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Poorly damped oscillations pose threats to the stability and reliability of interconnected power systems. In
this work, we propose a comprehensive data-driven framework for inferring the sources of forced oscillation
(FO) using solely synchrophasor measurements. During normal grid operations, fast-rate ambient data are
collected to recover the impulse responses in the small-signal regime, without requiring the system model.
When FO events occur, the source is estimated based on the frequency domain analysis by fitting the least-
squares (LS) error for the FO data using the impulse responses recovered previously. Although the proposed
framework is purely data-driven, the result has been established theoretically via model-based analysis of
linearized dynamics under a few realistic assumptions. Numerical validations demonstrate its applicability to
realistic power systems including nonlinear, higher-order dynamics with control effects using the IEEE 68-bus
system, and the 240-bus system from the IEEE-NASPI FO source location contest. The generalizability of the
proposed methodology has been validated using different types of measurements and partial sensor coverage

conditions.

1. Introduction

Forced oscillations (FOs) such as the 2019 Florida event [1] pose
threats to the security and reliability of interconnected power systems,
as the potential resonance with a natural system mode could induce
oscillations within the interconnection. Among the critical challenges in
mitigating FOs, determining the source location using Phasor Measure-
ment Unit (PMU) measurements in real-time has attracted significant
attention in recent years [2].

Thanks to widespread installations of PMUs, synchronized measure-
ments with high sampling rates make it possible to develop data-driven
FO localization methods. By calculating the energy function, dissipating
energy flow (DEF)-based methods have been proposed in [3-5], and
adopted by the ISO-NE [6]. However, the success of DEF-based methods
relies upon measurements at the FO source generator and presumes
accurate system topology information. Recently, a model-enhanced
method has been proposed to address the lack of measurements at
the FO sources by utilizing a model of linearized grid dynamics [7].
Nevertheless, acquiring accurate system parameters remains a chal-
lenge for large interconnections. Other data-driven FO localization
methods include a Robust Principal Component Analysis (RPCA)-based
method, which extracts the low-rank FO components from PMU mea-
surements [8], and two recent works suggesting system identification

approaches [9,10]. However, the RPCA method lacks theoretical con-
nections between the power system model and low-rank FO compo-
nents, as pointed out by [9]. While the system identification-based
approaches are explainable from a theoretical perspective, the require-
ment of collecting measurements at most buses may be impractical and
incur high computational complexity.

To address the aforementioned issues in the state-of-the-art, this
work puts forth a purely data-driven FO localization framework, solidly
founded upon linear system analysis of the power system in the small-
signal regime. This analysis suggests that the FO input can be fitted in
the frequency (Fourier) domain with the FO measurements if the system
impulse responses between candidate input—output buses are available.
To this end, we genuinely consider using the impulse responses recov-
ered from ambient measurements collected during normal operation of
the power system. Our earlier works assert that the response recovery
is analytically guaranteed for both internal system states at generators,
as well as output variables at buses and transmission lines [11,12]. By
output variables, we refer to the algebraic variables of the differential—
algebraic equations governing grid dynamics, such as terminal voltage
angles/frequencies and active line flows. The analysis conducted in this
work suggests that when direct measurements of generator states are
not available, the relative phase shifts between output data could still be
accurately estimated and, subsequently, used to identify the FO source.
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We also show that the proposed framework can be readily generalized
to handle FO scenarios with multiple sources and frequencies.

A two-stage algorithm is accordingly developed to recover the
FO sources. Before the FO events, ambient PMU measurements are
collected to infer impulse responses. When an FO event is detected,
the recovered responses are used to identify FO sources. Heed that
our algorithm requires measurements only at a nearby bus for each
possible FO source. Moreover, the algorithm can leverage diverse types
of measurements (including line flows) at any location in contrast to
energy-based methods such as [4]. Finally, the proposed algorithm is
computationally efficient, as most of the computational burden is on
the offline recovery of impulse responses.

The main contribution of this work is two-fold. First, we analyze the
FO responses for both generator states and output variables, and for-
mulate localization problems for both cases accordingly. The proposed
FO localization framework utilizes the impulse responses recovered
using ambient measurements, and builds upon linearized grid dynamics
under reasonable assumptions for wide-area interconnections. Second,
we develop a computationally efficient data-driven FO localization
algorithm that utilizes PMU data collected before and during the FO
event. The algorithm requires no knowledge of the actual system model
or dynamics parameters and is flexible regarding measurement types
and locations.

