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Abstract

Person re-identification (re-ID) aims to retrieve images
of the same identity from a gallery of person images across
cameras and viewpoints. However, most works in person
re-ID assume a short-term setting characterized by invari-
ance in appearance. In contrast, a high visual variance can
be frequently seen in a long-term setting due to changes in
apparel and accessories, which makes the task more chal-
lenging. Therefore, learning identity-specific features ag-
nostic of temporally variant features is crucial for robust
long-term person Re-ID. To this end, we propose an At-
tribute De-biased Vision Transformer (AD-ViT) to provide
direct supervision to learn identity-specific features. Specif-
ically, we produce attribute labels for person instances and
utilize them to guide our model to focus on identity features
through gradient reversal. Our experiments on two long-
term re-ID datasets - LTCC and NKUP show that the pro-
posed work consistently outperforms current state-of-the-
art methods.

1. Introduction

Person re-identification (re-ID) research focuses on iden-
tifying individuals across different spatial and temporal
points and across cameras. It has increasingly gained at-
tention due to its applications in video surveillance [34],
cross-camera person tracking [37], and multi-camera activ-
ity analysis [2]. Person re-ID is typically categorized into
short-term and long-term scenarios. The former applies to
images captured within a few minutes to hours with lim-
ited variations in appearance. In contrast, the latter scenario
considers images captured over many days or months with
more diverse appearance changes.
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Figure 1: Example images of three subjects in the LTCC
dataset. Person 1 and person 2 appear on more than one day
with different outfits and accessories. Person 3 appears only
for a day.

The research community has made significant advance-
ments in the short-term scenario for more than a decade.
Existing methods in short-term person re-ID have evolved
from extracting hand-crafted features [8, 11] and distance
metric learning [16, 20] to deep-learning-based methods
[14, 29, 7, 25, 9] to solve challenges emerging from changes
in viewpoints, occlusion, pose variations, misalignment,
and varying illumination. This has resulted in robust re-ID
performance on short-term benchmark datasets where the
individual is wearing the same clothes across the data cap-
ture period.

In contrast, progress in the long-term scenario has been
challenging, and there is significant room for improve-
ment. For real-world applications, the long-term re-ID
problem is of greater relevance. For instance, in many
law enforcement-related applications, surveillance video
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footage can span an extended period where the same in-
dividuals are likely to be seen with different clothes and
apparel. Additionally, as shown in Figure 1, even in data
spanning a short period of a few minutes to hours, indi-
viduals could put on or remove outerwear such as jackets,
caps, sunglasses, etc., and carry or drop accessories such as
cell phones, bags, laptops, etc. In other words, short-term
person re-ID can also present some aspects associated with
long-term re-ID.

To address the high variance in appearance that one ob-
serves in the long-term scenario, we propose an Attribute
De-biased Vision Transformer (AD-ViT). Specifically, we
apply a gradient reversal-based domain-adaptation mech-
anism over attribute cues to force the network to learn
identity-specific features independent of apparel and acces-
sory information.

In summary, our main contributions are as follows.

• We introduce a transformer-based framework called
Attribute De-biased Vision Transformer (AD-ViT),
which learns identity-specific features by utilizing per-
son attribute information along with side information.

• We incorporate a gradient reversal mechanism based
on adversarial learning to capture attribute-agnostic
representations to address the long-term person re-ID
problem.

• We perform experiments on two long-term cloth-
changing re-ID datasets: LTCC [26] and NKUP [33].
Results demonstrate that our model consistently out-
performs the baseline and the state-of-the-art in the
long-term matching scenario.

2. Related Works
Short-term Person Re-ID In early research in the con-

text of the short-term person re-ID setting, most methods fo-
cused on extracting person features through novel architec-
tures [8, 11] and learning robust distance metrics [16, 20].
With the emergence of deep learning, various CNN-based
methods have been investigated focused on challenges such
as variations in camera viewpoints [14, 29], pose variation
[7, 25], and occlusion [9]. Additionally, based on the in-
tuition that different parts/regions of the image may con-
tain useful cues for short-term re-ID, fine-grained features
have also been learned [30, 32]. Since people tend to wear
the same clothes over a brief period in the short-term set-
ting, these approaches mostly employ global and local ap-
pearance features as the significant discriminating factor.
However, appearance-based models fail when applied to the
long-term re-ID setting because of considerable variations
in clothing and accessories.

