CRITICAL PERTURBATIONS FOR SECOND ORDER ELLIPTIC OPERATORS. PART II:

l.
2.
2.1.
2.2.
2.3.
24.
3.
4.
4.1.
4.2.
5.
6.

NON-TANGENTIAL MAXIMAL FUNCTION ESTIMATES
S. BORTZ, S. HOFMANN, J. L. LUNA GARCIA, S. MAYBORODA, AND B. POGGI

AsstrAcT. This is the final part of a series of papers where we study perturbations of divergence form sec-
ond order elliptic operators —divAV by first and zero order terms, whose complex coefficients lie in critical
spaces, via the method of layer potentials. In particular, we show that the L? well-posedness (with natural
non-tangential maximal function estimates) of the Dirichlet, Neumann and regularity problems for complex
Hermitian, block form, or constant-coefficient divergence form elliptic operators in the upper half-space are
all stable under such perturbations. Due to the lack of the classical De Giorgi-Nash-Moser theory in our set-
ting, our method to prove the non-tangential maximal function estimates relies on a completely new argument:
We obtain a certain weak-L” “N < S” estimate, which we eventually couple with square function bounds,
weighted extrapolation theory, and a bootstrapping argument to recover the full L? bound. Finally, we show
the existence and uniqueness of solutions in a relatively broad class.

As a corollary, we claim the first results in an unbounded domain concerning the L”-solvability of boundary
value problems for the magnetic Schrédinger operator —(V — ia)> + V when the magnetic potential a and the
electric potential V are accordingly small in the norm of a scale-invariant Lebesgue space.
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1. INTRODUCTION

This is the second in a series of two papers, where we study the L?> Dirichlet, Neumann and regularity
problems for critical perturbations of second-order divergence-form equations by lower order terms. In
the first paper [BHLMP22], we obtained square function estimates and uniform L? estimates on slices
of the layer potentials (see Theorem 1.4). In the present manuscript, we complete the L? theory for these
operators, by proving the non-tangential maximal function estimates (Theorem 1.5), as well as the existence
and uniqueness of solutions to the boundary value problems (Theorems 1.10 and 1.11).

Consider operators of the form
(1.1) L:=—div(AV+B)+B,-V+V

defined on R™! = {(x,1) : x € R",t € R}, n > 3, where A = A(x) is an (n + 1) X (n + 1) matrix of L%
complex coefficients, defined on R” (independent of ¢) and satisfying a uniform ellipticity condition:

n+l

_ 1
(1.2) U < Re(AWE &) 1= Re Y A&, Al <
ij=1
for some A > 0, and for all £ € Cn*+1 x € R". The first order complex coefficients By = B(x), B, = By(x) €
(L”(R”))'1 (independent of ¢) and the complex potential V = V(x) € L2 (RY) (again independent of 7) are
such that

(1.3) max {IB1llzza), B2l e, ”V”L%(Rn)} <p

for some p depending on dimension and the ellipticity of A in order to ensure the accretivity of the form
associated to the operator £ on the space

YI,Z(RVH—I) = {u e L22+1(Rn+1) -Vu e LZ(RFL+1)}

equipped with the norm

||M||Y1,2(Rn+l) = ”M”LZZH(RHH) + ”Vu”LZ(]RVH-l),

where 2 | = 2(nn_+11) is the Sobolev exponent in 7 + 1 dimensions. Our smallness assumption on the critical

norms (1.3) of the lower order terms is very natural in the #-independent setting, as it implies a small
Carleson perturbation assumption; see Remark 1.15.

We remark at this stage that, under the current hypotheses on the coefficients, the potential term V may
be absorbed into the drift terms By, B, by writing V = —divV(=A)"2(=A)"12V, and as a consequence,
we will not explicitly mention the potential term in any of our estimates. A more detailed account of this
reduction can be found in [BHLMP22, Lemma 2.17].
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We interpret solutions of Lu = 0 in the weak sense; that is, u € WIIO’CZ(R"“) is a solution of Lu = 0 in
Q c R™! if for every ¢ € C;°(Q), it holds that

// ((AVu +Biu)-Vo+ B, - V:@) =0.
Rn+l

Our methods here are of a perturbative nature and we construct solutions via layer potentials. We de-
note § and D as the (abstract) single and double layer potentials, respectively. Further, smallness on the
lower order terms By, By, and V is imposed (depending on dimension and ellipticity) in order to guarantee
boundedness of these layer potentials in natural Banach spaces', but it is important to note that no struc-
tural assumptions are made on the matrix A until we begin to prove existence and uniqueness (starting with
Section 7). When we do prove existence and uniqueness, we must ensure that the “boundary operators” for
the layer potentials associated to the operator” Ly = divAV are invertible and we must also ensure that the
lower order terms are small depending on dimension, ellipticity and operator norm of the inverses of the
boundary operators (see Theorem 1.11). In special cases, where A has some structural assumption, such
as being Hermitian, we already know that the operator norm of the inverses of the boundary operators is
uniformly bounded in terms of dimension and ellipticity so this restriction is redundant (see Theorem 1.10).

The first paper in this series [BHLMP22] established L? square function and “slice” estimates for layer
potential operators. The following theorem summarizes these results. We denote by S£ and D%+ the single
and double layer potentials, respectively (see Definitions 2.45 and 2.47).

Theorem 1.4 ( [BHLMP22]). Let
L:=—-div(AV+B|)+B,-V+V

where A, B1, B,V are as above. There exists py > 0 depending on dimension and the ellipticity of A such
that if

max {|1Billr@n), 1B2llir@ny, IVIp2@n b < P
then the following estimates hold for the single and double layer potentials.

(i)
dxdt
// }tmaj”VS,Lf(x)}z XT < lelflliz(Rn), for eachm € N,
R:l:”l
(ii)
sup | Tee SEAIl 20+ sup [T VSE fll 2y < Cllfll 2y
0 Ln=2(R") 0
(iii)
dxdt
// VD P T < Callfllfag, for eachm € 1,
RT—]
(iv)

sup || Trr D5 fll 2@y < Cllfll2@n-

™0
Here, C depends on dimension and ellipticity, while C,, depends on m, dimension, and ellipticity.

IThis means L bounds on certain square functions or non-tangential maximal functions.

“More generally, Ly could be an operator of the same form as L, whose lower order terms are small enough to ensure that the
non-tangential maximal function estimates hold (see Theorem 1.11).
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Items (iii) and (iv) were not treated explicitly in [BHLMP22]. However, using the identity in Lemma
2.63 of the present article, and the square function estimates for the single layer obtained in [BHLMP22,
Theorem 1.3], estimate (iii) follows. Finally, (iv) then follows from (iii) and [BHLMP22, Theorem 6.17].

In fact, the analysis in [BHLMP22] (primarily these estimates) along with the existence and uniqueness
sections of this work are enough to prove the existence and uniqueness for solutions with square function
estimates. On the other hand, we desire to have the more natural non-tangential maximal function estimates
for the single and double layer potentials, under (essentially) the same hypothesis as in Theorem 1.4. The
non-tangential maximal function estimates are significantly stronger than the uniform slice estimates (ii)
and (iv). This is where we place a significant amount of our effort in this work. Along the way, we will
further be able to extrapolate the L? estimates to L” estimates in a window around 2. We prove:

Theorem 1.5. Let £ := —div(AV+B1)+B,-V+V, where A, By, By, V are as above. There exist p1 € (0,p1)
and g1 > 0 depending on n and A such that if

max {[|B1llren. [1Baller. VI3 g b < P1s

then the following estimates hold for each p € 2 — 1,2 + €1):

(i) ||JS’2(VS£f)||LP(R") < Cllfllzrnys
(ii) IN2(DE Plir@ny < CllfllLrny-

Here, the constant C depends only on dimension and ellipticity, and N, is the modified non-tangential
maximal function (see Definition 2.5 below).

The idea to proving Theorem 1.5 begins with a weak “N < S result; namely, we show a weak-L”
bound (L”* bound) for the non-tangential maximal function in terms of the LP norms of the vertical and
conical square functions (see Lemma 5.2). Then, interpolation will show that Theorem 1.5 holds provided
that the vertical and conical square functions are bounded in L? for an open interval (in p) around 2. The
starting point for obtaining such bounds for the square functions is to prove general bounds for operators
with sufficient off-diagonal decay which satisfy a local reverse-Holder inequality using the extrapolation
theory from weighted norm inequalities [Rub84, GR85,DR86,CMP11,CMP12] (see Lemmas 3.1 and 3.7).
Arguments similar to ours have been used in [Pril19] to treat square function estimates for operators built
out of the heat or Poisson semigroups associated to an elliptic operator; however, in our case we must
grapple with the added difficulty of having very mild off-diagonal decay. On the other hand, the local energy
inequality for the equation (the Caccioppoli inequality) allows us to obtain the necessary off-diagonal decay
for related operators with added (transversal) derivatives. Having done so, our remaining task is to “remove”
these additional derivatives, a process which we call “traveling down”. Due to its definition, this process
for the vertical square function is a relatively simple integration by parts computation. For the conical
square function, the additional spatial average impedes the simple integration by parts and our argument
for this object requires the boundedness of the non-tangential maximal function with the same number of
derivatives. Luckily, our Lemma 5.2, when combined with Proposition 5.1, gives that the non-tangential
maximal function bounds (for this family of operators) depend on square functions with more® derivatives.
This allows us to employ a two-step induction scheme where one alternates between bounding the L” norm
for a non-tangential maximal function by the L” norm of square functions (with more derivatives) and then
bounding the LP norm of the conical square function by the L” norm of a non-tangential maximal function
(with the same number of derivatives). Thus, in finitely many steps, we remove these additional derivatives.

3Note that in Lemma 5.2, we may use that [[V(®,; Hllrery $m IV(Ormr1 H)llr@n), by the aforementioned integration by parts
argument. The subscript m refers to the number of transversal derivatives.
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(Recall we can start this process, that is, obtain L” bounds for the vertical and conical square functions, by
introducing enough transversal derivatives.)

With the square function and non-tangential maximal function bounds for layer potentials in hand, we
turn our attention to the solvability of the following boundary value problems with data in L? spaces: We
consider the Dirichlet problem

Lu=0  inR™
(1.6) (D), § lim; o u(-,1) = f strongly in LP(R") and u — f non-tangentially®,
Nou € LP(RY),
the Neumann problem
Lu=0  inR™,
(1.7) (N), § 24 = —e,.1(AVu + Byu)(-,0) = g € LP(R"),”
Na(Vu) € LP(R™),
and the regularity problem
Lu=0 in R+,
(1.8) R), quC,t) = f weakly in YLP(R"™) and non-tangentially,
Na(Vu) € LP(R™),

Remark 1.9. At this stage we would like to point out a couple of things related to the definition above. First,
we chose to state the boundary value problems in terms of the (modified) nontangential maximal function as
this is typically the quantity of interest. Second, if the solution u is given by layer potentials (as will always
be the case for us), appropriate square function estimates are a/ways available, regardless of solvability (see
Remark 1.13 and Theorem 1.4).

We are ready to state the main result of this series of articles.

Theorem 1.10. Let Ly be a divergence form operator of the form
Lo = —divAyY,

where Ay is either Hermitian, block form or constant. Then there exist pg > 0 and €y > 0 depending only
on dimension and ellipticity such that if

Li=—-div(A+M)V+B)+B,-V+V,

and
max {||Ml|z=c, |1Billzren, |1B2llscen, ||V||Lg(Rn)} < po

then for each p € (2—&o,2+ &), the problems (D),, (N),, and (R),, are um’quely6 solvable’ for the operator
L1, and the solutions can be represented by layer potentials.

4Since the solutions u do not satisfy pointwise bounds, non-tangential convergence is also understood in an averaged sense; see
Definition 2.5.

SThe boundary data is achieved in the distributional sense, see Section 2.
6See Remark 1.14.
7Solvability throughout this paper means that we have accompanying L? bounds for the non-tangential maximal function.

Bruno: ple:
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the presentati
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to p, and I ha
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sponded to tl
tion estimat
cay at infinif
of distributic
pensate, late
state that ous
isfy these pi
moving the
makes it so
lems are stat
sically”.



6 S. BORTZ, S. HOFMANN, J. L. LUNA GARCIA, S. MAYBORODA, AND B. POGGI

Remark that the previous theorem gives the first solvability results for boundary value problems with
control on the (modified) non-tangential maximal function for second-order elliptic operators with complex-
valued lower-order terms.

Our most general theorem concerning boundary value problems with p = 2, is as follows®.
Theorem 1.11. Let Ly be an operator of the form
Lo = —div(AV+B))+B,-V+V
where A, By, B>, V are as above and

max {|1Billr@n), 1B2llir@ny, IVIp2@n b < pis
9

where py is as in Theorem 1.5. Suppose further that the associated boundary operators
1 -
S50 2RY) - YRR, £+ KO PR - LPR",
1
(1.12) 51+ KL PR — LA(RY)

are all invertible. Then the boundary value problems (D), (N),, (R), are uniquely'® solvable for the oper-
ator Ly, with solutions given by the appropriate layer potentials.

Moreover, there exists p = p(Ly) > 0 such that if
L =—div(AV+B))+ B, -V+V
with Av, El, Ez, V as above and satisfying
max {[I4 ~ Allzg. 1B1 = Billreny, 1B2 = Ballsoy, IV = Vil 5} < 1

then the boundary operators, SOLO, i%] + KLo, TL%I + KL, are invertible and the problems (D),, (N),, (R),

are uniquely solvable for the operator L, with the corresponding layer potential representations.

Here, the constant p(Ly) is chosen with two constraints. The first is to ensure that A has ellipticity
constant less than twice that for A and

max {181, 1B2ller@n. VI 5 g b <P

where p} is as in Theorem 1.5 for matrices with ellipticity twice that of A. The second constraint depends
Lo

on the operator norms of the inverses of Sy”, i%l + Ko, TL%I + kLo,

The solvability result for Theorem 1.11 is proved in Theorem 7.18, while the uniqueness results are
argued in Theorems 8.14, 8.10, and 8.9. These theorems together also resolve the case p = 2 of Theorem
1.10. The case p # 2 of Theorem 1.10 will be addressed in Section 9.

Theorem 1.11 is modeled after the results in [AAAHKI11], where a purely second order perturbation
theory is developed, while in the presence of De Giorgi-Nash-Moser estimates for solutions of £ and
L. We remark that it is only the failure of these estimates that prevents the application of the results
in [AAAHKI11] to a complex elliptic operator, such as £y in block form or Hermitian. In this sense our
results also bridge the gap between the “standard" layer potential approach and the abstract, first-order
approach used in [AAM10a] and [AAHO8], to obtain perturbation results.

8Theorem 1.11 also has an appropriate analogue for p sufficiently near 2, but then the boundary operators have different domains
and ranges; see Section 9.

9See Section 7 for the definitions of the operators S+, K, and K.
1()Again, see Remark 1.14.
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Remark 1.13. The solutions to the problems (D),, (N),, and (R), satisfy two further properties: square
function estimates and decay at infinity. More precisely, the solution to (D), satisfies that

lim u(-,#) = 0 in the sense of distributions, and
—00
ISEV)llLr @y < oo,

where S is the conical square function from Definition 2.2. The solutions to the Neumann and regularity
problems satisfy:

tlim Vu(-,t) = 0 in the sense of distributions, and
||S(t8,Vu)||Lp(Rn) < 00,

Remark 1.14. Uniqueness, under the background hypothesis of invertible layer potentials and sufficient
smallness of the lower order terms, is established among what we call “good D solutions” (in the case of
(D),) and “good N/R solutions” (in the case of (N), and (R),). We show that non-tangential maximal
function estimates or square function estimates imply that solutions are “good”. For instance, if p = 2 and

under the aforementioned background hypothesis, suppose that u € Wllo’c2 (R™1) solves

~ [Lu=0  inR™M!,
D)2 1 . o,
lim,o u(-,t) = f strongly in L“(R"),

for some f € L?, and suppose that u has one of the following properties:

e uis a good D solution,
° ”NZM”LZ(Rn) < 00 Or
o [ 1V, P dxdr < .

Then u is the unique such solution and has the other two properties. In the case of the Neumann problem,
our solutions are unique modulo constants if the operator £ annihilates constants.

Let us mention some well-known operators in mathematical physics for which our solvability results
are new. For the magnetic Schrodinger operator —(V — ia)? when a € L"(R")"*! is t—independent and has
small L"(R") norm, we have as a corollary to our Theorem 1.10 the first L” well-posedness results of the
Dirichlet, Neumann and regularity problems on an unbounded domain. Another operator which satisfies our
hypotheses is the Schrodinger operator — div AV + V where V € L2(R") is t—independent, complex-valued,
and has small L2 (R") norm, and thus we obtain new solvability results in this setting as well. However,
we mention that, for non-negative V, there are solvability results for boundary value problems under the
assumption that V belongs to a reverse Holder class [She94, Sak19, MT].

Remark 1.15. Small Carleson perturbation conditions have been shown to preserve solvability of boundary
value problems in the same L? space, at least when the operator is a purely second-order divergence-form
elliptic operator [AA11,HMM15a, AHMT,DP19]. Let us point out the connection between our perturbation
condition (1.3) and the theory of Carleson perturbations. It is easy to prove that, under the assumption
that B; and B, are complex-valued and t-independent, if they satisfy the condition (1.3), then each of the
measures du = (|By| + |B2|) dxdt and du = (|B1? + |Ba2|?) dx tdt satisfy the Carleson measure condition

(1.16) u(B(xo, 1) N Q) < pr”, for each xg € R, r > 0.

Note that this embedding of our condition (1.3) into the small Carleson perturbation condition (1.16) does
not hold for the analogue perturbative conditions on the second-order term. Indeed, suppose A, Ag are ¢-
independent complex matrices such that [|[A — Ag||z~®») < €9. Then solvability results for the L? Dirichlet,
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Neumann, and regularity problems have been obtained [AAHO08, AAAHK11, AAM10b], but this perturba-

tive condition does not imply the classical Carleson perturbation condition [FKP91, AA11, HMM15a] that

AM-A0)?
t

SUPyep(x./2) dx dt is the density of a Carleson measure (and cannot imply it unless A = Ag!).

We now make a few historical remarks concerning our results.

Firstly, we should emphasize that all the results in this paper, as well as the ones in the first part
[BHLMP22], concern t-independent operators. While solvability results are available for #-dependent co-
efficients (see for instance [HMM15a]) we will not concern ourselves with them at all here.

Even in this restricted setting of elliptic equations with 7-independent coefficients the literature is vast,
and we make no attempt at a complete historical account; we refer the reader to the first part of this series of
papers, [BHLMP22], for a more thorough overview of the area. We will now restrict attention to the works
very closely related to our solvability and perturbation results.

The case of Hermitian Ay is treated in [AAMI10a]; in fact here the authors treat a perturbation theory
analogous to our own (by a different method, and only for second order perturbations) for all three classes
of Ag. We also note that the solvability for real symmetric second-order equations was already known from
the work in [JK81] for the Dirichlet problem and [KP93], [KP95] for the Neumann and regularity problems;
moreover, in this setting of real equations, the above works also obtain solvability for the problems in L” for
2—¢& < 2 < oo inthe case of Dirichlet, and 1 < p < 2+& for Neumann and regularity. The issue of solvability
by layer potentials goes back to [Ver84] for the case of the Laplacian, but the technique of using a Rellich
identity to obtain the invertibility also works in the case of real symmetric [KP93] or Hermitian [AAM10a]
matrices.

For A of block form, it was remarked by Kenig in [Ken94], solvability is equivalent to the Kato con-
jecture, in the case of the regularity problem, and to boundedness of a Riesz Transform associated to the
elliptic operator £, for the Neumann problem'!. On the other hand, special results were known before,
see [BHLMP22] and [AAAHKI11] for a more detailed account of this. L” solvability results (via layer
potentials) for perturbations of t-independent symmetric coefficients were obtained in [HMM15b].

Finally, when Ag is a constant matrix, an explicit Poisson kernel is constructed in [ADN59], while the
Dirichlet problem is solved in [FJK84], and the Neumann and regularity problem in [AAAHKI11]. See
also [MMMM17].

The works cited above dealt mostly with equations of pure second-order. The literature in the setting with
lower order terms present (that is, not all of by, by, V are identically 0) is much more sparse, but has in recent
years garnered a lot of attention, at least when the lower order terms are real. In [HLO1], parabolic operators
with singular drift terms b, were studied, and their results would later be applied toward (D), for elliptic
operators with singular drift terms b, in [KPO1] and [DPPO7]. When A = I, b; = b, = 0 and V > 0 satisfies
certain conditions, Shen proved the solvability of (N), and (R), on Lipschitz domains in [She94]. More
recently, Morris and Turner [MT] proved the L? well-posedness of the Neumann and regularity problems
in the half-space setting for the Schrodinger operator — div AV + V with t—independent Hermitian A and
t—independent potential Vin the reverse Holder class RH2. The problems (D), and (R), for equations with
lower order terms have been considered by Sakellaris in [Sak19] in bounded Lipschitz domains, under
some continuity and sign assumptions on the coeflicients. Solvability results and foundational estimates for
solutions for the variational Dirichlet problem of equations with lower order terms on unbounded domains
have been obtained by Mourgoglou in [Mou], with very lax assumptions on the (real) lower order terms.

The Dirichlet problem is a consequence of semigroup theory, since the double layer potential in this setting is a constant
multiple of the Poisson semigroup associated to L.



CRITICAL PERTURBATION THEORY, PART II 9

The paper is organized as follows. In Section 2, we review relevant preliminaries and definitions, in-
cluding properties of the layer potentials and the theory of extrapolation of A, weights. In Section 3, we
develop certain extrapolation theorems for both conical and vertical square functions, in the presence of
sufficient off-diagonal decay. In Section 4, we use the general extrapolation results of Section 3 to obtain
L? estimates for ‘slices’ and for conical and vertical square functions of operators arising from the layer
potentials with enough transversal derivatives. In Section 5, we prove the non-tangential maximal function
estimates, under the background assumption of good square function bounds. In Section 6, we proceed to
‘travel down’ on both the square and non-tangential maximal functions, to dispense of the hypothesis of
good off-diagonal estimates. In Sections 7 and 8, we show the existence and uniqueness, respectively, of
solutions to the boundary value problems (D),, (R), and (N),, with representations of solutions via layer
potentials. Finally, in Section 9, we prove the L? solvability of the Dirichlet, Neumann, and regularity
problems, for p € (2 — &9, 2 + &), with &y small enough.

2. NOTATION AND PRELIMINARIES

We start here by recalling some notation from [BHLMP22], as well as introducing some concepts that
will be used throughout this article.

e Throughout, we assume that n > 3. We write (x, t) for the coordinates of R™1 = R" x R, where
x€R"and t € R, and Rﬁ“ :={(x,1) : x € R", t > 0}. The lower half-space will be denoted R"*!.
Similarly, for any 7 € R we write R?*! := {(x,£) e R"™! : ¢ > 7}

e We always take A = A(x) to be an (n+ 1) X (n+ 1) matrix of L™, r—independent complex coefficients
satisfying the ellipticity condition (1.2), while By, B, € (L"(R")Y**! and V € LY2(R") are complex-
valued, 7—independent (vector) functions satisfying (1.3), with p < 1. Under these conditions, the
term V can be “hidden” into first-order terms B, B, (see [BHLMP22, Lemma 2.17]); therefore,
without loss of generality we will omit the zeroth order term V from consideration.

e For—-co<a<b< oowedeﬁnetheslabEb {(x HeR™ :a<r<b).

e For a vector ¥ = (vi,..., V1) € R™!, we write Vi := (V1,...,Vn), V1 1= vuy1. For vector functions
B:R" — C"™! we deﬁne By and B, analogously.

e For a cube O C R" we denote by Ry the Carleson region above Q; that is, Rp := Q X (0, £(Q)).

e For R > 0 we define I := (R, R)""! c R™! and I} := [x N R

e We denote by M the (uncentered) Hardy-Littlewood maximal function in R”, and more generally
for r > 0 we define M,(f) := M(|f")"/".

e Given a cube O C R" we denote by Q* a concentric dilate of Q by a factor that depends only on 7.

e We denote by /; the fractional integral of order 1 in R"; that is, for nice enough f,

L =e, / SO,
R X =
e We denote by D the collection of all dyadic cubes in R”, and for # > 0 we define D; to be the
cubes in D which satisty £(Q) < ¢ < 2£(Q). Similarly, for a cube Q ¢ R" we denote by D(Q) the
collection of dyadic subcubes of Q.
e For (x,1) € R™! we define the Whitney regions

Crr:={(9) e R tx—y| <1/8,]t — sl < 1/8}.
Given xg € R", we denote by I'(xg) the non-tangential cone with vertex xg, given by

2.1) T(x) := {(x, 1) : |x = xo| < ).
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e Let X be a topological space with Borel o—algebra B, and let 1 be a non-negative o—finite measure
on B. If p € [1,00), we denote by LP(X,u) the Lebesgue space of p—th integrable (complex)
functions f on the measure space (X, B, u). We often write LP(R") = LP(R", m,), where m,, is the
n—dimensional Lebesgue measure. If v € L]IOC(R”), we write LP(v) = LP(R", v).

e Given an open set Q ¢ R d > 3, we denote by C2(Q) the space consisting of all compactly
supported smooth complex-valued functions in Q. As usual, we denote 2 = C2°(R"*!), and we let
9’ = 9* be the space of distributions on R"*!. The space . consists of the Schwartz functions on
R and .#” = .#* is the space of tempered distributions on R"+!.

e We call a measurable function v : R" — R a weight if v > 0 Lebesgue-a.e. on R" and v € L] (R").
We say that v is doubling if the measure v(x)dx is doubling; that is, if (with a slight abuse of
notation) v(2Q) < Cov(Q) for a constant Cy > 0 and all cubes Q c R”.

e For 1 < p < m, the upper and lower Sobolev exponents of order 1 in m dimensions are respectively

« . _mp ._ mp
" m-p’ p*’m'_m+p'

Sometimes, we drop m from the subscript when the dimension is clear from the context.
e Given an open set Q C R™! for p € [1, 00), we denote by Whr(Q) the Sobolev space of functions
in LP(Q)) whose weak gradients exist and lie in (L? (Q))"*!. We endow this space with the norm

lleellywr.pq) == llullLe) + [[VullLr -

We define Wé’p (Q) as the completion of C°(€2) in the above norm. We shall have occasion to

discuss the homogeneous Sobolev spaces as well: by Wwlp (Q) we denote the space of functions in
LllOC (€2) whose weak gradients exist and lie in L”(£2). We equip this space with the seminorm

00, = IVllricn,
and, if 0Q is sufficiently nice, we point out that Wwir (€2) coincides with the completion of the
quotient space C*(Q)/C in the | - |V'V1w @ (quotient) norm.

