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Key Points:

e Uniform pressurization of Axial Seamount's seismically imaged magma reservoir does
not adequately fit the observed geodetic data

e Our models estimate that Axial’s magma reservoir inflated by 0.054-0.060 km? during
the inter-eruptive recharge period between 2016-2020

e Axial's magma reservoir is likely compartmentalized, with magma accumulating in sills
along the western-central edge of the magma reservoir
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Abstract

Axial Seamount is a submarine volcano on the Juan de Fuca Ridge with enhanced magma supply
from the Cobb hotspot. We compare several deformation model configurations to explore how
the spatial component of Axial’s deformation time series relates to magma reservoir geometry
imaged by multi-channel seismic (MCS) surveys. To constrain the models, we use vertical
displacements from seafloor pressure sensors and repeat autonomous underwater vehicle (AUV)
bathymetric surveys between 2016-2020. We show that implementing the MCS-derived 3D main
magma reservoir (MMR) geometry with uniform pressure in a finite element model with uniform
elastic host rock properties poorly fits the geodetic data. To test the hypothesis that there is
compartmentalization within the MMR that results in heterogeneous pressure distribution, we
compare analytical models using various horizontal sill configurations constrained by the MMR
geometry. Using distributed pressure sources significantly improves the Root Mean Square Error
(RMSE) between the inflation data and the models by an order of magnitude. The RMSE
between the AUV data and the models is not improved as much, likely due to larger uncertainty
of the AUV data. The models estimate the volume change for the 2016-2020 inter-eruptive
inflation period to be between 0.054-0.060 km?® and suggest that the MMR is compartmentalized,
with most magma accumulating in sill-like bodies embedded in crystal mush along the western-
central edge of the MMR. The results reveal the complexity of Axial’s plumbing system and
demonstrate the utility of integrating geodetic data and seismic imagery to gain insights into
magma storage at active volcanoes.

Plain Language Summary

Axial Seamount is a submarine volcano on the Juan de Fuca Ridge (NE Pacific Ocean) with
enhanced magma supply from the Cobb hotspot. Its frequent activity and long-term deformation
time series covering eruptions in 1998, 2011 and 2015 make it an ideal place to study volcanic
processes. Improved magma reservoir modeling at Axial will aid in understanding how magma
transport and storage are related to surface deformation, seismicity, and eruption timing. Here we
compare several models of Axial’s magma reservoir to explore how the spatial component of the
observed deformation at Axial compares to seismically imaged magma reservoir geometry. To
constrain the models, we use vertical displacements covering an inflation period between 2016-
2020, derived from pressure measurements collected at seafloor benchmarks and repeated
bathymetric surveys. The models estimate the volume change for the 2016-2020 inflation period
to be between 0.054-0.060 km?. Our results suggest that Axial’s magma reservoir is
compartmentalized, with most magma accumulating in sill-like bodies embedded in crystal
mush. The results reveal the spatial complexity of Axial’s plumbing system and demonstrate
how deformation data and seismic imagery can be used together to gain deeper insights into
magma storage at active volcanoes.
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1. Introduction
Axial Seamount is an active submarine volcano located at the intersection of the Juan de
Fuca Ridge and the Cobb hotspot about 500 km west of the Oregon coast in the NE Pacific
(Figure 1). It has erupted at least 52 times over the last 800 years (Clague et al., 2013), most
recently in 1998, 2011, and 2015. A nearly continuous deformation time series from 1998
through the present covering the past 3 eruptions has revealed that Axial exhibits a relatively
repeatable inflation-deflation cycle, which has allowed for two successful eruption forecasts
(Chadwick et al., 2012; Nooner & Chadwick, 2016). Even though Axial itself does not pose a
direct threat to humans because of its remoteness, insight gleaned from observations made at
Axial contribute to a growing body of knowledge about eruptive precursors that can be applied
to more threatening locations (Acocella et al., 2024).
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Figure 1. a) Axial Seamount’s tectonic setting at the intersection of the Juan de Fuca Ridge
(JAFR) and the Cobb hotspot. b) Zoom-in of Axial’s summit caldera with geodetic
instrumentation as of 2020 labeled. White dots are benchmarks where campaign-style mobile
pressure recorder (MPR) measurements are made, green dots are mini bottom pressure recorders
(BPRs), blue dots are moored BPRs, and red dots are BPRs and tiltmeters connected to the
Ocean Observatories Initiative (OOI) cabled observatory. Black lines are seismic lines (Carbotte
et al., 2008) downward extrapolated by Arnulf et al., 2018 to image the main magma reservoir
(MMR) geometry as used in this study (see Arnulf et al., 2018 for full extent of lines used).

