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Abstract. This is the final part of a series of papers where we study perturbations of divergence form sec-

ond order elliptic operators −divA∇ by first and zero order terms, whose complex coefficients lie in critical

spaces, via the method of layer potentials. In particular, we show that the L2 well-posedness (with natural

non-tangential maximal function estimates) of the Dirichlet, Neumann and regularity problems for complex

Hermitian, block form, or constant-coefficient divergence form elliptic operators in the upper half-space are

all stable under such perturbations. Due to the lack of the classical De Giorgi-Nash-Moser theory in our set-

ting, our method to prove the non-tangential maximal function estimates relies on a completely new argument:

We obtain a certain weak-Lp ªN < S º estimate, which we eventually couple with square function bounds,

weighted extrapolation theory, and a bootstrapping argument to recover the full L2 bound. Finally, we show

the existence and uniqueness of solutions in a relatively broad class.

As a corollary, we claim the first results in an unbounded domain concerning the Lp-solvability of boundary

value problems for the magnetic Schrödinger operator −(∇ − ia)2 + V when the magnetic potential a and the

electric potential V are accordingly small in the norm of a scale-invariant Lebesgue space.
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1. Introduction

This is the second in a series of two papers, where we study the L2 Dirichlet, Neumann and regularity

problems for critical perturbations of second-order divergence-form equations by lower order terms. In

the first paper [BHLMP22], we obtained square function estimates and uniform L2 estimates on slices

of the layer potentials (see Theorem 1.4). In the present manuscript, we complete the L2 theory for these

operators, by proving the non-tangential maximal function estimates (Theorem 1.5), as well as the existence

and uniqueness of solutions to the boundary value problems (Theorems 1.10 and 1.11).

Consider operators of the form

(1.1) L := −div (A∇ + B1) + B2 · ∇ + V

defined on Rn+1 = {(x, t) : x ∈ Rn, t ∈ R}, n ≥ 3, where A = A(x) is an (n + 1) × (n + 1) matrix of L∞

complex coefficients, defined on Rn (independent of t) and satisfying a uniform ellipticity condition:

(1.2) λ|ξ|2 ≤ ℜe ⟨A(x)ξ, ξ⟩ := ℜe

n+1∑

i, j=1

Ai j(x)ξ jξi, ∥A∥L∞(Rn) ≤
1

λ
,

for some λ > 0, and for all ξ ∈ Cn+1, x ∈ Rn. The first order complex coefficients B1 = B1(x), B2 = B2(x) ∈(
Ln(Rn)

)n
(independent of t) and the complex potential V = V(x) ∈ L

n
2 (Rn) (again independent of t) are

such that

(1.3) max
{
∥B1∥Ln(Rn), ∥B2∥Ln(Rn), ∥V∥L n

2 (Rn)

}
≤ ρ

for some ρ depending on dimension and the ellipticity of A in order to ensure the accretivity of the form

associated to the operator L on the space

Y1,2(Rn+1) :=
{

u ∈ L2∗n+1(Rn+1) : ∇u ∈ L2(Rn+1)
}

equipped with the norm

∥u∥Y1,2(Rn+1) := ∥u∥
L

2∗
n+1 (Rn+1)

+ ∥∇u∥L2(Rn+1),

where 2∗n+1 := 2(n+1)
n−1

is the Sobolev exponent in n+ 1 dimensions. Our smallness assumption on the critical

norms (1.3) of the lower order terms is very natural in the t-independent setting, as it implies a small

Carleson perturbation assumption; see Remark 1.15.

We remark at this stage that, under the current hypotheses on the coefficients, the potential term V may

be absorbed into the drift terms B1, B2 by writing V = −div∇(−∆)−1/2(−∆)−1/2V , and as a consequence,

we will not explicitly mention the potential term in any of our estimates. A more detailed account of this

reduction can be found in [BHLMP22, Lemma 2.17].



CRITICAL PERTURBATION THEORY, PART II 3

We interpret solutions of Lu = 0 in the weak sense; that is, u ∈ W
1,2
loc (Rn+1) is a solution of Lu = 0 in

Ω ⊂ Rn+1 if for every φ ∈ C∞c (Ω), it holds that
∫∫

Rn+1

(
(A∇u + B1u) · ∇φ + B2 · ∇uφ

)
= 0.

Our methods here are of a perturbative nature and we construct solutions via layer potentials. We de-

note S and D as the (abstract) single and double layer potentials, respectively. Further, smallness on the

lower order terms B1, B2, and V is imposed (depending on dimension and ellipticity) in order to guarantee

boundedness of these layer potentials in natural Banach spaces1, but it is important to note that no struc-

tural assumptions are made on the matrix A until we begin to prove existence and uniqueness (starting with

Section 7). When we do prove existence and uniqueness, we must ensure that the ªboundary operatorsº for

the layer potentials associated to the operator2 L0 = divA∇ are invertible and we must also ensure that the

lower order terms are small depending on dimension, ellipticity and operator norm of the inverses of the

boundary operators (see Theorem 1.11). In special cases, where A has some structural assumption, such

as being Hermitian, we already know that the operator norm of the inverses of the boundary operators is

uniformly bounded in terms of dimension and ellipticity so this restriction is redundant (see Theorem 1.10).

The first paper in this series [BHLMP22] established L2 square function and ªsliceº estimates for layer

potential operators. The following theorem summarizes these results. We denote by SL andDL,+ the single

and double layer potentials, respectively (see Definitions 2.45 and 2.47).

Theorem 1.4 ( [BHLMP22]). Let

L := −div(A∇ + B1) + B2 · ∇ + V

where A, B1, B2,V are as above. There exists ρ̃1 > 0 depending on dimension and the ellipticity of A such

that if

max
{
∥B1∥Ln(Rn), ∥B2∥Ln(Rn), ∥V∥Ln/2(Rn)

}
< ρ̃1,

then the following estimates hold for the single and double layer potentials.

(i) ∫∫

Rn+1
+

∣∣tm∂m
t ∇SLt f (x)

∣∣2 dx dt

t
≤ Cm∥ f ∥2L2(Rn), for each m ∈ N,

(ii)

sup
τ>0

∥Trτ SL f ∥
L

2n
n−2 (Rn)

+ sup
τ>0

∥Trτ∇SL f ∥L2(Rn) ≤ C∥ f ∥L2(Rn),

(iii) ∫∫

Rn+1
+

∣∣tm∂m−1
t ∇DL,+t f (x)

∣∣2 dx dt

t
≤ Cm∥ f ∥2L2(Rn) for each m ∈ N,

(iv)

sup
τ>0

∥TrτDL,+ f ∥L2(Rn) ≤ C∥ f ∥L2(Rn).

Here, C depends on dimension and ellipticity, while Cm depends on m, dimension, and ellipticity.

1This means Lp bounds on certain square functions or non-tangential maximal functions.
2More generally, L0 could be an operator of the same form as L, whose lower order terms are small enough to ensure that the

non-tangential maximal function estimates hold (see Theorem 1.11).
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Items (iii) and (iv) were not treated explicitly in [BHLMP22]. However, using the identity in Lemma

2.63 of the present article, and the square function estimates for the single layer obtained in [BHLMP22,

Theorem 1.3], estimate (iii) follows. Finally, (iv) then follows from (iii) and [BHLMP22, Theorem 6.17].

In fact, the analysis in [BHLMP22] (primarily these estimates) along with the existence and uniqueness

sections of this work are enough to prove the existence and uniqueness for solutions with square function

estimates. On the other hand, we desire to have the more natural non-tangential maximal function estimates

for the single and double layer potentials, under (essentially) the same hypothesis as in Theorem 1.4. The

non-tangential maximal function estimates are significantly stronger than the uniform slice estimates (ii)

and (iv). This is where we place a significant amount of our effort in this work. Along the way, we will

further be able to extrapolate the L2 estimates to Lp estimates in a window around 2. We prove:

Theorem 1.5. LetL := −div(A∇+B1)+B2 ·∇+V, where A, B1, B2,V are as above. There exist ρ1 ∈ (0, ρ̃1)

and ε1 > 0 depending on n and λ such that if

max
{
∥B1∥Ln(Rn), ∥B2∥Ln(Rn), ∥V∥L n

2 (Rn)

}
< ρ1,

then the following estimates hold for each p ∈ (2 − ε1, 2 + ε1):

(i) ∥Ñ2(∇SL f )∥Lp(Rn) ≤ C∥ f ∥Lp(Rn),

(ii) ∥Ñ2(DL,+ f )∥Lp(Rn) ≤ C∥ f ∥Lp(Rn).

Here, the constant C depends only on dimension and ellipticity, and Ñ2 is the modified non-tangential

maximal function (see Definition 2.5 below).

The idea to proving Theorem 1.5 begins with a weak ªN < S º result; namely, we show a weak-Lp

bound (Lp,∞ bound) for the non-tangential maximal function in terms of the Lp norms of the vertical and

conical square functions (see Lemma 5.2). Then, interpolation will show that Theorem 1.5 holds provided

that the vertical and conical square functions are bounded in Lp for an open interval (in p) around 2. The

starting point for obtaining such bounds for the square functions is to prove general bounds for operators

with sufficient off-diagonal decay which satisfy a local reverse-Hölder inequality using the extrapolation

theory from weighted norm inequalities [Rub84,GR85,DR86,CMP11,CMP12] (see Lemmas 3.1 and 3.7).

Arguments similar to ours have been used in [Pri19] to treat square function estimates for operators built

out of the heat or Poisson semigroups associated to an elliptic operator; however, in our case we must

grapple with the added difficulty of having very mild off-diagonal decay. On the other hand, the local energy

inequality for the equation (the Caccioppoli inequality) allows us to obtain the necessary off-diagonal decay

for related operators with added (transversal) derivatives. Having done so, our remaining task is to ªremoveº

these additional derivatives, a process which we call ªtraveling downº. Due to its definition, this process

for the vertical square function is a relatively simple integration by parts computation. For the conical

square function, the additional spatial average impedes the simple integration by parts and our argument

for this object requires the boundedness of the non-tangential maximal function with the same number of

derivatives. Luckily, our Lemma 5.2, when combined with Proposition 5.1, gives that the non-tangential

maximal function bounds (for this family of operators) depend on square functions with more3 derivatives.

This allows us to employ a two-step induction scheme where one alternates between bounding the Lp norm

for a non-tangential maximal function by the Lp norm of square functions (with more derivatives) and then

bounding the Lp norm of the conical square function by the Lp norm of a non-tangential maximal function

(with the same number of derivatives). Thus, in finitely many steps, we remove these additional derivatives.

3Note that in Lemma 5.2, we may use that ∥V(Θt,1 f )∥Lp(Rn) ≲m ∥V(Θt,m+1 f )∥Lp(Rn), by the aforementioned integration by parts

argument. The subscript m refers to the number of transversal derivatives.
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(Recall we can start this process, that is, obtain Lp bounds for the vertical and conical square functions, by

introducing enough transversal derivatives.)

With the square function and non-tangential maximal function bounds for layer potentials in hand, we

turn our attention to the solvability of the following boundary value problems with data in Lp spaces: We

consider the Dirichlet problem
Bruno: please

have substantially

the presentation

I have changed

to p, and I hav

last two lines,

sponded to the

tion estimate

cay at infinity

of distributions.

pensate, later

state that our

isfy these properties.

moving the last

makes it so

lems are stated

sicallyº.

(1.6) (D)p





Lu = 0 in Rn+1
+ ,

limt→0 u(·, t) = f strongly in Lp(Rn) and u −→ f non-tangentially4,

Ñ2u ∈ Lp(Rn),

the Neumann problem

(1.7) (N)p





Lu = 0 in Rn+1
+ ,

∂u
∂νL := −en+1(A∇u + B1u)(·, 0) = g ∈ Lp(Rn), 5

Ñ2(∇u) ∈ Lp(Rn),

and the regularity problem

(1.8) (R)p





Lu = 0 in Rn+1
+ ,

u(·, t)→ f weakly in Y1,p(Rn) and non-tangentially,

Ñ2(∇u) ∈ Lp(Rn),

Remark 1.9. At this stage we would like to point out a couple of things related to the definition above. First,

we chose to state the boundary value problems in terms of the (modified) nontangential maximal function as

this is typically the quantity of interest. Second, if the solution u is given by layer potentials (as will always

be the case for us), appropriate square function estimates are always available, regardless of solvability (see

Remark 1.13 and Theorem 1.4).

We are ready to state the main result of this series of articles.

Theorem 1.10. Let L0 be a divergence form operator of the form

L0 := −divA0∇,
where A0 is either Hermitian, block form or constant. Then there exist ρ0 > 0 and ε0 > 0 depending only

on dimension and ellipticity such that if

L1 = −div((A + M)∇ + B1) + B2 · ∇ + V,

and

max
{
∥M∥L∞(Rn), ∥B1∥Ln(Rn), ∥B2∥Ln(Rn), ∥V∥L n

2 (Rn)

}
< ρ0

then for each p ∈ (2−ε0, 2+ε0), the problems (D)p, (N)p, and (R)p are uniquely6 solvable7 for the operator

L1, and the solutions can be represented by layer potentials.

4Since the solutions u do not satisfy pointwise bounds, non-tangential convergence is also understood in an averaged sense; see

Definition 2.5.
5The boundary data is achieved in the distributional sense, see Section 2.
6See Remark 1.14.
7Solvability throughout this paper means that we have accompanying Lp bounds for the non-tangential maximal function.
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Remark that the previous theorem gives the first solvability results for boundary value problems with

control on the (modified) non-tangential maximal function for second-order elliptic operators with complex-

valued lower-order terms.

Our most general theorem concerning boundary value problems with p = 2, is as follows8.

Theorem 1.11. Let L0 be an operator of the form

L0 := −div(A∇ + B1) + B2 · ∇ + V

where A, B1, B2,V are as above and

max
{
∥B1∥Ln(Rn), ∥B2∥Ln(Rn), ∥V∥Ln/2(Rn)

}
< ρ1,

where ρ1 is as in Theorem 1.5. Suppose further that the associated boundary operators9

SL0

0 : L2(Rn)→ Y1,2(Rn),±1

2
I + K̃L0 : L2(Rn)→ L2(Rn),

∓1

2
I + KL0 : L2(Rn)→ L2(Rn)(1.12)

are all invertible. Then the boundary value problems (D)2, (N)2, (R)2 are uniquely10 solvable for the oper-

ator L0, with solutions given by the appropriate layer potentials.

Moreover, there exists ρ = ρ(L0) > 0 such that if

L1 = −div(Ã∇ + B̃1) + B̃2 · ∇ + Ṽ

with Ã, B̃1, B̃2, Ṽ as above and satisfying

max
{
∥Ã − A∥L∞(Rn), ∥B̃1 − B1∥Ln(Rn), ∥B̃2 − B2∥Ln(Rn), ∥Ṽ − V∥

L
n
2 (Rn)

}
≤ ρ,

then the boundary operators, SL0

0 ,± 1
2
I + K̃L0 ,∓1

2
I + KL0 , are invertible and the problems (D)2, (N)2, (R)2

are uniquely solvable for the operator L1, with the corresponding layer potential representations.

Here, the constant ρ(L0) is chosen with two constraints. The first is to ensure that Ã has ellipticity

constant less than twice that for A and

max
{
∥B̃1∥Ln(Rn), ∥B̃2∥Ln(Rn), ∥Ṽ∥L n

2 (Rn)

}
< ρ′1

where ρ′1 is as in Theorem 1.5 for matrices with ellipticity twice that of A. The second constraint depends

on the operator norms of the inverses of SL0

0 ,± 1
2
I + K̃L0 ,∓ 1

2
I + KL0 .

The solvability result for Theorem 1.11 is proved in Theorem 7.18, while the uniqueness results are

argued in Theorems 8.14, 8.10, and 8.9. These theorems together also resolve the case p = 2 of Theorem

1.10. The case p , 2 of Theorem 1.10 will be addressed in Section 9.

Theorem 1.11 is modeled after the results in [AAAHK11], where a purely second order perturbation

theory is developed, while in the presence of De Giorgi-Nash-Moser estimates for solutions of L and

L∗. We remark that it is only the failure of these estimates that prevents the application of the results

in [AAAHK11] to a complex elliptic operator, such as L0 in block form or Hermitian. In this sense our

results also bridge the gap between the ªstandard" layer potential approach and the abstract, first-order

approach used in [AAM10a] and [AAH08], to obtain perturbation results.

8Theorem 1.11 also has an appropriate analogue for p sufficiently near 2, but then the boundary operators have different domains

and ranges; see Section 9.
9See Section 7 for the definitions of the operators SL0 , K, and K̃.
10Again, see Remark 1.14.
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Remark 1.13. The solutions to the problems (D)p, (N)p, and (R)p satisfy two further properties: square

function estimates and decay at infinity. More precisely, the solution to (D)p satisfies that

lim
t→∞

u(·, t) = 0 in the sense of distributions, and

∥S(t∇u)∥Lp(Rn) < ∞,
where S is the conical square function from Definition 2.2. The solutions to the Neumann and regularity

problems satisfy:

lim
t→∞
∇u(·, t) = 0 in the sense of distributions, and

∥S(t∂t∇u)∥Lp(Rn) < ∞.
Remark 1.14. Uniqueness, under the background hypothesis of invertible layer potentials and sufficient

smallness of the lower order terms, is established among what we call ªgood D solutionsº (in the case of

(D)2) and ªgood N/R solutionsº (in the case of (N)2 and (R)2). We show that non-tangential maximal

function estimates or square function estimates imply that solutions are ªgoodº. For instance, if p = 2 and

under the aforementioned background hypothesis, suppose that u ∈ W
1,2
loc (Rn+1

+ ) solves

(D̃)2

{
Lu = 0 in Rn+1

+ ,

limt→0 u(·, t) = f strongly in L2(Rn),

for some f ∈ L2, and suppose that u has one of the following properties:

• u is a goodD solution,

• ∥Ñ2u∥L2(Rn) < ∞ or

•
!
Rn+1
+

t|∇u(x, t)|2 dx dt < ∞.

Then u is the unique such solution and has the other two properties. In the case of the Neumann problem,

our solutions are unique modulo constants if the operator L annihilates constants.

Let us mention some well-known operators in mathematical physics for which our solvability results

are new. For the magnetic Schrödinger operator −(∇ − ia)2 when a ∈ Ln(Rn)n+1 is t−independent and has

small Ln(Rn) norm, we have as a corollary to our Theorem 1.10 the first Lp well-posedness results of the

Dirichlet, Neumann and regularity problems on an unbounded domain. Another operator which satisfies our

hypotheses is the Schrödinger operator − div A∇+V where V ∈ L
n
2 (Rn) is t−independent, complex-valued,

and has small L
n
2 (Rn) norm, and thus we obtain new solvability results in this setting as well. However,

we mention that, for non-negative V , there are solvability results for boundary value problems under the

assumption that V belongs to a reverse Hölder class [She94, Sak19, MT].

Remark 1.15. Small Carleson perturbation conditions have been shown to preserve solvability of boundary

value problems in the same Lp space, at least when the operator is a purely second-order divergence-form

elliptic operator [AA11,HMM15a,AHMT,DP19]. Let us point out the connection between our perturbation

condition (1.3) and the theory of Carleson perturbations. It is easy to prove that, under the assumption

that B1 and B2 are complex-valued and t-independent, if they satisfy the condition (1.3), then each of the

measures dµ = (|B1| + |B2|) dx dt and dµ = (|B1|2 + |B2|2) dx tdt satisfy the Carleson measure condition

(1.16) µ(B(x0, r) ∩Ω) ≲ ρrn, for each x0 ∈ Rn, r > 0.

Note that this embedding of our condition (1.3) into the small Carleson perturbation condition (1.16) does

not hold for the analogue perturbative conditions on the second-order term. Indeed, suppose A, A0 are t-

independent complex matrices such that ∥A − A0∥L∞(Rn) ≤ ε0. Then solvability results for the L2 Dirichlet,
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Neumann, and regularity problems have been obtained [AAH08, AAAHK11, AAM10b], but this perturba-

tive condition does not imply the classical Carleson perturbation condition [FKP91, AA11, HMM15a] that

supy∈B(x,t/2)
|A(y)−A0(y)|2

t
dx dt is the density of a Carleson measure (and cannot imply it unless A ≡ A0!).

We now make a few historical remarks concerning our results.

Firstly, we should emphasize that all the results in this paper, as well as the ones in the first part

[BHLMP22], concern t-independent operators. While solvability results are available for t-dependent co-

efficients (see for instance [HMM15a]) we will not concern ourselves with them at all here.

Even in this restricted setting of elliptic equations with t-independent coefficients the literature is vast,

and we make no attempt at a complete historical account; we refer the reader to the first part of this series of

papers, [BHLMP22], for a more thorough overview of the area. We will now restrict attention to the works

very closely related to our solvability and perturbation results.

The case of Hermitian A0 is treated in [AAM10a]; in fact here the authors treat a perturbation theory

analogous to our own (by a different method, and only for second order perturbations) for all three classes

of A0. We also note that the solvability for real symmetric second-order equations was already known from

the work in [JK81] for the Dirichlet problem and [KP93], [KP95] for the Neumann and regularity problems;

moreover, in this setting of real equations, the above works also obtain solvability for the problems in Lp for

2−ε < 2 ≤ ∞ in the case of Dirichlet, and 1 < p < 2+ε for Neumann and regularity. The issue of solvability

by layer potentials goes back to [Ver84] for the case of the Laplacian, but the technique of using a Rellich

identity to obtain the invertibility also works in the case of real symmetric [KP93] or Hermitian [AAM10a]

matrices.

For A0 of block form, it was remarked by Kenig in [Ken94], solvability is equivalent to the Kato con-

jecture, in the case of the regularity problem, and to boundedness of a Riesz Transform associated to the

elliptic operator L0 for the Neumann problem11. On the other hand, special results were known before,

see [BHLMP22] and [AAAHK11] for a more detailed account of this. Lp solvability results (via layer

potentials) for perturbations of t-independent symmetric coefficients were obtained in [HMM15b].

Finally, when A0 is a constant matrix, an explicit Poisson kernel is constructed in [ADN59], while the

Dirichlet problem is solved in [FJK84], and the Neumann and regularity problem in [AAAHK11]. See

also [MMMM17].

The works cited above dealt mostly with equations of pure second-order. The literature in the setting with

lower order terms present (that is, not all of b1, b2,V are identically 0) is much more sparse, but has in recent

years garnered a lot of attention, at least when the lower order terms are real. In [HL01], parabolic operators

with singular drift terms b2 were studied, and their results would later be applied toward (D)p for elliptic

operators with singular drift terms b2 in [KP01] and [DPP07]. When A ≡ I, b1 ≡ b2 ≡ 0 and V > 0 satisfies

certain conditions, Shen proved the solvability of (N)p and (R)p on Lipschitz domains in [She94]. More

recently, Morris and Turner [MT] proved the L2 well-posedness of the Neumann and regularity problems

in the half-space setting for the Schrödinger operator − div A∇ + V with t−independent Hermitian A and

t−independent potential Vin the reverse Hölder class RH
n
2 . The problems (D)2 and (R)2 for equations with

lower order terms have been considered by Sakellaris in [Sak19] in bounded Lipschitz domains, under

some continuity and sign assumptions on the coefficients. Solvability results and foundational estimates for

solutions for the variational Dirichlet problem of equations with lower order terms on unbounded domains

have been obtained by Mourgoglou in [Mou], with very lax assumptions on the (real) lower order terms.

11The Dirichlet problem is a consequence of semigroup theory, since the double layer potential in this setting is a constant

multiple of the Poisson semigroup associated to L0.
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The paper is organized as follows. In Section 2, we review relevant preliminaries and definitions, in-

cluding properties of the layer potentials and the theory of extrapolation of Ap weights. In Section 3, we

develop certain extrapolation theorems for both conical and vertical square functions, in the presence of

sufficient off-diagonal decay. In Section 4, we use the general extrapolation results of Section 3 to obtain

Lp estimates for ‘slices’ and for conical and vertical square functions of operators arising from the layer

potentials with enough transversal derivatives. In Section 5, we prove the non-tangential maximal function

estimates, under the background assumption of good square function bounds. In Section 6, we proceed to

‘travel down’ on both the square and non-tangential maximal functions, to dispense of the hypothesis of

good off-diagonal estimates. In Sections 7 and 8, we show the existence and uniqueness, respectively, of

solutions to the boundary value problems (D)2, (R)2 and (N)2, with representations of solutions via layer

potentials. Finally, in Section 9, we prove the Lp solvability of the Dirichlet, Neumann, and regularity

problems, for p ∈ (2 − ε0, 2 + ε0), with ε0 small enough.

2. Notation and Preliminaries

We start here by recalling some notation from [BHLMP22], as well as introducing some concepts that

will be used throughout this article.

• Throughout, we assume that n ≥ 3. We write (x, t) for the coordinates of Rn+1 = Rn × R, where

x ∈ Rn and t ∈ R, and Rn+1
+ := {(x, t) : x ∈ Rn, t > 0}. The lower half-space will be denoted Rn+1

− .

Similarly, for any τ ∈ R we write Rn+1
τ := {(x, t) ∈ Rn+1 : t > τ}.

• We always take A = A(x) to be an (n+1)×(n+1) matrix of L∞, t−independent complex coefficients

satisfying the ellipticity condition (1.2), while B1, B2 ∈ (Ln(Rn))n+1 and V ∈ Ln/2(Rn) are complex-

valued, t−independent (vector) functions satisfying (1.3), with ρ ≪ 1. Under these conditions, the

term V can be ªhiddenº into first-order terms B̃1, B̃2 (see [BHLMP22, Lemma 2.17]); therefore,

without loss of generality we will omit the zeroth order term V from consideration.

• For −∞ ≤ a < b ≤ ∞ we define the slab Σb
a := {(x, t) ∈ Rn+1 : a < t < b}.

• For a vector v⃗ = (v1, . . . , vn+1) ∈ Rn+1, we write v⃗∥ := (v1, . . . , vn), v⃗⊥ := vn+1. For vector functions

B : Rn → Cn+1, we define B∥ and B⊥ analogously.

• For a cube Q ⊂ Rn we denote by RQ the Carleson region above Q; that is, RQ := Q × (0, ℓ(Q)).

• For R > 0 we define IR := (R,R)n+1 ⊂ Rn+1, and I±R := IR ∩ Rn+1
± .

• We denote byM the (uncentered) Hardy-Littlewood maximal function in Rn, and more generally

for r > 0 we defineMr( f ) :=M(| f |r)1/r.

• Given a cube Q ⊂ Rn we denote by Q∗ a concentric dilate of Q by a factor that depends only on n.

• We denote by I1 the fractional integral of order 1 in Rn; that is, for nice enough f ,

I1 f (x) = cn

∫

Rn

f (y)

|x − y|n−1
dy.

• We denote by D the collection of all dyadic cubes in Rn, and for t > 0 we define Dt to be the

cubes in D which satisfy ℓ(Q) < t ≤ 2ℓ(Q). Similarly, for a cube Q ⊂ Rn we denote by D(Q) the

collection of dyadic subcubes of Q.

• For (x, t) ∈ Rn+1
+ we define the Whitney regions

Cx,t :=
{

(y, s) ∈ Rn+1
+ : |x − y| < t/8, |t − s| < t/8

}
.

Given x0 ∈ Rn, we denote by Γ(x0) the non-tangential cone with vertex x0, given by

(2.1) Γ(x0) := {(x, t) : |x − x0| < t}.
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• Let X be a topological space with Borel σ−algebra B, and let µ be a non-negative σ−finite measure

on B. If p ∈ [1,∞), we denote by Lp(X, µ) the Lebesgue space of p−th integrable (complex)

functions f on the measure space (X,B, µ). We often write Lp(Rn) = Lp(Rn,mn), where mn is the

n−dimensional Lebesgue measure. If v ∈ L1
loc(Rn), we write Lp(ν) = Lp(Rn, ν).

• Given an open set Ω ⊂ Rd, d ≥ 3, we denote by C∞c (Ω) the space consisting of all compactly

supported smooth complex-valued functions in Ω. As usual, we denote D = C∞c (Rn+1), and we let

D ′ = D∗ be the space of distributions on Rn+1. The space S consists of the Schwartz functions on

Rn+1, and S ′ = S ∗ is the space of tempered distributions on Rn+1.

• We call a measurable function ν : Rn → R a weight if ν > 0 Lebesgue-a.e. on Rn and ν ∈ L1
loc(Rn).

We say that ν is doubling if the measure ν(x)dx is doubling; that is, if (with a slight abuse of

notation) ν(2Q) ≤ C0ν(Q) for a constant C0 > 0 and all cubes Q ⊂ Rn.

• For 1 < p < m, the upper and lower Sobolev exponents of order 1 in m dimensions are respectively

p∗m :=
mp

m − p
, p∗,m :=

mp

m + p
.

Sometimes, we drop m from the subscript when the dimension is clear from the context.

• Given an open set Ω ⊂ Rn+1, for p ∈ [1,∞), we denote by W1,p(Ω) the Sobolev space of functions

in Lp(Ω) whose weak gradients exist and lie in (Lp(Ω))n+1. We endow this space with the norm

∥u∥W1,p(Ω) := ∥u∥Lp(Ω) + ∥∇u∥Lp(Ω).

We define W
1,p
0 (Ω) as the completion of C∞c (Ω) in the above norm. We shall have occasion to

discuss the homogeneous Sobolev spaces as well: by
.

W1,p(Ω) we denote the space of functions in

L1
loc(Ω) whose weak gradients exist and lie in Lp(Ω). We equip this space with the seminorm

|u| .
W1,p(Ω)

:= ∥∇u∥Lp(Ω),

and, if ∂Ω is sufficiently nice, we point out that
.

W1,p(Ω) coincides with the completion of the

quotient space C∞(Ω)/C in the | · | .
W1,p(Ω)

(quotient) norm.

Definition 2.2 (Vertical and Conical Square Functions). If F : Rn+1
+ → C, we define the conical square

function of F as

SF(x) :=
(∫∫

Γ(x)

|F(y, t)|2 dydt

tn+1

)1/2

,

where Γ(x) := {(y, t) ∈ Rn+1
+ : |x − y| < t} is the vertical cone with apperture 1 and vertex x. Similarly, we

define the vertical square function of F as

VF(x) :=
(∫ ∞

0

|F(x, t)|2 dt

t

)1/2

.

Remark 2.3. In the definition of S, we could have chosen a different aperture; that is, for η > 0, we can set

SηF(x) =
(∫∫

|x−y|<ηt

|F(y, t)|2 dydt

tn+1

)1/2

.

It is well-known that different apertures give rise to objects with equivalent Lp norms and even equivalent

weighted Lp norms (see for instance [CMS85, Proposition 4] for the unweighted case and [CMP20, Propo-

sition 4.9] for the weighted one).

In contrast to the L2 case, if p , 2 the (Lp norms of) conical and vertical square functions are not equivalent.

Proposition 2.4 ( [AHM12, Proposition 2.1]). Let F : Rn+1
+ → C be measurable.
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(i) If 0 < p ≤ 2 then ∥V(F)∥Lp(Rn) ≲n,p ∥S(F)∥Lp(Rn).

(ii) If 2 ≤ p < ∞ then ∥S(F)∥Lp(Rn) ≲n,p ∥V(F)∥Lp(Rn).

Definition 2.5 (Non-tangential Maximal Functions). For F : Rn+1 → C and q > 0, let

(2.6) aq(F)(x, t) :=
(
−−
∫∫

Cx,t

|F(y, s)|q dyds

)1/q

.

We define the non-tangential maximal function of F as

N(F)(x) := sup
Γ(x)

|F|,

and Ñq(F)(x) := N(aq(F))(x). We also define the lifted modified non-tangential maximal function, for

ε > 0, as Ñε
q (F)(x) := sup|x−y|<t−ε

t>ε
aq(F)(y, t). Similarly, we define a truncated version of the non-tangential

maximal function as Ñ (ε)
q (F)(x) := sup|x−y|<t

t>ε
aq(F)(y, t). Given a measurable function g on Rn × {t = 0}, we

say that F −→ g non-tangentially if for almost every x ∈ Rn, we have that

(2.7) lim
Y→x

Y∈Γ(x)

F̃(Y) = g(x),

where Γ(x) is the non-tangential cone defined in (2.1), and F̃(z, t) := −−
∫∫
Cx,t

F(y, s) dy ds.

We now prove a result on the boundary behavior of solutions, under the assumption that we have good

control of a modified non-tangential maximal function.

Proposition 2.8. Let u ∈ W
1,2
loc (Rn) solve Lu = 0 in Rn+1

+ . Then u converges non-tangentially at every

x ∈ Rn where Ñ1(∇u)(x) < ∞, in the sense that for any such x ∈ Rn, the limit in (2.7) exists and is finite.

Proof. We follow [KP93, Theorem 3.1(a)], with modifications due to lack of pointwise estimates for u. Let

x ∈ Rn be such that Ñ1(∇u)(x) < ∞. Our goal to show that for Y,Z ∈ Γ(x) ∩ B(x, r) we have

(2.9) |ũ(Y) − ũ(Z)| ≤ CrÑ1(∇u)(x),

from which we may easily establish (via the Cauchy criterion) that lim
Y→x

Y∈Γ(x)

ũ(Y) exists, and consequently

define g(x) to be the limit. Write Y = (y, t1) and Z = (z, t2). Then, to establish (2.9), it is enough that

(2.10) max
{
|ũ(Y) − ũ(x, t1)| , |ũ(Z) − ũ(x, t2)|

}
≤ CrÑ1(∇u)(x),

and

(2.11) |ũ(x, t2) − ũ(x, t1)| ≤ CrÑ1(∇u)(x).

To prove (2.10) and (2.11) we use the following fact.

