing spaces and/or work with one species/strain at a time.

ACKNOWLEDGMENTS

We thank Robert Aldridge, Josh Benoit, David Denlinger, Leeanne Garrett, Woodbridge Foster, Joe Rinehart, Rebecca Robich, David Shetlar, and Cheolho Sim for helping us to identify locations and trapping techniques to collect mosquitoes and for assistance in developing these protocols. We also thank members of the Meuti Laboratory, past and present, for their diligence in rearing mosquitoes. M.E.M. and M.W. were supported by a National Science Foundation grant (IOS 1944324), and M.E.M. and A.S. were supported by a National Institutes of Health grant (R21-AI144266).

REFERENCES

- Akaratovic KI, Kiser JP, Whitt PB, Harrison RL, Harrison BA. 2021. Culex nigripalpus distribution expansion: first record in Virginia, new county records in North Carolina, and revised United States map. J Am Mosq Control Assoc 37: 188-197. doi:10.2987/21-7025
- Alto BW, Muturi EJ, Lampman RL. 2012. Effects of nutrition and density in Culex pipiens. Med Vet Entomol 26: 396-406. doi:10.1111/j.1365-2915 .2012.01010.x
- Alto BW, Connelly CR, O'Meara GF, Hickman D, Karr N. 2014. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis 14: 606-614. doi:10 .1089/vbz.2013.1501
- Andreadis TG. 2012. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J Am Mosq Control Assoc 28: 137-151. doi:10.2987/ 8756-971X-28.4s.137
- Armstrong JA, West AS. 1966. Blood feeding activity by newly emerged female mosquitoes. Mosq News 25: 263-268.
- Awahmukalah DST, Brooks MA. 1985. Viability of Culex pipiens pipiens eggs affected by nutrition and aposymbiosis. J Invertebr Pathol 45: 225–230. doi:10.1016/0022-2011(85)90012-6
- Bahnck CM, Fonseca DM. 2006. Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid pop-

- ulations. Am J Trop Med Hyg 75: 251-255. doi:10.4269/ajtmh.2006.75.2
- Bailey CL, Eldridge BF, Hayes DE, Watts DM, Tammariello RF, Dalrymple JM. 1978. Isolation of St. Louis encephalitis virus from overwintering Culex pipiens mosquitoes. Science 199: 1346-1349. doi:10.1126/science .628843
- Beckel WE. 1958. Investigations of permeability, diapause, and hatching in the eggs of the mosquito Aedes hexodontus dyar. Can J Zool 36: 541-554. doi:10.1139/z58-050
- Bergren NA, Borland EM, Hartman DA, Kading RC. 2021. Laboratory demonstration of the vertical transmission of Rift Valley fever virus by Culex tarsalis mosquitoes. PLoS Negl Trop Dis 15: e0009273. doi:10.1371/ journal.pntd.0009273
- Bhuyan M, Saxena BN, Rao KM. 1974. Repellent property of oil fraction of garlic, Allium sativum Linn. Indian J Exp Biol 12: 575-576.
- Birley MH. 1979. The estimation and simulation of variable developmental period, with application to the mosquito Aedes aegypti (L.). Popul Ecol 21: 68-80. doi:10.1007/BF02512639
- Bohart RM, Washino RK. 1978. Mosquitoes of California (Vol. 4084). University of California, Agriculture and Natural Resources.
- Burkett-Cadena ND, Graham SP, Hassan HK, Guyer C, Eubanks MD, Katholi CR, Unnasch TR. 2008. Blood feeding patterns of potential arbovirus vectors of the genus Culex targeting ectothermic hosts. Am J Trop Med Hyg 79: 809-815. doi:10.4269/ajtmh.2008.79.809
- Chancey C, Grinev A, Volkova E, Rios M. 2015. The global ecology and epidemiology of West Nile virus. BioMed Res Int 2015: 376230. doi:10 .1155/2015/376230
- Christophers SR. 1960. Aedes aegypti (L.): the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, London.
- Ciota AT, Kramer LD. 2013. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 5: 3021-3047. doi:10.3390/
- Coon BR. 2006. "Field and laboratory studies of Culex erraticus (Diptera: Culicidae) ability to detect hosts, habitat identification and attempts at colonization." Ph.D. dissertation, University of Florida.
- Darbro JM, Harrington LC. 2007. Avian defensive behavior and bloodfeeding success of the West Nile vector mosquito, Culex pipiens. Behav Ecol 18: 750-757. doi:10.1093/beheco/arm043
- de Melo Chalegre KD, Tavares DA, Romão TP, de Menezes HS, Nascimento NA, de Oliveira CM, de-Melo-Neto OP, Silva-Filha MH. 2015. Coselection and replacement of resistance alleles to Lysinibacillus sphaericus in a Culex quinquefasciatus colony. FEBS J 282: 3592-3602. doi:10 .1111/febs.13364
- Deng L, Koou S-Y, Ng LC, Lam-Phua SG, Png AB. 2012. A novel mosquito feeding system for routine blood-feeding of Aedes aegypti and Aedes albopictus. Trop Biomed 29: 169-174.
- Desser SS, McIver SB, Ryckman A. 1973. Culex territans as a potential vector of Trypanosoma rotatorium. I. Development of the flagellate in the mosquito. J Parasitol 1: 353-358. doi:10.2307/3278833
- Dobrotworsky NV. 1955. The Culex pipiens group in south-eastern Australia. IV Crossbreeding experiments within the Culex pipiens group. Proc Linnean Soc New South Wales 80: 33-43.
- Downe AER, Archer JA. 1975. The effects of different blood-meal sources on digestion and egg production in Culex tarsalis Coq. (Diptera: Culicidae). J Med Entomol 12: 431-437. doi:10.1093/jmedent/12.4.431
- Du YJ, Millar JG. 1999. Electroantennogram and oviposition bioassay responses of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae) to chemicals in odors from Bermuda grass infusions. J Med Entomol 36: 158-166. doi:10.1093/jmedent/36.2.158
- Edman JD, Webber LA, Schmid AA. 1974. Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. J Parasitol 60: 874. doi:10.2307/3278923
- Eldridge BF. 1968. The effect of temperature and photoperiod on bloodfeeding and ovarian development in mosquitoes of the Culex pipiens complex. Am J Trop Med Hyg 17: 133-140. doi:10.4269/ajtmh .1968.17.133
- Eldridge BF, Bailey CL, Johnson MD. 1972. A preliminary study of the seasonal geographic distribution and overwintering of Culex restuans Theobald and Culex salinarius Coquillet (Diptera: Culicidae). J Med Entomol 9: 233-238. doi:10.1093/jmedent/9.3.233
- Galun R. 1967. Feeding stimuli and artificial feeding. Bull World Health Organ 36: 590-593.

