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A B S T R A C T   

Soil carbon-nitrogen (C:N) stoichiometry acts as a control over decomposition and soil organic matter formation and loss, making it a key soil property for un-
derstanding ecosystem dynamics and projected ecosystems responses to global environmental change. However, the controls of soil C:N and how they respond to 
increasing pressures from global change agents are not fully understood. The “foundational” controls on soil C:N, namely plant and microbial C:N, have been used to 
predict soil C:N, but fail to accurately simulate all ecosystems and may be insufficient for predictions under global environmental change. We present an “emerging” 
representation of controls of soil C:N that includes plant-microbe-mineral feedbacks that have been shown to regulate soil C:N. We argue that including repre-
sentation of these emerging drivers in process-based terrestrial biogeochemistry models, which include biological N fixation, mycorrhizae, priming, root exudation of 
organic acids, and mineralogy (including soil texture, mineral composition, and aggregation), will improve mechanistic representation of soil C:N and associated 
processes. Such improvements will produce models that will better simulate a variety of ecological states and predict soil C:N when global changes modify plant- 
microbe-mineral interactions. Here, we align our empirical understanding of controls of soil C:N with those controls represented in models, identifying contexts 
where emerging drivers might be particularly important to represent (e.g., priming and root exudation in nutrient-limited conditions) and areas of future work. 
Additionally, we show that implementing emerging drivers of soil C:N results in different simulated outcomes at steady state and in response to elevated atmospheric 
CO2. Our review and preliminary simulations support the need to incorporate emerging drivers of soil C:N into process-based terrestrial biogeochemistry models, 
allowing for both theoretical exploration of mechanisms and potentially more accurate predictions of land biogeochemical responses to global change.   

1. Introduction 

Ecological stoichiometry, the study of the interactions of elements in 
ecological systems, is an organizing principle in ecology that provides a 
theoretical framework to explore how elements regulate plant growth, 
decomposition rates, and nutrient cycling at multiple scales (Elser et al., 

2000). In soil, carbon-to-nitrogen (C:N) stoichiometry could be seen as a 
master variable that governs the flows of C and N between plants, mi-
crobes, and soils. Changes in soil C:N also reflect changes in soil C and N 
storage, which modify carbon cycle-climate feedbacks and nutrient 
limitation of plant growth, respectively. Further, soil C:N can be indic-
ative of mechanistic changes in the system and represents the N 
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requirement of C storage, important for land management aiming to 
increase soil C storage (Buchkowski et al., 2019; Cotrufo et al., 2019). 
Indeed, as our understanding of soil organic matter (SOM) dynamics 
advances, the role of soil stoichiometry remains an important aspect of 
ecosystem biogeochemistry (Buchkowski et al., 2019). Despite this 
central role and advancing knowledge, the controls of SOM C:N stoi-
chiometry in process-based models of terrestrial biogeochemistry 
(“models’’ hereafter; Supplementary Table 1)—which both emerge from 
and are informed by measurements and theory (Blankinship et al., 
2018)—have remained largely stagnant and mostly consist of the C:N 
ratios of plant and microbial inputs. However, numerous recent studies 
have identified additional plant, microbial, and physico-chemical con-
trols of SOM C:N stoichiometry that are largely missing from model 
formulations (e.g., Cotrufo et al., 2019; Possinger et al., 2020; Song 
et al., 2022; Amorim et al., 2022). These missing controls likely underlie 
global patterns in soil C:N and may be particularly important under 
global change scenarios where climate change, elevated CO2, and N 
enrichment (from fertilization or atmospheric deposition) may alter the 
availability of and demand for N (Terrer et al., 2016, Souza and Billings, 
2021). The goal of this perspective is to evaluate controls of soil C:N with 
a focus on gaps in both our theoretical understanding and model for-
mulations. We first describe the foundational representation of soil C:N 
controls currently present in most models. Then, we describe an 
emerging representation of soil C:N controls, derived from empirical 
work that is informing a more complete and nuanced theoretical un-
derstanding, with the ultimate goal of aligning this representation with 
formulations in models. Finally, we explore how implementing the 
emerging representation of soil C:N controls could influence predictions 
of soil C and N cycling under global change. 

2. Foundational representation of soil C:N 

2.1. Conceptual understanding of soil carbon-to-nitrogen stoichiometry 

The influence of plant C:N on soil processes has been recognized for 

at least forty years, when lower C:N plant material was found to 
decompose more quickly than higher C:N plant material (Melillo et al., 
1982, Enríquez et al., 1993). Faster decomposition of lower C:N plant 
material occurs, in part, because it is better aligned with the relatively 
lower and more strongly constrained C:N ratio of the microbes that 
decompose it (plant C:N = 9–1160; microbial biomass C:N = 1–86; 
Fig. 1; Cleveland and Liptzin, 2007). The relative stoichiometric ho-
meostasis of the soil microbial biomass C:N thus drives soil C and N 
recycling, where microbes mineralize excess C or N not used to build 
their biomass to CO2 and ammonium, respectively. This process, termed 
consumer-driven nutrient recycling (Elser and Urabe, 1999), converts 
relatively high and variable plant C:N to relatively low and less variable 
C:N during microbial decomposition (Tipping et al., 2016). Indeed 
across multiple ecosystems and data sources we see a consistent 
decrease in the C:N stoichiometry of different ecosystem components as 
highly variable plant inputs pass through a more stoichiometrically 
constrained microbial filter to generate SOM (Fig. 1). Previously, SOM 
was thought to largely consist of variably decomposed plant material, 
but it is now largely accepted that SOM also includes microbial materials 
that persist due to their physical or chemical inaccessibility to further 
decomposition (Cotrufo et al., 2013; Lehmann and Kleber, 2015; Kal-
lenbach et al., 2016). Thus, the stoichiometry of bulk SOM reflects 
contributions of both higher C:N plant material and lower C:N microbial 
biomass and by-products. The stoichiometry of bulk SOM also depends 
on the relative contribution of different SOM fractions (Buchkowski 
et al., 2019). The relatively low C:N of stable SOM pools (e.g., 
mineral-associated organic matter or MAOM) results from the greater 
contribution of microbial material (von Lützow et al., 2007), whereas 
the higher C:N of particulate organic matter (POM) is due to greater 
contributions of structural plant material (von Lützow et al., 2007; 
Haddix et al., 2016, Fig. 1a). This theoretical understanding informed a 
“foundational representation” of soil stoichiometry that guides con-
ceptual models, where plant C:N drives SOM C:N variability and nutrient 
recycling, while microbial C:N constrains it. (Fig. 2a). Additionally, 
environmental variables like temperature, moisture, and nutrient 

Fig. 1. (a) Empirically derived C:N ratios of different ecosystem components showing a narrowing of C:N ratios along the plant-microbe-soil continuum. Filled circles 
depict arithmetic means and small points arrayed as histograms depict individual observations. Data sources: coarse woody debris (Weedon et al., 2009); leaves 
(Dynarski et al., 2023); fresh litter and standing roots (NEON, 2023a; NEON, 2023b); fungal biomass (Zhang and Elser, 2017); microbial biomass (Xu et al., 2013); 
organic and mineral soil (Tipping et al., 2016); MAOM and POM (MAOM = mineral-associated organic matter; POM = particulate organic matter; Georgiou et al., 
2022a). B) Conceptual depiction of the foundational representation of the decomposition process (funnel) that transforms relatively high plant C:N to relatively lower 
soil C:N, due to contribution of both plant and microbial materials to bulk SOM, with expected changes in the C:N ratio during this process. Earth with global change 
processes at bottom depicts uncertainty in the ability of the drivers above to simulate soil C:N under novel environmental conditions and thus the need to incorporate 
additional drivers of soil C:N beyond plant and microbe C:N. 
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availability that control rates of microbial decomposition impact the 
balance between plant and microbial contributions to SOM C:N (Wieder 
et al., 2009), suggesting that changes to climate, nutrient pollution (e.g., 
N deposition), and environmental conditions may change the controls of 
soil C:N in the future. 