Claim 2.12. For X ∈ Rn+1 and r > 0 let I(X, r) := {W ∈ Rn+1 : |X −W | < r} be the open cube with center

X and side length 2r. Let Ii = I(Xi, ri), i = 1, 2, Ω ⊂ Rn+1 open with Ii ⊂ Ω i = 1, 2 and φ ∈ W1,2(Ω). If

α ∈ [0, 2) and |X1 − X2| ≤ αmin{r1, r2} then
∣∣∣−
∫

I1

φ dx dt − −
∫

I2

φ dx dt

∣∣∣ ≤ Cα max{r1, r2}
(

max
{

r1

r2
, r2

r1

}) n+1
2 max

i=1,2

(
−
∫

Ii

|∇φ|2
)1/2

,

where Cα = C(n, α). In particular, if r1 ≈ r2 ≈ r then

(2.13)

∣∣∣−
∫

I1

φ dx dt − −
∫

I2

φ dx dt

∣∣∣ ≤ Cαr max
i=1,2

(
−
∫

Ii

|∇φ|2
)1/2

,
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where Cα depends on the implicit constants in the expression r1 ≈ r2 ≈ r.

Proof of Claim 2.12. Let X3 =
X1+X2

2
, then |X3 − Xi| < αri

2
, i = 1, 2, and hence I3 = I(x3, r) ⊂ Ii, i = 1, 2

for r = (1 − α/2) min{r1, r2}. It follows from the triangle inequality and the Poincaré inequality that

∣∣∣−
∫

I1

φ − −
∫

I2

φ
∣∣∣ ≤

∣∣∣−
∫

I1

φ − −
∫

I3

φ
∣∣∣ +

∣∣∣−
∫

I1

φ − −
∫

I3

φ
∣∣∣ ≤ 2 max

i=1,2

(
−
∫

I3

∣∣∣φ − −
∫

Ii

φ
∣∣∣
2)1/2

≤ Cα

(
max

{
r1

r2
, r2

r1

}) n+1
2 max

i=1,2

(
−
∫

Ii

∣∣∣φ − −
∫

Ii

φ
∣∣∣
2)1/2

≤ Cα max{r1, r2}
(

max
{

r1

r2
, r2

r1

}) n+1
2 max

i=1,2

(
−
∫

Ii

|∇φ|2
)1/2

.

Now let us prove (2.10) for the term with Y (the proof for the term with Z is identical). Note that

|x − y| ≤ t1 < r since Y ∈ Γ(x) ∩ B(x, r). Let I2 = I(z, t1/2), for z = (x + y)/2, then |z − x| = |z − y| ≤ t1/2.

This allows us to apply (2.13) with φ = u, I1 = I(x, t1/2), and I1 = I(y, t1/2) to obtain (2.10).

We turn our attention to (2.11) and we assume, without loss of generality, that t1 ≤ t2. Let a = 2/3, sk =

akt2 for k = 0, 1, . . . ,K, where K = max{k : akt2 ≥ t1}. Notice that for k = 0, . . .K − 1, |sk − sk+1| = sk+1

2
=

min
{

sk

2
, sk+1

2

}
. Defining sK+1 = t1, we see that the choice of K guarantees that |sK − sK+1| ≤ min

{
sK

2
, t1

2

}
.

Set Ik := I((x, sk), sk

2
), k = 0, . . .K + 1, then the previous two inequalities allow us to apply (2.13) with

φ = u and the consecutive cubes Ik and Ik+1, k = 0, 1, . . . ,K (in place of I1 and I2 therein). One then obtains

|ũ(x, t1) − ũ(x, t2)| ≤ |ũ(x, sK+1) − ũ(x, sK)| +
K−1∑

k=0

|ũ(x, sk) − ũ(x, sk+1)|

≲ t1Ñ1(∇u)(x) + t2

K−1∑

k=0

akÑ1(∇u)(x) ≲ rÑ1(∇u)(x),

as desired (since
∑

k≥0 ak = 3). □

Definition 2.14 (CLP Family). We say that a family of convolution operators on L2(Rn), (Qs)s is a CLP

family (Calderón-Littlewood-Paley family), if there exist σ > 0 and ψ ∈ L1(Rn) satisfying |ψ(x)| ≲ (1 +

|x|)−n−σ and |ψ̂(ξ)| ≲ min(|ξ|σ, |ξ|−σ), such that the following conditions hold:

(i) For f ∈ C∞c (Rn), we have the representation Qs f = ψs ∗ f := s−nψ(·/s) ∗ f .

(ii) For each f ∈ C∞c (Rn), we have the bound

sup
s>0

∥Qs f ∥L2(Rn) + sup
s>0

∥s∇Qs f ∥L2(Rn) ≲ ∥ f ∥L2(Rn).

(iii) For each f ∈ C∞c (Rn), Qs satisfies the square function estimate

∥S(Qs f )∥L2(Rn) ≈ ∥V(Qs f )∥L2(Rn) ≲ ∥ f ∥L2(Rn).

(iv) The Calderón Reproducing Formula holds; that is,
∫ ∞

0

Q2
s

ds

s
= IdL2(Rn),

where the convergence of the integral is in the strong operator topology on the Banach space of

linear bounded operators on L2(Rn).

Definition 2.15 (Carleson measure). A non-negative measure µ on Rn+1
+ is a Carleson measure if

∥µ∥C := sup
Q

µ(RQ)

|Q| < ∞,
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where the supremum is taken over cubes Q ⊂ Rn.

Lemma 2.16 (John-Nirenberg Lemma for Carleson Measures). Let µ be a non-negative measure on Rn+1
+ .

Suppose there exist η ∈ (0, 1) and C0 > 0 such that for all cubes Q ⊂ Rn, there exists a disjoint collection

(Q j) j∈N ⊂ D(Q) satisfying
∑

j≥1 |Q j| < η|Q| and µ(RQ \ (∪ jRQ j
)) ≤ C0|Q|. Then µ is a Carleson measure.

Remark 2.17. We may replace the Lebesgue measure on Rn by any other Radon measure. If we assume

that the hypotheses only hold for dyadic cubes, then we require the measure to be doubling.

Lemma 2.18 (John-Nirenberg Lemma for local Square Functions). Suppose that F : Rn+1
+ → R, F ≥ 0

and define the local square function AQ,F : Rn → R by

AQ,F :=
(∫∫

|x−y|<t<ℓ(Q)

|F(y, t)|2 dydt

tn+1

) 1
2

.

If there exists C0 > 0 with the property that for every cube Q ⊂ Rn, the estimate
∫

Q

A2
Q,F dx ≤ C0|Q|

holds, then for every p > 1, there exists a constant C1 depending on p, n and C0 such that for every cube Q,
∫

Q

A
p
Q,F dx ≤ C1|Q|.

Proof. When p ≤ 2, by Jensen’s inequality, the result is trivially true with C1 ≤ C
p/2
0 . Now assume p > 2.

For ease of notation, we will write AQ = AQ,F . Moreover, for α > 0 we define

AQ,α(x) :=
( ∫ ℓ(Q)

0

∫

|x−y|<αt

|F(y, t)|2 dydt

tn+1

)1/2
.

When α = 1, we may omit the subscript α. We also set Kp := supQ⊂Rn −
∫

Q
A

p
Q. Note first that Kα,p ≈α,p

K1,p =: Kp. We defer the proof of this fact to the end, and proceed with the proof of the lemma.

Let us momentarily assume that Kp < ∞ a priori, and set α > 0 and N ≫ 1, both to be specified

later. Consider the open set ΩN := {x ∈ Q : AQ,α(x) > N}. By the Chebyshev inequality, we see that

|ΩN | ≲α C0N−2|Q|. In particular, given α > 0, we may choose N ≳α
√

C0 so that ΩN ⊊ Q. Observe that
∫

Q

A
p
Q =

∫

ΩN

A
p
Q +

∫

Q\ΩN

A
p
Q =: I + II.

By definition of ΩN , we have that II ≤ N p|Q\ΩN |. On the other hand, if (Q j) j is a Whitney decomposition

of ΩN , we can write (exploiting the convexity of s 7→ sp/2)

I ≲p

∑

j≥1

∫

Q j

AQ j
(x)p dx +

∑

j≥1

∫

Q j

(AQ(x)2 − AQ j
(x)2)p/2 dx.

For the first term, we easily have that

∑

j≥1

∫

Q j

AQ j
(x)p dx ≤

∑

j≥1

Kp|Q j| = Kp|ΩN |.

For the second term, by definition of AQ and AQ j
we see that

AQ(x)2 − AQ j
(x)2 =

∫ ℓ(Q)

ℓ(Q j)

∫

|x−y|<t

|F(y, t)|2 dydt

tn+1
.
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If x ∈ Q j, then there exists x∗ ∈ Q\ΩN (recall Q\ΩN , ∅) such that |x − x∗| ≈ ℓ(Q j) with implicit constants

depending only on n. In particular, for some α = α(n) > 0, we have the inclusion

{
(y, t) ∈ Rn+1

+ : |x − y| < t, ℓ(Q j) < t < ℓ(Q)
}
⊆
{

(y, t) ∈ Rn+1
+ : |x∗ − y| < αt, 0 < t < ℓ(Q)

}
,

so that AQ(x)2 − AQ j
(x)2 ≤ AQ,α(x∗)2 ≤ N2, since x∗ ∈ Q\ΩN . Accordingly,

∑

j≥1

∫

Q j

(AQ(x)2 − AQ j
(x)2)p/2 dx ≲α N p|ΩN |.

Combining these previous estimates, we obtain that I ≲p,n Kp|ΩN | + N p|ΩN |, and so

∫

Q

AQ(x)p dx ≲p,n Kp|ΩN | + N p|Q| ≤ C0KpN−2|Q| + N p|Q|.

Dividing by |Q| and taking supremum over cubes gives Kp ≲p,n C0KpN−2 + N p. Choosing N = M
√

C0

with M ≥ 1 large enough, we may hide the first term to the left-hand side, and thus obtain Kp ≲p,n C
p/2
0 .

Finally, to do away with the restriction Kp < ∞, we fix η > 0 and work with Fη := F1η<|F|<1/η1η<t<1/η,

for which Kp < ∞, and appeal to the monotone convergence theorem in the limit η→ 0+.

We now turn to the proof of Kα,p ≈ Kp. Notice that we only used this in the case p = 2, so we will only

prove this special case. We will also work only with α > 1. By Fubini’s theorem, if ωn := |B(0, 1)| is the

volume of the unit ball in Rn,

∫

Q

AQ,α(x)2 dx =

∫ ℓ(Q)

0

∫

Rn

∫

Rn

1Q(x)1|x−y|<αt|F(y, t)|2 dxdy
dt

tn+1

= αnωn

∫ ℓ(Q)

0

∫

Rn

(
−
∫

|x−y|<αt

1Q(x) dx

)
|F(y, t)|2 dy

dt

t
.

We claim that12, for some dimensional constants c, c′ and every β > 1,

cβ−n
1Q(y) ≤ −

∫

|x−y|<βt

1Q(x) dx ≤ 1c′βQ, whenever 0 < t < ℓ(Q).

This claim follows immediately by noting that −
∫
|x−y|<βt

1Q(x) dx =
|Q∩B(y,βt)|
|B(y,βt)| . Using the second inequality

with β = α and the first with β = 1 and c′αQ in place of Q, we arrive at

∫

Q

AQ,α(x)2 dx ≲α,n

∫ ℓ(Q)

0

∫

c′αQ

|F(y, t)|2 dy
dt

t
=

∫ ℓ(Q)

0

∫

Rn

1c′αQ(y)|F(y, t)|2 dy
dt

t

≲n

∫ ℓ(Q)

0

∫

Rn

(
−
∫

|x−y|<t

1c′αQ(x) dx

)
|F(y, t)|2 dy

dt

t
≲n,α

∫

c′αQ

AQ(x)2 dx ≤
∫

c′αQ

Ac′αQ(x)2 dx ≲n,α Kp|Q|.

The result now follows from taking the supremum over all cubes. □

12We remind the reader that the notation CQ means the concentric dilate of Q by a factor C > 0.
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2.1. Weights and Extrapolation.

Definition 2.19 (Ap weights). Let 1 < p < ∞. A weight ν ∈ L1
loc(Rn) is said to be an Ap weight if there

exists a constant C ≥ 1 such that for every cube Q ⊂ Rn, the estimate
(
−
∫

Q

ν
)(
−
∫

Q

ν−p′/p
) p

p′ ≤ C

holds. The infimum over all these constants is denoted [ν]Ap
; we refer to it as the Ap characteristic of ν.

We say that ν ∈ A1 if (Mν)(x) ≤ Cν(x) for a.e. x ∈ Rn. The infimum over such C is denoted by [ν]A1
.

Closely related to Ap weights are the reverse Hölder classes.

Definition 2.20 (Reverse Hölder class). Let 1 < s < ∞. A weight ν is said to satisfy a reverse Hölder

inequality with exponent s, written ν ∈ RHs, if there exists C ≥ 1 such that for every cube Q ⊂ Rn,
(
−
∫

Q

νs
)1/s

≤ C−
∫

Q

ν.

Let us summarize most of the basic facts about Ap weights which we will need.

Proposition 2.21 ( [GR85, Theorem 1.14, Lemma 2.2, Lemma 2.5, Theorem 2.6]). Let 1 ≤ p < q < ∞.

The following statements hold.

(i) ( [GR85, Ch. IV Theorem 1.14 (a)]) Ap ⊂ Aq.

(ii) A weight ν belongs to A2 if and only if ν−1 ∈ A2.

(iii) ( [GR85, Ch. IV Theorem 1.14 (b)]) If ν ∈ Ap then νδ ∈ Ap for any 0 < δ < 1.

(iv) ( [GR85, Ch. IV Lemma 2.2]) If ν ∈ Ap then νdx is a doubling measure, and the doubling constant

depends on ν only through [ν]Ap
(and p).

(v) ( [GR85, Ch. IV Lemma 2.5]) If ν ∈ Ap then ν ∈ RHs for some s that depends on the weight only

through [ν]Ap
(and p).

(vi) ( [GR85, Ch. IV Theorem 2.6]) If ν ∈ Aq then ν ∈ Aq−ε for some ε depending on ν only through

[ν]Aq
(and q).

(vii) If ν ∈ Aq and s > 1, then ν ∈ RHs if and only if νs ∈ As(q−1)+1.

(viii) (Coifman-Rochberg [CR80, Proposition 2], [GR85, Ch. II Theorem 3.4]) If f : Rn → C is such

that (M f )(x) < ∞ for a.e. x ∈ Rn, then for every 0 < δ < 1 we have that νδ := (M f )δ ∈ A1 and

moreover [νδ]A1
≤ Cδ depends only on δ.

(ix) (Muckenhoupt’s Theorem [Muc72, Theorem 2], [GR85, Ch. IV Theorem 2.8]) For any 1 < p < ∞,

ν ∈ Ap and f ∈ Lp(ν), ∥M f ∥Lp(ν) ≲[ν]Ap
∥ f ∥Lp(ν).

(x) (Coifman-Fefferman [CF74, Theorem III]) Let T be a ªregularº singular integral, as defined

in [CF74], and T∗ the associated maximal operator. Then, for every ν ∈ A∞ and f ∈ C∞c (Rn), we

have that ∥T∗ f ∥Lp(ν) ≲p,n ∥M f ∥Lp(ν). In particular, by Muckenhoupt’s Theorem above, we have that

∥T∗ f ∥Lp(ν) ≲[ν]Ap
∥ f ∥Lp(ν).

The following result was originally proved by Rubio de Francia in [Rub83,Rub84]. We refer to [CMP11,

Theorem 1.1] for a simple proof of this fact.

Theorem 2.22. Let 1 < p0 < ∞ and let T be an operator satisfying ∥T f ∥Lp0 (ν) ≲[ν]Ap0
∥ f ∥Lp0 (ν), for all ν ∈

Ap0
and all f ∈ Lp0(ν). Then, for every p ∈ (1,∞), ν ∈ Ap, and f ∈ Lp(ν), we have ∥T f ∥Lp(ν) ≲[ν]Ap

∥ f ∥Lp(ν).

It is important for applications to note that the above theorem does not require any special structure on

T ; it does not need to be linear or sublinear. In fact, we have
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Theorem 2.23 ( [CMP11, Theorem 3.9]). Fix p0 ∈ (1,∞) and F a collection of pairs of non-negative

measurable functions ( f , g). Suppose that ∥ f ∥Lp0 (ν) ≲[ν]Ap0
∥g∥Lp0 (ν) for all ν ∈ Ap0

and all ( f , g) ∈ F . Then

for every p ∈ (1,∞), ν ∈ Ap, and ( f , g) ∈ F , we have ∥ f ∥Lp(ν) ≲[ν]Ap
∥g∥Lp(ν).

In practice, the collection F often takes the form (|S 1h|, |S 2h|) for some operators S i and h in some nice

class of functions. A corollary of the previous theorem and this observation is the following.

Corollary 2.24 ( [CMP11, Corollary 3.14]). Let r ∈ (1, 2), and suppose that T is an operator satisfying

∥T f ∥L2(ν) ≲[ν]A2/r
∥ f ∥L2(ν), for each f ∈ C∞c (Rn) and all ν ∈ A2/r. Then ∥T f ∥Lq(Rn) ≲q ∥ f ∥Lq(Rn) for all q > r.

To prove the corollary, one defines S 1 f := |T f |r, S 2 f := | f |r. Then, by hypothesis, ∥S 1 f ∥L2/r(ν) ≲[ν]A2/r

∥S 2 f ∥L2/r(ν), and hence by the previous theorem, ∥S 1 f ∥Lp(ν) ≲[ν]Ap
∥S 2 f ∥Lp(ν) for p ∈ (1,∞). Setting ν ≡ 1

and p = q/r gives the desired result.

Theorem 2.25. Let (Qs)s be a CLP family (see Definition 2.14) and let ν ∈ A2. It holds that

∫

Rn

∫ ∞

0

|(Qt f )(x)|2 dt

t
ν(x) dx ≲n,[ν]A2

∫

Rn

| f (x)|2ν(x) dx.

Remark 2.26. By Theorem 2.22, we obtain that the vertical square function associated to (Qs)s is bounded

on Lp(ν) for every ν ∈ Ap and 1 < p < ∞; that is, ∥V(Qs f )∥Lp(ν) ≲ ∥ f ∥Lp(ν) for every ν ∈ Ap.

Proof of Theorem 2.25. The idea is to use the method in [DR86, Theorem B], to interpolate a ªgoodº bound

with a plain uniform bound in order to obtain another ªgoodº bound in between. We will combine this

with interpolation with change of measures as in [SW58, Theorem 2.11], exploiting the self-improvement

property of Ap weights. Since this idea will be used quite often throughout the paper we write out this

portion of the the argument in full here, and refer back to it when applicable.

We first claim that it is enough to prove the following estimate:

(2.27)

∫

Rn

|QsQ̃2
t f |2ν ≲[ν]A2

min
( t

s
,

s

t

)α ∫

Rn

|Q̃t f |2ν, for each s, t > 0,

for some α > 0 and some CLP family (Q̃t)t. Indeed, once this is shown, the desired result follows from a

familiar quasi-orthogonality argument (see for instance the proof of [Gra14, Theorem 4.6.3]).

To prove (2.27), we claim that it is enough to prove the following estimates.

(i) (Unweighted quasi-orthogonality) There exists β > 0 such that for any s, t > 0, we have the estimate

∫

Rn

|QsQ̃2
t f |2 ≤ C1

( s

t
,

t

s

)β ∫

Rn

|Q̃t f |2.

(ii) (Uniform weighted estimate) For any s > 0 and ν ∈ A2, we have the estimate

∫

Rn

|QsQ̃2
t f |2ν ≤ C2([ν]A2

)

∫

Rn

|Q̃t f |2ν.

Assume that these hold for the moment and fix ν ∈ A2. By properties of A2 weights, there exist δ,C > 0

such that ν1+δ ∈ A2 with [ν1+δ]A2
≤ C. In particular, the uniform weighted estimate holds with ν1+δ

in place of ν, with the implicit constants depending only on [ν]A2
. Therefore, if we define the measures
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dµτ := ν(1+δ)τ dx, interpolation with change of measure (see [SW58, Theorem 2.11]13) gives
∫

Rn

|QsQ̃2
t f |2 dµτ ≤ C1−τ

1 Cτ
2

( s

t
,

t

s

)β(1−τ)
∫

Rn

|Q̃t f |2dµτ.

The desired estimate (2.27) is exactly the case τ = 1/(1+ δ) with α = βδ/(1+ δ). This completes the proof,

modulo the above pair of estimates.

The first estimate, unweighted quasi-orthogonality, is a consequence of classical Littlewood-Paley the-

ory. On the other hand, the weighted estimate follows from both the fact that |Qs f |, |Q̃t f | ≲M f pointwise

in Rn and Muckenhoupt’s theorem on the L2(ν) boundedness ofM for ν ∈ A2 (see Proposition 2.21). □

Lemma 2.28 (Lp inequalities from weighted L2 bounds). Suppose that T : L2(Rn)→ L2(Rn) is a bounded

(not necessarily linear) operator; that is, ∥T f ∥L2(Rn) ≲ ∥ f ∥L2(Rn).

(i) Suppose that there exists M > 1 such that for all ν ∈ A1 with the property that νM ∈ A1 it holds

that ∥T f ∥L2(ν) ≲[νM]A1
∥ f ∥L2(ν), for every f ∈ C∞c (Rn). Then for every p ∈ (2, 2 + 1/M), it holds that

∥T f ∥Lp(Rn) ≲p ∥ f ∥Lp(Rn).

(ii) Suppose that there exists M > 1 such that for all ν with the property that ν−M ∈ A1 it holds that

∥T f ∥L2(ν) ≲[ν−M]A1
∥ f ∥L2(ν) for every f ∈ C∞c (Rn). Then for every p ∈ (2 − 1/M, 2), we have that

∥T f ∥Lp(Rn) ≲p ∥ f ∥Lp(Rn).

(iii) Suppose that there exists M > 1 such that for all ν ∈ A2 with the property that νM ∈ A2, it holds

that ∥T f ∥L2(ν) ≲[νM]A2
∥ f ∥L2(ν) for every f ∈ C∞c (Rn). Then for every p ∈ (2 − 1/M, 2 + 1/M), we

have ∥T f ∥Lp(Rn) ≲p ∥ f ∥Lp(Rn).

Proof. This lemma and its proof are contained in [CMP11, Corollary 3.37] for the much more general

setting of restricted extrapolation of Ap weights. However, since we will later on need to modify the

arguments used in the proof a little to fit our needs, it seems appropriate to write the proof down for future

reference. The key fact that we will use is the Coifman-Rochberg theorem (see Proposition 2.21).

We start with (i). Fix p > 2 with M < 1/(p − 2) and f ∈ C∞c (Rn). Note that ν := (M(|T f |))p−2 ∈ A1, and
∫

Rn

|T f |p ≤
∫

Rn

|T f |2(M(|T f |))p−2
≲[νM]A1

∫

Rn

| f |2(M(|T f |))p−2

≤
(∫

Rn

| f |p
)2/p(∫

Rn

(M(|T f |))p
)(p−2)/p

≲p

(∫

Rn

| f |p
)2/p(∫

Rn

|T f |p
)1− 2

p

.

If we first assume that ∥T f ∥Lp(Rn) < ∞, then the result follows. To get rid of this assumption, we instead

consider the sequence of operators S k f (x) := (T f )(x)1|T f |≤k(x) on L2(Rn). Then {S k}k is uniformly bounded

on L2(Rn), and they satisfy the same hypotheses as T with constants independent of k. Then, for f ∈
C∞c (Rn), we have that S k f ∈ L2(Rn)∩ L∞(Rn), and so by our argument above, ∥S k f ∥Lp(Rn) ≲p ∥ f ∥Lp(Rn). We

now let k → ∞ and use the Monotone Convergence Theorem.

We turn to (ii). Fix p < 2 with 1
2−p

< M and f ∈ C∞c (Rn) not identically 0. Note that ν := (M(|T f | +
| f |))p−2 satisfies ν−1 ∈ A1 ⊂ A2, and hence ν ∈ A2. We estimate

∫

Rn

|T f |p ≤
∫

Rn

(M(|T f | + | f |))p =

∫

Rn

(M(|T f | + | f |))2(M(|T f | + | f |))p−2

13Strictly speaking, the statement of [SW58, Theorem 2.11] explicitly excludes the case under consideration (indeed the proof

given does not apply in this case); however as is mentioned immediately after the statement of said Theorem, we may run an

argument similar to the standard proof of the Riesz-Thorin Theorem, employing instead the three line lemma for sub-harmonic

functions as in [CZ56].
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≲[ν]A2

∫

Rn

(|T f |2 + | f |2)ν ≲[ν−M]A1

∫

Rn

| f |2ν ≤
∫

Rn

| f |2(M f )p−2 ≤
∫

Rn

(M f )p,

where we have used Muckenhoupt’s theorem, yielding the desired result.

The third statement follows from the first two and Jones’s factorization theorem of A2 weights (see

[Jon80]) as quotients of A1 weights. □

Sometimes we will not be able to conclude boundedness on all weights νM ∈ A2, but rather only on

weights whose characteristic is uniformly bounded. An inspection of the proof of the above lemma, together

with Proposition 2.21, reveals that this is enough to conclude the unweighted Lp estimates.

Corollary 2.29. Let M ≥ 1, 0 < δ < 1 and T be an operator satisfying, for every ν ∈ A2 with [νM] ≤ Cδ

(where Cδ is as in Proposition 2.21), that ∥T f ∥L2(ν) ≲[νM]A2
∥ f ∥L2(ν). Then, for every p ∈ (2−δ/M, 2+δ/M),

∥T f ∥Lp(Rn) ≲p ∥ f ∥Lp(Rn). Analogous statements for the one-sided versions of the estimates also hold.

Lemma 2.30 (Weighted Carleson’s Lemma). Suppose that µ is a measure in Rn+1
+ and that ν ∈ L1

loc(Rn) is

a doubling weight. Assume further that for every cube Q ⊂ Rn, it holds that µ(RQ) ≲ ν(Q). Then, for every

measurable function F : Rn+1
+ → C and every p > 0, we have that

∫∫

Rn+1
+

|F|p dµ ≲n,doub

∫

Rn

(NF)p ν.

The proof is exactly the same as the usual one when ν ≡ 1, and thus omitted. Next, we will need a

version of Carleson’s Lemma that uses the modified non-tangential maximal function Ñ in place of N ; its

proof is straightforward and thus omitted.

Lemma 2.31. Let dµ(x, t) = m(x, t) dxdt be a non-negative measure on Rn+1
+ and ν is a doubling weight.

For every (x, t) ∈ Rn+1
+ , suppose that dµ̃(x, t) := (sup(y,s)∈Cx,t

m(y, s)) dxdt satisfies µ̃(RQ) ≤ C0ν(Q) for every

cube Q ⊂ Rn. Then, for every q > 0,

∫∫

Rn+1
+

|F|q dµ ≲doub C0

∫

Rn

(ÑqF)q ν.

Definition 2.32 (Ap,q classes). Let 1 < p ≤ q < ∞. We say that a weight ν ∈ Ap,q = Ap,q(Rn) if there exists

a constant C > 0 such that for every cube Q ⊂ Rn,
(
−
∫

Q

νq dx

)1/q(
−
∫

Q

ν−1/p′ dx

)1/p′

≤ C.

The infimum over all such C is written [ν]Ap,q .

Theorem 2.33 ( [MW74, Theorem 4]). Let 1 < p < n and set 1/q := 1/p − 1/n. Then ν ∈ Ap,q if and only

if ∥I1 f ∥Lq(νq) ≲[ν]Ap,q
∥ f ∥Lp(νp).

Throughout, there will be instances where multiplication by an Ln(Rn) function is acting as, or rather in

place of, a (spatial) gradient. The following proposition should be interpreted as stating that, at least in Lp

spaces, the two operations are not far from each other. We remind the reader that we assume n ≥ 3.

Proposition 2.34. Let B ∈ Ln(Rn) and f ∈ C∞c (Rn). Then, for every ν ∈ A2, we have

∥I1(B · f )∥L2(ν) ≲[ν]A2
∥B∥Ln(Rn)∥ f ∥L2(ν).

In particular, for every 1 < p < ∞, it holds that ∥I1(B · f )∥Lp(Rn) ≲p ∥ f ∥Lp(Rn), where the implicit constants

depend on ∥B∥Ln(Rn), p, and n. If in addition we have that ν2∗/2 ∈ A2 with 2∗ = 2∗n, then

∥B · I1 f ∥L2(ν) ≲[ν2∗ ]A2
∥B∥Ln(Rn)∥ f ∥L2(ν).

Accordingly, ∥B · I1 f ∥Lp(Rn) ≲p ∥ f ∥Lp(Rn), for 1 + 2/n < p < 3 − 2/n.
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Proof. Let ν ∈ A2 and set ω := ν1/2. We claim that ω ∈ A2∗,2. Assuming the claim, we have

∥I1(B · f )∥L2(ν) = ∥I1(B · f )∥L2(ω2) ≲[ω]A2∗ ,2
∥B · f ∥L2∗ (ω2∗ ) ≤ ∥B∥Ln(Rn)∥ f ∥L2(ω2),

where we used Hölder’s inequality in the last step. To prove the claim, we use Jensen’s inequality to see that(
−
∫

Q
ω−2∗

)2/2∗ ≤ −
∫

Q
ω−2. Using this estimate in the definition of ω2 ∈ A2, we deduce that [ω]A2∗ ,2 ≤ [ν]1/2

A2
.

This completes the proof of the first part. The second part follows the same lines, using instead that
(
−
∫

Q

ω2∗
)(
−
∫

Q

ω−2
)2∗/2

≤
(
−
∫

Q

ω2∗
)(
−
∫

Q

ω−2∗
)
≤ [ν2∗/2]A2

,

so that [ω]A2,2∗ ≤ [ν2∗/2]
1/2∗

A2
. The Lp estimate finally follows from restricted extrapolation (see Lemma

2.28), using the fact that 2/2∗ = 1 − 2/n. □

Proposition 2.35. Let Pt be an approximate identity with smooth, even, compactly supported kernel. Then,

for every ν ∈ A2 and f ∈ C∞c (Rn), it holds that

∥V(t−1(1 − Pt) f )∥2L2(ν) =

∫ ∞

0

∫

Rn

∣∣∣ I − Pt

t
f

∣∣∣
2 ν(x) dxdt

t
≲[ν]A2

∥∇∥ f ∥2L2(ν).

Proof. Recall that I1 denotes the fractional integral of order 1; hence ∇∥I1 = I1∇∥ = R, where R is the vector-

valued Riesz-transform (with symbol ξ/|ξ|). In particular, ∥R f ∥L2(ν) ≈ ∥ f ∥L2(ν) for all ν ∈ A2, allowing us to

reduce matters to the estimate∫ ∞

0

∫

Rn

∣∣∣I1
I − Pt

t
f

∣∣∣
2 ν(x)dt

t
≲[ν]A2

∥ f ∥L2(ν), f ∈ C∞c (Rn).

We now use a quasi-orthogonality argument, with a change of measure interpolation (see the proof of

Theorem 2.25), to reduce matters to the pair of estimates: If we denote Tt := I1(1 − Pt)/t, then for some

CLP family (Qs)s (see Definition 2.14),

(2.36) ∥TtQ2
s f ∥L2(Rn) ≲

( s

t
,

t

s

)α
∥Qs f ∥L2(Rn),

for some α > 0, and

(2.37) ∥TtQ2
s f ∥L2(ν) ≲[ν]A2

∥Qs f ∥L2(ν).

Indeed, with (2.36) and (2.37) in hand, we may follow the proof of Theorem 2.25.

For (2.36), we compute, via the Fourier transform and Plancherel’s theorem, and using φt and ψs for the

kernels of Pt and Qs respectively,

∥TtQsh∥2L2(Rn) = cn

∫

Rn

∣∣∣|ξ|−1 1 − φ̂(t|ξ|)
t

ψ̂(s|ξ|)ĥ(ξ)
∣∣∣
2

dξ,

where as usual we have abused notation and written φ, ψ for the one-dimensional functions representing

them. Consider first the case t < s,
∫

Rn

∣∣∣|ξ|−1 1 − φ̂(t|ξ|)
t

ψ̂(s|ξ|)ĥ(ξ)
∣∣∣
2

dξ =
( t

s

)2
∫

Rn

|1 − φ̂(t|ξ|)|2
|tξ|4 |sξ|2|ψ̂(s|ξ|)|2|ĥ(ξ)|2 dξ ≲

( t

s

)2

∥h∥2L2(Rn),

where we used the properties of the CLP family and the fact that |1− φ̂(τ)| ≲ τ2 for τ near 0, since φ is even.

For the case s < t, we use instead the Fundamental Theorem of Calculus to obtain
∫

Rn

∣∣∣|ξ|−1 1 − φ̂(t|ξ|)
t

ψ̂(s|ξ|)ĥ(ξ)
∣∣∣
2

dξ =
( s

t

)2
∫

Rn

∣∣∣
∫ t|ξ|

0

φ̂′(τ) dτ
∣∣∣
2 |ψ̂(s|ξ|)|2
|sξ|2 |ĥ(ξ)|2 dξ ≲

( s

t

)2

∥h∥2L2(Rn),

where we used that φ̂ ∈ L1(0,∞) and ψ̂(τ)/τ ∈ L∞(0,∞). Using now that h = Qs f gives (2.36).
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The weighted estimate (2.37) follows from the pointwise inequality

|Tt f (x)| = |t−1(1 − Pt)I1 f (x)| ≲M(R f )(x),

where R = I1∇∥ is as before. We sketch the argument: Write 1 − Pt = (1 − Et) + (Et − Pt), where Et

is the dyadic averaging operator; that is, Et f (x) = −
∫

Qx,t
f , where Qx,t is the unique dyadic cube Qx,t ∈ Dt

containing x. Writing g = I1 f , we have that

|(Et − Pt)g(x)| ≈
∣∣∣−
∫

Qx,t

−
∫

|x−y|<Ct

φ(
x−y

t
)(g(y) − g(z)) dydz

∣∣∣

≲ −
∫

B(x,Ct)

−
∫

B(x,Ct)

|g(y) − g(z)| dydz ≲ t−
∫

B(x,Ct)

|∇∥g(y)| dy ≤ tM(∇∥g)(x),

where we used Poincare’s inequality in the second to last step. Since I1∇∥ f = R f , we have the right bound

for this term. To handle the term 1 − Et, we telescope

(1 − Et)g(x) =

∞∑

j=0

(E2− j−1t − E2− jt)g(x) =:

∞∑

j=0

(Et j+1
− Et j

)g(x),

and we compute that

|(Et j+1
− Et j

)g(x)| =
∣∣∣−
∫

Qx,t j+1

(Et j
g(x) − g(y)) dy

∣∣∣ ≲ −
∫

Qx,t j

|Et j
g(x) − g(y)| dy ≲ t j−

∫

Qx,t j

|∇∥g| ≤ 2− jtM(∇∥g)(x).