Definition 2.2 (Vertical and Conical Square Functions). If F : R"™*! — C, we define the conical square

function of F as
dydt\1/2
sr = ([ 1roor )
(%) tn+

where ['(x) := {(y,1) € R"™! : |x — y| < ¢} is the vertical cone with apperture 1 and vertex x. Similarly, we
define the vertical square function of F as

o di\ 172
VF(x) := (/O |F(x,z)|27t) .

Remark 2.3. In the definition of S, we could have chosen a different aperture; that is, for > 0, we can set

dyd\ 1/2
s =( [ iror )
[x=yl<nt r

It is well-known that different apertures give rise to objects with equivalent L” norms and even equivalent
weighted L? norms (see for instance [CMS85, Proposition 4] for the unweighted case and [CMP20, Propo-
sition 4.9] for the weighted one).

In contrast to the L? case, if p # 2 the (L” norms of) conical and vertical square functions are not equivalent.

Proposition 2.4 ([AHM12, Proposition 2.1]). Let F : R"**! — C be measurable.
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() If0 < p < 2 then |[V(F)l|lo@n) Snp ISU)| o).
(ii) If2 < p < oo then |IS(F)llLr@®ny Snp IV Lr@e).-

Definition 2.5 (Non-tangential Maximal Functions). For F : R"*! — Cand g > 0, let

1/q
(2.6) a,(F)(x, 1) = (]% IF(y, s)|qdyds) .

We define the non-tangential maximal function of F as

N(F)(x) := sup|F]|,
T'(x)

and K(q(F )(x) = N(ay(F))(x). We also define the lifted modified non-tangential maximal function, for
e>0,as N qS(F )(X) := SUPp—y|<r—e aq(F)(y, ). Similarly, we define a truncated version of the non-tangential
t>e

maximal function as K/C(I'S)(F )(X) := sup|x—yj<s ag(F)(y, ). Given a measurable function g on R" X {r = 0}, we

X.

>e
say that F' — g non-tangentially if for almost every x € R", we have that

2.7) lim F(Y) = g(x),
Ye?(fc)

where I'(x) is the non-tangential cone defined in (2.1), and Fi (z,0) := UCCX, F@,s)dyds.

We now prove a result on the boundary behavior of solutions, under the assumption that we have good
control of a modified non-tangential maximal function.

Proposition 2.8. Ler u € WIIO’CZ(R") solve Lu = 0 in R™!'. Then u converges non-tangentially at every

x € R" where K/l (Vu)(x) < oo, in the sense that for any such x € R", the limit in (2.7) exists and is finite.

Proof. We follow [K~P93, Theorem 3.1(a)], with modifications due to lack of pointwise estimates for u. Let
x € R" be such that N{(Vu)(x) < co. Our goal to show that for ¥, Z € I'(x) N B(x, r) we have

2.9) [a(Y) — a(Z)| < CrA(Vu)(),

from which we may easily establish (via the Cauchy criterion) that )1/11)1} u(Y) exists, and consequently
define g(x) to be the limit. Write Y = (y, #;) and Z = (z, ;). Then, to est};lel)li(i)cs)h (2.9), it is enough that
(2.10) max {lﬁ(Y) —u(x,t), [w(Z) —u(x, tz)l} < CrNy (Vu)(x),

and

(2.11) li(x, 1) — u(x, 11)] < CrNy(Vu)(x).

To prove (2.10) and (2.11) we use the following fact.

Claim 2.12. For X e R™ " and r > 0 let I(X,r) := {W € R"™"! : X — W| < r} be the open cube with center
X and side length 2r. Let I; = I(X;,r;),i = 1,2, Q c R"™! open with I; ¢ Qi = 1,2 and ¢ € W'?(Q). If
a € [0,2) and | X — X5| < amin{ry, r,} then

el 1/2
‘][ gpdxdt—][ godxdt) < C(,max{rl,rz}(max{%,%}) 2 m?)é (][ |V<p|2> ,
, I;

I L i=
where C, = C(n, @). In particular, if r| = r, = r then

1/2
(2.13) ’][ cpdxdt—][ godxdt‘ < Cormax <][ |V90|2) ,
1 I =1, I;

1 2
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where C, depends on the implicit constants in the expression r| ~ ry ~ r.

Proof of Claim 2.12. Let X3 = X3%2 then |X3 - X;| < %%, i = 1,2, and hence I3 = [(x3,7) C I;,i = 1,2
for r = (1 — a/2) min{ry, rp}. It follows from the triangle 1nequahty and the Poincaré inequality that

20172
fe-felslfefel+lfe f <2max(f e~ of)
I V63 [3 112 Ii
< Co(max {2, 2 %max 1/2<C max({ry, r}( max {2, 2 TImax IV |2
= 04 r2,r] i 12 ‘70 a 1,72 ‘70

mn’n
Now let us prove (2.10) for the term with Y (the proof for the term with Z is 1dentlcal). Note that
lx—y| <t <rsince Y € I'(x) N B(x,r). Let I = I(z,t1/2), forz = (x + y)/2,then |z — x| = |z —y| < #;/2.
This allows us to apply (2.13) with ¢ = u, I} = I(x,t;/2), and I} = I(y,#;/2) to obtain (2.10).

We turn our attention to (2.11) and we assume, without loss of generality, that t1 <t.Leta=2/3, s =

dt fork =0,1,...,K, where K = max{k : a“t, > t;}. Notice that for k = 0,. =1, sk — Sge1l = sk*‘ =
min { ‘Zk, ‘kz“ } Defining sg+1 = t1, we see that the choice of K guarantees that |sx — sg1| < min { 52’( ’2‘ }
Set I := I((x, sg), %), k = 0,...K + 1, then the previous two inequalities allow us to apply (2.13) with
¢ = u and the consecutive cubes I; and [+, k = 0, 1,..., K (in place of /| and I, therein). One then obtains

K-1

[6Cx, 11) = Cx, 0)] < [Cx, sge1) = Gx sl + > lix, s) = @, see)|
k=0
< HNV)() + 1> dNi(Vu)(x) $ rNy (Tu)(x),
k=0

as desired (since Y. a* = 3). o

Definition 2.14 (CLP Family). We say that a family of convolution operators on L*(R™), (Qy); is a CLP
family (Calderén-Littlewood-Paley family), if there exist o > 0 and ¢ € L'(R") satisfying |y(x)| < (1 +
[x])™"*"¢ and Itﬁ(f)l < min(|€]7, |€]77), such that the following conditions hold:

(i) For f € C°(R"), we have the representation Q,f = ¢ * f 1= s7"Y(-/s) = f.
(i1) For each f € C°(R"), we have the bound

sup ||QSf”L2(R”) + sup ”SVQSf”Lz(R") S ||f||L2(R”)-
>0 >0

(iii) For each f € C(R"), Q; satisfies the square function estimate

IS@s NIz = IV Qs Hllzwny S 1fl2@n)-
(iv) The Calderén Reproducing Formula holds; that is,

< Hds
/ Q? - = IdLZ(R")a
0 N

where the convergence of the integral is in the strong operator topology on the Banach space of
linear bounded operators on L*(RM).

Definition 2.15 (Carleson measure). A non-negative measure y on Rﬁ” is a Carleson measure if

H(Rp)
llullc := su
ullc Qp 0]

< 00,
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where the supremum is taken over cubes Q c R".

Lemma 2.16 (John-Nirenberg Lemma for Carleson Measures). Let u be a non-negative measure on R*+!,
Suppose there exist n € (0,1) and Cy > 0 such that for all cubes Q C R”, there exists a disjoint collection

(Q))jen € D(Q) satisfying ijl |0l < nlQl and u(Ro \ (UjRQj)) < Col|Q|. Then u is a Carleson measure.

Remark 2.17. We may replace the Lebesgue measure on R” by any other Radon measure. If we assume
that the hypotheses only hold for dyadic cubes, then we require the measure to be doubling.

Lemma 2.18 (John-Nirenberg Lemma for local Square Functions). Suppose that F : R"™! — R, F > 0
and define the local square function Ag r : R" — R by

dydt\ 3
Agr = // Fo.0R 5 )
[x—yl<t<€(Q)

If there exists Co > 0 with the property that for every cube Q C R", the estimate

/ A pdx < ColQ|
o

holds, then for every p > 1, there exists a constant C| depending on p,n and Cy such that for every cube Q,

/QAZ,F dx < C1|0Q).

Proof. When p < 2, by Jensen’s inequality, the result is trivially true with C; < Cg/ 2. Now assume p > 2.
For ease of notation, we will write Ap = Ag r. Moreover, for @ > 0 we define

{(Q) dydt 1
Apa(x) 1= / /| PR
x—yl<a

When @ = 1, we may omit the subscript a. We also set K}, := supycgn fQ A’é. Note first that K, , ~q,p
K, ), =: K,,. We defer the proof of this fact to the end, and proceed with the proof of the lemma.

Let us momentarily assume that K, < oo a priori, and set @ > 0 and N > 1, both to be specified
later. Consider the open set Qy = {x € Q : Ag,(x) > N}. By the Chebyshev inequality, we see that
Q| Sa CON‘ZIQI. In particular, given @ > 0, we may choose N =, VCyp so that Qy C Q. Observe that

/A” /A”/ A”:1+11
Qn O\Qn

By definition of Qy, we have that 17 < N?|Q\Qy|. On the other hand, if (Q;); is a Whitney decomposition
of Qy, we can write (exploiting the convexity of s > s/2)

I, Z/ Ag, (0P dx + Z/ (Ag(x)* = Ag, ()" dx.
J>1 />1
For the first term, we easily have that
Z/ Ag (07 dx < 3 Kl0)] = Kyl
Jjz1 jzl
For the second term, by definition of Ag and A, we see that
“Q) ) dydt

A0 ~Ao P = [ [ irop
0Qj) Jlx—yl<t
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If x € Qj, then there exists x. € Q\Qy (recall Q\Qy # 0) such that |x — x.| = £(Q;) with implicit constants
depending only on n. In particular, for some @ = @(n) > 0, we have the inclusion

{o.neRM x—yl<t, €Q)<t<lQ}c{eneRM: |x,—y<at, 0<t<lQ},
so that Ag(x)* — Ag,(x)* < Ag(x.)* < N2, since x, € Q\Qy. Accordingly,
> / (Ag(x)* = Ag; (0" dx 50 N”IQI.
jz1 79 '

Combining these previous estimates, we obtain that I <, K,|Qy| + N?|Qy|, and so
/ Ag(x) dx <pn KplQul + NP|Q| < CoKp,N72|0] + NP|Q).
0

Dividing by |Q| and taking supremum over cubes gives K, <, COKPN‘2 + NP. Choosing N = M \C
with M > 1 large enough, we may hide the first term to the left-hand side, and thus obtain K, <, C 2,

Finally, to do away with the restriction K, < oo, we fix 7 > 0 and work with F, := F1,¢\r <1/ 1y<i<1/7
for which K, < co, and appeal to the monotone convergence theorem in the limit 7 — 0*.

We now turn to the proof of K, , ~ K. Notice that we only used this in the case p = 2, so we will only
prove this special case. We will also work only with @ > 1. By Fubini’s theorem, if w,, := |B(0, 1)| is the
volume of the unit ball in R”,

. (o L dt
[ Aeattar= [ [ [ 100t el PP drdy st
Q O n R/'l

) d
o / / (][ IlQ(x)dx)lF(y, Dy
0 n |x—yl<at t

We claim thatlz, for some dimensional constants ¢, ¢’ and every 8 > 1,

" Lo(y) S][ lo(x)dx < 1opp, whenever 0 <t < {£(Q).

[x=yl<pt

This claim follows immediately by noting that fl yl<Br Lo(x)dx = %. Using the second inequality

with 8 = « and the first with 8 = 1 and ¢’@Q in place of Q, we arrive at

) ) L, di 1O L dr
/ Apa(xYdx <on / / Fo. P dy s = / / LoagWIFG, D dy 2
Q O C/aQ t 0 n t

) At
S [ [ 1eaomd)iFe.0P & s [ Aodxs [ Acuo? dr 50 K0
0 n |x—y|<t t c’'aQ caQ

The result now follows from taking the supremum over all cubes. m|

12\We remind the reader that the notation C QO means the concentric dilate of Q by a factor C > 0.
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2.1. Weights and Extrapolation.
Definition 2.19 (A, weights). Let 1 < p < co. A weightv € L} (R") is said to be an A, weight if there

loc
exists a constant C > 1 such that for every cube Q C R", the estimate

(][Q V) (][Q ) <c

holds. The infimum over all these constants is denoted [v]4 s We refer to it as the A, characteristic of v.
We say that v € A; if (Mv)(x) < Cv(x) for a.e. x € R". The infimum over such C is denoted by [v]g4,.

Closely related to A, weights are the reverse Holder classes.

Definition 2.20 (Reverse Holder class). Let 1 < s < co. A weight v is said to satisfy a reverse Holder
inequality with exponent s, written v € RH, if there exists C > 1 such that for every cube Q c R”,

<][Q v‘Y)m < C][Q V.

Let us summarize most of the basic facts about A, weights which we will need.

Proposition 2.21 ( [GR85, Theorem 1.14, Lemma 2.2, Lemma 2.5, Theorem 2.6]). Let 1 < p < g < oo.
The following statements hold.

(i) ([GR85, Ch. IV Theorem 1.14 (a)]) A, C A,.
(ii) A weight v belongs to A, if and only if v € As.
(iii) ([GR8S5, Ch. IV Theorem 1.14 (b)]) If v € A, then Ve A, forany 0 <6 < 1.
(iv) ([GR85,Ch. IV Lemma 2.2]) If v € A, then vdx is a doubling measure, and the doubling constant
depends on v only through [v]a, (and p).
(v) ([GR85, Ch. IV Lemma 2.5]) If v € A, then v € RH, for some s that depends on the weight only
through [Va, (and p).
(vi) ([GR85, Ch. IV Theorem 2.6]) If v € A, then v € A, for some & depending on v only through
[v1a, (and q).

(vii) If v € Ay and s > 1, then v € RH if and only if v* € Agg-1)+1-

(viii) (Coifman-Rochberg [CR80, Proposition 2], [GR85, Ch. II Theorem 3.4]) If f : R" — C is such
that (Mf)(x) < oo for a.e. x € R", then for every 0 < § < 1 we have that vs := (Mf)° € Ay and
moreover [vs]a, < Cs depends only on 6.

(ix) (Muckenhoupt’s Theorem [Muc72, Theorem 2], [GR8S5, Ch. IV Theorem 2.8]) Forany 1 < p < oo,
veApand [ € LP), IMfllre) Spia, 1/ 1lLre)-

(x) (Coifman-Fefferman [CF74, Theorem III]) Let T be a “regular” singular integral, as defined
in [CF74], and T. the associated maximal operator. Then, for every v € A and f € CZ(R"), we
have that |T. fllirvy Spn IMfllrey. In particular, by Muckenhoupt’s Theorem above, we have that

T flliroy S, IfllLren-

The following result was originally proved by Rubio de Francia in [Rub83,Rub84]. We refer to [CMP11,
Theorem 1.1] for a simple proof of this fact.

Theorem 2.22. Let 1 < pg < co and let T be an operator satisfying ||T fllrroe) S[V]APO 1 f1lLro vy, for all v €
Ay and all f € LP°(v). Then, for every p € (1,00), v € A),, and f € LP(v), we have ||T f||1r(y) Sivla, 1f1lLr -

It is important for applications to note that the above theorem does not require any special structure on
T; it does not need to be linear or sublinear. In fact, we have
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Theorem 2.23 ( [CMP11, Theorem 3.9]). Fix py € (1,00) and F a collection of pairs of non-negative
measurable functions (f, g). Suppose that || fllzro) S ng llgllzro(v) for all v € Ay and all (f, g) € . Then

forevery p € (1,00), ve A, and (f,g) € F, we have ||fllr) Sivla, llgllLr(v)-

In practice, the collection ¥ often takes the form (|S /4], |S2A|) for some operators S; and % in some nice
class of functions. A corollary of the previous theorem and this observation is the following.

Corollary 2.24 ( [CMP11, Corollary 3.14]). Let r € (1,2), and suppose that T is an operator satisfying
T fllr20) ST |fllz2(), for each f € CZ(R") and all v € Ayjy. Then ||T fllLawey Sq |fllagn) for all g > r.

To prove the corollary, one defines S f := [T f|", Sof := |f|". Then, by hypothesis, [|S1 ;217 s[V]AZ/r
IS 21l z2/r(,)» and hence by the previous theorem, ||S 1 fllLr(v) Stvla, 1S 2f1lLr(vy for p € (1, 00). Setting v = 1
and p = g/r gives the desired result.

Theorem 2.25. Let (Qy); be a CLP family (see Definition 2.14) and let v € A,. It holds that

/ / @A Ly dx sn,m/ F@PY() dx.
Rn O t Rn

Remark 2.26. By Theorem 2.22, we obtain that the vertical square function associated to (Qy); is bounded
on LP(v) for every v € A, and 1 < p < oo; that is, [[V(Q f)llzre) < Ifllzey for every v € A,

Proof of Theorem 2.25. The idea is to use the method in [DR86, Theorem B], to interpolate a “good” bound
with a plain uniform bound in order to obtain another “good” bound in between. We will combine this
with interpolation with change of measures as in [SW58, Theorem 2.11], exploiting the self-improvement
property of A, weights. Since this idea will be used quite often throughout the paper we write out this
portion of the the argument in full here, and refer back to it when applicable.

We first claim that it is enough to prove the following estimate:

~, l‘ a ~
2.27) IQSQ,ZfIZV S[vls, Min (;, ;) Q. 1, for each s,t > 0,
Ril R"

for some @ > 0 and some CLP family (ét)t. Indeed, once this is shown, the desired result follows from a
familiar quasi-orthogonality argument (see for instance the proof of [Gral4, Theorem 4.6.3]).

To prove (2.27), we claim that it is enough to prove the following estimates.
(1) (Unweighted quasi-orthogonality) There exists 5 > 0 such that for any s, # > 0, we have the estimate

st

A2 42 1\A A o2
@a@tsa() | Qs

(i1) (Uniform weighted estimate) For any s > 0 and v € A;, we have the estimate
Q@ Py < CoIVlay) | 1QufTP.
Rﬂ

R»

Assume that these hold for the moment and fix v € A,. By properties of A, weights, there exist 6,C > 0
such that v!™ € A, with [1/1+‘5]A2 < C. In particular, the uniform weighted estimate holds with yl+o
in place of v, with the implicit constants depending only on [v]4,. Therefore, if we define the measures
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dp, = v*97 dx, interpolation with change of measure (see [SW58, Theorem 2.11]'%) gives
[ @@rtau<civci(3.0)" [ @b
RN t’s R7
The desired estimate (2.27) is exactly the case 7 = 1/(1 + ¢) with & = 86/(1 + ¢). This completes the proof,
modulo the above pair of estimates.
The first estimate, unweighted quasi-orthogonality, is a consequence of classical Littlewood-Paley the-

ory. On the other hand, the weighted estimate follows from both the fact that |Q, f], |Q,f| < M pointwise
in R" and Muckenhoupt’s theorem on the L*(v) boundedness of M for v € A, (see Proposition 2.21). ]

Lemma 2.28 (L” inequalities from weighted L? bounds). Suppose that T : L*(R") — L*(R") is a bounded
(not necessarily linear) operator; that is, |T fll 2@y < 1fll22@n)-

(i) Suppose that there exists M > 1 such that for all v € A with the property that vM € Ay it holds
that ||T fllz2) S[VM]A1 f 120y Jor every f € CX(R™). Then for every p € (2,2 + 1/M), it holds that
T fllzeery <p WfllLr@ny.
(ii) Suppose that there exists M > 1 such that for all v with the property that v-™ € A it holds that
T 112 S[V—M]Al fllz2v) Jor every [ € CZ(R"). Then for every p € (2 — 1/M,2), we have that
IT fllereery <p Wf Nl an.
(iii) Suppose that there exists M > 1 such that for all v € A, with the property that vM € A», it holds
that ||T fllz2(,) S[VM]AZ fllz2v) for every f € CZ(R"). Then for every p € (2 - 1/M,2 + 1/M), we
have ||T fllLr@e <p 1fllLr@gm).

Proof. This lemma and its proof are contained in [CMP11, Corollary 3.37] for the much more general
setting of restricted extrapolation of A, weights. However, since we will later on need to modify the
arguments used in the proof a little to fit our needs, it seems appropriate to write the proof down for future
reference. The key fact that we will use is the Coifman-Rochberg theorem (see Proposition 2.21).

We start with (i). Fix p > 2 with M < 1/(p—2) and f € C(R"). Note that v := M(T )P~ € Ay, and

s ITSEMAT )72 $pmy,, /R EMaT £

< ( /R 1) Rn(MaTﬂ))")(p_Z)/p < ( /R 1) /]R )

If we first assume that || f||z»®) < oo, then the result follows. To get rid of this assumption, we instead
consider the sequence of operators Sy f(x) := (T f)(x) 1 f<x(x) on L*(R™). Then {S ¢}k is uniformly bounded
on L>(R"), and they satisfy the same hypotheses as 7 with constants independent of k. Then, for f €
C>(R™), we have that S f € L*(R") N L*(R"), and so by our argument above, [IS x fllLr@n) <p I fllLe@n. We
now let k — oo and use the Monotone Convergence Theorem.

We turn to (ii). Fix p < 2 with ﬁ < M and f € CZ(R") not identically 0. Note that v := (M(T f| +
Ifl))‘”‘2 satisfies v™! € A; € A,, and hence v € A,. We estimate

TP s | MATA 1)) = /R MAT AL+ 1D MAT AL+ 1D

13 Strictly speaking, the statement of [SW58, Theorem 2.11] explicitly excludes the case under consideration (indeed the proof
given does not apply in this case); however as is mentioned immediately after the statement of said Theorem, we may run an
argument similar to the standard proof of the Riesz-Thorin Theorem, employing instead the three line lemma for sub-harmonic
functions as in [CZ56].
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Soni, [ TIP+ 1w sy, [ UPvs [ iopr < [ sy,

where we have used Muckenhoupt’s theorem, yielding the desired result.

The third statement follows from the first two and Jones’s factorization theorem of A, weights (see
[Jon80]) as quotients of A; weights. O

Sometimes we will not be able to conclude boundedness on all weights vY € A,, but rather only on
weights whose characteristic is uniformly bounded. An inspection of the proof of the above lemma, together
with Proposition 2.21, reveals that this is enough to conclude the unweighted L? estimates.

Corollary 2.29. Let M > 1,0 < § < 1 and T be an operator satisfying, for every v € A, with [yM] < Cj
(where Cs is as in Proposition 2.21), that ||T |12, s[VM]AZ lfllz2()- Then, for every p € (2—6/M,2+6/M),
T fllerrny <p I fllrwny. Analogous statements for the one-sided versions of the estimates also hold.

Lemma 2.30 (Weighted Carleson’s Lemma). Suppose that u is a measure in R™*! and that v € LIIOC(R") is
a doubling weight. Assume further that for every cube Q C R", it holds that u(Rp) < v(Q). Then, for every

measurable function F : R™*! — C and every p > 0, we have that // |FIP dit <n.doub / (NF)Pv.
Rn

Rirrl

The proof is exactly the same as the usual one when v = 1, and thus omitted. Next, we will need a
version of Carleson’s Lemma that uses the modified non-tangential maximal function N in place of N; its
proof is straightforward and thus omitted.

Lemma 2.31. Let du(x,t) = m(x,t)dxdt be a non-negative measure on R"*! and v is a doubling weight.
n+l

For every (x,t) € R, suppose that du(x, t) = (SUP(y,s)er,, m(y, s)) dxdt satisfies p(Rg) < Cov(Q) for every

cube Q C R". Then, for every g > 0, / [F1? du <doub Co/ (K/qF)q V.
Riﬂ R

Definition 2.32 (A, , classes). Let 1 < p < g < co. We say that a weightv € A, , = A, ,(R") if there exists
a constant C > 0 such that for every cube Q c R”,

’

l/q ’ 1/p
<][ qux) (][ yolp dx) <C.
0 0

The infimum over all such C is written [v]a, e

Theorem 2.33 ([MW74, Theorem 4]). Let 1 < p <nand set1/q:=1/p —1/n. Thenv € A, , if and only
N fllizaway Sita,, 1 lLeer)-

Throughout, there will be instances where multiplication by an L"(R") function is acting as, or rather in
place of, a (spatial) gradient. The following proposition should be interpreted as stating that, at least in L”
spaces, the two operations are not far from each other. We remind the reader that we assume n > 3.