Deformation models of Axial have evolved from simple to more complex over the years
as more geodetic data have become available. A point source (Mogi, 1958) was initially used as
the pressure source when few observations were available to constrain models and little was
known about the actual geometry of Axial’s magma storage system (Chadwick et al., 2006;
Nooner & Chadwick, 2009). Once more benchmarks for pressure measurements were added and
more analytical model geometries were considered, a steeply dipping prolate spheroid geometry
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became the best-fit model (Hefner et al., 2020; Nooner & Chadwick, 2016). The prolate spheroid
model depth, location, and geometry were somewhat consistent with a set of vertically stacked
deep sills later imaged by multi-channel seismic (MCS) data and interpreted by Carbotte et al.,
(2020). However, as autonomous underwater vehicle (AUV) repeat bathymetry data (Caress et
al., 2020) has begun to provide more spatial coverage and therefore additional constraints for
deformation modeling than the limited number of point-pressure observations alone, a
rectangular horizontal sill deformation model with about the same outline as the summit caldera
has been found to fit both the AUV and pressure data better than a prolate spheroid (Hefner et
al., 2021).

The acquisition of multi-channel seismic (MCS) data at Axial in 2002 (Arnulf et al.,
2014, 2018; Carbotte et al., 2020) provided a high-resolution view of the magma reservoir
geometry beneath the summit of Axial for the first time. Given the simplicity of the previous
analytical deformation models, a logical next step was to investigate how a more realistic
geometry of the magmatic system relates to deformation observed at the surface, in order to add
more physical meaning to the modeling results. Arnulf et al., (2018) used MCS data to define the
3-D geometry and location of the main magma reservoir (MMR) beneath the summit caldera at
Axial, as well as a secondary magma reservoir (SMR) located ~ 10 km to the east-southeast. The
MMR vertically extends from 1.1-2.8 km depth below seafloor, is slightly offset from Axial’s
caldera to the east, and extends beyond the caldera to the north and south (Figure 2). The deep
stacked sills imaged by Carbotte et al., (2020) are located below the southern half of the MMR
between 3-5 km below the seafloor.

We constructed deformation models constrained by the MMR geometry in several ways.
First, we directly used the 3D MMR geometry with uniform internal pressure in a finite element
model (FEM), but we found that doing so provides very poor fit to the geodetic data. We then
constructed and considered several analytical deformation models as alternatives, including: 1)
approximating the MMR shape using one rectangular horizontal sill, 2) approximating the MMR
shape using 3 rectangular non-horizontal sills, 3) allowing for non-uniform pressure distribution
in a 2D horizontal sill at the average depth of the MMR roof, and 4) allowing for non-uniform
pressure distributed over the 3D MMR roof. The models are constrained by the observations of
vertical deformation from seafloor pressure data and repeated AUV bathymetric surveys during
Axial’s current inter-eruption phase between 2016-2020. Our inversion results suggest that the
MMR is likely compartmentalized, which is consistent with current thinking on magma reservoir
structure.

2. Deformation data

Bottom pressure recorders (BPRs) measure pressure at the seafloor; if the seafloor is
uplifted, there is less water column above it and therefore lower pressure. Similarly, if the
seafloor subsides, the BPR measures higher pressure. The pressure data are converted to depth
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after removing tidal signals (Eble et al., 1989). BPRs were deployed at Axial’s summit caldera in
1998 when Axial’s first observed eruption occurred (Chadwick et al., 2013; Dziak & Fox, 1999;
Embley et al., 1999; Fox, 1999; Fox et al., 2001). After a two-year gap in coverage, the
deformation time series resumed in 2000 with an array of seafloor benchmarks and the time
series has been continuous through the present (Figure 1; Chadwick et al., 2006, 2012, 2022;
Nooner & Chadwick, 2009, 2016). Since 2000, BPR measurements have been supplemented by
measurements from mobile pressure recorders (MPRs), which are used in campaign-style
surveys at seafloor benchmarks with a remotely operated vehicle (ROV) every 1-2 years to
correct for the BPRs’ long-term drift where the two are co-located (Chadwick et al., 2006). We
used the MPR data for our study instead of BPR data because there were more MPR
measurement locations in 2016-2020 and we are more interested in the spatial component of
deformation than the temporal component.

