2022 IEEE International Joint Conference on Biometrics (1JCB) | 978-1-6654-6394-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/1)CB54206.2022.10007936

RidgeBase: A Cross-Sensor Multi-Finger Contactless Fingerprint Dataset

Bhavin Jawade, Deen Dayal Mohan, Srirangaraj Setlur, Nalini Ratha, Venu Govindaraju
Computer Science and Engineering
University at Buffalo, SUNY

{bhavinja, dmohan, setlur, nratha, govind}@buffalo.edu

Abstract

Contactless fingerprint matching using smartphone
cameras can alleviate major challenges of traditional fin-
gerprint systems including hygienic acquisition, portability
and presentation attacks. However, development of practi-
cal and robust contactless fingerprint matching techniques
is constrained by the limited availablity of large scale
real-world datasets. To motivate further advances in con-
tactless fingerprint matching across sensors, we introduce
the RidgeBase benchmark dataset. RidgeBase consists of
more than 15,000 contactless and contact-based fingerprint
image pairs acquired from 88 individuals under different
background and lighting conditions using two smartphone
cameras and one flatbed contact sensor. Unlike existing
datasets, RidgeBase is designed to promote research under
different matching scenarios that include Single Finger
Matching and Multi-Finger Matching for both contactless-
to-contactless (CL2CL) and contact-to-contactless (C2CL)
verification and identification. Furthermore, due to the
high intra-sample variance in contactless fingerprints
belonging to the same finger, we propose a set-based
matching protocol inspired by the advances in facial
recognition datasets. This protocol is specifically designed
for pragmatic contactless fingerprint matching that can
account for variances in focus, polarity and finger-angles.
We report qualitative and quantitative baseline results
for different protocols using a COTS fingerprint matcher
(Verifinger) and a Deep CNN based approach on the
RidgeBase dataset. The dataset can be downloaded here:
https://www.buffalo.edu/cubs/research/
datasets/ridgebase-benchmark—-dataset.
html

1. Introduction

Fingerprints are one of the most widely used biomet-
ric modalities. Recent works [21, 17, 15, 14]in fingerprint
recognition have focused their attention on contactless fin-
gerprint matching owing to various benefits over contact-
based methods. Traditional fingerprint sensors which re-

Contact-based Fingerprints

Contactless Fingerimages

Figure 1. Sample contactless and contact-based acquisition images
along with segmented fingerprint images from the dataset.

quire a physical contact with the acquisition surface ele-
vate the risk of spread of contagious diseases. Furthermore,
contact with a fingerprint platen leaves a latent impression
which can be captured for fingerprint presentation attacks.
Contactless fingerprint matching using smartphone cameras
alleviates these concerns while also making the acquisition
process easier, faster, and portable. !

Despite its apparent benefits, performing robust contact-
less fingerprint matching is more challenging than tradi-
tional fingerprint matching. The major challenges with con-
tactless fingerprint matching include: out-of-focus image
acquistion, lower contrast between ridges and valleys, vari-
ations in finger-angle, and perspective distortion. A resilient
contactless fingerprint acquisition system must overcome
these challenges while being capable of performing both
contactless to contactless (CL2CL) and contact to contact-
less (C2CL) fingerprint matching.

ICode for the acquisition app can be accessed here: https://
github.com/bhavinjawade/FingerprintCameraApp
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Property Count
Number of Smartphones 2
Backgrounds and lighting conditions 3
Number of unique fingers 704
Number of unique hands (four fingers) 176
Number of four-finger contactless images 3374
Number of four-finger contact-based images | 280
Number of contactless finger images 13484
Number of contact-based fingerprint images | 1120

Table 1. Summary of dataset statistics.