Proposition 2.34. Let B € L"(R") and f € CZ(R"). Then, for every v € Ay, we have

LB - P2y Sivia, 1Bllr@nllfllzzey)-

In particular, for every 1 < p < oo, it holds that ||I\(B - f)llLr®ry <p If|lLrrn), where the implicit constants
depend on ||B||»wn), p, and n. If in addition we have that V212 € Ay with 2* = 2y, then

1B - 11 fllr2ey Spry,, WBllnnlfliz2g).-
Accordingly, ||B - I fllr gy <p Ifllpgny, for 1 +2/n < p <3 -2/n.
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1/2

Proof. Letv € Ay and set w := v'/~. We claim that w € A,_5. Assuming the claim, we have

1B - Pllzey = 1B - Pllizw?) Stol,, , 1B~ fllrze @y < IBller@nllfllzwr),

where we used Holder’s inequality in the last step. To prove the claim, we use Jensen’s inequality to see that

(fQ w2 )2/2 < f w™2. Using this estimate in the definition of w? € A,, we deduce that [w]a, , < [v]l/ 2
This completes the proof of the first part. The second part follows the same lines, using instead that

(E) () = (for) (o) <07

so that [w]a,,. < v/ 2]/14/2 2 The L” estimate finally follows from restricted extrapolation (see Lemma

2.28), using the fact that 2/2* = 1 —2/n. O

Proposition 2.35. Let P; be an approximate identity with smooth, even, compactly supported kernel. Then,
foreveryv € Ay and f € CZ(R"), it holds that

I-P 2 dxd
IV (1 = PYf)IITa, = f’ V(X)t xdt

2
S[V]Az ||V||f”L2(y)

Proof. Recall that I; denotes the fractional integral of order 1; hence V| I; = I; V| = R, where R is the vector-
valued Riesz-transform (with symbol £/|£]). In particular, ||[Rf||;2(,) % |12 for all v € Ay, allowing us to
reduce matters to the estimate

o0 2
/ / f‘ Svla, Ifllz20)s feCIRY).
0 n

We now use a quasi-orthogonality argument, with a change of measure interpolation (see the proof of
Theorem 2.25), to reduce matters to the pair of estimates: If we denote T; := I;(1 — P;)/t, then for some
CLP family (Qy); (see Definition 2.14),

I1-P, v(x)dt

I

(2.36) ITQ: fll 2y < (* *) Qs fllz2ey
for some a > 0, and
(2.37) 1T fll2) S, 1@ Iz

Indeed, with (2.36) and (2.37) in hand, we may follow the proof of Theorem 2.25.

For (2.36), we compute, via the Fourier transform and Plancherel’s theorem, and using ¢; and ; for the
kernels of P, and Q; respectively,
90( I€1) ~

R 2
IT:QshlI7 gy = cn / ———(s |§|)h<§>\ d¢,

where as usual we have abused notation and written ¢, for the one-dimensional functions representing
them. Consider first the case t < s,

D i | ae = (L)

11 - gD
S
where we used the properties of the CLP family and the fact that |1 —&(7)| < 72 for 7 near 0, since ¢ is even.
For the case s < t, we use instead the Fundamental Theorem of Calculus to obtain

1= so(tlfl) , 2 (5\? o, 200D o o S\2 12
[ e = acenio e = (5) [ | [ o @ @R de < (5) Wi,
where we used that ¢ € L'(0, c0) and J/(1)/7 € L*(0, ). Using now that & = Q, f gives (2.36).

N A 1\2
IsEPI(SIENPIRE@I dé < (;) 1Al172 gy
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The weighted estimate (2.37) follows from the pointwise inequality

[T fOl = 71 (1 = P)I f(0)] $ MRf)(x),

where R = IV is as before. We sketch the argument: Write 1 — P, = (1 — E;) + (E; — P;), where E;
is the dyadic averaging operator; that is, E;f(x) = fQ” f, where Oy, is the unique dyadic cube Q,, € Dy
containing x. Writing g = 1 f, we have that ’

E-poseol~[f 600 - s v
it [X=yI<Ct

< ]1 ][ 190 — 92| dydz st][ Vg0l dy < MV )(0),
B(x,Ct)J B(x,Ct) B(x,Ct)

where we used Poincare’s inequality in the second to last step. Since IV f = Rf, we have the right bound
for this term. To handle the term 1 — E;, we telescope

(1= ENg(x) = > (Ey-si; — Ey-i)g(x) = Y (Eyy,, — E;)g(x),
J=0 j=0
and we compute that

I(Ev;,y — Er)g(x)l = ‘][Q (E;8(x) — 8(») dy) < ][Q |Ey;8(x) —gldy < t,-][Q Vgl < 27/ tM(Vj8)(x).

&
The result now follows by summing over ;. O

We will need for the following properties of the heat semigroup associated to the Laplacian A in R".

Proposition 2.38. Let P, := e D and Q; = 10, P;. We define the measure

Qv(x)? dxd
du(x,t) = ||P L/Ejg:z Pv(x) xat
t

This object satisfies the following properties

(i) For any weight v € RH; for some s > 1 it holds that |P,v(x)| < JCI
depending on the RHg and doubling constants of v.
(ii) The measure du satisfies the hypotheses of the modified Carleson’s Lemma 2.3 1, provided v € RH>.

v(y)dy, with constants

x—y|<t

Proof. The proof of (i) is a simple computation: the kernel of P, is given by
o(x—y) = cnt‘"e_(lx_yl/zt)z, x,yeR", >0,

and we can write

Py(x) = / eix =y dy+ Y / . @x— () dy.
lx—y|<t 720 2Jt<|x—y|<2/+1t
Clearly, the first term satisfies the desired estimate; it remains to control the tail. For this, we set A; := {y :
2/t < |x —y| < 271t} and employ Holder’s inequality to obtain

et ([ ey i) ( [ voran)”

Now we see, using that v € RH,

(/A,Vs>l/s s (th)n(§_1>/|

j x—y|<2/*+1t

Y)Y < (Caoms2" VD)t /f vO)dy.

[x—yl<t



CRITICAL PERTURBATION THEORY, PART II 21

On the other hand, for y € A; we have that ¢;(x —y) < 1™ exp(—2/), so that
’ I/S/ " . Sy V] .
(/ o(x—y)° dy) < IAjI]/A T exp(—27) < 7525 exp(=27).
Aj

Combining these estimates, (i) follows.
The proof of (ii) is somewhat more involved. We ought to show that

Sup(@ )P p|a o, )>dL
PP PO

is a Carleson Measure. For this purpose, first note that, using (i) and the doubling property of v, it is not
hard to show that P,v(y) = P,v(x) for all (y, s) € C,;. In other words,

1 dxdt
Pyv(x) t

Pov(y)— )dxdt ( = dji(x, 1)

i)~ (30O
Now we let a > 0 be small enough so that s* — a?1* ~ 1* whenever |t — s| < /8 and write

Q,v(y) = 50, (e(a -5 )A —a’t Av(y)) _ zser(a 2 sz)A —a’t Av(y) _ —(s —a’t )AQ V().

22
Therefore, there exists a universal constant ¢ > 0 such that |Qv(y)| < Pu|QuvI(y), for all |s — ¢ < ¢/8.
Setting g,(z) := |Quv(2)|, we see that

-2

-zl b=z
Pegi(y) = cn (Cf) e 4’ g(2)dz = / (ct)ye e’ g(z)dz + Z/ (ct)"e “a? g ()dz=:1+1I.
[x—z|<t
J=0

For I, we simply note that I < flx_z|<, g/(z)dz < P;g(x). For the tails, we use that |y — z| > %lx — 7] for any
7 € Aj, to obtain the bound /1 < P.;g:(x). We conclude that |Q,v(y)| < Pu|QuvI(x) for (v, 5) € Cy,.

We have thus reduced matters to proving a (weighted) Carleson Measure estimate for du’(x,t) :=
(PerlQurvi(x))* d)‘dt ; that is, we want to show that ¢’ (Rp) < v(Q), for all @ c R". So fix a cube Q C R".

Pv(x)
We run a stoppmg time argument to obtain a collection of maximal (dyadic) subcubes (Q;);>1 of Q with

respect to the properties

either (a) V> A][ v, or (b) v < A_lj[ v,
0j 0 0j 0

for some A > 1 large. We call ¥ the collection of Q; satisfying the property (a), and ¥ the collection of
Q; satisfying (b).
Note that, by construction, if Q; € ¥; we have |Q;| < Alvng) f 0, V>80, after summing over j, EQ/E?] 0/l <

'%. By the A, property of v, if A is large enough, we may write ZQjeﬂ v(Q)) < @. On the other hand,
if Q; € F2 we obtain directly that (Q;) < A™'Qjlf,, v, so that 3- o7 V(Q)) < YO 'if we choose A > 1/4.

By Lemma 2.16 it is enough obtain u'(Rp\(Ug; urRo;)) < v(Q). Moreover, notice that for (x,7) €
Ro\(UgurRp;), we have that fQ v < Piv(x), by construction of the Q; . Accordingly, it is enough to show

dxdt V(Q)2
PC at 2 ~ .
/RQ( A1QarvD (%)™ —— ; 0l
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To do this, we use Minkowski’s inequality to write
dxdt - dxdt\i
/ (PerlQurv)(x)* —— ) <> ( / (PerlQu (1R, V)D()* —— )2 =Y "T;,
J=0 j=0

where we denote Ry = 2Q and R; = 2/*!0\2/Q for j > 1. For the first term T, we employ the fact that P,
is uniformly L>(R")—bounded and that Q; satisfies an L? square function estimate to obtain

o0 dxdt o0 dxdt
T} < / (PerlQu(Tgy))(x)* —— < / Qu( TP —— < / V2.
0 R” t 0 R~ t 20

We now use the reverse Holder property of v to see that f2Q V2 < |07'W(Q)?, which gives the desired
estimate for T(y. For the others, we use the kernel representations; first recall that if ¢, is the kernel for P,
and ¢, the one for Q; then |¢:(2)|, W:(2)] < clt‘”e‘Q'Z'z/ 2, Calling v; = 1g;v, we compute

/(Pct|Qath|)(x)2 dx = / (/
o ¢ ”

2
/R Cer(X = YWar(y — 2)v(z) dz‘ dy) dx

2 _olots I) 22 2
< / ( / v(z) "e 2 dydz) dx.
0 R: R

J
It is easy to verify that |x — y|* + |y — 2> > (Jx — y|* + |x — z|*)/4, and hence

) ek 2 2y
/ (Porl@ur; () dx < / ( / vt F de) g e / B,
0 (¢ R;

where we define P, the convolution operator with kernel =12 Now we see, from the proof of part
(i), that Pv(x) < §, v(y)dy < v(Q)/f". Therefore,

x—y|<t

_C,(zl'er(izg))Z @

t2n

/ (PelQuviD(0)? dx < e
0
The desired estimate for 7'; now follows by integrating in 7 over (0, £(Q)). O

2.2. L" — L1 Off-diagonal estimates. Throughout this section we denote by T;, with ¢ # 0, an operator
mapping functions C2°(R”; C%) to measurable functions in R” with values in C* for some integers di, d,.

Definition 2.39 (L — L7 Off-diagonal estimates). Let 1 < r < g < co. We say that a family of operators
(Ty)20 satisfies L — L9 off-diagonal estimates if there exist Cy > 0 and numbers y; € R, y» > 0 such that
for every cube Q C R”, the following estimates hold with y := y; + y5.
@A) If J7| = €(Q), then
IT:(f Lry@)llzsco) < ol NI flliro)-
(i) If € R and we set R;(Q) := 2/*10\2/Q for j > 1, then

I

njys 1g—1/r
72]-{(@) [0] 1f 1R 0

IT(fLr;0)llzacg) < Co27 (

(iii) If € R and supp f € Q then

—-nj 4
ITe(Pllarson < Co27" (7

" g1
vio) 1" e
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Proposition 2.40 (Weighted estimates from off-diagonal decay). Suppose (T});>0 is sublinear and satisfies
L" — L? off diagonal estimates for some 1 < r <2 andy > 1/r. Then for all v € A, /r» and every t > 0,

[(f_ _msora)”
x—y|<t

Proof. This proposition is contained within [GH17], but we provide the proof for completeness. We first
decompose R" into cubes in the dyadic grid D; of sidelength ~ ¢ to obtain

2 1/2 B /][ , 12
H (]{C—ykt o) dy) L2(vdx) B (de;, 0 lx—yi<t IT: f(I” dy V(x)dx)
3 ( Z][Q /Q T, f ) dy v(x)dx)l/2 < 2 ( Z]é /Q IT,(1g,c0) fONI* dy v(x)dx) 172 .1

QeD; j=0 Qe

L2(vdx) S[V]AZ/r ”f”Lz(V)'

where as usual we define Ro(Q) := 20 and R;(Q) := 2/*10\2/Q for j > 1, and we used Minkowski’s
inequality in the last line. We now exploit the off-diagonal decay of T} to get,

1/2 ‘ 1/r
([ manosontas) " szmeazin( [ ypgyray)”
0 R

Going back to I, we see that

15y 27l Hm( > ][Q* (/R.(Q) O dy ) v V(x)dx> :

j=0 Q€D

< Z2—1"71"“/2—1/’)(2/;)"”( 3 ][ ( ][
20 0en,” 2" VRO

. 1/2 .
s Y237 ][Q M@ r0dx) < 32O IIM Dz < IMA Pl

Jj20 Qe Jjz0

Q)

2/r 1/2
O dy) " vindx)

since y > 1/r. Since r < 2 and Ay), C Ay, we have | Sty IMA(Oll2ey S N2 O
2.3. Properties of Solutions and Layer Potentials.

2.3.1. Functional-analytic setup. First we recall our definitions of layer potentials. Formally, for instance,
the single layer potential is given by S£ = (Trgo(L*)"1)*f, but we need to give a precise functional-analytic
context for the operator L to be able to talk about the traces of its inverse adjoint operator.

Let Q € R™! be an open set with Lipschitz boundary, and fix f € Llloc(Q), F € Llloc(Q, ¢+, and

u € WIIO’CZ(Q). We say that u solves the equation Lu = f — divF in Q in the weak sense if, for every

¢ € CZ(R), we have that

(2.41) // ((AVu+Blu)-V<p+B2-Vugo)=// (f5+F-Vg).
Rn+l R'”'l

For p € (1,n + 1), we define the space YLP(Q) as
(2.42) YiP(Q) = {u € LW (Q): Vi e L”(Q)}.

We equip this space with the norm [[ully1rq) = [lull @, + |[Vullr)-
Lntl-p (Q)
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Define the sesquilinear form B, : CX(R™!) x C®(R"!) — C via
Bylu,v] := // {AVM’W+MBI 'W+VBZ’VM:|, u,v e CXR"),
R+l

and the associated operator £ : ¥ — &’ via the identity
(Lu,vy = Bgluvl,  u,ve COR™.

In fact, when (1.3) holds and p <« 1, the form B, extends to a bounded, coercive form on Y L2(R1) x
Y12(R"*1), and the operator £ extends to an isomorphism Y 2R - (Y12@R™1)* [BHLMP22, Propo-
sition 2.19]. Associated to £ we also have its dual £* : YL2(R"!) — (Y'2(R"*1))*, defined by the relation

(Lu, vy = (u, L),
and it is a matter of algebra to check that the identity
Lv = —div(A*Vv + Byv) + By - Vv

holds in the weak sense (2.41) for any v € YL2(R"*1). In particular, £* is an operator of the same type as £
and if p < 1 so that £7! is defined, then (£*)~! is well defined, bounded, and satisfies (£*)™! = (£~1)*.

We turn to the mapping properties of traces. For fixed + € R we define the trace operator Tr; :
COR™!) — C2(R") by

(2.43) Trou = u(-, 1).

1
Let ¥ : L2(R") — L*(R") be the Fourier transform and write #i = Fu. Define Hy (R") as the completion of

C2(R") under the norm |u|h., 1 @ = fR” |§||it(§)|2 dé. Then [BHLMP22, Lemma 2.8] gives that Tr; extends

uniquely to a bounded linear operator
1
(2.44) Tr, : Y2@R™Y) — H (R™).

1
We write H‘%(R") = (Hj (R™))*, and we note that we are departing from notation used elsewhere in the

literature, since our H ‘%(R”) does not coincide with the usual (inhomogeneous) fractional Sobolev space
of order —1/2 (for more on this, see the remarks before Proposition 2.5 in [BHLMP22]).

Definition 2.45. Let y € H~'/2(R"). We define the single layer potential SLy € YL2(R"*!) as
(2.46) S*y = (Troo(L) ™).

For fixed ¢ € R we denote Sy := Tr, S<y.

Definition 2.47. Let ¢ € Hé/ 2(R"). We define the double layer potential D&+ ¢ € YL2(RH) as
(2.48) D g = —Dlg + L7 (Tl

where @ € Y!2(R"*!) is any extension of ¢, and .Z§ € (Y"2(R™*1))* is given by

(FE,G) = // (AVCD VG +B®-VG + B - (V@)é), for each G € Y'2(R™1),
RT'I

The layer potentials are studied in detail in Section 4 of [BHLMP22].
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2.3.2. Properties of weak solutions.

Proposition 2.49 (Caccioppoli Inequality in LP. [BHLMP22, Proposition 3.9]). There exists an open inter-
val I containing 2 such that for every p € I, every weak solution u € Wllo’g ®R™Y of Lu = 0 in R™!, and

every (n + 1)—dimensional ball B satisfying that 2B c R\, it holds that

(2.50) (]%9 Vul? dx) " r(lB) (]%B lul? dx) i

with implicit constants that depend only on n, p, ellipticity of L, and p.

Proposition 2.51 (Caccioppoli Inequality on Slices. [BHLMP22, Lemma 3.20]). For p, I, u as in Proposi-
tion 2.49, every cube Q C R" and a > 0, we have that
t+al(Q)

1/p c 1/p
(2.52) (][ Va0 dx) - < - <][ juCx, 9 dxds)
0 8O Ni—at0) Jor
whenever Q* X (t — at(Q),t + at(Q)) C R"™!, with C depending only on n, p, a, ellipticity of L, and p.

Definition 2.53. We define the interval (2_,2.) as the largest open interval, symmetric around 2 with the
following two properties:

(D) 2n/(n+1)=24<2_<2<2, <2¥:=2n/(n-1).

(2) If p € (2_,24), then for every weak solution u € WII’CZ(R’}r“) of Lu=0in Rﬁ”, the estimates (2.50)

O

and (2.52) hold, with constants depending only on n, p, @, ellipticity of £, and p.
Proposition 2.54. Let u € Wl’z(Q) be a solution to Lu = divF in Q c R™! with F € L> (Q). Let B be an

loc loc

(n + 1)-dimensional ball in R™*" with 2B c Q. Then, for any q > 1 we have that

(2.55) (]%9 |u|22+')1/2;*' < (]%B )" + rB) (]%B r2) "

with implicit constants depending only on q, n and ellipticity, and where we define

1 1 1 1 1
— =z , — + =1.
2 2 n+1l 20 20

Proof. We first prove the result for a ball B with r(B) = 1. To simplify notation, during this proof we will
write 2* = 2°, . Fix 1 <t < s < 2, then, from the proof of the Caccioppoli inequality (see [BHLMP22,

n+1*
Proposition 3.1], and note that f = O for us), we have

1
IVullp2p,) < ;”u”LZ(BS) +IF 2, < lleell 28, + 1Fll2228)5

s—1
where B, denotes the concentric dilate of B by a factor of #. On the other hand, if as usual we denote by up
the average of u over B, then by the Poincaré-Sobolev inequality we have that

el 22 gy < 2= 2" D22V U |y + 8D g | < VUl 2, + Ml ),

where we use that ¢ > 1/2. Combining these two inequalities, we obtain

1
lull 2 g,y < ;”M”LZ(BS) +1Fll2op  + lullpi2p)-

Note that if here we set = 1 and s = 2, the desired estimate (2.55) follows for g > 2. It thus remains to
treat the case g < 2. Recall, from interpolation of L? norms (here we use g < 2) and the Cauchy inequality
with a parameter,

1
1-6 6 1/(1-6
leell 2 < Noall 220l <o 0"/l o + iz
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valid for any n > 0, and where 6 satisfies % = 12:9

F 228y + llull 125y, We arrive at the estimate

+ g. Choosing /=9 ~ t — 5 and setting T :=

1 C
”u”LZ*(B,) < *HMHI}*(BS) + W”“”L‘i(&.) +T,
forany 1 <t < s < 2. We are now in a position to apply the result in [HL97, Lemma 4.3] and conclude that

lullz2 (5, < mllullm +T.

Setting now ¢ = 1 and s = 2 we obtain that
lutll 2 gy S Ntllaay + Nl 2y + 1F 1l r22)-

This is the desired inequality, since g > 1 and r(B) = 1.

To obtain the result for a general B, we simply note that for r > 0, u,(X) = u(rX) solves L,u, = divF, in
rQ), where the coefficients of £, are given by A,(X) = A(rX), B; (X) = rBi(rX), F-(X) = rF(rX). It can be
checked that these coefficients satisfy the same conditions as the originals, with the same relevant norms,
except for F, which satisfies ||[Fyl| 21,5 = r(‘”“)/zllFlle(B). The estimate (2.55) follows. ]

Proposition 2.56 (Off-diagonal Estimates. Part 1). Let O, ,, denote either of the following operators:
MmONVSE,  marivSEY),  ("arvSEL - P,
where P, is an approximate identity with smooth, even, compactly supported kernel.
Let2_<q < p<2;yand Q CR" acube. For every h € L1(R"), |t| = €(Q), and k = 0 it holds that

11
1O (hL)Lr20) Snop.qg |17 lhllLa(g)-

Moreover, for any j > 1 and t € R, if we write R;j(Q) := 2/*10\2/Q, then

_ 7| m.o 11
(2.57) 191m&llLr®;0)) Snop.gm 27" (m) 1017 711gllz4( @),
and
_ 7] mo 11
(2.58) 10:,m8llzr0) Snp.gm 27" (m) 1017 7lIgllLar;(0))s

wherey, = 1/2¥~1/p if@®,,, = tma;"VSf (recall that 2* is given in Definition 2.53), and y; = 1/2¥=1/p—1
in the case that @y, = "d""'V(SEV).

Proof. The proof of this result is essentially contained in [BHLMP22, Proposition 4.28]. We sketch some
of the modifications needed.

We start with the case @, = t’"@’,”VS,L. Here, estimate (2.57) was obtained in [BHLMP22, Proposition
4.28]. By duality, estimate (2.58) is equivalent to (2.57) for ©,,, = t’"ﬁ?”(StLV); let us thus prove estimate
(2.57) for @y, = "I"(SEV).

Let R; := (3/2)R; X (1 — 2/£(Q), 1 + 27£(Q)) and suppose that g € CX(Q). Then (S£V)g) = SEdivyg is
a solution in R;. By a careful application of Caccioppoli’s inequality on slices, followed by the standard
Caccioppoli inequality in L? (m — 1) times, we obtain

me QL Y . _1gmyam QL s l7| m 1 Lo » I/p
1707 (SiVi) - 8llerwjop = 10107 S7divygller ;o) < (ij(Q)> (2/€(Q) . S divyg(x)l dde> -
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By duality again, it is enough to prove that ||V S{hll e g, < 271017~ V9|lhll 3g,), uniformly for
s € R. For this, if we define Q :=3/20 x (s = £(Q), s + £(Q)), by Caccioppoli’s inequality we have that

i< o (o [ it air)
%185l o) < Q)( w0 Jl, s dxdr)

1/q'-1/2%-1/ 1 o "(1/24=1/p") 1114 Vd (1/p=1/2") A 1/q -1/p’
q=1/2"=1n( _~ 19’ (1/2=1/p n(1/p- q'=1/p ,
where we used the mapping property SZ : L?#(R") — ¥ (R™) uniformly in s € R, and Holder’s inequality.

The above proof works, with straightforward modifications, in the case @, ,, = t’"@’,"‘lV(S,LV). The case
of ®,, = t’"(?Q"VSfl - P; is handled with the previous estimates and [AAAHK11, Lemma 3.11]. O

The following proposition follows the same lines as the above, the appropriate modifications being out-
lined in the proof of [BHLMP22, Proposition 4.37].

Proposition 2.59 (Off-diagonal Estimates. Part 2). Let B € L*(R"; C™1Y and set @fm = t’”a;”S,LB- acting
on functions C(R"; C™*1). Then, for2_ <r <2 < q <2, ®OF satisfies the L" — L1 off-diagonal estimates

t,m
of Definition 2.39 with y = m/n — « for some a > 0 depending only on dimension, r and q.

We shall also need the following quasi-orthogonality result.

Proposition 2.60 (Quasi-orthogonality). Let ©;,, := t’”@}”(S,LV), B e L*(R™;C"), and let Q, be a standard
Littlewood-Paley family. There exists my such that if m > my and v € Ay, (here r is as in the L — L?
off-diagonal estimates for ©, , in Proposition 2.56), then the estimate

1/2 s\B
H(]l[ 1B QO ) <o, (O) 1@l 5 <1,
x—y|<t

L2(v)

holds for some B > 0 (possibly depending on v only through [v]a,, ).

Proof. The unweighted case is proved in Lemma 4.30 in [BHLMP22]. The idea is to use interpolation with
change of measure to reduce matters to proving a uniform weighted bound of the form

1/2
I(f__toumsn@swra)
x—y|<t

o) Splay, 18ll26)-

This in turn follows from the L" — L? off-diagonal estimates of ®,, in Proposition 2.56 and Proposition
2.40, together with the bounds for /1 B from Proposition 2.34; we omit the details. m|

The first author would like to thank Moritz Egert and Olli Saari for showing him the simple computation
that yields the following bound for the vertical maximal function ( [BES19]).

Proposition 2.61. Let m > 1 and ©,,, be either tmGTV(S,[V), or tma’t"VZ),L. Then, for almost every x € R”,
we have the estimate

SUp (O f (O] Sm V(Opm f)(X) + V(Ormr1 f)(X) + 101 f (X)].

>0

Proof. First we observe that, owing to [BHLMP22, Lemma 2.3], the function ¢t — O, f(x) =: g;(x) is
absolutely continuous for a.e. x € R". Therefore, by the fundamental theorem of calculus, for such an
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xeR"andevery 0 < s < t,

lg () = lgs()? +2 / Re(g/(x)0-g-(x)) dr.

S

Notice that

t t d
| [ Reteola | < [ el ] < V)07 o0

by the Cauchy-Schwarz inequality. The result now follows by setting s = 1 and using Cauchy’s inequality
with a parameter. |

We record here also a weighted version of the Riesz transform estimates for £, and, more importantly
for us, estimates for the Hodge decomposition associated to L.

Theorem 2.62 ( [CMRI18, Proposition 9.1]). Let L) := —divyA V. Then there exists M > O (depending
only on dimension and the ellipticity of Ay) such that if v € A; satisfies that v € Ay, then

-1/2 —1/2 4-
maX{HVHL” / ||L2(V)—>L2(V) 5 ”.EH / d1V||||L2(V)—>L2(V)} S[VM]A2 1.