2.2. Implementation of foundational representation in models 

Most current ecosystem biogeochemistry models (e.g. DayCent, 
PnET, or TEM) and land models that are used for global-scale projections 
(e.g. CLM, JSBACH, or LPJ-Guess; Davies-Barnard et al., 2020; Kou--
Giesbrecht et al., 2023) are structured and parameterized with the 
foundational representation of soil C:N (Supplementary Table 1). Under 
these assumptions, simulated rates of soil C and N cycling reflect for-
mulations of pool-specific turnover times, donor and receiver pool 
stoichiometry, and C use efficiency (CUE, which determines the fraction 
of heterotrophic respiration; Parton et al., 1993; Parton et al., 1994; 
Thornton and Rosenbloom, 2005). Nitrogen mineralization versus 
immobilization occurs to balance donor pool transfers of C and N with 
receiver pool stoichiometry. Generally, these models implicitly repre-
sent microbial activity (Schimel 2001), using environmentally sensitive 
first-order kinetics to define the turnover of litter and soil organic matter 
pools. The microbially-implicit modeling approach typically simulates 
down-regulation of decomposition rates when inorganic N availability is 
limiting, which generally occurs during transfers of material from high 
C:N litter to low C:N soil organic matter pools (Metherell, 1992; Parton 
et al., 1993; Bonan et al., 2013; Thomas et al., 2015). By contrast, 
models that explicitly represent microbial activity do not by default 
exhibit down-regulation of decomposition rates because of N limitation. 
For example, Kyker-Snowman et al. (2020) included overflow 

respiration of donor-pool C when N availability fails to meet the stoi-
chiometric demands of decomposer biomass. This approach also elimi-
nates the need to directly parameterize soil stoichiometry. Instead, soil 
C:N emerges from the relative contribution of microbial by-products 
(with a lower C:N ratio and narrower range) and plant detritus that 
bypasses the microbial filter and enters different SOM pools (Sulman 
et al., 2017; Zhang et al., 2021; Eastman et al., 2023). This is exemplified 
in the microbially-explicit model MIMICS-CN, where soil C:N is strongly 
influenced by plant input chemistry and which we use in case studies 
throughout this paper (Fig. 3). Despite differences in how soil C:N is 
determined in microbially-implicit vs -explicit approaches, both ap-
proaches rely on the foundational representation of soil C:N. 

Model formulations that implement the foundational representation 
do represent dynamic flows of C and N during field decomposition, but 
falter in certain ecosystems (i.e. tundra and arid grasslands) and 
generally underestimate variation in soil C:N (Parton et al., 2007; Bonan 
et al., 2013; Kyker-Snowman et al., 2020, Juice et al. in review). The 
accuracy and reliability of these models are insufficient for simulating 
the full spectrum of ecosystems and may falter under novel environ-
mental conditions (e.g., global environmental change; Fig. 1b, bottom; 
Wieder et al., 2019b). For example, recent research shows that in-
teractions between plants, microbes, and the soil matrix strongly regu-
late soil C and N cycling, and consequently SOM C:N stoichiometry (e.g., 
Keiluweit et al., 2015; Jilling et al., 2018; Possinger et al., 2020; Daly 
et al., 2021; Terrer et al., 2021). Representing these mechanisms is 
paramount for improving mechanistic representation of soil C:N and 
predicting changes in soil C:N under global change. 

Fig. 2. Conceptual illustration showing foundational and emerging representations of the controls on C:N stoichiometry. (a) In the foundational representation, 
relatively high C:N plant material (green) combines with relatively low C:N microbial inputs (blue) to create the distribution of soil C:N values. Because plants have a 
wider range of C:N than microbes, plant C:N drives wider variation in soil C:N while microbial contributions constrain soil C:N, hence the right-skew of the histogram 
depicting soil C:N variation. In the foundational representation, this plant-centric focus is depicted as a “top-down” view of the soil C:N. (b) In the emerging rep-
resentation, additional drivers of soil C:N that are typically absent from foundational representation of soil C:N are depicted (circular vignettes). Additional factors 
that may influence soil C:N can be broadly grouped into plant and microbe feedbacks and soil physico-chemical effects, and include the specific drivers of biological 
nitrogen fixation, mycorrhizae, priming, root exudates, and mineralogy (including soil texture, mineral composition, and aggregation). These drivers act through a 
diversity of mechanisms and thus can differentially influence C:N in ways that may be unrelated to initial plant C:N. This potential for variation in soil C:N due to the 
emerging drivers is depicted as shifts in the soil C:N histogram. In the emerging representation, this focus on processes occurring in the soil is depicted with a 
“bottom-up” view that emphasizes plant-microbe-mineral interactions. 
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3. Emerging representation of soil C:N 

The empirical evidence of important drivers beyond plant and 
microbe C:N that shape soil C:N ratios informs an “emerging represen-
tation” of the controls of soil C:N variation (Fig. 2b). We use the word 
“emerging” to explicitly acknowledge that many of the processes we 
describe below are already recognized as important for soil C:N in some 
subfields of soil science and represented in some models. However, we 
aim to clarify the importance of and collate these “emerging drivers” so 
that they can be aligned with model assumptions. We group these 
emerging drivers into plant and microbe feedbacks and soil physico- 
chemical effects that are absent from the foundational representation 
of soil C:N. The foundational representation considers plants and mi-
crobes as drivers of variability in soil C:N, and does not consider how soil 
C:N might feed back on the quantity and quality of plant inputs and 
subsequent microbial activity nor how minerals could act as a filter on 
soil C:N stoichiometry. Plant, microbial, and soil physico-chemical 

drivers have the potential, at least in certain circumstances, to 
improve the mechanistic representations of modeled soil C:N, even if 
they do not alter predictions of spatial variation in soil C:N. We review 
the empirical evidence for the importance of these emerging drivers and 
whether they align with assumptions in models. We focus on drivers that 
are evidenced as empirically important because adding additional pro-
cesses to models can require additional input data, parameter optimi-
zation, and computational costs. Thus, there must be careful 
consideration of the balance between model complexity and realism 
when adding additional processes to models. We note that no one model 
is likely able to represent all of the processes we discuss below, but that 
representing the emerging drivers in some models will allow for 
research questions better tailored to systems where a given driver is 
particularly important. 