The result now follows by summing over j. □

We will need for the following properties of the heat semigroup associated to the Laplacian ∆ in Rn.

Proposition 2.38. Let Pt := e−t2∆ and Qt := t∂tPt. We define the measure

dµ(x, t) :=
|Qtν(x)|2
|Ptν(x)|2 Ptν(x)

dxdt

t
.

This object satisfies the following properties

(i) For any weight ν ∈ RHs for some s > 1 it holds that |Ptν(x)| ≲ −
∫
|x−y|<t

ν(y) dy, with constants

depending on the RHs and doubling constants of ν.
(ii) The measure dµ satisfies the hypotheses of the modified Carleson’s Lemma 2.31, provided ν ∈ RH2.

Proof. The proof of (i) is a simple computation: the kernel of Pt is given by

φt(x − y) = cnt−ne−(|x−y|/2t)2

, x, y ∈ Rn, t > 0,

and we can write

Ptν(x) =

∫

|x−y|<t

φt(x − y)ν(y) dy +
∑

j≥0

∫

2 jt≤|x−y|<2 j+1t

φt(x − y)ν(y) dy.

Clearly, the first term satisfies the desired estimate; it remains to control the tail. For this, we set ∆ j := {y :

2 jt ≤ |x − y| < 2 j+1t} and employ Hölder’s inequality to obtain
∫

∆ j

φt(x − y) f (y) dy ≤
(∫

∆ j

φt(x − y)s′ dy

)1/s′(∫

∆ j

ν(y)s dy

)1/s

.

Now we see, using that ν ∈ RHs,
(∫

∆ j

νs
)1/s

≲ (2 jt)n( 1
s
−1)

∫

|x−y|<2 j+1t

ν(y)dy ≲ (Cdoub2n(1/s−1)) jt
n
s−
∫

|x−y|<t

ν(y)dy.
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On the other hand, for y ∈ ∆ j we have that φt(x − y) ≲ t−n exp(−2 j), so that

(∫

∆ j

φt(x − y)s′ dy

)1/s′

≲ |∆ j|1/s′ t−n exp(−2 j) ≲ t−n/s2 jn/s′ exp(−2 j).

Combining these estimates, (i) follows.

The proof of (ii) is somewhat more involved. We ought to show that

sup
Cx,t

( |Qsν(y)|2
|Psν(y)|2 Psν(y)

1

s

)
dxdt ≈

(
sup
Cx,t

|Qsν(y)|2
|Psν(y)|2 Psν(y)

)dxdt

t
=: dµ̃(x, t)

is a Carleson Measure. For this purpose, first note that, using (i) and the doubling property of ν, it is not

hard to show that Psν(y) ≈ Ptν(x) for all (y, s) ∈ Cx,t. In other words,

dµ̃(x, y) ≈
(

sup
Cx,t

|Qsν(y)|2
) 1

Ptν(x)

dxdt

t
.

Now we let a > 0 be small enough so that s2 − a2t2 ≈ t2 whenever |t − s| < t/8 and write

Qsν(y) = s∂s(e
(a2t2−s2)∆e−a2t2∆ν(y)) = −2s2∆e(a2t2−s2)∆e−a2t2∆ν(y) = − s2

a2t2
e−(s2−a2t2)∆Qatν(y).

Therefore, there exists a universal constant c > 0 such that |Qsν(y)| ≲ Pct|Qatν|(y), for all |s − t| < t/8.

Setting gt(z) := |Qatν(z)|, we see that

Pctgt(y) = cn

∫

Rn

(ct)−ne
− |y−z|2

4(ct)2 gt(z) dz =

∫

|x−z|<t

(ct)−ne
− |y−z|2

4(ct)2 gt(z) dz +
∑

j≥0

∫

∆ j

(ct)−ne
− |y−z|2

4(ct)2 gt(z) dz =: I + II.

For I, we simply note that I ≲ −
∫
|x−z|<t

gt(z) dz ≲ Ptgt(x). For the tails, we use that |y − z| ≥ 7
8
|x − z| for any

z ∈ ∆ j, to obtain the bound II ≲ Pc′tgt(x). We conclude that |Qsν(y)| ≲ Pct|Qatν|(x) for (y, s) ∈ Cx,t.

We have thus reduced matters to proving a (weighted) Carleson Measure estimate for dµ′(x, t) :=
(Pct |Qatν|(x))2

Ptν(x)
dxdt

t
; that is, we want to show that µ′(RQ) ≲ ν(Q), for all Q ⊂ Rn. So fix a cube Q ⊂ Rn.

We run a stopping time argument to obtain a collection of maximal (dyadic) subcubes (Q j) j≥1 of Q with

respect to the properties

either (a) −
∫

Q j

ν ≥ A−
∫

Q

ν, or (b) −
∫

Q j

ν ≤ A−1−
∫

Q

ν,

for some A > 1 large. We call F1 the collection of Q j satisfying the property (a), and F2 the collection of

Q j satisfying (b).

Note that, by construction, if Q j ∈ F1 we have |Q j| ≤ |Q|
Aν(Q)

∫
Q j
ν, so, after summing over j,

∑
Q j∈F1

|Q j| ≤
|Q|
A

. By the A∞ property of ν, if A is large enough, we may write
∑

Q j∈F1
ν(Q j) ≤ ν(Q)

4
. On the other hand,

if Q j ∈ F2 we obtain directly that ν(Q j) ≤ A−1|Q j|−
∫

Q
ν, so that

∑
Q j∈F2

ν(Q j) ≤ ν(Q)
4

, if we choose A > 1/4.

By Lemma 2.16 it is enough obtain µ′(RQ\(∪F1∪F2
RQ j

)) ≲ ν(Q). Moreover, notice that for (x, t) ∈
RQ\(∪F1∪F2

RQ j
), we have that −

∫
Q
ν ≲ Ptν(x), by construction of the Q j . Accordingly, it is enough to show

∫∫

RQ

(Pct|Qatν|)(x)2 dxdt

t
≲
ν(Q)2

|Q| .
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To do this, we use Minkowski’s inequality to write

(∫∫

RQ

(Pct|Qatν|)(x)2 dxdt

t

) 1
2 ≤

∞∑

j=0

(∫∫

RQ

(Pct|Qat(1R j(Q)ν)|)(x)2 dxdt

t

) 1
2

:=

∞∑

j=0

T j,

where we denote R0 = 2Q and R j = 2 j+1Q\2 jQ for j ≥ 1. For the first term T0, we employ the fact that Pt

is uniformly L2(Rn)−bounded and that Qt satisfies an L2 square function estimate to obtain

T 2
0 ≤

∫ ∞

0

∫

Rn

(Pct|Qat(1R0
ν)|)(x)2 dxdt

t
≲

∫ ∞

0

∫

Rn

|Qat(1R0
ν)(x)|2 dxdt

t
≲

∫

2Q

ν2.

We now use the reverse Hölder property of ν to see that
∫

2Q
ν2
≲ |Q|−1ν(Q)2, which gives the desired

estimate for T0. For the others, we use the kernel representations; first recall that if φt is the kernel for Pt

and ψt the one for Qt then |φt(z)|, |ψt(z)| ≤ c1t−ne−c2 |z|2/t2 . Calling ν j = 1R j
ν, we compute

∫

Q

(Pct|Qatν j|)(x)2 dx =

∫

Q

(∫

Rn

∣∣∣
∫

Rn

φct(x − y)ψat(y − z)ν j(z) dz

∣∣∣ dy

)2

dx

≲

∫

Q

(∫

R j

ν(z)

∫

Rn

t−2ne
−c
|x−y|2+|y−z|2

t2 dy dz

)2

dx.

It is easy to verify that |x − y|2 + |y − z|2 ≥ (|x − y|2 + |x − z|2)/4, and hence
∫

Q

(Pct|Qatν j|)(x)2 dx ≲

∫

Q

(∫

R j

ν(z)t−ne
−c
|x−z|2

t2 dz

)2

dx ≲ e
−c

(2 jℓ(Q))2

2t2

∫

Q

(P̃tν)
2,

where we define P̃t the convolution operator with kernel t−ne−c|z|2/(2t2). Now we see, from the proof of part

(i), that P̃tν(x) ≲ −
∫
|x−y|<t

ν(y) dy ≲ ν(Q)/tn. Therefore,

∫

Q

(Pct|Qatν j|)(x)2 dx ≲ e
−c′ (2 jℓ(Q))2

t2
ν(Q)2|Q|

t2n
.

The desired estimate for T j now follows by integrating in t over (0, ℓ(Q)). □

2.2. Lr − Lq Off-diagonal estimates. Throughout this section we denote by Tt, with t , 0, an operator

mapping functions C∞c (Rn;Cd1) to measurable functions in Rn with values in Cd2 for some integers d1, d2.

Definition 2.39 (Lr → Lq Off-diagonal estimates). Let 1 ≤ r ≤ q ≤ ∞. We say that a family of operators

(Tt)t,0 satisfies Lr − Lq off-diagonal estimates if there exist C0 > 0 and numbers γ1 ∈ R, γ2 > 0 such that

for every cube Q ⊂ Rn, the following estimates hold with γ := γ1 + γ2.

(i) If |t| ≈ ℓ(Q), then

∥Tt( f1R0(Q))∥Lq(Q) ≤ C0|Q|1/q−1/r∥ f ∥Lr(Q).

(ii) If t ∈ R and we set R j(Q) := 2 j+1Q\2 jQ for j ≥ 1, then

∥Tt( f1R j(Q))∥Lq(Q) ≤ C02−n jγ1

( |t|
2 jℓ(Q)

)n jγ2

|Q|1/q−1/r∥ f ∥Lr(R j(Q)).

(iii) If t ∈ R and supp f ⊂ Q then

∥Tt( f )∥Lq(R j(Q)) ≤ C02−n jγ1

( |t|
2 jℓ(Q)

)n jγ2

|Q|1/q−1/r∥ f ∥Lr(Q).
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Proposition 2.40 (Weighted estimates from off-diagonal decay). Suppose (Tt)t>0 is sublinear and satisfies

Lr − L2 off diagonal estimates for some 1 < r < 2 and γ > 1/r. Then for all ν ∈ A2/r, and every t > 0,
∥∥∥
(
−
∫

|x−y|<t

|Tt f (y)|2 dy

)1/2∥∥∥
L2(νdx)

≲[ν]A2/r
∥ f ∥L2(ν).

Proof. This proposition is contained within [GH17], but we provide the proof for completeness. We first

decompose Rn into cubes in the dyadic grid Dt of sidelength ≈ t to obtain

∥∥∥
(
−
∫

|x−y|<t

|Tt f (y)|2 dy

)1/2∥∥∥
L2(νdx)

=

( ∑

Q∈Dt

∫

Q

−
∫

|x−y|<t

|Tt f (y)|2 dy ν(x)dx

)1/2

≲

( ∑

Q∈Dt

−
∫

Q∗

∫

Q

|Tt f (y)|2 dy ν(x)dx

)1/2

≲

∑

j≥0

( ∑

Q∈Dt

−
∫

Q∗

∫

Q

|Tt(1R j(Q) f (y))|2 dy ν(x)dx

)1/2

=: I,

where as usual we define R0(Q) := 2Q and R j(Q) := 2 j+1Q\2 jQ for j ≥ 1, and we used Minkowski’s

inequality in the last line. We now exploit the off-diagonal decay of Tt to get,
(∫

Q

|Tt(1R j(Q) f (y))|2 dy

)1/2

≲ 2− jnγtn(1/2−1/r)
(∫

R j(Q)

| f (y)|r dy

)1/r

.

Going back to I, we see that

I ≲
∑

j≥0

2− jnγtn(1/2−1/r)
( ∑

Q∈Dt

−
∫

Q∗

(∫

R j(Q)

| f (y)|r dy

)2/r

ν(x)dx

)1/2

≲

∑

j≥0

2− jnγtn(1/2−1/r)(2 jt)n/r
( ∑

Q∈Dt

−
∫

Q∗

(
−
∫

R j(Q)

| f (y)|r dy

)2/r

ν(x)dx

)1/2

≲

∑

j≥0

2− jn(γ−1/r)tn/2
( ∑

Q∈Dt

−
∫

Q∗
Mr( f )(x)2 ν(x)dx

)1/2

≲

∑

j≥0

2− jn(γ−1/r)∥Mr( f )∥L2(ν) ≲ ∥Mr( f )∥L2(ν),

since γ > 1/r. Since r < 2 and A2/r ⊂ A2, we have I ≲[ν]A2/r
∥Mr( f )∥L2(ν) ≲ ∥ f ∥L2(ν). □

2.3. Properties of Solutions and Layer Potentials.

2.3.1. Functional-analytic setup. First we recall our definitions of layer potentials. Formally, for instance,

the single layer potential is given by SL = (Tr0◦(L∗)−1)∗ f , but we need to give a precise functional-analytic

context for the operator L to be able to talk about the traces of its inverse adjoint operator.

Let Ω ⊆ Rn+1 be an open set with Lipschitz boundary, and fix f ∈ L1
loc(Ω), F ∈ L1

loc(Ω,Cn+1), and

u ∈ W
1,2
loc (Ω). We say that u solves the equation Lu = f − divF in Ω in the weak sense if, for every

φ ∈ C∞c (Ω), we have that

(2.41)

∫∫

Rn+1

(
(A∇u + B1u) · ∇φ + B2 · ∇uφ

)
=

∫∫

Rn+1

(
fφ + F · ∇φ

)
.

For p ∈ (1, n + 1), we define the space Y1,p(Ω) as

(2.42) Y1,p(Ω) :=
{

u ∈ L
(n+1)p
n+1−p (Ω) : ∇u ∈ Lp(Ω)

}
.

We equip this space with the norm ∥u∥Y1,p(Ω) := ∥u∥
L

(n+1)p
n+1−p (Ω)

+ ∥∇u∥Lp(Ω).
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Define the sesquilinear form BL : C∞c (Rn+1) ×C∞c (Rn+1)→ C via

BL[u, v] :=

∫∫

Rn+1

[
A∇u · ∇v + uB1 · ∇v + vB2 · ∇u

]
, u, v ∈ C∞c (Rn+1),

and the associated operator L : D → D ′ via the identity

⟨Lu, v⟩ = BL[u, v], u, v ∈ C∞c (Rn+1).

In fact, when (1.3) holds and ρ ≪ 1, the form BL extends to a bounded, coercive form on Y1,2(Rn+1) ×
Y1,2(Rn+1), and the operator L extends to an isomorphism Y1,2(Rn+1)→ (Y1,2(Rn+1))∗ [BHLMP22, Propo-

sition 2.19]. Associated to L we also have its dual L∗ : Y1,2(Rn+1)→ (Y1,2(Rn+1))∗, defined by the relation

⟨Lu, v⟩ = ⟨u,L∗v⟩,

and it is a matter of algebra to check that the identity

L∗v = −div(A∗∇v + B2v) + B1 · ∇v

holds in the weak sense (2.41) for any v ∈ Y1,2(Rn+1). In particular, L∗ is an operator of the same type as L
and if ρ ≪ 1 so that L−1 is defined, then (L∗)−1 is well defined, bounded, and satisfies (L∗)−1 = (L−1)∗.

We turn to the mapping properties of traces. For fixed t ∈ R we define the trace operator Trt :

C∞c (Rn+1)→ C∞c (Rn) by

(2.43) Trtu = u(·, t).

Let F : L2(Rn)→ L2(Rn) be the Fourier transform and write û = F u. Define H
1
2

0 (Rn) as the completion of

C∞c (Rn) under the norm |u| .
H

1
2 (Rn)

=
∫
Rn |ξ||û(ξ)|2 dξ. Then [BHLMP22, Lemma 2.8] gives that Trt extends

uniquely to a bounded linear operator

(2.44) Trt : Y1,2(Rn+1)→ H
1
2

0 (Rn).

We write H−
1
2 (Rn) := (H

1
2

0 (Rn))∗, and we note that we are departing from notation used elsewhere in the

literature, since our H−
1
2 (Rn) does not coincide with the usual (inhomogeneous) fractional Sobolev space

of order −1/2 (for more on this, see the remarks before Proposition 2.5 in [BHLMP22]).

Definition 2.45. Let γ ∈ H−1/2(Rn). We define the single layer potential SLγ ∈ Y1,2(Rn+1) as

(2.46) SLγ = (Tr0 ◦(L∗)−1)∗γ.

For fixed t ∈ R we denote SLt γ := Trt SLγ.

Definition 2.47. Let φ ∈ H
1/2
0 (Rn). We define the double layer potentialDL,+φ ∈ Y1,2(Rn+1

+ ) as

(2.48) DL,+φ := −Φ|Rn+1
+
+L−1(F+

Φ )|Rn+1
+
,

where Φ ∈ Y1,2(Rn+1) is any extension of φ, and F+
Φ ∈ (Y1,2(Rn+1))∗ is given by

⟨F+
Φ ,G⟩ :=

∫∫

Rn+1
+

(
A∇Φ · ∇G + B1Φ · ∇G + B2 · (∇Φ)G

)
, for each G ∈ Y1,2(Rn+1).

The layer potentials are studied in detail in Section 4 of [BHLMP22].
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2.3.2. Properties of weak solutions.

Proposition 2.49 (Caccioppoli Inequality in Lp. [BHLMP22, Proposition 3.9]). There exists an open inter-

val I containing 2 such that for every p ∈ I, every weak solution u ∈ W
1,2
loc (Rn+1

+ ) of Lu = 0 in Rn+1
+ , and

every (n + 1)−dimensional ball B satisfying that 2B ⊂ Rn+1
+ , it holds that

(2.50)
(
−−
∫∫

B

|∇u|p dX

)1/p

≲
1

r(B)

(
−−
∫∫

2B

|u|p dX

)1/p

,

with implicit constants that depend only on n, p, ellipticity of L, and ρ.

Proposition 2.51 (Caccioppoli Inequality on Slices. [BHLMP22, Lemma 3.20]). For p, I, u as in Proposi-

tion 2.49, every cube Q ⊂ Rn and α > 0, we have that

(2.52)
(
−
∫

Q

|∇u(x, t)|p dx

)1/p

≤ C

ℓ(Q)

(
−
∫ t+αℓ(Q)

t−αℓ(Q)

−
∫

Q∗
|u(x, s)|p dxds

)1/p

,

whenever Q∗ × (t − αℓ(Q), t + αℓ(Q)) ⊂ Rn+1
+ , with C depending only on n, p, α, ellipticity of L, and ρ.

Definition 2.53. We define the interval (2−, 2+) as the largest open interval, symmetric around 2 with the

following two properties:

(1) 2n/(n + 1) = 2# < 2− < 2 < 2+ < 2# := 2n/(n − 1).

(2) If p ∈ (2−, 2+), then for every weak solution u ∈ W
1,2
loc (Rn+1

+ ) of Lu = 0 in Rn+1
+ , the estimates (2.50)

and (2.52) hold, with constants depending only on n, p, α, ellipticity of L, and ρ.

Proposition 2.54. Let u ∈ W
1,2
loc (Ω) be a solution to Lu = divF in Ω ⊂ Rn+1, with F ∈ L2

loc(Ω). Let B be an

(n + 1)-dimensional ball in Rn+1 with 2B ⊂ Ω. Then, for any q ≥ 1 we have that

(2.55)
(
−−
∫∫

B

|u|2∗n+1

)1/2∗n+1

≲

(
−−
∫∫

2B

|u|q
)1/q

+ r(B)
(
−−
∫∫

2B

|F|2
)1/2

,

with implicit constants depending only on q, n and ellipticity, and where we define

1

2∗n+1

=
1

2
− 1

n + 1
,

1

2∗n+1

+
1

2∗,n+1

= 1.

Proof. We first prove the result for a ball B with r(B) = 1. To simplify notation, during this proof we will

write 2∗ = 2∗n+1. Fix 1 ≤ t < s ≤ 2, then, from the proof of the Caccioppoli inequality (see [BHLMP22,

Proposition 3.1], and note that f = 0 for us), we have

∥∇u∥L2(Bt)
≲

1

s − t
∥u∥L2(Bs)

+ ∥F∥L2(Bs)
≤ 1

s − t
∥u∥L2(Bs)

+ ∥F∥L2(2B),

where Bt denotes the concentric dilate of B by a factor of t. On the other hand, if as usual we denote by uB

the average of u over B, then by the Poincaré-Sobolev inequality we have that

∥u∥L2∗ (Bt)
≲ t · t(n+1)(1/2∗−1/2)∥∇u∥L2(Bt)

+ t(n+1)/2∗ |uBt
| ≲ ∥∇u∥L2(Bt)

+ ∥u∥L1(2B),

where we use that t ≥ 1/2. Combining these two inequalities, we obtain

∥u∥L2∗ (Bt)
≲

1

s − t
∥u∥L2(Bs)

+ ∥F∥L2(2B) + ∥u∥L1(2B).

Note that if here we set t = 1 and s = 2, the desired estimate (2.55) follows for q ≥ 2. It thus remains to

treat the case q < 2. Recall, from interpolation of Lp norms (here we use q < 2) and the Cauchy inequality

with a parameter,

∥u∥L2 ≤ ∥u∥1−θ
L2∗ ∥u∥θLq ≲θ η

1/(1−θ)∥u∥L2∗ +
1

η1/θ
∥u∥L2∗ ,
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valid for any η > 0, and where θ satisfies 1
2
= 1−θ

2∗ +
θ
q
. Choosing η1/(1−θ) ≈ t − s and setting T :=

∥F∥L2(2B) + ∥u∥L1(2B), we arrive at the estimate

∥u∥L2∗ (Bt)
≤ 1

2
∥u∥L2∗ (Bs)

+
C

(s − t)(1−θ)/θ ∥u∥Lq(Bs) + T,

for any 1 ≤ t < s ≤ 2. We are now in a position to apply the result in [HL97, Lemma 4.3] and conclude that

∥u∥L2∗ (Bt)
≲

1

(s − t)(1−θ)/θ ∥u∥Lq + T.

Setting now t = 1 and s = 2 we obtain that

∥u∥L2∗ (B) ≲ ∥u∥Lq(2B) + ∥u∥L1(2B) + ∥F∥L2(2B).

This is the desired inequality, since q ≥ 1 and r(B) = 1.

To obtain the result for a general B, we simply note that for r > 0, ur(X) = u(rX) solves Lrur = divFr in

rΩ, where the coefficients of Lr are given by Ar(X) = A(rX), Bi,r(X) = rBi(rX), Fr(X) = rF(rX). It can be

checked that these coefficients satisfy the same conditions as the originals, with the same relevant norms,

except for Fr which satisfies ∥Fr∥L2(1/rB) = r(−n+1)/2∥F∥L2(B). The estimate (2.55) follows. □

Proposition 2.56 (Off-diagonal Estimates. Part 1). Let Θt,m denote either of the following operators:

tm∂m
t ∇SLt , tm∂m−1

t ∇(SLt ∇), (tm∂m
t ∇SLt 1) · Pt,

where Pt is an approximate identity with smooth, even, compactly supported kernel.

Let 2− < q ≤ p < 2+ and Q ⊂ Rn a cube. For every h ∈ Lq(Rn), |t| ≈ ℓ(Q), and k ≥ 0 it holds that

∥Θt,m(h1Q)∥Lp(2Q) ≲n,p,q |Q|
1
p
− 1

q ∥h∥Lq(Q).

Moreover, for any j ≥ 1 and t ∈ R, if we write R j(Q) := 2 j+1Q\2 jQ, then

(2.57) ∥Θt,mg∥Lp(R j(Q)) ≲n,p,q,m 2−nγ1

( |t|
2 jℓ(Q)

)m

|Q|
1
p
− 1

q ∥g∥Lq(Q),

and

(2.58) ∥Θt,mg∥Lp(Q) ≲n,p,q,m 2−nγ1

( |t|
2 jℓ(Q)

)m

|Q|
1
p
− 1

q ∥g∥Lq(R j(Q)),

where γ1 = 1/2#−1/p ifΘt,m = tm∂m
t ∇SLt (recall that 2# is given in Definition 2.53), and γ1 = 1/2#−1/p−1

in the case that Θt,m = tm∂m−1
t ∇(SLt ∇).

Proof. The proof of this result is essentially contained in [BHLMP22, Proposition 4.28]. We sketch some

of the modifications needed.

We start with the case Θt,m = tm∂m
t ∇SLt . Here, estimate (2.57) was obtained in [BHLMP22, Proposition

4.28]. By duality, estimate (2.58) is equivalent to (2.57) for Θt,m = tm∂m
t (SLt ∇); let us thus prove estimate

(2.57) for Θt,m = tm∂m
t (SLt ∇).

Let R̃ j := (3/2)R j × (t − 2 jℓ(Q), t + 2 jℓ(Q)) and suppose that g ∈ C∞c (Q). Then (SLt ∇∥g) = SLt div∥g is

a solution in R̃ j. By a careful application of Caccioppoli’s inequality on slices, followed by the standard

Caccioppoli inequality in Lp (m − 1) times, we obtain

∥tm∂m
t (SLt ∇∥) · g∥Lp(R j(Q)) = |t|m∥∂m

t SLt div∥g∥Lp(R j(Q)) ≲

( |t|
2 jℓ(Q)

)m( 1

2 jℓ(Q)

∫∫

R̃ j

|SLs div∥g(x)|p dxds

)1/p

.
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By duality again, it is enough to prove that ∥∇∥SLs h∥Lq′ (Q) ≲ 2−nγ1 |Q|1/p−1/q∥h∥Lp′ (3/2R j)
, uniformly for

s ∈ R. For this, if we define Q̃ := 3/2Q × (s − ℓ(Q), s + ℓ(Q)), by Caccioppoli’s inequality we have that

∥∇∥SLs h∥Lq′ (Q) ≲
1

ℓ(Q)

( 1

ℓ(Q)

∫∫

Q̃

|SLτ h(x)|q′ dxdτ
)1/q′

≲ |Q|1/q′−1/2#−1/n
( 1

ℓ(Q)

∫ s+ℓ(Q)

s−ℓ(Q)

|R j|q
′(1/2#−1/p′)∥h∥q

′

Lp′ (3/2R j)
dτ

)1/q′

≲ 2n(1/p−1/2#)|Q|1/q′−1/p′∥h∥Lp′ (3/2R j)
,

where we used the mapping property SLs : L2#(Rn)→ L2#

(Rn) uniformly in s ∈ R, and Hölder’s inequality.

The above proof works, with straightforward modifications, in the case Θt,m = tm∂m−1
t ∇(SLt ∇). The case

of Θt,m = tm∂m
t ∇SLt 1 · Pt is handled with the previous estimates and [AAAHK11, Lemma 3.11]. □

The following proposition follows the same lines as the above, the appropriate modifications being out-

lined in the proof of [BHLMP22, Proposition 4.37].

Proposition 2.59 (Off-diagonal Estimates. Part 2). Let B ∈ Ln(Rn;Cn+1) and set ΘB
t,m := tm∂m

t SLt B· acting

on functions C∞c (Rn;Cn+1). Then, for 2− < r < 2 < q < 2+ Θ
B
t,m satisfies the Lr − Lq off-diagonal estimates

of Definition 2.39 with γ = m/n − α for some α > 0 depending only on dimension, r and q.

We shall also need the following quasi-orthogonality result.

Proposition 2.60 (Quasi-orthogonality). Let Θt,m := tm∂m
t (SLt ∇), B ∈ Ln(Rn;Cn), and let Qs be a standard

Littlewood-Paley family. There exists m0 such that if m ≥ m0 and ν ∈ A2/r (here r is as in the Lr − L2

off-diagonal estimates for Θt,m in Proposition 2.56), then the estimate

∥∥∥
(
−
∫

|x−y|<t

|Θt,mBI1Q2
sg(y)|2 dy

)1/2∥∥∥
L2(ν)
≲[ν]A2/r

( s

t

)β
∥Qsg∥L2(ν), s < t,

holds for some β > 0 (possibly depending on ν only through [ν]A2/r
).

Proof. The unweighted case is proved in Lemma 4.30 in [BHLMP22]. The idea is to use interpolation with

change of measure to reduce matters to proving a uniform weighted bound of the form
∥∥∥
(
−
∫

|x−y|<t

|Θt,mBI1Q2
sg(y)|2 dy

)1/2∥∥∥
L2(ν)
≲[ν]A2/r

∥g∥L2(ν).

This in turn follows from the Lr − L2 off-diagonal estimates of Θt,m in Proposition 2.56 and Proposition

2.40, together with the bounds for I1B from Proposition 2.34; we omit the details. □

The first author would like to thank Moritz Egert and Olli Saari for showing him the simple computation

that yields the following bound for the vertical maximal function ( [BES19]).

Proposition 2.61. Let m ≥ 1 and Θt,m be either tm∂m
t ∇(SLt ∇), or tm∂m

t ∇DLt . Then, for almost every x ∈ Rn,

we have the estimate

sup
t>0

|Θt,m f (x)| ≲m V(Θt,m f )(x) + V(Θt,m+1 f )(x) + |Θ1,m f (x)|.

Proof. First we observe that, owing to [BHLMP22, Lemma 2.3], the function t 7→ Θt,m f (x) =: gt(x) is

absolutely continuous for a.e. x ∈ Rn. Therefore, by the fundamental theorem of calculus, for such an



28 S. BORTZ, S. HOFMANN, J. L. LUNA GARCIA, S. MAYBORODA, AND B. POGGI

x ∈ Rn and every 0 < s < t,

|gt(x)|2 = |gs(x)|2 + 2

∫ t

s

Re(gt(x)∂τgτ(x)) dτ.

Notice that
∣∣∣
∫ t

s

Re(gt(x)∂τgτ(x)) dτ
∣∣∣ ≤

∫ t

s

|gt(x)||τ∂τgτ(x)| dτ
τ
≤ V(gt)(x)V(τ∂τgτ)(x),

by the Cauchy-Schwarz inequality. The result now follows by setting s = 1 and using Cauchy’s inequality

with a parameter. □

We record here also a weighted version of the Riesz transform estimates for L∥ and, more importantly

for us, estimates for the Hodge decomposition associated to L∥.

Theorem 2.62 ( [CMR18, Proposition 9.1]). Let L∥ := −div∥A∥∇∥. Then there exists M > 0 (depending

only on dimension and the ellipticity of A∥) such that if ν ∈ A2 satisfies that νM ∈ A2, then

max
{
∥∇∥L−1/2

∥ ∥L2(ν)→L2(ν) , ∥L−1/2
∥ div∥∥L2(ν)→L2(ν)

}
≲[νM]A2

1.

In particular, if for f ∈ L2(Rn;Cn) we write Hodge Decomposition f = A∥∇∥F + H with F ∈
.

W1,2(Rn) and

div∥H = 0, then for ν as above, we have that ∥∇∥F∥L2(ν) ≲[νM]A2
∥ f ∥L2(ν).

We end this subsection with an identity characterizing the double layer in terms of operators involving

only the single layer. This will allow us to focus, as far as the square and non-tangential maximal function

estimates are concerned, on operators involving only the single layer.

Lemma 2.63 (Double Layer Duality for L2 functions). Denote by N⃗ the outward unit normal vector of the

upper-half space. The following formula holds for each f ∈ C∞c (Rn):

DL,+t f (x) = (SLt ∇)(AN⃗ f )(x) + (SLt B2)(N⃗ f )(x).

Proof. We have, by Proposition 4.18 (ii) in [BHLMP22], that (DL,+t f , g) = ( f , ∂
νL
∗ ,+
−t
SL∗g) for f , g ∈

C∞c (Rn). On the other hand, since SL∗g is in Y1,2(Rn+1), we may use the L2 realization of the conormal (see

Lemma 4.11 (i) in [BHLMP22]) from which it follows that

( f , ∂
νL
∗ ,+
−t
SL∗g) = ⟨ f , ∂

νL
∗ ,+
−t
SL∗g⟩L2(Rn) = ⟨ f , N⃗ · [A∗∇SL

∗
−t g + B2SL

∗
−t g]⟩L2(Rn)

= ⟨N⃗ f , [A∗∇SL∗−t g + B2SL
∗
−t g]⟩L2(Rn)n = ⟨(SLt ∇)(AN⃗ f ) + (SLt B2)(N⃗ f ), g⟩L2(Rn),

where we used the properties of the operator (SLt ∇) (see Proposition 4.2 (viii) in [BHLMP22]) for the last

line. This gives the desired identity for f ∈ C∞c (Rn). □

2.4. Good Classes of Solutions.

Definition 2.64 (Slice Spaces). For n ≥ 3 and p ∈ (1,∞), we define

D
p
+ :=

{
v ∈ C0

(
(0,∞); Lp(Rn)

)
: ∥u∥Dp

+
< ∞

}
,

with norm given by ∥v∥Dp
+

:= supt>0 ∥v(t)∥Lp(Rn). We also define

S
p
+ :=

{
u ∈ C2

0

(
(0,∞); Y1,p(Rn)

)
: u′(t) ∈ C0

(
(0,∞); Lp(Rn)

)
, ∥u∥S p

+
< ∞

}
,
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with norm given by

∥u∥S p
+

:= sup
t>0

∥u(t)∥Y1,p(Rn) + sup
t>0

∥u′(t)∥Lp(Rn) + sup
t>0

∥tu′(t)∥Y1,p(Rn) + sup
t>0

∥t2u′′(t)∥Y1,p(Rn).