Bathymetric surveys at 1-m scale have been conducted at Axial since 2006 using
multibeam sonar equipped AU Vs, first to obtain comprehensive coverage of the volcanic terrain,
and then to measure the extent and thickness of lava flows from the 2011 and 2015 eruptions
through differencing of repeated surveys (Caress et al., 2012; Chadwick et al., 2016). Beginning
after the most recent eruption in 2015, a new sparse pattern of AUV survey lines extending well
outside the caldera (Figure 2) was established to measure vertical surface deformation by
differencing (Caress et al., 2020); this pattern has been repeated each summer since except 2021.
Differencing the repeated components of the surveys reveals vertical surface deformation over a
broader area than from the pressure sensors alone. However, compared to the MPR data which
has an accuracy of £1 cm, the AUV repeat bathymetry data have a lower vertical displacement
accuracy of = 20 cm. We used AUV vertical displacement data between two surveys in 2016 and
2020 (Figure 2). An AUV bathymetric survey was also conducted in 2015, but this survey
apparently had higher errors than subsequent surveys, because the AUV depth changes between
2015-2020 poorly match the MPR depth changes from the same time period. Since MPR
measurements were made in 2015 and 2017 (but not in 2016), we estimated the uplift values in
2016 at the MPR benchmarks by interpolating between the 2015 and 2017 MPR measurements
assuming a linear deformation rate. The BPR record shows that deformation at the center of the
caldera during this time period was not entirely linear (Chadwick et al., 2022). The benchmark at
the center of the caldera had uplifted by 55 cm from mid-2015 to mid-2016, about 10 cm
shallower in summer of 2016 than a linear interpolation would predict (Figure S1 in
Supplementary Material). The deformation rate is highest at this benchmark compared to the
other benchmarks, so our linear interpolation introduces an additional uncertainty of <10 cm in
the estimated 2016 benchmark depths. Nevertheless, the estimated 2016-2020 depth changes at
the benchmarks agree relatively well with the 2016-2020 AUV data (Figure S2 in Supplementary
Material).
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172 Figure 2. AUV repeat bathymetry data covering 2016-2020. Colors represent depth changes
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174  the MMR roof are shown with depth contours at -1250m and -1500m (below seafloor) in red and
175  black, respectively. Bathymetry is shown with shaded relief in the background.

176

177 We only used deformation data covering the inflation period from 2016 to 2020 to

178  constrain our models because the main objective of our study is to investigate the spatial

179  component of the deformation signal and its implications for the underlying magma storage

180  system. Previous studies have shown that the spatial pattern of inflation does not vary

181  significantly between different time periods (Nooner & Chadwick, 2016), except for major

182  episodes of deflation during eruptions when slip on the caldera ring faults may contribute to the
183  deformation field (Hefner et al., 2020).

184

185 3. Deformation modeling
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Our objective was to improve upon previous deformation models by reconciling the
MMR geometry with the observed spatial deformation pattern. To do this, we constructed a
series of models with increasing complexity, all constrained/bounded by the MMR. Each is
discussed in detail below. Table 1 contains a summary of model configurations, inversion
methods, and performance. See Figures 3 and 4 for a comparison of model geometries. For all
models, typical mechanical properties were used (Poisson’s ratio = 0.25, shear modulus = 30
GPa, Young’s modulus = 70 GPa; Turcotte & Schubert, 2014). Although a systematic sensitivity
test of each model to mechanical properties is outside the scope of this study, we found in testing
a range of reasonable mechanical property values for basalt specifically (based on Turcotte &
Schubert 2014) for Model 3b resulted in a volume change estimate range of 0.053629 —
0.053749 km? (0.22% change). We expect that this would affect the depth and volume change
estimates similarly for those models that allow the source depth(s) to vary.

Model Inversion Zl:’;:‘l‘g‘f RMSEumpr  RMSEau
configuration method (km?) (m) (m)
Null model N/A N/A N/A 0.864 0.639
FEM, MMR with Parameter
Model 1 uniform internal 0.173 0.312 0.254
search
pressure
Analytical, 1
Model 2a rectangular, MCMC 0.056 0.059 0.122
horizontal sill
Analytical, 3
Model 2b rectangular, non- MCMC 0.06 0.047 0.097
horizontal sills
Analytical, 2D Least
Model 3a | horizontal grid of squares 0.06 0.009 0.130
Okada sill sources | regression
Olé;le;l};tillﬁl(’)jr[c)es Least
Model 3b draped over MMR squares 0.054 0.002 0.139
roof regression

Table 1. Summary of model configurations, inversion methods, modeled volume changes, and
Root Mean Square Error (RMSE) values between each model and the MPR and AUV data.
RMSE values for a null model with no deformation are shown for comparison.
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green line. Each model’s volume change (dV) and RMSE values between the model and the
MPR and AUV data are shown in the lower left corner of each panel.

3.1. Model 1a: Finite element model with MMR geometry and uniform pressure
As a first step, we constructed an FEM using the MMR geometry from Arnulf et al., 2018

with a uniform pressure source. We started with a 3D point cloud defining the combined MMR
roof and floor (see Arnulf et al., 2018 for more detail on how the roof and floor boundaries were
defined). A 3D surface was constructed from the point cloud using a ball-pivoting algorithm,
which starts with a seed triangle and creates new triangles by pivoting a ball with user-defined
radius around the edges until it meets new points (Bernardini et al., 1999). This 3D surface was
then loaded into Abaqus/CAE 2020, which we used to carry out the FEM simulations. To
validate the FEM methodology, we compared an analytical prolate spheroid model (Yang et al.,
1988) to an FEM with a pressurized cavity of the same dimensions and verified that both models
predict the same surface deformation (Figure S3 in Supplementary Material).