Fig. 3. (a) Wiring diagram for MIMICS-CN model, which we use in case studies throughout this paper. Briefly, litter inputs (I) are split into metabolic and structural 
pools (LITm and LITs) which are decomposed by microbial communities having copiotrophic and oligotrophic growth strategies (MICr and MICK, respectively), where 
both litter (fi) and microbial turnover (T) can contribute to the physicochemically stabilized and chemically stabilized soil organic matter pools (SOMp and SOMc, 
respectively), and SOMp and SOMc contribute to an available SOM pool (SOMa) that can be accessed by microbes. Detailed description of the model can be found in 
Kyker-Snowman et al. (2020) building upon Wieder et al. (2014). (b) MIMICS-CN simulations of bulk soil C:N in a hypothetical temperate deciduous forest where 
only the chemical quality (defined as the C:N ratio and lignin content) of litterfall inputs to surface soils are modified. 
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3.1. Plant and microbe feedbacks 

3.1.1. Biological nitrogen fixation 
Biological N fixation represents a process that could influence soil C: 

N in ways not captured in the foundational representation of soil C:N 
controls. N fixation occurs through two general pathways: as plant 
symbiotic N fixation, where N is fixed for direct plant use via a symbiotic 
relationship with root-nodulating bacteria, and as “free-living” N fixa-
tion, where N is fixed by both autotrophic and heterotrophic bacteria 
that occupy a diversity of non-vascular plant niches (e.g., soil, leaf litter, 
wood, etc.; Vitousek et al., 2013; Cleveland et al., 2022). Both forms 
contribute new N inputs that enhance relative plant and soil N content, 
and thus may be hypothesized to reduce soil C:N (Vitousek et al., 1987; 
Vitousek and Walker, 1989; Adams et al., 2016; Gou et al., 2023). 
However, experimental and empirical studies have shown that invasion 
and/or introduction of N-fixing plants can have positive, negative, or 
neutral effects on soil C:N (Johnson and Curtis, 2001; Liao et al., 2008). 

Although N fixation has been implemented in many models, it is 
commonly simulated using phenomenological relationships between 
empirically derived N fixation rates and net primary production or 
evapotranspiration (Wieder et al., 2015; Meyerholt et al., 2016). Sym-
biotic N fixation (alone) is most often included in models as an addition 
of N to the plant pool. By contrast, when free-living N fixation is 
included in models, it is often represented as an addition of N to the 
mineral N pool (Metherell et al., 1993; Reed et al., 2011; Hartman et al., 
2018; Lawrence et al., 2019). These formulations of N fixation could 
promote increased microbial activity and subsequent input to SOM pools 
when microbial growth is associated with increased labile plant material 
and reduced microbial N limitation, such as in CORPSE-FUN, thereby 
reducing SOM C:N (Sulman et al., 2017). 

More mechanistic implementations of N fixation could more accu-
rately simulate how N fixation shapes SOM C:N stoichiometry. Potential 
model improvements include representations of non-symbiotic, rather 
than solely symbiotic, N inputs, N fixation inputs based on both C supply 
and N demand (rather than one or the other), and benchmarking against 
new and emerging empirical estimates of global N fixation (Vitousek 
et al., 2013; Davies-Barnard and Friedlingstein, 2020). Improved model 
representations of N fixation would further advance models that simu-
late N fixation using a resource optimization strategy, which are 
currently the most advanced representations of N fixation (e.g., 
GFDL-LM3-BNF, CLM5, and CABLE; Fisher et al., 2010; Shi et al., 2016, 
Lawrence et al., 2019; Peng et al., 2020, Kou-Giesbrecht et al., 2021). 
Given that increasing atmospheric CO2 concentrations are hypothesized 
to favor N fixation over much of the world (Novotny et al., 2007; 
Hungate et al., 2009; Nasto et al., 2019), improved representations of N 
fixation in models may be critical for accurately simulating soil C:N 
under global change. 

3.1.2. Mycorrhizae 
Mycorrhizal type and associated plant traits influence soil C:N stoi-

chiometry and nutrient cycling through differences in their nutrient 
acquisition strategies. Ericoid- and ectomycorrhizal- (ECM) dominated 
ecosystems typically have higher litter and soil C:N ratios and slower 
rates of nutrient cycling compared to arbuscular mycorrhizal- (AM) 
dominated ecosystems (Phillips et al., 2013; Averill et al., 2014). The 
direct connections between plant litter quality and soil stoichiometry are 
captured by the plant-to-soil pathway in the foundational representation 
of soil C:N. However, mycorrhizae allow for a two-way relationship 
between plants and soil. As mycorrhizae receive C from plant roots, they 
can either produce enzymes to mine nutrients from SOM (ECM) or 
expand their hyphal network to more efficiently exploit soil inorganic N 
(AM; Brzostek et al., 2013; Midgley et al., 2016; Tedersoo and Bahram, 
2019). Strategies related to these different nutrient economies may be 
particularly important for biogeochemistry in forest ecosystems, which 
can vary in the relative abundance of mycorrhizal types, and in eco-
systems experiencing shifts in plant species composition, such as shrub 

encroachment in the Arctic (Wookey et al., 2009). Yet, explicit repre-
sentations of these plant-mycorrhizal relationships are largely missing 
from models. 

Some attempts have been made to represent plant-mycorrhizal re-
lationships in models with variations in belowground plant C inputs 
across mycorrhizal type and soil N availability (Baskaran et al., 2017; 
Sulman et al., 2017; He et al., 2018; Shi et al., 2016; Huang et al., 2022). 
Overall, these modeling experiments show that incorporating mycor-
rhizae increases model-observation agreement of soil C stocks and C:N 
ratios. Meanwhile, they suggest that simulating plant-mycorrhizal re-
lationships may constrain the impacts of climate change on soil 
biogeochemistry and plant productivity. For example, as nutrient de-
mand increases with elevated CO2, ECM associations allow plants to 
mine SOM for N, enhancing plant productivity to a greater extent than 
AM systems that are less likely to mine N from SOM (Terrer et al., 2021). 
At the same time, this process typical of ECM-dominated ecosystems can 
increase competition between ECM and free-living saprotrophs, 
reducing the overall decomposition of SOM by saprotrophs and 
increasing soil C stocks and C:N ratios (Averill et al., 2014). Thus, 
incorporating these plant-mycorrhizal associations into models may also 
capture the divergent responses of forest ecosystems with different 
mycorrhizal associations to global changes like elevated CO2 (Sulman 
et al., 2019), as has been observed at Free-Air Carbon Enrichment 
(FACE) sites (Terrer et al., 2016). 

3.1.3. Plant priming of soil microbial activity 
Soil priming, the accelerated decomposition of SOM via inputs of 

plant C, is a process with complex mechanistic underpinnings and highly 
variable responses to global changes (reviewed in Bernard et al., 2022). 
In some cases, plant priming may align with the foundational under-
standing of the plant-soil-stoichiometric continuum, where greater 
decomposition of fresh plant input increases microbial contributions to 
SOM and lowers soil C:N (Chen et al., 2014). However, at least three 
mechanisms may drive soil responses that likely differ from what is 
captured using foundational representations of soil C:N. First, higher soil 
microbial activity under priming may simultaneously accelerate 
decomposition rates of C-rich POM (in addition to decomposition of 
fresh plant input), reducing bulk C stocks and decreasing soil C:N 
(Bernard et al., 2022). Second, in nutrient-limited conditions, selective 
mining of N from SOM can occur when soil microbes use labile plant 
exudates as an energy source and preferentially immobilize N or N-rich 
material from SOM, thereby increasing SOM C:N (Chen et al., 2014; 
Hicks et al., 2020; Na et al., 2022). Third, priming could alter microbial 
community composition, favoring microbial functional groups that 
preferentially degrade substrates with high or low C:N ratios (Geyer 
et al., 2020). Therefore, representation of priming may be particularly 
important in scenarios where we expect changes to plant input quantity 
and quality (e.g., changes in plant community composition or alloca-
tion) and nutrient limitation (e.g., elevated CO2, Mason et al., 2022). 

