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Abstract

Contactless fingerprint matching using smartphone

cameras can alleviate major challenges of traditional fin-

gerprint systems including hygienic acquisition, portability

and presentation attacks. However, development of practi-

cal and robust contactless fingerprint matching techniques

is constrained by the limited availablity of large scale

real-world datasets. To motivate further advances in con-

tactless fingerprint matching across sensors, we introduce

the RidgeBase benchmark dataset. RidgeBase consists of

more than 15,000 contactless and contact-based fingerprint

image pairs acquired from 88 individuals under different

background and lighting conditions using two smartphone

cameras and one flatbed contact sensor. Unlike existing

datasets, RidgeBase is designed to promote research under

different matching scenarios that include Single Finger

Matching and Multi-Finger Matching for both contactless-

to-contactless (CL2CL) and contact-to-contactless (C2CL)

verification and identification. Furthermore, due to the

high intra-sample variance in contactless fingerprints

belonging to the same finger, we propose a set-based

matching protocol inspired by the advances in facial

recognition datasets. This protocol is specifically designed

for pragmatic contactless fingerprint matching that can

account for variances in focus, polarity and finger-angles.

We report qualitative and quantitative baseline results

for different protocols using a COTS fingerprint matcher

(Verifinger) and a Deep CNN based approach on the

RidgeBase dataset. The dataset can be downloaded here:

https://www.buffalo.edu/cubs/research/

datasets/ridgebase-benchmark-dataset.

html

1. Introduction

Fingerprints are one of the most widely used biomet-

ric modalities. Recent works [21, 17, 15, 14]in fingerprint

recognition have focused their attention on contactless fin-

gerprint matching owing to various benefits over contact-

based methods. Traditional fingerprint sensors which re-

Figure 1. Sample contactless and contact-based acquisition images

along with segmented fingerprint images from the dataset.

quire a physical contact with the acquisition surface ele-

vate the risk of spread of contagious diseases. Furthermore,

contact with a fingerprint platen leaves a latent impression

which can be captured for fingerprint presentation attacks.

Contactless fingerprint matching using smartphone cameras

alleviates these concerns while also making the acquisition

process easier, faster, and portable. 1

Despite its apparent benefits, performing robust contact-

less fingerprint matching is more challenging than tradi-

tional fingerprint matching. The major challenges with con-

tactless fingerprint matching include: out-of-focus image

acquistion, lower contrast between ridges and valleys, vari-

ations in finger-angle, and perspective distortion. A resilient

contactless fingerprint acquisition system must overcome

these challenges while being capable of performing both

contactless to contactless (CL2CL) and contact to contact-

less (C2CL) fingerprint matching.

1Code for the acquisition app can be accessed here: https://

github.com/bhavinjawade/FingerprintCameraApp
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Property Count

Number of Smartphones 2

Backgrounds and lighting conditions 3

Number of unique fingers 704

Number of unique hands (four fingers) 176

Number of four-finger contactless images 3374

Number of four-finger contact-based images 280

Number of contactless finger images 13484

Number of contact-based fingerprint images 1120

Table 1. Summary of dataset statistics.

Early attempts [16] at contact to contactless fingerprint

matching proposed datasets that were collected in special-

ized environmental settings. Other works [21, 17] pro-

posed smartphone captured finger-selfies under different

background and lighting conditions. In order to develop

robust contactless fingerprint matching that can be used in

practically viable systems, research datasets should prefer-

ably include: (i) Images acquired in different lighting con-

ditions and backgrounds. (ii) Different camera sensors. (iii)

Multi-finger (Four finger) images. (iv) Images acquired in

Unconstrained or semi-constrained settings. and (vi) Large

number of images with high resolution.

Existing contactless fingerprint matching datasets are

found to be limited in their scope because they do not meet

one or more of the aforementioned conditions. In this pa-

per, we propose RidgeBase, a large-scale multi-finger con-

tactless and contact-based fingerprint dataset obtained us-

ing multiple sensors in diverse environmental conditions

and backgrounds. Over 3500 contactless and contact-based

four-finger images are obtained from 88 subjects in multi-

ple sessions. To enable finger-to-finger matching, the four-

finger images are further split into single-finger images. In

all (including single finger and four-finger), RidgeBase con-

sists of 17,784 contactless and contact-based images cap-

tured in self-operated mode by participants using two smart-

phone cameras and contact-based sensors.