In particular, if for f € L>(R"; C") we write Hodge Decomposition f = AV F+HwithF € WI’Q(R”) and
divyH = 0, then for v as above, we have that ||V || F|| 2, S[VM]AZ 1122 ()

We end this subsection with an identity characterizing the double layer in terms of operators involving
only the single layer. This will allow us to focus, as far as the square and non-tangential maximal function
estimates are concerned, on operators involving only the single layer.

Lemma 2.63 (Double Layer Duality for L? functions). Denote by N the outward unit normal vector of the
upper-half space. The following formula holds for each f € CZ(R"):

DET f(x) = (SEVAN () + (SEB)(N ().

Proof. We have, by Proposition 4.18 (ii) in [BHLMP22], that (Z),L’Jr 8 = (f.0 Vf:,+3£*g) for f,g €

CZ(R™). On the other hand, since St gisinY 2R, we may use the L? realization of the conormal (see
Lemma 4.11 (i) in [BHLMP22]) from which it follows that

(f, 6yfjt*,+ S'E* g) = <f, avf:’Jr S'E*g)LZ(Rn) = <f, ﬁ . [A*VS'E:g + EQS'E: g] >L2(R")
= (Nf,[A"VSE g + BaSE gD 2y = (SEVIAN L) + (SEBYWNF), 8) 2@

where we used the properties of the operator (S,LV) (see Proposition 4.2 (viii) in [BHLMP22]) for the last
line. This gives the desired identity for f € CZ°(R"). m|

2.4. Good Classes of Solutions.
Definition 2.64 (Slice Spaces). For n > 3 and p € (1, o), we define

DL = {v € Co((0, 00 LP(RM) : llullpy < oo},
with norm given by ||v| p? 1= SUPsg [V(OllLrwy. We also define

ST = {u € C§((0,00); YIP(R™) : 1/ (1) € Co((0, 00); LP(R™), llullgr < oo},
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with norm given by

. 2
llullgr := sup llu(®)lly1p@ny + sup ' (OllLocrey + sup It (Ollyrogny + sup lE5u” Ollyrogn.-
>0 >0 >0 >0

In particular, both DY and S¥ are Banach spaces. Similarly, with obvious modifications, we can define the
slice spaces D” and S” in the negative half line (—co, 0). For the rest of the article, except for Section 9, we
will consider only the case p = 2, which corresponds to the case of the problems (D),, (N),, and (R),.

Definition 2.65 (Good D Solutions). We say that u € WI’Z(RTI) is a good D solution if Lu = 01in Rﬁ“ in

loc
the weak sense, u € D%r, and u; ;= u(-,-+71) € Yl’z(Rﬁ”) for any 7 > 0.

Definition 2.66 (Good N/R Solutions). We say that u € WI’Z(RTI) is a good N/R solution if Lu = 0 in

loc
R ! in the weak sense, u € S2, and d,u, € Y'2(R™*!) for every 7 > 0.

The following result is a companion to [BHLMP22, Corollary 6.20]. Together they will imply that our
uniqueness statement holds among the two most commonly used classes of solutions (those with either
square or non-tangential maximal function estimates).

Lemma 2.67. Let u € WI’Z(R’}r”) be a solution of Lu = 0 in R\, The following holds

loc
(i) If}S/z(u) € L*(R"), then u is a good D solution (see Definition 2.65).
(ii) If No(Vu) € L*(R") then either u is a good N /R solution (see Definition 2.66) if L1 # 0, or there
exists a constant ¢ € C such that u — ¢ is a good N |R solution if L1 = Q.

Proof. As will be seen from the proof, (i) will follow the same outline as (ii), and is a bit easier. We first
prove that sup,.o [[Vu(:, Dll2rny S IN2(Vi))||2gny- Fix £ > 0 and let ¢/ : R — R be a nonnegative Lipschitz
cutoff function such that y(¢) = 1, ¥(3t/4) = 0, and |’ (s)| < 4/t for each s € R. We make the computation

IVuC.0lp = [ 1VuC.0P@ = | 1VuC.0Pw0 = | 19uC,31/49)PpGr/4)

- / / as[wu(x,s)w(s)} dsdx < / / [2|vu(x, OIVAu(x, $)w(s) + [Vu(x, s)|2|¢’(s)|] dsdx
" J3t/4 n J31/4

t t2 t
<2 / ][ Vu(x, s)> dsdx + — / ][ IVOsu(x, s)>dsdx =: I + 11,
nJ3t/4 16 Jgn )34

where in the third equality we used the fundamental theorem of calculus and in the last line we used the
Cauchy inequality with &€ > 0. We now use Fubini’s theorem to see that

t
- 2/ ][ ]l Vuly. 9 dsdxody < 8 / ]5[ Vuly, )P ds dy dxo
nJly=xol<t J3t/4 a ko =yl <t

Is—1<1/2

<38 / sup ( ]%x_ﬂ« Vuy, s)I2 dsdy) dxo = SIN>(Vu)l 2.
R

" (x,7)€y(x0) Is—1l<7/2

It remains to control /7; for this we will use the Caccioppoli inequality as follows:

t2 t 5t/4
<+ / ][ ][ IVOsu(y, s)* dsdxody < / ][ 05u(x, s)I* ds dy dxo,
nJSly—xol<t/2 J3t/4 " lxo—yl<t J1/2

and thus it is clear that we may handle /1 as above. We have obtained that for each 7 > 0, [[Vu(-, D)ll> <
[IN2(Vu)|l> which yields the desired result.
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We now improve this to lim;e [[Vu(, Dl 2ey = 0, where V. = (V|,0;) is the full gradient in n + 1
variables. This follows from the above estimate on slices: Notice that the proof actually gives that

Ve, D)l 2y S NS (Vi) 2y

where we use the truncated non-tangential maximal function (see Definition 2.5) on the right hand side.
We claim now that Ng)(Vu)(x) — 0 for every x € R" as t — oo. To see this, assume to the contrary that

lim sup,_,, K/g) (Vu)(x) > n > 0, for some x € R". This means there exists a sequence #; — oo and points
xi with |x — x| < such that

]f[ Vuty, P dyds > 7.
Cx

kol

By the definition of the non-tangential maximal function we then have
RV = Jé[ Wy, s)P dyds > 1
Criy
for every z € R" such that |z — x| < #. Integrating over this set gives

R0l > [ RaWuer dz> e’

|z—xg|<tx

Since #; — oo, this contradicts our assumption that K/z (Vu) € L*(R™). With the claim now proved, and since
Ng)(Vu) < N3(Vu) by definition, the dominated convergence theorem gives

IVuC, Oz < NS (Vi) = 0, ast — oo,

Appealing to Caccioppoli’s inequality and the above, together with [BHLMP22, Proposition 6.14], we
see that u € S2 when L1 # 0. If £1 = 0, we proceed as follows: First, by the sup on slices estimate above
and Caccioppoli’s inequality on slices we see that d,u(-, f) € W?(R") for every ¢ > 0; in particular

t
/ deu(-,7)dr € WHRY) c Y'2(R™), forall0< s <f< .
S

On the other hand, again by the sup on slices and [BHLMP22, Lemma 2.1], we have that for every ¢t > 0
there exists a constant ¢, € C such that u(-, 1) — ¢, € Y"*(R"). Therefore, by the fundamental theorem of
calculus, for any 0 < s < ¢t < oo,

/ Dt T T = (€1 = ¢5) = U 1) = ¢4 = [u(- ) = 5] € Y2 RM),

We conclude ¢; = ¢; = c as desired, and sou —c € § %
Finally we show 0,u; := du(-,- + 1) € Y'2(R"*!) for every t > 0. For this we simply compute, decom-
posing R” into cubes in D, and using Caccioppoli’s inequality on slices together with Fubini’s Theorem

(o] (o) d
// IVo,u(y, s + 7)1 dyds = / IVou(y, )I* dyds < sup [Vu(-, Ol 2 / % < 0.
ntl T R~ >0 r S

For (i), we run the same argument with u in place of Vu. m|
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3. Two GENERAL EXTRAPOLATION RESULTS

In this section we prove two extrapolation theorems for conical and vertical square functions. The
takeaway from these considerations is that conical square functions have good estimates in the range (r, co)
in the presence of L" — L? off-diagonal estimates plus an L? square function bound. The vertical square
function on the other hand requires (for our argument) that the operator satisfies a reverse Holder inequality
(and in fact, in this case we see that the vertical square function is controlled by the conical square function
on an interval around p = 2; this should be compared with Proposition 2.4 which is optimal for general
functions F, see [AHM12, Proposition 2.1 (¢)]).

Lemma 3.1 (Extrapolation for Conical Square Functions). Suppose T, is an operator satisfying, for g = 2
and some r < 2, the off-diagonal estimates'* in Definition 2.39 with y > 1/r. (Notice this allows us to
define T(1 as an element of leoc' ) Set R, := T, —T,1 - P, for a given approximate identity P, with compactly

supported kernel of the form P, = P,P, for another approximate identity P, Finally assume that for every
[ € P®, ISTiPllzeny S Ifllr2ey, and

s\B
(32) IR Mz < () 1Qf ey, fors <t
for some (and therefore any) CLP family Qq (see Definition 2.14) and some 8 > 0. Then
(3.3) IS(Ti P2y S Wz, for each v € Ay

In particular, ||S(T; lr@ny < 1 flle@n), for each p € (r, 00).

The above lemma can be thought of as a Calderén-Zygmund-type theorem. In this case the off-diagonal
decay plays the role of the usual size condition while the quasi-orthogonality estimate for R; plays the role
of Holder continuity of the kernel. Note also that the case ¢ < s in the quasi-orthogonality estimate (3.2) is a
consequence of the off-diagonal decay of R; and [AAAHKI11, Lemma 3.5]. Therefore, with the off-diagonal
decay of R, as a background assumption, (3.2) is equivalent to

r s

) B
IR fll2qgey < min (2,2 )7 1@l

st
Proof. Let f € C°(R"). We begin by writing
(3.4 Tif(x) = R f(x) + [Ti1(0)] - Pif(x),

where R; and P; are as in the hypotheses. To handle the first term we use interpolation with change of
measure (see the proof of Theorem 2.25) to reduce the weighted estimate of S(R;) to the pair of estimates

1z s \B
| R 2 2 < i DR S nYy,
(3 5) H (]{C—qul thf(y)I dy) LZ(R”) <S min <l’ S) ”Q f”LZ(R )
for some 8 > 0, and
e |(f  ra@rora)”|, <o, 1@
- ]{C_ym IO dy L2(v) ~Day, sFlli2)s

for r as in the statement of the lemma.

The unweighted quasi-orthogonality estimate (3.5) follows from Fubini’s Theorem and the good off-
diagonal decay.

1490 fact we will only need the first and second estimates in Definition 2.39 for 7', in the range [f| = £(Q).



32 S. BORTZ, S. HOFMANN, J. L. LUNA GARCIA, S. MAYBORODA, AND B. POGGI

The uniform weighted estimate follows from Proposition 2.40 and the fact that |Q,/(x)| < Mh(x) and M
is bounded on L*(v) (because A, /r C Az). This shows the desired weighted estimate, and so by interpolation
with change of measure,

H<]|[ | tIR,fo(y)P dy)l/z < min (t ) 1Qs fll 2
i<

(for a possibly smaller B than the one for (3.5)). The estimate [IS(R.f)ll;2¢) < IIfllz2(,) now follows from a

L2()

standard quasi-orthogonality argument, once one realizes that S(R;) = V(R,) if
~ 5 1/2

Riei=(f  RboF )

[x—yl<t

Now it remains to establish the square function bound for 7;1(x)- P;. For this we first claim that the measure

du(x, 1) = <]|[

x—y|<t

dxdt
TP dy) dv) ==,
is a v-Carleson measure, i.e. that for every cube Q, u(Rp) < v(Q), where Rgp := Q x (0,£(Q)). Let us

assume the claim for a moment. By a weighted version of Carleson’s lemma (Lemma 2.30) and the fact
that |P;f(y)| S P,(M f)(x) whenever |x — y| < t (since P; = P,P,) we obtain that

/ : //r() (TAGDPIPSOR G v < / ,, / PAMPR dua(x, 1)

NEPMMEvdx s | MMPE>vxdx s [ If@P v(xdx,
Rn Rn Rn

where we used the fact that M : L>(v) — L*(v) since r > 1. This accounts for the contribution of the
second term in (3.4), using Theorem 2.25.

To prove the claim we invoke Lemma 2.18 and the reverse Holder inequality for A, weights (see
Proposition 2.21) in the following way: For a fixed cube QO C R”, using Holder’s inequality

4(9)]
U(Rg) = / / ]1 1A 2 o = / // TA0P D v dx
[x=yl<t<£(Q) [x=yl<t<£(Q)
1/(1+67) 1/(1+62)
=t [ Ayeoveodr s ([ agtoax) ([ v an)
(0] Y 0

where 61 = 1/6, and 1 + 9, is the exponent corresponding to the reverse Holder inequality for v so that

1/(1+61)
uko) < ([ agt o0 ax) ™ i) < @110 00 ) = (0,
Q

where we used Lemma 2.18 in the second to last line. We should remark here that the implicit constant
depends on ¢; and the constant in the reverse Holder inequality for v, but these in turn depend only on
[v]a,, (see for instance [Ste93]). This finishes the proof of the weighted estimate (3.3). The unweighted
result now follows from Corollary 2.24. O

We now proceed to the extrapolation result for vertical square functions. The idea will be the same, which
is to reduce matters to a weighted L? estimate. However, notice that before we used crucially the properties
of cones in both the weighted estimates for R; and the Carleson measure estimate for 7; in Lemma 3.1. In
order to handle this issue we will transform V(7}) into S(7}) for an appropriate T involving the weight; this
makes the analysis more involved than in Lemma 3.1.
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Lemma 3.7. Let T; be an operator satisfying, for some r <2 < g and 6 € (0, 1), the L" — L1 off-diagonal
estimates in Definition 2.39 for some y > —1/n + 2/r + 1log,(Cs)/n (here Cs is as in (viii) of Proposition
2.21). We also require that, for every cube Q C R”,

l/q 1/2
G8) (ff mrcorasar)™ < (ff is.scop )"
1(Q) 1(Q")
where 1(Q) = QX (£(Q)/2,{(Q)) and S is an operator satisfying ||S(S )l ;2wr)—12rny < 0. The assumption

2

iocr and we set

ony allows us to define T,1 as an element of L
(3.9) R f(x) := [Ty — T;1(x) - P1(f)(x),

for some approximate identity P, with compactly supported kernel. Suppose further that R, satisfies the
quasi-orthogonality estimate ||RtQ%f”L2(Rn) S (f)ﬁllflle(Rn), s <t forall f € L*(R") and some 8 > 0, and
that T, satisfies the L? square function estimate ||V(Tf)lj2rny < fll2we- Then, if v € RHy N Ay for
M > max(2r/(r —2),(q/2)") and [v]a, < Cs, we have that

V(T 2oy S 12
In particular, for any p € (2 - 6/M,2 + §/M), it holds that
V(T )l < N llLr .-
If T,1 =0, that is, if Ty = R,, then we can dispense of (3.8).

Remark 3.10. As will be seen from the proof, we can weaken the reverse Holder condition on 7} to

<]§[ ITzf(x)I‘_’dxdt>l/Z]g (]5[ |Srf(X)|‘7dxdz)l/q,
1) .

for every r < g < g, and where the operator S satisfies both [|S(S /)l 2wy < |Ifllz2®r) and a reverse Holder
inequality. In our intended application where T, = tmc?;"VSf, we do not have a reverse Holder inequality
for T;, but we do have such an estimate for solutions, S; = tm‘la’,"S,L.

Proof. We note that, by Proposition 2.4, in the range p < 2 we have that |[V(T, )llr®ry < IS(T:)llr@nys
and for r < p < 2, by Lemma 3.1 (recall that vertical and conical square functions coincide on L?) and
Corollary 2.24, we have [IS(T:)llr®» < IIfllr@ny. Therefore, it is enough to consider the case p > 2.
We proceed to rewrite our vertical square function into a conical square function by introducing an average
adapted to v. For this purpose we set, for x € R" and ¢ > 0 fixed,

Vit ::][ v(y) dy.
lx—yl<t

We thus write, using Fubini’s theorem,

*© d *© d
/ V(T )P v(x)dx = / / TGP & vdx = / / ][ YO 7, fP dy-2E vy
Rn R JO t nJo Jix-y t

|<t Vxt

dxd ~ dxd ~
-/ //| | MO e G vy = [ //| L vy = 15T Pl
S x=yl<t Vxt n x—y|<t

We are now in a position to try and mimic the proof of Lemma 3.1. Unfortunately the process is quite a bit
more involved and, rather than proving a full weighted estimate, we will use the specific form of our weight
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v. To simplify notation we introduce the operators:

ﬁl‘f(x) = H l;()C)Iet’
X,

where R, is as in (3.9). It follows that 7, f(x) = R, f(x) + T,1(x) - P,f(x).

As was done in the case of the conical square function, to handle the second term it is enough to show
the v-Carleson measure estimate (see Lemma 2.30) u(Rp) < v(Q) for every cube Q C R", where Ry :=
0 x (0, £(Q)) and the measure u is defined as

du(x,t) := <]|[

x—y|<t

TA dx) v ™.

For this we first reduce matters to an unweighted estimate via the John-Nirenberg lemma for local square
functions (see Lemma 2.18) as follows: Notice that, for any g > 1,

~ dxd
wro = [ ([ TP G5 vordy = [ ooy
S () f 0

< ( /Q Aqudy)l/q< /Q yo)? dy)l/‘T S ( /Q A@UZIIQI‘”‘? /Q w(y)dy = <][Q AZquy)l/qv(Q),

where as before the quantity [v]gp,, is admissible if say M > g’(see Proposition 2.21). Therefore it is

enough to show that (fQ AZQq dy)'/% < 1. Furthermore, by the John-Nirenberg lemma for local square

functions (see Lemma 2.18), we reduce to proving that fQ AZQ dy < 1. Using Fubini’s theorem, we see that
this last estimate is equivalent to the unweighted Carleson measure estimate

o - dxdt
3.11) / TP 2 <107,

where as before Q" = ¢, Q is a dilate of Q. Since the above has to hold for every cube, we write Q in place
of O* in what follows. Moreover, since the quantity v/v,, is invariant under scalar multiplication of v by a
positive constant, for a fixed cube Q we may assume that v(Q)/|Q| = 1.

First we use a stopping time argument to deal with v,;: For a fixed constant A~! < 1/4, to be selected
later, we let {Q} jen be the collection of maximal dyadic sub-cubes of Q with respect to the conditions

][ v(x)dx> A, or ][ v(x)dx < A7,
Qj 0j

We say j € I if the first condition holds, and j € I, if the second does. By the first condition we have

Z|Qj|<ZA—1/Q v(x)deA_l/Qv(x)dx:A_1|Q|,

jeli jeh
since v(Q)/|Q| = 1. On the other hand if j € I,

/ v(x)dx < A7'Q;l, and / v(x)dx > A7'Qj,

0; 0

where Q7 is the dyadic parent of Q;. Therefore, 3., (Q)) <> ), ANQj < A1QI = A™1(Q). By the
A property of v we can choose A, depending only on the A; characteristic of v, small enough such that the
above inequality implies that | Uje;, Q) < %IQI. Combining this with the corresponding estimate for /;, and
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using the fact that the cubes Q; are pairwise disjoint, we see that ijo |0l < B|Q|, for B=1/2+ A <1,
By Lemma 2.16, the above implies that it is enough to show that

v(x) dxdt
(3.12) // T, 1(x)]* dx—— < ColQ,
EQ )C ! t
where we define the sawtooth region Eg := Rp\(U>0R;). To handle (3.12) we first claim the following:
(3.13) Ver 2 1, for each (x,1) € Eg,

with implicit constants depending only on the doubling constant of v. To see this fix (x, ) € Ep and consider
first the case x € U;»0Q; so that Al < fQ, v(y)dy < A, for any dyadic subcube Q' € D(Q) containing x. In
particular, choosing Q; € D,(Q) with this property, and using the doubling property of v we see

A7 S][ v(y)dy z][ v(y)dy = vy

‘ be=yl<t
On the other hand if x € Q; for some j > 0 we proceed as follows: If # > 4£(Q), it means that, if as before
Q; € D(Q) i 1s the unique dyadic subcube of Q containing x, then Q; is not in the collection {Q;}; so by
definition A~ < f v(y)dy < A, and we conclude as before since this average is comparable, by doubling
of v, to vy, If £(Q ]5 <t < 44(Q)) (the first inequality owing to the definition of Ep) then by definition the
dyadic parent 0 ; of Q; satisfies A< fé/ v(y)dy < A, so that, again by doubling of v, the claim follows.

We conclude, using (3.12) and (3.13), that it is enough to establish (recall v(Q) = |Q|)
dxdt
(3.14) I} micorvn < o
Eg t
To show this we first fix y = Yo € C°(4Q) with the property thaty = 1in 2Q and 0 < w < 1, so that
dxdt dxdt
|| impven S / T Pve) “0 / e e ey )
Eg

We first handle //1: Using Holder’s inequality, with ¢/2 > 1 as in the hypotheses, we recall that we have
chosen M > (q/2)" so that v € RH(42y (see Proposition 2.21),

Q) dxd (9] , 1/( /2)' 2/q d
11 < / / 101 - P A < / ( / Vo 3y ax) / U
0 (@)

{(Q) £20)
< [P [ma-wma) = [ [ ina-epax) ™
0 0 4 0 0 t

where we used the normalization v(Q)/|Q| = 1 in the last line. Now, since T satisfies L> — L9 off- diagonal
estimates (see Definition 2.39), using as usual R; = R;(Q) = 2/+10\2/Q for j > 1 and recalling that
1 — ¢ = 1 outside of 40,

1/q 1/q
([ ra-wra) s;( - as)
—njy t nys (1 a— 1/2
2.2 (@agy) “@" 1/2)(/R.'1_‘”'2dx>

< ;Tﬂh(i’(tQ))n £(Qy a1 112 < Zz njty- 1/2><£(fQ)) lol' < ({)(fQ)) 10114
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since y > 1/2. Plugging this into the estimate for /// above we see, since y> > 0,

f(Q) t 272dt
ms/o |Q|(€(Q)) < slol

This is the desired estimate for /71.

To handle 11 we first define, for Q" € D(Q), I(Q’) := {(x,1) € Rg : x € Q', {(Q')/2 <t < {(Q")}, the
Whitney region in R™*! associated to Q’. We see that

n= Y mwpe S

Q'eD(Q)
Q/ﬁQ/—0 vj

We now use Holder’s Inequality with g > 2 so that the L? reverse Holder inequality for 7 holds, again
noting that we have chosen M large enough to guarantee v € RH(y)2y, to conclude that

dxdt , dxdt 13y dxdt
nm< Y // Tt =) // WSS s o1V ( // mW—),
Q) Q) (@)

Q'eD(Q) Q' D(Q)
Q'¢Q;,Vj 0'¢Q;.Vj

where we used that for Q” satisfying Q" ¢ Q; for all j (i.e. for Q" not contained in any of the Q) we have,
by construction of the Q;, fQ, v(x)dx ~ 1. We now use reverse Holder assumption on 7} to obtain

dxdt dxdt
(ff oS s ff s
Q) ! Q') !
Therefore, using this in the estimate for /1,
dxdt dxdt
// S wi? &5 // 1S w2 E5
o' Ro+

s Yy 101" |”f’]§[ 1S I dxdr <
Q0'eD(Q) 1T Q'eD(Q)
Q'¢Q;,vj Q'¢Q;,Vj
The desired estimate now follows from the fact that 7, satisfies an L?(R") square function estimate and
Wl 2y < IQI% by construction. Combining the estimates for /1 and /11, (3.14) follows and thus, by our
previous reductions, we have shown
IS(Te1 - Pefllzzey < Wfllz2gy)-

It remains to handle the contribution of R,. Notice that so far, we have only required that v € A/, and
v > 1/r. The extra assumptions will be needed in order to handle R.. Again as in the proof of Lemma 3.1
we will appeal to interpolation with change of measure (see Theorem 2.25). For this it is enough to prove
the following pair of estimates:

_ 12 ¢
(3.15) | (]1 RQ SO dy) |, o, min (=, ) 1Qu N2
e-yl<t L®R")
valid for some (and therefore all) Littlewood-Paley family (Qy), and some 8 > 0; and
~ 1/2
(3.16) |(f  R@rora) |, sw, 1@z
le—yl<t v) !

We remark that in the first quasi-orthogonality estimate (3.15), even though the estimate itself is un-
weighted, R, still has a dependence on v. The uniform L*(v) estimate is handled the same way it was
done for the conical; setting / := Q2f we see
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(2.

~ b 1/2
IR:h(y)> dy V(x)dx>
QeD, —yl<t

/ ][ R dyvioydz)
" x—yl<t

12
S(Xf [ 2R dysod)

Q€D 0 Yyt
By Holder’s Inequality with exponent ¢/2 > 1 and M > (2/q)’, we see
&y \NUE > 2 2
SR ayveode< ([ 527 a) ([ o &) g, 1007 ([ o ay)’
Q Vyi 0 0

Plugging this into the first estimate, we can now proceed as in the conical case (see Lemma 3.1), exploiting
the L" — L9 off-diagonal decay in place of the L" —

Vy

For the quasi-orthogonality estimate we proceed as follows: We exploit the off-diagonal decay that R,
inherits from R,. More explicitly we have, for fixed #, s > 0 using Fubini’s Theorem and duality

/ ][ R P dxdy = / YD) R @ FoP dxdy
nJx=yl<t nJ|

x—yl<t Vit

= / "R @ P d = / Vv(x)Rfaiﬂx)-mdxdy

x,t x,t

_ / : (Vv(x) Q1) () @f @ dx < IR (/7RO D2 |03 ey

where R} is the adjoint of Ry, for fixed 7 > 0, in L*(R"). Since [|Q?fll ;2 S I1Qsfll;2n), We have reduced
matters to showing

(3.17) /

for some a@ > 0. To save space we denote by [ the left-hand-side of this last inequality. Recall that we
denote by D, the collection of dyadic cubes of scale 27 where /2 < 27% < . We compute, denoting by
0" = ¢,Q for any cube Q C R" where ¢, is a dimensional constant,

( ) 1/2
(2 R,st)) / ]|[ .