Priming effects are not typically included in first order models 
because SOM turnover times are only modified by environmental scalars 
(e.g., temperature and moisture). A notable exception is the ORCHIDEE- 
PRIM model, which represents priming by modifying turnover times 
with changes in plant productivity, but only represents C (Guenet et al., 
2016). Explicit representation of microbial activity, however, may 
provide more sophisticated, testable representations of priming mech-
anisms, including higher turnover rates, microbial N-mining, or pref-
erential degradation of different SOM pools by different microbial 
functional types (Schimel, 2023). Indeed, microbially explicit models 
may include an emergent representation of priming due to relationships 
between substrate availability and microbial growth (Schimel, 2023). 
Current models that specifically simulate priming operate on relatively 
short or small temporal or spatial scales, with the goal of better under-
standing the complex interactions of microbes, OM, and minerals and 
dynamics of priming (Bernard et al., 2022). For example, the SYM-
PHONY model (Perveen et al., 2014) simulates N-mining in priming, but 
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only at landscape to ecosystem scales. However, the importance of 
incorporating priming at larger scales is increasingly recognized (Terrer 
et al., 2021). 

3.1.4. Root exudation of organic acids 
In addition to root exudates that accelerate microbial activity and N 

mineralization via priming, plants also produce exudates that can 
directly increase SOM availability. Root exudation of organic acids (e.g., 
oxalic acid) can directly destabilize MAOM by locally lowering the pH in 
the rhizosphere, thereby chelating or competing with previously 
mineral-bound organic matter (Keiluweit et al., 2015; Jilling et al., 
2018). This effectively promotes faster turnover of organic matter, as 
MAOM typically has long turnover times and low C:N ratios (Lavallee 
et al., 2020). Thus, organic acids may increase the availability of 
decomposable substrates and accelerate rates of N mineralization and 
plant N uptake (Jilling et al., 2018; Daly et al., 2021). Given the rela-
tively low C:N of MAOM, its decomposition would tend to drive a loss of 
N-rich OM and subsequently increase the bulk soil C:N ratio. 

Currently, depolymerization of SOM by enzymes and decomposers is 
considered the rate limiting step for N mineralization (Schimel and 
Bennett, 2004; Mooshammer et al., 2014), which ultimately constrains 
plant N availability and primary production in models. MAOM is often 
considered inaccessible to plants and microbes, though recent advances 
suggest that it may be an important plant N source (Jilling et al., 2018; 
Lavallee et al., 2020; Daly et al., 2021). As such, the direct effects of 
plant root inputs on the turnover of MAOM is virtually absent in models. 
Instead, in most models MAOM-like pools are represented with long 
turnover times that are modified by environmental scalars (temperature 
or moisture) and potentially modified by soil properties like soil texture 
or clay content. Very few models actually represent root exudation, and 
those that do only partially represent complex priming effects. For 
example, FUN-CORPSE only considers mycorrhizal response to exudates 
(Sulman et al., 2017). The closest approximation may be from the model 
ecosys, which simulates root exudation and exchange of organic C for 
organic N and P (Grant et al., 2016, Mekonnen et al., 2019; Chang et al., 
2020; Bouskill et al., 2022). However, none of these models represent 
direct destabilization of MAOM caused by root exudation of organic 
acids. Indeed, consideration of mycorrhizae, priming, and organic acids 
introduces additional complexities to the emerging representation of 
soil C:N that are worth exploring further in models. As a preliminary step 
towards this exploration, we investigate the influence of priming, which 
could both increase or decrease soil C:N, and that of root exudation of 
organic acids, which we expect to increase soil C:N, below. 

3.1.5. Biotic case study: simulating priming and desorption in the MIMICS- 
CN model 

As a case study, we explored the potential effects of root exudation 
that causes priming and desorption (via exudation of organic acids) on 
steady state pools simulated by the MIMICS-CN model (Kyker-Snowman 
et al., 2020; Eastman et al., 2023). We use this case study and those in 
following sections (sections 3.2.2 and 4.1) to illustrate the potential 
importance of the emerging drivers of soil C:N but acknowledge that 
studies at larger scales and with different models will be needed to fully 
evaluate the importance of the emerging drivers for soil C:N. All ex-
periments were performed in a hypothetical temperate deciduous forest 
with identical climate, litterfall inputs, litter quality and soil conditions. 
In all simulations, we calculated bulk soil C:N ratios as well as steady 
state C pools to explore the mechanisms driving changes in bulk soil C:N. 
The baseline simulation received root exudates as inputs to the meta-
bolic litter pool (LITm) with a defined C:N ratio of 15 (Kyker-Snowman 
et al., 2020). This baseline experiment was designed to illustrate an 
implicit representation of root exudation fluxes, which are handled with 
the same stoichiometry as relatively labile plant litter. At steady state, 
the baseline experiment simulated a bulk soil C:N ratio of 9.6, total 
steady state C of 6.4 kgC m−2, microbial biomass was 1.5% of soil C 
pools, and 43% of SOM was in the SOMP pool (physico-chemically 

protected SOM, which we equate with MAOM; Fig. 4). The bulk soil C:N 
stoichiometry and fraction of the SOMP pool were lower than median 
observational estimates (Fig. 5, discussed below), which is consistent 
with previous work with MIMICS-CN (Kyker-Snowman et al., 2020). 

In a second “priming” experiment we more explicitly considered the 
effects of priming via root exudation by transferring 10% of metabolic 
litter inputs to the microbially-available SOM pool (SOMa) at initiali-
zation. This simulation was designed to represent potential plant prim-
ing of soil microbes without changing the quantity or chemical quality of 
plant inputs to soils. This representation of priming increased total mi-
crobial biomass and the relative abundance of oligotrophic microbes 
(MICK), which resulted in a slightly higher microbial biomass C:N 
compared to the baseline experiment (7.0 vs. 6.9, respectively). In 
response to priming, microbial community shifts accelerated decom-
position of litter and SOMC pools, relative to the baseline simulation, 
which slightly decreased total C stocks and bulk soil C:N ratio (6.2 kgC 
m−2 and 9.5, respectively; Fig. 4). Broadly, these results are consistent 
with stimulation of oligotrophic microbial communities that have a 
competitive advantage over copiotrophic communities when utilizing 
more chemically complex substrates (Fontaine et al., 2003). In our 
simulations, oligotrophs increased in relative abundance and produced 
more enzymes that decompose litter and SOMc (comparable to POM). 
Yet, the magnitude of the effects on steady state pools and bulk soil 
stoichiometry were relatively small. The subtle changes in soil C stocks 
and C:N ratio may indicate that either the priming effect does not exert a 
strong control of steady-state behavior in the model, or that our simple 
priming experiment does not capture more complex priming mecha-
nisms (Hicks et al., 2020; Karhu et al., 2022; Na et al., 2022). However, 
this simple priming experiment captures priming-induced directional 
changes in microbial community composition and soil C:N that are 
consistent with theoretical expectations, suggesting that more work is 
needed to evaluate whether the magnitude of these changes are 
appropriate. 

In a third “priming + desorption” experiment, we considered the 
potential role of organic root acids liberating MAOM. Here, we repeated 
the priming experiment, but also increased the desorption rate of SOMP 
(comparable to MAOM) by 10% relative to the baseline simulation. 
Increasing the desorption rate decreased the size of the SOMP pool 
relative to both the baseline and priming experiments. As the SOMP pool 
in MIMICS has a relatively low C:N ratio, reducing the size of this soil 
fraction increases bulk soil C:N ratios slightly above baseline values (9.7; 
Fig. 4). Again, the changes in total soil C stocks and C:N stoichiometry 
associated with this simplistic consideration of organic acids liberating 
MAOM are relatively small, but the direction of these changes are in line 
with theoretical expectations (Keiluweit et al., 2015; Jilling et al., 2018). 
This experiment also underscores the data and knowledge gaps associ-
ated with the extent to which organic acids from root exudates may 
accelerate desorption of MAOM (Jilling et al., 2021). It is technically 
challenging to quantify these fluxes even in lab incubations with artifi-
cial roots at sub-millimeter scales (Keiluweit et al., 2015) and scaling 
these insights to larger, more field-relevant scales remains speculative. 
Progress likely requires a more advanced empirical understanding and 
representation of soil physico-chemical properties and their influences 
of SOM dynamics. 