The FEM domain measures 50 km long x 50 km wide x 30 km deep and the boundary
conditions were specified by a free top surface, a roller constraint on the side surfaces, and a
fixed bottom surface. We added bathymetry to the model using GMRT bathymetry data (Ryan et
al., 2009). The effect of gravity was accounted for by adding an additional analysis step (prior to
pressurization of the source) in which gravitational equilibrium is established by adding a pre-
stress defined by hydrostatic equilibrium. This is an ‘initial guess’ which is used as a starting
point to solve for the gravitational force that balances out the pressure force to result in near-zero
ground deformation according to a defined threshold. We tested the effect of ocean loading by
adding a downward hydrostatic pressure applied to the seafloor and found it to be negligible.

The MMR was incorporated by subtracting its volume from the domain and applying a
uniform internal pressure on the cavity walls. The pressure was varied over many simulations to
minimize the combined root-mean-squared error (RMSE) between the modeled surface
displacements and the AUV and MPR data.

3.2. Models 2a and 2b: Analytical sill models using Bayesian inference
Model 2a is a single rectangular horizontal sill (Okada, 1985) and Model 2b consists of 3
non-horizontal rectangular sills constrained by the MMR geometry. We used the Volcanic and
Seismic Source Modeling (VSM) package (Trasatti, 2022) to conduct joint inversions using
Markov Chain Monte Carlo (MCMC) simulations to estimate the source parameters that produce
surface deformation that best fits the AUV and MPR data.

For Model 2a, all inversion parameters were allowed to vary except for the dip angle of
the sill, which was fixed at zero (horizontal). The sill’s depth was bounded by the minimum and
maximum MMR depth. For Model 2b, the 3-sill geometry was constrained by the MMR
geometry by fixing the strike and dip angles in the inversion to follow the general trend of 3

11
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main MMR segments (Figures 4 and 5). The locations of the sills were allowed to vary within 3
defined segments of the MMR volume and the sill opening values were allowed to vary freely.
See Table 2 for a summary of fixed and best-fit variable parameters for Models 2a and 2b.

Cent.roid Cen'troid Centroid Length  Width Strike Dip Opening
Longitude Latitude depth (m bsf) (m) (m) (m)
v | 50810 < [ 450037 00| 230 [ o0 [ 3= [ 2
[ | g Tassmese [y [ e o e | ] s
gsmz Com | orm | 1T2e0 | Figt | YT e | G

Table 2. Summary of fixed and best-fit inverted parameters with standard deviations for Models
2a and 2b. The strike angle is the orientation of the plane measured clockwise from North
according to Okada (1985) (i.e., strike = 0 if the plane is oriented North-South and dips to the
East, strike = 90 if the plane is oriented East-West and dips to the South). Fixed parameters have
red shading, parameters allowed to vary within the confines of the MMR geometry have yellow
shading, and parameters allowed to freely vary have green shading.

3.3. Models 3a and 3b: 2D and 3D distributed pressure inversions
Inverting geodetic data to determine variable slip or opening distribution is a standard

method for inferring co-seismic slip on faults (e.g., Moreno et al., 2009) and has also been
applied in volcanic settings (e.g., Grandin et al., 2009). We performed two joint inversions of the
MPR and AUV data following this approach. For Model 3a, we created a 2D horizontal grid of
rectangular sill-patches at the average depth of the MMR roof and extending beyond the MMR
boundary horizontally by 3 km in both the x and y directions. For Model 3b, we gridded the
MMR roof point cloud into rectangular patches where each patch is defined by its position,
length, width, strike, and dip. The patches are allowed to dip in the North/South direction but not
in the East/West direction to create a continuous 3D grid with no gaps; this is appropriate since
there is much more dip variation along the North/South direction of the MMR than there is along
the East/West direction. The depths of the patches were defined by the average MMR roof depth
at that location (Figures 3 and 4).

For both Models 3a and 3b, we treated each patch as a rectangular dislocation (Okada,
1985) and inverted for the opening value of each patch. Posed as a forward problem, the
relationship between surface displacements and patch openings can be expressed by the linear
system:

12
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where d is the observation vector composed of vertical surface displacements, G is the Green’s
function matrix, and m is the vector of model parameters (patch openings). G was constructed by
computing the expected vertical displacement at every observation point for each patch caused
by a unit opening on that patch. To solve for m, we used a regularized linear least squares
method which minimizes the objective function, ¢p(m):

dm) =l WG -m—d) I3+ 22 I L-ml3

The first term || W (G - m — d) |5 represents weighted misfit, i.e., the squared Euclidean norm
difference between the observed data and the data predicted by the model, where W is a diagonal
weight matrix which normalizes the contribution of the MPR and AUV datasets based on the
relative uncertainties and the number of relative data points. The second term A2 || L - m |13 is the
regularization term, where A is the regularization parameter that controls the smoothness of the
model, and L is the regularization matrix. The optimal A value was chosen using an L-curve,
where the preferred smoothness is located at the corner of the curve created by plotting
roughness vs. the L2 norm of misfit (Figure 6).