In particular, both D
p
+ and S

p
+ are Banach spaces. Similarly, with obvious modifications, we can define the

slice spaces D
p
− and S

p
− in the negative half line (−∞, 0). For the rest of the article, except for Section 9, we

will consider only the case p = 2, which corresponds to the case of the problems (D)2, (N)2, and (R)2.

Definition 2.65 (GoodD Solutions). We say that u ∈ W
1,2
loc (Rn+1

+ ) is a goodD solution if Lu = 0 in Rn+1
+ in

the weak sense, u ∈ D2
+, and uτ := u(·, · + τ) ∈ Y1,2(Rn+1

+ ) for any τ > 0.

Definition 2.66 (Good N/R Solutions). We say that u ∈ W
1,2
loc (Rn+1

+ ) is a good N/R solution if Lu = 0 in

Rn+1
+ in the weak sense, u ∈ S 2

+, and ∂tuτ ∈ Y1,2(Rn+1
+ ) for every τ > 0.

The following result is a companion to [BHLMP22, Corollary 6.20]. Together they will imply that our

uniqueness statement holds among the two most commonly used classes of solutions (those with either

square or non-tangential maximal function estimates).

Lemma 2.67. Let u ∈ W
1,2
loc (Rn+1

+ ) be a solution of Lu = 0 in Rn+1
+ . The following holds

(i) If Ñ2(u) ∈ L2(Rn), then u is a goodD solution (see Definition 2.65).

(ii) If Ñ2(∇u) ∈ L2(Rn) then either u is a good N/R solution (see Definition 2.66) if L1 , 0, or there

exists a constant c ∈ C such that u − c is a good N/R solution if L1 = 0.

Proof. As will be seen from the proof, (i) will follow the same outline as (ii), and is a bit easier. We first

prove that supt>0 ∥∇u(·, t)∥L2(Rn) ≲ ∥Ñ2(∇u)∥L2(Rn). Fix t > 0 and let ψ : R → R be a nonnegative Lipschitz

cutoff function such that ψ(t) = 1, ψ(3t/4) = 0, and |ψ′(s)| ≤ 4/t for each s ∈ R. We make the computation

∥∇u(·, t)∥22 =
∫

Rn

|∇u(·, t)|2ψ(t) =

∫

Rn

|∇u(·, t)|2ψ(t) −
∫

Rn

|∇u(·, 3t/4)|2ψ(3t/4)

=

∫

Rn

∫ t

3t/4

∂s

[
|∇u(x, s)|2ψ(s)

]
ds dx ≤

∫

Rn

∫ t

3t/4

[
2|∇u(x, s)||∇∂su(x, s)|ψ(s) + |∇u(x, s)|2|ψ′(s)|

]
ds dx

≤ 2

∫

Rn

−
∫ t

3t/4

|∇u(x, s)|2 ds dx +
t2

16

∫

Rn

−
∫ t

3t/4

|∇∂su(x, s)|2 ds dx =: I + II,

where in the third equality we used the fundamental theorem of calculus and in the last line we used the

Cauchy inequality with ε > 0. We now use Fubini’s theorem to see that

I = 2

∫

Rn

−
∫

|y−x0 |<t

−
∫ t

3t/4

|∇u(y, s)|2 ds dx0 dy ≤ 8

∫

Rn

−−
∫∫

|x0 − y| < t

|s − t| < t/2

|∇u(y, s)|2 ds dy dx0

≤ 8

∫

Rn

sup
(x,τ)∈γ(x0)

(
−−
∫∫

|x − y| < τ
|s − τ| < τ/2

|∇u(y, s)|2 ds dy

)
dx0 = 8∥Ñ2(∇u)∥22.

It remains to control II; for this we will use the Caccioppoli inequality as follows:

II ≤ t2

16

∫

Rn

−
∫

|y−x0 |<t/2

−
∫ t

3t/4

|∇∂su(y, s)|2 ds dx0 dy ≲

∫

Rn

−
∫

|x0−y|<t

−
∫ 5t/4

t/2

|∂su(x, s)|2 ds dy dx0,

and thus it is clear that we may handle II as above. We have obtained that for each t > 0, ∥∇u(·, t)∥2 ≲
∥Ñ2(∇u)∥2 which yields the desired result.
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We now improve this to limt→∞ ∥∇u(·, t)∥L2(Rn) = 0, where ∇ = (∇∥, ∂t) is the full gradient in n + 1

variables. This follows from the above estimate on slices: Notice that the proof actually gives that

∥∇u(·, t)∥L2(Rn) ≲ ∥Ñ (t)
2 (∇u)∥L2(Rn),

where we use the truncated non-tangential maximal function (see Definition 2.5) on the right hand side.

We claim now that Ñ (t)
2 (∇u)(x) → 0 for every x ∈ Rn as t → ∞. To see this, assume to the contrary that

lim supt→∞ Ñ (t)
2 (∇u)(x) > η > 0, for some x ∈ Rn. This means there exists a sequence tk → ∞ and points

xk with |x − xk| < t such that

−−
∫∫

Cxk ,tk

|∇u(y, s)|2 dyds > η2.

By the definition of the non-tangential maximal function we then have

Ñ2(∇u)(z)2 ≥ −−
∫∫

Cxk ,tk

|∇u(y, s)|2 dyds > η2,

for every z ∈ Rn such that |z − xk| < tk. Integrating over this set gives

∥Ñ2(∇u)∥2L2(Rn) ≥
∫

|z−xk |<tk

Ñ2(∇u)(z)2 dz ≥ cnη
2tn

k .

Since tk → ∞, this contradicts our assumption that Ñ2(∇u) ∈ L2(Rn). With the claim now proved, and since

Ñ (t)
2 (∇u) ≤ Ñ2(∇u) by definition, the dominated convergence theorem gives

∥∇u(·, t)∥L2(Rn) ≲ ∥Ñ (t)
2 (∇u)∥L2(Rn) → 0, as t → ∞.

Appealing to Caccioppoli’s inequality and the above, together with [BHLMP22, Proposition 6.14], we

see that u ∈ S 2
+ when L1 , 0. If L1 = 0, we proceed as follows: First, by the sup on slices estimate above

and Caccioppoli’s inequality on slices we see that ∂tu(·, t) ∈ W1,2(Rn) for every t > 0; in particular

∫ t

s

∂τu(·, τ) dτ ∈ W1,2(Rn) ⊂ Y1,2(Rn), for all 0 < s < t < ∞.

On the other hand, again by the sup on slices and [BHLMP22, Lemma 2.1], we have that for every t > 0

there exists a constant ct ∈ C such that u(·, t) − ct ∈ Y1,2(Rn). Therefore, by the fundamental theorem of

calculus, for any 0 < s < t < ∞,

∫ t

s

∂τu(·, τ) dτ − (ct − cs) = u(·, t) − ct − [u(·, s) − cs] ∈ Y1,2(Rn).

We conclude ct = cs = c as desired, and so u − c ∈ S 2
+.

Finally we show ∂tuτ := ∂tu(·, · + τ) ∈ Y1,2(Rn+1
+ ) for every τ > 0. For this we simply compute, decom-

posing Rn into cubes in Ds and using Caccioppoli’s inequality on slices together with Fubini’s Theorem

∫∫

Rn+1
+

|∇∂tu(y, s + τ)|2 dyds =

∫ ∞

τ

∫

Rn

|∇∂tu(y, s)|2 dyds ≲ sup
t>0

∥∇u(·, t)∥L2(Rn)

∫ ∞

τ

ds

s2
< ∞.

For (i), we run the same argument with u in place of ∇u. □
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3. Two General Extrapolation Results

In this section we prove two extrapolation theorems for conical and vertical square functions. The

takeaway from these considerations is that conical square functions have good estimates in the range (r,∞)

in the presence of Lr − L2 off-diagonal estimates plus an L2 square function bound. The vertical square

function on the other hand requires (for our argument) that the operator satisfies a reverse Hölder inequality

(and in fact, in this case we see that the vertical square function is controlled by the conical square function

on an interval around p = 2; this should be compared with Proposition 2.4 which is optimal for general

functions F, see [AHM12, Proposition 2.1 (c)]).

Lemma 3.1 (Extrapolation for Conical Square Functions). Suppose Tt is an operator satisfying, for q = 2

and some r < 2, the off-diagonal estimates14 in Definition 2.39 with γ > 1/r. (Notice this allows us to

define Tt1 as an element of L2
loc.) Set Rt := Tt − Tt1 · Pt for a given approximate identity Pt with compactly

supported kernel of the form Pt = P̃tP̃t for another approximate identity P̃t. Finally assume that for every

f ∈ L2(Rn), ∥S(Tt f )∥L2(Rn) ≲ ∥ f ∥L2(Rn), and

(3.2) ∥RtQ2
s f ∥L2(Rn) ≲

( s

t

)β
∥Qs f ∥L2(Rn), for s ≤ t,

for some (and therefore any) CLP family Qs (see Definition 2.14) and some β > 0. Then

(3.3) ∥S(Tt f )∥L2(ν) ≲ ∥ f ∥L2(ν), for each ν ∈ A2/r.

In particular, ∥S(Tt f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn), for each p ∈ (r,∞).

The above lemma can be thought of as a Calderón-Zygmund-type theorem. In this case the off-diagonal

decay plays the role of the usual size condition while the quasi-orthogonality estimate for Rt plays the role

of Hölder continuity of the kernel. Note also that the case t ≤ s in the quasi-orthogonality estimate (3.2) is a

consequence of the off-diagonal decay of Rt and [AAAHK11, Lemma 3.5]. Therefore, with the off-diagonal

decay of Rt as a background assumption, (3.2) is equivalent to

∥RtQ2
s f ∥L2(Rn) ≲ min

( t

s
,

s

t

)β
∥Qs f ∥L2(Rn).

Proof. Let f ∈ C∞c (Rn). We begin by writing

(3.4) Tt f (x) = Rt f (x) + [Tt1(x)] · Pt f (x),

where Rt and Pt are as in the hypotheses. To handle the first term we use interpolation with change of

measure (see the proof of Theorem 2.25) to reduce the weighted estimate of S(Rt) to the pair of estimates

(3.5)

∥∥∥
(
−
∫

|x−y|<t

|RtQ2
s f (y)|2 dy

)1/2∥∥∥
L2(Rn)

≲ min
( s

t
,

t

s

)β
∥Qs f ∥L2(Rn),

for some β > 0, and

(3.6)

∥∥∥
(
−
∫

|x−y|<t

|RtQ2
s f (y)|2 dy

)1/2∥∥∥
L2(ν)
≲[ν]A2/r

∥Qs f ∥L2(ν),

for r as in the statement of the lemma.

The unweighted quasi-orthogonality estimate (3.5) follows from Fubini’s Theorem and the good off-

diagonal decay.

14In fact we will only need the first and second estimates in Definition 2.39 for Tt, in the range |t| ≈ ℓ(Q).
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The uniform weighted estimate follows from Proposition 2.40 and the fact that |Qsh(x)| ≲Mh(x) andM
is bounded on L2(ν) (because A2/r ⊂ A2). This shows the desired weighted estimate, and so by interpolation

with change of measure,
∥∥∥
(
−
∫

|x−y|<t

|RtQ2
s f (y)|2 dy

)1/2∥∥∥
L2(ν)
≲ min

( s

t
,

t

s

)β
∥Qs f ∥L2(ν),

(for a possibly smaller β than the one for (3.5)). The estimate ∥S(Rt f )∥L2(ν) ≲ ∥ f ∥L2(ν) now follows from a

standard quasi-orthogonality argument, once one realizes that S(Rt) = V(R̃t) if

R̃th(x) :=
(
−
∫

|x−y|<t

|Rth(y)|2 dy

)1/2

.

Now it remains to establish the square function bound for Tt1(x) ·Pt. For this we first claim that the measure

dµ(x, t) :=
(
−
∫

|x−y|<t

|Tt1(y)|2 dy

)
dν(x)

dxdt

t
,

is a ν-Carleson measure, i.e. that for every cube Q, µ(RQ) ≲ ν(Q), where RQ := Q × (0, ℓ(Q)). Let us

assume the claim for a moment. By a weighted version of Carleson’s lemma (Lemma 2.30) and the fact

that |Pt f (y)| ≲ P̃t(M f )(x) whenever |x − y| < t (since Pt = P̃tP̃t), we obtain that
∫

Rn

∫∫

Γ(x)

|(Tt1(y))|2|Pt f (y)|2 dydt

tn+1
ν(x)dx ≲

∫

Rn

∫ ∞

0

|P̃t(M f )(x)|2 dµ(x, t)

≲

∫

Rn

N(P̃t(M f ))(x)2 ν(x)dx ≲

∫

Rn

M(M f )(x)2 ν(x)dx ≲

∫

Rn

| f (x)|2 ν(x)dx,

where we used the fact that M : L2(ν) → L2(ν) since r > 1. This accounts for the contribution of the

second term in (3.4), using Theorem 2.25.

To prove the claim we invoke Lemma 2.18 and the reverse Hölder inequality for A2/r weights (see

Proposition 2.21) in the following way: For a fixed cube Q ⊂ Rn, using Hölder’s inequality

µ(RQ) =

∫

Q

∫ ℓ(Q)

0

−
∫

|x−y|<t<ℓ(Q)

|Tt1(y)|2 dydt

t
ν(x)dx =

∫

Q

(∫∫

|x−y|<t<ℓ(Q)

|Tt1(y)|2 dydt

tn+1

)
ν(x) dx

=:

∫

Q

A2
Q(x) ν(x)dx ≤

(∫

Q

A
2(1+δ1)
Q dx

)1/(1+δ1)(∫

Q

ν1+δ2 dx

)1/(1+δ2)

,

where δ1 = 1/δ2 and 1 + δ2 is the exponent corresponding to the reverse Hölder inequality for ν so that

µ(RQ) ≲
(∫

Q

A
2(1+δ1)
Q dx

)1/(1+δ1)

|Q|−1+1/(1+δ2)ν(Q) ≲ |Q|1/(1+δ2)|Q|−1+1/(1+δ1)ν(Q) = ν(Q),

where we used Lemma 2.18 in the second to last line. We should remark here that the implicit constant

depends on δ1 and the constant in the reverse Hölder inequality for ν, but these in turn depend only on

[ν]A2/r
(see for instance [Ste93]). This finishes the proof of the weighted estimate (3.3). The unweighted

result now follows from Corollary 2.24. □

We now proceed to the extrapolation result for vertical square functions. The idea will be the same, which

is to reduce matters to a weighted L2 estimate. However, notice that before we used crucially the properties

of cones in both the weighted estimates for Rt and the Carleson measure estimate for Tt in Lemma 3.1. In

order to handle this issue we will transform V(Tt) into S(T̃t) for an appropriate T̃ involving the weight; this

makes the analysis more involved than in Lemma 3.1.
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Lemma 3.7. Let Tt be an operator satisfying, for some r < 2 < q and δ ∈ (0, 1), the Lr − Lq off-diagonal

estimates in Definition 2.39 for some γ > −1/n + 2/r + log2(Cδ)/n (here Cδ is as in (viii) of Proposition

2.21). We also require that, for every cube Q ⊂ Rn,

(3.8)
(
−−
∫∫

I(Q)

|Tt f (x)|q dxdt

)1/q

≲

(
−−
∫∫

I(Q∗)
|S t f (x)|2 dxdt

)1/2

,

where I(Q) = Q× (ℓ(Q)/2, ℓ(Q)) and S t is an operator satisfying ∥S(S t)∥L2(Rn)→L2(Rn) < ∞. The assumption

on γ allows us to define Tt1 as an element of L2
loc, and we set

(3.9) Rt f (x) := [Tt − Tt1(x) · Pt]( f )(x),

for some approximate identity Pt with compactly supported kernel. Suppose further that Rt satisfies the

quasi-orthogonality estimate ∥RtQ2
s f ∥L2(Rn) ≲ ( s

t
)β∥ f ∥L2(Rn), s < t, for all f ∈ L2(Rn) and some β > 0, and

that Tt satisfies the L2 square function estimate ∥V(Tt f )∥L2(Rn) ≲ ∥ f ∥L2(Rn). Then, if ν ∈ RHM ∩ A1 for

M > max(2r/(r − 2), (q/2)′) and [ν]A1
≤ Cδ, we have that

∥V(Tt f )∥L2(ν) ≲ ∥ f ∥L2(ν).

In particular, for any p ∈ (2 − δ/M, 2 + δ/M), it holds that

∥V(Tt f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

If Tt1 = 0, that is, if Tt = Rt, then we can dispense of (3.8).

Remark 3.10. As will be seen from the proof, we can weaken the reverse Hölder condition on Tt to

(
−−
∫∫

I(Q)

|Tt f (x)| Åq dxdt

)1/ Åq

≲

(
−−
∫∫

I(Q∗)
|S t f (x)| Åq dxdt

)1/ Åq

,

for every r ≤ Åq ≤ q, and where the operator S t satisfies both ∥S(S t f )∥L2(Rn) ≲ ∥ f ∥L2(Rn) and a reverse Hölder

inequality. In our intended application where Tt = tm∂m
t ∇SLt , we do not have a reverse Hölder inequality

for Tt, but we do have such an estimate for solutions, S t = tm−1∂m
t SLt .

Proof. We note that, by Proposition 2.4, in the range p < 2 we have that ∥V(Tt f )∥Lp(Rn) ≲ ∥S(Tt f )∥Lp(Rn),

and for r < p < 2, by Lemma 3.1 (recall that vertical and conical square functions coincide on L2) and

Corollary 2.24, we have ∥S(Tt f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn). Therefore, it is enough to consider the case p > 2.

We proceed to rewrite our vertical square function into a conical square function by introducing an average

adapted to ν. For this purpose we set, for x ∈ Rn and t > 0 fixed,

νx,t := −
∫

|x−y|<t

ν(y) dy.

We thus write, using Fubini’s theorem,

∫

Rn

|V(Tt f )(x)|2 ν(x)dx =

∫

Rn

∫ ∞

0

|Tt f (x)|2 dt

t
ν(x)dx =

∫

Rn

∫ ∞

0

−
∫

|x−y|<t

ν(y)

νx,t
|Tt f (x)|2 dy

dt

tn+1
ν(x)dx

=

∫

Rn

∫∫

|x−y|<t

ν(x)

νx,t
|Tt f (x)|2 dxdt

tn+1
ν(y)dy =:

∫

Rn

∫∫

|x−y|<t

|T̃t f (x)|2 dxdt

tn+1
ν(y)dy = ∥S(T̃t f )∥L2(ν).

We are now in a position to try and mimic the proof of Lemma 3.1. Unfortunately the process is quite a bit

more involved and, rather than proving a full weighted estimate, we will use the specific form of our weight
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ν. To simplify notation we introduce the operators:

R̃t f (x) =

√
ν(x)

νx,t
Rt,

where Rt is as in (3.9). It follows that T̃t f (x) = R̃t f (x) + T̃t1(x) · Pt f (x).

As was done in the case of the conical square function, to handle the second term it is enough to show

the ν-Carleson measure estimate (see Lemma 2.30) µ(RQ) ≲ ν(Q) for every cube Q ⊂ Rn, where RQ :=

Q × (0, ℓ(Q)) and the measure µ is defined as

dµ(x, t) :=
(
−
∫

|x−y|<t

|T̃t1(y)|2 dx

)
ν(x)

dxdt

t
.

For this we first reduce matters to an unweighted estimate via the John-Nirenberg lemma for local square

functions (see Lemma 2.18) as follows: Notice that, for any Åq > 1,

µ(RQ) =

∫

Q

(∫∫

|x−y|<t<ℓ(Q)

|T̃t1(x)|2 dxdt

tn+1

)
ν(y) dy =:

∫

Q

A2
Q(y) ν(y) dy

≤
(∫

Q

A
2Åq
Q dy

)1/ Åq(∫

Q

ν(y) Åq′ dy

)1/ Åq′

≲[ν]RH Åq′

(∫

Q

A
2Åq
Q

)1/ Åq

|Q|−1/ Åq

∫

Q

ν(y) dy =

(
−
∫

Q

A
2Åq
Q dy

)1/ Åq

ν(Q),

where as before the quantity [ν]RH Åq′ is admissible if say M > Åq′(see Proposition 2.21). Therefore it is

enough to show that (−
∫

Q
A

2Åq
Q dy)1/ Åq

≲ 1. Furthermore, by the John-Nirenberg lemma for local square

functions (see Lemma 2.18), we reduce to proving that −
∫

Q
A2

Q dy ≲ 1. Using Fubini’s theorem, we see that

this last estimate is equivalent to the unweighted Carleson measure estimate

(3.11)

∫ ℓ(Q∗)

0

∫

Q∗
|T̃t1(x)|2 dxdt

t
≲ |Q∗|,

where as before Q∗ = cnQ is a dilate of Q. Since the above has to hold for every cube, we write Q in place

of Q∗ in what follows. Moreover, since the quantity ν/νx,t is invariant under scalar multiplication of ν by a

positive constant, for a fixed cube Q we may assume that ν(Q)/|Q| = 1.

First we use a stopping time argument to deal with νx,t: For a fixed constant Λ−1 < 1/4, to be selected

later, we let {Q j} j∈N be the collection of maximal dyadic sub-cubes of Q with respect to the conditions

−
∫

Q j

ν(x) dx > Λ, or −
∫

Q j

ν(x) dx < Λ−1.

We say j ∈ I1 if the first condition holds, and j ∈ I2 if the second does. By the first condition we have

∑

j∈I1

|Q j| <
∑

j∈I1

Λ−1

∫

Q j

ν(x) dx ≤ Λ−1

∫

Q

ν(x) dx = Λ−1|Q|,

since ν(Q)/|Q| = 1. On the other hand if j ∈ I2,
∫

Q j

ν(x) dx < Λ−1|Q j|, and

∫

Q∗j

ν(x) dx ≥ Λ−1|Q∗j |,

where Q∗j is the dyadic parent of Q j. Therefore,
∑

j∈I2
ν(Q j) ≤

∑
j∈I2
Λ−1|Q j| ≤ Λ−1|Q| = Λ−1ν(Q). By the

A∞ property of ν we can choose Λ, depending only on the A1 characteristic of ν, small enough such that the

above inequality implies that | ∪ j∈I2
Q j| < 1

2
|Q|. Combining this with the corresponding estimate for I1, and
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using the fact that the cubes Q j are pairwise disjoint, we see that
∑

j≥0 |Q j| < B|Q|, for B = 1/2 +Λ−1 < 1.

By Lemma 2.16, the above implies that it is enough to show that

(3.12)

∫∫

EQ

ν(x)

νx,t
|Tt1(x)|2 dx

dxdt

t
≤ C0|Q|,

where we define the sawtooth region EQ := RQ\(∪ j≥0RQ j
). To handle (3.12) we first claim the following:

(3.13) νx,t ≳ 1, for each (x, t) ∈ EQ,

with implicit constants depending only on the doubling constant of ν. To see this fix (x, t) ∈ EQ and consider

first the case x < ∪ j≥0Q j so that Λ−1 ≤ −
∫

Q′ ν(y) dy ≤ Λ, for any dyadic subcube Q′ ∈ D(Q) containing x. In

particular, choosing Q′t ∈ Dt(Q) with this property, and using the doubling property of ν we see

Λ−1 ≤ −
∫

Q′t

ν(y) dy ≈ −
∫

|x−y|<t

ν(y) dy = νx,t.

On the other hand if x ∈ Q j for some j ≥ 0 we proceed as follows: If t > 4ℓ(Q j), it means that, if as before

Q′t ∈ Dt(Q) is the unique dyadic subcube of Q containing x, then Q′t is not in the collection {Q j} j so by

definition Λ−1 ≤ −
∫

Q′t
ν(y) dy ≤ Λ, and we conclude as before since this average is comparable, by doubling

of ν, to νx,t. If ℓ(Q j) ≤ t ≤ 4ℓ(Q j) (the first inequality owing to the definition of EQ) then by definition the

dyadic parent Q̃ j of Q j satisfies Λ−1 ≤ −
∫

Q̃ j
ν(y) dy ≤ Λ, so that, again by doubling of ν, the claim follows.

We conclude, using (3.12) and (3.13), that it is enough to establish (recall ν(Q) = |Q|)

(3.14)

∫∫

EQ

|Tt1(x)|2ν(x)
dxdt

t
≤ C0|Q|.

To show this we first fix ψ = ψQ ∈ C∞c (4Q) with the property that ψ ≡ 1 in 2Q and 0 ≤ ψ ≤ 1, so that
∫∫

EQ

|Tt1(x)|2ν(x)
dxdt

t
≲

∫∫

EQ

|Ttψ(x)|2ν(x)
dxdt

t
+

∫∫

EQ

|Tt(1 − ψ)(x)|2ν(x)
dxdt

t
=: II + III.

We first handle III: Using Hölder’s inequality, with q/2 > 1 as in the hypotheses, we recall that we have

chosen M > (q/2)′ so that ν ∈ RH(q/2)′ (see Proposition 2.21),

III ≤
∫ ℓ(Q)

0

∫

Q

|Tt(1 − ψ)|2ν(x)
dxdt

t
≤
∫ ℓ(Q)

0

(∫

Q

ν(q/2)′(x) dx

)1/(q/2)′(∫

Q

|Tt(1 − ψ)|q dx

)2/q dt

t

≲

∫ ℓ(Q)

0

|Q|2/qν(Q)
(∫

Q

|Tt(1 − ψ)|q dx

)2/q dt

t
=

∫ ℓ(Q)

0

|Q|1−2/q
(∫

Q

|Tt(1 − ψ)|q dx

)2/q dt

t
,

where we used the normalization ν(Q)/|Q| = 1 in the last line. Now, since Tt satisfies L2 − Lq off-diagonal

estimates (see Definition 2.39), using as usual R j = R j(Q) = 2 j+1Q\2 jQ for j ≥ 1 and recalling that

1 − ψ ≡ 1 outside of 4Q,

(∫

Q

|Tt(1 − ψ)|q dx

)1/q

≤
∑

j≥1

(∫

Q

|Tt[(1 − ψ)1R j
]|q dx

)1/q

≤
∑

j≥1

2−n jγ1

( t

(2 jℓ(Q))

)nγ2

ℓ(Q)n(1/q−1/2)
(∫

R j

|1 − ψ|2 dx

)1/2

≲

∑

j≥1

2−n jγ
( t

ℓ(Q)

)nγ2

ℓ(Q)n(1/q−1/2)|R j|1/2 ≲
∑

j≥1

2−n j(γ−1/2)
( t

ℓ(Q)

)nγ2

|Q|1/q ≲
( t

ℓ(Q)

)nγ2

|Q|1/q
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since γ > 1/2. Plugging this into the estimate for III above we see, since γ2 > 0,

III ≲

∫ ℓ(Q)

0

|Q|
( t

ℓ(Q)

)2nγ2 dt

t
≲ |Q|.

This is the desired estimate for III.

To handle II we first define, for Q′ ∈ D(Q), I(Q′) := {(x, t) ∈ RQ : x ∈ Q′, ℓ(Q′)/2 < t ≤ ℓ(Q′)}, the

Whitney region in Rn+1
+ associated to Q′. We see that

II =
∑

Q′∈D(Q)
Q′∩Q j=∅,∀ j

∫∫

I(Q′)
|Ttψ(x)|2ν(x)

dxdt

t
.

We now use Hölder’s Inequality with q > 2 so that the Lq reverse Hölder inequality for Tt holds, again

noting that we have chosen M large enough to guarantee ν ∈ RH(q/2)′ , to conclude that

II ≤
∑

Q′∈D(Q)
Q′1Q j,∀ j

(∫∫

I(Q′)
|Ttψ|q

dxdt

t

) 2
q
(∫∫

I(Q′)
ν(

q
2

)′ dxdt

t

)1/(
q
2

)′

≲

∑

Q′∈D(Q)
Q′1Q j,∀ j

|Q′|1/(
q
2

)′
(∫∫

I(Q′)
|Ttψ|q

dxdt

t

) 2
q

,

where we used that for Q′ satisfying Q′ 1 Q j for all j (i.e. for Q′ not contained in any of the Q j) we have,

by construction of the Q j, −
∫

Q′ ν(x) dx ≈ 1. We now use reverse Hölder assumption on Tt to obtain

(
−−
∫∫

I(Q′)
|Ttψ|q

dxdt

t

)2/q

≲ −−
∫∫

I([Q′]∗)
|S tψ|2

dxdt

t
.

Therefore, using this in the estimate for II,

II ≲
∑

Q′∈D(Q)
Q′1Q j,∀ j

|Q′|1/p′ |Q′|1/p−−
∫∫

I([Q′]∗)
|S tψ|2 dxdt ≲

∑

Q′∈D(Q)
Q′1Q j,∀ j

∫∫

I([Q′]∗)
|S tψ|2

dxdt

t
≲

∫∫

RQ∗
|S tψ|2

dxdt

t
.

The desired estimate now follows from the fact that Tt satisfies an L2(Rn) square function estimate and

∥ψ∥L2(Rn) ≲ |Q|
1
2 by construction. Combining the estimates for II and III, (3.14) follows and thus, by our

previous reductions, we have shown

∥S(Tt1 · Pt f )∥L2(ν) ≲ ∥ f ∥L2(ν).

It remains to handle the contribution of R̃t. Notice that so far, we have only required that ν ∈ A2/r and

γ > 1/r. The extra assumptions will be needed in order to handle R̃t. Again as in the proof of Lemma 3.1

we will appeal to interpolation with change of measure (see Theorem 2.25). For this it is enough to prove

the following pair of estimates:

(3.15)

∥∥∥
(
−
∫

|x−y|<t

|R̃tQ2
s f (y)|2 dy

)1/2∥∥∥
L2(Rn)

≲[νM]A1
min

( t

s
,

s

t

)β
∥Qs f ∥L2(Rn),

valid for some (and therefore all) Littlewood-Paley family (Qs)s and some β > 0; and

(3.16)

∥∥∥
(
−
∫

|x−y|<t

|R̃tQ2
s f (y)|2 dy

)1/2∥∥∥
L2(ν)
≲[νM]A1

∥Qs f ∥L2(ν).

We remark that in the first quasi-orthogonality estimate (3.15), even though the estimate itself is un-

weighted, R̃t still has a dependence on ν. The uniform L2(ν) estimate is handled the same way it was

done for the conical; setting h := Q2
s f we see
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(∫

Rn

−
∫

|x−y|<t

|R̃th(y)|2 dyν(x)dx

)1/2

≲

( ∑

Q∈Dt

∫

Q

∫

|x−y|<t

|R̃th(y)|2 dy ν(x)dx

)1/2

≲

( ∑

Q∈Dt

−
∫

Q∗

∫

Q

ν(y)

νy,t
|Rth(y)|2 dy ν(x)dx

)1/2

.

By Hölder’s Inequality with exponent q/2 > 1 and M > (2/q)′, we see
∫

Q

ν(y)

νy,t
|Rth(y)|2 dy ν(x)dx ≤

(∫

Q

∣∣∣ν(y)

νy,t

∣∣∣
(

q
2

)′

dy

)1/(
q
2

)′(∫

Q

|Rth(y)|q dy

) 2
q

≲[νM]A1
|Q|1−

2
q

(∫

Q

|Rth(y)|q dy

) 2
q

.

Plugging this into the first estimate, we can now proceed as in the conical case (see Lemma 3.1), exploiting

the Lr − Lq off-diagonal decay in place of the Lr − L2.

