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The Wasserstein distance is a metric on a space of probability measures
that has seen a surge of applications in statistics, machine learning, and ap-
plied mathematics. However, statistical aspects of Wasserstein distances are
bottlenecked by the curse of dimensionality, whereby the number of data
points needed to accurately estimate them grows exponentially with dimen-
sion. Gaussian smoothing was recently introduced as a means to alleviate the
curse of dimensionality, giving rise to a parametric convergence rate in any
dimension, while preserving the Wasserstein metric and topological structure.
To facilitate valid statistical inference, in this work, we develop a comprehen-
sive limit distribution theory for the empirical smooth Wasserstein distance.
The limit distribution results leverage the functional delta method after em-
bedding the domain of the Wasserstein distance into a certain dual Sobolev
space, characterizing its Hadamard directional derivative for the dual Sobolev
norm, and establishing weak convergence of the smooth empirical process in
the dual space. To estimate the distributional limits, we also establish con-
sistency of the nonparametric bootstrap. Finally, we use the limit distribution
theory to study applications to generative modeling via minimum distance
estimation with the smooth Wasserstein distance, showing asymptotic nor-
mality of optimal solutions for the quadratic cost.

1. Introduction.

1.1. Overview. The Wasserstein distance is an instance of the Kantorovich optimal trans-
port problem [63], which defines a metric on a space of probability measures. Specifically,
for 1 < p < oo, the p-Wasserstein distance between two Borel probability measures w1 and v
on R? with finite pth moments is defined by

1/p
() Wy = nf [ esraney)|
where IT(u,v) is the set of couplings (or transportation plans) of p and v. The Wasser-
stein distance has seen a surge of applications in statistics, machine learning, and applied
mathematics, ranging from generative modeling [6, 59, 96], image recognition [84, 86], and
domain adaptation [25, 26] to robust optimization [12, 48, 75] and partial differential equa-
tions [62, 88]. The widespread applicability of the Wasserstein distance is driven by an array
of desirable properties, including its metric structure (W, metrizes weak convergence plus
convergence of pth moments), a convenient dual form, robustness to support mismatch, and
a rich geometry it induces on a space of probability measures. We refer to [4, 87, 100, 101]
as standard references on optimal transport theory.
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However, statistical aspects of Wasserstein distances are bottlenecked by the curse of di-
mensionality, whereby the number of data points needed to accurately estimate them grows
exponentially with dimension. Specifically, for the empirical distribution f, of n indepen-
dent observations from a distribution @ on R4, it is known that E[W,(fL,, 1)] scales as
n~V4 for d > 2p under moment conditions [16, 37, 46, 69, 102]. This slow rate renders
performance guarantees in terms of W, all but vacuous when d is large. It is also a road-
block towards a refined statistical analysis concerning limit distributions, bootstrap, and valid
inference.

Gaussian smoothing was recently introduced as a means to alleviate the curse of di-
mensionality of empirical W, [51-53, 77, 85]. For o > 0, the smooth p-Wasserstein dis-

tance is defined as Wg’)(,u, v) ;= W, (1 * Y5,V * ¥5), Where * denotes convolution and
Yo = N(0, 0%1;) is the isotropic Gaussian distribution with variance parameter o2. For suf-
ficiently sub-Gaussian wu, [53] showed that the expected smooth distance between [, and
wu exhibits the parametric convergence rate, that is, E[ng)(,&n, W)= O(n~%) in any di-
mension. This is a significant departure from the n~!/¢ rate in the unsmoothed case. [51]
further showed that WEU) maintains the metric and topological structure of W; and is able
to approximate it within a o+/d gap. The structural properties and fast empirical conver-
gence rates were later extended to p > 1 in [77]. Other follow-up works explored relations
between Wﬁ,a) and maximum mean discrepancies [105], analyzed its rate of decay as ¢ — 00
[20], and adopted it as a performance metric for nonparametric mixture model estimation
[60].

A limit dlstrlbutlon theory for W( ?) was developed in [52, 85], where the scaled empir-
ical distance /n W1 (,un, L) was shown to converge in distribution to the supremum of a
tight Gaussian process in every dimension d under mild moment conditions. This result re-
lies on the dual formulation of W; as an integral probability metric (IPM) over the class of
1-Lipschitz functions. Gaussian smoothing shrinks the function class to that of 1-Lipschitz
functions convolved with a Gaussian density, which is shown to be p-Donsker in every di-
mension, thereby yielding the limit distribution. Extending these results to empirical WE,G)
with p > 1, however, requires substantially new ideas due to the lack of an IPM structure.
Consequently, works exploring WE,U) with p > 1, such as [77, 105], did not contain limit
distribution results for it and this question remained largely open.

The present paper closes this gap and provides a comprehensive limit distribution theory
for empirical WE,U) with p > 1. Our main limit distribution results are summarized in the
following theorem, where the “null” refers to when p© = v, while “alternative” corresponds
to i # v. In what follows, the dimension d > 1 is arbitrary.

THEOREM 1.1 (Main results). Let 1 < p < 00, and u, v be Borel probability measures
on R¢ with finite pth moments. Let fi, =n~" > 5X, and v, =n~! pI 5Y,- be the empir-
ical distributions of independent observations X1, ..., X, ~uand Yy, ..., Y, ~v. Suppose
that u satisfies Condition (4) ahead (which requires | to be sub-Gaussian).

(i) (One-sample null case) We have

N d
VAW (B, ) > sup Gule),
peCe:

121 5714 gy <1
where G, = (G w(@)gecee is a centered Gaussian process whose paths are linear and con-

tinuous with respect to (w.r.t.) the Sobolev seminorm ”(p”H"q(M*ya) = IVoll La(uryy ;R
Here q is the conjugate index of p, thatis, 1/p+1/q = 1.
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(i1) (Two-sample null case) If v = [, then we have

A A d
AW (fin, 5) > sup [Gu(e) — G (9)],
peCye:
121 5710 sy ) <1
where G;L is an independent copy of G,.
(iii) (Omne-sample alternative case) If v # p and v is sub-Weibull, then we have
Vary, (g * ¢o) )
PHWY (e, ) 2D

VW G v) = W ) (0

where g is an optimal transport potential from [ % Yy to V x Yy for Wh, and ¢, (x) =
(2n02)_d/26_|x|2/(2"2) is the Gaussian density.
(iv) (Two-sample alternative case) If v £ u and v satisfies Condition (4), then we have
Var, (g * ¢5) + Var, (g€ * ¢(,)>
PAWS (., v) =D

A A d
VW G 50) = WS e ) 5
where g€ is the c-transform of g for the cost function c(x,y) = |x — y|P.

Parts (i) and (ii) show that the null limit distributions are non-Gaussian. On the other hand,
Parts (iii) and (iv) establish asymptotic normality of empirical Wf,f) under the alternative.

Notably, these result have the correct centering, Wg,a) (e, v), which enables us to construct

confidence intervals for Wg’) (u,v).

The proof strategy for Theorem 1.1 differs from existing approaches to limit distribution
theory for empirical W), for general distributions. In fact, an analog of Theorem 1.1 is not
known to hold for classic W, in this generality, except for the special case where u, v are

discrete (see a literature review below for details). The key insight is to regard WE,G) as a func-
tional defined on a subset of a certain dual Sobolev space. We show that the smooth empirical
process converges weakly in the dual Sobolev space and that ng) is Hadamard (direction-
ally) differentiable w.r.t. the dual Sobolev norm. We then employ the extended functional
delta method [83, 90] to obtain the limit distribution of one- and two-sample empirical WE,G)
under both the null and the alternative. The derivation of the alternative limit distribution re-
quires p > 1 since we rely on uniqueness (up to additive constants) of OT dual potentials,
which does not hold for p = 1. As aforementioned, limit distributions for p = 1 were derived
in [52, 85] via a markedly different proof technique that hinges on the IPM structure of Wga).

The limit distributions in Theorem 1.1 are nonpivotal in the sense that they depend on
the population distributions u and v, which are unknown in practice. To facilitate statistical
inference using an{r), we employ the bootstrap to estimate the limit distributions and prove
its consistency for each case of Theorem 1.1. Under the alternative, the consistency follows
from the linearity of the Hadamard derivative. Under the null, where the Hadamard (direc-
tional) derivative is nonlinear, the bootstrap consistency is not obvious but still holds. This
is somewhat surprising in light of [43, 45], where it is demonstrated that the bootstrap, in
general, fails to be consistent for functionals whose Hadamard directional derivatives are
nonlinear (cf. Proposition 1 in [43] or Corollary 3.1 in [45]). Nevertheless, our application
of the bootstrap differs from [43, 45] so there is no contradiction, and the specific structure
of the Hadamard derivative of WE,G) allows to establish consistency under the null (see the
discussion after Proposition 3.8 for more details). These bootstrap consistency results enable

constructing confidence intervals for WE,U) and using it to test the equality of distributions.
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As an application of the limit theory, we study implicit generative modeling under the
minimum distance estimation (MDE) framework [78, 80, 104]. MDE extends the maximum-
likelihood principle beyond the KL divergence and applies to models supported on low-
dimensional manifolds [6] (whence the KL divergence is not well-defined), as well as to

cases when the likelihood function is intractable [58]. For MDE with WE,U), we establish
limit distribution results for the optimal solution and the smooth p-Wasserstein error. Our
results hold for arbitrary dimension, again contrasting the classic case where analogous dis-
tributional limits for MDE with W, are known only for p =d =1 [10]. Remarkably, when
p = 2, the Hilbertian structure of the underlying dual Sobolev space allows showing asymp-
totic normality of the MDE solution.

1.2. Literature review. Analysis of empirical Wasserstein distances, or more generally
empirical optimal transport distances, has been an active research area in the statistics and
probability theory literature. In particular, significant attention was devoted to rates of con-
vergence and exact asymptotics [2, 5, 8, 14, 16-18, 23, 29, 37, 38, 40, 46, 67, 69, 71, 72,
93, 94, 102]. As noted before, the empirical Wasserstein distance suffers from the curse of
dimensionality, namely, E[W , (ft,, n)] = O (n—1/4) whenever d > 2 p. This rate is known to
be sharp in general [40]. The recent work by [23, 72] discovered that the rate can be improved
under the alternative, namely, E[|W,({1,, v) — W, (1, v)|] = O~y ford > 5 if v # pu,
where o = pfor 1 < p <2 and o =2 for 2 < p < oo. Their insight is to use the duality for-
mula for Wﬁ and exploit regularity of optimal transport potentials. [72] also derive matching
minimax lower bounds up to log factors under some technical conditions.

Another central problem that has seen a rapid development is limit distribution theory
for empirical Wasserstein distances. However, except for the two special cases discussed
next, to the best of our knowledge, there is no proven analog of our Theorem 1.1 for classic
Wasserstein distances, that is, a comprehensive limit distribution theory for empirical W, that
holds for general d and p. The first case for which the limit distribution is well understood is
when d = 1. Then, W, reduces to the L? distance between quantile functions for 1 < p < oo,
and further 51mphﬁes to the L' distance between distribution functions when p = 1. Building
on such explicit expressions, [30] and [31] derived null limit distributions ind = 1 for p =1
and p = 2, respectively. More recently, under the alternative (i # v), [35] derived a central
limit theorem (CLT) when d = 1 and p > 2. The second case where a limit distribution theory
for empirical W, is available is when (., v are discrete. If the distributions are finitely discrete,
that is, u = Z 176 X and v = 21;:1 Sj8yj for two simplex vectors r = (r1, ..., ry) and
s =(s1,.. sk) then W,, (1, v) can be seen as a function of those simplex vectors r and s.
Leveraging this, [92] applied the delta method to obtain limit distributions for empirical W,
in the finitely discrete case. An extension to countably infinite supports was provided in [95],
while [32] treated the semidiscrete case where u is finitely discrete but v is general.