TURQ, f) )zdxdy)l/z >

R (V(X)R,QZ )(x)‘ dx < min (; é) 1, F@PR dx,

Vxt

(3.18) 1'? = & ("R @) ayax)

th

V(x) v(x)

2 12
]le(Q) zst>‘ dXd)’> ,

s

where we define Ry(Q) := 2Q and for j > 1, R j(Q) = 2/+1 Q\2/ Q and we used the triangle inequality in the
last line, together with the L?>(R")-boundedness of R?. We now use the off-diagonal decay for R} to write,

<]lR 5= v(x) ,st> ‘2dx <27 QIR </R,'(Q)

~ 2—nj(7‘%)|Q| (]ZI;,(Q) “;()i)Rthf(X)‘rdxy < 2_"j(7_%)|Q| <]{3'(Q) |Rthf|2> X (]{?-(Q)

where 77! = 1/r — 1/2 by Holder’s inequality. Plugging this estimate into (3.18), we see that

v(X) [T N\2F N2
(3.19) 12 <Z 3 ]1 c2|Q| ][,-< )|R,Q§f(x)|2dx) (]{W) dx> dy) :

4
j>0 Q€D Xt

‘ v(x)

V.t

R,Q?f(x)‘r dx) Y

2
s

dx) s

v(x) |

Vx,t
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where we have defined C; := 27/02/")_ Since M > 7, so that v € RH5 (see Proposition 2.21). Moreover,
using the doubling property of v and denoting Cy ., to be the doubling constant, we have

(3.20) Vi 2 20C50 v & Cl L 2(0)),
where Q' is any cube with €(Q;.) ~ 2/t containing x. Therefore decomposing R ;(Q) into N = N(n) cubes

Q' of sidelength 2/t we compute
V(x) 1/v y(x) ™ /7
(%R Zyl, ~lvMJA2 (Z (7[ ” dx) )
1(0) o Vo Vi
P VIOONQINYT i )
< Clo2 (X (CDLONT )
doub > V(Q/)|Q/| doub

VYt
where we used (3.20) in the second to last line. In what follows, we absorb this constant into C;, now
writing C; := 2~ nily+1/n=2/r=log;(Caow)/m) - Plugging this into the estimate for I, appearing in (3.19), and
using Fubini’s Theorem, we have that

My (> ][ CZIQIJ[( )|R,Q%f(x)|2dxdy)2 <Y (X / c;]{x _y|<zk+nt'RfQ§f(x)'2 ek

v(x)|”

Vxt

j=0 Q€D Jj=0  Qeby
1 1/2 0\ 3
<Y (@ RQf@Pdxdy) < (| R@rwPdx) (Y )
20 S x—yl<2t+ Dy R” 0 /

< ([ rasora)”

where in the last step we used that Cyoup <, [v]a, < Cs. This gives the desired estimate (3.17), since we
have good quasi-orthogonality estimates (see the proof of Theorem 4.4). m|

4. EXTRAPOLATION OF SQUARE FUNCTION ESTIMATES

In this section, we obtain weighted and L” estimates for operators of the form t’"c’);”V(S,LV), for some
m € N large. The main ingredients for these estimates are the L" — L? off-diagonal diagonal decay estimates
for our operators (see Propositions 2.56 and 2.59) for r < 2 < g, used implicitly through the extrapolation
results of the previous sections.

At this stage we also mention the work [Pri19], where the vertical and conical square functions for objects
associated to the heat and Poisson semigroups of £ (without lower order terms) are considered. We remark
that our objects are a bit more technically involved to handle, in part due to the mild off-diagonal decay
that they enjoy. Nevertheless, the basic idea of extrapolation and control of the vertical square function by
a conical square function is the same.

In order to simplify the statement of our results, we make use of the following definition which encap-
sulates the assumptions that £ must satisfy.

Definition 4.1 (Hypothesis A). We say that the operator L satisfies hypothesis A if the following hold.

(1) £ has the form £ = —div(AV + B;) + B, - V, for some B; € L"(R";C""!) and a complex elliptic,
t-independent, matrix A, that is, for some A1 > 0, a.e. x € R” and every &, € C"! it holds that

_ - 1
AP < Re(A()é - &), A - 41 < Sl
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(2) With p; > 0 as in Theorem 1.4, we have

max{||Bi 2@, IB2ll®m} < pi1.

We will say a quantity depends on ellipticity if it depends only on A and p;.

Next, we state the main result of this section.

Theorem 4.2 (L? extrapolation of square function estimates). Suppose that L satisfies Hypothesis A (see
Definition 4.1), and let ®, ,,, be any one of the operators

mOmIV(SEY),  marIV(SEB),  MITTIB(SEY), i=1,2.

Then there exist &g > 0, mg € N, and pg > 0 depending on dimension and ellipticity, such that for every
m > mgand p € (2 — &9,2 + &y), we have the estimate

IS@mH)lle@ry + IVO@Orm Ollr@ny $p 1 llLewny,
provided that max{||B1||zxw»), || B2l } < po.

Let us give a quick roadmap to the location of the proofs of the various estimates summarized in the
previous theorem.

e The conical square function estimate for t’"(’?’t’”‘lV(S,LV) is obtained in Theorem 4.12, while the
vertical square function estimate is given in Theorem 4.13.

e The estimates for tmay"IV(SfB) are contained in Corollary 4.14.

e The results for tmﬁ?’_lB(SfV) are obtained in Lemma 4.7. There the results are obtained for the
operator with the gradient replaced by a ¢ derivative. A careful inspection of the proof though shows
that, as long as we have good estimates for the operator tm(?;”‘lV(S,LV), the same argument applies.

o Estimates for the double layer potential are obtained in Theorem 4.15.

4.1. Estimates for VSZ. In this subsection we prove the relevant estimates for operators of the form
tm8§”VSt£. These will follow immediately from the extrapolation results from the previous section; together
with the off-diagonal estimates obtained in Propositions 2.56 and 2.59.

Remark 4.3. We would like to be able to apply Lemmas 3.1 and 3.7 to ©,,, = t’”(?;"(SfV”) to handle
the double layer potential; it is not a simple matter however to obtain the necessary quasi-orthogonality
condition in those (one reason is that in the regime s < r we need to “add” derivatives to @, ,,, while taking
them away from Q;; however adding derivatives to ®,,, is tricky since we already have a V) in front. We
will have to use the equation to circumvent this issue). We will treat this operator separately, in Section 4.2.

Theorem 4.4. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let ©;,, = t’"(??”VS{ then there
exist 1 > 0 and my € N, depending on dimension and ellipticity, such that if m > mjy and2 — &) < p < ©
then SOy m i@y Spm 1fllLr@®n).

Proof. This follows immediately from Lemma 3.1. The off-diagonal decay is contained in Proposition 2.56,
while the quasi-orthogonality estimate (3.2) for R; is obtained in the proof of the L? square function bound
for ©;,, (see [BHLMP22, Theorem 5.1]); we sketch it here for completeness. Fix 0 < s < ¢ and we choose

Q; = sdiv@Q;, so that

O mQsh(x) = 3"V SL(sdivyQsh)(x) = ;tm“a;"V(van)(ésh),
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and we appeal to [BHLMP22, Lemma 6.2], which shows that the operator #"+'#"V(S£V)) is uniformly
bounded in L?>(R"), moreover so is Q,. This takes care of the contribution of O, to R;. To handle the other
term we further choose P, = PP, for an approximate identity P, and note that |®;,,1(x)|P; is uniformly

bounded in L*(R") while P,Q; satisfies good quasi-orthogonality estimates when s < . Finally, the L2
square function bound is obtained in [BHLMP22, Theorem 5.1, Lemma 5.2]. O

We now turn to the appropriate vertical square function bounds.

Theorem 4.5 (L” Bounds for Vertical Square Function). Suppose that L satisfies Hypothesis A (see Defi-
nition 4.1). Let ®;,, := t’”(’);”VS,L. There exists £, > 0 and my € N, depending on dimension and ellipticity,
such that if p € (2 — &2,2 + &) and m = my then ||[V(O, OllLr@ny S 1 flle@n).

Proof. We use Remark 3.10, with T; = t’"@}”VS;’: and S; = t’”‘IBTS,L. Then the square function bound for
T, follow from [BHLMP22, Theorem 5.1, Lemma 5.2], while the square function bound S, follows from
[BHLMP22, Theorem 5.1]. The comparability of 7 and S, as in Remark 3.10, follows from Caccioppoli’s
inequality (Proposition 2.49), and the Reverse Holder inequality for S; is contained in Proposition 2.54,
recalling that S,f(x) is a solution of Lu = 0 in R"*! (see for instance [BHLMP22, Proposition 3.16)).
The necessary oftf-diagonal decay for both S and T is in Proposition 2.56, choosing m large enough. The
conclusion now follows from Lemma 3.7. m|

While the extrapolation result in Lemma 3.7 is interesting on its own, it turns out that in our context,
exploiting Caccioppoli’s inequality, it is easy to get a much stronger bound (in fact the moral of the proof
seems to be that, if 7; enjoys a reverse Holder inequality on slices, then we can always control the vertical
square function by the conical in an interval around p = 2). We state this in the following

Theorem 4.6 (Weighted Bounds for Vertical Square Function). Suppose that L satisfies Hypothesis A (see
Definition 4.1). Let ®y,, := tma’t”VSf. There exist my € N and My > 1, depending on dimension and
ellipticity, such that for every m > m5, M > M, and every v € A, with the property vM € A, it holds

IVO®rmllz2e) = ISO@tmMlizwy Spmy, 112,

5 v e
Oumf(x) = TR Opmf(x) = Ve O mf(x).

Proof. We note, from the beginning of the proof of Lemma 3.7, that the comparability [[V(®,, f)(X)llz2¢,) =

where we define

||S(@),,m D2y holds for any weight v. Therefore it remains to estimate the conical square function associ-
ated to ©y,. First, we write

~ o d
5@ = | /O f | P16, f )P dy v,
n x=yl<

t Yyt

and then, by the Holder and Caccioppoli inequalities,

£ S ewsora < (f )" (f

V.t [x—yl<t x—y|<t

v(y)
Vy’ ¢

1/q
©unf P dy)

3t/2

2 2\ V4 2 1/
Sy (£ 10mfoPay) s 0un-1 f)P dydls)
|x—yl<t t/2 |x—yl<2t
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where we have defined 6;,,-1 := tm‘laf”S,L, and chosen ¢ € (1,2) such that our operators satisfy a 2¢q
Caccioppoli Inequality on slices (see Proposition 2.51) and then chosen M > ¢’. Now since 6 ,,—; satisfies
a reverse Holder Inequality (see Proposition 2.54) we see that

3 i 1 Tt/4

2 4
(£ wsorraes) sf f  pasofadsf o
5 Jx—yl<2r I Jlx—yl<3e t/4 |x—y|<4s

The desired result follows now from Fubini’s theorem and the fact that conical square functions with dif-
ferent cone appertures are comparable (see the comments after Definition 2.2). O

In what follows we need square function estimates for the operators tm(?);”BS,L, where B € L"(R") is
independent of the transversal variable. The L? case follows from the bounds for t’"c’);"VS,L and Sobolev’s
inequality, the case p # 2 requires a more involved argument both for vertical and conical square functions.

Lemma 4.7. Suppose that L satisfies Hypothesis A (see Definition 4.1). For a function B € L"'"(R"),
independent of the t variable and m € N consider the operators @fm f(x) = tma’,”BS,L f(x), Oppf(x) :=
t’"a’t”V”Sth(x). Forevery 1 < p <nand f € CZ(R") it holds

V@ Nllrny $ IV o).
Moreover, if 0, f = tmc?;"HSth, then for any 1 < p < oo,

ISOF, Nllr@n SISO H)lie@n + SO m-1 Ollr@ry S NSO m-1 HllLr@n.

Proof. We begin with the bound for the conical versions. First note that the second inequality follows from
the fact that conical square functions, in our setting, always “travel up" by the L? Caccioppoli inequality.
To handle the first inequality we note that for fixed x € R” and ¢ > 0 we have, by Holder’s and Poincaré-
Sobolev Inequalities,

12 ||Bllpren . RN V3
(f etusora)” <M astior a)
b=yl t =yl
1/2
Bl [({ 10umf @R dy) " + (@1
lx—yl<t

where (6;,,-1f)x: denotes the average of 8;,,_1 f on the n-ball |x — y| < . The result now follows from
Jensen’s inequality and the definition of S.

The vertical square function is a bit more involved. The idea is to write
®F,.f(x) = BLLRVt"3]'SF f(x) = BL|R®,, f (),

where [ is the fractional integral of order 1 and R is a vector valued Riesz Transform (note that the above
makes sense in L2(R") owing to the slices estimates of [BHLMP22, Theorem 1.4] and the mapping proper-
ties of I; and R). Therefore, by Holder’s Inequality

IV(OF, Allr@n < 1Bll@nIVUILROm Ol gy

where 1/p* = 1/p — 1/n is the Sobolev exponent in dimension n. The desired result follows from the
following estimate: Let F : R**! — C, then for every 1 < p < n,

IV RE) 1 ey < IV oy,
To show this, first note that for every 1 < p < oo we have

IV(RF)lr@®ny S IIVE) L@
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This is a consequence of the weighted estimate

0 d 0 d
/ / IRF(x, 1) {v(x)dxs / / F(x, 02 {v(x)dx, ye A,
nJO nJo

and the extrapolation theorem for A, weights (see Theorem 2.22). Therefore it is enough to prove the
estimate for /; alone. For this we will need an off-diagonal extrapolation result (see [CMP11, Theorem
3.23]) to reduce matters to proving

(/ : /om 0P 2 a5 </ : (/om inFeoP §) )

where 1/2, = 1/2 + 1/n, and the above holds for every v € A;, » (see Definition 2.32). To prove the above
inequality we appeal to Theorem 2.33 to obtain, for a weight v as above, [|11gll;2(,2) < lgllz2-(,2-). Therefore

( / n /O T ILFG t)lz?vz(x)dxy/z < ( /O ) ( /R PG o v(x)z*dx)zﬂ*?)l/z.

The desired bound now follows from Minkowski’s inequality (in L?/%+). m|

Remark 4.8. More generally, the proof above gives weighted inequalities and, in fact, shows the following:
Weighted bounds T : L*(v) — L*(v) imply that [[V(T F)ll .2,y < IIV(F)llz2()- The same is true for the conical
square function if 7 in addition has good local estimates, we refer to [AP17].

4.2. Estimates for (StLV). We will need the analogue of Lemma 4.7 for the dual (in L*(R"Y)) operator.
Lemma 4.9. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let B € L"(R";C") and set
O 1= tm(');”(S,LV”) and @fm := 3" SEB. then for any weight v € Ay we have

ISOF 120y Sty 1Bl @ISOz 2001120 -
In fact the constant can be shown to be at most a dimensional constant times [v]lg" for some a < 1 (see for

instance [Pet08] and [LMPTI0])

Proof. We begin by writing, for f € C°(R"; C"), B - f = divy[{[; V(B - f) = divj[1R(B - f), where I, is the
fractional integral of order 1. Therefore ®fm f =0, ,(ILiR(B - f)), and so
IS@F N2y SISOz 2 IRIB - P2y

Since R : L*(v) — L*(v) by the Coifman-Fefferman maximal inequality (see Proposition 2.21), the result
follows from Proposition 2.34. m|

Theorem 4.10 (Square Function bounds for (S,LV)). Suppose that L satisfies Hypothesis A (see Definition
4.1). Let O, := thQ"(S,LV) and ®|t|’m = tmGT(SfV”) and § € (0,1). Then there exist M > 0, m3 € N
(depending only on dimension, ellipticity, and for mz also &) such that for every m > ms and if v/ € A, is
such that [VM]A2 < Cs (with Cs as in 7 of Proposition 2.21) then

IS@Ln N2y Ssm 120
provided that" I1By |2y < p3, for some p3 depending only on dimension, ellipticity 0f.£||16 and Cs.
In particular, for p € (2 —1/2M,2 + 1/2M), it holds
IS@mNHllr@ry S N fllr@n)-

I5This is one of the few places where we may require additional smallness in addition to that imposed in [BHLMP22], prior to
discussing existence and uniqueness of the solutions to the boundary value problems.
1oMore precisely, the dependence on the ellipticity of £ is through the constants appearing in Theorem 2.62.
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Proof. We follow the same outline as in the proof the corresponding unweighted L> bound for this object
(see [BHLMP22, Lemma 5.26], which in turn is based on the method in [HMM15a]). Throughout we fix

o~ d

@y a CLP family (see Definition 2.14) with smooth compactly supported kernel, and set P; := — ft @ @
s

By the Hodge decomposition and the weighted estimates in Theorem 2.62, we see that it is enough to show

IS@rmA Vi)l 20y Sy, IVIF N2

We start by writing, via the Coifman-Meyer technique [CM86],

0}, A1 V| F(x) = (©],,(A| V| F)(x) — [0],,A(0)] - P,V F(x)) + [0}, A (x)] - P,V F(x)
= R(VF)(x) + [0, A ()] - P,V F(x).

Since these objects already satisfy good (unweighted) L? estimates, the difficulties now shift to the
“error" term R;; indeed, using the weighted version of Carleson’s lemma (see Lemma 2.30) to handle
the second term it is enough to show that

4.11) U(Rp) < v(Q), for each Q c R”,

where we have defined the measure u as (recall that we are trying to control a conical square function)

. v(x)dxdt
du(x,t) ;= <]|[ —

x—y|<t

00,40 dy)

To obtain (4.11), owing to the off-diagonal decay of @'tl’m in Proposition 2.56 and the fact that du is a
Carelson measure when v = 1 by [BHLMP22, Lemma 5.26], we can mimic the argument used in the
proof of the extrapolation theorem for conical square functions (Theorem 3.1) involving the John-Nirenberg
lemma for local square functions (Lemma 2.18); we omit the details.

It now remains to show that R, has good square function bounds. This is the main part of the proof; we
will follow almost verbatim [BHLMP22, Lemma 5.26], replacing weighted bounds where appropriate. We
begin by rewriting R; in the following way:

R; = ®L|,mA|| - [®1‘|,mA||]Pf = <®L|,mA||Pl - [®|t|,mAH]Pt) + GL‘,mAH(I - P) = R)El] + REZ]-

Since ®|t"m has good off-diagonal decay by Proposition 2.56 (see also [AAAHK11, Lemma 3.3]), so does R;
and satisfies the quasi orthogonality estimate (3.2), thanks to the presence of the P, term. We can then apply
the extrapolation lemma for conical square functions (Lemma 3.1) to conclude that IIS(RP]V”F Mezey S

IViFll 2, for each v € Ay, and some 1 < r < 2. For the term RP] we will use the equation in the form
of the identities on slices (see [BHLMP22, Proposition 3.19]). For notational convenience, we will denote
Z:=(1 =Py, and also b := (A,41.15- - Ansin)s @ = (Alnsls - - - s Ansine1). We write

RV F) = ©],A)ZVF = @) ,,A\V|ZF = 8,0,,dZ,F - 6,,,(bVZF) + 0, ,,B\ ZF
- te,’m_l(BQHV”ZtF) + et’m(BZJ_ZlF) =1+ +J3+J4+ s,

where as usual we have defined 6, ,, := t’"(’)’t”“S,L. To handle J; we note that, owing to the L" — L? off-
diagonal decay of ®,,, (Proposition 2.56) and the average weighted estimates on slices of Proposition 2.40,

® L dt
50 = [ [ Ommdr zEoR dyeody
0 nJ |x—yl<t t
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0 e dt
<y @t Z,F ()P v(x)dx— < IV Fllz2()s
2r 0 R® t

where we have used Proposition 2.35 to handle the square function associated to Z; in the last line.

For J, we rewrite as follows:
I = Op(B - Vi F) + (@,m(l? - PV F) = [6mb] - P,V”F) + [6rmb) - PVYF = oy + Jan + Jos.

Again appealing to the John-Nirenberg lemma for local square functions (Lemma 2.18, see also the proof
of Lemma 3.1) we see that the contribution of J> 3 is under control by the weighted version of Carleson’s
lemma (Lemma 2.30). The term J, > we can handle the same way we did RE”; we omit the details. Finally,
by Theorem 4.6, we have good weighted conical square function bounds for 6;,, and be L™R"), so the
contribution of J; 1 is also under control.

For J3 we appeal to Proposition 2.60, which, for s < ¢, gives the bound (for I,g = F)

1/2 S\ B
I(f__ewsin@sora) |, < () Qs
x—y|<t

L)

Therefore

«© dt
IS(UD)N 2y = / / ][ ©.mB1(1 = PYF(y)* dy v(x)dx —
0 S |x—y|<t t

- L

* T iN\B/2 s u
= / / ][ / (’) 1©.mB111Q5g(F — dy v(x)dx —
0 nS|x-yl<t JO NS s p

[T r5\P2 st ds
<[] G et T S 1@l < el
0 s t t s

where we invoked Theorem 2.25 in the last line. To conclude we note that I1g = F and so Rg = V|F,
where R is the vector-valued Riesz transform (with symbol £/|£]) and we know ||Rgll2) = llgllz2(, for
every v € Ay; the desired bound follows from this since A/, C A».

! ds|? dt
Outih | @ | dyvax
0

To handle J4 we write it as
Jy = =161 1By V| F + 16, -1 By V| P F =: Ja1 + Jap.
For J4; we appeal to Lemma 4.9 to bound
ISUaDlz20) Sivie, 1B2llr@n IVIF Nl 2o 100l 20— 120)-
Therefore, if ||Bs||z»®») is small enough we may hide this term on the left hand side.

We rewrite J4 > in the following way:
J4’2 = (l‘@,’m_l(Bz” . PtV”F) - [tgt,m—lBZII] . PIV”F) + [tat,m—lBZII] . P,V”F = RP] + [tet,m—lBZH] . P,;V”F.

The term RP] may be handled the same way as RP], using Proposition 2.59 to obtain the right L" — L2
off-diagonal estimates. It remains to show, by an application of the weighted version of Carelson’s lemma,
a v-Carleson measure estimate for

du(x,t) := <]|[

x—y|<t

dxdt
07 SE B dy) v =
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This follows, once again, by an application of Lemma 2.18 (see also the proof of Lemma 3.1)"".

Finally, to handle Js5, we appeal again to the L” — L? off-diagonal estimates of tm+la;"+ls,£32 1 (Proposi-
tion 2.59) and Proposition 2.40 (which give that tm“a;"“S,LBz . satisfies good averaged weighted bounds

on slices) to conclude
18Uz < / /
0 Jrr

We conclude by the square function estimates of Proposition 2.35, the same as we did for J;.

i
t

2 dt
v(x) e

Combining all the above, we see that we have shown:

”S(®It‘,m)”L2(v)—>L2(v) S[VM]A2 1+ ”BZII”L"(R”)||S(®It|,m)||L2(v)—>L2(v)'

This gives the desired bound if the left hand side is finite and ||B||[z»® is small enough. To achieve the
former we may work with the truncated square functions given by

1/n d
8,0, () = / ][ @, foPay .
n [x—yl<t t

which satisfy IIS,,(G)I,lm)ll 2(v)>I2(v) < ©0, owing to the estimates on slices of Proposition 2.40. Fix now Cs
as in the assumptions, i.e. [VM] < Cj, then our estimates read (see also Theorem 2.62)

IS 20— 120y Sco 1+ 1Byl lISO) )20y —120)-

Thus, choosing ||Byjllr®ry < p = p(Cs) we can hide the second term on the right hand side and conclude
the result. The L” bounds are a consequence of this and Corollary 2.29 if we choose ¢ = 1/2, where recall
C12 is defined as in 7 of Proposition 2.21. ]

Theorem 4.12. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let ©,, := t’"(?;”_IV(StLV) and
0 € (0, 1). There exist mgy € N and M > 0 (depending only on dimension and ellipticity, and for m4 also on
0) such that if m > my and v € A is such that [vM] 4, < Cs, then

ISO@tm 2wy Spmy, 12,
provided ||By|l|1»®ry < pa, for some ps depending on dimension, ellipticity of L), and Cs only.

In particular there exists €4 > 0 (depending on dimension and ellipticity) such that if p € (2 — €4,2 + &4)
and m > my then

ISOrmNHIzrwny Sp I1fllLe@ny.

Proof. Notice that it is enough to consider V| instead of V in both instances; otherwise we are in the
situation of Theorem 4.4 or Theorem 4.10. Therefore, without loss of generality, ©,,, = 3"~V (SFV)).
In this case, for f € C°(R"; C") we can write

Ormf(x) = "IV SEivy f)(x) =: 0"V SEg(x).

By the Caccioppoli inequality on slices (Proposition 2.51) we see that, for fixed x € R" and ¢ > 0,
00 dt oo 31/4 dt
/ /f 9 SEFOR Ay < / ][ ][ 1 S dy S
0 Jpx—yl<t t 0 Jya Jix—y<2 t
oo 314 dt o0 ds
. / ][ ][ 51 (SE )P dyds S / L SETFOR Ay
0 Jya Jix—y< t 0 Jpx—yl<2t s

Notice that, since we already have good unweighted L? square function estimates for ®,,,, the John-Nirenberg lemma gives
us that this object is under control; as opposed to the unweighted case, where we were forced to hide this term.
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The result now follows from Theorem 4.10 and the change of angle formula for square functions (see the
comments after Definition 2.2). ]

The following is the weighted version of Theorem 4.2 for the vertical square function.

Theorem 4.13. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let @y, 1= t’"@;’HV(S,LV) and
0 € (0,1). There exists ms € N and M > 0 (depending only on dimension and ellipticity, and in the case of
ms also on 0) such that if m > ms and v € A, satisfies [VM]A2 < Cs, then

VO m N2y Sco 1 llz2)s
provided ||By|| < ps, for some ps5 > 0 depending only on dimension, ellipticity of L), and Cs.