The rest of this paper is organized as follows. Section 2 introduces
the linear system dynamics and formulates the FO localization problem.
Section 3 deals with source localization first from generator state FO
data using impulse responses recovered from ambient data. It then
generalizes results to collecting FO data from output variables and
to settings of FOs having multiple sources. A two-stage localization
algorithm is developed in Section 4. Numerical tests on the IEEE 68-bus
system and the IEEE-NASPI FO contest dataset in Section 5 demonstrate
the effectiveness of the novel algorithm under different input and
measurement conditions. The paper is concluded in Section 6.

2. Problem formulation

In the vicinity of an operating point, grid dynamics can be approx-
imated by a linearized state-space model [13, Ch. 14]:

x(1) = Ax(¢) + Bu(r). 1)

Here vector x € R™ collects all system state variables, such as genera-
tors’ internal states, while u € R” collects system inputs corresponding
to disturbances to nodal power balance. Both x and u represent de-
viations from the operating point. Matrices A and B are the state
matrix and input matrix, respectively. The linearized model in (1)
approximates well the power system dynamics of interest to our work
focusing on the small-signal oscillation regime [10][13, Ch. 14]. Note
that (1) is a multiple-input multiple-output (MIMO), and linear time-
invariant (LTI) system. Given the system inputs u(?), the states x(r)
can be fully determined using the system’s impulse response with the
subscripts here indicating the input and output. For a single input u,(z)
at location ¢, the output x(¢) can be found as the convolution of u,(r)
with the Zth column of the impulse response matrix T, (t). Expressed
in the Fourier domain per the convolution theorem, we get that

ﬁ(g):fuﬁx(g).ﬁf@), Ve =1,...,n )

where the notation *(¢) stands for the Fourier-domain representation of
a signal evaluated at frequency & € R.

Forced oscillations (FOs) are sustained oscillations caused by peri-
odic inputs to power systems. Possible FO sources include cyclic loads,
malfunctioning equipment, and controller failures; see [1] for more
discussions. Without loss of generality, this work considers FO inputs
due to generator controller failures. Typically, turbine governor control
directly affects the mechanical power balance in the form of perturbing
input u, (7). Recent work [14] has found that exciter control can also
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be modeled with a similar effect on u,(r). Thus, we focus on these two
types of FO sources due to generator controls.

If u,(¢) is a periodic sinusoidal signal with F frequency components,
its Fourier-domain representation becomes

FA g ,
B2 Y S [ac-g)+ehac+e)| 3)
j=1
where A(-) denotes the Dirac delta function. Per component j, sym-
bols &;, A;, and ¢; denote its frequency, amplitude, and phase angle,
respectively. The number of frequency components F is known to be
small with a typical bound of F < 2 [1]. Although a single-frequency
input could induce multiple harmonics of odd orders, most of these
harmonics are likely to lie outside the [0.1,0.8] Hz range of inter-area
oscillation modes. We first focus on single-frequency oscillations and
handle the case F =2 in Section 3.2.

For F = 1, the single frequency ¢, in (3) will be simply denoted by
&*. If &* is close to the frequency of a system mode, the resonance con-
dition could lead to large-amplitude oscillations observed at locations
away from the source, which greatly complicates FO localization [15].
Under resonance, the frequency &* can be easily estimated by selecting
the largest frequency component in the recorded data, that is &* :=
arg max, [|R(2)l,-

Knowing &* and the system’s impulse response, we can now estimate
the input mode i, for each possible source location # using the least-
squares (LS) error criterion applied to (2). This way, the task of FO
source localization amounts to selecting the index # minimizing

min min “Tu%x(g*)ﬁf —%(&) i . &)

1<t<n a,eC

For each ¢, the inner LS problem enjoys a closed-form solution. This
makes it very fast to search for the location with the smallest LS fitting
error, as detailed later.