Except for these two special cases, limit distributions for Wasserstein distances are less
understood. To avoid repetitions, we focus here our discussion on the one sample case. In
[36], a CLT for ﬁ(W% (fin,v) — E[W (fin, v)]) is derived in any dimension, but the limit
Gaussian distribution degenerates to 0 when p = v; see also [34] for an extension to gen-
eral 1 < p < oo. Notably, the centering constant there is the expected empirical Wasserstein
distance IE[W% (ftn, v)], which in general can not be replaced with the (more natural) popu-
lation distance W% (w, v). The recent preprint [71] addressed this gap and established a CLT
for ﬁ(W% (fin,v) — W%(,u, v)) for a wavelet-based estimator i, of u, assuming that the
ambient space is [0, 1]¢ and that u, v are absolutely continuous w.r.t. the Lebesgue measure
with smooth and strictly positive densities. Following arguments similar to [36], they first
derive a CLT for 4/n (W (fin,v) — E[W (ftn, v)]) and then use the strict positivity of the den-
sities and higher order regularlty of 0pt1mal transport potentials to control the bias term as
E[W3 (i, )] = W5 (1, v) = o(n™'/2).
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Our proof techniques differ from the aforementioned arguments for classic W),. Specifi-
cally, as opposed to the two-step approach of [71] described above, we directly prove asymp-
totic normality for /n (Wf,,g) (fin, V) — WE,G) (w4, v)) under the alternative. Their derivation does
not apply to our case even when p = 2 since their bias bound requires that the densities of
@ and v be bounded away from zero on their (compact) supports, which fails to hold after
the Gaussian convolution. Our argument also differs from that of [92, 95], even though they
also rely on the functional delta method. Specifically, since we do not assume that &, v are
discrete, Wg’) can not be parameterized by simplex vectors, and hence the application of the
functional delta method is nontrivial. Very recently, an independent work [61] used the ex-
tended functional delta method for the supremum functional [19] to derive limit distributions
for classic W), with p > 2, for compactly supported distributions under the alternative in
dimensions d < 3.!

Finally, we briefly compare the smooth Wasserstein distance with entropic regularized OT
(EOT) [3, 27]. EOT enjoys fast computational methods and a similar statistical profile to that
of Wg’) , in terms of parametric convergence rates [49, 73] and limit distributions [11, 33,
55-57, 65, 73], but it forfeits the Wasserstein metric and topological structure. Indeed, EOT
is not a metric even for distance-like costs c(x, y) = |x — y|? for p € [1, 00), which makes it
less compatible for applications like testing or MDE.?

1.3. Organization. The rest of the paper is organized as follows. In Section 2, we col-
lect background material on Wasserstein distances, smooth Wasserstein distances, and dual
Sobolev spaces. In Section 3, we prove Theorem 1.1 and explore the validity of the bootstrap
for empirical WE,U). Section 4 presents applications of our limit distribution theory to MDE

with WE,U). Proofs for Section 3 and 4 can be found in Section 5. Section 6 provides con-
cluding remarks and discusses future research directions. Finally, the supplemental material
contains additional proofs.

1.4. Notation. Let |- | and (-, -) denote the Euclidean norm and inner product, respec-
tively. Let B(x,r) = {y € R? : |y — x| < r} denote the closed ball with center x and radius
r. Given a finite signed Borel measure £ on R¢, we identify ¢ with the linear functional
f > L(f) = [ fde. Let < denote inequalities up to some numerical constants. For any
a,b € R, we use the shorthands a vV b = max{a, b} and a A b = min{a, b}.

For a topological space S, B(S) and P(S) denote, respectively, the Borel o-field on S and
the class of Borel probability measures on S. We write P := P(R?) and for 1 < p < oo,
use P, to denote the subset of 1 € P with finite pth moment [pa |x[” du(x) < co. We use
+ to denote the convolution. Let —, —d>, and — denote weak convergence of probability
measures, convergence in distribution of random variables, and convergence in probabil-
ity, respectively. When necessary, convergence in distribution is understood in the sense of
Hoffmann—Jgrgensen (cf. Chapter 2 in [99]).

Throughout, we assume that (X1, Y1), (X3, Y2),... are the coordinate projections of
the product probability space Hf’il(RZd,B(de), ® ® v). To generate auxiliary random
variables, we extend the probability space as (2, .4, P) = [ ?il(RZd, BR*), p @ v)] x
([0, 11, B([O, 1]), Leb), where Leb denotes the Lebesgue measure on [0, 1]. For 8 € (0, 2],
let Yg(t) =€’ ’ _1fort > 0, and recall that the corresponding Orlicz (quasi-)norm of a real-
valued random variable § is defined as [|§ ||y, := inf{C > 0 : E[yg(|§]/C)] < 1}. A Borel

1161] was posted on arXiv after the present paper was submitted to the journal.
2EOT between 4 and itself does not nullify. While this issue can be corrected by considering the (centered)
Sinkhorn divergence, it still is not a metric since it lacks the triangle inequality [11].
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probability measure u € P is called S-sub-Weibull if ||| X Iy, < o0 for X ~ . We say that
W is sub-Weibull if it is S-sub-Weibull for some g € (0, 2]. Finally, u is sub-Gaussian if it is
2-sub-Weibull.

For an open set O in a Euclidean space, C;°(O) denotes the space of compactly supported,
infinitely differentiable, real functions on O. We write C3° = C° (R?) and define Cgo =
{f+a:feCy° aecR} Forany pe[l,o00) and u € P(RY), let LP(u; R¥) denote the
space of measurable maps f : R? — RF such that I F N ppurey = (fga I f1P AP < oo;
when d = 1 we use the shorthand L? (i) = LP (u; R1). Recall that (L? (u; R%), || - I Lr(u:rb))

is a Banach space. Finally, for a subset A of a topological space S, let A° denote the closure
of A; if the space S is clear from the context, then we simply write A for the closure.

2. Background.

2.1. Wasserstein distances and their smooth variants. Recall that, for 1 < p < oo, the
p-Wasserstein distance W, (1, v) between , v € P), is defined in (1). Some basic properties
of W), are (cf. e.g., [4, 87, 100, 101]): (i) the inf is attained in the definition of W, that is,
there exists a coupling 7* € IT(u, v) such that Wg(u, V) = Jpdypd X — y|P dn*(x,y), and
the optimal coupling 7* is unique when p > 1 and u < dx; (ii) W), is a metric on P,; and
(iii) convergence in W, is equivalent to weak convergence plus convergence of pth moments:
W, (n, ) — 0 if and only if j,, 5 wand [1x1P dpn(x) — [|x|P dp(x).

The proof of the limit distribution for empirical Wf,,”) under the alternative hinges on dual-
ity theory for W,,, which we summarize below. For a function g : R¢ — [—00, 00) and a cost
function ¢ : R? x R? — R, the c-transform of g is defined by

g°(y)= inf [c(x,y) —g(x)]. yeR”

xeRd

A function g : RY — [—o0, 00), not identically —oo, is called c-concave if g = f¢ for some
function f : RY — [—o0, 00).

LEMMA 2.1 (Duality for W,,). Let 1 < p <00, u,v € Pp, and set the cost function to
c(x,y)=Ilx—yl".
(1) (Theorem 5.9 in [101]; Theorem 6.1.5 in [4]) The following duality holds,

@ Wi = sup [ [ gdut [ gav],
geLl (LIRS R

and there is at least one c-concave function g € L'(w) that attains the supremum in (2); we
call this g an optimal transport potential from u to v for Wg.

(ii) (Theorem 3.3 in[47]) Let 1 < p < 00, suppose that g : RY — [—00, 00) is c-concave,
and take K as the convex hull of {x : g(x) > —oo}. Then g is locally Lipschitz on the interior
of K.

(iii) (Corollary2.7in[34]) If 1 < p < o0 and p K dx is supported on an open connected
set A, then the optimal transport potential from u to v for Wz is unique on A up to additive
constants, that is, if g1 and g are optimal transport potentials, then there exists C € R such
that g1(x) = g2(x) + C forall x € A.

The smooth Wasserstein distance convolves the distributions with an isotropic Gaus-
sian kernel. Gaussian convolution levels out local irregularities in the distributions, while
largely preserving the structure of classic W,. Recalling that y, = N (0, o21;), the smooth
p-Wasserstein distance is defined as follows.
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DEFINITION 2.1 (Smooth Wasserstein distance). Let1 < p <ocoand o > 0. For u,v €
P, the smooth p-Wasserstein distance between p and v with smoothing parameter o is

W (1, 1) := W (1 # Yo v % Vo).

The smooth Wasserstein distance was studied in [51-53, 77, 85] for structural properties
and empirical convergence rates. We recall two basic properties: (i) Wg’) is a metric on P,
that generates the same topology as classic W ; (ii) for u,v € P, and 0 < 01 < 02 < 00,
we have WE;UZ)(/L, V) < Wg")(u, V) < Wf,,””(,u, V) + Cpay/o5 — o} for a constant C, 4 that
depends only on p, d. In particular, WST) (u, v) is continuous and monotonically nonincreas-
ing in o € [0, +00) with lim,; ¢ Wgr)(,u, v) = W, (e, v). See [77] for additional structural
results, including an explicit expression for Cp, 4 and weak convergence of smooth optimal
couplings. For empirical convergence, it was shown in [77] that under appropriate moment

assumptions E[WE,J) (fin, )] = O(m~12) for p > 1 in any dimension d. Versions of this
result for p = 1 and p =2 were derived earlier in [52, 53, 85].

2.2. Sobolev spaces and their duals. Our proof strategy for the limit distribution results
is to regard W), as a functional defined on a subset of a certain dual Sobolev space. We will
show that the smooth empirical process converges weakly in the dual Sobolev space and that
W,, is Hadamard (directionally) differentiable w.r.t. the dual Sobolev norm. Given these, the
limit distributions in Theorem 1.1 follow via the functional delta method. Here we briefly
discuss (homogeneous) Sobolev spaces and their duals.

DEFINITION 2.2 (Sobolev spaces and their duals). LetpePand 1 < p < o0.

(i) For a differentiable function f :R? — R, let

1/p
1713050y 3= IV Sy = ( [ 19717 o)

be the Sobolev seminorm. We define the homogeneous Sobolev space H“P(p) by the com-
pletion of C§° w.r.t. || - 1. ()

(i) Let g be the conjugate index of p, thatis, I/p +1/q = 1. Let H~'7(p) denote the
topological dual of H'9(p). The dual Sobolev norm || - I f-1.p(py (dual to || - [[ 1.q(,)) of a

continuous linear functional £ : H9(p) — R is defined by

1€ =10y = SUP{LCH) = £ € CEL N Fllgnay < 1.

The restriction f € C"go can be replaced with f € C3° in the definition of the dual norm
I+ 1l g-1.p(p) Since £(f +a) = £(f) forany £ € H="P(p).

We have defined the homogeneous Sobolev space H'P(p) as the completion of Cé’o w.I.t.
-1l gp (0) It is not immediately clear that the so-constructed space is a function space over

RY. Below we present an explicit construction of H!?(p) when dp/dx is bounded away
from zero for some reference measure « >> dx satisfying the p-Poincaré inequality. To that
end, we first define the Poincaré inequality.