Early attempts [16] at contact to contactless fingerprint
matching proposed datasets that were collected in special-
ized environmental settings. Other works [21, 17] pro-
posed smartphone captured finger-selfies under different
background and lighting conditions. In order to develop
robust contactless fingerprint matching that can be used in
practically viable systems, research datasets should prefer-
ably include: (i) Images acquired in different lighting con-
ditions and backgrounds. (ii) Different camera sensors. (iii)
Multi-finger (Four finger) images. (iv) Images acquired in
Unconstrained or semi-constrained settings. and (vi) Large
number of images with high resolution.

Existing contactless fingerprint matching datasets are
found to be limited in their scope because they do not meet
one or more of the aforementioned conditions. In this pa-
per, we propose RidgeBase, a large-scale multi-finger con-
tactless and contact-based fingerprint dataset obtained us-
ing multiple sensors in diverse environmental conditions
and backgrounds. Over 3500 contactless and contact-based
four-finger images are obtained from 88 subjects in multi-
ple sessions. To enable finger-to-finger matching, the four-
finger images are further split into single-finger images. In
all (including single finger and four-finger), RidgeBase con-
sists of 17,784 contactless and contact-based images cap-
tured in self-operated mode by participants using two smart-
phone cameras and contact-based sensors.

Contactless finger images of the same finger distal ac-
quired using a smartphone camera contain higher degree
of intra-class variance (due to focus, contrast and angles
distortions) when compared to traditional contact-based im-
ages. Capturing multiple images of the same finger at ac-
quisition and inference time can improve matching per-
formance. We observe that existing works use traditional
sample based evaluation protocol for contactless fingerprint
matching. Inspired by the Janus Benchmark Dataset’s [27]
evaluation protocol for face recognition, we propose a set-
based evaluation protocol for RidgeBase along with other
matching protocols. This comprehensive evaluation suite
consisting of three tasks: 1. Single finger-to-finger match-
ing 2. Four-finger image matching and 3. Set-based finger-
print matching. Each evaluation task is performed for both
contactless (CL2CL) and cross-sensor (C2CL) fingerprint

matching, thereby facilitating the development of a robust
cross-sensor fingerprint matching framework.

The key contributions of this work are summarized be-
low:

1. Collected a new cross-sensor fingerprint dataset which
overcomes many drawbacks of existing datasets, and
is designed to promote practical contactless fingerprint
matching research.

2. Proposed a novel fingerprint distal labeling heuris-
tic algorithm to generate pseudo labels for training
a Faster-RCNN based object detector for distal seg-
mentation. We also provide fingerprint quality metric
(NFIQ) distribution on the RidgeBase dataset.

3. Developed an extensive tasks and protocols suite for
RidgeBase that emulates real-world scenarios and en-
sures reproducibility.

4. Finally, we report baseline results on the RidgeBase
dataset using a state-of-the-art commercial-off-the-
shelf fingerprint matcher (Verifinger 12.0) and a Deep-
CNN [7] based method.

2. Related Works

Automatic fingerprint matching is a well researched
area. Recently, fingerprint interoperability, especially
C2CL matching has gained popularity. In this section we
will discuss relevant datasets and prior methods for C2CL
matching.

NISTIR 8307 [ 1] performed an Interoperability Assess-
ment with data collected from 200 Federal employees to
evaluate various existing contactless fingerprint acquisition
devices and smartphone apps. They observed that perfor-
mance of DUTs (Devices under test) can be categorized
into three tiers: where the best performing tier consists
of contact based devices, the middle tier consists of sta-
tionary contactless devices and the worst performing tier
consists of smartphone based contactless fingerprint match-
ing apps. Furthermore, NISTIR 8307 [! 1] also concluded
that multi-finger acquisition of contactless fingerprints in-
creases the performance of contactless matching, thereby
enhancing potential operational utility. This further corrob-
orates the importance of our publicly released dataset for
research in multi-finger smartphone based contactless fin-
gerprint matching.