Remark 1 (Generalizability). The linearized system model in (1) has
been introduced to simplify the analysis; the tests of Section 5 are
conducted on realistic settings with nonlinear dynamics and controllers
in place. In addition, while only generator controllers have been con-
sidered as the FO sources, our approach could be extended to other FO
types. As pointed out in [1], cyclic outputs from loads and batteries
can arise from controller issues in their power-electronic interfaces.
However, these controllers tend to have much faster timescales, and
thus are not likely to resonate with inter-area modes that are of higher
interest to the FO problem. Moreover, the assumptions of single-mode
and single-source for the FO taken in (4) represent most of FO cases
observed in practice. The generalized scenario of FOs with multiple
modes and/or sources is discussed in Section 3.2 and tested later on,
as well.

3. FO localization via recovered responses

While the system’s impulse responses enable an efficient FO local-
ization per (4), it can be challenging to obtain them without having
an accurate model of the power system and the dynamic parameters
of all generators. To tackle this predicament, we leverage an ap-
proach to estimate impulse responses using synchrophasor data under
ambient conditions alone [11,12]. The approach recovers impulse re-
sponses by cross-correlating ambient PMU data between pairs of system
inputs-outputs, and enjoys guaranteed recovery performance under
some reasonable assumptions listed below. For the rest of the paper,
we use the superscript - to denote recorded signals under ambient
conditions and the superscript -/ to denote signals recorded under FO
conditions.

AS 1 (Swing Dynamics). Grid dynamics follow the second-order model
M5 + D + K& = u, with the state including generator rotor angles in &
and speed (frequency) deviations in @ = 8.
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AS 2 (Homogeneous Damping). The ratio between inertia and damping
constants is homogeneous across generators, namely D = yM with a
constant y > 0.

AS 3 (Lossless System). Under lossless lines, the power flow Jacobian K
is a symmetric Laplacian matrix.

AS 4 (Ambient Condition). The ambient system input is a zero-mean
white-noise random process with locational variance proportional to
the inertia constant, i.e., having covariance matrix ¥ = «aM with a > 0.

While these assumptions are postulated to simplify the analysis, they
tend to hold pretty well in large interconnections. Swing dynamics in
(AS 1) has been popularly used for small-signal analysis to study key
oscillation modes [13, Ch. 14]. The proportional damping in (AS 2)
for approximating the swing dynamics has been considered in [11,
12,16,171, as a simplification of practical damping settings. For high-
voltage transmission lines, power losses are negligible leading to (AS 3)
even with most common load models like constant-current ones [18].
Finally, the ambient condition in (AS 4) implies that areas of larger
perturbations have more inertia deployed. While this assumption may
not be very realistic, our analysis in [11,12] essentially used it to show
that all ambient modes of interest are equally excited.

Under these assumptions, the pair-wise impulse responses can be
recovered by cross-correlating the corresponding ambient PMU mea-
surements as formally stated next [11,12].

Lemma 1 (State’s Impulse Responses). Under (AS 1)-(AS 4), the impulse
responses of rotor angle or frequency are equivalent to the cross-correlation
of the related ambient signals:

2y 2y d

Tuf,wk 0= ;Caz‘},wz 0= _7 E 4.5 O} ()
2y 2y d
1,5 0= _;Cm;,a‘g(t) =- zcgg,,gz(t) (6)

fort > 0. Here C. . denotes the cross-correlation operator and the subscripts
indicate its two arguments. Because T, o, D is the derivative of T, AU
each one of them can be recovered from the other using time differentiation
or integration.

Lemma 1 asserts that the cross-correlation of ambient data can
recover the impulse responses. For simplicity, we will use Cw;yxu(l) to
represent the recovered 7,,, , (), assuming suitable operations have been
taken per Lemma 1. The former enables us to establish a data-driven
FO localization approach in the following.

Proposition 1 (Data-driven FO Localization). Using the recovered impulse
responses, the FO source can be identified based on the estimated FO

frequency &* by solving:

min  min ||C a Y.n, — &/ ("
gmin - min [[Cop o (@) 8, =37 ()

2
. )

Proposition 1 builds upon the recovered responses as the feature
vectors for each possible source. Hence, any recovery accuracy issue
faced by the data-driven approach in Lemma 1 could lead to errors
in FO localization, as shown by our numerical tests. Heed that there
is an unknown scaling factor of (2y/«) in Lemma 1. Nonetheless, this
factor is the same amongst all locations under (AS 2) and (AS 4),
and can thus, be omitted upon solving (7). The proposed data-driven
localization approach can benefit from the fact that each possible
source location would lead to very different system-wide responses.
It is also known that the participation factors of an oscillation mode
at individual generators can be very different, especially from one
area to another [19, Sec. 8.3]. This renders the proposed FO approach
more robust against possible recovery errors as demonstrated in Sec-
tion 5. In general, the more state variables are observed, the better the
localization performance.