In particular there exists €5 > 0 (depending on dimension and ellipticity) such that for p € (2—¢&s,2+¢€5)
VO mH)llr@ny < NfllLr@n).-

Proof. By Theorem 4.6 and t-independence, it is enough to consider the operator O, := """ V(SfV”).
Now the idea is to repeat the proof of the weighted bound for V(t’”c?;"VStLg), with g = div) f, in Theorem
4.6, using now instead Theorem 4.12; we omit the details. O

The next corollary is useful when dealing with square functions involving the double layer potential.

Corollary 4.14. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let ey > 0 and My > 0 be as
in Theorem 4.2. Let ©F, := (""" '\V(S{B) for some B € L"(R"; C"*1). Then for every f € CZ(R"; C™*)

ISOF, 20 IVOF, llzzery Stvmia, 1F12200)-

Proof. Write By- fjj = div|V i1 [1(By- fj)) = divyRI1 (B - fjj) = div)g;. Notice that, by the proof of Proposition
2.34, we know |Igllzr®) < llfjllLrgny for every 1 < p < co. On the other hand we can also write B, f| =
divyRI(B, f1) = divyg, where |lg |lrrrny < IIfLllrrry. Combining these two observations the result
follows from either Theorem 4.12 for the conical version or Theorem 4.13 for the vertical. O

Recall that for N = —e,41 the exterior normal to (9Rﬁ“ we have the representation formula for the double
layer DF f = (S£v) - AN f+(SEBy) - N f, for f € CZ(R"). As an immediate consequence of this and the
previous results we have

Theorem 4.15 (Square Function Bounds for DF. Part 1). Suppose that L satisfies Hypothesis A (see
Definition 4.1). Let g9 > 0, my € N, and pg > 0 as in Theorem 4.2. Suppose ©;,, = t’”@;"VZ),L. Then for
m=mgy, p€2—e¢p,2+e)and f € COR")

ISO®m Ol @y, IV Orm Ollr@wny S N fllLr@ny-

Theorem 4.16 (Estimates on Slices for VSIL). Suppose that L satisfies the hypotheses of Theorem 4.2. If
gy > 0is as in Theorem 4.2 and p € (2 — &9,2 + &), then for f € CZ(R")

ISEfllr @y + IVSEAlr@ny Smp Ifllr@n, > 0.

Proof. The proof of this result is essentially contained in [BHLMP22, Theorem 1.4], using the L? square
function estimates from the previous section instead. We omit the details. |

As a consequence we obtain the necessary boundedness on slices of our operators.
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Corollary 4.17. Suppose thatL satisfies the hypotheses of Theorem 4.2. If &g is as in Theorem 4.2, then for
everym>1, p € (2 -g9,2 + &) and f € CX(R";C1)

1£70) " (SEV) - fllpp gy + 1707 V(SEV) - flloery Smp Wfllr@n. 1> 0.

If either of the gradients is replaced by 0;, then the above remains true for m = 0.

Proof. It is enough to treat V(S,LV”) by t-independence. The idea is to write V(SfV” f) = VS,LdiVH f
and apply the L” Caccioppoli’s inequality on slices (Proposition 2.51) once, and then use induction (recall
that the off-diagonal decay already gives uniform L? bounds for m large enough). Details can be found
in [AAAHKI11, Lemma 2.11]. O

Similarly we have the result for B; in place of the gradient, the proof is a simple application of Sobolev’s
inequality for m = 0, Caccioppoli’s inequality on slices, and duality.

Corollary 4.18. Suppose that L satisfies the hypotheses of Theorem 4.2. If €9 > 0 is as in Theorem 4.2,
m>0,and p € (2-gp,2+ &), then for f € C°(R") and g € CZ’."(R”;C”“)

173} BiSE fllren < Wfll@n, 1007 (SEB) - gl < gl
The following result is really a corollary of the above estimates; we state it on its own for future reference.

Theorem 4.19 (Estimates on Slices for D). Suppose L satisfies the hypotheses of Theorem 4.2. If £ is as
in Theorem 4.2, then form > 0 and p € (2 —€p,2 + &) and f € CZ(R"),

1137 DF fller@ry $ 1 llipgns t>0.

Proof. Again by Caccioppoli inequality on slices it is enough to treat the case m = 0. The result is an
immediate consequence of the following representation formula for the double layer given earlier: For
f € CZ(R") we have Z)ff = (S,LV) . (A1\7f) + (S,LEZ) . ]\7f, where N = —e,41 18 the exterior normal. ]

The following result will be used in the proof of the non-tangential maximal function estimate.

Lemma 4.20. Suppose that u € Wllo’cz(Rﬁ“) is a solution of Lu = 0 in R"*', given by either u = S*f or

u = DLg for some f,g € C=. For any positive Lipschitz function ¢ : R" — R with ||V||p=@n < 1, if we
define the function uy(x, 1) := u(x,t + ¢(x)), (x,1) € RTI, then we have

sup [lug(, Dl L@y S (V(EVUW)IlLr@n),
>0

for p € (2 —&py,2 + &g) as in Theorem 6.1 (one has to keep in mind here that the vertical square function
“travels down" as long as we have good estimates on slices).

Proof. We sketch the proof: The function u, solves an elliptic equation L u, = 0 of the same type as L,
with the corresponding norms of the operator £, controlled in terms of those for £ and ||V|| =g . Next,
we apply [BHLMP22, Theorem 6.12] (or, more precisely, its proof of the uniform Y!2(R") estimate). O
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5. NON-TANGENTIAL MAXIMAL FUNCTION ESTIMATES

Proposition 5.1. Let u € W2(R™!) be a solution of Lu = 0 in R™*'. Forall ¢ > 1 and & > 0 it holds
that'® B B
N;2(Vu) s MING@) + M(Vju(-, £)) + M(u(-, 8)) - Ma(B1),
with implicit constants depending on dimension, ellipticity and q. Here we recall that we have defined, for
anyr > 0and g € L} .(R"), M,(g) := MgIHY". In particular, if 1 < p < nand u(-, &) € Y'P(R") for every
>0,
IN2(Vi) | Loy S NIN1@Orw)llLr ey + sug IVijuC, &)llLr@n),
&>

whenever the right hand side is finite. Moreover, for u we have that for any p > 1,

IN2)|[r @y < [INT@)I Lo gey.-

Proof. The statement for u follows from the reverse Holder inequality for solutions (Proposition 2.54) and
the comparability of N defined with different parameters for C, ;.

Fix & > 0 and set u.(x) = u(x, €). Fix z € R" and (x, t) € I'(z). Recall that we defined the cylinders C; in
Section 2. We denote by C}, the concentric dilate 2Cy, and a} the L' average built with C}, instead of Cy,
in (2.6). By the reverse Holder inequality in Proposition 2.54, for any ¢ € C

ar(Vu)(x, 1) < %aT(u —o)(x, 1) + |clas(By)(x, 1) =: [+ I1.

If we choose ¢ := Jfo, ug dz, then we immediately see, exploiting the #-independence of By,
11 < M(ug)(2) - a3(B1)(x, 1) $ M(ue)(@) - Mo(B1)(2).
It remains to estimate /. For this purpose we compute
at(u = o)(x, 1) < aj(u — ug)(x, 1) + ay(us — c)(x, 1).

From the definition of ¢ we see that

aj(ug = o)(x,1) = ]% |ueO) - ]i us(w) dW‘ dyds < t][ IVjusl dy < tM(Vjue)(2),

X,
where we used the Poincaré inequality in L'. On the other hand, by the fundamental theorem of calculus,
and introducing an average in space, we have that

ay(u—ug)(x, 1) = ]é[
Cr

u(y, s) — u(y, 8)) dyds S]é[ / |0:u(y, T)| dt dyds S]é[ / |0-u(y, T)|dtdyds
Ci /e Ci /0

N
2][ /][ ][ |0:u(y, T)| dwdy dtds
[t—s|<t/8 JO J|x—y|<t/8JS|y—-w|<T/8

S
s][ ][ / ][ |0-u(y, T)| dydt dwd.s.
[t—s|<t/8J |x—w|<t/2 JO J|w-y|<T/8
Now we notice, for fixed s > 0,

s 27kg
/ ][ |6‘ru(y’ T)| dydT pS Z 2_ks ][ |5Tu(y9 T)' dydT
0 Jiw—yl<t/8 Iw—yl<27k=35

>0 27l

183ee Definition 2.5 for the truncated maximal function K/f).
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<Y 275ai 0,275 £ 3 2 S NI@a)() $ SN @ru)().
k>0 k>0

Plugging this estimate into the inequality preceding it we arrive at
Gu-wensf o R@w0) dids < MA@,
|t—s|<t/8J |x—w|<t/2
where we used the fact that 1 ~ s for the last inequality. We conclude I < M(K/ 1(0;u1))(z), which, when

combined with the estimate for /7 yields the desired result in the case that g = 1. |

Lemma 5.2. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let u(x,t) = (9,8,*’3 f(x) for some
f e CXRY) oru(x,t) = Z),Lgfor some g € CZ(R™). There exists mg € N and g6 > 0 such that if m > mg
and p € (2 — &¢,2 + &) then for every q < p,

||/A(/q(0l,mf)||U”°°(R’l) S ISOpme1 Hlle@ny + IV @1 HllLrns

with implicit constants depending on p,m,n and ellipticity; and where we have defined, in the case of
u(x, ) = 0,SEf(x),

Opf = 1"I"VSEf =" 'Vu, and O, ,f = "0, SEf = "3,
and in the case of u(x,t) = Z),Lg,
Ouf = "IVDEYf, and  O,,f = "I"DETF
Therefore the conclusion can be rewritten, in terms of u, as

IN, (" )| Loy S ISE™ OVl oy + IV (V) Loy

Proof. For m > 0 let us define a modified version of the averages a, given by

1/ 1/
G, 1) = (]% P3Gy, ) dyds) (]% " uCy, ) dyds )

Xt Xt

In particular, for z € R", K/q(ét,m)(z) ~ SUP(y per(z) dg.m()(x, ). Writing for 4 > 0,

iz € R" : Ny(Brmf)(@) > D < l{z € R : Ny(Brm)@) > A, S(Opms1 )(2) < yA)|
+ iz € R" : SO i1 )E) > YA,

we see that it is enough to prove that, for y > 0,

|Erel :=l{zeR": K@S O )@ > A, SO 1 )2) <y S APIVO1 Hlleren,
with constants uniform in € and A. Define the function ¢, as follows:
0e(x) = inf {t Ser osup g, s) < /l}.
,8)€(x,1)+I'(0)

Recall that we have, from the control on slices in Corollary 4.17, if p € (2 — &9,2 + &) (here & is as in
Theorem 4.2 and Corollary 4.17)

(5.3) sup || 07 u(-, )|y wny < oo,
>0
S0 in particular
(5.4) agm()(y, $) < 57" sup |0 ull o).

>0
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We conclude that lim;_,, SUPyern dgm(U)(y, 8) = 0, and so € < p(x) < oo for every x € R". Moreover ¢,
is a Lipschitz function with constant 1, since it satisfies the appropriate uniform cone condition. We set
[y, :={(x,1) € R’fl : t = p:(x)}, the graph of ¢.. Finally recall that we denote (u)4 the average of u over a
set A € R™*! of finite measure.

We first claim that, for every z € E, - and if we denote Z; := (z, 9:(z)), 4 < Mr% (agm(u))(Z,), for some
implicit constant independent of A and &, and where Mr,, denotes the maximal function on Iy, with its
natural surface measure, which we denote by o. To see this fix z € E, - and (x, ) € Z; 4+ I'(0) and note that,
owing to (5.4) there exists R > 0 such that a, ;,(u)(x, 1) < 2/2 if t > R. Moreover using that N 5(9,,," HN) >
A, so that ¢.(z) > &, there exists (y, s) € Z; + I'(0) satisfying ay,(u)(x,7) > A. By continuity of a,,, in
R’fl we conclude from the above that there exists a point (x, 1) € Z; +I'(0) such that a,,,(u)(x, ) = A, and
(x,1) € {agm(u) > A}. Note also that the above implies (x,1) € I'y,, i.e. t = ¢g(x): For every 6 > 0 there
exists (y, s) € B((x,1),0) such that a,,(y, s) > A, and so, since B((x,1),0) C (x,f — \/56) + I'(0), we have
Ye(x) > t— V26. Since 6 was arbitrary we conclude ¢ (x) > . On the other hand, by the Lipschitz condition
on ¢, it can’t happen that I, intersects the interior of the cone Z; + I'(0), therefore ¢.(x) < . Notice that,
in fact, the above shows that (x, 1) = (x, @:(x)) € d(Z, + I'(0)).

Given such a point (x, ) = (x, p(x)) := X, and for any (y, s) € B(X.,/100) we have, by the Poincaré-
Sobolev inequality and writing v,,(w, 7) := d7u(w, 1),

l/q
A= agu()(x, ) < (]ﬁ[ P = (e, [ dwdt) "+ Plme,, = (e, + 0w, |

Cri

m 2 _1-n 172 m
< ( // 7"Vl T dwdf) + 1" me,,| $ SO mr1.)H)(X) + 1" |[(vin)e,,|

<yA+ 1" me,, | < yA+ agm)(y, 9),
where we also used the fact that x € E, ; and that 7 = s ~ . Choosing y < 1 small enough we can write
A < agm(u)y,s), foreach (y,s) € B(Xg,1/100).

From here (5.4) follows easily: Integrating the above inequality on Iy, we have

1< ][ 1y ()W) dor(W) < ][ g ()W) do(W),
B(X,.t/100)T, B(X,.)NT,,

where we have used o(B) = r(B) for any ball centered on I',,. Moreover, since X, € d(Z; +I'(0)), we have
|z— x| = |t — ps(2)| = £ — ps(x) < t, and so we conclude Z, € B(X,, t) and (5.4) follows. Since (5.4) holds for
any z € E, - we see that

|Eael S HW € Ty, : Mr, (agm@)(W)}| < 477 /r agmW)” (W) do(W).

Therefore, it is enough to prove that

(5.5 /F agm@)? (W) da(W) < [IVEVWIILygn)-

(23
We make a further reduction as follows: Note that, by the L? Caccioppoli’s inequality applied m times, for
any (x,1) € R,

o = (ff warus o aras) ™ < (ff i asas) ™ ~ agon.

Xt Cx,l
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Therefore the result would follow from the estimate

/R a3 g dy / (WP dor(W) < [V ilocee.

Ye

To simplify notation we set g(x) := ay(u)(x, p(x)), and v(x) = M(g)(x)P~9. We then have that

/ lagy () (x, pe (NP dy = / g’ (x)dx < / gl (xv(x) dx.
Rﬂ Rn R}‘l

Note that
Pe(x)
4 b

4 4
5#:0) < ¢e(X) < 3¢5(y),  whenever [x —y| <
owing to the fact ¢, is Lipschitz with constant one.

We now go back to the definition of g and a;, to compute,

S@e(x)/4
/ gl(x)v(x) dxz/ ][ ][ lu(y, $)|? dsdy v(x)dx
R" " x=yl<@s /4 3ps(x) /4

5/3
< / / ][ (v, 7O dy v(Odx dr
4/5 " Jx=yl<epe(x)/8

/5
By Holder’s Inequality with exponents p/q and p/(p — g) we see

/ M(lC eI ) 00 V) < MG 7@ 00120
and, since g < p, by the boundedness of M, in L?
g » q/p
MG m@e M < (| luCe moeopl? dx) ™
Rn
Similarly,

(r-a)/p
IVl Loio-o@ny = M@ pkn < lg(x)I” dx
LP/(r-a) (R ENlrrrmy 8
Rl‘l

Combining the above estimates, we obtain

5/3 i
/ g'(x)dx < / ( lu(x, T () dx)q/p( / gp(x)dx)(p q)/pdT.
" 4/5 R” -

Using Holder’s inequality again (perhaps with g(x)1 ¢ if necessary in order to divide by ||gllzrw)),

5/3
/ g'(x) de/ / |u(x, e (X)) dxdr.
R” 4/5 Jre

5/3
< / / M(Iu(~, wg('))w)(x) W(x)dxdr.
4 n

51

We now note that ¢, is a Lipschitz function with constant 7. Therefore the function v(x, ) = u(x, t + ¢-(x))
solves Ly, v = 0 in R""!, where the operator £, is of the same type as £ and moreover its coefficients
are controlled (in the appropriate norms) by those of L. Therefore, by the control on slices by the vertical

square function in Theorem 4.16 (see also Lemma 4.20)

/ uCx. T (eI dx = / VCx, 0)F dx / ( / v )" ax
. ! n N Jo t
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. 2 pI2 14
<[ ([ IVuCenPud) dx < VGV,
! T (x)

This yields (5.5) and the result is proved. |

Remark 5.6. Notice that in the above lemma, the only things required for its proof were:

(1) 6, satisfies good estimates on slices (as in (5.3)).
(2) We already have, for all operators of the form £ = —div(AV + B}) + B; - V (with sufficient smallness
of the first order coefficients), the control on slices by the vertical square function

(-, Dllr®ny S IVEVW)l L @ey.

The following result uses the fact, proved in the next section, that V(th;’"IV(S,LV)) satisfies L? bounds
forall m > 1.

Corollary 5.7 (L? estimate for non-tangential maximal functions of layer potentials). Suppose that L sat-
isfies the hypotheses of Theorem 4.2. If &9 > 0 and mq are as in Theorem 4.2, and if p € (2 — &9,2 + &) and
m > mgy > 1 then

N2 Dllzrcery < 1o,
where ©,, is either "d"V(SEV) or 173" 'VDE.
Proof. We treat only the single layer. The double layer argument is identical. Also, notice by ¢ indepen-
dence it is enough to treat the operator with the inside gradient replaced by V). First, from the pointwise

inequality in Proposition 5.1 and the dominated convergence theorem, we see that for any ¢ > 1 and p in
the above range, and setting 6, = "3"(SFV)) = —"9""Sdiv), we have

IN2(®pm OllLre= ey S NINgOrmllLreey + SUp (@ fllLr@n)-
>0

In particular by the slices estimates in Corollary 4.17 and Theorem 4.19, and choosing g as above,

IN2(O i Ollzreewry S NISOpm ey + IV(Or1 Hllrwny S M flle @,

where we have used Theorem 6.1 for the last step; ensuring that V(®, 1 f) is under control. The result now
follows from real interpolation. m|

6. TrAVELING DowN

We first establish the vertical square function estimates, since there is little difficulty there. The discrep-
ancy between these so-called traveling down procedures for the vertical and conical square functions should
be contrasted with the situation in the extrapolation arguments.

Theorem 6.1. Suppose L satisfies the hypotheses of Theorem 4.2. Let €y be as in Theorem 4.2, then for
p €2 —¢&y,2+ey) and every m > 1 it holds

VO N iLr@ny Sm 1 llLr@nys
where @y, is either ("9 'V(SEV) or 3" ' VDL,
Proof of Theorem 6.1. We employ the same idea as in the L? case from [BHLMP22]; integrating by parts
in ¢ to control the square function of ®,,, in terms of ©;,,+1 plus terms that are bounded in L”. Notice that

for m > my large enough the desired bound is a consequence of Theorem 4.2 and Lemma 4.9 for the case
of the double layer.
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We start by defining, for > 0,

& di\p/2 1 dt\p/2
2 —_ = 1 2 —_ =
/n (/0 1O mf ()l p ) dx nhmo+ g (/n 1O f ()] ; ) dx =:1,.

In particular, owing to the estimates on slices from Corollary 4.17, we see that I;, < oo for all such . We
now carry out the integration by parts

1/n /2
I, = /R ( / z2m-1|a;"vsfdiv”f(x)|2dt)p dx
"I
. 1\ p/2 1 dt\r/2
< [ (wapvstavreor] ) ave [ ([ @umsl0maron ) ax
n -, n )7

) 1/n dt\ r/2
< Cm”f”Ll’(R") + / (/ |®t,mf(x)”®t,m+1f(x)|7) dx,
R? n

where we used the estimates on slices in Corollary 4.17 for the single layer and Theorem 4.19 for the double
layer for the last line. Finally we use Cauchy’s inequality with a parameter to obtain

Vi dr\ /2 1 dis 2
/ ( / 1O0mf () 7) dx S I pceny + / ( / 1Omi1 f()F 7) dx.
n )7 R" r]

Letting n — 0 we can write [|[V(Orm llLr®ry < [Iflle@ny + IV(Orme1/)llLr@ny. The result now follows by
induction and Theorem 4.2. O

We now turn to the much harder task of traveling down with the conical square function. Here, although
the idea is the same integration by parts technique, the arguments become much more elaborate due to
the ‘space averaging’ happening alongside the integration over the transversal variable. To handle this we
will make use of the non-tangential maximal function estimates from the previous section (see Lemma 5.2)
through a modified version of the classical Carleson embedding lemma (see Lemma 2.31). However, the
use of the non-tangential maximal function makes the traveling down procedure for either this object or the
conical square function a bit subtle. It is our hope that the following lemma (which should be read with the
results of the previous section in mind) and Theorem 6.11 clarifies the intertwining of these two procedures.

We also note that for the range p > 2 we already have the conical square function bounded by the vertical
(see Proposition 2.4) by general facts about square functions, so it is only the case p < 2 that is of interest.

Lemma 6.2. Let O, ,, be either z’"(?;"_lV(S,LV) or t’”@’,"‘lVZ),L. Suppose that m > 1 is given such that
SO ), SO a1 )y V(Or st ), V(Opnf)s N(Opnf) € LA(R™),
and sup .o 1O fll 2@y < 00, liMyseo 1O fll 2y = 0, for every f € CZ(R"). Then, for every 1 < p <2,
ISOrmHllLr@ry S NISOrm+1 /ey + (IV(Ormr1 OllLrwey
+ V(O oy + N @ )l + SUp 1O fllren.
>0

Proof. We fix m > 1 as in the hypotheses and define g, := sup,.o1®;mf| ., hn = N (®¢m), and Hy, :=
S(O;m+1f) + 8m + hy. Recall from Proposition 2.61

lgmllz2@ry S WV OrmPH)ll2wny + IV Orms1t 2wy + SUP 1O mf 2wy
>0
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Therefore H,, € L*(R") and so, by the Coifman-Rochberg theorem, we see that if we define v(x) :=
M(SOnf) + H,,))(x)P~% for some 1 < p < 2, then vY € A, for any M > 1 satisfying M(2 — p) < 1 and
moreover [vM],, depends only on the quantity M(2 — p).

We now mimic the proof of the extrapolation lemma 2.28 and write, for fixed 1 < p < 2,

(6.3) SO dx < | ME@nf) + Hp)(x) dx = | MES@nf) + Hy)(x)v(x) dx
R}‘l er RV!

M(SO, H)(X)*V(x) dx + / M(H,y)(x)*v(x) dx
R» R»

Stvia, /R ) S(@mf)(x)*v(x) dx + /R M(Hp)(x) dx 5 /R ” S@mf)(x)*v(x) dx + /R Hp(0P dx,

where we used the boundedness of M in L?(v), by the above discussion, and in L”(R"). By definition of
H,,, and Proposition 2.61, we have

(6.4) NHnllr@ny Sp IVOrmHlIr@ny + IV(Op i1 OllLr@ny + SUp 1O m flr@n)
>0

+ 1S s 1 Nllr@ey + INOpmfllLr -

It thus remains to estimate the first term in (6.3). For this we will try to emulate the procedure for the
vertical square function, introducing an approximate identity P; to smooth-out the averaging implicit in the
definition of S. We will first fix the approximate identity: For ¢ > O we define P, := e’zA, O, = tc’),e’zA =
t0;P;. We will also need to truncate our weight to formally justify our computations so we define, for N > 0,
vy = min(v, N). We compute, using Fubini’s theorem,

/ SO (X V() = / / ) ][ O fOIR dy v dx
Rn nJ0o |x—y|<t t
dydt

(o) d (o)
_ / / OufOIRf v dxLay < / / OunfOI Py 20 =
n Jo lx—yl<t 4 n Jo

Now, by the monotone convergence theorem,

N—ooo -0 N—o00 -0

1/ dydt.
= lim lim I,y := lim lim / / 1O O Pvn(y) 2E y
Rt Je

Recalling the definition of ®,,, and integrating by parts in ¢ we obtain, recalling that Q; := 10,P;,
1 Ve m QL 2 2m 1 2 l/e
65) Ion=->— 0 (1 SE 1P Povy )" dydi 4 5 | 1@ [Py dy|
R Jg =£
le dydr | l/e dydt
<— / / Ounf1Oumr fIPrvy ==+ / / ©unfPIQvN ==
R* Je R Je

+/ |®l/smf| Pl/SVNdy_% |®smf| Pgvy dy
= IIa,N + IIIS,N + IVs,N + Vs,N-

We handle the boundary terms first. To start we note that by Theorem 1.4 in [BHLMP22] we have that
im0 [|Orn f1l 2wy — O, so that, using |P,vy| < N pointwise in R", we obtain

IVen SN | 1®1emflPdy -0 as &—0.
Rn
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Therefore
(6.6) lim lim IVyy = 0.