Contactless finger images of the same finger distal ac-

quired using a smartphone camera contain higher degree

of intra-class variance (due to focus, contrast and angles

distortions) when compared to traditional contact-based im-

ages. Capturing multiple images of the same finger at ac-

quisition and inference time can improve matching per-

formance. We observe that existing works use traditional

sample based evaluation protocol for contactless fingerprint

matching. Inspired by the Janus Benchmark Dataset’s [27]

evaluation protocol for face recognition, we propose a set-

based evaluation protocol for RidgeBase along with other

matching protocols. This comprehensive evaluation suite

consisting of three tasks: 1. Single finger-to-finger match-

ing 2. Four-finger image matching and 3. Set-based finger-

print matching. Each evaluation task is performed for both

contactless (CL2CL) and cross-sensor (C2CL) fingerprint

matching, thereby facilitating the development of a robust

cross-sensor fingerprint matching framework.

The key contributions of this work are summarized be-

low:

1. Collected a new cross-sensor fingerprint dataset which

overcomes many drawbacks of existing datasets, and

is designed to promote practical contactless fingerprint

matching research.

2. Proposed a novel fingerprint distal labeling heuris-

tic algorithm to generate pseudo labels for training

a Faster-RCNN based object detector for distal seg-

mentation. We also provide fingerprint quality metric

(NFIQ) distribution on the RidgeBase dataset.

3. Developed an extensive tasks and protocols suite for

RidgeBase that emulates real-world scenarios and en-

sures reproducibility.

4. Finally, we report baseline results on the RidgeBase

dataset using a state-of-the-art commercial-off-the-

shelf fingerprint matcher (Verifinger 12.0) and a Deep-

CNN [7] based method.

2. Related Works

Automatic fingerprint matching is a well researched

area. Recently, fingerprint interoperability, especially

C2CL matching has gained popularity. In this section we

will discuss relevant datasets and prior methods for C2CL

matching.

NISTIR 8307 [11] performed an Interoperability Assess-

ment with data collected from 200 Federal employees to

evaluate various existing contactless fingerprint acquisition

devices and smartphone apps. They observed that perfor-

mance of DUTs (Devices under test) can be categorized

into three tiers: where the best performing tier consists

of contact based devices, the middle tier consists of sta-

tionary contactless devices and the worst performing tier

consists of smartphone based contactless fingerprint match-

ing apps. Furthermore, NISTIR 8307 [11] also concluded

that multi-finger acquisition of contactless fingerprints in-

creases the performance of contactless matching, thereby

enhancing potential operational utility. This further corrob-

orates the importance of our publicly released dataset for

research in multi-finger smartphone based contactless fin-

gerprint matching.

Ross et al [20] were among the first to draw attention to

problems with biometric sensor interoperability in the con-

text of fingerprints, and they observed that the need for sen-

sor interoperability was paramount as it significantly im-

pacted the usability of a biometric matching system with

cross-sensor performance being notably worse. [19] ad-

dresses the problem of interoperability by analyzing finger-

print data from 9 different sensors. These methods while
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promising, only focused on data acquired using contact

based fingerprint sensors. Lee et al [8] proposed meth-

ods to process images captured using mobile phones. [9]

used gradient information coherence to perform finger qual-

ity estimation. Recent methods on contactless fingerprint

recognition have focused on three main sub areas namely,

segmentation of area of interest, enhancement of the seg-

mented area and representation learning for matching. [18]

developed a segmentation model using saliency map and

skin color following which Grosz et al. [5] proposed a U-

Net based autoencoder to avoid failure cases in the presence

of complex backgrounds. Compared to contact fingerprint

data, contactless fingerprint images suffer from various dis-

tortions. Lin et al. [12][15] have proposed algorithms that

correct non-linear deformations as well as methods for gen-

eralized distortion correction based on a robust thin- spline

plate mode. Once the image enhancement is performed, the

fingerprint matching is generally done using either minu-

tiae based methods or deep learning based methods. [13]

proposed the use of a Siamese CNN architecture for match-

ing contact to contactless fingerprints. Malhotra et al.[18]

designed a network to extract features which preserve the

mulit-orientation and multi-scale information of the finger-

print. Table 2 shows the comparisons of our datasets to

other contactless datasets present in the literature. Although

Deb et al. 2018 [2] and Wild et al. 2019 [28] have multi-

finger images, they do not have the environmental and back-

ground variations present in our dataset. Furthermore the

number of unique samples (four-finger and single images)

are small compared to the proposed dataset.