DEFINITION 2.3 (Poincaré inequality). For 1 < p < 0o, a probability measure k € P is
said to satisfy the p-Poincaré inequality if there exists a finite constant C such that

||(P - K(¢)||Lp(,<) = C”V(p”LP(K;Rd)a Vo € Cgo

The smallest constant satisfying the above is denoted by C, («).
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The standard Poincaré inequality refers to the 2-Poincaré inequality. It is known that any
log-concave distribution (i.e., a distribution « of the form dx = e~ dx for some convex func-
tion V:RY — RU {+o00}; cf. [70, 89]) satisfies the p-Poincaré inequality for any 1 < p < oo
[13, 74]. In particular, the Gaussian distribution y,, satisfies every p-Poincaré inequality (see
also [15], Corollary 1.7.3).

REMARK 2.1 (Explicit construction of H 1’P(,o)). Suppose that there exists a reference
measure K € P, with k > dx, that satisfies the p-Poincaré inequality. Assume that dp/dk > ¢
for some constant ¢ > 0 (in our applications, p = Y, or u * Y, for some u € P,; in either
case, the stated assumption is satisfied with x = y,; or yg/ﬁ). LetC={f eCy°:x(f)=0}.

Then, || - [ 1.p(,) is @ proper norm on C, and the map ¢ : f + V f is an isometry from
@, - ||H1,p(p)) into (L?(p; RY), | - Il Lr(p:re))- Let V be the closure of (C in LP(p;RY)
under || - ||, re)- The inverse map 1=1:1C — C can be extended to V as follows. For any

g € V, choose f, € C such that |V f, — gll1p(,:rey = 0. Since V f; is Cauchy in L? (p; RY)
and thus in L? (x; RY) (as | - L Geray ST - lLr(p:re))s Ju is Cauchy in L (k) by the p-
Poincaré inequality, so || f, — fllzr«) — O for some f e L? (k). Set 1~'g = f and extend || -
Lty OY 1F N 1y = imaso I flli1.n ) = 1811 pimety- The space (V. I+l i)
is a Banach space of functions over R?. Finally, the homogeneous Sobolev space H'?(p) can
be constructed as H'"?(p) ={f +a:a R, f "'V} with || f +allgrgy = I

The next lemma summarizes some basic results about the space HLp (p) and HLp (p)-
valued random variables that we use in the sequel. The proof can be found in Section 1 of the
Supplementary Material [54].

LEMMA 2.2. Let 1 < p <00 and p € P. The dual space H="P(p) is a separable Ba-
nach space. The Borel o-field on H~"?(p) coincides with the cylinder o -field (the smallest
o -field that makes the coordinate projections, H= 1P (p) 3 £ — £(f) € R, measurable).

Consider a stochastic process Y = (Y (f)) ref1.4(,) indexed by H'“4(p), that is, w >
Y (f, ) is measurable for each f € H9(p). The process can be thought of as a map from
Q into I-.I*I’p(,o) as long as Y has paths in I-.I*I”’(,o), that is, for each fixed w € €2, the map
f = Y(f, w) is continuous and linear. The fact that the Borel o -field on H~Lr (p) coincides
with the cylinder o-field guarantees that a stochastic process indexed by H1-4(p) with paths
in H‘l’p(p) is Borel measurable as a map from €2 into H_I’P(p).

2.3. W, and dual Sobolev norm. In Section 3, we will explore limit distributions for

empirical WE,G). One of the key technical ingredients there is a comparison of the Wasserstein
distance with a certain dual Sobolev norm, which we present next.

PROPOSITION 2.1 (Comparison between W, and dual Sobolev norm; Theorem 5.26 in
[39]). Let1 < p < 00, and suppose that o, (11 € Py with o, w1 <K p for some reference
measure p € P. Denote their respective densities by f; =du;/dp,i =0,1.If fo or f1 is
bounded from below by some ¢ > 0, then

3) Wy (10, 1) < pe™ 1t = poll -1 -
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REMARK 2.2. If p satisfies the g-Poincaré inequality, then for every ¢ € C§° with
ol frrq(p) <1, we have

/ o(fi — fordp = / (0 — p@)(fi — fo)dp

<le = p@| Lol fi = follLro
< Cq(IIVEll La(p:ra) Il F1 = follLr o) < Cq(P)If1 = follLr(p)s

so that W, (1o, 1) < pc=Y4C, (o)l fi — follLr(p)-

Proposition 2.1 follows directly from Theorem 5.26 of [39]. Similar comparison inequali-
ties appear in [67, 79, 103]. We include a self-contained proof of Proposition 2.1 in Section 2
of the supplementary material [54] as some elements of the proof are key to our deriva-
tion of the null limit distribution for empirical Wg’). The proof builds on the Benamou—
Brenier dynamic formulation of optimal transport [9], which shows that W, (uo, 1) is
bounded from above by the length of any absolutely continuous path from pg to w; in
(Pp,W,). The dual Sobolev norm emerges as a bound on the length of the linear interpo-
lation t — fuyp + (1 — ) ug.

3. Limit distribution theory. The goal of this section is to establish Theorem 1.1. The
proof relies on two key steps: (i) establish weak convergence of the smooth empirical pro-
cess /n(jily, — i) * Yo in the dual Sobolev space H_l’p(u * Y5 ); and (ii) regard WE,U) as a
functional defined on a subset of H~'”(u % ) and characterize its Hadamard directional
derivative w.r.t. the corresponding dual Sobolev norm. Given (i) and (ii), the limit distribu-
tion results follow from the functional delta method, and the asymptotic normality under the
alternative further follows from linearity of the Hadamard directional derivative.

3.1. Preliminaries. Throughout this section, we fix 1 < p < 0o, take g as the conjugate
index of p, and leto > 0. For u,v € Pp,let Xy,..., X, ~pnand Yy,...,Y, ~ v be indepen-
dent observations and denote the associated empirical distributions by fi, :=n~! Yo 8x,
and D, :=n~"1 Y"_, 8y,, respectively.

3.1.1. Weak convergence of smooth empirical process in dual Sobolev spaces. The first
building block of our limit distribution results is the following weak convergence of the
smoothed empirical process /i (fl, — i) * Yo in H™ VP (1 % vy).

PROPOSITION 3.1 (Weak convergence of smooth empirical process). Suppose that X ~
W satisfies

4 /620 X>rdr<oo or some 0 > p — 1.
4) A VEP(IX] fe P

Then, the smoothed empirical process /n(fl, — ) * Y, converges in distribution in
H=YP(u % v5) as n — o0o. The limit process is a centered Gaussian process indexed by
H4 (1 * v ) with covariance function (f1, f2) = Cov,(f1 * ¢o, f2 * ¢o). Here Cov,, de-
notes the covariance under |i.

The proof of Proposition 3.1 relies on the prior work [77] by a subset of the authors, where
it was shown that the smoothed function class Fx ¢, = {f*x ¢y : f € F}with F ={f € Co :
Il £ 1l 1, a(yy) = 1} is u-Donsker. We then prove the weak convergence in H "7 () following
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a similar argument to Lemma 1 in [76]. This, in turn, implies weak convergence in HLp (=
yg) when @ has mean zero, since in that case H™ L P (y) is continuously embedded into
H L 'P(u * v5). To account for non-centered distributions, we use a reduction to the mean
zero case via translation. See also Remark 5.2 for an alternative proof for p = 2 that relies on
the CLT in the Hilbert space.

Inspection of the proof of Proposition 3.1 shows that Condition (4) implies

) Ade(p")‘x'z/“zdu(x) .

which requires @ to be sub-Gaussian; see Remark 5.1 for details. It is not difficult to see
that Condition (4) is satisfied if p is compactly supported or sub-Gaussian with ||| X |||y, <
o/«/p—1 for X ~ p, and that the condition fails to hold for X ~ y,, ~—7 (which instead
clearly satisfies (5)).

A natural question is whether a condition in the spirit of (4) is necessary for the conclusion
of Proposition 3.1 to hold. Indeed, we show that some form of sub-Gaussianity is necessary
for the smooth empirical process to converge to zero in H "7 (y,).

PROPOSITION 3.2 (Necessity of sub-Gaussian condition). The following hold.

Q) If (fin — 1) % 5 = 0in H~ VP (y5) as n — oo a.s., then Jrd eel’”z/(z"z)du(x) < 00
forany 6 < p — 1.

(ii) Conversely, if [pa e(P=DIxI?/20%) dp(x) < oo, then (fin — ) % o — 0in H™ P (yy)
asn — oo a.s.

3.1.2. Functional delta method. Another ingredient of our limit distribution results is
the (extended) functional delta method [43, 45, 83, 91]. Let D be a normed space and @ :
& C D — R be a function. Following [83, 90], we say that ® is Hadamard directionally
differentiable at 6 € E if there exists a map <I>’9 : Tz (6) — R such that

DO + thhy) — PO
i 2O E 1) = 0O) _

n— 00 t,

forany h € Tg(#), t, | 0,and h, — hin D such that 0 +1,h, € E. Here Tg(6) is the tangent
cone to E at 6 defined as

9 _
TE(Q)::{heD:h: lim =

n—oo f,

0
for some 6, — 0 in E and ¢, ¢O}.

The tangent cone Tg(6) is closed, and if & is convex, then Tz(¢) coincides with the closure
inDof {(6—0)/t:0 € E,t > 0} (cf. Proposition 4.2.1 in [7]). The derivative d>’9 is positively
homogeneous (i.e., <I>/9(ch) = c<I>’9 (h) for any ¢ > 0) and continuous, but need not be linear.

LEMMA 3.1 (Extended functional delta method [43, 45, 83, 91]). Let D be a normed
space and ® : E C D — R be a function that is Hadamard directionally differentiable at
0 € & with derivative q)/e :Tg(@) — R. Let T, : Q — E be maps such that r,(T,, — 0) —d>
T for some r, — oo and Borel measurable map T : Q2 — D with values in Tz (0). Then,
rn(®(T,) —®(0)) —d> CID/Q(T). Further, if E is convex, then we have the expansion r,, (®(T,,) —
®(0)) = Py (ra (T, — 6)) + op(1).

REMARK 3.1 (Choice of domain E). The domain E is arbitrary as long as it contains the
ranges of T}, for all n, and the tangent cone 7= (6) contains the range of the limit variable 7.
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3.2. Limit distributions under the null (u = v). We shall apply the extended functional
delta method to derive the limit distributions of ﬁWE,G) (fin, 1) and \/EWEJU) (fin, Vp) asn —
oo, namely, proving Parts (i) and (ii) of Theorem 1.1. To set up the problem over a (real)
vector space, we regard p — WE,U)(p, w) =Wp(p* Y5, L *Vs) asamap h = W, (1 * Yo +
h, u * ys) defined on a set of finite signed Borel measures. The comparison result from
Proposition 2.1 implies that the latter map is Lipschitz in || - | 1.5, )’ and Proposition 3.1

shows that /n (i, — 1) * yo is weakly convergent in I-'I_l’p(u * Yo ). These suggest choosing
the ambient space to be H_I’P(M * Yo ).

To cover the one- and two-sample cases in a unified manner, consider the same map but in
two variables. Take D, = HLP (o Yo),set By :=Dy N{h=(p— ) *ys:p€Pp},and
define the function ® : €, x E, C D, x D;, — R as

D(hy, hy) = Wp(M*Va +h1, wxys +ha), (h1,hy)e€ Eu X By

We endow D,, x D, with a product norm (e.g., |71 ||H71,p(u*yd) + ||h2||H71,p(M*yg)). Since
the set E,, (and thus E,, x &) is convex, the tangent cone Tz, x g, (0, 0) coincides with the
closure in D, x Dy, of {(hy,hy)/t: (hi,hy) € By x Ey,t > 0}. We next verify that ® is
Hadamard directionally differentiable at (0, 0).