N—o0 -0

On the other hand, as ¢ — 0, we have P.vy — vy pointwise a.e. and |®, f ? < g,%l, by definition of g,,.
By the Dominated Convergence Theorem (recall g, € L2(R™) and P,vy < N) we get that

Va,NS/ gm SVNdyg_)O g%nVNdyS\/R g%ldeS/ gmdya

where we used the definition of v in the last line to conclude v(y) < M(g,,)(y)?’~ 2 and the Hardy-Littlewood
maximal theorem. We conclude

(6.7) limsup limsup Vo n < / gh dx.
Rn

N—oo -0

The first term /1 y we can treat as usual; using Cauchy’s inequality with a parameter we see

1/e d 1/e d dl
68) I <0 / / O f PP 2 4 o) / / Ot [P 2
dydt

1/e
=0l N+ C(é)/ / |®tm+1f| Py 5
nJe

Choosing ¢ small enough we can hide the first term on the right hand side of (6.5).
Finally, we rewrite /11, y in the following way, using the Cauchy-Schwarz inequality,

lVe 10Vl ydt le )
Iy = 10 f] \/Ptvm@z mfI N/ Pvy —— < Loy 10 fPdun(y, 1),
n & n &

|Pvn

where we have defined
|0 vn (X)) dxdt
d arer
(e 1) = B P ()

By Proposition 2.38 and the modified Carleson’s lemma (Lemma 2.3 1) we obtain
1/e .
L[ emstanons [ R@wPwds= [ woways [ #a
er & Rn n RVI
Therefore, applying once again Cauchy’s inequality with a parameter, we see that
(6.9) Hl N <6l n + C(5)/ hP dy
Rn

Combining the estimates (6.8), (6.9) we arrive at

1/e
IS,N b / / |®t,m+1f|2PtVN -, +/ Hp dy + IVsN + VsN,
R" Je

where we notice that I, y < co owing to the fact that vy < N and sup,. [0 fll;2gn < 0. We now use
Proposition 2.38 to get that |P,vy(y)| < f vy dx and so

|x—yl<t

1/e dvdt 1/e
/ / Ounst FOP () 28 / / ]|[ | Oumet FOOP 20y dix,
n n x—y|<t

Now taking first the limit as € — 0 and then as N — oo, and using (6.6), (6.7) and the previous equation,

IS / SO 1) vdx+ | HPdxs< | HPdx.
n Rﬂ Rn
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The result now follows from the definition of H,,, more specifically (6.4). O

Remark 6.10. As far as the hypotheses of the previous result are concerned, we note that we have good
control on the quantities involving V, by Theorem 6.1. Moreover by [BHLMP22, Theorem 6.12] (see also
Hypothesis A in Definition 4.1), the conditions on the quantities ||®;, f|| 2z are also satisfied. Therefore,
under the same hypotheses as Theorem 4.2, we may rewrite the above as

IS@mPliLrn < 1S@umer Alloen + IN2Opm HlLocen)-

As a corollary of this result and Lemma 5.2 on the boundedness of the non-tangential maximal function
we have the following

Theorem 6.11. Suppose L satisfies the hypotheses of Theorem 4.2. Let p € (2 — &9,2 + &), with & as in
Theorem 4.2. Then, for every f € C°(R"), we have that

ISEOVSENNr@n < Ifllr@n, — IN2ISEA @ < Il
and that _
||S(tVDth)”LP(R") S N llzeny, ||N2(D?/:f)||LP(Rn) S N llze -

Proof. We define O, to be either 9"~ 'V(S£V) or 9"~ 'VDE. For p > 2 we have by Proposition 2.4
and Theorem 6.1, [|S(®.1 Hllzrwry + IV @O 1 Hllerwry < fllzrgny. It remains to show the non-tangential
maximal function bound when p < 2 and p > 2 and the conical square function bound when p < 2. We
will show both the square function and non-tangential maximal function bounds in the case p < 2. (The
case of the non-tangential maximal function bounds when p > 2 the same.)

We treat the case of the single layer first. By Theorem 4.2, together with the traveling down for vertical
square functions in Theorem 6.1 and Corollary 5.7 we see that for some mg > 1,

(6.12) IS@umy oy + IN2(Opmy oy < 1 fllLoe)-

We shall show that (6.12) holds with m replaced by mg—1, as long as mp—1 > 1. To treat the non-tangential
maximal function we appeal to Corollary 5.7 to obtain

(IN2(Os - DllLr ey S SO OllLr ey + SUP [Op g1 fllrwny + | fllr@wny < N fllLr@ny.
>0

This gives the desired bound as long as my — 1 > 1. By the traveling down procedure for the conical
square function (Lemma 6.2) we have (recall that the vertical square function is under control for any m by
Theorem 6.1)

IS@my-1 )llrry SISOy lloy + N (@ pmg—1 o

+ Sup O my—1llerwny + I fllrwny S N fller@n,
>0

and this gives the desired square function bound for my — 1 > 1. We have shown by induction that
IS(®1,1 H)lleenys IN2 (@ Dllorny S Il fllzoe)-
To get the bound for Ng(VSf) we use Proposition 5.1 to get
IN2(VSE Pl < INg@SEDlliren + sup IVSF fllrn,

>0
for any 1 < ¢q. In particular, choosing ¢ < p we can apply directly Lemma 5.2 and interpolation to obtain
the result. Lastly, the double layer is handled in the same way, owing to the appropriate estimates from
Theorem 4.15, Theorem 4.19 and Corollary 5.7. m|
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7. EXISTENCE

In this section, we tackle the existence of solutions to the problems (D),, (N),, and (R),; the case p # 2
is addressed in Section 9 and consists of essentially the same analysis. We must first probe the mapping
properties of the single and double layer potentials (see Proposition 7.1, Corollary 7.9, and Lemma 7.13),
which will allow us to deduce the jump relations (Lemma 7.8 and Proposition 7.12) and the invertibility
of the associated boundary operators (Corollary 7.3 and Theorem 7.16). By developing this machinery, in
Theorem 7.18, we give the desired existence result.

Proposition 7.1 (Mapping Properties, Part I). The operators St CXR") = S 3 DLF CXR") — Di
both have unique continuous extensions to LZ(R"); that is,
.72 2 A+ .72 2
St L’RY - 852, DY LR - D2,
Moreover, for f, g € L*(R™) we have that SLg, DL+ fe Wllc;cz(RTl) are solutions of Lw = 0 in R’fl, and
we have the square function estimates

ISC0,VSED 2y S lelli2eny  ISEVDE Pllageny < Il

Similar considerations also hold in the lower half space (in this case we work with DL~),

The proof is a simple density argument (using the fact that S2 and D? are Banach spaces), and as such
is omitted.

The next result is a statement about Sobolev functions that will allow us to eventually assign boundary
values to the extensions of the layer potentials defined above.
Proposition 7.2. Let u € Y'2(R™*1). The following statements hold.

(i) If u € D% then ugy := lim,_o+ u(f) exists as a weak limit in L>(R"). Moreover uq agrees with the
trace of u in the sense that for every ® € C®(R")

(g, D(-, 0)) = //R . <u8,® + (9,ud)>,

where (-, -) denotes the inner product in L2(RM).
(ii) Ifues %r then Uy := lim,_0+ u(f) exists as a weak limit in Y'"*(R™). Moreover, Uy agrees with the
trace of u in the sense described in i).

Proof. To prove i), we start by noticing that since u € D?, there exists a subsequence #; — 0% and a function
up € L*(R") such that u;, — up weakly in L*(R") as k — co. Now, again since u € Di, we only need to show
that lim,_,o+ (u(t), §) = (up, @), for each ¢ € C°(R"). Consider D(x, ) = ¢(x)n(t), where n € C°(=2,2) is
such that = 1in (-1, 1), so that ® € Cg"(R”“). Now, the hypotheses imply that, for fixed ¢ > 0,

w(t), (-, 1)) = // <uatq> +8,u®>,
erﬁ-]

holds, which, for our particular choice of ® and ¢ < 1, implies that

(u(t), §) = //R . (uc?t(b + ('),ud)).

Hence, the dominated convergence theorem yields the desired result since u € L%(R’fl) and Vu €
L?>(R™1). The second part of the statement in i) now follows by the fact that ®(-,#) — ®(-,0) strongly in
L*(R™) for any ® € C®(R™).
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The proof of ii) follows similar ideas. Arguing as before, we can prove that there exists a weak limit
Up € L¥/"=2D(R™), and that it agrees with the usual trace in the sense described in i). Similarly, along a
subsequence #; — 0, we have that Vju(t) — v € L*(R") weakly for some v € L>(R™)". If we can show that
v = VU, then the result would follow from the uniqueness of the limit. To this end, we fix ¢ € CZ(R"; C")
and compute that (v, ¢) = limy—,e0o (Vjju(tx), @) = — limy 00 (u(#), divy¢p) = —(Up, div)¢), as desired. m|

Combining the two previous propositions, we arrive at the following corollary whose proof is standard.
Corollary 7.3. For every f,g € L*(R") we can define the bounded linear operators
S§ LR - YARY, DFT: LXR") - LARY,
given by
Sfg = lim Sfg. OF'f:= lim DL,
where both are weak limits, the first being in Y L2(R™) and the second in L*(R").

We may remove the condition # € Y'>(R"*!) in Proposition 7.2 for solutions with trace decay at infinity.

Proposition 7.4. Suppose that u € Wll’z(RTl) N S2 satisfies that Lu = 0 in R™'. Then there exists

oc

uy € YY2(R") such that lim,_,o+ u(t) = uq exists weakly in YL2(R™). Moreover, since u € WILCZ (RTI) nsS % C

Wl’z(lfg) for any R > 0, the trace Tryu exists as an element of LIZOC(R”), and Trou = ug as distributions.

In particular, the conclusion holds for u = Stg for g € L*(R") or u = DL f with f € Y'2(RY) (see
Corollary 7.9).

Proof. Sinceu € § % there exists a subsequence 7, — 0% and ug € L2V =2)(R") such that limg_,e u(ty) = uo
weakly in L2 (=2(R"). Now, since u € Y 1’2(28) for any b > 0, we have that for each @ € C;"’(R””), there
exists » > 0 such that

(u(te), O(1)) = — //b (UDp 1@ + Dyyyu®).
=
Fixing ¢ € C°(R") and extending it to R"*! so that ®(-,7) = ¢(-) in a neighborhood of ¢ = 0, we see that

(0, ) = - // (UD1® + Dy ),
s

which gives the uniqueness of the limit uy. Therefore, lim,_,g u(f) = ug exists as a weak limit in L2 (=2)(Rmy,
To see that ug € YM2(R"), we proceed as follows: Since for any weak limit v in L*(R") of V\u, we have
that for any ¢ € CSO(R";C"), v, ¢) = 1imk_,oo(V||u(tk),¢) = - limk_)oo(u(tk),divnqﬁ) = —(uy, diV||¢)), and we
conclude that v = Vjjup. This shows that the weak limits are unique and thus, since u € S2, the full limit
exists; that is, lim,_,o Vjju(#) = Vjup weakly in L*(R™). Now, we recall that every element £ € Y L2(R™)* can

be written in the form
t(w) = / Wow + ¢ - Vyw),  forallwe Y'?(R"),
Rﬂ

for some yo € L*V/™D(RY) and ¢ = (Y1, . .., ¥,) € L*(R")". This gives that u(t) — ug weakly in YL2(RM).

We now turn to the proof of the final statement in the proposition. Since for every ®(:,7) € C®(R"!)
we have that ®(-, 1) — ®@(:,0) strongly in L*(R™), we need only check that lim;_,o(u(¢), ©(¢)) = (ug, ©(0)).
Along these lines it is enough to prove that

(u(t), d(1)) = — // (UDps1® + Dysyu®),  forallt> 0,
R2!
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but this in turn follows from [BHLMP22, Proposition 2.16], since u € WI’Z(Z;?’Z). m]

loc

Proposition 7.5 (Conormal derivative of solutions in slice spaces). Suppose that u € WIL’S(RTI) ns?
satisifies Lu = 0 in R"*!. Then there exists g in L*(R") such that

(g, 8) = //R N ((AVu + BV + B, - VL@), forall ® € CX®R™),

where ¢(-) = @(-,0). We write g = 0,c+u. Moreover, g = lim;_,o+ —ep41 - Tr;(AVu + Biu), where the limit
is taken in the weak sense in the space L>(R™). In particular, this notion of the conormal derivative agrees
with our previous definition in Y'>(R™*') whenever both exist.

Proof. We follow the proof of [AAAHK11, Lemma 4.3 (ii1)]. We will first show that for any R > 0, there
exists gr € (C.°(Ag))* such that for any ® € C°(Ig),

(7.6) (2r, D(-,0)) = // ((AVu +B)-VO+B, - v;@).
RT»I

In particular, this allows us to define g € (CZ°(R"))* such that g = limgqe gr in the sense of distributions
and (7.6) holds for any ® € C®*(R"™*!) and g in place of gg. Thus, fix R > 0, ¢ € CX(Ag), and ® € Wy*(Ig)
any extension of ¢ (that is, Tro® = ¢). We define the (anti-)linear functional A : C°(Ag) — C by

Ar(d) = //Rm1 ((AVu +Byu)-V® + B, - VL@).

To see this is indeed well-defined, that is, it does not depend on the extension ®, we simply note that
for any two extensions @, ®,, we have that ®; — &, € Wé’z(ljg), and u € S% solves Lu = 0 in R’fl.
Now, as in the proof of the Lax-Milgram theorem, we have that |[Ar(¢)| < |[Vul| LZ(zg)HV(DH L2(1%)- Construct
® to satisfy that A® = 0 in I}, ® = ¢ on Ag, and ® = 0 on dlg N R™*!. In this case, we have that
V|| 21y S ll¢ll 12, DY the usual extension theorem. Combining these last two estimates, W? arrive at
IAR@)| < 1IVutll 251181l y1/2(a)» Whence via the Riesz representation theorem there exists gg € (H 12(AR))*
such that (gr, ) = Agr(¢) for each ¢ € C.°(Ag). From the definition of Ag, we see that the restriction of gg
to Ag equals ggr whenever R’ < R. In particular, this allows us to define a distribution g such that

(3. 0) = // ((AVu +B)V® + B, - VL@),
Rﬁ?l

for all ® € C?"(R”“) with @(-,0) = ¢. It remains to show that g € L*(R"). For this, note that via the
previous procedure we can define a conormal at height r > 0, which we denote as g, as the distribution
which satisfies

1.7) (g, @'y = // | ((AVu +B)V® + B, - VL@),

for all ® € C?(R”*l) where ®'(-) = ®(-, ). This formula shows that the conormal 6f;+u in [BHLMP22,
Definition 4.9] agrees with g’, as distributions in R". In particular, from the proof of [BHLMP22, Lemma
4.11 (i)] we see that, for any ¢ > 0, g' € L>(R") and g’ = —e,.+1 - Tr,(AVu + Byu). Moreover, since u € S2,
we have that ||g’|| 2Ry S ||u||53 . By weak compactness, we can extract a subsequence #; — 0 and g such
that g — g weakly in L>(R"). From (7.7) it is then easy to see that g = g = g as distributions, and the
result follows. |
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We now take the first step towards proving existence of layer potential solutions, by proving the appro-
priate so-called jump relations for the Double Layer and the conormal derivative of the Single Layer.

Lemma 7.8 (Jump Relations). There exist Al/pounded linear operators K, K: L2(R") — L*(R™) such that for
every f,g € L>(R") we have that ( + %I + K)g = GVL’i(SLg), and ( T %I + K)f = Z)OL’if.

Proof. First, by [BHLMP22, Propositions 4.18 and 4.22], we can define operators K : H'/?(R") —
H'Y2(RM), K: H™'2(R") — H~V2(R"), such that the identities in the lemma are satisfied for f, g € CX@RM).
Moreover, by Propositions 7.1 and 7.5, we obtain that K, K are L*(R™) bounded (that is, admit a unique
linear, continuous extension to L?(R")); the result now follows via a density argument. ]

Corollary 7.9 (Additional mapping property of D). Suppose L satisfies Hypothesis A (see Definition 4.1).
Assume further that the operator (SOL)’1 : YL2(R™) — L2(R") exists and is bounded. Then we have

sup 105" fllyreny < Ifllyrzgen,s
>0

with implicit constants depending on dimension, ellipticity of L, and the norm of (SOL)_I.

Proof. We know by Theorem 7.16 that the map SOL . L*(R") — Y'“2(R") is bounded and invertible. In
particular we have that the set

F o= {f eY 'R : f=S§y, y e CS"(R”)}

is dense in Y1:2(R"). We note that for f € ¥ we have f € H'/>(R") n Y'>(R") by [BHLMP22, Proposition
4.7 (iii)]. For such an f and ¢ := (SOL)‘lf we set u(-,7) := SLy, 7 < 0. Then by [BHLMP22, Theorem
4.16 (iv)], applied to u in R"*!, we have

(7.10) DL (f) = -840,c-u), inRM
Now recall from the jump relations (see [BHLMP22, Proposition 4.22 (ii)]) that
1 ~ )
e tt = ( -1+ K) g, in H-P®RY,

so that, using the definition of u, (7.10) becomes

(7.11) DEH(f) = —313(( - %1+ ﬁ)w) - —313(( - %1+ ﬁ)(soﬁ)—‘f)

Finally from Proposition 7.1 and Theorem 7.16 we know the following maps are bounded
1 ~
SL: 2R - §2, ( -1+ K> CLAR"Y) - LXRY),
SH™ YR - LARY,
which gives the desired bound

ID5*(Plls2 < Mfllyragny,  f€F.
We conclude the claimed inequality from the density of # in Y2(R"). O

Proposition 7.12. Suppose that L satisfies Hypothesis A (see Definition 4.1). Assume further that (SOL)‘1 :
YL2(R™Y) — L2(R") exists and is bounded. Let feY L2(R™), then the operator K from Lemma 7.8 extends
to a bounded operator from Y'"2(R") to itself. Moreover we retain the jump relation

(_ %1 + K)f = }E%Df*(f),
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where the limit on the right is a weak limit in Y*(R").

Proof. The proof of the first statement follows from Corollary 7.9, which together with Proposition 7.4
guarantees the existence of a weak limit in Y'2(R") for f € CX(R"), and Lemma 7.8 which gives the
desired identity.

O
Lemma 7.13 (Additional mapping property of S). Suppose L satisfies Hypothesis A (see Definition 4.1).
Assume further that the inverse operators (SOL*)_l, ('SOL)_1 : L2(R™) — [YR2(RM)]* and
1 - 2/ mon 2mn
<—§+K> CI2RY - LR,
exist and are bounded. Then the operator S extends as a bounded operator S : [Y LZRM]F - Di, that is,
sup K578l 2ey < g2
>0
with implicit constants depending on dimension, ellipticity of L and the norm of (SOL)_1 , (SOL)_].
Proof. Notice that, by the mapping properties of —%I + K (see Corollary 7.9), and using the smallness of
”Bi”L”(R")y we obtain that
1~
—51+K: YRR — YI2RY)
is bounded and invertible. From this and the Green’s Formula (see [BHLMP22, Theorem 4.16 (iv)]) we
have that for any g € C.°(R")
1 ~
(7.14) DL+ (SEg) = —S£(< -5+ K) g>.
By Proposition 7.12 and Corollary 7.3 we have that, taking weak limits in Y'2(R") as t — 0
1 1 ~
(— SI+ K)(SOLg) = —S§( -3+ K)g,
or equivalently

1 | I
~(SH™! ( - §I+ K)SOLg = (— §I+ K)g =: h,
which means, using the corresponding mapping properties for —(1/2)I + K and S§ (see Proposition 7.12

and the fact that ad j(SOL) = Soﬁ), that we can extend
1 ~
5+ K: YR2RYY - YRR
as a bounded and, with smallness of ||B;||z»&n), invertible operator. In particular [|glly12gny- = [|Ally12(gny--
Using this in (7.10) we arrive at the fact that, for g € C;°(R") it holds Sth e D_% and
ISF e < 1ISE 8llizen S llgllytan: = Ihllyiagny-
Since the set .
{n=(-51+K)s:gecr@}
is dense in Y12(R")* we conclude the desired property by a density argument. O

Definition 7.15 (Hypothesis B). We will say £ satisfies Hypothesis B if the following properties hold.
(1) L satisfies Hypothesis A, along with the hypotheses of Theorem 6.1 and Theorem 6.11.
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(2) The following operators are invertible
. 1
S§.SF PR — YHARY, -5 +K: L*R") — LA(RM).
(3) The following operators are invertible

1
5+ K: Y2 RY) - YR,

1 ~
5+ K : L*R") - L*R").

The first condition in Hypothesis B ensures that we have the right square and non-tangential maximal
function estimates in L”(R") for the layer potentials associated to £ and L*. In particular the first condition
implies that the objects in item (2) are well-defined and bounded (not necessarily invertible in general).
The objects in item (2), more specifically their inverses, are used in the previous Propositions to define the
objects in (3); this is the reason for the statement to be written in this way.

Theorem 7.16 (Invertibility of Layer Potentials). Suppose Ly satisfies hypothesis B (see Definition 7.15),
with coefficients A°, B? fori=1,2, and let L be defined by
Ly = —div((A° + M)V + (B} + B1)) + (BY + By) - V.
There exists p > 0 depending on dimension, ellipticity of Ly, and the norms of the inverse operators in item
(2) of Hypothesis B with the property that if
max{[|M||ze@n), |B1llr@m, 1B2llr@m} < o,
then L satisfies Hypothesis B.

Proof. Set ||M|lc = 1 and ||Bj|l, = 1, i = 1,2, and then define the operator
Lou = —div((A + zM)Vu + (BY + zB)u) + (BY + zB2) - Vu, z€C, ue YR,

We write £, = Ly — zM. The idea will be to show that K, I?z and SOLZ are analytic in z in a neighborhood
of the origin. Note that, by Lax-Milgram, £ is always invertible, and thus there exists &y such that if z €
B., = B(0, &9), then L, is also invertible, and moreover LZ‘I =L, 1 Z/ZO(ZMLE ), the series converging
in the operator norm of BYL2R™* Y YL2RM). In particular, the map z — L;l is analytic in By,.
Now fix r > 0. By definition of the single layer, we conclude that S,L is also analytic with values in
B(H2R™Y); H'2(R™)). Since V) : H/2(R") — H~'2(R"), we have that V”S,LZ is analytic in B,, with
values in B(H~'/>(R"); H~'/>(R")). Thus, for f € C®(R") and g € CZ(R";C"), we have that the map
7 (V“S,sz, g) is analytic, and

sup Sup||S}£Z||L2(Rn)_>yl,2(Rn) < 1.

Z€Bg, 120
It follows by [Kat95, Theorem 3.12] that z — SILZ is a holomorphic map with values in B(L*(RM); YL2(RY)),
for any t > 0. In particular, we have that SOLZ is analytic. Similarly, afﬁg& is analytic with values in
BH2(R"); H-V2(R")), and for f, g € C2(R"), we have that

(7.17) sup 105 & 2@m 2@ S L
ZEBSO

and the map z — (0,c.+ SLf ) = lim,_>o(AVSt£Z f+zB IS,LZ f, g) is analytic. Thus we obtain that 8V£Z’+(SLZ)
is analytic with values in 8(L*(R")). By the jump relations in Lemma 7.8, K is also analytic with values in
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B(LA(R™)). The analyticity of K, follows from that of K, by noting that (Z)OLZ’+ f.8) ={f, ort 8L 2 —{f, 8
for f, g € CZ(R") (see [BHLMP22, Proposition 4.18 (ii)]).

We have thus shown that the maps z — SOLZ, - K,z I?Z are all analytic. Therefore, by the Cauchy
integral formula, we obtain that

d o ~
Sup HlTZKZHLZ(R")—)LZ(R”) sé‘() Sel;;p ||KZ||L2(R")—>L2(R") Sa‘o 1’
z €0

Z€Byg, /2
where we used (7.17). Consequently, for any z, w € B, /2, we have that
IK; — Kl 2rry—12rry S lz—wl. This implies that for all z small enough, K is invertible. The other boundary
operators are treated similarly. |

Theorem 7.18 (Existence of Solutions). Suppose L satisfies Hypothesis B (see Definition 7.15). Then the
boundary value problems (D),, (N),, and (R),, as given in (1.6)-(1.8), admit a solution.

1 -1
Proof. To solve the Dirichlet problem, we fix f € L>(R") and set F = ( - 51 + K) f, which is well-

defined by Theorem 7.16 as an element of L2(R"). Let u := DLHF. Then the fact that u € D%r follows from
Proposition 7.1, the non-tangential maximal function estimate follows from Theorem 6.11, while Lemma
7.8 gives the weak convergence to f.

To upgrade the convergence of Df* f to strong convergence in L>(R"), we mimmick the proof of
[AAAHKI11, Lemma 4.23]. First, we note that by Theorem 7.16 we have that A := {SOLdiV”g g € CP(RM
is dense in L?>(R"). Indeed, since ad j(SOL) = Sg, we have that S(f : YR2@R™Y* — L*(R") is invert-
ible, and therefore any & € L*(RY) may be written as h = SOLH for some H € L*(R"). Moreover, any
H € Y"2(R")* can be written as H = div) g for some g € L*(R™" (as can be seen for instance by embedding
YR2@RY) — L2(R")" via u +— V,u and using the Hahn-Banach and the Riesz Representation Theorems).
These observations yield the claim.

Now fix f = Sf(divng) for some g € C°(R") and define u = Sf(divug) for s < 0. By [BHLMP22,
Theorem 4.16 (iv)], we have that D f = —~S£(85u) in R"*!. Therefore, for any 0 < ¢ < 1, we have that

t
D5 f = D" fllizn = || / 0rSE@F u) dr| oy < (= ONOF ull 25,
t/

where we used the estimates on slices from Theorem 4.16. Thus {Z)tL’+ f}; is a Cauchy sequence in L*(R")
ast — 0.

For the Neumann problem we proceed in a similar way, with w := S£(1/21 + K)'h, and we appeal to
Lemma 7.8, Theorem 7.16, Proposition 7.1, and Theorem 6.11.

Finally for the regularity problem we set v := S£(§ (f)‘l g, and make use of Corollary 7.3, Theorem 7.16,
and Theorem 6.11.

It remains to show the non-tangential convergence statements, to which we now turn.

The convergence for the regularity Problem goes as follows: By Proposition 2.8 we have that the solution
v has a non-tangential limit, call it gg, so we only need to show g = go. We know that v(-,#) converges
weakly to g in L2 (R") as t — 0*. Define

3t/2
V(1) = v(-, 8)ds
12
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then w'(-, f) converges weakly to g in L*¥ (R") as t — 0*. Indeed, for fixed peE L* we have

[ e - [ stop)] < g0
R" R”

where €,(¢) | 0 as t — 0*. From this one may establish v'(-, #) converges weakly to g in L* (R"). Moreover,
if for f € L! (R") we define

loc

A = ][ £ dy

|y_~x|oo<l
then v(x, 1) = (Ap')(x) and it follows that v(x, r) converges weakly to g in L% (R") as t — 0. Indeed, for if
¢ € L* then

/R H(Atvl)(x)¢(x) dx = /R ) V' (x, D)(Arp)(x) dx

and since V'(+, 1) converges weakly to g in L¥(R") as t — 0" and (A@)(x) converges strongly in L> as
t — 0% we have that

/ V(X DA (x)dx — | g(x)e(x)dx, ast— 0%,
Rn Rﬂ
It follows that go(x) = g(x) for a.e. x € R™.