a. AUV L-curve

b. MPR L-curve

0.20 4 0.020 -
. 0.18 _. 00151
E E
& 0.16 - Optimal smoothing th 0.010 -
= (A): 0.68 2
Optimal smoothing
.14 + i
0 0.005 (A): 0.68
0.12 1 T T T T 0'000 1 T T T T
B BN B S

Model L, norm (roughness)

Model L, norm (roughness)

Figure 6. L-curves showing model roughness vs. Root Mean Square Error (RMSE) as a measure
of misfit between the model and the data for (a) the AUV data and (b) the MPR data. The
optimal smoothness occurs at the corner of the curve. Example shown is for Model 3b.

3.4. Weighing the AUV and MPR data
We weighed the AUV and MPR data on a case-by-case basis for each model due to
differences among inversion methods. For Model 1, since the best-fit model was found by a
parameter search over uniform pressure values on the MMR surface (all other model parameters
were fixed), we calculated the AUV RMSE and MPR RMSE for each iteration then normalized
them by dividing each by the maximum RMSE value across all iterations and by the relative
uncertainties in the datasets. We then calculated the combined RMSE for each iteration by
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summing the normalized AUV RMSE and MPR RMSE values. The optimal model was chosen
as the model with the lowest combined RMSE value. For Models 2a and 2b, we first weighed the
datasets in an MCMC simulation according to their relative uncertainties, then further adjusted

the weights over many MCMC simulations to find the weight combination that minimized the
combined AUV and MPR RMSE values.

For Models 3a and 3b, we found a tradeoff between the regularization parameter A and
the relative weights, due to higher noise in the AUV data than in the MPR data. Instead of just
normalizing the AUV and MPR datasets using their relative uncertainties, we further normalized
them by the number of data points in each dataset. The A value was then chosen as described
above in Section 3.3.

4. Results

We found that Model 1 (uniform pressurization of the 3-dimensional MMR) did not fit
either the MPR or AUV data well. This was not unexpected, since the MMR geometry is offset
from the caldera to the east while the observed deformation is centered on the caldera. Also, the
shallowest features along the MMR roof are located beneath the SE part of the caldera and
because of this, the model creates the largest surface deformation there, 4-5 km SE of the caldera
center (Figures 2, 4a and 6a). This makes sense intuitively since these shallowest MMR features
have less overburden and therefore uplift more readily under uniform pressurization. This result
tells us that the observed deformation cannot be simply produced by uniform pressure within the
entire MMR, which suggests that perhaps the MMR is compartmentalized with isolated melt
pockets that are not well connected.

The other four models, which were developed to test the idea of compartmentalization,
showed increasing improvement of fit to the MPR data as more parameters were added. The
AUV RMSE values were also improved, but not as much and varied from model to model (Table
1). We suspect that this is because of the higher uncertainty associated with the AUV data, which
was factored into how the datasets were weighed. To quantify whether the increase in goodness
of fit to the data between the models is statistically significant and not due to random fluctuations
in the data, we conducted F-tests on each model and its adjacent model with higher complexity
using the 95% confidence interval (see Text S2 and Tables S1, S2 in Supplementary Material).
We found that the increased goodness of fit to the MPR data across the models is statistically
significant. The model pairs for which the AUV RMSE improved with complexity (Model 1 vs.
Model 2a, Model 2a vs. Model 2b) also have statistically significant improvement of fit.

Despite differences among model geometries, the models consistently estimated a best-fit
volume change of between 0.054-0.060 km?, except for Model 1 which estimated 0.173 km?
(Table 1). The best-fit pressure change for Model 1 was 42.4 MPa. Modeled deformation and fit
to the MPR data are shown in Figure 7 and AUV repeat bathymetry residuals are shown in
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Figure 8. In Models 3a and 3b where pressure was allowed to spatially vary, modeled pressure
changes were highest along the western-central edge of the MMR (Figures 4 and 5). There is
also a region of positive pressure change in the southern-most southward dipping region of the
MMR due to a long wavelength deformation signal present in this area in the AUV data.
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Figure 7. Predicted surface vertical deformation for all best-fit models with comparison between
the MPR data (red arrows) and modeled surface displacements (blue arrows). The surface
projection of each model geometry is shown as a white outline. Each model’s volume change
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Each model’s volume change (dV) and RMSE values between the model and the MPR and AUV
data are shown in the lower left corner of each panel.