For the quasi-orthogonality estimate we proceed as follows: We exploit the off-diagonal decay that R̃t

inherits from Rt. More explicitly we have, for fixed t, s > 0 using Fubini’s Theorem and duality
∫

Rn

−
∫

|x−y|<t

|R̃tQ2
s f (x)|2 dx dy =

∫

Rn

−
∫

|x−y|<t

ν(x)

νx,t
|RtQ2

s f (x)|2 dx dy

=

∫

Rn

ν(x)

νx,t
|RtQ2

s f (x)|2 dx =

∫

Rn

ν(x)

νx,t
RtQ2

s f (x) · RtQ2
s f (x) dx dy

=

∫

Rn

R∗t

(ν(x)

νx,t
RtQ2

s f

)
(x) · Q2

s f (x) dx ≤ ∥R∗t ((ν(x)/νx,tRtQ
2
s f )∥L2(Rn)∥Q2

s f ∥L2(Rn),

where R∗t is the adjoint of Rt, for fixed t > 0, in L2(Rn). Since ∥Q2
s f ∥L2(Rn) ≲ ∥Qs f ∥L2(Rn), we have reduced

matters to showing

(3.17)

∫

Rn

∣∣∣R∗t
(ν(x)

νx,t
RtQ2

s f

)
(x)

∣∣∣
2

dx ≲ min
( s

t
,

t

s

)α ∫

Rn

|Qs f (x)|2 dx,

for some α > 0. To save space we denote by I the left-hand-side of this last inequality. Recall that we

denote by Dt the collection of dyadic cubes of scale 2−k where t/2 < 2−k ≤ t. We compute, denoting by

Q∗ = cnQ for any cube Q ⊂ Rn where cn is a dimensional constant,

(3.18) I1/2 =

( ∑

Q∈Dt

∫

Q

∣∣∣R∗t
(ν(x)

νx,t
RtQs f

)∣∣∣
2

dx

)1/2

=

( ∑

Q∈Dt

∫

Q

−
∫

|x−y|<t

∣∣∣R∗t
(ν(x)

νx,t
RtQs f

)∣∣∣
2

dy dx

)1/2

≲

( ∑

Q∈Dt

−
∫

Q∗

∫

Q

∣∣∣R∗t
(ν(x)

νx,t
RtQs f

)∣∣∣
2

dx dy

)1/2

≲

∑

j≥0

( ∑

Q∈Dt

−
∫

Q∗

∫

Q

∣∣∣R∗t
(
1R j(Q)

ν(x)

νx,t
RtQs f

)∣∣∣
2

dx dy

)1/2

,

where we define R0(Q) := 2Q and for j ≥ 1, R j(Q) := 2 j+1Q\2 jQ and we used the triangle inequality in the

last line, together with the L2(Rn)-boundedness of R∗t . We now use the off-diagonal decay for R∗t to write,
∫

Q

∣∣∣R∗t
(
1R j(Q)

ν(x)

νx,t
RtQs f

)∣∣∣
2

dx ≤ 2−n jγ|Q|1−2/r ×
(∫

R j(Q)

∣∣∣ν(x)

νx,t
RtQ2

s f (x)

∣∣∣
r

dx

)2/r

≈ 2−n j(γ− 2
r
)|Q|

(
−
∫

R j(Q)

∣∣∣ν(x)

νx,t
RtQ2

s f (x)

∣∣∣
r

dx

) 2
r ≤ 2−n j(γ− 2

r
)|Q|

(
−
∫

R j(Q)

|RtQ2
s f |2

)
×
(
−
∫

R j(Q)

∣∣∣ν(x)

νx,t

∣∣∣
r̃

dx

) 2
r̃
,

where r̃−1 = 1/r − 1/2 by Hölder’s inequality. Plugging this estimate into (3.18), we see that

(3.19) I1/2
≲

∑

j≥0

( ∑

Q∈Dt

−
∫

Q∗
C2

j |Q|
(
−
∫

R j(Q)

|RtQ2
s f (x)|2 dx

)(
−
∫

R j(Q)

∣∣∣ν(x)

νx,t

∣∣∣
r̃

dx

)2/̃r

dy

)1/2

,
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where we have defined C j := 2−n j(γ−2/r). Since M > r̃, so that ν ∈ RHr̃ (see Proposition 2.21). Moreover,

using the doubling property of ν and denoting Cdoub to be the doubling constant, we have

(3.20) νx,t ≥ 2 jC
− j
doubνx,2 jt ≈ C

− j
doub2 jν(Q′j),

where Q′ is any cube with ℓ(Q′j) ≈ 2 jt containing x. Therefore decomposing R j(Q) into N = N(n) cubes

Q′ of sidelength 2 jt we compute

(
−
∫

R j(Q)

∣∣∣ν(x)

νx,t

∣∣∣
r̃

dx

)1/̃r

≲

(∑

Q′
−
∫

Q′

∣∣∣ν(x)

νx,t

∣∣∣
r̃

dx

)1/̃r

≲[νM]A2

(∑

Q′

(
−
∫

Q′

ν(x)

νx,t
dx

)r̃)1/̃r

≲ C
j
doub2− j

(∑

Q′

(ν(Q′)|Q′|
ν(Q′)|Q′|

)r̃)1/̃r

≲ C
j
doub2− j,

where we used (3.20) in the second to last line. In what follows, we absorb this constant into C j, now

writing C̃ j := 2−n j(γ+1/n−2/r−log2(Cdoub)/n). Plugging this into the estimate for I, appearing in (3.19), and

using Fubini’s Theorem, we have that

I1/2
≲

∑

j≥0

( ∑

Q∈Dt

−
∫

Q∗
C̃2

j |Q|−
∫

R j(Q)

|RtQ2
s f (x)|2 dx dy

) 1
2 ≈

∑

j≥0

( ∑

Q∈Dt

∫

Q∗
C̃2

j−
∫

|x−y|<2k+1t

|RtQ2
s f (x)|2 dx dy

) 1
2

≈
∑

j≥0

(
C̃2

j

∫

Rn

−
∫

|x−y|<2(k+1)t

|RtQ2
s f (x)|2 dx dy

) 1
2

≲

(∫

Rn

|RtQ2
s f (x)|2 dx

)1/2(∑

j≥0

C̃2
j

) 1
2

≲

(∫

Rn

|RtQ2
s f (x)|2 dx

) 1
2

,

where in the last step we used that Cdoub ≲n [ν]A1
≤ Cδ. This gives the desired estimate (3.17), since we

have good quasi-orthogonality estimates (see the proof of Theorem 4.4). □

4. Extrapolation of Square Function Estimates

In this section, we obtain weighted and Lp estimates for operators of the form tm∂m
t ∇(SLt ∇), for some

m ∈ N large. The main ingredients for these estimates are the Lr −Lq off-diagonal diagonal decay estimates

for our operators (see Propositions 2.56 and 2.59) for r < 2 < q, used implicitly through the extrapolation

results of the previous sections.

At this stage we also mention the work [Pri19], where the vertical and conical square functions for objects

associated to the heat and Poisson semigroups of L (without lower order terms) are considered. We remark

that our objects are a bit more technically involved to handle, in part due to the mild off-diagonal decay

that they enjoy. Nevertheless, the basic idea of extrapolation and control of the vertical square function by

a conical square function is the same.

In order to simplify the statement of our results, we make use of the following definition which encap-

sulates the assumptions that L must satisfy.

Definition 4.1 (Hypothesis A). We say that the operator L satisfies hypothesis A if the following hold.

(1) L has the form L = −div(A∇ + B1) + B2 · ∇, for some Bi ∈ Ln(Rn;Cn+1) and a complex elliptic,

t-independent, matrix A, that is, for some λ > 0, a.e. x ∈ Rn and every ξ, ζ ∈ Cn+1 it holds that

λ|ξ|2 ≤ Re(A(x)ξ · ξ), |A(x)ξ · ζ | ≤ 1

λ
|ξ||ζ |.
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(2) With ρ̃1 > 0 as in Theorem 1.4, we have

max{∥B1∥Ln(Rn), ∥B2∥Ln(Rn)} < ρ̃1.

We will say a quantity depends on ellipticity if it depends only on λ and ρ̃1.

Next, we state the main result of this section.

Theorem 4.2 (Lp extrapolation of square function estimates). Suppose that L satisfies Hypothesis A (see

Definition 4.1), and let Θt,m be any one of the operators

tm∂m−1
t ∇(SLt ∇), tm∂m−1

t ∇(SLt Bi), tm∂m−1
t Bi(SLt ∇), i = 1, 2.

Then there exist ε0 > 0, m0 ∈ N, and ρ0 > 0 depending on dimension and ellipticity, such that for every

m ≥ m0 and p ∈ (2 − ε0, 2 + ε0), we have the estimate

∥S(Θt,m f )∥Lp(Rn) + ∥V(Θt,m f )∥Lp(Rn) ≲p ∥ f ∥Lp(Rn),

provided that max{∥B1∥Ln(Rn), ∥B2∥Ln(Rn)} < ρ0.

Let us give a quick roadmap to the location of the proofs of the various estimates summarized in the

previous theorem.

• The conical square function estimate for tm∂m−1
t ∇(SLt ∇) is obtained in Theorem 4.12, while the

vertical square function estimate is given in Theorem 4.13.

• The estimates for tm∂m−1
t ∇(SLt B) are contained in Corollary 4.14.

• The results for tm∂m−1
t B(SLt ∇) are obtained in Lemma 4.7. There the results are obtained for the

operator with the gradient replaced by a t derivative. A careful inspection of the proof though shows

that, as long as we have good estimates for the operator tm∂m−1
t ∇(SLt ∇), the same argument applies.

• Estimates for the double layer potential are obtained in Theorem 4.15.

4.1. Estimates for ∇SLt . In this subsection we prove the relevant estimates for operators of the form

tm∂m
t ∇SLt . These will follow immediately from the extrapolation results from the previous section; together

with the off-diagonal estimates obtained in Propositions 2.56 and 2.59.

Remark 4.3. We would like to be able to apply Lemmas 3.1 and 3.7 to Θt,m = tm∂m
t (SLt ∇∥) to handle

the double layer potential; it is not a simple matter however to obtain the necessary quasi-orthogonality

condition in those (one reason is that in the regime s < t we need to ªaddº derivatives to Θt,m, while taking

them away from Qs; however adding derivatives to Θt,m is tricky since we already have a ∇∥ in front. We

will have to use the equation to circumvent this issue). We will treat this operator separately, in Section 4.2.

Theorem 4.4. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let Θt,m = tm∂m
t ∇SLt , then there

exist ε1 > 0 and m1 ∈ N, depending on dimension and ellipticity, such that if m ≥ m1 and 2 − ε1 < p < ∞
then ∥S(Θt,m f )∥Lp(Rn) ≲p,m ∥ f ∥Lp(Rn).

Proof. This follows immediately from Lemma 3.1. The off-diagonal decay is contained in Proposition 2.56,

while the quasi-orthogonality estimate (3.2) for Rt is obtained in the proof of the L2 square function bound

for Θt,m (see [BHLMP22, Theorem 5.1]); we sketch it here for completeness. Fix 0 < s < t and we choose

Qs = sdiv∥Q̃s, so that

Θt,mQsh(x) = tm∂m
t ∇SLt (sdiv∥Q̃sh)(x) =

s

t
tm+1∂m

t ∇(SLt ∇∥)(Q̃sh),
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and we appeal to [BHLMP22, Lemma 6.2], which shows that the operator tm+1∂m
t ∇(SLt ∇∥) is uniformly

bounded in L2(Rn), moreover so is Q̃s. This takes care of the contribution of Θt,m to Rt. To handle the other

term we further choose Pt = P̃tP̃t for an approximate identity P̃t and note that |Θt,m1(x)|P̃t is uniformly

bounded in L2(Rn) while P̃tQs satisfies good quasi-orthogonality estimates when s < t. Finally, the L2

square function bound is obtained in [BHLMP22, Theorem 5.1, Lemma 5.2]. □

We now turn to the appropriate vertical square function bounds.

Theorem 4.5 (Lp Bounds for Vertical Square Function). Suppose that L satisfies Hypothesis A (see Defi-

nition 4.1). Let Θt,m := tm∂m
t ∇SLt . There exists ε2 > 0 and m2 ∈ N, depending on dimension and ellipticity,

such that if p ∈ (2 − ε2, 2 + ε2) and m ≥ m2 then ∥V(Θt,m f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

Proof. We use Remark 3.10, with Tt = tm∂m
t ∇SLt and S t = tm−1∂m

t SLt . Then the square function bound for

Tt follow from [BHLMP22, Theorem 5.1, Lemma 5.2], while the square function bound S t follows from

[BHLMP22, Theorem 5.1]. The comparability of T and S , as in Remark 3.10, follows from Caccioppoli’s

inequality (Proposition 2.49), and the Reverse Hölder inequality for S t is contained in Proposition 2.54,

recalling that S t f (x) is a solution of Lu = 0 in Rn+1
+ (see for instance [BHLMP22, Proposition 3.16]).

The necessary off-diagonal decay for both S and T is in Proposition 2.56, choosing m large enough. The

conclusion now follows from Lemma 3.7. □

While the extrapolation result in Lemma 3.7 is interesting on its own, it turns out that in our context,

exploiting Caccioppoli’s inequality, it is easy to get a much stronger bound (in fact the moral of the proof

seems to be that, if Tt enjoys a reverse Hölder inequality on slices, then we can always control the vertical

square function by the conical in an interval around p = 2). We state this in the following

Theorem 4.6 (Weighted Bounds for Vertical Square Function). Suppose that L satisfies Hypothesis A (see

Definition 4.1). Let Θt,m := tm∂m
t ∇SLt . There exist m′2 ∈ N and M2 ≥ 1, depending on dimension and

ellipticity, such that for every m ≥ m′2, M ≥ M2 and every ν ∈ A2 with the property νM ∈ A2 it holds

∥V(Θt,m)∥L2(ν) ≈ ∥S(Θ̃t,m f )∥L2(ν) ≲[νM]A2
∥ f ∥L2(ν),

where we define

Θ̃t,m f (x) :=

√
ν(x)

−
∫
|x−y|<t

ν(y)dy
Θt,m f (x) =

√
ν(x)

νx,t
Θt,m f (x).

Proof. We note, from the beginning of the proof of Lemma 3.7, that the comparability ∥V(Θt,m f )(x)∥L2(ν) ≈
∥S(Θ̃t,m f )∥L2(ν) holds for any weight ν. Therefore it remains to estimate the conical square function associ-

ated to Θ̃t,m. First, we write

∥S(Θ̃t,m f )∥2L2(ν) =

∫

Rn

∫ ∞

0

−
∫

|x−y|<t

ν(y)

νy,t
|Θt,m f (y)|2 dy

dt

t
ν(x)dx,

and then, by the Hölder and Caccioppoli inequalities,

−
∫

|x−y|<t

ν(y)

νy,t
|Θt,m f (y)|2 dy ≤

(
−
∫

|x−y|<t

∣∣∣ν(y)

νy,t

∣∣∣
q′

dy

)1/q′(
−
∫

|x−y|<t

|Θt,m f (y)|2q dy

)1/q

≲[νM]A2

(
−
∫

|x−y|<t

|Θt,m f (y)|2q dy

)1/q

≲

(
−
∫ 3t/2

t/2

−
∫

|x−y|<2t

|θs,m−1 f (y)|2q dyds

)1/q
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where we have defined θs,m−1 := tm−1∂m
t SLt , and chosen q ∈ (1, 2) such that our operators satisfy a 2q

Caccioppoli Inequality on slices (see Proposition 2.51) and then chosen M > q′. Now since θs,m−1 satisfies

a reverse Hölder Inequality (see Proposition 2.54) we see that

(
−
∫ 3t

2

t
2

−
∫

|x−y|<2t

|θs,m−1 f (y)|2q dyds

) 1
q

≲ −
∫ 7t

4

t
4

−
∫

|x−y|<3t

|θs,m−1 f (y)|2 dyds ≲ −
∫ 7t/4

t/4

−
∫

|x−y|<4s

|θs,m−1 f (y)|2 dyds.

The desired result follows now from Fubini’s theorem and the fact that conical square functions with dif-

ferent cone appertures are comparable (see the comments after Definition 2.2). □

In what follows we need square function estimates for the operators tm∂m
t BSLt , where B ∈ Ln(Rn) is

independent of the transversal variable. The L2 case follows from the bounds for tm∂m
t ∇SLt and Sobolev’s

inequality, the case p , 2 requires a more involved argument both for vertical and conical square functions.

Lemma 4.7. Suppose that L satisfies Hypothesis A (see Definition 4.1). For a function B ∈ Ln(Rn),

independent of the t variable and m ∈ N consider the operators ΘB
t,m f (x) := tm∂m

t BSLt f (x), Θt,m f (x) :=

tm∂m
t ∇∥SLt f (x). For every 1 < p < n and f ∈ C∞c (Rn) it holds

∥V(ΘB
t,m f )∥Lp(Rn) ≲ ∥V(Θt,m f )∥Lp(Rn).

Moreover, if θt,m f := tm∂m+1
t SLt f , then for any 1 < p < ∞,

∥S(ΘB
t,m f )∥Lp(Rn) ≲ ∥S(Θt,m f )∥Lp(Rn) + ∥S(θt,m−1 f )∥Lp(Rn) ≲ ∥S(θt,m−1 f )∥Lp(Rn).

Proof. We begin with the bound for the conical versions. First note that the second inequality follows from

the fact that conical square functions, in our setting, always ªtravel up" by the L2 Caccioppoli inequality.

To handle the first inequality we note that for fixed x ∈ Rn and t > 0 we have, by Hölder’s and Poincaré-

Sobolev Inequalities,

(
−
∫

|x−y|<t

|ΘB
t,m f (y)|2 dy

)1/2

≲
∥B∥Ln(Rn)

t

(
−
∫

|x−y|<t

|tm∂m
t SLt f (y)|2∗ dy

)1/2∗

≲ ∥B∥Ln(Rn)

[(
−
∫

|x−y|<t

|Θt,m f (y)|2 dy

)1/2

+ |(θt,m−1 f )x,t|
]
,

where (θt,m−1 f )x,t denotes the average of θt,m−1 f on the n-ball |x − y| < t. The result now follows from

Jensen’s inequality and the definition of S.

The vertical square function is a bit more involved. The idea is to write

ΘB
t,m f (x) = BI1R∇∥tm∂m

t SLt f (x) = BI1RΘt,m f (x),

where I1 is the fractional integral of order 1 and R is a vector valued Riesz Transform (note that the above

makes sense in L2(Rn) owing to the slices estimates of [BHLMP22, Theorem 1.4] and the mapping proper-

ties of I1 and R). Therefore, by Hölder’s Inequality

∥V(ΘB
t,m f )∥Lp(Rn) ≤ ∥B∥Ln(Rn)∥V(I1RΘt,m f )∥Lp∗ (Rn),

where 1/p∗ = 1/p − 1/n is the Sobolev exponent in dimension n. The desired result follows from the

following estimate: Let F : Rn+1
+ → C, then for every 1 < p < n,

∥V(I1RF)∥Lp∗ (Rn) ≲ ∥V(F)∥Lp(Rn).

To show this, first note that for every 1 < p < ∞ we have

∥V(RF)∥Lp(Rn) ≲ ∥V(F)∥Lp(Rn).
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This is a consequence of the weighted estimate
∫

Rn

∫ ∞

0

|RF(x, t)|2 dt

t
ν(x)dx ≲

∫

Rn

∫ ∞

0

|F(x, t)|2 dt

t
ν(x)dx, ν ∈ A2,

and the extrapolation theorem for Ap weights (see Theorem 2.22). Therefore it is enough to prove the

estimate for I1 alone. For this we will need an off-diagonal extrapolation result (see [CMP11, Theorem

3.23]) to reduce matters to proving
(∫

Rn

∫ ∞

0

|I1F(x, t)|2 dt

t
ν2(x)dx

)1/2

≲

(∫

Rn

(∫ ∞

0

|I1F(x, t)|2 dt

t

)2∗/2
ν(x)2∗dx

)1/2∗
,

where 1/2∗ = 1/2 + 1/n, and the above holds for every ν ∈ A2∗,2 (see Definition 2.32). To prove the above

inequality we appeal to Theorem 2.33 to obtain, for a weight ν as above, ∥I1g∥L2(ν2) ≲ ∥g∥L2∗ (ν2∗ ). Therefore

(∫

Rn

∫ ∞

0

|I1F(x, t)|2 dt

t
ν2(x)dx

)1/2

≲

(∫ ∞

0

(∫

Rn

|F(x, t)|2∗ ν(x)2∗dx

)2/2∗ dt

t

)1/2

.

The desired bound now follows from Minkowski’s inequality (in L2/2∗). □

Remark 4.8. More generally, the proof above gives weighted inequalities and, in fact, shows the following:

Weighted bounds T : L2(ν)→ L2(ν) imply that ∥V(T F)∥L2(ν) ≲ ∥V(F)∥L2(ν). The same is true for the conical

square function if T in addition has good local estimates, we refer to [AP17].

4.2. Estimates for (SLt ∇). We will need the analogue of Lemma 4.7 for the dual (in L2(Rn)) operator.

Lemma 4.9. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let B ∈ Ln(Rn;Cn) and set

Θt,m := tm∂m
t (SLt ∇∥) and ΘB

t,m := tm∂m
t SLt B. then for any weight ν ∈ A2 we have

∥S(ΘB
t,m f )∥L2(ν) ≲[ν]A2

∥B∥Ln(Rn)∥S(Θt,m)∥L2(ν)→L2(ν)∥ f ∥L2(ν).

In fact the constant can be shown to be at most a dimensional constant times [ν]1+α
A2

for some α < 1 (see for

instance [Pet08] and [LMPT10])

Proof. We begin by writing, for f ∈ C∞c (Rn;Cn), B · f = div∥I1I1∇∥(B · f ) = div∥I1R(B · f ), where I1 is the

fractional integral of order 1. Therefore ΘB
t,m f = Θt,m(I1R(B · f )), and so

∥S(ΘB
t,m f )∥L2(ν) ≲ ∥S(Θt,m)∥L2(ν)→L2(ν)∥RI1(B · f )∥L2(ν).

Since R : L2(ν) → L2(ν) by the Coifman-Fefferman maximal inequality (see Proposition 2.21), the result

follows from Proposition 2.34. □

Theorem 4.10 (Square Function bounds for (SLt ∇)). Suppose that L satisfies Hypothesis A (see Definition

4.1). Let Θt,m := tm∂m
t (SLt ∇) and Θ

∥
t,m := tm∂m

t (SLt ∇∥) and δ ∈ (0, 1). Then there exist M > 0, m3 ∈ N
(depending only on dimension, ellipticity, and for m3 also δ) such that for every m ≥ m3 and if νM ∈ A2 is

such that [νM]A2
≤ Cδ (with Cδ as in 7 of Proposition 2.21) then

∥S(Θ∥t,m f )∥L2(ν) ≲Cδ,m ∥ f ∥L2(ν),

provided that15 ∥B2∥∥Ln(Rn) ≤ ρ3, for some ρ3 depending only on dimension, ellipticity of L∥16 and Cδ.

In particular, for p ∈ (2 − 1/2M, 2 + 1/2M), it holds

∥S(Θt,m f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

15This is one of the few places where we may require additional smallness in addition to that imposed in [BHLMP22], prior to

discussing existence and uniqueness of the solutions to the boundary value problems.
16More precisely, the dependence on the ellipticity of L∥ is through the constants appearing in Theorem 2.62.
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Proof. We follow the same outline as in the proof the corresponding unweighted L2 bound for this object

(see [BHLMP22, Lemma 5.26], which in turn is based on the method in [HMM15a]). Throughout we fix

Qs a CLP family (see Definition 2.14) with smooth compactly supported kernel, and set Pt := −
∫ ∞

t
Q2

s

ds

s
.

By the Hodge decomposition and the weighted estimates in Theorem 2.62, we see that it is enough to show

∥S(Θt,mA∥∇∥F)∥L2(ν) ≲[νM]A2
∥∇∥F∥L2(ν).

We start by writing, via the Coifman-Meyer technique [CM86],

Θ
∥
t,mA∥∇∥F(x) = (Θ

∥
t,m(A∥∇∥F)(x) − [Θ

∥
t,mA∥(x)] · Pt∇∥F(x)) + [Θ

∥
t,mA∥(x)] · Pt∇∥F(x)

=: Rt(∇∥F)(x) + [Θ
∥
t,mA∥(x)] · Pt∇∥F(x).

Since these objects already satisfy good (unweighted) L2 estimates, the difficulties now shift to the

ªerror" term Rt; indeed, using the weighted version of Carleson’s lemma (see Lemma 2.30) to handle

the second term it is enough to show that

(4.11) µ(RQ) ≲ ν(Q), for each Q ⊂ Rn,

where we have defined the measure µ as (recall that we are trying to control a conical square function)

dµ(x, t) :=
(
−
∫

|x−y|<t

|Θ∥t,mA∥(y)|2 dy

)ν(x)dxdt

t
.

To obtain (4.11), owing to the off-diagonal decay of Θ
∥
t,m in Proposition 2.56 and the fact that dµ is a

Carelson measure when ν = 1 by [BHLMP22, Lemma 5.26], we can mimic the argument used in the

proof of the extrapolation theorem for conical square functions (Theorem 3.1) involving the John-Nirenberg

lemma for local square functions (Lemma 2.18); we omit the details.

It now remains to show that Rt has good square function bounds. This is the main part of the proof; we

will follow almost verbatim [BHLMP22, Lemma 5.26], replacing weighted bounds where appropriate. We

begin by rewriting Rt in the following way:

Rt = Θ
∥
t,mA∥ − [Θ

∥
t,mA∥]Pt =

(
Θ
∥
t,mA∥Pt − [Θ

∥
t,mA∥]Pt

)
+ Θ

∥
t,mA∥(I − Pt) =: R

[1]
t + R

[2]
t .

Since Θ
∥
t,m has good off-diagonal decay by Proposition 2.56 (see also [AAAHK11, Lemma 3.3]), so does Rt

and satisfies the quasi orthogonality estimate (3.2), thanks to the presence of the Pt term. We can then apply

the extrapolation lemma for conical square functions (Lemma 3.1) to conclude that ∥S(R[1]
t ∇∥F)∥L2(ν) ≲

∥∇∥F∥L2(ν), for each ν ∈ A2/r and some 1 < r < 2. For the term R
[2]
t we will use the equation in the form

of the identities on slices (see [BHLMP22, Proposition 3.19]). For notational convenience, we will denote

Zt := (1 − Pt), and also b⃗ := (An+1,1, . . . , An+1,n), a⃗ := (A1,n+1, . . . , An+1,n+1). We write

R
[2]
t (∇∥F) = Θ

∥
t,mA∥Zt∇∥F = Θ∥t,mA∥∇∥ZtF = ∂tΘt,ma⃗ZtF − θt,m(b⃗∇ZtF) + Θt,mB1ZtF

− tθt,m−1(B2∥∇∥ZtF) + θt,m(B2⊥ZtF) =: J1 + J2 + J3 + J4 + J5,

where as usual we have defined θt,m := tm∂m+1
t SLt . To handle J1 we note that, owing to the Lr − L2 off-

diagonal decay of Θt,m (Proposition 2.56) and the average weighted estimates on slices of Proposition 2.40,

∥S(J1)∥2L2(ν) =

∫ ∞

0

∫

Rn

−
∫

|x−y|<t

|Θt,m+1a⃗t−1ZtF(y)|2 dyν(x)dx
dt

t
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≲[ν]A2/r

∫ ∞

0

∫

Rn

|⃗at−1ZtF(x)|2 ν(x)dx
dt

t
≲ ∥∇∥F∥L2(ν),

where we have used Proposition 2.35 to handle the square function associated to Zt in the last line.

For J2 we rewrite as follows:

J2 = θt,m(b⃗ · ∇∥F) +
(
θt,m(b⃗ · Pt∇∥F) − [θt,mb⃗] · Pt∇∥F

)
+ [θt,mb⃗] · Pt∇∥F =: J2,1 + J2,2 + J2,3.

Again appealing to the John-Nirenberg lemma for local square functions (Lemma 2.18, see also the proof

of Lemma 3.1) we see that the contribution of J2,3 is under control by the weighted version of Carleson’s

lemma (Lemma 2.30). The term J2,2 we can handle the same way we did R
[1]
t ; we omit the details. Finally,

by Theorem 4.6, we have good weighted conical square function bounds for θt,m and b⃗ ∈ L∞(Rn), so the

contribution of J2,1 is also under control.

For J3 we appeal to Proposition 2.60, which, for s < t, gives the bound (for I1g = F)
∥∥∥
(
−
∫

|x−y|<t

|Θt,mB1I1Q2
sg(y)|2 dy

)1/2∥∥∥
L2(ν)
≲

( s

t

)β
∥Qsg∥L2(ν).

Therefore

∥S(J3)∥L2(ν) =

∫ ∞

0

∫

Rn

−
∫

|x−y|<t

|Θt,mB1(1 − Pt)F(y)|2 dy ν(x)dx
dt

t

=

∫ ∞

0

∫

Rn

−
∫

|x−y<t

∣∣∣Θt,mB1I1

∫ t

0

Q2
sg(y)

ds

s

∣∣∣
2

dy ν(x)dx
dt

t

≲β

∫ ∞

0

∫

Rn

−
∫

|x−y|<t

∫ t

0

( t

s

)β/2
|Θt,mB1I1Q2

sg(y)|2 ds

s
dy ν(x)dx

dt

t

≲

∫ ∞

0

∫ ∞

s

( s

t

)β/2
∥Qsg∥2L2(ν)

st

t

ds

s
≲ ∥V(Qsg)∥L2(ν) ≲ ∥g∥L2(ν),

where we invoked Theorem 2.25 in the last line. To conclude we note that I1g = F and so Rg = ∇∥F,

where R is the vector-valued Riesz transform (with symbol ξ/|ξ|) and we know ∥Rg∥L2(ν) ≈ ∥g∥L2(ν) for

every ν ∈ A2; the desired bound follows from this since A2/r ⊂ A2.

To handle J4 we write it as

J4 = −tθt,m−1B2∥∇∥F + tθt,m−1B2∥∇∥PtF =: J4,1 + J4,2.

For J4,1 we appeal to Lemma 4.9 to bound

∥S(J4,1)∥L2(ν) ≲[ν]A2
∥B2∥∥Ln(Rn)∥∇∥F∥L2(ν)∥Θ∥t,m∥L2(ν)→L2(ν).

Therefore, if ∥B2∥Ln(Rn) is small enough we may hide this term on the left hand side.

We rewrite J4,2 in the following way:

J4,2 =

(
tθt,m−1(B2∥ · Pt∇∥F) − [tθt,m−1B2∥] · Pt∇∥F

)
+ [tθt,m−1B2∥] · Pt∇∥F =: R

[3]
t + [tθt,m−1B2∥] · Pt∇∥F.

The term R
[3]
t may be handled the same way as R

[1]
t , using Proposition 2.59 to obtain the right Lr − L2

off-diagonal estimates. It remains to show, by an application of the weighted version of Carelson’s lemma,

a ν-Carleson measure estimate for

dµ(x, t) :=
(
−
∫

|x−y|<t

|tm∂m
t SLt B2∥(y)|2 dy

)
ν(x)

dxdt

t
.
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This follows, once again, by an application of Lemma 2.18 (see also the proof of Lemma 3.1)17.

Finally, to handle J5, we appeal again to the Lr − L2 off-diagonal estimates of tm+1∂m+1
t SLt B2⊥ (Proposi-

tion 2.59) and Proposition 2.40 (which give that tm+1∂m+1
t SLt B2⊥ satisfies good averaged weighted bounds

on slices) to conclude

∥S(J5)∥L2(ν) ≲

∫ ∞

0

∫

Rn

∣∣∣Zt

t
F

∣∣∣
2

ν(x)
dt

t
.

We conclude by the square function estimates of Proposition 2.35, the same as we did for J1.

Combining all the above, we see that we have shown:

∥S(Θ∥t,m)∥L2(ν)→L2(ν) ≲[νM]A2
1 + ∥B2∥∥Ln(Rn)∥S(Θ∥t,m)∥L2(ν)→L2(ν).

This gives the desired bound if the left hand side is finite and ∥B∥Ln(Rn) is small enough. To achieve the

former we may work with the truncated square functions given by

Sη(Θ
∥
t,m f )(x) :=

∫ 1/η

η

−
∫

|x−y|<t

|Θ∥t,m f (y)|2 dy
dt

t
,

which satisfy ∥Sη(Θ∥t,m)∥L2(ν)→L2(ν) < ∞, owing to the estimates on slices of Proposition 2.40. Fix now Cδ

as in the assumptions, i.e. [νM] ≤ Cδ, then our estimates read (see also Theorem 2.62)

∥S(Θ∥t,m)∥L2(ν)→L2(ν) ≲C0
1 + ∥B2∥∥Ln(Rn)∥S(Θ∥t,m)∥L2(ν)→L2(ν).

Thus, choosing ∥B2∥∥Ln(Rn) < ρ = ρ(Cδ) we can hide the second term on the right hand side and conclude

the result. The Lp bounds are a consequence of this and Corollary 2.29 if we choose δ = 1/2, where recall

C1/2 is defined as in 7 of Proposition 2.21. □

Theorem 4.12. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let Θt,m := tm∂m−1
t ∇(SLt ∇) and

δ ∈ (0, 1). There exist m4 ∈ N and M > 0 (depending only on dimension and ellipticity, and for m4 also on

δ) such that if m ≥ m4 and ν ∈ A2 is such that [νM]A2
≤ Cδ, then

∥S(Θt,m f )∥L2(ν) ≲[νM]A2
∥ f ∥L2(ν),

provided ∥B2∥∥Ln(Rn) < ρ4, for some ρ4 depending on dimension, ellipticity of L∥, and Cδ only.

In particular there exists ε4 > 0 (depending on dimension and ellipticity) such that if p ∈ (2− ε4, 2+ ε4)

and m ≥ m4 then

∥S(Θt,m f )∥Lp(Rn) ≲p ∥ f ∥Lp(Rn).

Proof. Notice that it is enough to consider ∇∥ instead of ∇ in both instances; otherwise we are in the

situation of Theorem 4.4 or Theorem 4.10. Therefore, without loss of generality, Θt,m = tm∂m−1
t ∇∥(SLt ∇∥).

In this case, for f ∈ C∞c (Rn;Cn) we can write

Θt,m f (x) = tm∂m−1
t ∇∥SLt (div∥ f )(x) =: tm∂m−1

t ∇∥SLt g(x).

By the Caccioppoli inequality on slices (Proposition 2.51) we see that, for fixed x ∈ Rn and t > 0,

∫ ∞

0

−
∫

|x−y|<t

|tm∂m−1
t ∇∥SLt f (y)|2 dy

dt

t
≲

∫ ∞

0

−
∫ 5t/4

t/4

−
∫

|x−y|<2t

|tm−1∂m−1
t SLt g(y)|2 dy

dt

t

=

∫ ∞

0

−
∫ 5t/4

t/4

−
∫

|x−y|<2t

|sm−1∂m−1
s (SLs ∇∥) f (y)|2 dyds

dt

t
≲

∫ ∞

0

−
∫

|x−y|<2t

|sm−1∂m−1
s (SLs ∇∥) f (y)|2 dy

ds

s
.

17Notice that, since we already have good unweighted L2 square function estimates for Θt,m, the John-Nirenberg lemma gives

us that this object is under control; as opposed to the unweighted case, where we were forced to hide this term.
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The result now follows from Theorem 4.10 and the change of angle formula for square functions (see the

comments after Definition 2.2). □

The following is the weighted version of Theorem 4.2 for the vertical square function.