For the Dirichlet problem, we use compatible well-posedness (see below in the proof) to get that for
smooth initial data f € C°(R") the solutions to the Dirichlet and regularity problems obtained via layer
potentials agree. In particular, if uy = DEH(=12+K)7! f, then uy has a non-tangential limit. Since C;°(R")
is dense in L2(R") and we have the maximal function estimate

N2y < 112y
the existence of a limit for general f € L*(R") follows a standard argument.

Now we turn to the compatible well-posedness statement: If f € C°(R") and we set
1 -1
upi=DH(=5+K) £ vpi=SHSHS
the layer potential solutions of the Dirichlet and regularity problems with data f respectively, we claim then

uy = vy and both agree with the solution furnished via Lax-Milgram with Dirichlet data f.

We first prove that uy agrees with the Lax-Milgram solution. For this, by the mapping properties of the
double layer (see [BHLMP22, Definition 4.6]) it is enough to show that

1 -1
Tfi=(-5+K) feH* @,

We know (see Theorem 7.16 and Proposition 7.12) that T maps L>(R”) and Y'>(R") to itself, so in particular

TfeW"2R" c Hy?.

For v; we proceed similarly, noting that (S4)~' maps Y"2(R") to L*(R") and L*(R") — [Y'2(R™)]*
(see Theorem 7.16 and Lemma 7.13). It’s thus enough, by the mapping properties of the single layer
(see [BHLMP22, Proposition 4.2]), to prove that
(7.19) [Y2(RM]* N L2 (R™) ¢ HV2R™M).

This follows from the fact that elements of the first space are of the form G € L*(R™) such that G =
divH for some H € L*(R";C"), while the second space contains all elements of the form (-A)!/>F with
F € H(l)/ 2(R”). Fix G, H as above. By the Riesz representation theorem in Y L2(R™) there exists a weak
solution F; € Y'2(R") of the problem G = divH = —AFy; set F := (-A)!/2F, so that it’s enough to prove
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F € H'2(R"). First, clearly F € L?>(R") by Plancherel’s Theorem, since VF; € L*(R"); moreover, since
(-A)'2F = G € L*(R"), we have that F € W'2(R"), and by interpolation, F € H'?(R") as desired. m|

8. UNIQUENESS

In this section, we show that the solutions to the problems (D),, (N), and (R), are unique among the
wider classes of good D solutions and good N/R solutions respectively (see Definitions 2.65 and 2.66).
The methods mainly rely in showing that good solutions satisfy a Green’s formula when the operator L is
already known to have invertible layer potentials. For the case p # 2, see Section 9, although the methods
are mostly the same.

We first state a technical lemma before moving on to the uniqueness of solutions for the Neumann and
regularity problems; the uniqueness of the Dirichlet problem is dealt with last. The next lemma will allow
us to prove a representation formula for solutions to the Neumann and regularity problems.

Proposition 8.1. Suppose L satisfies Hypothesis B (see Definition 7.15). Let u € Wllo’c2 ®R™NYNS2 bea
solution of Lu = 0 in R"*'. Then for every 19 > 0 and every t > 0 we have

Dele=rg DF " (Trgtr) = D (Tro(Ds 1, ),
and
Ocle=rySF@,rttz) = SF(8,+(Dpsi i)
Proof. We work with the double layer first. For this we consider, for ¢ > 0 fixed, the following functions:
f(@) := Trour = Trou,  H(T) := DEF(F(0)).
We note that, by hypothesis and Corollary 7.9, we have
f€C(0,0); Y2RY),  H € C((0,00); Y2(R™).

The idea is now to use [BHLMP22, Theorem 2.14] to get the desired differentiability of f. For this purpose
define

(8.2) o(7) = ||Trr(Dn+1M)||YL2(Rn) = ||V||TrT(Dn+1u)||L2(R") € leoc(((), o0); R).

First we note that by [BHLMP22, Lemma 2.3] we have that f : (0, ) — Y12(R"Y) and ¢ :(0,00) - R are
continuous functions. By the Lebesgue Differentiation Theorem it is then enough to show

& 12 e 1/2
(83) (]{snf(ms)—fm+s)||2yl,2(Rn)ds) < / (]{8¢2<s+r>ds) dr,

1

for all £ small enough (depending on 7; and 7;). For this purpose we compute, calling / the left hand side
of (8.3),

’ 1/2
= <][ / V) Treyes u(x) = V) Tz, g ()1 dxds)
—-& n

& ) 1/2 £
= <][ Ve, (x, ) = Vyjur, (x, 5)| dxds) = <][ /
—-& Rn —-& n
T & 1/2 T & 1/2
S/ <][ |V||87u(x,r+s)|2dxds) dT:/ (][ (,02(S+T)ds> dr,
T] —-& JR! €

T1 -

L)
1

2 1/2
/ V| 0u(x, T+ 5) dT‘ dxds)
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where we used the Fundamental Theorem of Calculus and Minkowski’s inequality. As mentioned above
this shows that f € WIL’CZ((O, 00); YL2(R™)). Now we will show that
(8.4) f (1) = Tro(Dpyu), for each 7 > 0,
and moreover the difference quotients converge weakly
At f(r) - F(7), for every 7 > 0.

For this fix ¢ € C(0,00), ¢ € CX(R*;C") and let £ := —divj¢p € Y'>(R")*. Using that the function
T f(r)W/' (1) € YL2(R") is continuous (see again [BHLMP22, Lemma 2.3]) and compactly supported on
(0, o) and properties of the Bochner integral (see for instance [CH98, Proposition 1.4.22]) we obtain

< /O f (T)W(T)d7,€> = /0 (W (1), 6y dt = /0 /]R n Y TeouCow’ (D)p(r) dxd
- / i / ViuCx, DY (1)¢(x) dxdr = — / ” / VD, ) did
0 R” A )
= —/0 /n V||TrT(Dn+lu)(X)¢/(T)¢(x) dxdr

= - /oo(Trr(Dnnu)sb(T), Oydr = < - /oo Tre(Dp 1wy (7) dr, t’>,
0

0

where we used integration by parts in the fourth line. Now we conclude, since the collection {div¢ : ¢ €
C?(R";C")} is dense in YL2(R™)*, that indeed (8.4) holds. The convergence of the difference quotients is a
consequence of the fact that f’ € C((0, c0); Y'2(R")) and the Fundamental Theorem of Calculus. In fact we
get strong convergence in Y"?(R") as h — 0 of A" f() for every 7 > 0.

With this we can conclude the argument for the double layer: Define
H(T) := D Trour = O Trou.
We claim that H € C!((0, o); Y!2(R")) and
H' (1) = D (Tro(Dysttr)) = DF* (Tre(Dpy1).

Notice first that H € C((0, o0); Y12(R")) by the mapping properties of the Double Layer (see Corollary 7.9)
and the fact that H(t) = Z)f*( f(1)) (recall that ¢ > 0 is fixed throughout). Morever, using these two facts

again we see
T2
/ @(s)ds
71

where ¢ is defined in (8.2). This shows that H € Wllo’cz((O, o0); Y12(R™)). Moreover we have

lH(7y) - H(T2)||yl.2(Rn) < f) - f(T2)||Y1’2(R”) <

B

A'H(t) = DFF (A f()),

so that, by the linearity and continuity of D,L’Jr in Y"2(R") and the weak convergence of A" f(7) in Y1-2(R"),
we obtain for every 7 > 0

A'H(T) —» D (' (1) = DF* (Tro(Dpr 1))
weakly in Y12(R™) as h — 0, as desired.
The proof for the Single Layer follows the same lines. Define, for ¢ > 0 fixed and 7 > 0,

g(t) :=0,c+ur = vau,
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where the second equality follows from [BHLMP22, Lemma 4.11 (i)]. As before we first claim that g €
C1((0, 00); L*(R™)) and we have

8'(1) = 0y2+(Dpsrttz) = 0,24+ (Dps ).

For this purpose we use the L? characterization of the conormal derivative (see again [BHLMP22, Lemma
4.11]) so that

g(t) = N - Tro(AVu; + Biuy) = N - Tr:(AVu + Bu)
= N - Tr(AVju + Biu) + N - Tro(@Dpy1u) =: g1(7) + g2(7),

where A := (@ij)1<i<n+1,1<j<n and d := (ajn+1)1<i<n+1- We note that by the Holder’s and Sobolev’s inequali-
ties

’

llg1(2) — g1(TDl2@ny S If(T2) = fFEDlyr2@n < ’ / w(s)ds

where f, ¢ are as in the proof for the Double Layer. Therefore it is enough to control g», and for this we
can proceed exactly in the same way as we did for f: For fixed 7,7 and & > 0 small

&

&
][ llg(r2 + ) = g(r1 + 72, ds = ][ D1 (e, (x, 8) = 14z, (%, 5))* dxdss
—&

—& Rn
&
_]{a /"

and (1) := ||TrT(D% Wl € [? (0,00). Therefore by [BHLMP22, Theorem 2.14] we get that g €

loc

ko) 2 & (o)
/ Dﬁﬂu(s +7) dT‘ dxds S][ / [| TrT+_v(Dﬁ+1u)||Lz(Rn) drds,
T1 —EJT]

Wllo’c2 ((0, 00); L>(R™)) and the difference quotients converge a.e. to g’. To verify the formula for g’ we
compute, for ¢ € C°(R") and y € C7°(0, 00),

</0°° g () dr, ¢> = /000 g N - (AVu(x, 1) + Bru(x, )Y (7)d(x) dxdt

REr
—= [ | N @Dt )+ Dt o dxdr = [0, e Duniwero)
0o Jr 0o " 2R

This gives the desired representation for g’(r). Moreover, using this representation we see that g’ €
C((0, 00); L*(R™)) and so the difference quotients satisfy A"g(r) — g’(r) weakly for every 7 > 0. The
result now follows from the mapping properties of the single layer (see Proposition 7.1). |

8.1. Uniqueness for the Neumann and regularity problems. We begin with a lemma that gives a repre-
sentation of good N/R solutions above a positive height.

Lemma 8.5. Suppose that L satisfies Hypothesis B (see Definition 7.15). Let u be a good N [|R solution
and u(-,-) = u(-,- + 1), as above. Then
(8.6) ur = =D (Trour) + SE(yus),

where Trou; € YY2(R"), dyu, € LERY), and DL and SE are viewed (as their natural extensions) from
these spaces mapping into S2.

Proof. We have Trou.(-) = u(-,7) € Y"?(R") (by the fact that u € S2) and d,u, € L*>(R") (by Proposition
7.5) . For the latter we may consider u;;» € Y 1’Z(R’}fl), a solution in R’fl, since the operator L is #-
independent. The mappings of the layer potentials into S2 come from Proposition 7.1 and Corollary 7.13.
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By Proposition 8.1 together with the Green’s formula for d,u, € Y'"?(R**!) (see [BHLMP22, Theorem
4.16 (ii)]) we know that for 79 > 0

Orttrlr=ry (x,1) = =0:[ D5 (Trour) + SE@yun)l| _, (x.1),
as functions in §2. We may now integrate in 7o to obtain
r = ~D* (Trour) + S(@yuz),

where we must use the decay at infinity hypothesis in the definition of S2. m|

Now we push the representation above down to the boundary.

Lemma 8.7. Suppose that L satisfies Hypothesis B (see Definition 7.15), and that u is a good N [ R solution.
Then
(8.8) u=-Df+ 8,

where f € Y'2(R") and g € L*(R") are as in Propositions 7.4 and 7.5 respectively.

Proof. By Propositions 7.4 and 7.5, u;(-,0) — f € Y"?(R") and d,u; — g € L>(R") weakly in Y'*(R")
and L2(R") respectively as 7 — 0*. Set u.(-,0) = f; and d,u; = g, then rephrasing the above, we have
sz = (f;, g) converges to (f, g) =: h weakly in YL2(R™) x L2(R™). Let 74 | 0 then by Mazur’s lemma there
exists a sequence {El}fil c YL2(R") x L2(R") such that iy — h strongly in Y'2(R") x L*(R") with

N()

hy = Zﬂk,zﬁm
k=l

where [ < N(I) < 00, 44; € [0, 1] and -7 s = 1. Set
=D f+ S5
To prove the lemma it is enough to show that for each ¢ > 0, u(-, ) = u(-, t) as elements of Y L2(R™).
We have from Lemma 8.5 that
ur = =D (fr) + S E(go).

Set
N

uy = E /lk’[uTk.
k=1

We show u(-,1) converges strongly to both u(-,f) and u(-,#) in Y'?*(R"). From the bounded mappings
DL+ YL2(R") — §2 and SE: L2(R") — S2 we have

IVIuC, 1) = wi, Ol 2wey < b = hillyra@nyx2gny — 0 as I — oo,

where we used the strong convergence of El to /. To show u(-, t) converges strongly to u(-, t) in YL2(R™) we
write for [ > 0,
N()
Vs, 1) = Vule, Dll 2y = 1Y A Vler, = ]G, Dll 2y
N(l;) l
< AdllVig, = wlC, Oll2gen)

k=l
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< Sup ||V[M(, r+ Tk) - M(" t)]”LZ(R")a
k>1
N - .. =u(-.) = DL+ L inui
where we used Zk:l Ay =1land u(-,-+7) = u(-,-) = (fr)+S=(gr). We can then use the continuity of
Vu(-, 1) in L3(R") (see [BHLMP22, Lemma 2.3]) along with 74 | 0 to obtain ||[Vu(-, 1) = Vu(-, Dl 2gry = 0
as [ tends to infinity. |

Theorem 8.9 (Uniqueness of the regularity problem among good N/R solutions). Suppose L satisfies
Hypothesis B (see Definition 7.15). Suppose u is a good N [R solution, with u(-,0) = 0, interpreted in the
sense of Proposition 7.4 (i.e. lim,_ u(t) = 0 weakly in Y'>(R™)). Then u = 0 in R’}r“.

Proof. By Lemma 8.7, we have u = —DF* f + SLg, where f and g are as in Lemma 8.7. It follows
that u = SZg, since f = 0 (see the proof of Lemma 8.7). Moreover, by taking traces (in the sense of
Proposition 7.4) in Y2(R") we obtain 0 = SOLg, for g € L>(R"). It follows from the invertibility of
S§: LA(R") — Y'2(R") that g = 0. This gives u = 0. o
Theorem 8.10 (Uniqueness of the Neumann problem among good N /R solutions). Suppose that L satisfies

Hypothesis B (see Definition 7.15), and that u is a good N|R solution, with ,u = 0, in the sense of
Proposition 7.5. Then u = 0 in R,

Proof. By Lemma 8.7, we have u = —D%+ f + SLg, where f and g are as in Lemma 8.7. It follows that
u = —DL*f since g = 0 (see the proof of Lemma 8.7), where f € Y?(R"). From (7.11), we have after
taking conormal derivatives, in the sense of Proposition 7.5'%, and using the jump relations for the conormal
of the single layer potential

0=0,cu=-0,0. D" f = ~(-1+ K)AI+ K)Sg'f  in LA(RM).
The invertibility of +17 + K : LA(R") — LA(R") and S5 : Y'2(R") — L2(R") yields that f = 0 and hence

u=0. O

8.2. Uniqueness for the Dirichlet problem. The first lemma here simply states that the conormal deriva-
tives are uniformly bounded in the transversal variable, for good D solutions.

Lemma 8.11. Suppose L satisfies Hypothesis B (see Definition 7.15). Assume u is a good D solution. Then
for every T > 0, 0, u € [YV2(R™)]*, with the bound

sup |0y, ullpy12@ny < C sup [lullp2gn)-
™0 >0

Proof. By symmetry of hypotheses and Lemma 7.13 and Theorem 7.16 the operator SOL* : LP(RY) —
Y12(R") is bounded and invertible. Then the collection of functions F := {p € YL2(R?) - =S OL* ffe
C>} is dense in Y'2(R"). Notice that v, = SE([SF17'¢) = S f € Y2 (R™!) since f € CX(R") C
H™Y2@®R"). Also, Trou, € Hé/z(R") since u; € Y"2(R"*1), where, as above u.(-,-) := u(-,- + 7). Then by
definition of 8,v, € H™'/2(R") (see [BHLMP22, Definition 4.9]) with

(Trour, av*vnp) = (av*vgo’ Trou;)

=By [ng ur] = Brlug, ch]-

19We note that, having obtained the mapping property D — S2, the equality of (7.11) holds on every t-slice in the space
Y'2(R") therefore the weak L2(R") limits, in ¢, of the co-normal derivatives 8,, are the same.
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Now Bylur,v,] = (8y,u,¢), since v, solves the regularity problem with data ¢ by Theorem 7.18. In
particular ¢ is the weak limit of vy(-,7) in Y2(RY) ast — 0.
Having established
(0y.u, ) = (Trour, By-vy)
for ¢ in ¥ we see that d, u € [Y L2@®RM]* by the fact that the map
Fpi=8yv, = 8,85 (S5 17'9)

maps Y2(R") — L?(R"), by Proposition 7.5, the mapping property mentioned at the start of the proof for
SOB, and the density of ¥ in Y12(R"). m|

Next, we prove a Green’s formula for good D solutions.

Lemma 8.12. Suppose that L satisfies Hypothesis B (see Definition 7.15) and let u be a good D solution.
For v > 0, set (fr, 8c) := (Trouz, Oyur) = (Trous, 0,,u) € L*(R™) x [YY2(R™)]*, where we use Lemma 8.11 to
identify 0, u as an element of[Yl’z(R”)]*. Then

u=-Df+ S,
where the pair (f,g) € L*(R") x [YL2(R™)]* is any convergent weak limit of (fre» 87 Tk L O in the space
LZ(RH) % [YI’Z(RH)]*.

Remark 8.13. We note that the existence of at least one such limiting pair (f, g) is guaranteed by the fact
that f;, g; are uniformly bounded in L?(R") and Y"?(R")* respectively (the first by the hypothesis u € D?
and the second by Lemma 8.11) together with the fact that both of these spaces are reflexive.

Unlike the case of good N /R solutions, here we make no assertion about the uniqueness of such a
limiting pair.

Proof. The proof is quite similar to Lemma 8.7, but we provide the details here. We have that u, €
Y2(R™1) with Lu, = 0 we have
r = ~D** (Trour) + S (Dyur)

for all T > 0. Let i_z)Tk = (fr.80) — (f,8) = he L*(R™) x [Y12(R™)]* be as in the statement of the lemma.
Using Mazur’s lemma there exists a sequence {/;};2; C L*(R™) x [Y2(R™)]* such that h; — h strongly in
L2(R") x [YV2(R™)]* with

N()

Wy = Z /lk,ll'—l)‘rka
k=1
where [ < N(I) < 00, 4; € [0, 1] and S0 Ax; = 1. Set
=DM f+ 8%

and
N()

uy .= E /lk’lufk.
k=1

We show u(, t) converges strongly to both u(-, #) and u(-, ) in L*(R™). From the bounded mappings DL+
L*(R") — D% and S£ : [Y2RM]* — Di we have

”ﬁ(, t) - I/t[(’, t)”LZ(]Rn) < ”h - hl”LZ(R”)x[Yl»Z(Rﬂ)]* — 0as!l — co.
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To show u(-, t) converges strongly to u(:,t) in L*(R™) we write for [ > 0,
N()
letr (-, £) = G, Dll ey = 1Y Aealter, = ulC Oll2eny
k=l
N()
< Al = ulC, Ol 2z
k=l
< supllu, ¢ + 1) — u(, Dllz2 @,
k>1
where we used Z;{V:(? Ay =Tland u(-,- +7) = u.(-,-) = DE*(f) + S£(gr). We can then use the continuity
of u(-,7) in L>(R") (see [BHLMP22, Lemma 2.3])20 along with 74 | 0 to obtain ||uy (-, 1) — u(-, Dll2gry — 0
as n tends to infinity. Therefore u = % in D? and the lemma is shown. O

Theorem 8.14 (Uniqueness of the Dirichlet problem among good D solutions). Suppose that L satisfies
Hypothesis B (see Definition 7.15), and that u is a good D solution, with u(-,t) — 0 weakly in L>(R"). Then
u=0.

Proof. By Lemma 8.12, we have that u = SLg for some g € [Y2(R™)]*, where g € [Y2(RM)]* is any weak
limit of g7, = 0,,z+ur,, 7x | 0 as in Lemma 8.12. We also have (see (7.14))

Stg=DF*(S§I-L1+K1™'g),
where we used [-17 + K] : [Y"2®R")]* - [Y'2(RM)]* and Sf @ [Y'2(RM]* — L*(R"). Taking weak
limits in L>(R") we obtain N

0=[-11+KISF[-31+ K] 'g
The invertibility of the mappings —17+K : LX(R") — L*(R™), 8§ : [Y'2(R")]* — L*(R") and [-11+K]™" :
[YI2@RM]* — [Y2(R™)]* give that g = 0 in [Y1?(R")]* and hence u = 0. o

9. LP SOLVABILITY FOR P IN A WINDOW AROUND 2

In this final section, we extend the L? existence and uniqueness results of the last two sections to an L”
solvability result for the boundary value problems considered, provided that p is close to 2, hence finishing
the proof of Theorem 1.10.

The square function and non-tangential maximal function L? estimates for the case p € (2 — &o,2 + &9)
for gy small enough are already contained in Theorem 6.11; and thus, if one assumes that f € C°(R"),
then the boundary value problems considered admit a solution, represented via layer potentials, with the
appropriate L? estimates. If f € LP(R") is not smooth and p # 2, then an approximation argument via
smooth f; € C2°(R") will work once we have established the mapping properties of the layer potentials and
the jump relations that work with boundary data in the L” space. As the methods here are very similar to
those of Section 4 of [BHLMP22] and Sections 7 and 8 of the present document, we will omit many details
for the sake of brevity.

Proof of Theorem 1.10, case p # 2. Recall that the space Y'»(R"*!) has been defined in (2.42), and let ¢
be the Holder conjugate of p, so that % + é = 1. When pg is small enough, the operator £ associated to

the sesquilinear form B defined in Section 2.3 maps Y"P(R™!) — (YL9(R™!)* and is a bounded, linear

20We may modify this Lemma, using now the function space W'2(£2) instead of Y'2(£2) to obtain the desired continuity in
L*(R") instead of L2 (R™).
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invertible operator by the Lax-Milgram theorem. The horizontal traces of Y»(R"*!) continuously embed
-5 . : .y e : . -1
into the Besov space B, ” p(R”) consisting of functions vanishing at infinity and with finite B rP(R")

1-1
seminorm?! (see [Leol7, Theorem 15.20]). Moreover, given a function f € B, * p(R”), there exists an
extension F € Y-P (Rﬁ”) with Tr F = f on 6Rﬁ+1 ( [Leol7, Theorem 15.21]22). We also have the Sobolev
embedding
1-1 _np_
By "(R") & LETRY),
1-1,

whenever p < n+1 ([Leol7, Theorem 14.29]), and C°(R") is dense in B, * p(R”) (see [BGCV21, Theorem
3.1).

The properties mentioned above ensure that the single layer potential
1-1,
S By TR - Y@,

defined via the formula (2.46), is still a well-defined bounded linear operator. Similarly, one may check that
the double layer potential

1-1,
DL,-!— . B() p p(R”) N Yl,[)(R:l_+l)’

is well-defined via the formula (2.48), with the appropriate modifications. Then, via a density argument and
using the slice estimates Theorems 4.16 and 4.19, we may show that the layer potentials extend uniquely as

SL PR - §7, oLt LPRY - DY,

where S% and D’ are the slice spaces of Definition 2.64. Furthermore, Theorem 6.11 ensures that we have
the required square function bounds.

We now briefly sketch the existence argument. We are able to carry out the arguments from Section 7 and
obtain the boundary operators S(f . LP(R") — YLP(RM), DOL’Jr : LP(R") — LP(R™), which are given by the

1
formulas of Corollary 7.3. On the other hand, the conormal derivative (')f’i s ybre (Rﬁ“) - (B(l)_a’q(R”))*
is also well-defined (as in [BHLMP22, Definition 4.9], with appropriate modifications), and one may thus
show that the several variations of Green’s formula from [BHLMP22, Theorem 4.16] and the jump relations
[BHLMP22, Theorem 4.22] hold in this setting, with essentially the same proofs. These facts allow us to
construct, as in Lemma 7.8, the bounded linear operators KK : LP(R™) — LP(R™) which satisfy the
identities

(31 +K)g = 0F*(Ste),  F3+Kf =D5*f
forany f, g € LP(R"). Then one may prove proper analogues of Corollary 7.9, Proposition 7.12, and Lemma
7.13 under the assumption of bounded invertibility of the boundary operators Sé: . LP(R") — YLP(RM),
S(f* . LI(R") — YLM4(RMY), and (—%I + K) : LP(R") — LP(R"). This assumption (which is an analogue of
hypothesis B from Definition 7.15) is satisfied for the operator £y = —divAyV when Ay is either Hermitian,
block form or constant?®, and by the method of analytic perturbations in Theorem 7.16, the operator £ also
satisfies this assumption, showing the invertibility of layer potentials.

21Eor a definition of the Besov space, see Definition 14.1 of [Leo17]

22Technically, Leoni considers the non-homogeneous case; however his proof easily gives the result stated here

23 An application of Sneiberg’s Lemma, and the known L? results (see the introduction), reduces the invertibility of the boundary
operators in Hypothesis B to the uniform boundedness of said operators in L” for p in a neighborhood of 2. In turn this last is
achieved by the methods of this paper.
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With the invertibility of the layer potentials and the appropriate analogues of the mapping properties at
hand, we may finally obtain the existence of solutions for the problems (D), (N),, and (R), in the same
way as in Theorem 7.18.

We turn to the uniqueness of the solutions to the boundary value problems here considered. As in the
case of p = 2, we are able to consider uniqueness in the wider class of good D solutions (Definition 2.65)
for the Dirichlet problem with exponent p, and good N/R solutions (Definition 2.66) for the Neumann and
regularity problems with exponent p>*. Once again, the methods of Section 8 work in this setting, with very
little change , since we have the appropriate analogues of the Green’s formulas from [BHLMP22, Theorem
4.16] and the various analogues of the mapping properties and jump relations from Section 7. We omit
further details. O
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