3. RidgeBase Dataset

3.1. Collection Methodology

RidgeBase benchmark dataset has been collected over

a period of 3 months from 88 participants. Contactless

fingerprints were acquired using two smartphones, iPhone

11 and Google Pixel 5. We used an application similar

to Jawade et.al [7] for acquiring four-finger images using

the two smartphones. As shown in figure 2, the applica-

tion presents volunteers with a bounded region within which

they can place their hand in an unconstrained manner. Cor-

responding contact-based fingerprints were acquired using

Futronic FS64 EBTS flat-bed fingerprint scanner. For each

participant fingerprint images were collected over two ses-

sions separated by atleast two weeks. There was significant

gender, ethnicity ((East Asians, White Americans, African

American, Filipino, Asian Indian and Filipino), race and

age variation among subjects participating in the data col-

lection. This data collection was approved by the institu-

tional IRB and the identities of the subjects involved in the

data collection have been anonymized.

For each participant, contactless fingerprint images were

Figure 2. Application used for acquiring four-finger images.

acquired in three different lighting conditions and back-

grounds namely (i) Indoor (ii) White Background and (iii)

Outdoor. Each image was captured using flash and auto-

focus. Contactless images were acquired using Apple

iPhone 11 and Google Pixel 5 with resolutions (2016 x

4224) and (3024 x 4032) respectively. Across the 88 partic-

ipants, we captured 280 contact-based four-finger images

and 3374 contactless four-finger images. The dataset is

further split using the distal segmentation approach as de-

scribed in section 3.2. Table 1 summarizes the dataset size

and scope.

3.2. Distal Segmentation Method

Most fingerprint matching algorithms (such as Verifin-

ger, [16] [21]), primarily work on distal fingerprints rather

on the multi full-finger prints. To support compatibility with

these algorithms and interoperability with existing datasets,

we segment the four-finger images to extract distal pha-

langes. To produce pseudo bounding boxes for distal pha-

langes that can be then used to train an object detection

model, we formulate a heuristic algorithm based on local-

ization of convex defects.

We start by segmenting the background and the four-

finger foreground. To perform this segmentation, we fol-

low steps similar to [7]. First, we downsample the image

and apply Gradcut algorithm using the guiding region pre-

sented to the user as a prior. We next apply morphologi-

cal opening using kernels of size (11, 11) and (5, 5) over

the predicted grabcut mask M . Applying the up-scaled and

Gaussian blurred mask over the original image gives us the

segmented four-finger region.
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Database

Number

of

unique

fingers

Number

of

distal

images

Multi-

finger

Images

Full-

Finger

Images

Variations

E* B* Sensors

Lee et al., 2005 [8] 168 840 1.3M pixel CMOS camera

Lee et al., 2008 [9] 120 1200 Camera

Stein. et al. 2012 [23] 82 492 Nexus S, Galaxy Nexus

Derawi et al. 2012 [3] 220 1320 Nokia N95, HTC Desire

Li et al., 2012 [10] 100 2100 � � -

Stein. et al. 2013 [22] 74 990 � � Galaxy Nexus, Galaxy S3

Tiwari et al. 2015 [25] 50 156 Samsung Note GT-N7000

Sankaran et al. 2015 [21] 128 5100 � � iPhone 5

Lin et al. 2018 [15] 300 1800 camera, URU 4000

Deb et al. 2018 [2] 1236 2472 � �

SilkID, Guardian 200
Redmi Note 4

Chopra et al. 2018 [1] 230 3450 � � Multiple Smartphones

Wasnik et al. 2018 [26] 48 720 iPhone 6

Lin et.al 2018 [14] 300 3920 -

Wild et al. 2019 [28] 108 4310 � � LG Flex 2, Note 4, ARH AFS510

Malhotra et al. 2020 [17] 304 19456 � �

OnePlus One, MicroMax Knight

Secugen

RidgeBase (Ours) 704 14328 � � � �

Google Pixel 5, iPhone 11

Futronic FS64

Table 2. A quantitative comparison of contactless fingerprint datasets in literature. E*: Variations in Environment (Lighting conditions),

B*: Variations in Background. A similar compilation can be seen in [17]

.

Next we find the convex hull C for the segmented mask

M using Sklansky’s algorithm. Figure 3.2 shows the convex

hull over the four-finger region. For the set of images in the

dataset that are acquired keeping the four fingers close to

each other, the top-most point shared by any two fingers

in contact must also be the farthest point on the perimeter

of the segmented region from the convex hull. Under this

premise, we detect top three farthest points (denoted by set

S) from the convex hull (referred to as convexity defects).