- Galun R, Koontz LC, Gwadz RW, Ribeiro JMC. 1985. Effect of ATP analogues on the gorging response of Aedes aegypti. Physiol Entomol 10: 275-281. doi:10.1111/j.1365-3032.1985.tb00048.x
- Gao Q, Su F, Zhou Y-B, Chu W, Cao H, Song L-L, Zhou J-J, Leng P-E. 2019. Autogeny, fecundity, and other life history traits of Culex pipiens molestus (Diptera: Culicidae) in Shanghai, China. J Med Entomol 56: 656-664. doi:10.1093/jme/tjy228
- Giatropoulos A, Papachristos DP, Kimbaris A, Koliopoulos G, Polissiou MG, Emmanouel N, Michaelakis A. 2012. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol Res 111: 2253-2263. doi:10.1007/s00436-012-
- Goddard LB, Roth AE, Reisen WK, Scott TW. 2003. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J Med Entomol 40: 743-746. doi:10.1603/0022-2585-40.6.743
- Goldberg TL, Ruiz MO, Hamer GL, Brawn JD, Kitron UD, Hayes DB, Loss SR, Walker ED. 2009. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80: 268–278. doi:10 .4269/ajtmh.2009.80.268
- Gómez G, Rabinovich JE, Machado-Allison GE. 1977. Population analysis of Culex pipiens fatigans Wied.(Diptera: Culicidae) under laboratory conditions. J Med Entomol 13: 453–463. doi:10.1093/jmedent/13.4-5.453
- Griffith JSR, Turner GD. 1996. Culturing Culex quinquefasciatus mosquitoes with a blood substitute diet for the females. Med Vet Entomol 10: 265-268. doi:10.1111/j.1365-2915.1996.tb00741.x
- Hancock C, Camp JV. 2022. Habitat-specific host selection patterns of Culex quinquefasciatus and Culex nigripalpus in Florida. J Am Mosq Control Assoc 38: 83-91.
- Harb M, Faris R, Gad AM, Hafez ON, Ramzy R, Buck AA. 1993. The resurgence of lymphatic filariasis in the Nile delta. Bull World Health Organ 71: 49-54.
- Hawley WA. 1988. The biology of Aedes albopictus. J Am Mosq Control Assoc Suppl 1: 1-39.
- Helbing CM, Moorhead DL, Mitchell L. 2015. Population dynamics of Culex restuans and Culex pipiens (Diptera: Culicidae) related to climatic factors in northwest Ohio. Environ Entomol 44: 1022-1028. doi:10 .1093/ee/nyv094
- Howard LO. 1923. The yellow-fever mosquito. US Government Printing Office, Washington, DC.
- Jackson BT, Paulson SL. 2006. Seasonal abundance of Culex restuans and Culex pipiens in southwestern Virginia through ovitrapping. J Am Mosq Control Assoc 22: 206-212. doi:10.2987/8756-971X(2006)22[206: SAOCRA]2.0.CO;2
- Kalpage KSP, Brust RA. 1974. Studies on diapause and female fecundity in Aedes atropalpus. Environ Entomol 3: 139-145. doi:10.1093/ee/3.1.139
- Kassim NF, Webb CE, Russell RC. 2012. The importance of males: larval diet and adult sugar feeding influences reproduction in Culex molestus. J Am Mosq Control Assoc 28: 312-316. doi:10.2987/12-6274R.1
- Kauffman E, Payne A, Franke MA, Schmid MA, Harris E, Kramer LD. 2017. Rearing of Culex spp. and Aedes spp. mosquitoes. Bio Protoc 7: e2542. doi:10.21769/BioProtoc.2542
- Kiarie-Makara M, Ngumbi PM, Lee D-K. 2015. Effects of temperature on the growth and development of Culex pipiens complex mosquitoes (Diptera: Culicidae). IOSR J Pharm Bio Sci 10: 1-10.
- Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, et al. 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4: e08347. doi:10.7554/eLife.08347
- Lyimo IN, Ferguson HM. 2009. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol 25: 89-196. doi:10.1016/j.pt.2009.01.005
- Meuti ME, Stone M, Ikeno T, Denlinger DL. 2015a. Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. J Exp Biol 218: 412-422. doi:10.1242/jeb
- Meuti ME, Short CA, Denlinger DL. 2015b. Mom matters: Diapause characteristics of Culex pipiens-Culex quinquefasciatus (Diptera: Culicidae) hybrid mosquitoes. I Med Entomol 52: 131-137. doi:10.1093/jme/tju016
- Meuti ME, Siperstein A, Wolkoff M. 2023a. Establishing a Culex colony from field-collected eggs. Cold Spring Harb Protoc doi:10.1101/pdb .prot108079