Long-Term Person Re-ID Lately, substantial attention
has been given to the problem of long-term person re-

ID, which primarily aims to learn clothing-agnostic cues
from biometric modalities such as body shape [26, 12],
motion [13, 1], and faces [31]. Qian et al. [26] em-
ployed identity-sensitive and clothing-insensitive represen-
tations using body keypoints. Hong et al. [12] proposed
FSAM, which transfers fine-grained body shape knowl-
edge to complement the clothing-agnostic knowledge while
learning more discriminative human masks. Jin et al. [13]
presented GI-ReID framework, which handles gait informa-
tion as a regulator to facilitate the clothing-agnostic repre-
sentation. Bansal et al. [1] introduced a vision transformer-
based framework with gait-motion features as inputs to
the multi-headed attention module. Wan et al. [31] em-
ployed a holistic and face feature extractor. However, some
clothing-related representations have also been employed to
address long-term person-ID tasks [18, 17]. Lee et al. pro-
posed two sets of methods to identify people: (1) Cloth-
ing Model (CM) to identify clothing items with Wardrobe
Model (WM) [18] to utilize these clothing attributes and
defining a wardrobe set for an individual that it belongs
to; and (2) Color Label Clothing Model (CL-CM) and
Bayesian Personalized-Wardrobe Model (BP-WM) [17] to
focus on incorporating an individual’s preferential choices
in attire. However, none of the previous works have ex-
plored de-biasing person attributes to supervise the network
to extract features agnostic of clothing and accessories for
long-term re-ID.

Domain Adaptation Domain adaptation methods try to
supervise a feature extractor to learn representations that
are agnostic of the source distribution domain and could
generalize to a target distribution. Early works in this do-
main explored divergence-based domain adaptation, where
the goal is to minimize some divergence criterion between
the source and target distribution. Frequently utilized diver-
gence measures include Correlation Alignment (CORAL)
[28], Contrastive Domain Discrepancy (CDD) [15], and
Maximum Mean Discrepancy (MMD) [27]. Some methods,
such as DeepJDOT [3], have investigated optimal transport
to minimize discrepancies in feature representations. Oth-
ers [22, 36, 6] have investigated adversarial training meth-
ods where a generator and discriminator are utilized to learn
domain-agnostic features. Ganin et al. [5] demonstrated
that reversing the gradient of an auxiliary domain predic-
tion objective with respect to a feature extractor’s parame-
ters aids in learning deep features that are domain-invariant.
However, to the best of our knowledge, we are the first to
apply domain adaptation methods to supervise the network
to focus on identity-specific features, and to address long-
term person re-ID.

3. Proposed Model
As illustrated in Figure 2, our model consists of two

parts: (i) vision transformer based feature extractor and (ii)
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Figure 2: Framework of our proposed AD-ViT. Input images are split into eight image patches and then fed to the Transformer
Encoder along with side information and positional embeddings after flattening. The final projection layer is included to
capture global feature for subjects. Additionally, we use auxiliary projection layers to extract attribute features. We adopt
Gradient Reversal Layer (GRL) for de-biasing attribute information by utilizing the predicted attribute labels.

an attribute de-biasing module. In Section 3.1, we describe
the transformer-based baseline that we adopt for extracting
subject-specific features. Section 3.2 explains the gradient
reversal based attribute de-biasing architecture.

3.1. Baseline: Transformer-based Model

Let I ∈ RH×W×C be an image of a person where H,
W, and C denote its height, width, and the number of chan-
nels. We split each image I into N patches, each of di-
mension M. Following [4], we flatten each patch and apply
linear projection to extract a visual patch embedding. Let
V = {v1, v2, ..., vN} be the visual patch embeddings corre-
sponding to the original image.

Following [10], we add camera Side Information Em-
bedding (SIE) to the patch embeddings. SIE embeddings
are static embeddings of dimension Nc × D, where Nc is
the number of the camera and D is the embedding dimen-
sion.

Z = V + λs · Sj (1)

Here, λs denotes the SIE weighing factor, and Sj is the
camera information embedding for camera ID ’j’. Finally,
following [4], we add positional embeddings pos to all the
patch embeddings along with an extra learnable [cls] em-
bedding token. The final input sequence Z for the trans-

former can be represented as:

Z = {xcls; v1 + λs · Sj + pos1, ...

vN + λs · Sj + posN}
(2)

where xcls represents the [cls] token. We extract global rep-
resentations from vision transformers for person re-ID. To
perform long-term matching, we supervise the network to
focus on identity-specific features which are temporally in-
variant.