Theorem 4.13. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let Θt,m := tm∂m−1
t ∇(SLt ∇) and

δ ∈ (0, 1). There exists m5 ∈ N and M > 0 (depending only on dimension and ellipticity, and in the case of

m5 also on δ) such that if m ≥ m5 and ν ∈ A2 satisfies [νM]A2
≤ Cδ, then

∥V(Θt,m f )∥L2(ν) ≲C0
∥ f ∥L2(ν),

provided ∥B2∥∥ < ρ5, for some ρ5 > 0 depending only on dimension, ellipticity of L∥, and Cδ.

In particular there exists ε5 > 0 (depending on dimension and ellipticity) such that for p ∈ (2−ε5, 2+ε5)

∥V(Θt,m f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

Proof. By Theorem 4.6 and t-independence, it is enough to consider the operator Θt,m := tm∂m−1
t ∇(SLt ∇∥).

Now the idea is to repeat the proof of the weighted bound for V(tm∂m
t ∇SLt g), with g = div∥ f , in Theorem

4.6, using now instead Theorem 4.12; we omit the details. □

The next corollary is useful when dealing with square functions involving the double layer potential.

Corollary 4.14. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let ε0 > 0 and M0 > 0 be as

in Theorem 4.2. Let ΘB
t,m := tm∂m−1

t ∇(SLt B) for some B ∈ Ln(Rn;Cn+1). Then for every f ∈ C∞c (Rn;Cn+1)

∥S(ΘB
t,m f )∥L2(ν), ∥V(ΘB

t,m f )∥L2(ν) ≲[νm]A2
∥ f ∥L2(ν).

Proof. Write B∥ · f∥ = div∥∇∥I1I1(B∥ · f∥) = div∥RI1(B∥ · f∥) = div∥g∥. Notice that, by the proof of Proposition

2.34, we know ∥g∥∥Lp(Rn) ≲ ∥ f∥∥Lp(Rn) for every 1 < p < ∞. On the other hand we can also write B⊥ f⊥ =
div∥RI1(B⊥ f⊥) = div∥g⊥ where ∥g⊥∥Lp(Rn) ≲ ∥ f⊥∥Lp(Rn). Combining these two observations the result

follows from either Theorem 4.12 for the conical version or Theorem 4.13 for the vertical. □

Recall that for N⃗ = −en+1 the exterior normal to ∂Rn+1
+ we have the representation formula for the double

layer DLt f = (SLt ∇) · AN⃗ f + (SLt B2) · N⃗ f , for f ∈ C∞c (Rn). As an immediate consequence of this and the

previous results we have

Theorem 4.15 (Square Function Bounds for DLt . Part 1). Suppose that L satisfies Hypothesis A (see

Definition 4.1). Let ε0 > 0, m0 ∈ N, and ρ0 > 0 as in Theorem 4.2. Suppose Θt,m = tm∂m
t ∇DLt . Then for

m ≥ m0, p ∈ (2 − ε0, 2 + ε0) and f ∈ C∞c (Rn)

∥S(Θt,m f )∥Lp(Rn), ∥V(Θt,m f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

Theorem 4.16 (Estimates on Slices for ∇SLt ). Suppose that L satisfies the hypotheses of Theorem 4.2. If

ε0 > 0 is as in Theorem 4.2 and p ∈ (2 − ε0, 2 + ε0), then for f ∈ C∞c (Rn)

∥SLt f ∥Lp∗ (Rn) + ∥∇SLt f ∥Lp(Rn) ≲m,p ∥ f ∥Lp(Rn), t > 0.

Proof. The proof of this result is essentially contained in [BHLMP22, Theorem 1.4], using the Lp square

function estimates from the previous section instead. We omit the details. □

As a consequence we obtain the necessary boundedness on slices of our operators.
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Corollary 4.17. Suppose thatL satisfies the hypotheses of Theorem 4.2. If ε0 is as in Theorem 4.2, then for

every m ≥ 1, p ∈ (2 − ε0, 2 + ε0) and f ∈ C∞c (Rn;Cn+1)

∥tm∂m−1
t (SLt ∇) · f ∥Lp∗ (Rn) + ∥tm∂m−1

t ∇(SLt ∇) · f ∥Lp(Rn) ≲m,p ∥ f ∥Lp(Rn), t > 0.

If either of the gradients is replaced by ∂t, then the above remains true for m = 0.

Proof. It is enough to treat ∇(SLt ∇∥) by t-independence. The idea is to write ∇(SLt ∇∥ f ) = ∇SLt div∥ f
and apply the Lp Caccioppoli’s inequality on slices (Proposition 2.51) once, and then use induction (recall

that the off-diagonal decay already gives uniform Lp bounds for m large enough). Details can be found

in [AAAHK11, Lemma 2.11]. □

Similarly we have the result for Bi in place of the gradient, the proof is a simple application of Sobolev’s

inequality for m = 0, Caccioppoli’s inequality on slices, and duality.

Corollary 4.18. Suppose that L satisfies the hypotheses of Theorem 4.2. If ε0 > 0 is as in Theorem 4.2,

m ≥ 0, and p ∈ (2 − ε0, 2 + ε0), then for f ∈ C∞c (Rn) and g ∈ C∞c (Rn;Cn+1)

∥tm∂m
t BiSLt f ∥Lp(Rn) ≲ ∥ f ∥Lp(Rn), ∥tm∂m

t (SLt Bi) · g∥Lp(Rn) ≲ ∥g∥Lp(Rn).

The following result is really a corollary of the above estimates; we state it on its own for future reference.

Theorem 4.19 (Estimates on Slices forDL). Suppose L satisfies the hypotheses of Theorem 4.2. If ε0 is as

in Theorem 4.2, then for m ≥ 0 and p ∈ (2 − ε0, 2 + ε0) and f ∈ C∞c (Rn),

∥tm∂m
t DLt f ∥Lp(Rn) ≲ ∥ f ∥Lp(Rn), t > 0.

Proof. Again by Caccioppoli inequality on slices it is enough to treat the case m = 0. The result is an

immediate consequence of the following representation formula for the double layer given earlier: For

f ∈ C∞c (Rn) we haveDLt f = (SLt ∇) · (AN⃗ f ) + (SLt B2) · N⃗ f , where N⃗ = −en+1 is the exterior normal. □

The following result will be used in the proof of the non-tangential maximal function estimate.

Lemma 4.20. Suppose that u ∈ W
1,2
loc (Rn+1

+ ) is a solution of Lu = 0 in Rn+1
+ , given by either u = SLt f or

u = DLg for some f , g ∈ C∞c . For any positive Lipschitz function φ : Rn → R with ∥∇φ∥L∞(Rn) ≤ 1, if we

define the function uφ(x, t) := u(x, t + φ(x)), (x, t) ∈ Rn+1
+ , then we have

sup
t>0

∥uφ(·, t)∥Lp(Rn) ≲ ∥V(t∇u)∥Lp(Rn),

for p ∈ (2 − ε0, 2 + ε0) as in Theorem 6.1 (one has to keep in mind here that the vertical square function

ªtravels down" as long as we have good estimates on slices).

Proof. We sketch the proof: The function uφ solves an elliptic equation Lφuφ = 0 of the same type as L,

with the corresponding norms of the operator Lφ controlled in terms of those for L and ∥∇φ∥L∞(Rn). Next,

we apply [BHLMP22, Theorem 6.12] (or, more precisely, its proof of the uniform Y1,2(Rn) estimate). □
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5. Non-tangentialMaximal Function Estimates

Proposition 5.1. Let u ∈ W
1,2
loc (Rn+1

+ ) be a solution of Lu = 0 in Rn+1
+ . For all q ≥ 1 and ε > 0 it holds

that18

Ñ (ε)
2 (∇u) ≲M(Ñq(∂tu)) +M(∇∥u(·, ε)) +M(u(·, ε)) · M2(B1),

with implicit constants depending on dimension, ellipticity and q. Here we recall that we have defined, for

any r > 0 and g ∈ Lr
loc(Rn),Mr(g) :=M(|g|r)1/r. In particular, if 1 < p < n and u(·, ε) ∈ Y1,p(Rn) for every

ε > 0,

∥Ñ2(∇u)∥Lp(Rn) ≲ ∥Ñ1(∂tu)∥Lp(Rn) + sup
ε>0

∥∇∥u(·, ε)∥Lp(Rn),

whenever the right hand side is finite. Moreover, for u we have that for any p > 1,

∥Ñ2(u)∥Lp(Rn) ≲ ∥Ñ1(u)∥Lp(Rn).

Proof. The statement for u follows from the reverse Hölder inequality for solutions (Proposition 2.54) and

the comparability of Ñ defined with different parameters for Cx,t.

Fix ε > 0 and set uε(x) = u(x, ε). Fix z ∈ Rn and (x, t) ∈ Γ(z). Recall that we defined the cylinders Cx,t in

Section 2. We denote by C∗x,t the concentric dilate 2Cx,t and a∗1 the L1 average built with C∗x,t instead of Cx,t

in (2.6). By the reverse Hölder inequality in Proposition 2.54, for any c ∈ C

a2(∇u)(x, t) ≲
1

t
a∗1(u − c)(x, t) + |c|a∗2(B1)(x, t) =: I + II.

If we choose c := −
∫
∆x,t

uε dz, then we immediately see, exploiting the t-independence of B1,

II ≤ M(uε)(z) · a∗2(B1)(x, t) ≲M(uε)(z) · M2(B1)(z).

It remains to estimate I. For this purpose we compute

a∗1(u − c)(x, t) ≤ a∗1(u − uε)(x, t) + a∗1(uε − c)(x, t).

From the definition of c we see that

a∗1(uε − c)(x, t) = −−
∫∫

C∗x,t

∣∣∣uε(y) − −
∫

∆x,t

uε(w) dw

∣∣∣ dyds ≲ t−
∫

∆x,t

|∇∥uε(y)| dy ≤ tM(∇∥uε)(z),

where we used the Poincaré inequality in L1. On the other hand, by the fundamental theorem of calculus,

and introducing an average in space, we have that

a∗1(u − uε)(x, t) = −−
∫∫

C∗x,t

∣∣∣u(y, s) − u(y, ε)

∣∣∣ dyds ≤ −−
∫∫

C∗x,t

∫ s

ε

|∂τu(y, τ)| dτ dyds ≤ −−
∫∫

C∗x,t

∫ s

0

|∂τu(y, τ)|dτdyds

= −
∫

|t−s|<t/8

∫ s

0

−
∫

|x−y|<t/8

−
∫

|y−w|<τ/8
|∂τu(y, τ)| dwdy dτds

≲ −
∫

|t−s|<t/8

−
∫

|x−w|<t/2

∫ s

0

−
∫

|w−y|<τ/8
|∂τu(y, τ)| dydτ dwds.

Now we notice, for fixed s > 0,

∫ s

0

−
∫

|w−y|<τ/8
|∂τu(y, τ)| dydτ ≲

∑

k≥0

2−ks−
∫ 2−k s

2−k−1 s

−
∫

|w−y|<2−k−3 s

|∂τu(y, τ)| dydτ

18See Definition 2.5 for the truncated maximal function Ñ (ε)
2 .
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≲

∑

k≥0

2−ksa∗1(∂τu)(y, 2−k−1/2s) ≲
∑

k≥0

2−ksÑ1(∂τu)(y) ≲ sÑ1(∂τu)(y).

Plugging this estimate into the inequality preceding it we arrive at

a∗1(u − uε)(x, t) ≲ −
∫

|t−s|<t/8

−
∫

|x−w|<t/2

sÑ1(∂τu)(y) dyds ≲ tM(Ñ1(∂τu))(z),

where we used the fact that t ≈ s for the last inequality. We conclude I ≲ M(Ñ1(∂τu))(z), which, when

combined with the estimate for II yields the desired result in the case that q = 1. □

Lemma 5.2. Suppose that L satisfies Hypothesis A (see Definition 4.1). Let u(x, t) = ∂tSLt f (x) for some

f ∈ C∞c (Rn) or u(x, t) = DLt g for some g ∈ C∞c (Rn). There exists m6 ∈ N and ε6 > 0 such that if m ≥ m6

and p ∈ (2 − ε6, 2 + ε6) then for every q < p,

∥Ñq(θt,m f )∥Lp,∞(Rn) ≲ ∥S(Θt,m+1 f )∥Lp(Rn) + ∥V(Θt,1 f )∥Lp(Rn),

with implicit constants depending on p,m, n and ellipticity; and where we have defined, in the case of

u(x, t) = ∂tSLt f (x),

Θt,m f := tm∂m
t ∇SLt f = tm∂m−1

t ∇u, and θt,m f := tm∂m
t ∂tSLt f = tm∂m

t u,

and in the case of u(x, t) = DLt g,

Θt,m f = tm∂m1
t ∇DL,+ f , and θt,m f = tm∂m

t DL,+ f .

Therefore the conclusion can be rewritten, in terms of u, as

∥Ñq(tm∂m
t u)∥Lp,∞(Rn) ≲ ∥S(tm+1∂m

t ∇u)∥Lp(Rn) + ∥V(t∇u)∥Lp(Rn).

Proof. For m ≥ 0 let us define a modified version of the averages aq given by

aq,m(u)(x, t) :=
(
−−
∫∫

Cx,t

|tm∂m
s u(y, s)|q dyds

)1/q

≈
(
−−
∫∫

Cx,t

|sm∂m
s u(y, s)|q dyds

)1/q

.

In particular, for z ∈ Rn, Ñq(θt,m)(z) ≈ sup(x,t)∈Γ(z) aq,m(u)(x, t). Writing for λ > 0,

|{z ∈ Rn : Ñq(θt,m f )(z) > λ}| ≤ |{z ∈ Rn : Ñq(θt,m f )(z) > λ, S(Θt,m+1 f )(z) ≤ γλ}|
+ |{z ∈ Rn : S(Θt,m+1 f )(z) > γλ}|,

we see that it is enough to prove that, for γ > 0,

|Eλ,ε| := |{z ∈ Rn : Ñε
q (θt,m f )(z) > λ, S(Θt,m+1 f )(z) ≤ γλ}| ≲ λ−p∥V(Θt,1 f )∥Lp(Rn),

with constants uniform in ε and λ. Define the function φε as follows:

φε(x) := inf
{

t > ε : sup
(y,s)∈(x,t)+Γ(0)

aq,m(u)(y, s) ≤ λ
}
.

Recall that we have, from the control on slices in Corollary 4.17, if p ∈ (2 − ε0, 2 + ε0) (here ε0 is as in

Theorem 4.2 and Corollary 4.17)

(5.3) sup
t>0

∥tm∂m
t u(·, t)∥Lp(Rn) < ∞,

so in particular

(5.4) aq,m(u)(y, s) ≲ s−n/q sup
t>0

∥tm∂m
t u∥Lp(Rn).
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We conclude that lims→∞ supy∈Rn aq,m(u)(y, s) = 0, and so ε ≤ φε(x) < ∞ for every x ∈ Rn. Moreover φε
is a Lipschitz function with constant 1, since it satisfies the appropriate uniform cone condition. We set

Γφε := {(x, t) ∈ Rn+1
+ : t = φε(x)}, the graph of φε. Finally recall that we denote (u)A the average of u over a

set A ⊂ Rn+1
+ of finite measure.

We first claim that, for every z ∈ Eλ,ε and if we denote Zε := (z, φε(z)), λ ≲MΓφε (aq,m(u))(Zε), for some

implicit constant independent of λ and ε, and where MΓφε denotes the maximal function on Γφε with its

natural surface measure, which we denote by σ. To see this fix z ∈ Eλ,ε and (x, t) ∈ Zε + Γ(0) and note that,

owing to (5.4) there exists R > 0 such that aq,m(u)(x, t) ≤ λ/2 if t > R. Moreover using that Ñε
q (θt,m f )(z) >

λ, so that φε(z) > ε, there exists (y, s) ∈ Zε + Γ(0) satisfying aq,m(u)(x, t) > λ. By continuity of aq,m in

Rn+1
+ we conclude from the above that there exists a point (x, t) ∈ Zε + Γ(0) such that aq,m(u)(x, t) = λ, and

(x, t) ∈ {aq,m(u) > λ}. Note also that the above implies (x, t) ∈ Γφε , i.e. t = φε(x): For every δ > 0 there

exists (y, s) ∈ B((x, t), δ) such that aq,m(y, s) > λ, and so, since B((x, t), δ) ⊂ (x, t −
√

2δ) + Γ(0), we have

φε(x) > t−
√

2δ. Since δwas arbitrary we conclude φε(x) ≥ t. On the other hand, by the Lipschitz condition

on φε it can’t happen that Γφε intersects the interior of the cone Zε + Γ(0), therefore φε(x) ≤ t. Notice that,

in fact, the above shows that (x, t) = (x, φε(x)) ∈ ∂(Zε + Γ(0)).

Given such a point (x, t) = (x, φε(x)) := Xε, and for any (y, s) ∈ B(Xε, t/100) we have, by the Poincaré-

Sobolev inequality and writing vm(w, τ) := ∂m
τ u(w, τ),

λ = aq,m(u)(x, t) ≤
(
−−
∫∫

Cx,t

t2m|vm − (vm)Cx,t |q dwdτ
)1/q

+ tm|(vm)Cx,t − (vm)Cy,s | + tm|(vm)Cy,s |

≲

(∫∫

Cx,t

|τm∇vm|2τ1−n dwdτ
)1/2

+ tm|(vm)Cy,s | ≲ S(Θt,m+1 f )(x) + tm|(vm)Cy,s |

≤ γλ + tm|(vm)Cy,s | ≤ γλ + aq,m(u)(y, s),

where we also used the fact that x ∈ Eλ,ε and that τ ≈ s ≈ t. Choosing γ < 1 small enough we can write

λ ≲ aq,m(u)(y, s), for each (y, s) ∈ B(Xε, t/100).

From here (5.4) follows easily: Integrating the above inequality on Γφε we have

λ ≲ −
∫

B(Xε,t/100)∩Γφε
aq,m(u)(W) dσ(W) ≲ −

∫

B(Xε,t)∩Γφε
aq,m(u)(W) dσ(W),

where we have used σ(B) ≈ r(B) for any ball centered on Γφε . Moreover, since Xε ∈ ∂(Zε + Γ(0)), we have

|z− x| = |t−φε(z)| = t−φε(x) < t, and so we conclude Zε ∈ B(Xε, t) and (5.4) follows. Since (5.4) holds for

any z ∈ Eλ,ε we see that

|Eλ,ε| ≲ |{W ∈ Γφε :MΓφε (aq,m(u))(W)}| ≲ λ−p

∫

Γφε

aq,m(u)p(W) dσ(W).

Therefore, it is enough to prove that

(5.5)

∫

Γφε

aq,m(u)p(W) dσ(W) ≲ ∥V(t∇u)∥pLp(Rn).

We make a further reduction as follows: Note that, by the Lq Caccioppoli’s inequality applied m times, for

any (x, t) ∈ Rn+1
+ ,

aq,m(u)(x, t) =
(
−−
∫∫

Cx,t

|tm∂m
t u(y, s)|q dyds

)1/q

≲

(
−−
∫∫

C∗x,t
|u(y, s)|q dyds

)1/q

≈ a∗q(u)(x, t).
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Therefore the result would follow from the estimate∫

Rn

|a∗q(u)(x, φε(x))|p dy ≈
∫

Γφε

|a∗q(W)|p dσ(W) ≲ ∥V(t∇u)∥Lp(Rn).

To simplify notation we set g(x) := a∗q(u)(x, φε(x)), and ν(x) =M(g)(x)p−q. We then have that
∫

Rn

|a∗q(u)(x, φε(x))|p dy =

∫

Rn

gp(x) dx ≤
∫

Rn

gq(x)ν(x) dx.

Note that
4

5
φε(y) ≤ φε(x) ≤ 4

3
φε(y), whenever |x − y| < φε(x)

4
,

owing to the fact φε is Lipschitz with constant one.

We now go back to the definition of g and a∗q to compute,

∫

Rn

gq(x)ν(x) dx ≈
∫

Rn

−
∫

|x−y|<φε/4
−
∫ 5φε(x)/4

3φε(x)/4

|u(y, s)|q dsdy ν(x)dx

≲

∫ 5/3

4/5

∫

Rn

−
∫

|x−y|<φε(x)/8

|u(y, τφε(y))|q dy ν(x)dx dτ

≲

∫ 5/3

4/5

∫

Rn

M
(
|u(·, τφε(·))|q

)
(x) ν(x)dx dτ.

By Hölder’s Inequality with exponents p/q and p/(p − q) we see
∫

Rn

M
(
|u(·, τφε(·))|q

)
(x) ν(x)dx ≤ ∥Mq(u(·, τφε(·)))∥qLp(Rn)∥ν∥Lp/(p−q)(Rn),

and, since q < p, by the boundedness ofMq in Lp

∥Mq(u(·, τφε(·)))∥qLp(Rn) ≲

(∫

Rn

|u(x, τφε(x))|p dx

)q/p

.

Similarly,

∥ν∥Lp/(p−q)(Rn) = ∥M(g)∥p−q
Lp(Rn) ≲

(∫

Rn

|g(x)|p dx

)(p−q)/p

Combining the above estimates, we obtain
∫

Rn

gp(x) dx ≲

∫ 5/3

4/5

(∫

Rn

|u(x, τφε(x))|p dx

)q/p(∫

Rn

gp(x) dx

)(p−q)/p

dτ.

Using Hölder’s inequality again (perhaps with g(x)1g<M if necessary in order to divide by ∥g∥Lp(Rn)),
∫

Rn

gp(x) dx ≲

∫ 5/3

4/5

∫

Rn

|u(x, τφε(x))|p dxdτ.

We now note that τφε is a Lipschitz function with constant τ. Therefore the function v(x, t) = u(x, t+φε(x))

solves Lτφεv = 0 in Rn+1
+ , where the operator Lτφε is of the same type as L and moreover its coefficients

are controlled (in the appropriate norms) by those of L. Therefore, by the control on slices by the vertical

square function in Theorem 4.16 (see also Lemma 4.20)

∫

Rn

|u(x, τφε(x))|p dx =

∫

Rn

|v(x, 0)|p dx ≲

∫

Rn

(∫ ∞

0

|t∇v(x, t)|2 dt

t

)p/2

dx
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≲

∫

Rn

(∫ ∞

τφε(x)

|∇u(x, t)|2 tdt

)p/2

dx ≤ ∥V(t∇u)∥pLp(Rn).

This yields (5.5) and the result is proved. □

Remark 5.6. Notice that in the above lemma, the only things required for its proof were:

(1) θt,m satisfies good estimates on slices (as in (5.3)).

(2) We already have, for all operators of the formL = −div(A∇+B1)+B2 ·∇ (with sufficient smallness

of the first order coefficients), the control on slices by the vertical square function

∥u(·, t)∥Lp(Rn) ≲ ∥V(t∇u)∥Lp(Rn).

The following result uses the fact, proved in the next section, that V(tm∂m−1
t ∇(SLt ∇)) satisfies Lp bounds

for all m ≥ 1.

Corollary 5.7 (Lp estimate for non-tangential maximal functions of layer potentials). Suppose that L sat-

isfies the hypotheses of Theorem 4.2. If ε0 > 0 and m0 are as in Theorem 4.2, and if p ∈ (2− ε0, 2+ ε0) and

m ≥ m0 ≥ 1 then

∥Ñ2(Θt,m f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn),

where Θt,m is either tm∂m
t ∇(SLt ∇) or tm∂m−1

t ∇DLt .

Proof. We treat only the single layer. The double layer argument is identical. Also, notice by t indepen-

dence it is enough to treat the operator with the inside gradient replaced by ∇∥. First, from the pointwise

inequality in Proposition 5.1 and the dominated convergence theorem, we see that for any q ≥ 1 and p in

the above range, and setting θt,m = tm∂m
t (SLt ∇∥) = −tm∂m

t SLt div∥, we have

∥Ñ2(Θt,m f )∥Lp,∞(Rn) ≲ ∥Ñq(θt,m f )∥Lp,∞(Rn) + sup
t>0

∥Θt,m f ∥Lp(Rn).

In particular by the slices estimates in Corollary 4.17 and Theorem 4.19, and choosing q as above,

∥Ñ2(Θt,m f )∥Lp,∞(Rn) ≲ ∥S(Θt,m f )∥Lp(Rn) + ∥V(Θt,1 f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn),

where we have used Theorem 6.1 for the last step; ensuring that V(Θt,1 f ) is under control. The result now

follows from real interpolation. □

6. Traveling Down

We first establish the vertical square function estimates, since there is little difficulty there. The discrep-

ancy between these so-called traveling down procedures for the vertical and conical square functions should

be contrasted with the situation in the extrapolation arguments.

Theorem 6.1. Suppose L satisfies the hypotheses of Theorem 4.2. Let ε0 be as in Theorem 4.2, then for

p ∈ (2 − ε0, 2 + ε0) and every m ≥ 1 it holds

∥V(Θt,m f )∥Lp(Rn) ≲m ∥ f ∥Lp(Rn),

where Θt,m is either tm∂m−1
t ∇(SLt ∇) or tm∂m−1

t ∇DLt .

Proof of Theorem 6.1. We employ the same idea as in the L2 case from [BHLMP22]; integrating by parts

in t to control the square function of Θt,m in terms of Θt,m+1 plus terms that are bounded in Lp. Notice that

for m ≥ m0 large enough the desired bound is a consequence of Theorem 4.2 and Lemma 4.9 for the case

of the double layer.
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We start by defining, for η > 0,
∫

Rn

(∫ ∞

0

|Θt,m f (x)|2 dt

t

)p/2

dx = lim
η→0+

∫

Rn

(∫ 1/η

η

|Θt,m f (x)|2 dt

t

)p/2

dx =: Iη.

In particular, owing to the estimates on slices from Corollary 4.17, we see that Iη < ∞ for all such η. We

now carry out the integration by parts

Iη =

∫

Rn

(∫ 1/η

η

t2m−1|∂m
t ∇SLt div∥ f (x)|2 dt

)p/2

dx

≤
∫

Rn

(
|tm∂m

t ∇SLt div∥ f (x)|2
∣∣∣
1/η

t=η

)p/2

dx +

∫

Rn

(∫ 1/η

η

|Θt,m f (x)||Θt,m+1 f (x)|dt

t

)p/2

dx

≤ Cm∥ f ∥pLp(Rn) +

∫

Rn

(∫ 1/η

η

|Θt,m f (x)||Θt,m+1 f (x)|dt

t

)p/2

dx,

where we used the estimates on slices in Corollary 4.17 for the single layer and Theorem 4.19 for the double

layer for the last line. Finally we use Cauchy’s inequality with a parameter to obtain
∫

Rn

(∫ 1/η

η

|Θt,m f (x)|2 dt

t

)p/2

dx ≲ ∥ f ∥pLp(Rn) +

∫

Rn

(∫ 1/η

η

|Θt,m+1 f (x)|2 dt

t

)p/2

dx.

Letting η → 0 we can write ∥V(Θt,m f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn) + ∥V(Θt,m+1 f )∥Lp(Rn). The result now follows by

induction and Theorem 4.2. □

We now turn to the much harder task of traveling down with the conical square function. Here, although

the idea is the same integration by parts technique, the arguments become much more elaborate due to

the ‘space averaging’ happening alongside the integration over the transversal variable. To handle this we

will make use of the non-tangential maximal function estimates from the previous section (see Lemma 5.2)

through a modified version of the classical Carleson embedding lemma (see Lemma 2.31). However, the

use of the non-tangential maximal function makes the traveling down procedure for either this object or the

conical square function a bit subtle. It is our hope that the following lemma (which should be read with the

results of the previous section in mind) and Theorem 6.11 clarifies the intertwining of these two procedures.

We also note that for the range p > 2 we already have the conical square function bounded by the vertical

(see Proposition 2.4) by general facts about square functions, so it is only the case p < 2 that is of interest.

Lemma 6.2. Let Θt,m be either tm∂m−1
t ∇(SLt ∇) or tm∂m−1

t ∇DLt . Suppose that m ≥ 1 is given such that

S(Θt,m f ),S(Θt,m+1 f ),V(Θt,m+1 f ),V(Θt,m f ), Ñ(Θt,m f ) ∈ L2(Rn),

and supt>0 ∥Θt,m f ∥L2(Rn) < ∞, limt→∞ ∥Θt,m f ∥L2(Rn) = 0, for every f ∈ C∞c (Rn). Then, for every 1 < p < 2,

∥S(Θt,m f )∥Lp(Rn) ≲ ∥S(Θt,m+1 f )∥Lp(Rn) + ∥V(Θt,m+1 f )∥Lp(Rn)

+ ∥V(Θt,m f )∥Lp(Rn) + ∥Ñ(Θt,m f )∥Lp(Rn) + sup
t>0

∥Θt,m f ∥Lp(Rn).

Proof. We fix m ≥ 1 as in the hypotheses and define gm := supt>0 |Θt,m f | , hm = Ñ(Θt,m), and Hm :=

S(Θt,m+1 f ) + gm + hm. Recall from Proposition 2.61

∥gm∥L2(Rn) ≲ ∥V(Θt,m f )∥L2(Rn) + ∥V(Θt,m+1 f )∥L2(Rn) + sup
t>0

∥Θt,m f ∥L2(Rn).
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Therefore Hm ∈ L2(Rn) and so, by the Coifman-Rochberg theorem, we see that if we define ν(x) :=

M(S(Θt,m f ) + Hm)(x)p−2 for some 1 < p < 2, then νM ∈ A2 for any M > 1 satisfying M(2 − p) < 1 and

moreover [νM]A2
depends only on the quantity M(2 − p).

We now mimic the proof of the extrapolation lemma 2.28 and write, for fixed 1 < p < 2,

(6.3)

∫

Rn

|S(Θt,m f )(x)|p dx ≤
∫

Rn

M(S(Θt,m f ) + Hm)(x)p dx =

∫

Rn

M(S(Θt,m f ) + Hm)(x)2ν(x) dx

≲

∫

Rn

M(S(Θt,m f ))(x)2ν(x) dx +

∫

Rn

M(Hm)(x)2ν(x) dx

≲[ν]A2

∫

Rn

S(Θt,m f )(x)2ν(x) dx +

∫

Rn

M(Hm)(x)p dx ≲

∫

Rn

S(Θt,m f )(x)2ν(x) dx +

∫

Rn

Hm(x)p dx,

where we used the boundedness ofM in L2(ν), by the above discussion, and in Lp(Rn). By definition of

Hm, and Proposition 2.61, we have

(6.4) ∥Hm∥Lp(Rn) ≲p ∥V(Θt,m f )∥Lp(Rn) + ∥V(Θt,m+1 f )∥Lp(Rn) + sup
t>0

∥Θt,m f ∥Lp(Rn)

+ ∥S(Θt,m+1 f )∥Lp(Rn) + ∥Ñ(Θt,m f )∥Lp(Rn).

It thus remains to estimate the first term in (6.3). For this we will try to emulate the procedure for the

vertical square function, introducing an approximate identity Pt to smooth-out the averaging implicit in the

definition of S. We will first fix the approximate identity: For t > 0 we define Pt := et2∆, Qt := t∂te
t2∆ =

t∂tPt. We will also need to truncate our weight to formally justify our computations so we define, for N > 0,

νN := min(ν,N). We compute, using Fubini’s theorem,
∫

Rn

S(Θt,m f )(x)2 ν(x)dx =

∫

Rn

∫ ∞

0

−
∫

|x−y|<t

|Θt,m f (y)|2 dy
dt

t
ν(x) dx

=

∫

Rn

∫ ∞

0

|Θt,m f (y)|2−
∫

|x−y|<t

ν(x) dx
dt

t
dy ≲

∫

Rn

∫ ∞

0

|Θt,m f (y)|2Ptν(y)
dydt

t
=: I.

Now, by the monotone convergence theorem,

I = lim
N→∞

lim
ε→0

Iε,N := lim
N→∞

lim
ε→0

∫

Rn

∫ 1/ε

ε

|Θt,m f (y)|2PtνN(y)
dydt

t
.

Recalling the definition of Θt,m and integrating by parts in t we obtain, recalling that Qt := t∂tPt,

(6.5) Iε,N = −
1

2m

∫

Rn

∫ 1/ε

ε

∂t

(
|∂m

t SLt f |2PtνN

)
t2m dydt +

1

2m

∫

Rn

|Θt,m f |2PtνN dy

∣∣∣
1/ε

t=ε

≤ 1

m

∫

Rn

∫ 1/ε

ε

|Θt,m f ||Θt,m+1 f |PtνN

dydt

t
+

1

2m

∫

Rn

∫ 1/ε

ε

|Θt,m f |2|QtνN |
dydt

t

+
1

2m

∫

Rn

|Θ1/ε,m f |2P1/ενN dy − 1

2m

∫

Rn

|Θε,m f |2PενN dy

=: IIε,N + IIIε,N + IVε,N + Vε,N .

We handle the boundary terms first. To start we note that by Theorem 1.4 in [BHLMP22] we have that

limt→∞ ∥Θt,m f ∥L2(Rn) → 0, so that, using |PtνN | ≲ N pointwise in Rn, we obtain

IVε,N ≲ N

∫

Rn

|Θ1/ε,m f |2 dy→ 0 as ε→ 0.
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Therefore

(6.6) lim
N→∞

lim
ε→0

IVε,N = 0.

On the other hand, as ε → 0, we have PενN → νN pointwise a.e. and |Θε,m f |2 ≤ g2
m, by definition of gm.

By the Dominated Convergence Theorem (recall gm ∈ L2(Rn) and PενN ≲ N) we get that

Vε,N ≲

∫

Rn

g2
mPενN dyε→0

−→

∫

Rn

g2
mνN dy ≤

∫

Rn

g2
mν dy ≲

∫

Rn

gp
m dy,

where we used the definition of ν in the last line to conclude ν(y) ≤ M(gm)(y)p−2 and the Hardy-Littlewood

maximal theorem. We conclude

(6.7) lim sup
N→∞

lim sup
ε→0

Vε,N ≲

∫

Rn

gp
m dx.