- Meuti ME, Siperstein A, Wolkoff M. 2023b. Rearing and maintaining a Culex colony in the laboratory. Cold Spring Harb Protoc doi:10.1101/pdb
- Murphey FJ. 1961. "The bionomics of Culex salinarius Coquillett." PhD dissertation, University of Delaware, Newark.
- Mutebi JP, Savage HM. 2009. Discovery of Culex pipiens pipiens form molestus in Chicago. J Am Mosq Control Assoc 25: 500-503. doi:10.2987/09-5910.1
- Nayar JK, Sauerman DM. 1975. The effects of nutrition on survival and fecundity in Florida mosquitoes. part 3. Utilization of blood and sugar for fecundity. J Med Entomol 12: 220-225. doi:10.1093/jmedent/ 12.2.220
- Oda T, Uchida K, Mori A, Mine M, Eshita Y, Kurokawa K, Kato K, Tahara H. 1999. Effects of high temperature on the emergence and survival of adult Culex pipiens molestus and Culex quinquefasciatus in Japan. J Am Mosq Control Assoc 15: 153-156.
- Parker BM. 1985. Effects of photoperiod on the induction of embryonic diapause in Aedes taeniorhynchus (Diptera: Culicidae). J Med Entomol 22: 392-397. doi:10.1093/jmedent/22.4.392
- Paul A, Harrington LC, Zhang L, Scott JG. 2005. Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc 21: 305-309. doi:10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2
- Qutubuddin M. 1953. The emergence and sex ratio of Culex fatigans Wied. (Diptera, Culicidae) in laboratory experiments. Bull Entomol Res 43: 549-565. doi:10.1017/S000748530002664X
- Richards SL, Anderson SL, Yost SA. 2012. Effects of blood meal source on the reproduction of *Culex pipiens quinquefasciatus* (Diptera: Culicidae). J Vector Ecol 37: 1-7. doi:10.1111/j.1948-7134.2012.00194.x
- Roubaud E. 1930. Sur l'existence de race biologiques genetiquement distinctes chez moustiques commun Culex pipiens. C R Acad Sci 191: 1386-1388.
- Russell RC. 2002. Ross River virus: ecology and distribution. Annu Rev Entomol 47: 1-31. doi:10.1146/annurev.ento.47.091201.145100
- Sanburg LL, Larsen JR. 1973. Effect of photoperiod and temperature on ovarian development in Culex pipiens pipiens. J Insect Physiol 19: 1173-1190. doi:10.1016/0022-1910(73)90202-3
- Sato S, Sekine Y, Kakumu Y, Hiramoto T. 2020. Measurement of diallyl disulfide and allyl methyl sulfide emanating from human skin surface and influence of ingestion of grilled garlic. Sci Rep 10: 465. doi:10.1038/ s41598-019-57258-1
- Schultz GW. 1992. Biting activity of mosquitos (Diptera: Culicidae) at a malarious site in Palawan, Republic of The Philippines. Southeast Asian J Trop Med Public Health 23: 464-469.
- Shroyer DA, Craig GB. 1983. Egg diapause in Aedes triseriatus (diptera: culicidae): geographic variation in photoperiodic response and factors influencing diapause termination. J Med Entomol 20: 601-607. doi:10 .1093/jmedent/20.6.601
- Shroyer DC, Siverly RE. 1972. A comparison of egg production of Culex pipiens pipiens L. fed on avian and mammalian hosts. Mosquito News 32: 636-637.