Ross et al [20] were among the first to draw attention to
problems with biometric sensor interoperability in the con-
text of fingerprints, and they observed that the need for sen-
sor interoperability was paramount as it significantly im-
pacted the usability of a biometric matching system with
cross-sensor performance being notably worse. [19] ad-
dresses the problem of interoperability by analyzing finger-
print data from 9 different sensors. These methods while
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promising, only focused on data acquired using contact
based fingerprint sensors. Lee et al [8] proposed meth-
ods to process images captured using mobile phones. [9]
used gradient information coherence to perform finger qual-
ity estimation. Recent methods on contactless fingerprint
recognition have focused on three main sub areas namely,
segmentation of area of interest, enhancement of the seg-
mented area and representation learning for matching. [18]
developed a segmentation model using saliency map and
skin color following which Grosz et al. [5] proposed a U-
Net based autoencoder to avoid failure cases in the presence
of complex backgrounds. Compared to contact fingerprint
data, contactless fingerprint images suffer from various dis-
tortions. Lin et al. [12][15] have proposed algorithms that
correct non-linear deformations as well as methods for gen-
eralized distortion correction based on a robust thin- spline
plate mode. Once the image enhancement is performed, the
fingerprint matching is generally done using either minu-
tiae based methods or deep learning based methods. [13]
proposed the use of a Siamese CNN architecture for match-
ing contact to contactless fingerprints. Malhotra et al.[ 18]
designed a network to extract features which preserve the
mulit-orientation and multi-scale information of the finger-
print. Table 2 shows the comparisons of our datasets to
other contactless datasets present in the literature. Although
Deb et al. 2018 [2] and Wild et al. 2019 [28] have multi-
finger images, they do not have the environmental and back-
ground variations present in our dataset. Furthermore the
number of unique samples (four-finger and single images)
are small compared to the proposed dataset.

3. RidgeBase Dataset
3.1. Collection Methodology

RidgeBase benchmark dataset has been collected over
a period of 3 months from 88 participants. Contactless
fingerprints were acquired using two smartphones, iPhone
11 and Google Pixel 5. We used an application similar
to Jawade et.al [7] for acquiring four-finger images using
the two smartphones. As shown in figure 2, the applica-
tion presents volunteers with a bounded region within which
they can place their hand in an unconstrained manner. Cor-
responding contact-based fingerprints were acquired using
Futronic FS64 EBTS flat-bed fingerprint scanner. For each
participant fingerprint images were collected over two ses-
sions separated by atleast two weeks. There was significant
gender, ethnicity ((East Asians, White Americans, African
American, Filipino, Asian Indian and Filipino), race and
age variation among subjects participating in the data col-
lection. This data collection was approved by the institu-
tional IRB and the identities of the subjects involved in the
data collection have been anonymized.

For each participant, contactless fingerprint images were

Figure 2. Application used for acquiring four-finger images.

acquired in three different lighting conditions and back-
grounds namely (i) Indoor (ii) White Background and (iii)
Outdoor. Each image was captured using flash and auto-
focus. Contactless images were acquired using Apple
iPhone 11 and Google Pixel 5 with resolutions (2016 x
4224) and (3024 x 4032) respectively. Across the 88 partic-
ipants, we captured 280 contact-based four-finger images
and 3374 contactless four-finger images. The dataset is
further split using the distal segmentation approach as de-
scribed in section 3.2. Table | summarizes the dataset size
and scope.

3.2. Distal Segmentation Method

Most fingerprint matching algorithms (such as Verifin-
ger, [16] [21]), primarily work on distal fingerprints rather
on the multi full-finger prints. To support compatibility with
these algorithms and interoperability with existing datasets,
we segment the four-finger images to extract distal pha-
langes. To produce pseudo bounding boxes for distal pha-
langes that can be then used to train an object detection
model, we formulate a heuristic algorithm based on local-
ization of convex defects.