PROPOSITION 3.3 (Hadamard directional derivative of W), under the null). Ler1 < p <
oo and (1 € Pp. Then, the map ® : (hy, hy) = Wy (1 * Yo +h1, ux Yo +h2), By X B, C
D, x D, — R, is Hadamard directionally differentiable at (hy, h2) = (0,0) with deriva-
tive (D’(O,O)(hl, hy) =|h — hZHH*'*”(u*VU)’ that is, for any (hy, h2) € Tg,, x5, (0), t, | 0 and
(hn,1,hnp) — (hi, hy) in Dy X Dy such that (tyhy 1, thhp2) € Ey X By, we have

q)(tnhn,l s tnhn,Z)

n

A, = llh1 = h2ll 1.0 sy )-
Proposition 3.3 follows from the next Géteaux differentiability result for W), which may
be of independent interest, combined with Lipschitz continuity of ® w.r.t. || - || -1, P (i) (cf.

Proposition 2.1).

LEMMA 3.2 (Gateaux directional derivative of W),). Let u € P, and h; € H_l”’(,u),
i =1, 2 be finite signed Borel measures with total mass 0 such that h; < v and u+ h; € Pp.
Then,

d
d[—+Wp(M +thy, u+tha)li=o0 = |lh1 — h2||g—1,p(u),
where d/dt™ denotes the right derivative.

REMARK 3.2 (Comparison with Exercise 22.20 in [101]). Exercise 22.20 in [101] states
that (in our notation)
. Wo(1+e€h)p, p)
m

6 1
( ) Ell,() €

= llhpll g-12¢4)»

for any sufficiently regular function & with [ hdu =0 (hu is understood as a signed measure
hd). Theorem 7.26 in [100] provides a proof of the one-sided inequality that the liminf of
the left-hand side above is at least ||Au|| H-12(0)> when € P, satisfies u < dx and 4 is
bounded. The subsequent Remark 7.27 states that “We shall not consider the converse of
this inequality, which requires more assumptions and more effort.” However, we could not
find references that establish rigorous conditions applicable to our problem under which the
derivative formula (6) holds. Lemma 3.2 provides a rigorous justification for this formula and
extends it to general p > 1.
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Given these preparations, the proof of Theorem 1.1 Parts (i) and (ii) is immediate.

PROOF OF THEOREM 1.1, PARTS (I) AND (II). Let G, denote the weak limit of
(i, — 1) * Y5 in H_L”(,u * Y5 ); cf. Proposition 3.1. Recall that D, = H_l’p(pc * Vo)
is separable (cf. Lemma 2.2), so (7,1, T.2) := ((itn — 1) * Yo, Oy — 1) * Yo ) is a Borel
measurable map from €2 into the product space D, x D, [99], Lemma 1.4.1. Since 7, 1 and

T, » are independent, by Example 1.4.6 in [99] and Proposition 3.1, (7;,.1, T, 2) —d> (Gpu, G;;)
in D, x D,,, where G;L is an independent copy of G ;. Since (T,,1, T 2) € Tgﬂxgu (0,0) and
Tz, xz,(0,0)is closed in D, x Dy, we see that (G, G;L) € Tz, xz,(0,0) by the portman-
teau theorem.

Applying the functional delta method (Lemma 3.1) and Proposition 3.3, we conclude that

\/ﬁwfva)(ﬂn, Dn) = V/n(®(Ty1, Ty2) — ©(0,0))
d
— @(00)(Gu. G,)

= ”GM - G;L”H_LP(M*)/U)'

Likewise, we also have

~ d
VAW (fin. 1) = V(@ (T,1,0) = (0, 0)) > D0 (G s 0) = 1G ull 510 rys -
This completes the proof. [

3.3. Limit distributions under the alternative (u # v).

3.3.1. One-sample case. We start from the simpler situation where v is known and prove
Part (iii) of Theorem 1.1. Our proof strategy is to first establish asymptotic normality of the

pth power of Wf,,”), from which Part (iii) follows by applying the delta method for s > s'/7.
For notational convenience, define

8y, v) =W ()],

for which one-sample asymptotic normality under the alternative is stated next.

PROPOSITION 3.4. Suppose that @ € P satisfies Condition (4), v € P is sub-Weibull,
and (. # v. Let g be an optimal transport potential from | * Yy t0 V % Y5 for WZ. Then, we
have

VA(SY) (P, v) — S (11, v)) S N (0, Var,. (g * ¢0).

We again use the functional delta method to prove this proposition, but with a slightly
different setting. Set D,, = H —Lr (% Yo ) as before, and consider the function ¥ : A, C
D,, — R defined by

"Il(h) =W§(lu’*yﬂ +h7v*y0')a hEA/L’
where
(7 Ay:=D,N{h=(p— ) *ys:p€P issub-Weibull}.

As long as u is sub-Weibull (recall that Condition (4) requires u to be sub-Gaussian), the set
A, contains 0. This set is also convex, and so the tangent cone T\ i (0) coincides with the
closure in D, of {h/t:h € A,,t > 0}. The corresponding Hadamard directional derivative
of WY is given next.
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PROPOSITION 3.5 (Hadamard directional derivative of Wz w.r.t. one argument). Let 1 <
p < 00, and suppose that (1, v € P are sub-Weibull. Let g be an optimal transport potential
from [ * Y5 to v % Y, for Wﬁ, which is uniquely determined up to additive constants (see
Lemma 2.1(ii1)). Then:

) ge Ha (1 * Vo), where q is the conjugate index of p; and
(ii) themap WV :A, C D,y — R, h— Wg (U * Vo +h,vxyy), is Hadamard directionally
differentiable at h = 0 with derivative \lfé(h) = h(g), that is, for any h € T, 0), 1, {0, and
hn — hin D, such that t,h, € A, we have
W (t,hy,) — W (0
(8) lim (i ”2 ( )=h(g).

—
n— 00 "

As in the null case, Part (ii) of Proposition 3.5 follows from the following Gateaux differ-
entiability result for WZ, combined with local Lipschitz continuity of W w.r.t. || - || -1, P (kye)-

LEMMA 3.3 (Gateaux directional derivative of WZ w.r.t. one argument). Let 1l < p <oo
and p, v, p € P be sub-Weibull. Let g be an optimal transport potential from | * Y5 to v.
Then

d
Wi+ 1o =) # ¥5,v)li=o =/ﬂ;dgd((p — ) *¥o),

where the integral on the right-hand side is well defined and finite.

REMARK 3.3 (Comparisons with Theorem 8.4.7 in [4] and Theorem 5.24 in [87]). The-
orem 8.4.7 in [4] derives the following differentiabiliy result for Wﬁ. Let s : I — (Pp, Wp)
be an absolutely continuous curve for some open interval /, and let v; be an “optimal” ve-
locity field satisfying the continuity equation for w; (see Theorem 8.4.7 in [4] for the precise
meaning). Then, for any v € P, we have that

) %Wﬁ(m, V) = /Rded plx — P72 x — v, v,(x))dmi (x, y)
for almost every (a.e.) t € I, where 7; € IT1(i,, v) is an optimal coupling for W, (i, v). See
also Theorem 5.24 in [87]. Since (9) only holds for a.e. t € I, while we need the (right)
differentiability at a specific point, the result of [4], Theorem 8.4.7, (or [87], Theorem 5.24)
does not directly apply to our problem. We overcome this difficulty by establishing regularity
of optimal transport potentials (see Lemma 5.3 ahead), for which Gaussian smoothing plays
an essential role.

We are now ready to prove Proposition 3.4 and obtain Part (iii) of Theorem 1.1 combined
with the delta method for the map s > s'/7.

PROOF OF PROPOSITION 3.4. By Proposition 3.1, T, := ({i, — ) * Yo € A, and

J/nT, LY Gy, in Dy. Also G, € Ty, (0) with probability one by the portmanteau theorem.
Applying the functional delta method (Lemma 3.1) and Proposition 3.5, we have

(S (i, v) = S (1, v) = VA(W(T3) — W(0) > Gu(g) ~ N(0, Vari(g % ¢)),
as desired. [
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3.3.2. Two-sample case. Finally, we consider the two-sample case and prove the follow-
ing, from which Part (iv) of Theorem 1.1 follows.

PROPOSITION 3.6. Let 1 < p < oo. Suppose that u,v € P satisfy Condition (4) and
v # . Let g be an optimal transport potential from [L * Y5 t0 V % Yy foOr Wg. Then, we have

V(S (R, D) — S (1, ) 5 N (0, Var,. (g # do) + Var, (g  ¢)).

Set D, = I-'I*I’p(u* Ys) and D, = I-'I*I”’(v * V). Consider the function Y : A, x A, C
D, x D, — R defined by

Y(h1, ha) :=Wh(u Yo +hi,vkys +ha),  (hiha) € Ay x Ay,

where A, is given in (7) and A, is defined analogously. Here we endow D, x D, with a

product norm (e.g., |1 ||H71,p(u*ya) + IIhZIIH,L,,(U*yU)).

We note that if g is an optimal transport potential from u * y,; to v * Y, then g€ is an opti-
mal transport potential from v * y, to i * ¥, as g€ = g. With this in mind, Proposition 3.5
immediately yields the following proposition.

PROPOSITION 3.7 (Hadamard directional derivative of Wz w.r.t. two arguments). Let
1 < p < o0, and suppose that |, v € P are sub-Weibull. Let g be an optimal transport poten-
tial from [L * V5 1OV % Yy for Wg. Then, (g, 8°) € H"(uxvy) x H"9(v % yy), and the map
Y:AyxA,CDyxDy,—R, (hi,h2) Wﬁ(,u * Yy + h1, v *x Yo + h2), is Hadamard di-
rectionally differentiable at (h, hy) = (0, 0) with derivative TEO,O) (hi1,hy) =hi1(g) + hy(g°
for (h1,h2) € Tp, x,(0,0).

Given Proposition 3.7, the proof of Proposition 3.6 is analogous to that of Proposition 3.4,
and is thus omitted for brevity. As before, Part (iv) of Theorem 1.1 follows via the delta
method for s > s!/7.

3.4. Bootstrap. The limit distributions in Theorem 1.1 are nonpivotal, as they depend on
the population distributions p and/or v, which are unknown in practice. To overcome this

and facilitate statistical inference using ng), we apply the bootstrap to estimate the limit
distributions of empirical Wf;).

We start from the one-sample case. Given the data X, ..., X, let X fg s X ,f be an inde-
pendent sample from [, and set 25 :=n=1 37§ X5 s the bootstrap empirical distribution.
Let P denote the conditional probability given X1, X5, .. .. The next proposition shows that

the bootstrap consistently estimates the limit distribution of empirical WE,U) under both the
null and the alternative.

PROPOSITION 3.8 (Bootstrap consistency: one-sample case). Suppose that | satisfies
Condition (4).