3.2. Soil physico-chemical effects 

3.2.1. Mineralogy 
Three interrelated factors provide a robust ‘bottom-up’, soil-driven 

regulation of soil C:N ratio: soil texture, mineral composition, and ag-
gregation. Texture, which describes the relative proportions of sand, silt, 
and clay particles, is known to impact the C:N stoichiometry of SOM 
because charged clay surface particles can form stable associations with 
charged moieties like amino groups (Jilling et al., 2018), leading to N 
enrichment in clay fractions compared to sand fractions (Haddix et al., 
2016; Amorim et al., 2022). Increased clay content increases total 
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surface charge and surface area available for organo-mineral in-
teractions that form MAOM. MAOM is often defined as the size fraction 
associated with silt and clay (Leuthold et al., 2022). Thus, as this fraction 
increases, we expect more organic matter to accumulate in MAOM with 
comparatively low C:N ratio. However, silt may contain primary parti-
cles, have substantially less surface charge, and be a microsite for 
accumulating fungal residues with relatively high C:N ratios (Six et al., 
2006, von Lützow et al., 2007). These factors can lead to variation in the 
relationship between MAOM fractions and soil C:N ratios that depend 
upon the relative proportions of silt and clay and at the same time their 
geochemical properties. 

Some studies indicate that N-rich organic compounds may be pref-
erentially adsorbed by certain types of soil colloids (Kaiser and Zech, 
2000; Kleber et al., 2005; Mikutta et al., 2010; Yu et al., 2013; Jilling 
et al., 2018; Zhao et al., 2020), potentially accounting for variable C:N 
ratios depending on mineral composition. Recent studies show sorption 
of both N-rich microbial products and N-free aromatic compounds to soil 
mineral surfaces (Kramer et al., 2017; Kopittke et al., 2018; Gao et al., 
2021). This variation in sorption may arise from variation in surface 
charge or nano-scale topographic characteristics of minerals (Vogel 
et al., 2014). Iron (Fe) and aluminum (Al) may be uniquely strong 
binding agents in soils rich in these minerals (e.g., Andisols). These soils 
exhibit preferential binding of low C:N SOM in organo-metal nano-
composites (<2 μm) and associations between N-rich compounds and 
ferrihydrite (an Fe mineral) concentrations (Asano et al., 2018; Zhao 
et al., 2020). Importantly, Fe content has been shown to be negatively 
associated or uncorrelated with clay content in certain environments, 
indicating the unique influence of Fe minerals (Rasmussen et al., 2018; 
Zhao et al., 2020). Soil pH can also interact with mineral composition, 
through controlling the relative importance of select SOM stabilization 
mechanisms (e.g., organo-metal complexation in acidic soils to 
exchangeable calcium in basic soils; Rasmussen et al., 2018). For 
example, the amount of pedogenic oxide-hydroxides affects the density 
of hydroxyl-groups and the formation of mineral associations via ligand 
exchange; pH can affect the protonation of these hydroxyl-groups and 

thereby the propensity for ligand exchange (Kleber et al., 2005). Thus, 
pH interacts with mineral type to drive relative sorption of C or N, 
potentially driving N-enrichment in Fe and Al minerals in humid and 
acidic environments and in phyllosilicates in dry and basic 
environments. 

The texture and mineral composition of soil also regulate soil ag-
gregation, which is another control over soil C:N ratios (Schweizer et al., 
2023). Aggregates are clusters of soil particles (sand, silt, clay) held 
together by various organic and inorganic binding agents. Aggregation 
processes influence the types of organic matter stabilized and the cor-
responding C:N ratios vary based on the aggregate size, formation, and 
binding mechanisms, all of which depend on numerous factors, 
including mineral and organic C content, faunal activity, and land cover 
(Elliott 1986; Fonte et al., 2007; An et al., 2010; Maaβ et al., 2015; 
Haddix et al., 2020). For instance, it is known that microaggregates 
(<250 μm) accumulate N-rich compounds, primarily derived from mi-
crobial sources, and efficiently form MAOM (Fulton-Smith and Cotrufo, 
2019). In contrast, larger macroaggregates (>250 μm) typically form 
around POM with high C:N ratios (Six et al., 2000). Roots and certain 
fungal hyphae also stabilize macroaggregates, and in the process their 
biomass becomes somewhat protected from decomposition within the 
aggregate (Graf and Frei, 2013; Lehmann et al., 2020). Tillage and other 
destabilizing forces that break apart larger aggregates speed up the 
decomposition of POM. This favors the accumulation of smaller, more 
resistant, and stable aggregates filled with lower C:N ratio SOM, ulti-
mately resulting in lower bulk soil C:N (Grandy and Robertson, 2007). 

In most soil biogeochemical models, minerals can indirectly control 
bulk soil stoichiometry by modulating the proportion and persistence of 
organic matter in mineral-associated pools. Given the ubiquity of mea-
surements, most models use soil texture as a proxy for mineral sorptive 
capacity (Rasmussen et al., 2018; Sulman et al., 2018; Georgiou et al., 
2021). In particular, some models use clay content (e.g., MIMICS and 
CORPSE; Wieder et al., 2019a), while many others use the sum of clay 
and silt content (e.g., Millennial, COMISSION, MEMS; Abramoff et al., 
2018; Ahrens et al., 2020; Zhang et al., 2021). Mineral-associated OM 

Fig. 4. Response ratio of C stocks in various pools of MIMICS-CN under priming (blue) and priming + desorption (yellow) experiments as compared to the baseline 
(green). Bulk soil C:N ratios for each experiment are shown in the inset plot. LIT_m = metabolic litter; LIT_s = structural liter; MIC_r = copiotroph microbial biomass; 
MIC_K = oligotroph microbial biomass; SOM_p = physically protected SOM; SOM_c = chemically protected SOM; SOM_a = active SOM. 
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pools in most models are primarily composed of microbial byproducts 
and necromass with relatively low C:N ratios, and to a lesser degree from 
direct sorption of dissolved or particulate organic matter; thus, texture 
ultimately acts as a control of bulk soil C:N stoichiometry. Only a subset 
of models currently represent mineral composition effects via equations 
relating pH and MAOM – namely, the Millennial, ecosys, and MEMS 
models (Grant et al., 2012, Zhang et al., 2021; Abramoff et al., 2022, this 
issue). The Millennial and COMISSION models also include broad classes 
of mineralogy by separating soils into low- and high-activity minerals, 
based on whether soils are dominated by 1:1 or 2:1 clays, respectively 
(Ahrens et al., 2020; Abramoff et al., 2022, this issue). Aggregation is a 
possible pathway for mineral control over soil C:N that only two C-only 
models have incorporated. Both AggModel and Millennial allow for both 
POM and MAOM to be captured in aggregates, whereas AggModel 
represents the hierarchy of micro- and macro-aggregates and Millennial 
has a single aggregate pool (Segoli et al., 2013; Abramoff et al., 2018). 
While neither AggModel nor Millennial currently considers N, protec-
tion of POM in aggregates might allow for higher C:N POM pools to 
persist, effectively increasing soil C:N. The frameworks developed in 
these models could someday help to understand the relationship be-
tween soil C:N and aggregate formation. To gain a preliminary under-
standing of the role of mineralogy in shaping soil C:N ratios we evaluate 
the relationships between SOM fractions, mineral variables, and soil C:N 
in both empirical data and models. 