3.2. Attribute De-biasing Module

In the long-term re-ID scenario, it is logical for the fea-
ture representation to be agnostic of changes in clothes and
related accessories. Therefore, it is essential to design a
specific optimization objective that de-biases the final fea-
ture representation from features related to clothes or ac-
cessories. However, annotations associated with clothing
information will most often be unavailable to perform this
de-biasing.

In order to address this, we first use a network called At-
tribute Person Recognition (APR) [21], which is trained for
person attribute recognition to predict a set of clothes and
accessories from the input. Hence, the predicted attributes
for an input image are given by AT = { pa1, pa2, pa3,
.., paK } where K is 27 and 23 attributes for the Market-
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1501 [39] and the DukeMTMC-reID [40] datasets, respec-
tively. The dashed line box shows several person attribute
examples in Figure 2. We take these as the pseudo attribute
ground truth labels for an input image. Given these pseudo
labels, one way to enforce the feature extractors to learn a
clothing-agnostic feature representation is to adopt a Gra-
dient Reversal Layer (GRL) [5]. We incorporate this by
adding an auxiliary module that consists of two sequential
projection blocks, each having a linear layer followed by
GeLU activation. Batch Normalization is done before the
activation. The output of this auxiliary module is passed
to a classification layer to predict the presence or absence
of each attribute. Then, we reverse the gradients obtained
from this module before passing them to the transformer-
based feature extractor, as shown with a dashed arrow in
Figure 2. Formally,

Gfeat =
δLattr

δθattr
· δθattr

δθf

RGfeat = −λGfeat

(3)

where Lattr is the gradient associated with the auxiliary
module parameterized by θattr. Gfeat is a gradient of at-
tribute prediction loss with respect to parameters θf associ-
ated with the transformer-based feature extractor. RGfeat

refers to the revised gradient that is weighted by a factor λ.

3.3. Optimization

We optimize three objectives during training. As can
be observed in Figure 2, features extracted from the trans-
former encoder are projected using linear transformations
to get the visual identity embedding viID, which we use to
optimize two losses (i) ID Loss and (ii) Triplet Loss follow-
ing [10]. Identity objective LID is the cross-entropy loss
without label smoothing. Mathematically,

LID = −
n∑

i=1

yi · log(xi) (4)

where yi represents the ground truth identity, and xi rep-
resents the predicted identity. Let LT represent the triplet
loss between an anchor sample a, positive sample p, and
negative sample n. Formally,

LT = log[1 + exp(||vaID − vpID||22 − ||vaID − vnID||22)] (5)

The third training objective is attribute prediction loss. The
features extracted from the image encoder are projected
separately using a different set of linear projections to get
attribute embedding viattr, which is used to predict attributes
using a Binary Cross Entropy (BCE) loss.

Lattr = −[yi · logxi + (1− yi) · log(1− xi)] (6)

Here, xi represents the predicted attribute label, and yi rep-
resents the pseudo ground truth attribute labels which are
the same as AT .

The final loss objective is the weighted summation of the
three losses.

L = λID · LID + λT · LT + λattr · Lattr (7)

where λID, λT , and λattr denote the weights of identity
loss, triplet loss, and attribute loss, respectively. Here, the
contribution from λattr · Lattr is positive since the fully
connected layers used for attribute predictions are required
to be optimized to predict the correct attribute label. The
gradient reversal, after the features are extracted, ensures
that the image encoder learns to de-bias attribute features.

4. Experiments

4.1. Datasets

We evaluate the effectiveness and performance of our
proposed model on two long-term cloth-changing re-ID
datasets: LTCC [26] and NKUP [33]. The details of the
datasets are described as follows.

LTCC [26] is an indoor clothes-changing re-ID dataset.
It consists of 17,138 images of 152 identities wearing 478
outfits captured by 12 cameras for two months. On aver-
age, there are five clothing outfits for each person, with the
number of outfit changes ranging from 2 to 14. Follow-
ing [26], we split the LTCC dataset into training and test-
ing sets. The training set in total consists of 77 identities.
46 out of these 77 identities are used to train the model in
the cloth-changing scenario, whereas the remaining 31 sub-
jects are used for training the model in the standard setting.
Similarly, the test set contains 45 subjects used to evaluate
the model’s performance in the cloth-changing scenario and
the remaining 30 identities are used for evaluation under the
standard setting.