(1) (Null case) We have
~ ~ P
(10) sug|IPB (VAW (2f, ) < 1) =PIG ull g-1.5 ) < 1) = O,
t>

(i1) (Alternative case) Assume in addition that v is sub-Weibull with v # . Let U% denote

the asymptotic variance of \/ﬁ(Wl(,,g)(,&n, V) — Wf,,g)(,u, v)) given in Part (iii) of Theorem 1.1
and assume U% > 0. Then, we have

. o)A P
sug}P’B (\/E(Wg’)(,uf, v) — WE, ) (fins v)) <t) —P(N(0, n%) <t)| = 0.
te
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Part (ii) of the proposition is not surprising given that the Haramard directional deriva-
tive of the function W in Proposition 3.5 is 1116 (h) = h(g), which is linear in . Part (i) is less
obvious since the function /1 — ®(h1, 0) from Proposition 3.3 has a nonlinear Hadamard di-
rectional derivative, ‘Ijéo,O) (h1,0) = A1l g-1. P(kve)” Recall that [43], Proposition 1, or [45],
Corollary 3.1, show that the bootstrap is inconsistent for functionals with nonlinear deriva-
tives, but these results do not collide with Part (i) of Proposition 3.8 since our application of
the bootstrap differs from theirs. For instance, [43], Proposition 1, specialized to our setting

states that the conditional law of /n(® (A8 — p,0) — ® (1, — 1, 0)) = \/H(WE,U)(/ZE, n) —
W(U)(/ln, wn)) does not converge weakly to |G|l B0 (usye) in probability. Heuristically,
fW(G)(Mn,M) is nonnegative while f(W(J)(Mf,u) - nyg)(;ln,u)) can be negative,

so the conditional law of the latter cannot mimic the distribution of the former. Further,
when o is unknown, the conditional law of \/ﬁ(WE,U)(,&f, nw) — WE,U)(/AL", w)) is infeasi-

ble. The correct bootstrap analog for Wg’)(,&n, W) is Wf,f)(,&ff, fin) = DB — w, fn — 1),
and the proof of Proposition 3.8 shows that it can be approximated by ||,llff —u— (i, —
M =10 ey = = ,lln”]_'[f],p(u*yg), whose conditional law (after scaling) converges
weakly to |Gl g- L0 (ke ) in probability.

Next, consider the two-sample case. In addition to X Bo..X f and ,&f ,given Yy,...,Y,,
let Y2, ..., Y be an independent sample from 9, and set D8 :=n=! 31, § v With a slight

abuse of notation, we reuse P8 for the conditional probability given (X1, Y1), (X2, Y2),....

PROPOSITION 3.9 (Bootstrap consistency: two-sample under the alternative). Suppose
that p and v satisfy Condition (4) and p # v. Let b% denote the asymptotic variance of

\/ﬁ(Wg’)(,&n, Dy) — Wg,g)(,u, v)) given in Part (iv) of Theorem 1.1 and assume U% > 0. Then,
we have

A A P
sup|P? (Va (WS (22, 52) — WS (R, D)) < 1) = P(N(0,03) <1)| = 0.
teR
EXAMPLE 3.1 (Confidence interval for ng)). Consider constructing confidence inter-
vals for WE,U)(M, v). For @ € (0, 1), let Z‘a denote the conditional «-quantile of WE,U) (,&f , f}f)
given the data. Then, by Proposition 3.9 above and Lemma 23.3 in [98], the interval
[2W£70)(llna f)n) - 21—0{/2, ZWLU)(ITLns f)n) - Ea/2]7

contains W;,g)(u, v) with probability approaching 1 — «.

For the two-sample case under the null, instead of separately sampling bootstrap draws
from [i, and D, (see Remark 3.4 below), we use the pooled empirical distribution p, =
(2n)~1 37 (8x, + 8y,) (cf. Chapter 3.7 in [99]). Given (X1, Y1), ..., (Xn, Ya), let ZB, ...,
Zf;l be an independent sample from p,,, and set

1 n
~B ~B
1 =—) 8,5 and Pn,z— - E : Sz8-
n - 1
i=1 i=n+1
The following proposition shows that this two-sample bootstrap is consistent for the null limit

distribution of empirical W',

PROPOSITION 3.10 (Bootstrap consistency: two-sample under the null). Suppose that 1
and v satisfy Condition (4). Then, for p = (u + v)/2, we have

Sup|]PB( W(G)(,On 1> Ion 2) = t) (”GP G, ”H 11’(,0*)/{,) — )| _) 0,

t>0
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where G:O is an independent copy of G,. In particular, if @ = v, then

~ N P
jgglPB (VWS (521, 522) <) =P(IG 1 = Gl g-1.puyey < 1)1 = O-

REMARK 3.4 (Inconsistency of naive bootstrap). One may consider using WE,U) (18,08
(rather than Wg,g)(ﬁf 10 ﬁf ,)) to approximate the distribution of Wfpa) (fin, Vy), but this boot-
strap is not consistent. Indeed, from the proof of Proposition 3.10, we may deduce that, if
u =v, then ﬁWE,U)(ﬁf, B) is expanded as

” \/E(ﬁf - /ln) *Vo — \/E(ﬁf - i}n) * Yo + \/E(ﬁn - ‘A)n) * Vo ”1.'1—1,1)(#*),0) + OIP’(l),

. . . . . 1 2 3 4 . o«
which converges in distribution to |G, — G}, + G, — G |l g-1. P (kye) unconditionally, where

G L e, G;‘l are independent copies of G . Hence, the conditional law of ﬁWE,”) (ﬁf , 13,? )
does not converge weakly to the law of |G, — G;L Il 1.5 (ty,, ) I probability.

EXAMPLE 3.2 (Testing the equality of distributions). Consider testing the equality of
distributions, that is, Hp : & = v against Hj : u # v. We shall use ﬁwﬁ,“)(@n, D,) as a test
statistic and reject Hy if \/EWE,")(,&H, Un) > ¢ for some critical value c. Proposition 3.10 im-
plies that, if we choose ¢ = ¢1_ to be the conditional (1 — «)-quantile of \/ﬁWpr) (/35, 1 /35,2)
given the data, then the resulting test is asymptotically of level «,

nlgngOP(ﬁW;”)(ﬁn, V) >Clog) =0 ifpu=v.

Here o € (0, 1) is the nominal level. To see that the test is consistent, note that if u £ v, then
W (s D) = WS (11, v) = W (fin 1) — W (B, v) = Wiy (12, v)/2 with probability
approaching one, while ¢;_, = Op(1) by Proposition 3.10.

Testing the equality of distributions using Wasserstein distances was considered in [82],
but their theoretical analysis is focused on the d = 1 case, partly because of the lack of null
limit distribution results for empirical W), in higher dimensions. We overcome this obstacle
by using the smooth Wasserstein distance.

4. Minimum distance estimation with Wg’). We consider the application of our limit
distribution theory to MDE with WE,U). Given an independent sample Xi,..., X, from
a distribution p € P, MDE aims to learn a generative model from a parametric family
{ve}oce® C P that approximates p under some statistical divergence. We use WE,U) as the
proximity measure and the empirical distribution /i, as an estimate for w, which leads to the
following MDE problem

Jnf WP (i, vp).

MDE with classic W is called the Wasserstein GAN, which continues to underlie state-of-
the-art methods in generative modeling [6, 59]. MDE with Wg’) was previously examined for
p =11in[52] and for p > 1 in [77]. Specifically, [77] established measurability, consistency,
and parametric convergence rates for MDE with Wf,,a) for p > 1, but did not derive limit
distribution results. We will expand on this prior work by providing limit distributions for the
ng) MDE problem.

Analogously to the conditions of Theorem 4 in [52], we assume the following.
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ASSUMPTION 1. Let 1 < p < oo, and assume that the following conditions hold. (i)
The distribution p satisfies Condition (4). (ii) The parameter space ® C R% s compact with
nonempty interior. (iii) The map 6 +— vy is continuous w.r.t. the weak topology. (iv) There
exists a unique 6* in the interior of ® such that vg~ = u. (v) There exists a neighborhood
No of 0* such that (vg — vg*) * Vs € H*I*p(,u * Yo ) for every 6 € Ny. (vi) The map Ny >
O (Vg — Vg+) * Yy € H=LP (% ¥ ) 1s norm differentiable with nonsingular derivative ©
at 6*. That is, there exists © = (@1, Dy € (H Lp(u ya))do, where D1, ..., 9Dy, are
linearly independent elements of H ~! » (1 * Yo ), such that

” (UQ - ])9*) * Yo — <0 - 0 s©>||H71,p

as 6 — 6* in No, where (1, D) = Y% 1D, fort = (11,..., 1gy) € R,

o(lo — 0"

).

(H*Yo) =

REMARK 4.1. Conditions (v) and (vi) are high-level conditions that warrant a discus-
sion. Since Wg’) is invariant under a common location shift (Wg,a) (1, v) = Wg’) (%84, V%84)
forevery a € Rd) we may assume without loss of generality that ;« has mean zero, for which
I ity S 1 taqusy @ dGuk vo)/dye > e~ ElXFVCT) by Jensen’s inequality).
Assume that {vg}gc@ is dominated by a common Borel measure p on R4 and denote by fo

the density of vy w.r.t. p. Then vg * ¥, has Lebesgue density [ bs (- —y) fo(y)dp(y), so for
every ¢ € C3° with y,-mean zero, we have

(v — o) % o) (9) = / (@ %) (fo ) — for (1)) dp(y)

(=Dy?

< Cy ol oy, 1o = for(le 52 dp),

(=D

where we use the fact that (¢ * ¢, )(y) < C, (yg)”(p”]_'[I,q(yo)e 202 ; see (15). Hence, Con-

=Dy

dition (v) is satisfied if [ |fop(y) — for (y)|e T 202 dp(y) < oo for every 0 in a neighbor-
hood of 6*. Next, assume that fy admits the Taylor expansion fy(y) = for(¥) 4+ (for (), 0 —
0%) + (ro(y), 0 — 6*) with rg(y) = o(1) as & — 6*. Then Condition (vi) holds with D(¢) =
Jo@) [bs(x — y) for () dp(y) dx = [(¢ % ) (¥) for (y) dp(y) for ¢ € C§°, provided that

(=Dbly

[ forM]e 2% dp(y) < oo and
(r=Dly2
f}re(y)|e 22 dp(y)=o(l), 60— 0"

We derive limit distributions for the optimal value function and MDE solution, following
the methodology of [10, 52, 80].

THEOREM 4.1 (Limit distributions for MDE with Wg’)). Suppose that Assumption 1

holds. Let (G;(U) = /n(fin — W) * Yy be the smooth empirical process, and G w its weak limit
in H=VP (% yo); cf. Proposition 3.1. Then, the following hold.

(i) We have infgce /AW (fin, v9) <> inf, _pao G e — (£ D) 1.0
(i1) Let (6y)neN be a sequence of measurable estimators satisfying

Wg’)(/ln, Vén) = gig(f)wg’a)(ﬁ"’ Vo) + Op(n_l/z).

(*ys)"

Then, provided that argmin, _pd, |G, — (¢, D) ”H‘l’f’(u*ya) is almost surely unique, we have

A d .
\/E(en - 0*) - argmln[e]RdO ”GM - <t7 ©>||I:[—1s1’(u*yo)'
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In general, it is nontrivial to verify that argmin, pa, |G, — (t, D) || 5-1. P (k) is almost
surely unique. However, for p = 2, the Hilbertian structure of H~12(u % y,) guarantees
this uniqueness. Indeed, Lemma 5.1 below (or an application of the Lax—Milgram theorem)
shows that H L2 ¥ ) 1s isometrically isomorphic to a closed subspace of L2 Vo' RY).
Denote by E the corresponding isometric isomorphism. Setting G, := E(G,) and D =
®D1,...,9q) :=(E™®1),..., E(Dg,)), we have

1G = 6. D) 12y = 1G = (D) 124y, )

The unique minimizer in ¢ of the above display is given by

~ -1 d
(11) Ip= WQJ"2k>L2(u*VU:R”))1§j,ksdo] (G, @j>L2(l/«*VU§Rd))jO=1'

Since G, is a centered Gaussian random variable in L2(,u * V) R%), fu 1S a mean—zero
Gaussian vector in R4,

COROLLARY 4.1 (Asymptotic normality for MDE solutions when p =2). Consider the

setting of Theorem 4.1 Part (ii) and let p = 2. Then \/n (én —6%) —d> fu«’ the mean—zero Gaus-
sian vector in (11).