3.2.2. Physico-chemical case study: Evidence for proxy variable inclusion in 
models 

For almost 30 years, soil scientists have called for correspondence 
between measured and modeled pools of SOM (Christensen, 1996; 
Elliott, 1986; Blankinship et al., 2018) and, increasingly, models are 
formulated to model measurable pools of SOM from physical fraction-
ations (Luo et al., 2014; Abramoff et al., 2018; Robertson et al., 2019). 
MAOM, operationally defined as the pool associated with silt and clay, is 
expected to preferentially contain microbial residues and consequently 
have a relatively low C:N ratio (Grandy at el. 2007, Lavallee et al., 
2020), presumably leading to positive associations between silt + clay 
content and MAOM content, and negative associations of each of these 
with soil C:N. However, the strength of silt and clay control of stabili-
zation of organic matter and, consequently, soil C:N, especially as 
compared to other mineralogical factors, remains contentious in theo-
retical and empirical work and variable in model formulations (Bailey 
et al., 2018; Rasmussen et al., 2018; Sulman et al., 2018; Wieder et al., 
2018). 

We explored the potential strength of silt and clay control, as well as 
several proxy variables as emerging indicators of mineral effects on C:N 

stoichiometry in models and in observational synthesis data, namely 
Georgiou et al. (2022a, b) and the Soils Data Harmonization database 
(SoDaH; Wieder et al., 2021). Using Georgiou et al. (2022a), we found 
soil C:N was lower in soils with higher proportions of silt + clay 
(Fig. 5a). These silt + clay-rich soils were also associated with a greater 
proportion of C in MAOM (Fig. 5a), consistent with theoretical under-
standing of MAOM (Lavallee et al., 2020). This observation is already 
captured in MIMICS-CN (Fig. 5b) and could likely be demonstrated with 
other models that use SOM pool structures that represent MAOM and 
POM (e.g., MEMS, Millennial, and CORPSE; Sulman et al., 2017, Zhang 
et al., 2021; Abramoff et al., 2022, this issue). These findings support 
calls for further work benchmarking modeled SOM pools to measured 
ones (Berardi et al., 2020). Currently, this benchmarking has only been 
carried out for a few models with and without these measurable pools 
explicitly represented (Zimmermann et al., 2007; Zhang et al., 2021). 
Given strong relationships between SOM pools and soil C:N, greater 
benchmarking efforts are likely to improve confidence in simulations of 
soil C:N as well as soil biogeochemistry more broadly. 

While our data suggest that bulk soil C:N is partly controlled by soil 
texture, the utility of other proxies for mineralogy is underexplored. To 
investigate the relevance of other mineralogical factors, we compared 
drivers of soil C:N in the SoDaH database to those in model simulations. 
For the observational data, we filtered the SoDaH database to isolate 
topsoil (<20 cm) data from studies that measured soil C:N and litter C:N. 
We generated model data by running global simulations of a 
microbially-explicit (MIMICS-CN; Kyker-Snowman et al., 2020) and a 
microbially-implicit (CASA-CNP; Wang et al., 2010) model forced with 
the same globally-gridded forcing data in a biogeochemical testbed 
(Wieder et al., 2018; detailed in Supplementary Material A). We then 
used multiple linear regressions (MLRs) to determine which variables 
emerged as important relative drivers of measured (SoDaH) and 
modeled (MIMICS-CN and CASA-CNP) soil C:N (detailed in Supple-
mentary Material A). We analyze these below as qualitative compari-
sons, given the different geographic extents and data coverage between 
the observational data and models. For both measured and modeled 
data, we considered a three-factor MLR with mean annual temperature 
(MAT), clay content, and litter C:N as predictors for measured or 
modeled soil C:N. We also considered a seven-factor MLR with addi-
tional mineralogical factors as predictors for measured soil C:N, to 
evaluate which of these may be missing from model formulations 
(Table 1). For the three-factor MLRs, MIMICS-CN reasonably captured 
the relative importance of drivers in the SoDaH database whereas 
CASA-CNP depicted lower relative importance of clay, likely because it 
uses clay + silt to compute passive C formation, and higher relative 
importance of litter C:N, aligning with the more foundational 

Fig. 5. Bulk soil stoichiometry (C:N ratio; left y-axis, black points) and percentage of bulk soil organic carbon that is mineral-associated (right y-axis; green points) 
across different soil texture regimes. (a) Soil texture regimes are summarized by ranges in clay plus silt percentages. Points and error bars represent means ± 95% 
confidence intervals on the mean from an observational synthesis of soil fractions consisting of >1200 measurements (n = 166, 388, 411, and 261 in the <25%, 
25–50%, 50–75%, >75% clay + silt content regimes, respectively; Georgiou et al., 2022a). (b) MIMICS-CN output for a hypothetical temperate deciduous forest for 
soils with different amounts of clay, which is the controlling variable for sorption in MIMICS-CN, rather than silt + clay. MAOM-C/SOM-C is calculated from MIMICS 
output as SOMp/(SOMa + SOMc + SOMp)*100%. 
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representation of soil C:N (Table 1). Notably, the CASA-CNP MLR likely 
had a very low R2 value because it has prescribed ranges for the C:N of 
various pools and bulk C:N stems from the balance across those pools, 
exemplifying how fixed pool C:N fails to capture important drivers of 
soil C:N. In contrast with the three-factor MLRs, the seven-factor MLR 
with all possible proxies identifies clay, Fe, Al, and pH as the strongest 
relative drivers of measured soil C:N (Table 1). This suggests mineral 
composition, with Fe, Al, and pH as proxies, in addition to soil texture (e. 
g., clay), are important drivers of soil C:N relative to the variables 
considered here. However, mineral composition control of organic 
matter stabilization, and consequently soil C:N, is represented in few 
models (Ahrens et al., 2020; Abramoff et al., 2022, this issue). 

The concept of a “mineral filter” (Mikutta et al., 2019) acting as a 
bottom-up control of SOM composition is supported overall by our an-
alyses (i.e. the high relative importance of silt and clay, pH and specific 
extractable metals; Fig. 5; Table 1). Although the patterns observed here 
do not definitively justify incorporating new mineral-related variables 
or processes into models, they could be explored further in models or in 
field or lab experiments. Field experiments could be used to explore 
possible mechanistic relationships between pH and mineral composi-
tion. Using such a relationship, pH is an easily measured variable that 
could be used to improve models, for example by making the model 
coefficient of clay stabilization dependent on pH, as in the MEMS (Zhang 
et al., 2021) and Millennial (Abramoff et al., 2022, this issue) models. 
The relative importance of dithionite-extractable Fe and Al in driving 
soil C:N in our results also supports the importance of mineral compo-
sition. Increased use of chemical extractions, which are more expensive 
and less widely measured, may be useful in identifying the specific 
minerals (e.g. Fe and Al oxides) that stabilize low C:N microbial residues 
(Rasmussen et al., 2018). More widespread measurements of specific 
soil mineralogy coupled to detailed mechanistic studies exploring the 
affinities of different minerals for N-enriched organic moieties (e.g. 
amino acids) may provide clarity about the role of edaphic factors in 
filtering SOM and soil C:N. These measurements would allow proxies 
like pH and soil Fe and Al oxides to be included in models as external 
parameters, used during model initialization, or even dynamic state 
variables, as has been done for redox reactions (Maggi et al., 2008; Rizzo 
et al., 2014; Calabrese and Porporato, 2019). Representing dynamic pH 
or mineralogy could be particularly important under variable soil 
moisture, N or heavy metal pollution, or when considering how pedo-
genic processes influence organic matter stabilization at millennial 

timescales. Better representation of mineralogy, as well as the plant and 
microbial drivers above, will be key for models’ ability to predict soil C: 
N under global change. 