The first term IIε,N we can treat as usual; using Cauchy’s inequality with a parameter we see

(6.8) IIε,N ≲ δ

∫

Rn

∫ 1/ε

ε

|Θt,m f |2PtνN

dydt

t
+C(δ)

∫

Rn

∫ 1/ε

ε

|Θt,m+1 f |2PtνN

dydt

t

= δIε,N +C(δ)

∫

Rn

∫ 1/ε

ε

|Θt,m+1 f |2PtνN

dydt

t

Choosing δ small enough we can hide the first term on the right hand side of (6.5).

Finally, we rewrite IIIε,N in the following way, using the Cauchy-Schwarz inequality,

IIIε,N =

∫

Rn

∫ 1/ε

ε

|Θt,m f | |QtνN |
|PtνN |

√
PtνN |Θt,m f |

√
PtνN

dydt

t
≤ Iε,N

∫

Rn

∫ 1/ε

ε

|Θt,m f |2dµN(y, t),

where we have defined

dµN(x, t) :=
|QtνN(x)|2
|PtνN(x)|2 PtνN(x)

dxdt

t
.

By Proposition 2.38 and the modified Carleson’s lemma (Lemma 2.31) we obtain
∫

Rn

∫ 1/ε

ε

|Θt,m f |2dµN(y, t) ≲

∫

Rn

Ñ(Θt,m)2 νN dy =

∫

Rn

hmνN dy ≲

∫

Rn

hp
m dy.

Therefore, applying once again Cauchy’s inequality with a parameter, we see that

(6.9) IIIε,N ≲ δIε,N +C(δ)

∫

Rn

hp
m dy.

Combining the estimates (6.8), (6.9) we arrive at

Iε,N ≲

∫

Rn

∫ 1/ε

ε

|Θt,m+1 f |2PtνN

dydt

t
+

∫

Rn

Hp
m dy + IVε,N + Vε,N ,

where we notice that Iε,N < ∞ owing to the fact that νN ≤ N and supt>0 ∥Θt,m f ∥L2(Rn) < ∞. We now use

Proposition 2.38 to get that |PtνN(y)| ≲ −
∫
|x−y|<t

νN dx and so

∫

Rn

∫ 1/ε

ε

|Θt,m+1 f (y)|2PtνN(y)
dydt

t
≲

∫

Rn

∫ 1/ε

ε

−
∫

|x−y|<t

|Θt,m+1 f (y)|2 dydt

t
ν(x) dx.

Now taking first the limit as ε→ 0 and then as N → ∞, and using (6.6), (6.7) and the previous equation,

I ≲

∫

Rn

S(Θt,m+1)2 νdx +

∫

Rn

Hp
m dx ≲

∫

Rn

Hp
m dx.
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The result now follows from the definition of Hm, more specifically (6.4). □

Remark 6.10. As far as the hypotheses of the previous result are concerned, we note that we have good

control on the quantities involving V, by Theorem 6.1. Moreover by [BHLMP22, Theorem 6.12] (see also

Hypothesis A in Definition 4.1), the conditions on the quantities ∥Θt,m f ∥L2(Rn) are also satisfied. Therefore,

under the same hypotheses as Theorem 4.2, we may rewrite the above as

∥S(Θt,m f )∥Lp(Rn) ≲ ∥S(Θt,m+1 f )∥Lp(Rn) + ∥Ñ2(Θt,m f )∥Lp(Rn).

As a corollary of this result and Lemma 5.2 on the boundedness of the non-tangential maximal function

we have the following

Theorem 6.11. Suppose L satisfies the hypotheses of Theorem 4.2. Let p ∈ (2 − ε0, 2 + ε0), with ε0 as in

Theorem 4.2. Then, for every f ∈ C∞c (Rn), we have that

∥S(t∂t∇SLt f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn), ∥Ñ2(∇SLt f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn),

and that

∥S(t∇DLt f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn), ∥Ñ2(DLt f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

Proof. We define Θt,m to be either tm∂m−1
t ∇(SLt ∇) or tm∂m−1

t ∇DLt . For p > 2 we have by Proposition 2.4

and Theorem 6.1, ∥S(Θt,1 f )∥Lp(Rn) + ∥V(Θt,1 f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn). It remains to show the non-tangential

maximal function bound when p < 2 and p > 2 and the conical square function bound when p < 2. We

will show both the square function and non-tangential maximal function bounds in the case p < 2. (The

case of the non-tangential maximal function bounds when p > 2 the same.)

We treat the case of the single layer first. By Theorem 4.2, together with the traveling down for vertical

square functions in Theorem 6.1 and Corollary 5.7 we see that for some m0 ≥ 1,

(6.12) ∥S(Θt,m0
f )∥Lp(Rn) + ∥Ñ2(Θt,m0

f )∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

We shall show that (6.12) holds with m0 replaced by m0−1, as long as m0−1 ≥ 1. To treat the non-tangential

maximal function we appeal to Corollary 5.7 to obtain

∥Ñ2(Θt,m0−1)∥Lp(Rn) ≲ ∥S(Θt,m0
f )∥Lp(Rn) + sup

t>0

∥Θt,m0−1 f ∥Lp(Rn) + ∥ f ∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

This gives the desired bound as long as m0 − 1 ≥ 1. By the traveling down procedure for the conical

square function (Lemma 6.2) we have (recall that the vertical square function is under control for any m by

Theorem 6.1)

∥S(Θt,m0−1 f )∥Lp(Rn) ≲ ∥S(Θt,m0
f )∥Lp(Rn) + ∥Ñ(Θt,m0−1 f )∥Lp(Rn)

+ sup
t>0

∥Θt,m0−1∥Lp(Rn) + ∥ f ∥Lp(Rn) ≲ ∥ f ∥Lp(Rn),

and this gives the desired square function bound for m0 − 1 ≥ 1. We have shown by induction that

∥S(Θt,1 f )∥Lp(Rn), ∥Ñ2(Θt,1)∥Lp(Rn) ≲ ∥ f ∥Lp(Rn).

To get the bound for Ñ2(∇SLt ) we use Proposition 5.1 to get

∥Ñ2(∇SLt f )∥Lp(Rn) ≲ ∥Ñq(∂tSLt f )∥Lp(Rn) + sup
t>0

∥∇SLt f ∥Lp(Rn),

for any 1 ≤ q. In particular, choosing q < p we can apply directly Lemma 5.2 and interpolation to obtain

the result. Lastly, the double layer is handled in the same way, owing to the appropriate estimates from

Theorem 4.15, Theorem 4.19 and Corollary 5.7. □
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7. Existence

In this section, we tackle the existence of solutions to the problems (D)2, (N)2, and (R)2; the case p , 2

is addressed in Section 9 and consists of essentially the same analysis. We must first probe the mapping

properties of the single and double layer potentials (see Proposition 7.1, Corollary 7.9, and Lemma 7.13),

which will allow us to deduce the jump relations (Lemma 7.8 and Proposition 7.12) and the invertibility

of the associated boundary operators (Corollary 7.3 and Theorem 7.16). By developing this machinery, in

Theorem 7.18, we give the desired existence result.

Proposition 7.1 (Mapping Properties, Part I). The operators SL : C∞c (Rn) → S 2
+, DL,+ : C∞c (Rn) → D2

+

both have unique continuous extensions to L2(Rn); that is,

SL : L2(Rn)→ S 2
+, DL,+ : L2(Rn)→ D2

+.

Moreover, for f , g ∈ L2(Rn) we have that SLg, DL,+ f ∈ W
1,2
loc (Rn+1

+ ) are solutions of Lw = 0 in Rn+1
+ , and

we have the square function estimates

∥S(t∂t∇SLt g)∥L2(Rn) ≲ ∥g∥L2(Rn), ∥S(t∇DL,+t f )∥L2(Rn) ≲ ∥ f ∥L2(Rn).

Similar considerations also hold in the lower half space (in this case we work withDL,−).

The proof is a simple density argument (using the fact that S 2
+ and D2

+ are Banach spaces), and as such

is omitted.

The next result is a statement about Sobolev functions that will allow us to eventually assign boundary

values to the extensions of the layer potentials defined above.

Proposition 7.2. Let u ∈ Y1,2(Rn+1
+ ). The following statements hold.

(i) If u ∈ D2
+ then u0 := limt→0+ u(t) exists as a weak limit in L2(Rn). Moreover u0 agrees with the

trace of u in the sense that for every Φ ∈ C∞c (Rn+1)

(u0,Φ(·, 0)) =

∫∫

Rn+1
+

(
u∂tΦ + ∂tuΦ

)
,

where (·, ·) denotes the inner product in L2(Rn).

(ii) If u ∈ S 2
+ then U0 := limt→0+ u(t) exists as a weak limit in Y1,2(Rn). Moreover, U0 agrees with the

trace of u in the sense described in i).

Proof. To prove i), we start by noticing that since u ∈ D2
+, there exists a subsequence tk → 0+ and a function

u0 ∈ L2(Rn) such that utk → u0 weakly in L2(Rn) as k → ∞. Now, again since u ∈ D2
+, we only need to show

that limt→0+(u(t), ϕ) = (u0, ϕ), for each ϕ ∈ C∞c (Rn). Consider Φ(x, t) = ϕ(x)η(t), where η ∈ C∞c (−2, 2) is

such that η ≡ 1 in (−1, 1), so that Φ ∈ C∞c (Rn+1). Now, the hypotheses imply that, for fixed t > 0,

(u(t),Φ(·, t)) =
∫∫

Rn+1
t

(
u∂tΦ + ∂tuΦ

)
,

holds, which, for our particular choice of Φ and t < 1, implies that

(u(t), ϕ) =

∫∫

Rn+1
t

(
u∂tΦ + ∂tuΦ

)
.

Hence, the dominated convergence theorem yields the desired result since u ∈ L
2(n+1)
(n−1) (Rn+1

+ ) and ∇u ∈
L2(Rn+1

+ ). The second part of the statement in i) now follows by the fact that Φ(·, t) → Φ(·, 0) strongly in

L2(Rn) for any Φ ∈ C∞c (Rn+1).
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The proof of ii) follows similar ideas. Arguing as before, we can prove that there exists a weak limit

U0 ∈ L2n/(n−2)(Rn), and that it agrees with the usual trace in the sense described in i). Similarly, along a

subsequence tk → 0, we have that ∇∥u(tk)→ v ∈ L2(Rn) weakly for some v ∈ L2(Rn)n. If we can show that

v = ∇∥U0, then the result would follow from the uniqueness of the limit. To this end, we fix ϕ ∈ C∞c (Rn;Cn)

and compute that (v, ϕ) = limk→∞(∇∥u(tk), ϕ) = − limk→∞(u(tk), div∥ϕ) = −(U0, div∥ϕ), as desired. □

Combining the two previous propositions, we arrive at the following corollary whose proof is standard.

Corollary 7.3. For every f , g ∈ L2(Rn) we can define the bounded linear operators

SL0 : L2(Rn)→ Y1,2(Rn), DL,+0 : L2(Rn)→ L2(Rn),

given by

SL0 g := lim
t→0+
SLt g, DL,+0 f := lim

t→0+
DL,+t f ,

where both are weak limits, the first being in Y1,2(Rn) and the second in L2(Rn).

We may remove the condition u ∈ Y1,2(Rn+1
+ ) in Proposition 7.2 for solutions with trace decay at infinity.

Proposition 7.4. Suppose that u ∈ W
1,2
loc (Rn+1

+ ) ∩ S 2
+ satisfies that Lu = 0 in Rn+1

+ . Then there exists

u0 ∈ Y1,2(Rn) such that limt→0+ u(t) = u0 exists weakly in Y1,2(Rn). Moreover, since u ∈ W
1,2
loc (Rn+1

+ ) ∩ S 2
+ ⊂

W1,2(I+R ) for any R > 0, the trace Tr0u exists as an element of L2
loc(Rn), and Tr0u = u0 as distributions.

In particular, the conclusion holds for u = SLg for g ∈ L2(Rn) or u = DL,+ f with f ∈ Y1,2(Rn) (see

Corollary 7.9).

Proof. Since u ∈ S 2
+ there exists a subsequence tk → 0+ and u0 ∈ L2n/(n−2)(Rn) such that limk→∞ u(tk) = u0

weakly in L2n/(n−2)(Rn). Now, since u ∈ Y1,2(Σb
0) for any b > 0, we have that for each Φ ∈ C∞c (Rn+1), there

exists b > 0 such that

(u(tk),Φ(tk)) = −
∫∫

Σb
tk

(uDn+1Φ + Dn+1uΦ).

Fixing ϕ ∈ C∞c (Rn) and extending it to Rn+1 so that Φ(·, t) ≡ ϕ(·) in a neighborhood of t = 0, we see that

(u0, ϕ) = −
∫∫

Σb
0

(uDn+1Φ + Dn+1uΦ),

which gives the uniqueness of the limit u0. Therefore, limt→0 u(t) = u0 exists as a weak limit in L2n/(n−2)(Rn).

To see that u0 ∈ Y1,2(Rn), we proceed as follows: Since for any weak limit v in L2(Rn) of ∇∥u, we have

that for any ϕ ∈ C∞c (Rn;Cn), (v, ϕ) = limk→∞(∇∥u(tk), ϕ) = − limk→∞(u(tk), div∥ϕ) = −(u0, div∥ϕ), and we

conclude that v = ∇∥u0. This shows that the weak limits are unique and thus, since u ∈ S 2
+, the full limit

exists; that is, limt→0 ∇∥u(t) = ∇∥u0 weakly in L2(Rn). Now, we recall that every element ℓ ∈ Y1,2(Rn)∗ can

be written in the form

ℓ(w) =

∫

Rn

(ψ0w + ψ · ∇∥w), for all w ∈ Y1,2(Rn),

for some ψ0 ∈ L2n/(n+2)(Rn) and ψ = (ψ1, . . . , ψn) ∈ L2(Rn)n. This gives that u(t)→ u0 weakly in Y1,2(Rn).

We now turn to the proof of the final statement in the proposition. Since for every Φ(·, t) ∈ C∞c (Rn+1)

we have that Φ(·, t) → Φ(·, 0) strongly in L2(Rn), we need only check that limt→0(u(t),Φ(t)) = (u0,Φ(0)).

Along these lines it is enough to prove that

(u(t),Φ(t)) = −
∫∫

Rn+1
>t

(uDn+1Φ + Dn+1uΦ), for all t > 0,
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but this in turn follows from [BHLMP22, Proposition 2.16], since u ∈ W
1,2
loc (Σ∞t/2). □

Proposition 7.5 (Conormal derivative of solutions in slice spaces). Suppose that u ∈ W
1,2
loc (Rn+1

+ ) ∩ S 2
+

satisifies Lu = 0 in Rn+1
+ . Then there exists g in L2(Rn) such that

(g, ϕ) =

∫∫

Rn+1
+

(
(A∇u + B1)∇Φ + B2 · ∇uΦ

)
, for all Φ ∈ C∞c (Rn+1),

where ϕ(·) = Φ(·, 0). We write g = ∂νL,+u. Moreover, g = limt→0+ −en+1 · Trt(A∇u + B1u), where the limit

is taken in the weak sense in the space L2(Rn). In particular, this notion of the conormal derivative agrees

with our previous definition in Y1,2(Rn+1
+ ) whenever both exist.

Proof. We follow the proof of [AAAHK11, Lemma 4.3 (iii)]. We will first show that for any R > 0, there

exists gR ∈ (C∞c (∆R))∗ such that for any Φ ∈ C∞c (IR),

(7.6) ⟨gR,Φ(·, 0)⟩ =
∫∫

Rn+1
+

(
(A∇u + B1) · ∇Φ + B2 · ∇uΦ

)
.

In particular, this allows us to define g ∈ (C∞c (Rn))∗ such that g = limR↑∞ gR in the sense of distributions

and (7.6) holds for any Φ ∈ C∞c (Rn+1) and g in place of gR. Thus, fix R > 0, ϕ ∈ C∞c (∆R), and Φ ∈ W
1,2
0 (IR)

any extension of ϕ (that is, Tr0Φ = ϕ). We define the (anti-)linear functional ΛR : C∞c (∆R)→ C by

ΛR(ϕ) =

∫∫

Rn+1
+

(
(A∇u + B1u) · ∇Φ + B2 · ∇uΦ

)
.

To see this is indeed well-defined, that is, it does not depend on the extension Φ, we simply note that

for any two extensions Φ1,Φ2, we have that Φ1 − Φ2 ∈ W
1,2
0 (I+R ), and u ∈ S 2

+ solves Lu = 0 in Rn+1
+ .

Now, as in the proof of the Lax-Milgram theorem, we have that |ΛR(ϕ)| ≲ ∥∇u∥L2(ΣR
0 )∥∇Φ∥L2(I+R ). Construct

Φ to satisfy that ∆Φ = 0 in I+R , Φ = φ on ∆R, and Φ = 0 on ∂IR ∩ Rn+1
+ . In this case, we have that

∥∇Φ∥L2(I+R ) ≲ ∥ϕ∥Ḣ1/2(∆R) by the usual extension theorem. Combining these last two estimates, we arrive at

|ΛR(ϕ)| ≲ ∥∇u∥L2(ΣR
0 )∥ϕ∥Ḣ1/2(∆R), whence via the Riesz representation theorem there exists gR ∈ (Ḣ1/2(∆R))∗

such that ⟨gR, ϕ⟩ = ΛR(ϕ) for each ϕ ∈ C∞c (∆R). From the definition of ΛR, we see that the restriction of gR

to ∆R′ equals gR′ whenever R′ < R. In particular, this allows us to define a distribution g such that

⟨g, ϕ⟩ =
∫∫

Rn+1
+

(
(A∇u + B1)∇Φ + B2 · ∇uΦ

)
,

for all Φ ∈ C∞c (Rn+1) with Φ(·, 0) = ϕ. It remains to show that g ∈ L2(Rn). For this, note that via the

previous procedure we can define a conormal at height t ≥ 0, which we denote as gt, as the distribution

which satisfies

(7.7) ⟨gt,Φt⟩ =
∫∫

Rn+1
t

(
(A∇u + B1)∇Φ + B2 · ∇uΦ

)
,

for all Φ ∈ C∞c (Rn+1) where Φt(·) = Φ(·, t). This formula shows that the conormal ∂L,+ν,t u in [BHLMP22,

Definition 4.9] agrees with gt, as distributions in Rn. In particular, from the proof of [BHLMP22, Lemma

4.11 (i)] we see that, for any t > 0, gt ∈ L2(Rn) and gt = −en+1 · Trt(A∇u + B1u). Moreover, since u ∈ S 2
+,

we have that ∥gt∥L2(Rn) ≲ ∥u∥S 2
+
. By weak compactness, we can extract a subsequence tk → 0 and g̃ such

that gtk → g̃ weakly in L2(Rn). From (7.7) it is then easy to see that g̃ = g0 = g as distributions, and the

result follows. □
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We now take the first step towards proving existence of layer potential solutions, by proving the appro-

priate so-called jump relations for the Double Layer and the conormal derivative of the Single Layer.

Lemma 7.8 (Jump Relations). There exist bounded linear operators K, K̃ : L2(Rn)→ L2(Rn) such that for

every f , g ∈ L2(Rn) we have that
(
± 1

2
I + K̃

)
g = ∂L,±ν (SLg), and

(
∓ 1

2
I + K

)
f = DL,±0 f .

Proof. First, by [BHLMP22, Propositions 4.18 and 4.22], we can define operators K : Ḣ1/2(Rn) →
Ḣ1/2(Rn), K̃ : Ḣ−1/2(Rn)→ Ḣ−1/2(Rn), such that the identities in the lemma are satisfied for f , g ∈ C∞c (Rn).

Moreover, by Propositions 7.1 and 7.5, we obtain that K, K̃ are L2(Rn) bounded (that is, admit a unique

linear, continuous extension to L2(Rn)); the result now follows via a density argument. □

Corollary 7.9 (Additional mapping property ofD). Suppose L satisfies Hypothesis A (see Definition 4.1).

Assume further that the operator (SL0 )−1 : Y1,2(Rn)→ L2(Rn) exists and is bounded. Then we have

sup
t>0

∥DL,+t f ∥Y1,2(Rn) ≲ ∥ f ∥Y1,2(Rn),

with implicit constants depending on dimension, ellipticity of L, and the norm of (SL0 )−1.

Proof. We know by Theorem 7.16 that the map SL0 : L2(Rn) → Y1,2(Rn) is bounded and invertible. In

particular we have that the set

F :=
{

f ∈ Y1,2(Rn) : f = SL0 ψ, ψ ∈ C∞c (Rn)
}

is dense in Y1,2(Rn). We note that for f ∈ F we have f ∈ Ḣ1/2(Rn) ∩ Y1,2(Rn) by [BHLMP22, Proposition

4.7 (iii)]. For such an f and ψ := (SL0 )−1 f we set u(·, τ) := SLτ ψ, τ < 0. Then by [BHLMP22, Theorem

4.16 (iv)], applied to u in Rn+1
− , we have

(7.10) DL,+( f ) = −SL(∂νL,−u), in Rn+1
+ .

Now recall from the jump relations (see [BHLMP22, Proposition 4.22 (ii)]) that

∂νL,−u =
(
− 1

2
I + K̃

)
ψ, in Ḣ−1/2(Rn),

so that, using the definition of u, (7.10) becomes

(7.11) DL,+( f ) = −SL
((
− 1

2
I + K̃

)
ψ
)
= −SL

((
− 1

2
I + K̃

)
(SL0 )−1 f

)
.

Finally from Proposition 7.1 and Theorem 7.16 we know the following maps are bounded

SL : L2(Rn)→ S 2
+,
(
− 1

2
I + K̃

)
: L2(Rn)→ L2(Rn),

(SL0 )−1 : Y1,2(Rn)→ L2(Rn),

which gives the desired bound

∥DL,+( f )∥S 2
+
≲ ∥ f ∥Y1,2(Rn), f ∈ F .

We conclude the claimed inequality from the density of F in Y1,2(Rn). □

Proposition 7.12. Suppose that L satisfies Hypothesis A (see Definition 4.1). Assume further that (SL0 )−1 :

Y1,2(Rn) → L2(Rn) exists and is bounded. Let f ∈ Y1,2(Rn), then the operator K from Lemma 7.8 extends

to a bounded operator from Y1,2(Rn) to itself. Moreover we retain the jump relation
(
− 1

2
I + K

)
f = lim

t→0
DL,+t ( f ),
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where the limit on the right is a weak limit in Y1,2(Rn).

Proof. The proof of the first statement follows from Corollary 7.9, which together with Proposition 7.4

guarantees the existence of a weak limit in Y1,2(Rn) for f ∈ C∞c (Rn), and Lemma 7.8 which gives the

desired identity.

□

Lemma 7.13 (Additional mapping property of S). Suppose L satisfies Hypothesis A (see Definition 4.1).

Assume further that the inverse operators (SL∗0 )−1, (SL0 )−1 : L2(Rn)→ [Y1,2(Rn)]∗ and
(
− 1

2
+ K

)−1

: L2(Rn)→ L2(Rn),

exist and are bounded. Then the operator S extends as a bounded operator S : [Y1,2(Rn)]∗ → D2
+, that is,

sup
t>0

∥SLt g∥L2(Rn) ≲ ∥g∥[Y1,2(Rn)]∗ ,

with implicit constants depending on dimension, ellipticity of L and the norm of (SL0 )−1, (SL0 )−1.

Proof. Notice that, by the mapping properties of −1
2
I + K (see Corollary 7.9), and using the smallness of

∥Bi∥Ln(Rn), we obtain that

−1

2
I + K̃ : Y1,2(Rn)→ Y1,2(Rn)

is bounded and invertible. From this and the Green’s Formula (see [BHLMP22, Theorem 4.16 (iv)]) we

have that for any g ∈ C∞c (Rn)

(7.14) DL,+(SL0 g) = −SL
((
− 1

2
I + K̃

)
g

)
.

By Proposition 7.12 and Corollary 7.3 we have that, taking weak limits in Y1,2(Rn) as t → 0
(
− 1

2
I + K

)
(SL0 g) = −SL0

(
− 1

2
I + K̃

)
g,

or equivalently

−(SL0 )−1
(
− 1

2
I + K

)
SL0 g =

(
− 1

2
I + K̃

)
g =: h,

which means, using the corresponding mapping properties for −(1/2)I + K and SL0 (see Proposition 7.12

and the fact that ad j(SL0 ) = SL∗0 ), that we can extend

−1

2
I + K̃ : Y1,2(Rn)∗ → Y1,2(Rn)∗

as a bounded and, with smallness of ∥Bi∥Ln(Rn), invertible operator. In particular ∥g∥Y1,2(Rn)∗ ≈ ∥h∥Y1,2(Rn)∗ .

Using this in (7.10) we arrive at the fact that, for g ∈ C∞c (Rn) it holds SLh ∈ D2
+ and

∥SLt h∥D2
+
≲ ∥SL0 g∥L2(Rn) ≲ ∥g∥Y1,2(Rn)∗ ≈ ∥h∥Y1,2(Rn)∗ .

Since the set {
h =

(
− 1

2
I + K̃

)
g : g ∈ C∞c (Rn)

}

is dense in Y1,2(Rn)∗ we conclude the desired property by a density argument. □

Definition 7.15 (Hypothesis B). We will say L satisfies Hypothesis B if the following properties hold.

(1) L satisfies Hypothesis A, along with the hypotheses of Theorem 6.1 and Theorem 6.11.
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(2) The following operators are invertible

SL∗0 ,SL0 : L2(Rn)→ Y1,2(Rn), −1

2
+ K : L2(Rn)→ L2(Rn).

(3) The following operators are invertible

±1

2
+ K : Y1,2(Rn)→ Y1,2(Rn),

±1

2
+ K̃ : L2(Rn)→ L2(Rn).

The first condition in Hypothesis B ensures that we have the right square and non-tangential maximal

function estimates in Lp(Rn) for the layer potentials associated to L and L∗. In particular the first condition

implies that the objects in item (2) are well-defined and bounded (not necessarily invertible in general).

The objects in item (2), more specifically their inverses, are used in the previous Propositions to define the

objects in (3); this is the reason for the statement to be written in this way.

Theorem 7.16 (Invertibility of Layer Potentials). Suppose L0 satisfies hypothesis B (see Definition 7.15),

with coefficients A0, B0
i for i = 1, 2, and let L1 be defined by

L1 = −div((A0 + M)∇ + (B0
1 + B1)) + (B0

2 + B2) · ∇.
There exists ρ > 0 depending on dimension, ellipticity of L0, and the norms of the inverse operators in item

(2) of Hypothesis B with the property that if

max{∥M∥L∞(Rn), ∥B1∥Ln(Rn), ∥B2∥Ln(Rn)} < ρ,
then L1 satisfies Hypothesis B.

Proof. Set ∥M∥∞ = 1 and ∥Bi∥n = 1, i = 1, 2, and then define the operator

Lzu := −div((A + zM)∇u + (B0
1 + zB1)u) + (B0

2 + zB2) · ∇u, z ∈ C, u ∈ Y1,2(Rn+1).

We write Lz = L0 − zM. The idea will be to show that Kz, K̃z and SLz

0 are analytic in z in a neighborhood

of the origin. Note that, by Lax-Milgram, L0 is always invertible, and thus there exists ε0 such that if z ∈
Bε0
= B(0, ε0), then Lz is also invertible, and moreover L−1

z = L−1
0

∑∞
k=0(zML−1

0 )k, the series converging

in the operator norm of B(Y1,2(Rn+1)∗; Y1,2(Rn+1)). In particular, the map z 7→ L−1
z is analytic in Bε0

.

Now fix t ≥ 0. By definition of the single layer, we conclude that SLz
t is also analytic with values in

B(Ḣ−1/2(Rn); Ḣ1/2(Rn)). Since ∇∥ : Ḣ1/2(Rn) → Ḣ−1/2(Rn), we have that ∇∥SLz
t is analytic in Bε0

with

values in B(Ḣ−1/2(Rn); Ḣ−1/2(Rn)). Thus, for f ∈ C∞c (Rn) and g ∈ C∞c (Rn;Cn), we have that the map

z 7→ (∇∥SLz
t f , g) is analytic, and

sup
z∈Bε0

sup
t≥0

∥SLz
t ∥L2(Rn)→Y1,2(Rn) ≲ 1.

It follows by [Kat95, Theorem 3.12] that z 7→ SLz
t is a holomorphic map with values inB(L2(Rn); Y1,2(Rn)),

for any t ≥ 0. In particular, we have that SLz

0 is analytic. Similarly, ∂
Lz,+
ν SLz is analytic with values in

B(Ḣ−1/2(Rn); Ḣ−1/2(Rn)), and for f , g ∈ C∞c (Rn), we have that

(7.17) sup
z∈Bε0

∥∂Lz,+
ν SLz∥L2(Rn)→L2(Rn) ≲ 1,

and the map z 7→ (∂νLz ,+SLz f , g) = limt→0(A∇SLz
t f+zB1SLz

t f , g) is analytic. Thus we obtain that ∂
Lz,+
ν (SLz)

is analytic with values in B(L2(Rn)). By the jump relations in Lemma 7.8, K̃z is also analytic with values in
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B(L2(Rn)). The analyticity of Kz follows from that of K̃z by noting that ⟨DLz,+
0 f , g⟩ = ⟨ f , ∂L

∗
z ,+

ν SL∗z g⟩−⟨ f , g⟩
for f , g ∈ C∞c (Rn) (see [BHLMP22, Proposition 4.18 (ii)]).

We have thus shown that the maps z 7→ SLz

0 , z 7→ Kz, z 7→ K̃z are all analytic. Therefore, by the Cauchy

integral formula, we obtain that

sup
z∈Bε0

/2

∥∥ d
dz

K̃z

∥∥
L2(Rn)→L2(Rn)

≲ε0
sup

z∈Bε0

∥K̃z∥L2(Rn)→L2(Rn) ≲ε0
1,

where we used (7.17). Consequently, for any z,w ∈ Bε0/2, we have that

∥K̃z−K̃w∥L2(Rn)→L2(Rn) ≲ |z−w|. This implies that for all z small enough, K̃z is invertible. The other boundary

operators are treated similarly. □

Theorem 7.18 (Existence of Solutions). Suppose L satisfies Hypothesis B (see Definition 7.15). Then the

boundary value problems (D)2, (N)2, and (R)2, as given in (1.6)-(1.8), admit a solution.

Proof. To solve the Dirichlet problem, we fix f ∈ L2(Rn) and set F =

(
− 1

2
I + K

)−1

f , which is well-

defined by Theorem 7.16 as an element of L2(Rn). Let u := DL,+F. Then the fact that u ∈ D2
+ follows from

Proposition 7.1, the non-tangential maximal function estimate follows from Theorem 6.11, while Lemma

7.8 gives the weak convergence to f .

To upgrade the convergence of DL,+t f to strong convergence in L2(Rn), we mimmick the proof of

[AAAHK11, Lemma 4.23]. First, we note that by Theorem 7.16 we have thatA := {SL0 div∥g : g ∈ C∞c (Rn)}
is dense in L2(Rn). Indeed, since ad j(SL0 ) = SL∗0 , we have that SL0 : Y1,2(Rn)∗ → L2(Rn) is invert-

ible, and therefore any h ∈ L2(Rn) may be written as h = SL0 H for some H ∈ L2(Rn). Moreover, any

H ∈ Y1,2(Rn)∗ can be written as H = div∥g for some g ∈ L2(Rn)n (as can be seen for instance by embedding

Y1,2(Rn) → L2(Rn)n via u 7→ ∇∥u and using the Hahn-Banach and the Riesz Representation Theorems).

These observations yield the claim.

Now fix f = SL0 (div∥g) for some g ∈ C∞c (Rn) and define u = SLs (div∥g) for s < 0. By [BHLMP22,

Theorem 4.16 (iv)], we have thatDL,+t f = −SL(∂L,−ν u) in Rn+1
+ . Therefore, for any 0 < t′ < t, we have that

∥DL,+t f −DL,+t′ f ∥L2(Rn) =
∥∥
∫ t

t′
∂τSLτ (∂L,+ν u) dτ

∥∥
L2(Rn)

≲ (t − t′)∥∂L,+ν u∥L2(Rn),

where we used the estimates on slices from Theorem 4.16. Thus {DL,+t f }t is a Cauchy sequence in L2(Rn)

as t → 0.

For the Neumann problem we proceed in a similar way, with w := SL(1/2I + K̃)−1h, and we appeal to

Lemma 7.8, Theorem 7.16, Proposition 7.1, and Theorem 6.11.

Finally for the regularity problem we set v := SL(SL0 )−1g, and make use of Corollary 7.3, Theorem 7.16,

and Theorem 6.11.

It remains to show the non-tangential convergence statements, to which we now turn.

The convergence for the regularity Problem goes as follows: By Proposition 2.8 we have that the solution

v has a non-tangential limit, call it g0, so we only need to show g = g0. We know that v(·, t) converges

weakly to g in L2∗(Rn) as t → 0+. Define

v′(·, t) = −
∫ 3t/2

t/2

v(·, s) ds
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then w′(·, t) converges weakly to g in L2∗(Rn) as t → 0+. Indeed, for fixed φ ∈ L2∗ we have
∣∣∣
∫

Rn

v(x, t)φ(x) −
∫

Rn

g(x)φ(x)

∣∣∣ ≤ ϵφ(t),

where ϵφ(t) ↓ 0 as t → 0+. From this one may establish v′(·, t) converges weakly to g in L2∗(Rn). Moreover,

if for f ∈ L1
loc(Rn) we define

(At f )(x) := −
∫

|y−x|∞<t

f (y) dy

then ṽ(x, t) = (Atv
′)(x) and it follows that ṽ(x, t) converges weakly to g in L2∗(Rn) as t → 0+. Indeed, for if

φ ∈ L2∗ then ∫

Rn

(Atv
′)(x)φ(x) dx =

∫

Rn

v′(x, t)(Atφ)(x) dx

and since v′(·, t) converges weakly to g in L2∗(Rn) as t → 0+ and (Atφ)(x) converges strongly in L2∗ as

t → 0+ we have that ∫

Rn

v′(x, t)(Atφ)(x) dx→
∫

Rn

g(x)φ(x) dx, as t → 0+.