Electric Power Systems Research 234 (2024) 110759

Back to (7), the solution of the inner LS problem is simply:
A A % + ,\/' "
iy [Cop @] %) ®)
where superscript * denotes the matrix’s pseudo-inverse. Accordingly,
the LS fitting error for location # becomes
2
2

N N +
% (€)= Cup o€ [Cpne @] %€

This closed-form solution of LS makes it very convenient to evaluate
the fitting error for each possible input location and thus to search for
the best one.

3.1. Localization based on output observations

Proposition 1 assumes synchrophasor readings of generators’ in-
ternal states, such as & and ®, under both ambient and oscillatory
conditions. However, PMUs can only measure algebraic variable out-
puts at the power system level, at buses and lines. We next extend
the proposed approach to consider measurements of system outputs.
Specifically, we consider measurements of bus voltage phase angle 6;
and frequency f; per bus i, as well as the active line flow p;; for the
line (i, j) connecting buses i and j. Other measurement types such as
voltage magnitudes and reactive power could be included.

By linearizing the power flow at a given operating point, system out-
puts y can be linearly related to system states through an observation
matrix C as

y ~ Cx (©)]

where y € R" collects all the aforementioned bus and line outputs; re-
call that the dynamic model in (1) was also derived upon linearization.
Our earlier work [12] has utilized the linearized model (9) to extend
Lemma 1 to consider output responses for bus and line variables, as
stated next.

Lemma 2 (Output’s Impulse Responses). Under (AS 1)-(AS 4) and (9),
the impulse response of bus angle 6, and frequency f; have the following
equivalence with t > 0:

2y
1,0 = ;Cw‘;,f’," ® (10)
2y
Ty, 0,0 = —;Cw;,e," ®. an
For line flow p;;, it similarly holds that:
2
T“/,Pij ®=- ;ycw;,pfl ®. (12)

Similar to Proposition 1, Lemma 2 enables us to use the recovered
responses for bus angles/frequencies and line flows to localize FOs.
Nonetheless, recovering these impulse responses still relies on mea-
surements of state variables, i.e., the input generator speed w$(?) in
(10)—(12). Therefore, Lemma 2 is not practically useful. To tackle this
issue, we could use the frequency at the nearest bus for each candidate
FO source as a surrogate, i.e., using f7(r) at the bus k that is closest
to input £ to replace ¢ (#). This naive approach could expand Propo-
sition 1 to using all system output measurements, but may introduce
inaccuracies to FO localization in (7). The nearest-bus frequency f; ()
does not exactly match the generator speed (1), because per (9) the
former is in fact a linear combination of all generator states, not just
the closest one. This mismatch has also been confirmed numerically,
leading to high FO localization error for the naive approach.

To address this observability predicament, we develop a formal
approach to account for the inaccuracy in the recovered responses.
Consider the Fourier transform of the cross-correlation Cy;zyy;_z (1) between
two outputs at buses i and j. Its Fourier-domain representation is called
the cross power spectral density (CPSD) and will be denoted by CA‘yfz’y? ©&).
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Interestingly, the phase angle of CPSD can be shown to reflect the
relative phase shift from ’fuf,y, toT upy, @S follows [20]:
Aéyg,y;;(df) = Af,,f,yj - Afut,,y,. &, Ve 13
Hence, the phase angles of the terms in (2) relate as:
2§ = 2 (&) + 2T, (©)

= 2ip (&) + 2T, , (&) + Acﬂym (&), VE. 14

Eq. (14) asserts that we can use the measured output signal y{(r)
as a surrogate for the non-measured candidate input signal wf(?).
Nonetheless, by doing so, we introduce an unknown angle ATu 3 &)
for all output FO measurements in §. Because this angle ambiguity
is the same for all output locations, it can be eliminated by fitting
the angle relations in (14) with an unknown input angle, instead of
the input frequency component in Proposition 1. In other words, for
each candidate location # and surrogate location i, we can alternatively
estimate £i;(&) = 2ii (&) + <7, .. (&) instead of 2a,(¢) alone; recall each
candidate location # is paired up with a single surrogate location i.
This allows us to establish a data-driven FO localization approach by
altering the LS error fitting procedure as shown below.