4. Implications for studying global change 

Global changes, such as rising atmospheric CO2, N deposition, and 
changing climate influence the entire plant-soil system. For example, 
elevated CO2 generally increases and N deposition generally decreases 
the C:N of vegetative tissues and litter entering the soil system (Yang 
et al., 2011; Sardans and Penuelas, 2012; Yue et al., 2017; Sun et al., 
2020). While these changes to vegetation C:N stoichiometry will likely 
introduce numerous feedbacks in the plant-soil system, the net effects of 
these opposing influences are not well characterized. Models are valu-
able tools for exploring the trajectories of these global changes and 
understanding the possible large-scale implications of variable controls 
of soil stoichiometry for C and N dynamics (Wieder et al., 2019b). 
Examining elevated CO2 and N deposition in coupled C–N models 
therefore presents a good opportunity to evaluate our foundational 
versus emerging representations of the controls of soil C:N stoichiom-
etry. Importantly, other global changes, such as changes in temperature 
and moisture, land use change, and increases in wildfire occurrence and 
severity, will likely influence soil C:N differently under the foundational 
versus emerging representations but we focus on elevated CO2 and N 
deposition here for brevity (Sistla et al., 2014; Pellegrini et al., 2018; Sun 
et al., 2021a,b). 

4.1. Elevated CO2 

As atmospheric CO2 rises, plant tissue C:N ratios typically increase 
(Cotrufo et al., 1998; Wang et al., 2021; Gojon et al., 2022), altering the 
chemistry of litter inputs to the soil system. Higher litterfall C:N ratios 
appear to reduce decomposition rates and soil N availability, possibly 
inducing progressive N limitation of vegetation growth (Luo et al., 2004; 
Liang et al., 2016; Craine et al., 2018; Mason et al., 2022). Simulta-
neously, under elevated CO2 plants can shift allocation patterns to 
potentially mitigate N limitation (Phillips et al., 2009). To increase N 
uptake, plants increase C allocation to roots and root exudates that both 
directly enhance plant nutrient access, while also stimulating soil mi-
crobial activity that mineralizes nutrients (Phillips et al., 2011; Cheng 
et al., 2012; Terrer et al., 2016). Both litter chemistry and plant C 

Table 1 
Results from multiple linear regression (MLR) analyses of a subset of the SoDaH database and model outputs (Supplementary 
Material A). The dependent variable in each model is observed or modeled soil C:N. Relative importance percentages show the 
percentage of the total variance explained by each statistical model that a given individual variable explains. “NA” indicates a 
variable that was not included in a given model. Greener cells have higher relative importance percentages. MAT is mean 
annual temperature; MAP is mean annual precipitation; Fe_ox, Al_ox, and Si_ox, and Fe_dith, Al_dith, and Si_dith, are oxalate- 
extractable and dithionite-extractable iron, aluminum and silica, respectively. 
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allocation changes under elevated CO2 could increase soil C:N through 
greater incorporation of high C:N plant material and N mining from 
N-rich SOM, respectively (De Graaff et al., 2006; Phillips et al., 2011). 
However, N could also be mined from higher C:N SOM pools, like POM, 
that are more accessible to microbes, thereby reducing bulk soil C:N 
(Sulman et al., 2014). Thus, the relative influence of litter chemistry and 
root exudation effects on soil C:N are uncertain but likely important for a 
better mechanistic understanding of ecosystem responses to elevated 
CO2. 

However, accurately capturing ecosystem biogeochemical responses 
to elevated CO2 remains challenging for land models (Zaehle et al., 
2014, Davies-Barnard et al., 2020; Eastman et al., 2023; Hauser et al., 
2023). Part of this challenge lies in simulating appropriate plant and soil 
responses to elevated CO2 and their interactions. To explore potential 
soil biogeochemical responses to elevated CO2 we conducted a series of 
idealized model experiments with MIMICS-CN. Building on the 
steady-state results presented in the biotic case study (section 3.1.5; 
Fig. 4), we ran a series of 50-year transient simulations for the priming 
treatment under a pair of elevated CO2 scenarios. In the first experiment 
we represented elevated CO2 as a 20% step increase in net primary 
production (NPP) and a 10% increase in litterfall C:N, relative to the 
“ambient” conditions under which the models were initialized (Norby 
et al., 2005; Wang et al., 2021). For the second experiment we repeated 
these step increases in productivity and litterfall C:N, but also increased 
allocation of C to root exudates from 10% to 20% of metabolic litterfall 
inputs, without increasing the total amount of inputs, to evaluate the 
influence of this emerging driver. For brevity we calculated the response 
ratio of different soil pools and fluxes simulated by MIMICS-CN after 50 
years under elevated CO2 divided by their initial “ambient” state. 

Increased NPP and litterfall C:N were most influential on soil 
biogeochemistry when allocation to root exudates also increased, indi-
cating the importance of representing this emerging driver (Fig. 6a). 
Increased C allocation to exudates increased microbial biomass, and 
particularly that of oligotrophs (reduced MICr:MICK). Oligotrophs 
preferentially decomposed the high C:N SOMc pool (comparable to 
POM), thereby slightly reducing bulk soil C:N. Field manipulations also 
report increased microbial biomass and negligible changes in bulk soil C: 
N responses under elevated CO2 that are consistent with our model re-
sults (Yue et al., 2017; Zou et al., 2023). However, empirical studies also 
suggest that under elevated CO2, both the ratio of copiotrophs:oligo-
trophs and the POM pool increase (Rocci et al., 2021; Sun et al., 2021b). 
Additionally, N mineralization increased in our experiments under 
elevated CO2 (Fig. 6a). This reflects higher rates of litter N inputs (from 
increased NPP) that occurred with our elevated CO2 experiment but runs 
contrary to what may be expected under progressive N limitation (Luo 

et al., 2004). Indeed, when we isolated the potential effects of lower 
litter quality under elevated CO2, MIMICS-CN showed reduced N 
mineralization rates, as expected from progressive N limitation (Sup-
plementary Fig. 1). We also compare our simulations to the observations 
from the Duke free-air CO2 enrichment (FACE) experiment because this 
site exhibits the priming responses we evaluate here. We note that this is 
intended to be a more qualitative comparison than a rigorous validation, 
and note that field measurements were derived from distinct studies 
under different periods of elevated CO2 treatment. We find remarkably 
similar increases in microbial biomass and similar minimal responses of 
bulk C:N and SOMc (comparable to the free light fraction of SOM) as 
observed values for our 10% allocation simulations (Fig. 6b; Lichter 
et al., 2005; Drake et al., 2011). However, as noted above, increased N 
mineralization and reduced copiotroph to oligotroph ratio are opposite 
to observed decreases in N mineralization from a 100-day incubation 
and increases in the bacterial to fungal ratio (somewhat comparable to 
the copiotroph to oligotroph ratio, Fig. 6b, Billings and Ziegler, 2005; 
Feng et al., 2010). Our experiments highlight that 
plant-microbe-mineral interactions, represented by priming via root 
exudates (an emerging driver), provide a more nuanced assessment of 
soil C:N responses to elevated CO2 but that further investigation is 
needed to revise structural assumptions or parameterization of 
MIMICS-CN, or other models trying to represent the emerging repre-
sentation of soil C:N under global change. 