We start by segmenting the background and the four-
finger foreground. To perform this segmentation, we fol-
low steps similar to [7]. First, we downsample the image
and apply Gradcut algorithm using the guiding region pre-
sented to the user as a prior. We next apply morphologi-
cal opening using kernels of size (11,11) and (5,5) over
the predicted grabcut mask M. Applying the up-scaled and
Gaussian blurred mask over the original image gives us the
segmented four-finger region.
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Number | Number Multi- Full- Variations
of of .
Database . . finger | Finger
unique distal Images | Images
fingers images E* | B* Sensors

Lee et al., 2005 [8] 168 840 1.3M pixel CMOS camera

Lee et al., 2008 [9] 120 1200 Camera

Stein. et al. 2012 [23] 82 492 Nexus S, Galaxy Nexus

Derawi et al. 2012 [3] 220 1320 Nokia N95, HTC Desire

Lietal., 2012 [10] 100 2100 vV | V|-

Stein. et al. 2013 [22] 74 990 v | v | Galaxy Nexus, Galaxy S3

Tiwari et al. 2015 [25] 50 156 Samsung Note GT-N7000

Sankaran et al. 2015 [21] 128 5100 v v’ | iPhone 5

Lin et al. 2018 [15] 300 1800 camera, URU 4000
SilkID, Guardian 200

Deb et al. 2018 [2] 1236 2472 v v Redmi Note 4

Chopra et al. 2018 [1] 230 3450 v' | v | Multiple Smartphones

Wasnik et al. 2018 [26] 48 720 iPhone 6

Lin et.al 2018 [14] 300 3920 -

Wild et al. 2019 [28] 108 4310 v v LG Flex 2, Note 4, ARH AFS510
OnePlus One, MicroMax Knight

Malhotra et al. 2020 [17] 304 19456 v |V Secugen
Google Pixel 5, iPhone 11

RidgeBase (Ours) 704 14328 v v v v Futronic FS64

Table 2. A quantitative comparison of contactless fingerprint datasets in literature. E*: Variations in Environment (Lighting conditions),

B*: Variations in Background. A similar compilation can be seen in [

Next we find the convex hull C' for the segmented mask
M using Sklansky’s algorithm. Figure 3.2 shows the convex
hull over the four-finger region. For the set of images in the
dataset that are acquired keeping the four fingers close to
each other, the top-most point shared by any two fingers
in contact must also be the farthest point on the perimeter
of the segmented region from the convex hull. Under this
premise, we detect top three farthest points (denoted by set
S) from the convex hull (referred to as convexity defects).

S ={(z1,11), (x2,92), (¥3,¥3)}

Next, we apply a set of empirically observed measures
to generate bounding boxes for the four distals using the set
S. We start by computing finger width using yo, ys3, Y.

D, = maz((y3 — y2), (y4 — y3))
Next, the following set of rules are used to predict bound-
ing boxes around distals:
Drp, = (z2+2*xa— B+ Dy,y2 — Dy) 0
DBR1 = (x2 +2x a, y2)
Drr, = (v3+4xa— Bx Dy, ya)

(2)
DBR2 = ($3 +4*xa-+0.5 *Du,,yg)

]

DTL3 :($3+3*04—Dw*5,y3)

3
DR, = (2343 %, y4)

Drr, = (v4+2%a — Dy * B, y4) @
Dpr, = (x4 +2xa,ys + D)

Here, o = 1.5 denotes an approximation of distal height
to width ratio and S is selected empirically as 50.

We employ a visual selection method to pick 980 images
that are perfectly annotated by the heuristic method, with
800 images being used for training and 180 images being
used to test a FasterRCNN network for recognizing distal
phalanges. The mAPQIOU = 50% of the trained Faster-
RCNN network is 95.7%. The final trained FasterRCNN is
capable of detecting finger distals in images where the four
fingers are not close to each other, despite the fact that it was
trained with images with four fingers close to each other.