Proposition 2 (FO Localization Using Output Data). By using the ambient
signal y{ at the closest bus i for any input location, the FO source can be
identified using the phases of the CPSD terms at the estimated FO frequency
&* by solving:
min min || £d; + 2Cpa ya(E%) — 287 )13 . (15)
1<i<n zi; i

Similar to (7), the inner LS problem in (15) features a simple
closed-form solution given by

i« LY (28]€) - 20y p@)) - (16)
=1

This easy solution makes it very efficient to search for the best input lo-
cation. Note that (15) is based solely on output measurements, recorded
under ambient conditions and FO conditions. Moreover, it only requires
to identify the surrogate output y; at bus i for each possible input
location. Assuming a reasonable level of PMU deployment, the size of
output vector y could be sufficiently large to allow for distinguishing
each input location. Additionally, it can incorporate other types of
outputs at any location, thanks to the flexibility of Lemma 2. Hence,
the proposed FO localization method can readily incorporate output
measurements. In the numerical tests, we will further demonstrate the
flexibility of our approach when output measurements closest to the FO
source are unavailable.

3.2. Multiple FO sources and modes

Although most of the analysis thus far focuses on a single FO source
with one oscillation frequency, it is possible to extend our results
to multiple sources/modes based on the data-driven framework for
recovering output responses. Note that the case of single source with
multiple frequencies is straightforward to handle. This is because a
frequency-domain analysis of the oscillation output §/ can estimate
the number and accordingly the frequencies of underlying oscillation
modes by using a prescribed threshold. However, the case of multiple,
unknown number of, source locations could greatly complicate the FO
localization, as it would become a combinatorial search over all the
possible scenarios. Fortunately, it is practically reasonable to assume
at most two input source locations for the FO problem, as the chance
of having more than two coincidental sources would diminish to almost
zero in practice [1]. Hence, we consider the extension to at most two FO
sources with a total of F estimated oscillation frequencies. Accordingly,
each frequency £7 has been obtained by comparing its component with
a prescribed threshold 7, such that ||§/ (§j)||2 >T.
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Based on the identified frequencies, we extend (15) to search over
any possible pair of input locations {i,,i,}, by solving
F
min_ > min ”4’%2 - 237

<ii.irn< . -
1<iy,ip<n i FAUN

A * A * 2
+4Cyia] v €+ Lcyfz’ya(fj) S a7)

Clearly, each subproblem still follows the same structure as the inner
LS minimization in (15) with the averaging solution. This allows us to
quickly compute the minimal fitting error for a candidate pair {i,,i,},
and then pick the pair with the best fit. For the possibility of two
input locations, the number of candidate choices becomes n(n — 1)/2 as
compared to the n choices for the case of a single source. This increased
computational complexity could be addressed by using a more efficient
search method based on e.g., sparse signal recovery or compressed
sensing [21]. We do not consider the latter here due to the scope limit
but will investigate this computation issue with numerical tests later in
Section 4.

4. FO localization algorithm

The proposed scheme is implemented as a two-phase algorithm
tabulated as Algorithm 1. We consider the realistic condition that PMUs
are installed at critical substations with large generation and lines
with high power flows connecting control areas. We also assume there
is a PMU installed at one nearby bus for each possible FO source
generator. During Phase 1, pair-wise impulse responses are inferred
from ambient measurements. First, we apply a bandpass filter with
passband [0.1,0.8] Hz on ambient data x?(y?) to find the detrended
signals [1]. For simplicity, both state vector x and output vector y are
denoted by x in this section. Next, the detrended data streams are cross-
correlated for all pairs of input/output locations per Lemmas 1 and 2.
Depending on the type of impulse responses of interest and ambient
data, numerical differentiation may be taken to recover T, , for all
possible input locations #. The Fast Fourier Transform (FFT) will be
taken to generate {7, (&)}_,.