. Without assuming the uniqueness of argmin, cpdo |G — (£, D)l 1.0 17 limit Qistribu-
tions for MDE solutions can be stated in terms of set-valued random variables. Consider the
set of approximate minimizers

A

(12) = {0 € © W (. vp) < inf W (. v) 1120,

where A, is any nonnegative sequence with A, = op(1). We will show that C:)n C 0" +
n~1Y2K, with inner probability approaching one for some sequence K, of random, con-
vex, and compact sets; cf. [80], Section 2. To describe the sets K,, for any 8 > 0 and
he H‘l’p(u * Y5 ), define

. dy . . ; .
K(h,B) = {t ERY: B — (£, D) 15 (uays) < Jinf 1= D) - 1p gy + ﬂ} €h,

where R is the class of compact, convex, and nonempty subsets of R% endowed with the

Hausdorff topology. That is, the topology induced by the Hausdorff metric dg (K7, K2) :=
inf{§ > 0: K, C K2, Ky C K5}, where K := U, cx{y € R% : [|x — y|| < &}. Lemma 7.1 in
[80] shows that & +— K (h, ) is measurable from H*I’p(,u * Y5 ) into K for any g > 0.

PROPOSITION 4.1 (Limit distribution for set of approximate minimizers). Under As-
sumption 1, there exists a sequence of nonnegative real numbers B, | 0 such that (i) P, (0, C
0* + n_l/zK(G,(f), Bn)) — 1, where P, denotes inner probability; and (ii) K(G,(f), Bn) 4
K (G, 0) as R—valued random variables.

The proof of this proposition is an adaptation of that of Theorem 7.2 in [80]. A self-
contained argument is provided in Section 3 of the Supplementary Material [54].

5. Remaining proofs.
5.1. Proofs for Section 3.1.1. We fix some notation. For a nonempty set S, let £°°(S)

denote the space of bounded real functions on S endowed with the sup-norm || - ||oc,s =
sup,cs | - |. The space (£2°(S), || - loc,s) is a Banach space.
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5.1.1. Proof of Proposition 3.1. 'We divide the proof into three steps. In Steps 1 and 2,
we will establish weak convergence of \/n (/Ln W) * Yy in H-Lp (v). Step 3 is devoted to
weak convergence of /n(ji, — i) * Yy in HL P *yy).

Step 1. Observe that

(13) ((/ln_M)*VU)(f):(ﬂn_M)(f*(pa)-

Consider the function classes

F={feCF I fllgrag,, <1} and Fxdo ={fx¢o: f € F}.

The proof of Theorem 3 in [77] shows that the function class F * ¢, is w-Donsker. For
completeness, we provide an outline of the argument. Since for any constant a € R and any
function f € F, (i, — W) (f *Ps) = (in — W) ((f — a) * s ), it suffices to show that Fo * @,
with Fo:={f € F: Y5 (f) =0} is u-Donsker. To this end, we will apply Theorem 1 in [97]
or its simple adaptation, Lemma 8 in [77].

Fix any n € (0,1). We first observe that, for any f € F¢ and any multi-index k =
ki,...,kg) e N, we have

(p—1>|x|2)

(14) 05 (f * ¢0) ()] S (Cq(vo) v “_k“)e"p(zam — )

up to constants independent of f, x, and o, where k = Z‘;:l k;.Here ok = 3{” e 35‘1 is the
differential operator and C, (), ) is the g-Poincaré constant for the Gaussian measure y,;. To
see this, observe that

. o (x —y)
(f * o) (x) = e B0 (s (y)dy.
Applying Holder’s inequality and using the fact that || flze¢,,) < Cq(Vo)ll f] Hla(yy) =
Cy (Vs ) (recall that y, (f) = 0), we obtain
5 (x—y) VP
(f %8 =y )| a|".
B Y

A direct calculation further shows that

%(x—y) <p(p—1>|x|2>
————dy=exp| ——=——|,

gl (y) 207
which implies
-1 2
(15) 50060 =€y trorexp( L5300,

establishing (14) when k = 0. Derivative bounds follow similarly; see [77] for details.
Next, we construct a cover {X; }°O , of R?. Let B, = B(0, r). For 8 > 0 fixed and r =

2,3,..., let {x(r) .. )} be a minimal §-net of B,s \ B(-—1)5. Set x =0 with N| = 1.
It is not dlfﬁcult to see from a volumetric argument that N, = O (1. Set Xj= B(x (r) )
for j =37_ Nk +1,..., > k=1 Nr. By construction, {X;}%2 i forms a cover of Rd With

diameter 24. Set o= Ld/2J +1land M; = = SUP f¢ 7, MaXf g SUPycing(x)) |9k (f *¢s)(x)]. By
Theorem 1 in [97] combined with Theorem 2.7.1 in [99] (or their s1rnp1e adaptation; cf.
Lemma 8 in [77]), Fo * ¢ is u-Donsker if ZF M;u(X; W2 < 0. By inequality (14),

22
max M; < o—Lld/2] exp((p — r=é )
ShCh NeHl<j<Y N, 202(1 —n)
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up to constants independent of  and 0. Hence, > 72 M; (X ')1/2 is finite if

122
Zrd lex p<(2’;2(11)r d >\/IP’ 1X| > (r — 1)8) < oo.

By Riemann approximation, the sum on the the left-hand side above can be bounded by

o —1)r?
5—d—1/ td—lexp(u> P(1X| >t — 26)dr,
1 202(1 —n)

which is finite under our assumption by choosing n and § sufficiently small, and absorbing
=1 into the exponential function.

Step 2. Let U = {f € Hl’q(yg) : ||f||H1,q(y0) < 1}. Recall from Remark 2.1 that
H L4(ys) € L9(yy). From Step 1, we know that F x ¢ is u-Donsker. The same conclu-
sion holds with F replaced by U/. This can be verified as follows. From the proof of (14)
when k = 0, we see that for f1, fr € Ha (y5) with y,-mean zero,

-1 2
(i #8200 = 3 80)00| = )L = Fll g, exp( L0 ). v e,

Since the exponential function on the right-hand side is square-integrable w.r.t. i under Con-

dition (4) and Fg isdense in Uy :={f €U : v (f) =0} for | - ”Hl,q(ya) by construction (cf.
Remark 2.1), we see that

Up * ¢ C {g :3gm € Fo * ¢ such that g, — g poinwise and in Lz(u,)}.

Thus, by Theorem 2.10.2 in [97], Uy * ¢ (or equivalently, U * ¢, ) is p-Donsker. Since the
map £°U * ¢5) 3 L = (L(f * ¢5)) reu € £°U) is isometric, in view of (13), we have

(g — 1) * Vo 4 G} in £2°(U) for some tight Gaussian process Gy
Let 1in® (I/) denote all bounded real functionals L on I/, such that L(0) = 0 and

(16) Laf+(1—a)g)=aL(f)+ (1 —a)L(g), 0<a<l,f gecl.

Equip 1in® @) with the norm || - |loo.z¢ = sup feu | - 1. Each element in 1lin® () extends
uniquely to the corresponding element in H "7 (y,), and the extension, denoted by ¢ :
lin®*U) - H —L.P(y,), is isometrically isomorphic. This follows from an argument simi-
lar to the proof of Lemma 1 in [76]. Indeed, it is not difficult to verify that each element
L in lin®* (Uf) is prelinear, that is, for every a1, ..., o, € R and f1,..., fi» € U, whenever
a1 fi+ -+ oy, fin=0,wehave a1 L(f1) + - -+ + o, L(fin) = 0 (use the fact that U/ is cen-
trally symmetric, that is, — f € U whenever f € U, and L(— f) = —L(f), which follows by
taking « = 1/2 and g = — f in (16)). By Lemma 2.3.5 in [41], the function 7 defined by

Tp(aifi+-Foamfm) =arL(fO)+- - +oamLl(fm), ai...,om R, fi,..., fm el

is well defined and linear on the linear span of U/, that is, HL4 (Vo). Further, as
||TL||H71,,,(%) = ||L|loos by construction, ¢ : L + Ty is a linear isometry from 1in® (lf)
onto H_l’p(ya).

Since 1in® () is a closed subspace of £°°(U) and \/n(fL, — i) * Yo has paths in 1in®> ),
we see that G, € 1in® (U/) with probability one by the portmanteau theorem and /n (i, —
IDESZ 4 Gj, in 1lin®°(Uf). Now, since /n(ji, — i) * Yo is a (random) signed measure that
is bounded on I/ with probability one, we can regard \/n(ji, — i) * ¥, as a random variable

. Lo N d I
with values in H~"?(y,). Conclude that /n(fi, — @) * o — t o G, in H~ P (y,) by the
continuous mapping theorem. For notational convenience, redefine G|, by ¢ o G},. The limit
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variable G; = (GZ D)) Fela(y,) is a centered Gaussian process with covariance function
Cov(GS,(f), Go.(8)) = Covyu(f % o & % o).

Step 3. We will show that /n(fi, — ) *y, converges in distribution to a centered Gaussian
process in H P (u ¥5). For X ~ u with a = E[X], let ©~¢ denote the distribution of
X —a,andlet i,;* =n"' Y| 8(x,—qa)- It is not difficult to see that ¢ satisfies Condition
(4). Applying the result of Step 2 with p replaced by u=“, we have /n(Q,% — u™9) *

d o . . _
Yo > Goy in H™VP (). Since || gy S I litaqrasy,) @S d(™  vo)/dye >
e~ EullX—al’1/20%) by Jensen.’s inequality), we have || Il -1.p (yaxy,) S 1+ Ii=1.0, - that is,
the continuous embedding H 17 (y,) < H~ 1P (™% % y,) holds. Thus NI T B
d o L _
Vo = (Go-a()) refitaguany,) 0 H™P (W yo).
Observe that for ¢ € C§°,

o6+ Y14y, = [ NTCH @I Al 5 72)

Yo )
q = q
_/Rd Vol d( * ys) H(p”HL‘i(u*VJ)'

Thus, the map 1, : H_I’P(/L—” *Y5) —> H‘l’l’(,u * ), defined by t,(h)(f) = h(f(- + a)),
is continuous (indeed, isometrically isomorphic). Conclude that
. o _ d o Lo
Vi — 1) * ¥o =ta(Vn(fi, = ) % v0) > 1G 0 =Gy in H P (wkys).

The limit variable G, = (Gu(f))feHl,q(u*yg) = (GZ—“ (f(¢-+ a)))fEHl’q(,lL*]/g) is a centered
Gaussian process with covariance function

Cov(Gu(f). Gu(8)) = Cov(GEa (f (- +a), G5 -a(3(- +a)))
= Covy-a(f(+a) * ¢5, g(- +a) * ¢5)
=Covya(f *ps(-+a), g * ¢s (- +a))
= Covy(f * Po, & * b5 ).

This completes the proof.

REMARK 5.1 (Proof of: (4) = (5)). Fqllow the notation that appeared in Step 1 in the
proof above. Set X{ = &} and XJ’. = X; \ U/_, &; for j > 2. The collection {XJ’.};?‘;I forms a

(p=Dlx?
partition of R4, Observe that e 202 < Z(j?il M;1 X/ (x), so that

(p=Dlx[? s ) , i )
[ anew = ¥ M3n(a) < Y- M),
j=1 j=1

For sufficiently small  and §, Condition (4) ensures Z?’;l M;u(X j)l/ 2 < 00, which implies
(p=Dlx[?