4. Tasks and Protocols

We design the RidgeBase dataset to support three sets
of tasks: (i) Single Finger Matching (or Distal-to-Distal
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Figure 3. Segmentation process for generating pseudo labels for
finger images.

matching) (ii) Four Finger Matching and (iii) Set based Dis-
tal Matching. Each task is further divided into contactless-
to-contactless and contact-to-contactless verification and
identification tasks. Unlike previous datasets, to ensure re-
producibility, we provide fixed test evaluation pairs for each
of the tasks. Below we provide detailed description of the
tasks, evaluation protocols and associated train-test splits.

4.1. Single Finger Matching

Task 1 represents the single finger distal-to-distal match-
ing scenario which is equivalent to traditional fingerprint
matching. For task 1, we segment the distal phalanges
for the whole dataset using the method described in sec-
tion 3. So, for the 88 participants, the dataset consists of
704, (88 x 4 x 2) unique fingers. We select 200 unique
fingers (classes) for the test set and 504 disjoint unique fin-
gers (classes) for the training set. This protocol is for one-
to-one fingerprint matching approaches, and considers each
unique finger as a unique identity. This provides compa-
rability and support for dataset augmentation with existing
contactless fingerprint datasets that consist only of single
finger images. In total, the test set consists of 2229 con-
tactless finger distal images, and 200 contact-based finger-

prints. The train set consists of 11255 contactless distal im-
ages and 916 contact-based fingerprints. For the contactless
to contactless matching (CL2CL verification) task, we pro-
vide 24,83,106 test pairs for evaluation and for contact-to-
contactless based matching (C2CL verification), we provide
4,54,716 test pairs.

4.2. Four Finger Matching

Task 2 represents the four-finger to four-finger match-
ing scenario. Typically, multi-finger authentication is more
robust than single finger authentication. This protocol pro-
motes research in end-to-end trainable algorithms and fea-
ture fusion methods that can overcome distortion challenges
of contactless images by utilizing identity features available
in the entire four finger region. Here, we consider a hand
(four-finger region) as a unique identity. For 88 partici-
pants, the task consists of 176 unique hands. We use 25
participants (~30%) for test, and 63 participants for train-
ing (as in task 1). Therefore, task 2 consists of 50 unique
four-finger images for test set and 126 unique four-finger
images for train set.

4.3. Set-Based Matching

To overcome the inconsistencies and distortions ob-
served in real-time unconstrained capture of fingerprint im-
ages using smartphone camera, we introduce a set-based
matching protocol. Set-based matching schemes have been
previously used for face recognition [27] where there is
high intra-class variations. In task 3, each set consists
of finger-distal images of the same finger under different
backgrounds and lighting conditions and acquired using
different devices in multiple sessions. For contactless-to-
contactless distal matching, test split consists of 200 query
sets and associated 200 gallery sets. On average each query-
set consists of 4 samples, and each gallery-set consists of
5 samples. Similarly, for contact-to-contactless matching
each gallery-set consists of 8 samples on average, and each
query-set consists of 1 contact-based image. A robust fea-
ture fusion method developed to perform well on set-based
matching protocol can greatly improve contactless match-
ing performance in real-world where multiple images can
be acquired from a continuous video.