4.2. Nitrogen deposition 

While elevated CO2 drives increases in ecosystem C:N, N deposition, 
inputs of reactive forms of inorganic and organic N from the atmosphere 
to ecosystems, might be hypothesized to have the opposite effect. 
However, ecosystem responses to N deposition are complex and highly 
variable across broad spatial scales, suggesting N deposition effects 
might not be so straightforward (Schlesinger, 2009; Kanakidou et al., 
2016). With N deposition, plant biomass and shoot:root generally in-
crease and plant shoot, root, and litter C:N generally decrease, which 
could be expected to favor microbial use of high quality plant material, 
ultimately favoring MAOM formation and lower SOM C:N (Yang et al., 
2011; Averill and Waring, 2018; Sun et al., 2020; Feng et al., 2022). In 
contrast, N deposition could also increase SOM C:N through reduced 
lignocellulosic enzyme activity, reduced microbial activity via acidifi-
cation and C limitation, and reduced strength of mineral-OM bonds 
(Frey et al. 2004, 2014; Carrara et al., 2018; Pan et al., 2020; Ning et al., 
2021; Feng et al., 2022). These effects could specifically increase SOM C: 
N through reduced decomposition of high C:N SOM (Eastman et al., 
2022), reduced N-rich microbial input, and desorption of relatively 

Fig. 6. (a) MIMICS-CN simulation results showing response ratios after 50 years of elevated CO2 (year 50/year 1) with either 10% (circles) or 20% (triangles) of 
metabolic litter inputs allocated to root exudates. Elevated CO2 is implemented as a 20% step increase in net primary production (NPP) and a 10% step increase in 
litter C:N. Inset shows bulk soil C:N on a finer scale. (b) Observed response ratios to elevated CO2 from the Duke FACE experiment with data from Billings and Ziegler 
(2005), Lichter et al. (2005), Feng et al. (2010), and Drake et al. (2011). Note different y-axes. Bulk_CtoN = bulk soil C:N; MicC = microbial C; MICr:MICK =
copiotroph-to-oligotroph ratio; SOMc = chemically stabilized soil organic matter; Bac2Fun = bacteria-to-fungi ratio; fLF = free light fraction; N_min = N 
mineralization. 
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N-rich OM, respectively. The diversity of effects from N deposition have 
made it difficult to predict consistent drivers of SOM responses to this 
global change (Averill and Waring, 2018). 

Unless specifically formulated to do so, models struggle to depict the 
wide array of effects of N deposition. For example, most models add N 
deposition to the mineral N pool, and simulations generally show in-
creases in plant productivity and consequently microbial activity. 
However, N deposition generally reduces microbial activity in empirical 
studies (Zhang et al., 2018). N deposition in models can also modify 
plant C:N and drive changes in SOM C:N through the foundational 
representation of soil C:N controls (Fig. 2a; Throop et al., 2004). How-
ever, most models lack the mechanistic representation for specific 
enzyme responses, dynamic and influential soil pH, and N-induced 
changes in sorption, although the MEND model represents specific 
enzyme groups (Wang et al., 2022). Eastman et al. (2023) tackled the 
challenge of representing empirical outcomes from a 30-year N depo-
sition experiment in a mixed hardwood forest in two soil biogeochem-
istry models (MIMICS-CN and CASA-CN) coupled to the same vegetation 
model (CASA-CNP). In order to capture empirical responses in these 
models, the authors had to modify the vegetation allocation scheme and 
decay rate of the SOMc pool (comparable to POM), and even then only 
the microbially-explicit model (MIMICS-CN) exhibited increased soil C: 
N as seen in the empirical comparison (Eastman et al. 2022, 2023). 
Eastman et al. (2023) demonstrate the difficulty of capturing the 
multitude of N deposition effects in models and indicate the need to 
represent plant and microbe feedbacks in models to capture soil C:N 
responses to N deposition. 

Nitrogen is not the only nutrient whose availability will likely be 
modified by global change. Phosphorus (P), in particular, might also 
shape soil C:N in ways associated with the emerging representation, 
largely through interactions with C and N (Townsend et al., 2011). For 
example, N fixation is limited by P availability, such that changing 
availability of P could modify N fixation with implications for soil C:N 
(Houlton et al., 2008). Alternatively, under P limitation, N is allocated to 
production of phosphatase enzymes that break down SOM, potentially 
causing a “P-mining” effect that could preferentially breakdown high P 
MAOM and thus increase soil C:N (Treseder and Vitousek, 2001; Spohn, 
2020). These N–P interactions are exemplified in CASA-CNP, CLM-CNP 
and SCAMPS-CNP and could be used to evaluate effects of P addition on 
soil C:N (Wang et al., 2010; Yang et al., 2014; Pold et al., 2022). 
Alternatively, added P could directly exchange with C on mineral sur-
faces to reduce MAOM C:N, which could be formulated in models 
similarly to acid root exudation (Spohn and Schleuss, 2019; Rocci et al., 
2022). Beyond P, experimentally adding potassium and micronutrients 
slightly increased soil C:N in globally-distributed grasslands but adding 
sulfur stoichiometry to a static soil formulation did not reduce C cycle 
uncertainty (Buchkowski et al., 2019; Seabloom et al., 2021). Thus, 
there is evidence supporting the influence of nutrient interactions on soil 
C:N, likely through the emerging drivers. This supports the development 
of models that represent both the emerging drivers and elements beyond 
C and N. 

5. Conclusions 

Foundational representations of soil C:N controls present in most 
models of soil biogeochemistry are insufficient and could be improved 
via a more complete, emerging representation of soil C:N controls. These 
missing emerging controls likely underlie large scale patterns of soil C:N 
and will likely allow for better predictions of soil C:N responses to global 
environmental change. The emerging representation of the controls of 
soil C:N illustrates the tension between simplicity and accurate repre-
sentation of complex systems in models. Balancing these factors is crit-
ical for projecting future biogeochemical and climate outcomes. While 
the emerging drivers presented have strong empirical support in the 
literature, there are many other potential additional drivers that can 
influence soil C:N ratios including photodegradation, microbial 

physiology, and soil fauna (Moorhead and Callaghan, 1994; de Vries 
et al., 2013; Mooshammer et al., 2014; Chen et al., 2016). Our review of 
empirical understanding of the emerging drivers of soil C:N and their 
representation in models identified research gaps and contexts where 
drivers might be particularly important. We also showed that imple-
menting the emerging drivers can cause distinct responses of soil C:N to 
global change. Ultimately, more theoretical, empirical, and modeling 
studies are needed to establish the relative importance of these emerging 
drivers for soil C:N stoichiometry and if and how they should be 
implemented in models. Specifically, current understanding informs the 
need for future research in the following areas:  

● Evaluate the feedbacks of different representations of N fixation in 
models and how these align with empirically expected feedbacks and 
change soil C:N  

● With improved representations of N fixation in models, determine 
impact of increased fixation on soil C:N under elevated CO2  

● Use modeling to separately resolve litter quality and N mining/ 
mineralization effects of mycorrhizal fungi on soil C:N  

● Determine realistic magnitudes of acid root exudation under steady 
state and global change conditions and their influence on soil C:N  

● Increase collection of mineral composition data to further investigate 
the importance of pH and metal controls on MAOM, and subse-
quently bulk soil C:N 

● Implement aggregation in a coupled C–N model to evaluate the in-
fluence on both biogeochemical cycles 

● Investigate relative importance of litter quality versus plant alloca-
tion under elevated CO2 in a coupled plant-soil model and the im-
plications for soil C:N  

● Determine the computational cost of adding groups of emerging 
factors to models to evaluate the feasibility of representing these 
factors at a global scale 
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