S = {(x1, y1), (x2, y2), (x3, y3)}

Next, we apply a set of empirically observed measures

to generate bounding boxes for the four distals using the set

S. We start by computing finger width using y2, y3, y4.

Dw = max((y3− y2), (y4− y3))

Next, the following set of rules are used to predict bound-

ing boxes around distals:

DTL1
= (x2 + 2 ∗ α− β ∗Dw, y2 −Dw)

DBR1
= (x2 + 2 ∗ α, y2)

(1)

DTL2
= (x3 + 4 ∗ α− β ∗Dw, y2)

DBR2
= (x3 + 4 ∗ α+ 0.5 ∗Dw, y3)

(2)

DTL3
= (x3 + 3 ∗ α−Dw ∗ β, y3)

DBR3
= (x3 + 3 ∗ α, y4)

(3)

DTL4
= (x4 + 2 ∗ α−Dw ∗ β, y4)

DBR4
= (x4 + 2 ∗ α, y4 +Dw)

(4)

Here, α = 1.5 denotes an approximation of distal height

to width ratio and β is selected empirically as 50.

We employ a visual selection method to pick 980 images

that are perfectly annotated by the heuristic method, with

800 images being used for training and 180 images being

used to test a FasterRCNN network for recognizing distal

phalanges. The mAP@IOU = 50% of the trained Faster-

RCNN network is 95.7%. The final trained FasterRCNN is

capable of detecting finger distals in images where the four

fingers are not close to each other, despite the fact that it was

trained with images with four fingers close to each other.

4. Tasks and Protocols

We design the RidgeBase dataset to support three sets

of tasks: (i) Single Finger Matching (or Distal-to-Distal
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Figure 3. Segmentation process for generating pseudo labels for

finger images.

matching) (ii) Four Finger Matching and (iii) Set based Dis-

tal Matching. Each task is further divided into contactless-

to-contactless and contact-to-contactless verification and

identification tasks. Unlike previous datasets, to ensure re-

producibility, we provide fixed test evaluation pairs for each

of the tasks. Below we provide detailed description of the

tasks, evaluation protocols and associated train-test splits.

4.1. Single Finger Matching

Task 1 represents the single finger distal-to-distal match-

ing scenario which is equivalent to traditional fingerprint

matching. For task 1, we segment the distal phalanges

for the whole dataset using the method described in sec-

tion 3. So, for the 88 participants, the dataset consists of

704, (88 x 4 x 2) unique fingers. We select 200 unique

fingers (classes) for the test set and 504 disjoint unique fin-

gers (classes) for the training set. This protocol is for one-

to-one fingerprint matching approaches, and considers each

unique finger as a unique identity. This provides compa-

rability and support for dataset augmentation with existing

contactless fingerprint datasets that consist only of single

finger images. In total, the test set consists of 2229 con-

tactless finger distal images, and 200 contact-based finger-

prints. The train set consists of 11255 contactless distal im-

ages and 916 contact-based fingerprints. For the contactless

to contactless matching (CL2CL verification) task, we pro-

vide 24,83,106 test pairs for evaluation and for contact-to-

contactless based matching (C2CL verification), we provide

4,54,716 test pairs.

4.2. Four Finger Matching

Task 2 represents the four-finger to four-finger match-

ing scenario. Typically, multi-finger authentication is more

robust than single finger authentication. This protocol pro-

motes research in end-to-end trainable algorithms and fea-

ture fusion methods that can overcome distortion challenges

of contactless images by utilizing identity features available

in the entire four finger region. Here, we consider a hand

(four-finger region) as a unique identity. For 88 partici-

pants, the task consists of 176 unique hands. We use 25

participants (∼30%) for test, and 63 participants for train-

ing (as in task 1). Therefore, task 2 consists of 50 unique

four-finger images for test set and 126 unique four-finger

images for train set.

4.3. Set-Based Matching

To overcome the inconsistencies and distortions ob-

served in real-time unconstrained capture of fingerprint im-

ages using smartphone camera, we introduce a set-based

matching protocol. Set-based matching schemes have been

previously used for face recognition [27] where there is

high intra-class variations. In task 3, each set consists

of finger-distal images of the same finger under different

backgrounds and lighting conditions and acquired using

different devices in multiple sessions. For contactless-to-

contactless distal matching, test split consists of 200 query

sets and associated 200 gallery sets. On average each query-

set consists of 4 samples, and each gallery-set consists of

5 samples. Similarly, for contact-to-contactless matching

each gallery-set consists of 8 samples on average, and each

query-set consists of 1 contact-based image. A robust fea-

ture fusion method developed to perform well on set-based

matching protocol can greatly improve contactless match-

ing performance in real-world where multiple images can

be acquired from a continuous video.