5. Quality Analysis of Fingerprints (NFIQ 2.0)

Figure 5 shows the distribution for fingerprint quality es-
timated using NFIQ 2.0 [24] for the test-set split of Task
1 (only distals). All raw contactless distal images are gray
scaled and converted to 8bit and 500 dpi before comput-
ing NFIQ scores. As can be observed from the distribu-
tion, a majority of fingerprints have NFIQ 2.0 scores in the
range 20-45. Galbally et.al [4] trained a bayes classifier for
computing NFIQ 1.0 classes from NFIQ 2.0 values. Their
learned mapping function [4] can be summarized as:
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Figure 4. NFIQ 2.0 score distribution of training split of Ridge-
Base dataset (Grayscaled)
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if 6 < NFIQ2 <= 35
if 36 < NFIQ2 <= 45
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NFIQl =
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where, NFIQ1 = 5 denotes worst quality images, and
NFIQ1 = 1 denotes best quality images (NFIQ1=4 and
NFIQI1=5 are treated as one unique class [4]). Using this
mapping function we observe that, for raw gray scale con-
tactless images in RidgeBase test dataset 2.5% images lie
in NFIQ1 class 5, 76.7% in class 3, 16.0% in class 2 and
4.8% in class 1. Figure 4 shows the NFIQ2 score distribu-
tion for RidgeBase’s training split. As it can be observed
from Figure 5 and 4, test set is representative of the training
set in terms of raw fingerprint image quality distribution.
Figure 6 shows NFIQ2 score distribution after enhancing
contactless fingerprints using Hong. et.al’s algorithm [6] to
improve ridge clarity based on local ridge orientation and
frequency.

6. Experiments

We evaluate baseline methods for verification (1:1) and
Identification (1:N) tasks. We provide subject disjoint train-
ing and testing sets for all the tasks. Furthermore, the pro-
tocol also provides defined query and gallery templates for
both verification and identification for Task 3.

6.1. Metrics - Verification and Identification (1:N,
1:1), ROC and CMC

Methods are compared for verification task using EER
(Equal Error rate), TAR(%)@FAR=10"2 (as in previous
contactless matching works) and AUC. For Identification
tasks, we report Rank(%)@1, Rank(%)@10, Rank(%) @50

350 1
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50 I
5 10 15 20 25 30 35 40 45 50 55

NFIQ Score

S o =4
s & s

[
w
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Number Of Fingerprints

—-—
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Figure 5. NFIQ 2.0 score distribution of evaluation split of Ridge-
Base dataset (Grayscaled)
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Figure 6. NFIQ 2.0 score distribution for enhanced fingerprints
(Enhanced [6]) in evaluation split

and Rank(%)@100. Additionally, we compare methods us-
ing Receiver Operating Characterstic (ROC) and Cumula-
tive Match Characterstic (CMC) for verification and identi-
fication respectively.

6.2. Preprocessing and Enhancements

We perform a set of pre-processing and ridge enhance-
ment steps over the distal images segmented using the
method described in section 3.2. We start by gray-scaling
the contactless fingerprint images and then performing
adaptive contrast enhancement with binary inversion. This
is done to improve the ridge-valley contrast and account for
the ridge inversion. We observe that due to variations in the
focus over the distal region, directly enhancing the prepro-
cessed contactless image leads to large number of spurious
minutiae in the out of focus region. To address this, we per-
form adaptive Gaussian thresholding over the preprocessed
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Table 3. CL2CL - 1:1 Verification
Task 1 - Distal Matching

Metric Verifinger | AdaCos (CNN)
EER (%) 19.7 21.3
TAR(%)@FAR=10"2 63.3 61.2
AUC(%) 89.3 87.7
Task 2 - Four Finger Matching

Metric Verifinger | AdaCos (CNN)
EER (%) 13.1 14.8
TAR@FAR=10"2 79.8 70.9
AUC(%) 92.1 92.6

Task 3 - Set based Distal Matching
Metric Verifinger | AdaCos (CNN)
EER (%) 7.90 9.5
TAR(%)@FAR=10"2 86.1 86.5
AUC(%) 95.3 96.3

Table 4. CL2CL - 1:N Identification
Task 1 - Distal Matching

Method R@1 | R@10 | R@50 | R@100
Verifinger 852 | 914 93.8 95.4

AdaCos (CNN) | 81.9 | 89.5 94.1 95.9
Task 2 - Four Finger Matching
Method R@1 | R@10 | R@50 | R@100
Verifinger 94.1 | 99.0 99.8 100.0
AdaCos (CNN) | 91.5 | 97.3 99.6 99.8
Task 3 - Set Based Distal Matching
Method R@1 | R@10 | R@50 | R@100
Verifinger 91.5 | 995 100.0 | 100.0
AdaCos (CNN) | 86.5 | 99.0 100.0 | 100.0

image followed by a series of median blurs. This removes
the out-of-focus regions of the distal image, leaving behind
the sharp ridge pattern. Next, we enhance the fingerprint
ridge pattern using the ridge frequency based enhancement
method proposed by Hong et.al[6].