;’.';1 M‘/Z.,u(Xj) < 00 as Mj,u(Xj)l/2 — 0(j — 00). Conclude that [e > du(x) < oo.
REMARK 5.2 (Alternative proof for p = 2). Observe that (i, — i) * Yo = n~! x

8x, — ) x Ve = n~! "_1Z; with Z; = (6x, — ) * Yo, and that Z, Z5, ... are
1.i.d. random variables with values in H_I*P(yg) (cf. (14)). Since H‘l’z(yg) is isomet-
rically isomorphic to a closed subspace of Lz(yg; RY) (see Lemma 5.1 ahead), we may
apply the CLT in the Hilbert space to derive a limit distribution for /n(ji, — u) * Y5 =
n=12ym 7o in H-'2(yy). Let E : H-'2(y,) = LP(y5; RY) be the linear isometry

i=l
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given in Lemma 5.1 ahead and Z; = E(Z;) be the corresponding L?(yy; R%)-valued ran-
dom variables. Since Lz(yg,Rd) is a Hilbert space, n—!/? Y7_1Z; obeys the CLT if
EllZ; ||L2(y Rd)] E[|lZ; ||H 12(y, ] < 00, which is satisfied under Condition (4). Indeed,

for p = 2, it is not difficult to see that the CLT in H~ 1 2()/(,) holds for n=1/2 | Zi under

a slightly weaker moment condition, namely, [ra elkP/o? g n(x) < oo.

5.1.2. Proof of Proposition 3.2. Part (i). Let
F={f*¢o: feH" W) 1 flLtr) < LI f I gragy,) <C)

for some sufficiently large but fixed constant C. It is not difficult to see that lim,— oo || (L, —
W) * Vo ll =10,y =0 as. if and only if § is u-Glivenko—Cantelli.

Suppose first that § is pu-Glivenko—Cantelli. Let Fz denote the minimal envelope for §,
that is, Fy(x) = sup .z |f(x)|. By Theorem 3.7.14 in [50], Fg must be u-integrable. We

shall bound Fg from below. Fix any x € RY. Consider

(/)x( ) _ ()7) with & (y) _ ¢0 (x - )7) _ e—|x|2/(202)+(x,y)/02’ ye ]Rd.
||gx||Lp(y ) o ()

Observe that V¢, (y) = ((p — Dx/0%)@x () and thus loxll gragy,) =P — 1)|x|/o. Thus,

for ¢ = ¢, /(1 + |x]), we have ”(ﬁx”L‘I(ya) <1, ”(Z)x”ﬁl,q(yg) <((p- 1)/02, and

e(P=DIxl/20%)

1
kS X
(@x * Do) (x) = 1+ |x |||gx||LP(yg 1+ x|

Also, from Proposition 1.5.2 in [15], we see that ¢y € Hl4 (¥s). Conclude that, as long as
C=(p—1/o?,

(p—1)|x|2/(20'2)
B = 5e ‘

01x|%/ 20

Now, the left-hand side is p-integrable, so that [pa e Nd u(x) <ooforany 8 < p—1.

Part (ii). Conversely, suppose that [pa e(P=DIKP/20?) g u(x) < oo, which ensures that F
is w-integrable from (14). From the proof of Proposition 3.1, for any M > 0, we see that the
restricted function class { f1p;<um : f € §} is w-Donsker and thus ;-Glivenko—Cantelli (cf.
Theorem 3.7.14 in [50]). Since the envelope function Fy is p-integrable, we conclude that §
is u-Glivenko—Cantelli; cf. the proof of Theorem 3.7.14 in [50].

5.2. Proofs for Section 3.2. Recall that 1 < p < oo and q is its conjugate index, that is,
1/p+1/g=1.

5.2.1. Proof of Lemma 3.2. One of the main ingredients of the proof of Lemma 3.2 is
Theorem 8.3.1 in [4], which is stated next (see also the Benamou—Brenier formula [9]).

THEOREM 5.1 (Theorem 8.3.1 in [4]). Let I be an open interval, and let I >t — u;
be a continuous curve in Pp (RY) (equipped with W,,) such that for some Borel vector field
RYxTI> (x, ) > v:(x) € R, the continuity equation

(17) e+ V- () =0 inRYx I

holds in the distributional sense, that is,
(3:p(x, 1) + (v, (x), Vip(x, 1)) dpas (x)dt =0, Vg € C(RY x I).
IJRd

I vl Lp gy rey € LY(I), then W, (ia, p) < fab Nlvell Loy, ey dt for all a < b witha,b € I.
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For a vector field v : R — R4, define

)= lv|P~%2v ifv#£0,
PR 0 otherwise.

Observe that w = j,(v) if and only if v = j,(w), and for any p € P,

Lo @ty = 100y = [ Lin 00 v}

We will also use the following lemma.

LEMMA 5.1. Let p € P be a reference measure. For any h € H=VP(p), there exists a
unique vector field E = E(h) € LP(p; RY) such that

|, Ve Erydp=hie) Vg € CF°,
. =LY (mRY)
jp(E) € {Vo:9eC) :

The map h — E(h) is homogeneous (i.e., E(ah) = aE (h) for allaceRandhe H™" P(p))
and such that ||E(h)|l1pp.re) = ||h||H Lo (p) forall h € H P (p). If p =2, then the map

h +— E(h) is a linear isometry from HL 2(,0) into Lz(p, R4).

(18)

The proof of Lemma 5.1 in turn relies on the following existence result of optimal solutions
in Banach spaces. We provide its proof for the sake of completeness.

LEMMA 5.2. Let (V, | -||) be a reflexive real Banach space, and let J : V — R U {400}
(J # +00) be weakly lower semicontinuous (i.e., J(v) < liminf, J(v,) for any v, — v
weakly) and coercive (i.e., J(v) — o0 as |v|| — o0). Then there exists vo € V such that
J(vo) = infyey J(v).

PROOF OF LEMMA 5.2. Let v, € V be such that J(v,) — infycy J (v) =: J. By coerciv-
ity, v, is bounded, so by reflexivity and the Banach—Alaoglu theorem, there exists a weakly
convergent subsequence v, such that v,, — vy weakly. Since J is weakly lower semicon-
tinuous, we conclude J(vg) <liminfy J (v, )=J. 0O

We turn to the proof of Lemma 5.1, which is inspired by the first part of the proof of
Theorem 8.3.1 in [4].

PROOF OF LEMMA 5.1. Let V denote the closure in L9(p; R9) of the subspace Vg =
{Vo : ¢ € C§°}. Endowing V with || - || L4 (p:RY) gives a reflexive Banach space because any
closed subspace of a reflexive Banach space is reflexive. Define the linear functional L :
Vo — R by L(Vg) :=h(p). To see that L is well defined, observe that

|h(§0)| = ||‘P||H1-q(p)”h”[l[—l,p(p)

=1IVeliLara) 11l g-1.0(p)-

This also shows that L can be extended to a bounded linear functional on V.
Consider the optimization problem

. . 1
(19) Ivlél‘l;l.](v) with J(v) := g./]Rd lv|?dp — L(v).
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The functional J is finite, weakly lower semicontinuous, and coercive. By Lemma 5.2 there

exists a solution v to the optimization problem (19). Further, the functional J is Gateaux

differentiable with derivative

J+tw)—J() _
p =

J'(v; w) := lim
t—0

[ @) dp ~ Law.

Thus, for E = j,(vo), we have Jra(Ve, E)dp=L(Vy) forall ¢ € Co°and j,(E)=vpe V.
To show uniqueness of E, pick another vector field E’ € L?(p; R?) satisfying (18). Then,
Jp(E") € V satisfies J'(j,(E"); w) =0 for all w € V, so by convexity of J, j,(E’) is another
optimal solution to (19). However, since J is strictly convex, the optimal solution to (19) is
unique, so that j,(E") = j,(E), thatis, E' = E.
Now, the map & — E(h) is homogeneous, as a E (h) clearly satisfies the first equation in
(18) for h replaced with ah and j,(aE(h)) = |alp_2ajp(E(h)) € V. Further, as j,(E(h)) €

7L (p:RY) . .
{Vo:pe (i} by construction, it also satisfies

EW iy = 50| [ (V0. E)dp: 0 € IVl iy < 1]

= ||h||H—1,p(p)-
Finally, if p =2, then j>(v) = v, so it is clear that the map h +> E(h) is linear. [

We are now ready to prove Lemma 3.2.

PROOF OF LEMMA 3.2. Let u; =pu+thy and v, = u+thy for t € [0, 1]. For notational
convenience, let h = hy — hy € D, N {finite signed Borel measures}. We will first show that

W, vp)
hrtri%)nff > ||hy — h2||H—l,p(MO).

The proof is inspired by Theorem 7.26 in [100]. Observe that for any ¢ € C3° and ¢ > 0,

Mt — Vt 1
mo) = [ odn= [ od(“) =1 [ odu— v,

Let m; € T1(us, v¢) be an optimal coupling for Wﬁ(u,, v;), that is, Wﬁ(,ut, v) = [[|x —
y|? dm;(x,y). Then

1 1
eai—w= [ ot - ) dmx. .

Since ¢ is smooth and compactly supported, there exists a constant C = Cy, , < 00 such that

9(x) — () < (Vo(y),x —y)+ Clx — y[*?, Vx,y R

Indeed, for p > 2, we can take C = C} := sup,cgda ||V2g0(x)||0p/2 (here || - [lop denotes the
operator norm for matrices). For 1 < p <2, we have

2_
p(x) —o(y) < (Vo(y),x —y)+ C1C; Plx —y|P, Vx,y €S :=supp(p)

with Cp :=sup{|x — y| : x,y € S}. Here supp(¢) denotes the support of ¢, supp(p) :=
{p#£0}. If x € S and d(y,S) :=inf{|ly — z| : z € §} > 1, then ¢(x)/|x — y|? < ||¢llco, SO
that we have

2_
p(x) — () =) < (lglloo VC1Cy P)lx —y|P, VxeS,yeSs*
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with C3 :=sup{jx —y|:x € §,d(y, S) <1} < oo. Finally, if d(x, S) > 1 and y € S, then

—o(y) — (Vo(y),x — y)
lx — y|P

< llglloolx = Y77 + IV@lloolx — y|' ™7

< llelloo + V@l oo,
so that we have
p(x) —e(y) = —e®)
<{Vo),x —)

+ ((I9lloo + 1V0lloo) v C1C3 " )x =3I, Vxesyes

with Cq :=sup{|x —y|:d(x,S5) <1,y e S} <oo.
Now, we have

1
;/‘/Iz&ded{(p(x) — () }dm(x,y)
1
: ;{/AdXRAV@()’),X B y)dﬂt(x, y)+ C//Rded |x — yIZAPdm(x, y)}

! 2/(2vp)
= ;[//RdedWw(y),x = y)dm(x,y) + C{//Rdxw x — y1P dm (x, y)} }

1
- ;{/Aded<V¢(y), x = y)dm(x,y) + CW P (;, v,)}.