5. Discussion

5.1. Model assumptions and limitations

All our models assume homogeneous and isotropic elastic half spaces (except for Model

1, which includes bathymetry). Masterlark (2007) showed that the presence of layered crustal
material can increase source depth estimates when compared to models assuming elastic half
spaces with uniform properties. Since Axial’s volcanic edifice is composed of lava flows
emplaced upon one another over time, there is likely some anisotropy in which stiffness is
different in the vertical and lateral directions, which could cause an underestimation of source
depths. If those layers are dipping, the symmetry of stress around the pressure source would
change (Gudmundsson, 2006), which would in turn affect the symmetry of measured ground
displacements. Additional vertical anisotropies such as dikes and/or faults would influence the
stress and displacement field similarly. However, since we don't have constraints on these
potential vertical anisotropies, it is difficult to quantify the effect for our case.

We found in sensitivity testing that inclusion of Axial’s bathymetry in a finite element
model using a prolate spheroid pressure source fixed at a depth of 3.8 km (the best-fit model of
Nooner & Chadwick, 2016) can affect the volume change estimate by up to 27% (Figure S3 in
Supplementary Material). This effect would increase with shallower source depths (Williams &
Wadge, 1998) such as at the depth of the MMR. This result was unexpected because of Axial’s
relatively modest bathymetric relief, and more work is needed to better understand which
bathymetric features (e.g., caldera walls vs surrounding bathymetric features) influence the
expression of vertical deformation for a given pressure source geometry.

Our assumption of elasticity could also affect the modeling results since there may be
non-elastic or viscoelastic effects unaccounted for in the models. Numerical modeling
implementing viscoelasticity at Mt. Etna has shown that lower pressures can produce the same
deformation as elastic models with higher pressure due to viscoelastic relaxation over time (Del
Negro et al., 2009). Depending on where this region of viscoelasticity is defined (either above or
below the pressure source), this phenomenon could result in either inflation or deflation observed
on the surface (Nooner & Chadwick, 2009). Cabaniss et al., 2020 found that non-temperature-
dependent elastic rheology requires greater reservoir overpressures to reproduce the observed
surface deformation at Axial compared to models that incorporate a temperature-dependent
rheology. Additionally, petrological and tomographic studies increasingly show that magma
reservoirs are likely composed of discrete melt lenses/sills embedded within a crystal-rich
magma mush (Cashman et al., 2017). Magma mush is expected to behave poroelastically or
poroviscoelastically (Gudmundsson, 2012; Liao et al., 2018, 2021). Although viscoelastic effects
and the presence of magma mush would likely not significantly impact the spatial distribution of
modeled pressure changes in our results, it could impact volume change estimates due to magma
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compressibility. Modeling viscoelastic effects at Axial would be more strongly relevant to the
temporal component of the deformation time series, for example to test hypotheses regarding
short-term deflation events proposed by Chadwick et al., 2022.

Because of the MMR’s relatively shallow depth, modeled surface deformation is
sensitive to roof topography variations at the scale of hundreds of meters to kilometers. The
reason Model 1 fits the data poorly is because the shallowest features of the MMR roof are
located kilometers away from the largest observed deformation (Figure 2). Our argument that the
MMR is not pressurized uniformly therefore relies on the assumptions that 1) the MMR
morphology has not changed between the 2002 MCS survey and 2016 and 2) the resolution and
quality of the MCS results are adequate for our analysis. It is unlikely that the MMR has changed
in morphology since the 2002 MCS survey, since preliminary results from a recent 3D MCS
survey in 2019 (Axial 3D expedition MGL1905; Arnulf et al., 2019) suggest that the overall
shape and main topographic features have not changed. In addition, the deformation pattern has
been consistent throughout the history of geodetic monitoring at Axial, despite the eruption in
2015 (Fox 1999; Chadwick et al., 1999, 2006, 2012, 2022; Nooner & Chadwick, 2009, 2016).
Uniform pressurization of the MMR might fit the data if the shallowest topographic features
were centered beneath the caldera, which would require a change in MMR roof topography of
approximately X=3 km by Y = 6 km by Z = 0.4 km. Therefore, any changes/uncertainties in the
MCS results below these dimensions would not alter our conclusions. Changes or uncertainties
in the bottom surface topography of the MMR would likely not influence our conclusions, since
the displacement at the source for Model 1 (uniform pressurization of the MMR) shows that
predicted deformation is not sensitive to these features (Figure 4). This is consistent with
findings by Yun et al., 2006, who demonstrated that modeled surface deformation at basaltic
calderas is insensitive to the bottom and sides of the model geometry and that it is the upper
surface that matters most.