6.3. Baselines

We present evaluations on the RidgeBase dataset using
the commercial-off-the-shelf (COTS) Verifinger matcher
and the CNN based deep metric learning method proposed
in [7]. To generate ISO templates using Verifinger 12.0
we first preprocess and enhance fingerprints using the al-
gorithm described in section 6.2, and then convert the fin-
gerprints to 8 bit 500dpi images.

For the second baseline, we evaluate the AdaCos based
branch as described in [7]. The model takes a channel se-
quenced, enhanced and grayscaled image as input followed
by Densenet 161 representation extractor optimized with
adaptive scaling cosine (AdaCos) loss [29]. We first pre-
train the network using 50,000 synthetic fingerprints gener-

Four Finger Segmented Preprocessed +

Image Fingerimage

Contactless

Contactbased

Figure 7. Contactless and Contact Four-Finger, Segmented, and
Enhanced Fingerprint samples
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Figure 8. 1:1 Verification ROCs for Contactless-2-Contactless

ated using the Anguli > Fingerprint Generator and then fine
tune over RidgeBase. We use 2000 images out of the 11,252
images for validation and the remaining 9,252 images for
training. Results reported for both baselines are over the
RidgeBase test split. For task 2 and task 3, we segment the
distal phalanges and perform score fusion using sum rule.
End-to-End training of four-finger region and association-
based feature pooling are left for future exploration.

6.4. Results

Table 6.2 and 5 report the verification results for
contactless-to-contactless matching and contact-to-
contactless matching respectively for all three tasks i.e.
Distal Matching, Four Finger Matching, and Set Based

2 Anguli: https:/dsl.cds.iisc.ac.in/projects/Anguli/index.html
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Table 5. C2CL - 1:1 Verification - Verifinger

Task EER (%) | TAR(%)@FAR=10"2 | AUC(%)
Task 1 18.9 57.6 87.2
Task 2 11.3 824 95.1
Task 3 10.7 79.3 95.7
Table 6. C2CL - 1:N Identification - Verifinger

Task R@1 | R@10 | R@50 | R@100

Task1 | 72.5 | 89.2 95.5 97.5

Task2 | 854 | 96.7 100.0 | 100.0

Task 3 | 80.0 | 97.0 99.5. 100.0
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Figure 11. 1:N Identification CMCs for Contact-2-Contactless
(Method: Verifinger)

Distal Matching. Figure 6.3 and 10 shows the receiver
operating characteristic (ROC) for all three tasks. Table 6.2
and 6 report the Identification results for the contactless-to-
contactless matching and contact-to-contactless matching
task respectively. Figure 6.3 and 11 show the Cumulative
Match Curve for the identification rate. Based on the
performance evaluation of both the widely used COTS
verifinger and the CNN based method, we observe that
RidgeBase is more challenging than other existing con-
tactless fingerprint datasets, and hence motivates further
innovation in contactless fingerprint matching algorithms.

7. Conclusion

In this work, we have proposed a novel smartphone
based contactless fingerprint matching dataset. RidgeBase,
a multi-use full-finger dataset, will help advance new av-
enues for contactless fingerprint matching, promoting meth-
ods that could leverage different parts from the four-finger
region for matching. With the set-based matching protocol
introduced along with RidgeBase, novel contactless fusion
algorithms can be investigated to achieve better query-set to
gallery-set matching performance. Along with this dataset,
we release the cross-platform app developed to collect the
fingerphotos.
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