When an FO event is detected, Phase 2 of the proposed algorithm is
initiated to localize the FO source. First, the algorithm runs FFT analysis
on x/ to generate %/ (£), and identify the oscillation frequency £*. Next,
for each possible #, the LS solution for input i, is calculated using the
recovered ﬁ,px(ej*) by (4) or (15) depending on the measurement loca-
tions. Finally, the algorithm reports the location #* with the smallest
fitting error of (4) or (15). Note that the neighboring set Ny of location
¢* per graph connectivity will also be reported, as the estimation error
of recovered impulse responses may lead the identified source to a
nearby location.

To show the computational efficiency of the algorithm, we consider
Phase 1 and Phase 2 separately. We consider a system with n measure-
ment locations (PMUs) for simplicity. In Phase 1, the computational
complexity is dominated by cross-correlation. Assume each PMU takes
M, ambient samples. The complexity for each pair of cross-correlation
is O(M%) [22]. Thus, the complexity of Phase 1 is O(nsz). In Phase
2, assume each PMU takes M, FO samples. The complexity of the FFT
step is O(nM,logM,). Additionally, the complexity of calculating LS
solutions and report the FO source is O(n?). In general, the number
of FO samples M, is larger than the number of locations n. Thus, the
computational complexity of Phase 2 is O(nM,logM,).

To implement Algorithm 1, we recommend using at least 10 min
of ambient data to recover impulse responses, and 20 s of FO data for
localization. The length of recommended measurements indicate that
n < M, <« M,. Thus, the computational burden is mostly at the off-
line stage. For on-line FO source localization, Phase 2 is very efficient
thanks to the closed-form LS solution, and the small number of required
FO samples. Note that for the two-source scenario, the complexity of
solving (17) becomes O(r®), which does not alter the overall complexity
as n K< M,.
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Algorithm 1 FO Localization

1: Input: Ambient data x? € R"™!, oscillation data x/ € R"2, number
of sources n, passband [ f1s fz].

2: Output: The candidate oscillation source #* by LS solution, and set
N« per graph connectivity.

3: Initialize: Set the iteration index i,k = 1, inferred impulse re-
sponse set {Cx;',xz Y € R, variables in frequency domain:

{éxf',xz(f)}?k=1 eCl, {fcif(é)}f:l € C2, recovered oscillation input
i € C", oscillation mode &*.

Phase 1 - Impulse Responses Inference (off-line)

4: for i in range(n) do
Filter and update x{:
x{ < bandpass (Xl” — mean(xy), [fl,fz] )
6: end for
7: for i in range(n) do
8
9

o

for k in range(n) do
Cross-correlate ambient data streams: C,a X
a,

10: if Derivative required for Cxa’xz then
. d

11: U})date CX?,XZ‘ CX:Z,XZ « ECX;I’XZ-

12: end if

13: end for

14:  Run FFT and update C, (&) C (&) &CXM.
15: end for

16: Return: inferred impulse response set {C‘xhx(f)}:'zl.

Phase 2 - FO solver (on-line)

17: Run FFT and update &/: &/ (&) &xf.

18: Identify oscillation mode and update &*:
£ « argmax; 1%/ ).

19: for i in rangé(n) do

20: if x taken at generators then

21: Solve LS problem and update 4;: &; < (8).

22: else

23: Solve LS problem and update £i;: zi; < (16).

24: end if

25: end for

26: Pick #* with the smallest fitting error, and generate its neighboring
set Nys.

27: Return: £*, Ny..

Area3,4,5 &. @
_______ .m” 3 @

® Generator
Input: Py, V¢
State: w, &

M Bus
Variable : 6, f
Line
Variable : p;;

[ e

et —seetil_ybics
L0821 g
.7 -850 4

wois

s

@ B0A0ss

b5 @ &
[ @

Fig. 1. Diagram of the 68-bus system with 16 generators.