- Smith JL, Fonseca DM. 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70: 339–345. doi:10 .4269/ajtmh.2004.70.339
- Spielman A. 1957. The inheritance of autogeny in the Culex pipiens complex of mosquitoes. Am J Epidemiol 65: 404-425. doi:10.1093/oxfordjour nals.aje.a119878
- Spielman A, Wong J. 1973. Studies on autogeny in natural populations of Culex pipiens. 3. Midsummer preparation for hibernation in anautogenous populations. J Med Entomol 10: 319-324. doi:10.1093/jmedent/
- Sundararaman S. 1949. Biometrical studies on intergradation in the genitalia of certain populations of Culex pipiens and Culex quinquefasciatus in the United States. Am J Hyg 50: 307-314.
- Tuno N, Tsuda Y, Takagi M. 2017. How zoophilic Japanese encephalitis vector mosquitoes feed on humans. J Med Entomol 54: 8-13. doi:10 .1093/jme/tjw165
- Turell MJ, Morrill JC, Rossi CA, Gad AM, Cope SE, Clements TL, Arthur RR, Wasieloski LP, Dohm DJ, Nash D, et al. 2002. Isolation of West Nile and Sindbis viruses from mosquitoes collected in the Nile Valley of Egypt during an outbreak of Rift Valley fever. J Med Entomol 39: 248-250. doi:10.1603/0022-2585-39.1.248
- Vargas HC, Farnesi LC, Martins AJ, Valle D, Rezende GL. 2014. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. J Insect Physiol 1: 54-60. doi:10.1016/j .jinsphys.2014.02.001
- Vezzani D, Mesplet M, Eiras DF, Fontanarrosa MF, Schnittger L. 2011. PCR detection of Dirofilaria immitis in Aedes aegypti and Culex pipiens from urban temperate Argentina. Parasitol Res 108: 985-989. doi:10.1007/ s00436-010-2142-1
- Wallis RC, Spielman A. 1953. Laboratory rearing of Culex salinarius (Diptera, Culicidae). Proc Entomol Soc Washington 55: 140–142.
- Wallis RC, Whitman LO. 1968. Colonization of Culex salinarius in the laboratory. Mosquito News 28: 366-368.
- Wanji S, Tanke T, Atanga SN, Ajonina C, Nicholas T, Fontenille D. 2003. Anopheles species of the mount Cameroon region: biting habits, feeding behaviour and entomological inoculation rates. Trop Med Int Health 8: 643-649. doi:10.1046/j.1365-3156.2003.01070.x
- Wispelaere M, Desprès P, Choumet V. 2017. European Aedes albopictus and Culex pipiens are competent vectors for Japanese encephalitis virus. PLoS Negl Trop Dis 11: e0005294. doi:10.1371/journal.pntd.0005294
- Witmer K, Sherrard-Smith E, Straschil U, Tunnicliff M, Baum J, Delves M. 2018. An inexpensive open source 3D-printed membrane feeder for human malaria transmission studies. Malaria J 17: 1-7. doi:10.1186/ s12936-018-2436-9
- Yurchenko AA, Masri RA, Khrabrova NV, Sibataev AK, Fritz ML, Sharakhova MV. 2020. Genomic differentiation and intercontinental population structure of mosquito vectors Culex pipiens pipiens and Culex pipiens molestus. Sci Rep 10: 7504. doi:10.1038/s41598-020-63305-z

Points to Consider When Establishing and Rearing *Culex* Mosquitoes in the Laboratory

Megan E. Meuti, Alden Siperstein and Matthew Wolkoff

Cold Spring Harb Protoc; doi: 10.1101/pdb.top107823 originally published online February 22, 2023

Email Alerting Service	Receive free email alerts when new articles cite this article - click here.
Subject Categories	Browse articles on similar topics from Cold Spring Harbor Protocols.
	Mosquitoes (121 articles) Mosquitoes: A Laboratory Manual (122 articles)

To subscribe to Cold Spring Harbor Protocols go to: http://cshprotocols.cshlp.org/subscriptions