5.2. Seismicity
Seismic activity at Axial associated with the 2015 eruption suggests that pre-eruptive

inflation and co-eruptive deflation are partly accommodated by slip on outward-dipping caldera
ring faults that extend from the near-surface to ~2 km depth (Wilcock et al., 2016; Waldhauser et
al., 2020). Levy et al., 2018 divided the 2015 eruption into 3 phases (pre-, syn-, and post-
eruption) and used microearthquakes to estimate the cumulative fault slip for each phase. Hefner
et al., 2020 used these slip estimates to subtract fault-induced surface deformation from the
observed geodetic data prior to performing model inversions and found that the best-fit prolate
spheroid source location was shifted laterally by 2.11 km. This demonstrates that ring fault
motion at Axial may contribute to the observed surface deformation during eruptions, but likely
only 10% or less.
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To compare the observed seismicity to our deformation model results we plotted
earthquakes located during our 2016-2020 inter-eruptive study period and seismicity surrounding
the 2015 eruption from the Wilcock et al., 2016 & 2017 earthquake catalog in Figure 9. During
2016-2020, seismicity rates started off low (<10 earthquakes per day) for the first 2 years and
increased to 10s-100s per day during the next 2 years (Figure 9¢), but the amount of expected
seismic slip on the ring faults is low, because the magnitude of most earthquakes is also low
(Mw<<2; Figure 9f).

It is also possible that magma reservoir inflation is accommodated aseismically by the
ring faults. The spatial correlation between the observed surface displacements and the caldera
could suggest that the ring faults are active. However, there is little evidence of fault slip in the
AUV repeat bathymetry data in the form of sharp offsets along AUV track lines where they cross
the faults. There may be some slip masked by the uncertainty in the AUV data (£20 cm), but it
would still only contribute ~10% or less to the observed uplift.

Regardless of how much of a role the ring faults play in accommodating inflation, it is
unlikely that they could accommodate uniform pressurization of the MMR (i.e., Model 1 with
ring faults) to produce the observed geodetic data, since most of the surface deformation in
Model 1 is to the southeast of the seismicity on the ring faults (Fig. 9a,b). However, if the center
of the MMR were pressurized (instead of the west-central edge as in Models 3a and 3b), and the
ring faults were allowed to slip, the resulting deformation might fit the geodetic data. An FEM
that includes bathymetry, spatially variable pressure, and ring faults that could slip would be
most thorough, although the number of free parameters may not be constrainable by the current
deformation data. However, recent expansions of the geodetic monitoring network at Axial will
be able to better quantify any slip across the caldera faults in the future and will add horizontal
displacements.
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Figure 9. Comparison between seismicity during our study period from 2016-2020 in orange
and seismicity associated with the 2015 eruption from January 2015 — September 2015 in
blue. Earthquake data is from Wilcock et al. (2016 & 2017) (a) Map view of the caldera
bathymetry with the MMR outlined in white. Shallowest parts of the MMR roof are shown
with depth contours at -1250m and -1500m (below seafloor) in red and black, respectively.
(b) 3-D perspective view of seismicity compared to the MMR geometry (gray mesh) and
caldera (black line). (c) Histogram of seismic events along longitude. (d) Shows a histogram
of earthquake depths. (¢) Time series of seismicity with the 9 months surrounding the 2015
eruption shaded in blue (timespan based on Wilcock et al., 2016) and the 2016-2020 time
period shaded in orange. The maximum number of events per day during the 2015 eruption
(y-axis upper limit) is ~9000. (f) Histogram of earthquake magnitudes (Mw).

5.3. Implications for magma storage beneath Axial caldera
A best-fitting deformation model cannot reveal the exact geometry of a magma storage

system and should not be interpreted as such; rather, a deformation model can provide the
approximate location and volume changes of the region(s) where the greatest pressure changes
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occurred during magmatic activity. While our results provide improved horizontal constraints on
where magma accumulates between eruptions, there is inherent non-uniqueness among modeled
depths due to the tradeoff between depth and pressure. While our best-fit horizontal sill (Model
2a) is similar in horizontal geometry to the best-fit horizontal sill found by Hefner et al. (2021),
the depth of our sill is deeper at 2.7 km compared to 0.97-1.24 km, which is likely due to
differences in inversion methods and/or the tradeoff between depth and pressure.

Despite this tradeoff, the consistent volume change estimates of 0.054-0.060 km? among
Models 2a-3b suggests that the volume change is not significantly sensitive to model depths
within the depth range of the MMR. In addition, we tested an FEM model using the prolate
spheroid geometry (the best-fit solution from Nooner & Chadwick, 2016) constrained only by
the 2015-2020 MPR data, which resulted in a volume change of 0.077 km? (Figure S3a in
Supplementary Material). Since this included an extra year’s worth of inflation compared to the
2016-2020 models we show in this study, the estimated volume change for the 2016-2020 time
period would be expected to be somewhat lower, more or less consistent with the volume change
estimates using geometries constrained by the MMR in Table 1. This demonstrates that the
estimated volume change for this inter-eruptive recharge period is not highly sensitive to model
geometry, depth, or location.

The total volume of the shallow magma storage system beneath Axial was estimated by
Arnulf et al., 2014 to be 18-30 km? and the modeled co-eruptive volume change associated with
previous eruptions has been estimated to vary between 0.147 — 0.206 km? using analytical model
source depths of 3-3.8 km (Chadwick et al., 1999, 2012; Hefner et al., 2020; Nooner &
Chadwick, 2016). Our study models the observed inflation from 2016-2020, during a time when
the magma supply rate was initially high, but then waned with time following the 2015 eruption
(Chadwick et al., 2022). Given that the magma supply rate is estimated to have varied from >0.1
km?/year to <0.01 km?/year during that time period (Chadwick et al., 2022), our volume change
estimates are reasonable.