5. Quality Analysis of Fingerprints (NFIQ 2.0)

Figure 5 shows the distribution for fingerprint quality es-

timated using NFIQ 2.0 [24] for the test-set split of Task

1 (only distals). All raw contactless distal images are gray

scaled and converted to 8bit and 500 dpi before comput-

ing NFIQ scores. As can be observed from the distribu-

tion, a majority of fingerprints have NFIQ 2.0 scores in the

range 20-45. Galbally et.al [4] trained a bayes classifier for

computing NFIQ 1.0 classes from NFIQ 2.0 values. Their

learned mapping function [4] can be summarized as:
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Figure 4. NFIQ 2.0 score distribution of training split of Ridge-

Base dataset (Grayscaled)

NFIQ1 =



















5 if 0 < NFIQ2 ≤ 5

3 if 6 < NFIQ2 <= 35

2 if 36 < NFIQ2 <= 45

1 if 46 < NFIQ2 <= 100

where, NFIQ1 = 5 denotes worst quality images, and

NFIQ1 = 1 denotes best quality images (NFIQ1=4 and

NFIQ1=5 are treated as one unique class [4]). Using this

mapping function we observe that, for raw gray scale con-

tactless images in RidgeBase test dataset 2.5% images lie

in NFIQ1 class 5, 76.7% in class 3, 16.0% in class 2 and

4.8% in class 1. Figure 4 shows the NFIQ2 score distribu-

tion for RidgeBase’s training split. As it can be observed

from Figure 5 and 4, test set is representative of the training

set in terms of raw fingerprint image quality distribution.

Figure 6 shows NFIQ2 score distribution after enhancing

contactless fingerprints using Hong. et.al’s algorithm [6] to

improve ridge clarity based on local ridge orientation and

frequency.

6. Experiments

We evaluate baseline methods for verification (1:1) and

Identification (1:N) tasks. We provide subject disjoint train-

ing and testing sets for all the tasks. Furthermore, the pro-

tocol also provides defined query and gallery templates for

both verification and identification for Task 3.

6.1. Metrics - Verification and Identification (1:N,
1:1), ROC and CMC

Methods are compared for verification task using EER

(Equal Error rate), TAR(%)@FAR=10−2 (as in previous

contactless matching works) and AUC. For Identification

tasks, we report Rank(%)@1, Rank(%)@10, Rank(%)@50

Figure 5. NFIQ 2.0 score distribution of evaluation split of Ridge-

Base dataset (Grayscaled)

Figure 6. NFIQ 2.0 score distribution for enhanced fingerprints

(Enhanced [6]) in evaluation split

and Rank(%)@100. Additionally, we compare methods us-

ing Receiver Operating Characterstic (ROC) and Cumula-

tive Match Characterstic (CMC) for verification and identi-

fication respectively.

6.2. Preprocessing and Enhancements

We perform a set of pre-processing and ridge enhance-

ment steps over the distal images segmented using the

method described in section 3.2. We start by gray-scaling

the contactless fingerprint images and then performing

adaptive contrast enhancement with binary inversion. This

is done to improve the ridge-valley contrast and account for

the ridge inversion. We observe that due to variations in the

focus over the distal region, directly enhancing the prepro-

cessed contactless image leads to large number of spurious

minutiae in the out of focus region. To address this, we per-

form adaptive Gaussian thresholding over the preprocessed
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Table 3. CL2CL - 1:1 Verification

Task 1 - Distal Matching

Metric Verifinger AdaCos (CNN)

EER (%) 19.7 21.3

TAR(%)@FAR=10−2 63.3 61.2

AUC(%) 89.3 87.7

Task 2 - Four Finger Matching

Metric Verifinger AdaCos (CNN)

EER (%) 13.1 14.8

TAR@FAR=10−2 79.8 70.9

AUC(%) 92.1 92.6

Task 3 - Set based Distal Matching

Metric Verifinger AdaCos (CNN)