It follows that g0(x) = g(x) for a.e. x ∈ Rn.

For the Dirichlet problem, we use compatible well-posedness (see below in the proof) to get that for

smooth initial data f ∈ C∞c (Rn) the solutions to the Dirichlet and regularity problems obtained via layer

potentials agree. In particular, if u f = DL,+(−1/2+K)−1 f , then u f has a non-tangential limit. Since C∞c (Rn)

is dense in L2(Rn) and we have the maximal function estimate

∥Ñ2(u f )∥L2(Rn) ≲ ∥ f ∥L2(Rn),

the existence of a limit for general f ∈ L2(Rn) follows a standard argument.

Now we turn to the compatible well-posedness statement: If f ∈ C∞c (Rn) and we set

u f := DL
(
− 1

2
+ K

)−1

f , v f := SL(SL0 )−1 f ,

the layer potential solutions of the Dirichlet and regularity problems with data f respectively, we claim then

u f = v f and both agree with the solution furnished via Lax-Milgram with Dirichlet data f .

We first prove that u f agrees with the Lax-Milgram solution. For this, by the mapping properties of the

double layer (see [BHLMP22, Definition 4.6]) it is enough to show that

T f :=
(
− 1

2
+ K

)−1

f ∈ H
1/2
0 (Rn).

We know (see Theorem 7.16 and Proposition 7.12) that T maps L2(Rn) and Y1,2(Rn) to itself, so in particular

T f ∈ W1,2(Rn) ⊂ H
1/2
0 .

For v f we proceed similarly, noting that (SL0 )−1 maps Y1,2(Rn) to L2(Rn) and L2(Rn) → [Y1,2(Rn)]∗

(see Theorem 7.16 and Lemma 7.13). It’s thus enough, by the mapping properties of the single layer

(see [BHLMP22, Proposition 4.2]), to prove that

(7.19) [Y1,2(Rn)]∗ ∩ L2(Rn) ⊂ H−1/2(Rn).

This follows from the fact that elements of the first space are of the form G ∈ L2(Rn) such that G =

divH for some H ∈ L2(Rn;Cn), while the second space contains all elements of the form (−∆)1/2F with

F ∈ H
1/2
0 (Rn). Fix G,H as above. By the Riesz representation theorem in Y1,2(Rn) there exists a weak

solution F1 ∈ Y1,2(Rn) of the problem G = divH = −∆F1; set F := (−∆)1/2F1, so that it’s enough to prove
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F ∈ H1/2(Rn). First, clearly F ∈ L2(Rn) by Plancherel’s Theorem, since ∇F1 ∈ L2(Rn); moreover, since

(−∆)1/2F = G ∈ L2(Rn), we have that F ∈ W1,2(Rn), and by interpolation, F ∈ H1/2(Rn) as desired. □

8. Uniqueness

In this section, we show that the solutions to the problems (D)2, (N)2 and (R)2 are unique among the

wider classes of good D solutions and good N /R solutions respectively (see Definitions 2.65 and 2.66).

The methods mainly rely in showing that good solutions satisfy a Green’s formula when the operator L is

already known to have invertible layer potentials. For the case p , 2, see Section 9, although the methods

are mostly the same.

We first state a technical lemma before moving on to the uniqueness of solutions for the Neumann and

regularity problems; the uniqueness of the Dirichlet problem is dealt with last. The next lemma will allow

us to prove a representation formula for solutions to the Neumann and regularity problems.

Proposition 8.1. Suppose L satisfies Hypothesis B (see Definition 7.15). Let u ∈ W
1,2
loc (Rn+1

+ ) ∩ S 2
+ be a

solution of Lu = 0 in Rn+1
+ . Then for every τ0 > 0 and every t > 0 we have

∂τ|τ=τ0
DL,+t (Tr0uτ) = DL,+t (Tr0(Dn+1uτ0

)),

and

∂τ|τ=τ0
SLt (∂νL,+uτ) = SLt (∂νL,+(Dn+1uτ0

)).

Proof. We work with the double layer first. For this we consider, for t > 0 fixed, the following functions:

f (τ) := Tr0uτ = Trτu, H(τ) := DL,+t ( f (τ)).

We note that, by hypothesis and Corollary 7.9, we have

f ∈ C((0,∞); Y1,2(Rn)), H ∈ C((0,∞); Y1,2(Rn)).

The idea is now to use [BHLMP22, Theorem 2.14] to get the desired differentiability of f . For this purpose

define

(8.2) φ(τ) := ∥Trτ(Dn+1u)∥Y1,2(Rn) = ∥∇∥Trτ(Dn+1u)∥L2(Rn) ∈ L2
loc((0,∞);R).

First we note that by [BHLMP22, Lemma 2.3] we have that f : (0,∞) → Y1,2(Rn) and φ : (0,∞) → R are

continuous functions. By the Lebesgue Differentiation Theorem it is then enough to show

(8.3)
(
−
∫ ε

−ε
∥ f (τ2 + s) − f (τ1 + s)∥2Y1,2(Rn) ds

)1/2

≤
∫ τ2

τ1

(
−
∫ ε

−ε
φ2(s + τ) ds

)1/2

dτ,

for all ε small enough (depending on τ1 and τ2). For this purpose we compute, calling I the left hand side

of (8.3),

I =

(
−
∫ ε

−ε

∫

Rn

|∇∥ Trτ2+s u(x) − ∇∥ Trτ1+s u(x)|2 dxds

)1/2

=

(
−
∫ ε

−ε

∫

Rn

|∇∥uτ2
(x, s) − ∇∥uτ1

(x, s)|2 dxds

)1/2

=

(
−
∫ ε

−ε

∫

Rn

∣∣∣
∫ τ2

τ1

∇∥∂τu(x, τ + s) dτ
∣∣∣
2

dxds

)1/2

≤
∫ τ2

τ1

(
−
∫ ε

−ε

∫

Rn

|∇∥∂τu(x, τ + s)|2 dxds

)1/2

dτ =

∫ τ2

τ1

(
−
∫ ε

−ε
φ2(s + τ) ds

)1/2

dτ,
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where we used the Fundamental Theorem of Calculus and Minkowski’s inequality. As mentioned above

this shows that f ∈ W
1,2
loc ((0,∞); Y1,2(Rn)). Now we will show that

(8.4) f ′(τ) = Trτ(Dn+1u), for each τ > 0,

and moreover the difference quotients converge weakly

∆h f (τ)→ f ′(τ), for every τ > 0.

For this fix ψ ∈ C∞c (0,∞), ϕ ∈ C∞c (Rn;Cn) and let ℓ := −div∥ϕ ∈ Y1,2(Rn)∗. Using that the function

τ 7→ f (τ)ψ′(τ) ∈ Y1,2(Rn) is continuous (see again [BHLMP22, Lemma 2.3]) and compactly supported on

(0,∞) and properties of the Bochner integral (see for instance [CH98, Proposition 1.4.22]) we obtain

〈∫ ∞

0

f (τ)ψ′(τ) dτ, ℓ
〉
=

∫ ∞

0

⟨ f (τ)ψ′(τ), ℓ⟩ dτ =
∫ ∞

0

∫

Rn

∇∥Trτu(x)ψ′(τ)ϕ(x) dxdτ

=

∫ ∞

0

∫

Rn

∇∥u(x, τ)ψ′(τ)ϕ(x) dxdτ = −
∫ ∞

0

∫

Rn

∇∥Dn+1u(x, τ)ψ(τ)ϕ(x) dxdτ

= −
∫ ∞

0

∫

Rn

∇∥Trτ(Dn+1u)(x)ψ(τ)ϕ(x) dxdτ

= −
∫ ∞

0

⟨Trτ(Dn+1u)ψ(τ), ℓ⟩ dτ =
〈
−
∫ ∞

0

Trτ(Dn+1u)ψ(τ) dτ, ℓ
〉
,

where we used integration by parts in the fourth line. Now we conclude, since the collection {div∥ϕ : ϕ ∈
C∞c (Rn;Cn)} is dense in Y1,2(Rn)∗, that indeed (8.4) holds. The convergence of the difference quotients is a

consequence of the fact that f ′ ∈ C((0,∞); Y1,2(Rn)) and the Fundamental Theorem of Calculus. In fact we

get strong convergence in Y1,2(Rn) as h→ 0 of ∆h f (τ) for every τ > 0.

With this we can conclude the argument for the double layer: Define

H(τ) := DL,+t Tr0uτ = DL,+t Trτu.

We claim that H ∈ C1((0,∞); Y1,2(Rn)) and

H′(τ) = DL,+t (Tr0(Dn+1uτ)) = DL,+t (Trτ(Dn+1u)).

Notice first that H ∈ C((0,∞); Y1,2(Rn)) by the mapping properties of the Double Layer (see Corollary 7.9)

and the fact that H(τ) = DL,+t ( f (τ)) (recall that t > 0 is fixed throughout). Morever, using these two facts

again we see

∥H(τ1) − H(τ2)∥Y1,2(Rn) ≲ ∥ f (τ1) − f (τ2)∥Y1,2(Rn) ≤
∣∣∣
∫ τ2

τ1

φ(s) ds

∣∣∣,

where φ is defined in (8.2). This shows that H ∈ W
1,2
loc ((0,∞); Y1,2(Rn)). Moreover we have

∆hH(τ) = DL,+t (∆h f (τ)),

so that, by the linearity and continuity ofDL,+t in Y1,2(Rn) and the weak convergence of ∆h f (τ) in Y1,2(Rn),

we obtain for every τ > 0

∆hH(τ)→ DL,+( f ′(τ)) = DL,+t (Tr0(Dn+1uτ))

weakly in Y1,2(Rn) as h→ 0, as desired.

The proof for the Single Layer follows the same lines. Define, for t > 0 fixed and τ > 0,

g(τ) := ∂νL,+uτ = ∂νL,+τ u,
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where the second equality follows from [BHLMP22, Lemma 4.11 (i)]. As before we first claim that g ∈
C1((0,∞); L2(Rn)) and we have

g′(τ) = ∂νL,+(Dn+1uτ) = ∂νL,+τ (Dn+1u).

For this purpose we use the L2 characterization of the conormal derivative (see again [BHLMP22, Lemma

4.11]) so that

g(τ) = N · Tr0(A∇uτ + B1uτ) = N · Trτ(A∇u + B1u)

= N · Trτ(Ã∇∥u + B1u) + N · Trτ(a⃗Dn+1u) =: g1(τ) + g2(τ),

where Ã := (ai j)1≤i≤n+1,1≤ j≤n and a⃗ := (ai,n+1)1≤i≤n+1. We note that by the Hölder’s and Sobolev’s inequali-

ties

∥g1(τ2) − g1(τ1)∥L2(Rn) ≲ ∥ f (τ2) − f (τ1)∥Y1,2(Rn) ≤
∣∣∣
∫ τ2

τ1

φ(s) ds

∣∣∣,

where f , φ are as in the proof for the Double Layer. Therefore it is enough to control g2, and for this we

can proceed exactly in the same way as we did for f : For fixed τ2, τ1 and ε > 0 small

−
∫ ε

−ε
∥g(τ2 + s) − g(τ1 + s)∥2L2(Rn) ds = −

∫ ε

−ε

∫

Rn

|Dn+1(uτ2
(x, s) − uτ1

(x, s))|2 dxds

= −
∫ ε

−ε

∫

Rn

∣∣∣
∫ τ2

τ1

D2
n+1u(s + τ) dτ

∣∣∣
2

dxds ≲ −
∫ ε

−ε

∫ τ2

τ1

∥Trτ+s(D
2
n+1u)∥L2(Rn) dτds,

and φ̃(τ) := ∥Trτ(D
2
n+1u)∥L2(Rn) ∈ L2

loc(0,∞). Therefore by [BHLMP22, Theorem 2.14] we get that g ∈
W

1,2
loc ((0,∞); L2(Rn)) and the difference quotients converge a.e. to g′. To verify the formula for g′ we

compute, for ϕ ∈ C∞c (Rn) and ψ ∈ C∞c (0,∞),

〈∫ ∞

0

g(τ)ψ′(τ) dτ, ϕ
〉

L2(Rn)
=

∫ ∞

0

∫

Rn

N · (A∇u(x, τ) + B1u(x, τ))ψ′(τ)ϕ(x) dxdτ

= −
∫ ∞

0

∫

Rn

N · (A∇Dn+1u(x, τ) + B1Dn+1u(x, τ))ψ(τ)ϕ(x) dxdτ =
〈∫ ∞

0

∂
νL,+τ

(Dn+1u)ψ(τ), ϕ
〉

L2(Rn)
.

This gives the desired representation for g′(τ). Moreover, using this representation we see that g′ ∈
C((0,∞); L2(Rn)) and so the difference quotients satisfy ∆hg(τ) → g′(τ) weakly for every τ > 0. The

result now follows from the mapping properties of the single layer (see Proposition 7.1). □

8.1. Uniqueness for the Neumann and regularity problems. We begin with a lemma that gives a repre-

sentation of good N/R solutions above a positive height.

Lemma 8.5. Suppose that L satisfies Hypothesis B (see Definition 7.15). Let u be a good N/R solution

and uτ(·, ·) = u(·, · + τ), as above. Then

(8.6) uτ = −DL,+(Tr0uτ) + SL(∂νuτ),

where Tr0uτ ∈ Y1,2(Rn), ∂νuτ ∈ L2(Rn), and DL,+ and SL are viewed (as their natural extensions) from

these spaces mapping into S 2
+.

Proof. We have Tr0uτ(·) = u(·, τ) ∈ Y1,2(Rn) (by the fact that u ∈ S 2
+) and ∂νuτ ∈ L2(Rn) (by Proposition

7.5) . For the latter we may consider uτ/2 ∈ Y1,2(Rn+1
+ ), a solution in Rn+1

+ , since the operator L is t-

independent. The mappings of the layer potentials into S 2
+ come from Proposition 7.1 and Corollary 7.13.
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By Proposition 8.1 together with the Green’s formula for ∂tuτ ∈ Y1,2(Rn+1) (see [BHLMP22, Theorem

4.16 (ii)]) we know that for τ0 > 0

∂τuτ|τ=τ0
(x, t) = −∂τ[DL,+(Tr0uτ) + SL(∂νuτ)]

∣∣
τ=τ0

(x, t),

as functions in S 2
+. We may now integrate in τ0 to obtain

uτ = −DL,+(Tr0uτ) + SL(∂νuτ),

where we must use the decay at infinity hypothesis in the definition of S 2
+. □

Now we push the representation above down to the boundary.

Lemma 8.7. Suppose thatL satisfies Hypothesis B (see Definition 7.15), and that u is a goodN/R solution.

Then

(8.8) u = −DL,+ f + SLg,

where f ∈ Y1,2(Rn) and g ∈ L2(Rn) are as in Propositions 7.4 and 7.5 respectively.

Proof. By Propositions 7.4 and 7.5, uτ(·, 0) → f ∈ Y1,2(Rn) and ∂νuτ → g ∈ L2(Rn) weakly in Y1,2(Rn)

and L2(Rn) respectively as τ → 0+. Set uτ(·, 0) = fτ and ∂νuτ = gτ, then rephrasing the above, we have

h⃗τ = ( fτ, gτ) converges to ( f , g) =: h⃗ weakly in Y1,2(Rn) × L2(Rn). Let τk ↓ 0 then by Mazur’s lemma there

exists a sequence {h̃l}∞l=1 ⊂ Y1,2(Rn) × L2(Rn) such that h̃l → h⃗ strongly in Y1,2(Rn) × L2(Rn) with

h̃l =

N(l)∑

k=l

λk,lh⃗τk
,

where l ≤ N(l) < ∞, λk,l ∈ [0, 1] and
∑N(l)

k=l λk,l = 1. Set

ũ := DL,+ f + SLg.

To prove the lemma it is enough to show that for each t > 0, ũ(·, t) = u(·, t) as elements of Y1,2(Rn).

We have from Lemma 8.5 that

uτ = −DL,+( fτ) + SL(gτ).

Set

ul :=

N(l)∑

k=l

λk,luτk
.

We show ul(·, t) converges strongly to both u(·, t) and ũ(·, t) in Y1,2(Rn). From the bounded mappings

DL,+ : Y1,2(Rn)→ S 2
+ and SL : L2(Rn)→ S 2

+ we have

∥∇[ũ(·, t) − ul(·, t)]∥L2(Rn) ≤ ∥h⃗ − h̃l∥Y1,2(Rn)×L2(Rn) → 0 as l→ ∞,

where we used the strong convergence of h̃l to h⃗. To show ul(·, t) converges strongly to u(·, t) in Y1,2(Rn) we

write for l ≥ 0,

∥∇ul(·, t) − ∇u(·, t)∥L2(Rn) = ∥
N(l)∑

k=l

λk,l∇[uτk
− u](·, t)∥L2(Rn)

≤
N(l)∑

k=l

λk,l∥∇[uτk
− u](·, t)∥L2(Rn)
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≤ sup
k≥l

∥∇[u(·, t + τk) − u(·, t)]∥L2(Rn),

where we used
∑N(l)

k=l λk,l = 1 and u(·, ·+τ) = uτ(·, ·) = DL,+( fτ)+SL(gτ). We can then use the continuity of

∇u(·, t) in L2(Rn) (see [BHLMP22, Lemma 2.3]) along with τk ↓ 0 to obtain ∥∇ul(·, t) − ∇u(·, t)∥L2(Rn) → 0

as l tends to infinity. □

Theorem 8.9 (Uniqueness of the regularity problem among good N/R solutions). Suppose L satisfies

Hypothesis B (see Definition 7.15). Suppose u is a good N/R solution, with u(·, 0) = 0, interpreted in the

sense of Proposition 7.4 (i.e. limt→0 u(t) = 0 weakly in Y1,2(Rn)). Then u ≡ 0 in Rn+1
+ .

Proof. By Lemma 8.7, we have u = −DL,+ f + SLg, where f and g are as in Lemma 8.7. It follows

that u = SLg, since f = 0 (see the proof of Lemma 8.7). Moreover, by taking traces (in the sense of

Proposition 7.4) in Y1,2(Rn) we obtain 0 = SL0 g, for g ∈ L2(Rn). It follows from the invertibility of

SL0 : L2(Rn)→ Y1,2(Rn) that g = 0. This gives u ≡ 0. □

Theorem 8.10 (Uniqueness of the Neumann problem among goodN/R solutions). Suppose thatL satisfies

Hypothesis B (see Definition 7.15), and that u is a good N/R solution, with ∂νu = 0, in the sense of

Proposition 7.5. Then u ≡ 0 in Rn+1
+ .

Proof. By Lemma 8.7, we have u = −DL,+ f + SLg, where f and g are as in Lemma 8.7. It follows that

u = −DL,+ f , since g = 0 (see the proof of Lemma 8.7), where f ∈ Y1,2(Rn). From (7.11), we have after

taking conormal derivatives, in the sense of Proposition 7.519, and using the jump relations for the conormal

of the single layer potential

0 = ∂νL,+u = −∂νL,+DL,+ f = −(− 1
2
I + K̃)( 1

2
I + K̃)S −1

0 f in L2(Rn).

The invertibility of ± 1
2
I + K̃ : L2(Rn) → L2(Rn) and S −1

0 : Y1,2(Rn) → L2(Rn) yields that f = 0 and hence

u ≡ 0. □

8.2. Uniqueness for the Dirichlet problem. The first lemma here simply states that the conormal deriva-

tives are uniformly bounded in the transversal variable, for goodD solutions.

Lemma 8.11. SupposeL satisfies Hypothesis B (see Definition 7.15). Assume u is a goodD solution. Then

for every τ > 0, ∂ντu ∈ [Y1,2(Rn)]∗, with the bound

sup
τ>0

∥∂ντu∥[Y1,2(Rn)]∗ ≤ C sup
t>0

∥u∥L2(Rn).

Proof. By symmetry of hypotheses and Lemma 7.13 and Theorem 7.16 the operator SL
∗

0 : L2(Rn) →
Y1,2(Rn) is bounded and invertible. Then the collection of functions F := {φ ∈ Y1,2(Rn) : φ = SL

∗
0 f , f ∈

C∞c } is dense in Y1,2(Rn). Notice that vφ = SL
∗
([SL

∗
0 ]−1φ) = SL

∗
f ∈ Y1,2(Rn+1) since f ∈ C∞c (Rn) ⊂

H−1/2(Rn). Also, Tr0uτ ∈ H
1/2
0 (Rn) since uτ ∈ Y1,2(Rn+1

+ ), where, as above uτ(·, ·) := u(·, · + τ). Then by

definition of ∂ν∗vφ ∈ H−1/2(Rn) (see [BHLMP22, Definition 4.9]) with

(Tr0uτ, ∂ν∗vφ) = (∂ν∗vφ,Tr0uτ)

= BL∗[vφ, uτ] = BL[uτ, vφ].

19We note that, having obtained the mapping property D → S 2
+, the equality of (7.11) holds on every t-slice in the space

Y1,2(Rn) therefore the weak L2(Rn) limits, in t, of the co-normal derivatives ∂νt
are the same.
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Now BL[uτ, vφ] = (∂ντu, φ), since vφ solves the regularity problem with data φ by Theorem 7.18. In

particular φ is the weak limit of vφ(·, t) in Y1,2(Rn) as t → 0.

Having established

(∂ντu, φ) = (Tr0uτ, ∂ν∗vφ)

for φ in F we see that ∂ντu ∈ [Y1,2(Rn)]∗ by the fact that the map

Fφ := ∂ν∗vφ = ∂ν∗SL
∗
([SL

∗
0 ]−1φ)

maps Y1,2(Rn) → L2(Rn), by Proposition 7.5, the mapping property mentioned at the start of the proof for

SL∗0 , and the density of F in Y1,2(Rn). □

Next, we prove a Green’s formula for goodD solutions.

Lemma 8.12. Suppose that L satisfies Hypothesis B (see Definition 7.15) and let u be a good D solution.

For τ > 0, set ( fτ, gτ) := (Tr0uτ, ∂νuτ) = (Tr0uτ, ∂ντu) ∈ L2(Rn) × [Y1,2(Rn)]∗, where we use Lemma 8.11 to

identify ∂ντu as an element of [Y1,2(Rn)]∗. Then

u = −DL,+ f + SLg,

where the pair ( f , g) ∈ L2(Rn) × [Y1,2(Rn)]∗ is any convergent weak limit of ( fτk
, gτk

), τk ↓ 0 in the space

L2(Rn) × [Y1,2(Rn)]∗.

Remark 8.13. We note that the existence of at least one such limiting pair ( f , g) is guaranteed by the fact

that fτ, gτ are uniformly bounded in L2(Rn) and Y1,2(Rn)∗ respectively (the first by the hypothesis u ∈ D2
+

and the second by Lemma 8.11) together with the fact that both of these spaces are reflexive.

Unlike the case of good N/R solutions, here we make no assertion about the uniqueness of such a

limiting pair.

Proof. The proof is quite similar to Lemma 8.7, but we provide the details here. We have that uτ ∈
Y1,2(Rn+1

+ ) with Luτ = 0 we have

uτ = −DL,+(Tr0uτ) + SL(∂νuτ)

for all τ > 0. Let h⃗τk
:= ( fτk

, gτk
) ⇀ ( f , g) =: h⃗ ∈ L2(Rn) × [Y1,2(Rn)]∗ be as in the statement of the lemma.

Using Mazur’s lemma there exists a sequence {h̃l}∞l=1 ⊂ L2(Rn) × [Y1,2(Rn)]∗ such that h̃l → h⃗ strongly in

L2(Rn) × [Y1,2(Rn)]∗ with

h̃l =

N(l)∑

k=l

λk,lh⃗τk
,

where l ≤ N(l) < ∞, λk,l ∈ [0, 1] and
∑N(l)

k=l λk,l = 1. Set

ũ := DL,+ f + SLg

and

ul :=

N(l)∑

k=l

λk,luτk
.

We show ul(·, t) converges strongly to both u(·, t) and ũ(·, t) in L2(Rn). From the bounded mappingsDL,+ :

L2(Rn)→ D2
+ and SL : [Y1,2(Rn)]∗ → D2

+ we have

∥ũ(·, t) − ul(·, t)∥L2(Rn) ≤ ∥h⃗ − h̃l∥L2(Rn)×[Y1,2(Rn)]∗ → 0 as l→ ∞.



CRITICAL PERTURBATION THEORY, PART II 71

To show ul(·, t) converges strongly to u(·, t) in L2(Rn) we write for l ≥ 0,

∥ul(·, t) − u(·, t)∥L2(Rn) = ∥
N(l)∑

k=l

λk,l[uτk
− u](·, t)∥L2(Rn)

≤
N(l)∑

k=l

λk,l∥[uτk
− u](·, t)∥L2(Rn)

≤ sup
k≥l

∥u(·, t + τk) − u(·, t)∥L2(Rn),

where we used
∑N(l)

k=l λk,l = 1 and u(·, · + τ) = uτ(·, ·) = DL,+( fτ) + SL(gτ). We can then use the continuity

of u(·, t) in L2(Rn) (see [BHLMP22, Lemma 2.3])20 along with τk ↓ 0 to obtain ∥un(·, t) − u(·, t)∥L2(Rn) → 0

as n tends to infinity. Therefore u = ũ in D2
+ and the lemma is shown. □

Theorem 8.14 (Uniqueness of the Dirichlet problem among good D solutions). Suppose that L satisfies

Hypothesis B (see Definition 7.15), and that u is a goodD solution, with u(·, t)→ 0 weakly in L2(Rn). Then

u ≡ 0.

Proof. By Lemma 8.12, we have that u = SLg for some g ∈ [Y1,2(Rn)]∗, where g ∈ [Y1,2(Rn)]∗ is any weak

limit of gτk
= ∂νL,+uτk

, τk ↓ 0 as in Lemma 8.12. We also have (see (7.14))

SLt g = DL,+t (SL0 [− 1
2
I + K̃]−1g),

where we used [− 1
2
I + K̃]−1 : [Y1,2(Rn)]∗ → [Y1,2(Rn)]∗ and SL0 : [Y1,2(Rn)]∗ → L2(Rn). Taking weak

limits in L2(Rn) we obtain

0 = [− 1
2
I + K]SL0 [−1

2
I + K̃]−1g

The invertibility of the mappings − 1
2
I+K : L2(Rn)→ L2(Rn), SL0 : [Y1,2(Rn)]∗ → L2(Rn) and [−1

2
I+ K̃]−1 :

[Y1,2(Rn)]∗ → [Y1,2(Rn)]∗ give that g = 0 in [Y1,2(Rn)]∗ and hence u ≡ 0. □

9. Lp
solvability for p in a window around 2

In this final section, we extend the L2 existence and uniqueness results of the last two sections to an Lp

solvability result for the boundary value problems considered, provided that p is close to 2, hence finishing

the proof of Theorem 1.10.

The square function and non-tangential maximal function Lp estimates for the case p ∈ (2 − ε0, 2 + ε0)

for ε0 small enough are already contained in Theorem 6.11; and thus, if one assumes that f ∈ C∞c (Rn),

then the boundary value problems considered admit a solution, represented via layer potentials, with the

appropriate Lp estimates. If f ∈ Lp(Rn) is not smooth and p , 2, then an approximation argument via

smooth fk ∈ C∞c (Rn) will work once we have established the mapping properties of the layer potentials and

the jump relations that work with boundary data in the Lp space. As the methods here are very similar to

those of Section 4 of [BHLMP22] and Sections 7 and 8 of the present document, we will omit many details

for the sake of brevity.

Proof of Theorem 1.10, case p , 2. Recall that the space Y1,p(Rn+1) has been defined in (2.42), and let q

be the Hölder conjugate of p, so that 1
p
+ 1

q
= 1. When ρ0 is small enough, the operator L associated to

the sesquilinear form BL defined in Section 2.3 maps Y1,p(Rn+1) → (Y1,q(Rn+1)∗ and is a bounded, linear

20We may modify this Lemma, using now the function space W1,2(Σb
a) instead of Y1,2(Σb

a) to obtain the desired continuity in

L2(Rn) instead of L2∗ (Rn).
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invertible operator by the Lax-Milgram theorem. The horizontal traces of Y1,p(Rn+1) continuously embed

into the Besov space B
1− 1

p
,p

0 (Rn) consisting of functions vanishing at infinity and with finite B
1− 1

p
,p

(Rn)

seminorm21 (see [Leo17, Theorem 15.20]). Moreover, given a function f ∈ B
1− 1

p
,p

0 (Rn), there exists an

extension F ∈ Y1,p(Rn+1
+ ) with Tr F = f on ∂Rn+1

+ ( [Leo17, Theorem 15.21]22). We also have the Sobolev

embedding

B
1− 1

p
,p

0 (Rn) ↪→ L
np

n+1−p (Rn),

whenever p < n+1 ( [Leo17, Theorem 14.29]), and C∞c (Rn) is dense in B
1− 1

p
,p

0 (Rn) (see [BGCV21, Theorem

3.1]).

The properties mentioned above ensure that the single layer potential

SL : (B
1− 1

q
,q

0 (Rn))∗ → Y1,p(Rn),

defined via the formula (2.46), is still a well-defined bounded linear operator. Similarly, one may check that

the double layer potential

DL,+ : B
1− 1

p
,p

0 (Rn)→ Y1,p(Rn+1
+ ),

is well-defined via the formula (2.48), with the appropriate modifications. Then, via a density argument and

using the slice estimates Theorems 4.16 and 4.19, we may show that the layer potentials extend uniquely as

SL : Lp(Rn)→ S
p
+, DL,+ : Lp(Rn)→ D

p
+,

where S
p
+ and D

p
+ are the slice spaces of Definition 2.64. Furthermore, Theorem 6.11 ensures that we have

the required square function bounds.

We now briefly sketch the existence argument. We are able to carry out the arguments from Section 7 and

obtain the boundary operators SL0 : Lp(Rn) → Y1,p(Rn), DL,+0 : Lp(Rn) → Lp(Rn), which are given by the

formulas of Corollary 7.3. On the other hand, the conormal derivative ∂L,±ν : Y1,p(Rn+1
± ) → (B

1− 1
q
,q

0 (Rn))∗

is also well-defined (as in [BHLMP22, Definition 4.9], with appropriate modifications), and one may thus

show that the several variations of Green’s formula from [BHLMP22, Theorem 4.16] and the jump relations

[BHLMP22, Theorem 4.22] hold in this setting, with essentially the same proofs. These facts allow us to

construct, as in Lemma 7.8, the bounded linear operators K, K̃ : Lp(Rn) → Lp(Rn) which satisfy the

identities

(±1
2
I + K̃)g = ∂L,±ν (SLg), (∓ 1

2
I + K) f = DL,±0 f

for any f , g ∈ Lp(Rn). Then one may prove proper analogues of Corollary 7.9, Proposition 7.12, and Lemma

7.13 under the assumption of bounded invertibility of the boundary operators SL0 : Lp(Rn) → Y1,p(Rn),

SL∗0 : Lq(Rn) → Y1,q(Rn), and (− 1
2
I + K) : Lp(Rn) → Lp(Rn). This assumption (which is an analogue of

hypothesis B from Definition 7.15) is satisfied for the operator L0 = −divA0∇ when A0 is either Hermitian,

block form or constant23, and by the method of analytic perturbations in Theorem 7.16, the operator L also

satisfies this assumption, showing the invertibility of layer potentials.

21For a definition of the Besov space, see Definition 14.1 of [Leo17]
22Technically, Leoni considers the non-homogeneous case; however his proof easily gives the result stated here
23An application of Sneiberg’s Lemma, and the known L2 results (see the introduction), reduces the invertibility of the boundary

operators in Hypothesis B to the uniform boundedness of said operators in Lp for p in a neighborhood of 2. In turn this last is

achieved by the methods of this paper.
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With the invertibility of the layer potentials and the appropriate analogues of the mapping properties at

hand, we may finally obtain the existence of solutions for the problems (D)p, (N)p, and (R)p in the same

way as in Theorem 7.18.

We turn to the uniqueness of the solutions to the boundary value problems here considered. As in the

case of p = 2, we are able to consider uniqueness in the wider class of good D solutions (Definition 2.65)

for the Dirichlet problem with exponent p, and good N /R solutions (Definition 2.66) for the Neumann and

regularity problems with exponent p24. Once again, the methods of Section 8 work in this setting, with very

little change , since we have the appropriate analogues of the Green’s formulas from [BHLMP22, Theorem

4.16] and the various analogues of the mapping properties and jump relations from Section 7. We omit

further details. □
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Bruno Poggi, Department ofMathematics, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Catalonia

Email address: bgpoggi.math@gmail.com


	1. Introduction
	2. Notation and Preliminaries
	2.1. Weights and Extrapolation
	2.2. Lr-Lq Off-diagonal estimates
	2.3. Properties of Solutions and Layer Potentials
	2.4. Good Classes of Solutions

	3. Two General Extrapolation Results
	4. Extrapolation of Square Function Estimates
	4.1. Estimates for SLt
	4.2. Estimates for (SLt)

	5. Non-tangential Maximal Function Estimates
	6. Traveling Down
	7. Existence
	8. Uniqueness
	8.1. Uniqueness for the Neumann and regularity problems
	8.2. Uniqueness for the Dirichlet problem

	9. Lp solvability for p in a window around 2
	References