Mullet & Segall (2022) demonstrated that as the melt fraction of a mushy magma
reservoir increases, the deformation caused by a mush-dominated magma storage system is
increasingly driven by the overall shape of the mush body, instead of any pressurized melt lens
within the mush. If the melt fraction within the MMR is high enough to cause Axial’s
deformation to be driven by the entire mushy body (instead of individual sills) and if we assume
that the MMR is a continuous body, it follows that using the MMR geometry as a pressure
source should fit the deformation data. The poor fit to the data of Model 1 as well as the pattern
of pressure distribution in Models 2b, 3a and 3b are instead suggestive of compartmentalization
of melt within the MMR and a relatively low melt fraction in the surrounding mush (Figure 10).
In this context, compartmentalization means that melt bodies within the MMR are not connected
hydraulically, at least on time scales that are relevant to the deformation cycle at Axial.
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Based on the correlation between the modeled spatial pressure distribution in our models
and the MMR outline (the correlation is most apparent in Model 3a), another possibility is an
intermediate hypothesis in which one primary sill is pressurized and a large mushy region
surrounding the sill that loosely approximates the MMR extent is also pressurized but to a much
lesser degree. Both possibilities conflict with melt fraction estimates within the MMR by Arnulf
et al., 2018, which suggest that the highest melt fraction is directly beneath the shallowest MMR
roof features southeast of the caldera center, with relatively low melt fraction elsewhere.

<=~

Figure 10. Schematic diagram illustrating possible compartmentalized melt distribution in which
sills are emplaced in crystal mush both within and below the MMR at Axial Seamount.

The depth of magma residence estimated by petrological analyses (Dreyer et al., 2013) is
deeper at 3-6 km than the MMR depth range of 1.1-2.8 km, but is consistent with the deeper
system of stacked sills beneath the MMR imaged by Carbotte et al., 2020 extending from 3-5 km
depth below seafloor. Since we did not consider deformation sources in this depth range, we
cannot rule out contribution to the deformation field of a potential pressure source (or multiple
sources) in the deeper stacked sill region. Non-uniqueness among models due to the tradeoff
between depth/pressure would likely hinder efforts to resolve pressurization of multiple
vertically stacked sills or the combination of compartmentalized MMR pressurization with a
source representing the stacked sill region. However, since the stacked sills are exclusively
beneath the SSE part of the caldera, they probably cannot produce the observed caldera-centered
deformation by themselves.

The concept of a “magma domain” was applied to Axial Seamount by Sigmundsson

2016 to describe a crustal volume that hosts magma at a shallow level with varying amounts of
melt/mush and pockets with variable connectivity. This concept was also applied to the
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Bérdarbunga volcanic system in Iceland where caldera collapse in 2014-2015 was modeled using
a sill-like magma body within a larger magma domain, which supplied magma to a lateral dike
(Sigmundsson et al., 2020). Along with these studies, our results have implications for how
deformation models constrained by geodetic data alone should be interpreted, since a best-fit
pressure source is likely not representative of the full extent of magma storage beneath a
volcano. Although petrological studies suggesting that magma reservoirs are composed of a
complex network of melt sills embedded in crystal mush have primarily focused on mafic
volcanoes, there is increasing evidence that this may also be the case for some silicic systems
(Cashman & Giordano, 2014).

6. Conclusions

The ability to accurately forecast volcanic eruptions is an important goal in hazard
mitigation research. Linking precursory signals like ground deformation to subsurface processes
is therefore essential. With the increase in spatial coverage of Axial’s deformation monitoring
due to the application of AUV repeat bathymetric surveys, there is now adequate data to justify
more complex deformation modeling than what has been done previously. We constructed a
suite of numerical and analytical models geometrically constrained by the shape of the
seismically imaged MMR to investigate the role of the MMR in creating the observed surface
deformation and to test the hypothesis that the MMR is compartmentalized. Although our
estimated volume change of 0.054-0.060 km? for the inflation period between 2016-2020 is
reasonable considering previous estimates of inflation, deflation, and eruption volumes, the
models make assumptions (flat seafloor, full elasticity, no ring faults) that could influence the
volume change and/or depth estimates. Nevertheless, the models with spatially varying pressure
(Models 3a and 3b) suggest that magma accumulates during Axial’s inter-eruptive recharge
periods along the western-central edge of the MMR with some potential additional accumulation
in the southern-most southward dipping region of the MMR. Future modeling efforts with
additional complexity and more parameters will likely require increased data constraints in the
form of higher resolution seismic imagery, AUV repeat bathymetry with lower uncertainty,
and/or the additional constraint of horizontal deformation measurements.
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