5. Numerical results

The proposed method has been numerically evaluated on the IEEE
68-bus system, and the 240-bus system from the IEEE-NASPI oscillation
source location contest [23]. As shown in Fig. 1, the 68-bus system
has 16 generators, where the 9 generators in Area 1 are equipped with
exciters. For this system, impulse responses, ambient data, and forced
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Fig. 2. Spectrum of rotor speed w;; response from u,: simulated vs. inferred from
ambient data.

oscillations were generated in MATLAB using PST [24], as detailed
soon. We considered all generators as FO input locations. We com-
menced with the single-source, single-FO scenario, with the following
cases: (i) Direct measurements of generator states with full observabil-
ity; (ii) Measurements of generators’ terminal variables, again with full
observability; and (iii) Measurements only at surrogate buses along
with buses and lines as outputs. We subsequently explored the cases
of two FO sources and two FO frequencies.! For the 240-bus system,
we have used the FO dataset from the IEEE-NASPI contest [23], and
an ambient dataset generated by the TSAT simulator with random load
perturbations for the same system.

For the 68-bus system, we simulated nonlinear generator models
with control effects and set system inputs at generator mechanical
power and exciter voltage references. For impulse responses, we ran
time-domain simulations with an impulse-like function (very short rect-
angular wave?) as input. To generate ambient signals, the mechanical
power and exciter references of all generators were perturbed by zero-
mean white Gaussian noise. To generate FO signals, the generator’s
mechanical power or exciter’s reference was perturbed by a sinusoidal
signal with a frequency close to a system mode. We selected the
four modes 0.143 Hz, 0.43 Hz, 0.57 Hz, and 0.714 Hz (identified
as system modes from the simulated impulse responses) as FO input
frequencies. The sampling rate for all tests was set to 200 Hz (time-step
of dt = 0.005 s). Note that the simulated system is nonlinear; thus, the
LTI assumption in (AS 1) has some mismatch. The line resistance-to-
reactance ratio was small, and damping constants D were proportional
to inertia constants M, making (AS 2)-(AS 3) hold pretty well.

5.1. Single FO source with single FO mode

We first validated the algorithm using measurements of generator
states. Despite violations of model assumptions, the Fourier-domain
responses matched very well with the model-based responses in terms
of amplitude and phase angle within the frequency band of interest.
Fig. 2 compares the two responses for rotor speed w. Clearly, the match
between the two is very close, except for some small deviations, primar-
ily due to model approximations. By using the recovered responses, we
were able to localize most FOs via the LS solutions in (4). Among all 64
scenarios, the only error of LS solutions comes from the less significant
system mode 0.57 Hz. However, the source can still be recovered from
the neighboring set of the identified source, showing the validity of the
proposed model and algorithm. The experiment setup and test results
are shown in Table 1.

Next, we simulated a scenario with measurements of the generators’
terminal buses. As mentioned before, due to the power flow coupling,
the approximation error between generator speed and terminal bus
frequency manifests itself in estimated responses, and leads to errors
in FO source recovery. The numerical tests suggest that despite the
reduced accuracy in inferred responses, the proposed algorithm can
still recover most FO sources correctly from LS solutions and their
neighboring sets, as shown in Table 1.

! Codes and results are available at: https://github.com/ShaohuiLiu/fo_
local.
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Fig. 3. Spectrum of rotor speed w,; (measured by f3;) response from u,: simulated
vs. inferred from ambient data.

Table 1

Localization accuracy for single-source FOs.
Input Sensor coverage LS Graph
Governor Rotor (Full) 98.40% 100%
Governor Bus (Full) 92.20% 96.90%
Governor Bus (Partial) 87.53% 98.50%
Governor Bus&Line (Partial) 82.80% 92.20%
Exciter Bus (Full) 30.60% 97.20%
Exciter Bus (Partial) 36.10% 94.50%

Table 2

Localization accuracy for 2 FO sources.
Sensor coverage LS Graph Major mode
Rotor (Full) 90.23% 98.05% 99.61%
Bus (Partial) 43.95% 91.21% 96.48%

We also tested the proposed algorithm under partial sensor coverage
with no measurements at generator buses. Each generator was surro-
gated by a measurement at a nearby bus. In the 68-bus system, the
assumed PMUs were placed within at most 2 hops away as depicted
in Fig. 1. We considered measurements of both types, bus frequency f;
and line flow p;;. As suggested in Section 3.2, relative phase shifts are
used for FO localization when measurements for input locations are not
near generators. The results advocate that FO sources recovered from
LS solutions are less accurate due to inaccurate response estimations,
as shown by the example in Fig. 3. The proposed algorithm still points
out the correct FO source area, as the correct source can be recovered
from the reported neighboring set in most cases, as reported in Table 1.