EER (%) 7.90 9.5

TAR(%)@FAR=10−2 86.1 86.5

AUC(%) 95.3 96.3

Table 4. CL2CL - 1:N Identification

Task 1 - Distal Matching

Method R@1 R@10 R@50 R@100

Verifinger 85.2 91.4 93.8 95.4

AdaCos (CNN) 81.9 89.5 94.1 95.9

Task 2 - Four Finger Matching

Method R@1 R@10 R@50 R@100

Verifinger 94.1 99.0 99.8 100.0

AdaCos (CNN) 91.5 97.3 99.6 99.8

Task 3 - Set Based Distal Matching

Method R@1 R@10 R@50 R@100

Verifinger 91.5 99.5 100.0 100.0

AdaCos (CNN) 86.5 99.0 100.0 100.0

image followed by a series of median blurs. This removes

the out-of-focus regions of the distal image, leaving behind

the sharp ridge pattern. Next, we enhance the fingerprint

ridge pattern using the ridge frequency based enhancement

method proposed by Hong et.al[6].

6.3. Baselines

We present evaluations on the RidgeBase dataset using

the commercial-off-the-shelf (COTS) Verifinger matcher

and the CNN based deep metric learning method proposed

in [7]. To generate ISO templates using Verifinger 12.0

we first preprocess and enhance fingerprints using the al-

gorithm described in section 6.2, and then convert the fin-

gerprints to 8 bit 500dpi images.

For the second baseline, we evaluate the AdaCos based

branch as described in [7]. The model takes a channel se-

quenced, enhanced and grayscaled image as input followed

by Densenet 161 representation extractor optimized with

adaptive scaling cosine (AdaCos) loss [29]. We first pre-

train the network using 50,000 synthetic fingerprints gener-

Figure 7. Contactless and Contact Four-Finger, Segmented, and

Enhanced Fingerprint samples

Figure 8. 1:1 Verification ROCs for Contactless-2-Contactless

ated using the Anguli 2 Fingerprint Generator and then fine

tune over RidgeBase. We use 2000 images out of the 11,252

images for validation and the remaining 9,252 images for

training. Results reported for both baselines are over the

RidgeBase test split. For task 2 and task 3, we segment the

distal phalanges and perform score fusion using sum rule.

End-to-End training of four-finger region and association-

based feature pooling are left for future exploration.

6.4. Results

Table 6.2 and 5 report the verification results for

contactless-to-contactless matching and contact-to-

contactless matching respectively for all three tasks i.e.

Distal Matching, Four Finger Matching, and Set Based

2Anguli: https://dsl.cds.iisc.ac.in/projects/Anguli/index.html
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Figure 9. 1:N Identification CMCs for Contactless-2-Contactless

Figure 10. 1:1 Verification ROCs for Contact-2-Contactless

(Method: Verifinger)

Table 5. C2CL - 1:1 Verification - Verifinger

Task EER (%) TAR(%)@FAR=10−2 AUC(%)

Task 1 18.9 57.6 87.2

Task 2 11.3 82.4 95.1

Task 3 10.7 79.3 95.7

Table 6. C2CL - 1:N Identification - Verifinger

Task R@1 R@10 R@50 R@100

Task 1 72.5 89.2 95.5 97.5

Task 2 85.4 96.7 100.0 100.0

Task 3 80.0 97.0 99.5. 100.0

Figure 11. 1:N Identification CMCs for Contact-2-Contactless

(Method: Verifinger)

Distal Matching. Figure 6.3 and 10 shows the receiver

operating characteristic (ROC) for all three tasks. Table 6.2

and 6 report the Identification results for the contactless-to-

contactless matching and contact-to-contactless matching

task respectively. Figure 6.3 and 11 show the Cumulative

Match Curve for the identification rate. Based on the

performance evaluation of both the widely used COTS

verifinger and the CNN based method, we observe that

RidgeBase is more challenging than other existing con-

tactless fingerprint datasets, and hence motivates further

innovation in contactless fingerprint matching algorithms.

7. Conclusion

In this work, we have proposed a novel smartphone

based contactless fingerprint matching dataset. RidgeBase,

a multi-use full-finger dataset, will help advance new av-

enues for contactless fingerprint matching, promoting meth-

ods that could leverage different parts from the four-finger

region for matching. With the set-based matching protocol

introduced along with RidgeBase, novel contactless fusion

algorithms can be investigated to achieve better query-set to

gallery-set matching performance. Along with this dataset,

we release the cross-platform app developed to collect the

fingerphotos.
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