NKUP [33] is an indoor/outdoor clothes-changing re-ID
dataset. It includes 9,738 images of 107 identities collected
from 15 cameras for four months, 8 of which were installed
in the outdoor environment. Among all the images, 5,336
images of 40 identities were used as the training set, while
332 and 4,070 images of 67 identities were used as the
query and gallery images, respectively. The query set in-
cludes 3 to 10 images of each person, randomly selected
from certain clothing styles. Then, the remaining images of
the same person (with different clothing styles) were con-
sidered as the gallery images. Finally, images of individuals
having only one clothing style were considered distractors
and were added to the gallery samples. Mostly, subjects in
the dataset appear in 2 or 3 different outfits.
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Methods
LTCC NKUP

Cloth-changing Standard Cloth-changing Standard

R-1 mAP R-1 mAP R-1 mAP R-1 mAP

LOMO [20] + KISSME [16] 10.8 5.3 26.6 9.1 - - - -
LOMO [20] + XQDA [20] 11 5.6 25.4 9.5 - - - -

PCB [30] 23.5 10 65.1 30.6 - - 16.9 12.4
HACNN [19] 21.6 9.3 60.2 26.7 - - - -
MuDeep [24] 23.5 10.2 61.9 27.5 - - - -
RGA-SC [38] 31.4 14 65 27.5 - - - -

MGN [32] - - - - - - 18.8 15
ISP [42] 27.8 11.9 66.3 29.6 - - - -

Qian et al. [26] 26.2 12.4 71.4 34.3 - - - -
GI-ReID [13] 28.1 13.2 73.6 36.1 - - - -
FSAM [12] 38.5 16.2 73.2 35.4 - - - -
LSD [35] - - - - 13.9 7.8 16.4 10.2

TransReIDbase [10] 67.0 29.6 93.8 82.5 21.8 14.4 24.0 18.2

AD-ViT (ours) 72 34.2 94.8 84.3 23.6 16.9 27 18.9

Table 1: Performance (%) comparison with the state-of-the-art methods. TransReIDbase [10] results are generated by us since
the paper does not evaluate on the LTCC and NKUP datasets. ’Cloth-changing’ and ’Standard’ mean the cloth-changing
setting and standard setting, respectively. The best performances are labeled in bold.

Backbones Cloth-changing Standard

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

ResNet50 22.5 61.7 73 79.1 62.1 86.5 92.7 93.8
ViT 29.6 67 78.6 81.9 82.5 93.8 96.9 97.9

Table 2: Performance (%) comparison of different backbones on the LTCC dataset. Note that they are basic backbone models
and do not utilize side information and gradient reversal module.

4.2. Evaluation Protocols

To evaluate the person re-ID performance, we report the
mean Average Precision (mAP) and Rank@k (R-k). Fol-
lowing the standard practice on LTCC [26] and NKUP [33],
we report results on both cloth-changing and standard set-
ting.

4.3. Implementation Details

Following [10], ViT was pre-trained on ImageNet and
used as the backbone for our model. The input images are
resized to 256×128. We split the image using the over-
lapping patch technique introduced in [10]. For data aug-
mentation, we employ random horizontal flipping, padding,
random cropping, and random erasing [41]. Each batch
contains 64 images of 16 identities. SGD optimizer is em-
ployed with a momentum of 0.9 and a weight decay of 5e-4.
The learning rate is initialized as 3.5 ·103 with cosine learn-
ing rate decay [23]. For the LTCC dataset, we set λattr =
1.0 and λID = 1.0 in the cloth-changing setting and λattr

= 2.0 and λID = 0.8 in the standard setting. For the NKUP

dataset, we set λattr = 1.0 and λID = 1.0 in both scenarios.
For all datasets, we set λs = 3.0, λT = 1.0.

4.4. Comparison with State-of-the-art Methods

Table 1 presents the performance of our proposed
method on the long-term datasets: LTCC and NKUP.
As can be observed, our method consistently outperforms
the existing methods. On the LTCC dataset, compared
to FSAM [12], the transformer-based backbone repro-
duced from TransReID (referred as TransReIDbase) gave
a substantial boost in performance. In the LTCC’s cloth-
changing scenario, AD-ViT achieves 5% improvement over
TransReIDbase and 33.5% improvement over FSAM [12]
for R-1. We also observe 18% improvement in mAP over
FSAM [12]. In the NKUP dataset, one can note that the pro-
posed method obtains 9.7% improvement in R-1 and 8.7%
improvement in mAP compared to LSD [35]. These ex-
periments show the suitability of the proposed model for
the long-term cloth-changing scenario. Further, we can also
note that using our proposed model, the performance under
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Methods SIE GRL
LTCC NKUP

Cloth-changing Standard Cloth-changing Standard

R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Baseline 67 29.6 93.8 82.5 21.8 14.4 24 18.2
✓ 70 32.1 94.8 81.5 22.9 16.7 24 17.5

AD-ViT ✓ ✓ 72 34.2 94.8 84.3 23.6 16.9 27 18.9

Table 3: The ablation study of AD-ViT on the LTCC and NKUP datasets.