Finally, disturbances originating from the generator’s excitation
system were considered. We perturbed the voltage reference at 9 gen-
erators equipped with exciters to generate simulated impulse responses
and FOs. For FOs, we simulated 4 identified modes, so there were 36
scenarios. In this case, excitation system outputs are dominated by
the dynamics of the excitation system. Thus, the responses of states
and variables are delayed, and the linearized system may not reflect
the actual responses well. Under the realistic partial sensor coverage
setup, we noticed that the FO sources recovered from LS solutions were
inaccurate. Nevertheless, the correct FO source area is still pointed out
correctly in the neighboring set in most cases, as reported in Table 1.

5.2. Two FO sources with multiple modes

We also considered the case of two FO sources at two distinct
input frequencies. The input frequencies were selected at the identified
system modes, with 0.143 Hz set as the major mode with twice the input
amplitude as 0.43 Hz. This case is more challenging as the major mode
may dominate system oscillations. As detailed in Table 2, the proposed
algorithm can still identify both FO frequencies and locate the sources
correctly for almost all 256 possible scenarios. With full observability
on rotor states, Algorithm 1 missed the actual major FO source in a sin-
gle scenario and successfully identified both sources for 251 scenarios.
Under the more realistic condition with measurements only at proxy
buses, Algorithm 1 still achieves high accuracy in locating the major FO
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Fig. 4. Diagram of the 240-bus system with 26 monitored generators [25]. Circled
locations are monitored generators with both name and rating matched at the ambient
and FO datasets. Locations with stars are FO sources in Case 3 and Case 4.

source. Both sources can be recovered from the reported neighboring
set for the vast majority of scenarios, showing the effectiveness and
robustness of the proposed FO localization algorithm.

5.3. Validation with the IEEE-NASPI FO contest dataset

This 240-bus system was used as a benchmark by the FO localization
contest [23]. The power system includes a total of 13 test cases.
Here, we focus on Case 3 and Case 4, which are considered to be
the most challenging cases with both resonance conditions and un-
monitored sources. A 15-min ambient dataset was used to infer impulse
responses, while FO signals lasting for 15 s from the contest dataset
were subsequently used for the localization. Due to some mismatches
in the naming and data types between the available ambient and FO
datasets, we were only able to utilize the rotor frequency data at 9 out
of the 26 measured generators to evaluate Algorithm 1, as marked in
Fig. 4. For Case 3, Algorithm 1 has successfully identified bus 1431 as
the FO source regardless of the presence of fault-induced transients.
Indeed, bus 1431 is the closest bus to bus 1131, the actual source,
among all monitored locations. For the 3 scenarios under Case 4 with
mostly pre-fault FO signals, Algorithm 1 identified bus 2634, which is
also the closest one to the actual source at bus 3831. If the post-fault FO
signals were considered, the source was identified as bus 1232, which
is also very close to the actual source. This numerical test has shown
promising results in using the proposed algorithm for a realistic large
test system, even if the FO source is not directly monitored.

6. Conclusions

This work has developed a data-driven framework for FO localiza-
tion with dynamics responses recovered from ambient synchrophasor
data. FO responses have been analyzed for both generator states and
output variables as buses and lines. Leveraging the recovered response,
the FO localization task has been posed as an LS fitting problem.
A computationally efficient algorithm has been proposed that uses
ambient and oscillatory phasor measurements to identify FO sources.
The algorithm is flexible regarding location and types of PMU data,
and can provide a system operator with a neighboring set of possible
FO locations. The proposed method has been numerically validated
using the IEEE 68-bus system under realistic nonlinear dynamics with
control effects, as well as a dataset on a 240-bus system generated for
the IEEE-NASPI contest [23]. The method could pinpoint FO sources
for the vast majority of scenarios, under full and partial observability,
governor or exciter oscillations. Future research directions include
model-based analysis for different types of FO sources, performance
analysis for various measurement types and operation conditions, as
well as numerical validation using real-world PMU data.
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