Methods APR [21] LTCC NKUP

Cloth-changing Standard Cloth-changing Standard

Models Datasets R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Baseline 67 29.6 93.8 82.5 21.8 14.4 24 18.2
AD-ViT ResNet50 Market1501 72 34.2 94.8 83.5 22.1 15.2 23 19.6
AD-ViT ResNet50 DukeMTMC 68.3 32 92.7 81.5 23.6 16.9 27 18.9
AD-ViT DenseNet121 Market1501 71 33.5 94.8 84.3 20.7 14.2 25 16.1
AD-ViT DenseNet121 DukeMTMC 68.8 33.2 92.7 83.2 22.9 15.2 22 15.6

Table 4: Analysis of the performance of each GRL module using predicted attributes from different models. Market1501 and
DukeMTMC denote the Market-1501 [39] and DukeMTMC-reID [40] datasets, respectively.

the standard setting is also improving, showing the robust-
ness of our model.

4.5. Ablation Study of Different Backbones

In this section, we compare different types of feature
extractor backbones: CNN-based and transformer-based.
From Table 2, we can observe a significant performance
gap between ResNet50 and ViT methods under both cloth-
changing and standard scenarios. This difference can be
attributed to the fact that the CNN-based model processes
local neighborhoods of the input image individually and
suffers from information loss on details caused by down-
sampling operators. Considering the overall performances
in both scenarios, we selected ViT model as a backbone for
all our experiments.

4.6. Ablation Study of AD-ViT

We evaluate the benefits of employing SIE and GRL
modules in AD-ViT in Table 3. In the cloth-changing set-
ting, compared to the baseline, adding SIE module im-
proves the performance by 3.0% for R-1 and 2.5% for mAP
on LTCC. Similarly, for NKUP, we observe 1.1% and 2.3%
improvement in R-1 and mAP, respectively. In the standard
setting, compared to the baseline, SIE improves the perfor-
mance by 1.0% on R-1 on LTCC. By combining SIE with
GRL module in our proposed AD-ViT, we observe 5.0%
improvement for R-1 under the cloth-changing setting for
the LTCC. We also note that this performance improvement
(1.8%) is also present in the NKUP dataset under similar
settings. These experiments demonstrate the effectiveness

Figure 3: Examples of attribute predictions from differ-
ent models and datasets. The images are from the LTCC
dataset. The red, blue, and black descriptions represent in-
correct, correct, and indistinguishable prediction labels, re-
spectively.
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of SIE and GRL in the proposed AD-ViT model.

4.7. Analysis of Different Attribute Predictions

We analyze the performance of our model using dif-
ferent Attribute Person Recognition (APR) networks. We
use APR network [21] trained using two CNN backbones:
ResNet50 and DenseNet121 on two different datasets:
Market-1501 [39] and DukeMTMC-reID [40]. As indicated
in Table 4, the performance of AD-ViT using predicted at-
tributes from the ResNet50-based APR model trained on
Market-1501 gives the best score for both R-1 and mAP
in the LTCC’s cloth-changing scenario. However, the per-
formance of AD-ViT using predicted attributes from the
ResNet50-based APR model trained on DukeMTMC-reID
obtains the best results in NKUP’s cloth-changing scenario.
Therefore, we can observe a lot of performance variation
across attribute prediction models and attribute datasets.
This indicates that the predicted attribute labels are noisy.
Likewise, the same holds true in Figure 3. Nevertheless,
we observe that even with the noisy labels, de-biasing the
ViT-based feature extractor helps improve the performance.

5. Conclusion
In this paper, we propose Attribute De-biased Vision

Transformer (AD-ViT), which is a transformer-based at-
tribute de-biasing architecture for long-term re-ID. The pro-
posed method explored the creation of clothing and acces-
sories agnostic feature representation using gradient rever-
sal. Through rigorous experiments and ablation studies on
long-term clothes-changing re-ID datasets, we demonstrate
the value of our proposed method. Further, the performance
improvement on the cloth-changing setting does not hamper
the performance on the standard re-ID setting, indicating
the robustness of the proposed model. Building on this, fu-
ture works can explore adversarial domain adaptation tech-
niques and novel transformer architectures to improve the
performance further.
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