Applying Proposition 2.1 with p = u, we know that W, (s, vi) < Wp (s, ) +Wp (i, vr) <

2
Pt -1 + 121l -10) = O(@) as £ 10, so that WP (1, 1) = O(1**P) = 0(1) as
t | 0. Further, by Holder’s inequality, with g being the conjugate index of p, we have

1/p
ffRd IR{‘,(Vfﬂ(y),x — y)dm;(x,y) < IV@ll La,:Re) {ffRd y |x —y|pdrr,(x,y)} ,
x X

:Wp(ﬂr,vt)
Here
q . q p
IIVsoIIL,,(W;Rd)—/Rd|V¢| du+z/Rd|v<p| dhy
= ”v@”%q(ude) + O(I),t \L 0.
Conclude that
o W, vr)
h@) < IV pay liminf =002,
that is,

w ,
liminf Ve (40 V1)

. 00 _ )
10 7 = Sup{h(go) 9 eCy, ||V(P||L4(M;Rd) =< 1} = ||h||H—1,p(M)~

To prove the reverse inequality, let h — E(h) be the map from H~LP(u) into L? (u; RY)
given in Lemma 5.1. Let ft1 =du;/du=1+tdhy/du. Since (11 = u + hy is a probability
measure, we have 1 +dh/du > 0, that is, dh|/du > —1, so that f,1 >1/2 fort €10, 1/2].
Likewise, f? :=dv;/du > 1/2 fort €[0,1/2].
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Fix ¢t € [0, 1/2] and consider the curve p; = (1 — s)us + sv; = uy — sth for s € [0, 1].
Then p; satisfies the continuity equation (17) with vy = E(—th)/((1 — s)f,1 + sf,z)). By
Theorem 5.1 (Theorem 8.3.1 in [4]), we have

w50
b < ” . g — s.
pRfe ) = [ WO lLP (o R o Uk [ =) T +sp2p 1"

Since E(—th) = —t E(h) by homogeneity and 1/2 < f,i — 1 ast | 0, the dominated conver-
gence theorem yields that, as ¢ | 0,

W (1. vi) 1( |E(h)|? )l/p
t 5‘/0 j];Qd [(I—S)fll'i‘Sflz]P—l d,bL ds

= E® | 1p(usray + o)

= All 1.0 + 0(1)-
This completes the proof. [

5.2.2. Proof of Proposition 3.3. Pick arbitrary (hi,h2) € Tg,xz,(0,0), 7, | 0, and
(hn1, hnp) — (hi,hy) in Dy, x D, such that (t,h,.1,t,h,2) € B, x E,. By density, for
any € > 0, there exist ¢ > 0 and p; € P), for i = 1,2 such that ||h; — fziIIH_l,p(M*yg) < € for

ﬁi = c(p;i — L) * Y. By scaling, Lemma 3.2 holds with (h1, hy) replaced by (h1, h2). As-
sume without loss of generality that n is large enough such that [|h,i — hill 1.5 (y,) < €

for i = 1,2 and ct, < 1/2. The density of u * y, + thhi = (1 —cty)p + ctypi) * Vo WIL.
W * Vo 18
d(u* yo + tahy)
d(p*yo)
Thus, by Proposition 2.1, we have
‘ q)(tnhn,l, tnhn,Z) _ cD(tnEL tnﬁZ)
I Iy

1
z(—ctn) =5, i=1L2

: t,

—

S ||hn,l - hl ||H_1«P(M*ya)

S

Il
—

1

(3]

<D (Wi = hill 10 gy + Vi = Rill =10 ny)

]

I
—

A
n
™

Further,
2

81 = hall =10 Gy = 11 = B2l =10 sy | < D Wi = il =15 iy < 26
i=1

Thus, using the result of Lemma 3.2, we conclude that
1i cD(l‘nhn,la tnhn,Z)
imsup

n—oo n

— |kt = hal| Hl,pw*yg)\ <e.

Since € > 0 is arbitrary, we obtain the desired conclusion.



LIMIT DISTRIBUTION THEORY FOR SMOOTH WASSERSTEIN DISTANCES 2473

5.3. Proofs for Section 3.3.

5.3.1. Proof of Lemma 3.3. The proof of Lemma 3.3 relies on the following technical
lemma concerning regularity of optimal transport potentials, which could be of indepen-
dent interest. Recall that any locally Lipschitz function on R? is differentiable a.e. by the
Rademacher theorem (cf. [44]). Here and in what follows a.e. is taken w.r.t. the Lebesgue
measure.

LEMMA 5.3 (Regularity of optimal transport potential). Let 1 < p < oo. Suppose that
w € Ppand v € P is B-sub-Weibull for some B € (0, 2]. Let g be an optimal transport poten-
tial from [ * y5 to v for Wﬁ. Then there exists a constant C that depends only on p,d, o, B,
upper bounds on E,[|X|] and ||Y [y, for Y ~ v, and a lower bound on [ ¢ du, such that

g is locally Lipschitz,
2
() — g(O)] < C(1+ x| F) x| Vx e R,
2
|Vg(x)|§C(1+|x|7p) fora.e. x eRY,

The proof of Lemma 5.3 borrows ideas from Lemmas 9 and 10 and Theorem 11 in the
recent work by [72], which in turn build on [24, 47].

PROOF OF LEMMA 5.3. By Theorem 11 in [72], there exists a constant C; depending
only on p, d, B, and an upper bound on [[|Y |||y, for ¥ ~ v, such that

P
P 1 Bp—D d
sup Iyl =Cfr+ )71 v supfiog( )| e,
y€d“g(x) ( ) yilx—y|<2 (e * Va)(By)

where 9°g(x) = {y € RY : ¢(z, y)—g@) >clx,y)—g(x),Vz e R4} is the c-superdifferential
of g at x for the cost function ¢(x, y) = |x — y|”,and By = B(y, 1) ={x € R?: |x — vyl < 1}.

Next, by Proposition 2 in [81], u * ¥, has Lebesgue density f, that is, (c1, cz)-regular
with ¢; =3/02 and c; =4E,[|X|]/0?, that is,

|Vlog f,(x)| <cilx| +c2, VxeRY
From the proof of Lemma 10 in [72], we have
(20) Fu(x) = e f,(0)e~IHeDl® vy e RY.

Thus, whenever |x — y| <2,
(L * Vo) (By) = / fu(@dz > inf f,(2) x / dz = e3¢~ f,(0)e 20+ X+,
B, ZEBy By

where c3 is a constant that depends only on d. Conclude that there exists a constant Cp
depending only on p, d, o, B, upper bounds on E,[| X|] and 1Y Il for ¥ ~ v, and a lower
bound on f},(0), such that

2p
sup |y| < Ca(1 + |x|FP-D), VxeR9.
yeag(x)

The rest of the proof mirrors the latter half of the proof of Lemma 9 in [72]. Since g €
L'(u % y5) and u * ¥, is equivalent to the Lebesgue measure (i.e., it * o < dx and dx <
Wk Vo), g(x) > —oo for a.e. x € R?. Since any open convex set in R¢ agrees with the interior
of its closure (cf. Proposition 6.2.10 in [42]), the convex hull of {x : g(x) > —oo} agrees with
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R?. Thus, by Lemma 2.1(ii) (Theorem 3.3 in [47]), g is locally Lipschitz on R?. Further, by
Propositon C.4 in [47], 8°g(x) is nonempty for all x € R?. For any x € R? and y € 3°g(x),

gx) =c(x,y) —g“).
Thus, for any x” € R¢,

g(x") —g(x) =c(x',y) = g°() = [e(x, ) — g°(»)]

=c(x',y) —clx,y)

= =7 —lx = yI?

< p(x =P v [ =y T = |

2p
B

<Ca[1+ (x| v [x'|)?]jx = x

’

where C3 depends only on p, B8, C,. Interchanging x and x’, we conclude that

21 lg(x) —g(x")| = C3[1+ (x| v |x/|)27p]]x —x'|, x,x eRf,

which implies the desired conclusion. [

PROOF OF LEMMA 3.3. Let u; = (u+t(p— ) xye =1 — ) * 5 + tp * Y5 for
t €0, 1], and let g; be an optimal transport potential from p; to v. Without loss of generality,
we may normalize g; in such a way that g;(0) =0 for 7 € [0, 1].

We will apply Lemma 5.3 with (i, v) replaced with ((1 —#)u +tp,v) for ¢t € [0, 1/2]. It
is not difficult to see that, as long as ¢ € [0, 1/2],

1
Eq-yetip[[ X1 S E[IX + B [IX]] and [ gwd(0=0yu+10) =3 [ dodu

Thus, by Lemma 5.3, there exist constants C and K independent of ¢ such that for every
1€[0,1/2],

8t is locally Lipschitz,
|8t(X)|SC(1+|x|K)|x| Vx € RY,
(Ve (x)| < C(1+1x|¥) forae x e RY.

By duality (Lemma 2.1(i)), we have with 7 = (p — 1) * Yo,
Wﬁ(ut,v)Z/RdgoduHr/Rngdv
— C
_'/H;dgodu()%—‘/wgodv%—t[l;dgodh
=WiGuo,v)+1 [ godh.
R4

so that

W2 (11r, v) — WE (110,
fim inf 2 #r) = W ko, v) z/ godh.
t}0 t R4
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Second, by construction,

WZ(M,V):/I:Mgrth‘i‘/Rdgzch

J— C
= [ siduo+ [ gfdve [ i

C
S/Rdgoduo—i-‘/Rdgodv—i-t/Rdg,dh
=WhGio,v) +1 [ gdh.

R4

Pick any 1, | 0. Since j1o0 = i * Yo < dx, j1o has full support R4, and W, = 1o, we have by
Theorem 3.4 in [34] that there exists some sequence of constants a,, such that g, —a, — go
pointwise. Since we have normalized g; in such a way that g,(0) = 0, we have a, — 0,
that is, g, — go pointwise. Further, since |g,(x)| < C(1 + |x|X)|x| for all ¢ € [0, 1/2], the
dominated convergence theorem yields that

/Rdg,ndh—>/Rdgodh.

WP _Wp ,
lim sup Py ) p(H0. V) S/dgodh.
R

n— 00 ty

Conclude that

This completes the proof [J

5.3.2. Proof of Proposition 3.5. Part (i). We first note that H9 (i  y,) is a function
space over RY. To see this, observe that if we choose a reference measure « to be an isotropic
Gaussian distribution with sufficiently small variance parameter, then the relative density
d(p * ¥5)/dx is bounded away from zero. Indeed, for k =y 30 We have

A Ye) () 2 p-ar2 f o~ g ()
N “

_ 2 2N _vl2 /42
—p—d/2 /Rdelxm 1QoN=1P /o 4y
> 942~ BulIXP1/0?

by Jensen’s inequality, which guarantees that H'9 (i % y,) is a function space over R in
view of Remark 2.1.

By regularity of g from Lemma 5.3, we know that g is locally Lipschitz and || g | La (usye) V
IV&Il 4wy, :re) < 00 (the latter alone does not automatically guarantee g € HM (1 % vo)).
As in Proposition 1.5.2 in [15], choose a sequence ¢; € C;° with the following property:

0<¢ <1, gG=1 if x| <j,sup|Vi(x)| < oo.
Jsx
Let ¢; = ¢jg. Each ¢; belongs to the ordinary Sobolev (1, g)-space w.r.t. the Lebesgue
measure, so Vg; can be approximated by gradients of C§° functions under || - || g gy Ra)
(cf. [1], Corollary 3.23). Since p * ¥, has a bounded Lebesgue density, this shows that
@) € H'“ (1 % y5). Now,

”V(pj - Vg”LP(/L*yg;Rd) = ||(V§j)g”LfJ(u*y,,;Rd) + ” (é‘J - I)Vg ”L’I(;L*)/U;Rd) —0

as j — oo, implying that g € H 9 (1 % y).
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Part (ii). Pick any h € Ty ,(0), 1, | 0, and h, — h in D, such that t,h, € A . For any € >
0, there exist some constant ¢ > 0 and sub-Weibull p € P such that ||z — || H1p(uiyy) < €

for h =c(p— W) *Ys.
Observe that

|W (tyhy) — W (t,h)| = |W§(,u * Vo tnhn, v Vo) — WH (1 * v + talt, v % Vo)
< p(Wg_l(,u * Vo + thhy, V% Vy) vwg—l(u % Vo + tah, v % Yo))
X W, (I % Vo + tahin, L * Vo + tyh).

Assume that n is large enough so that ct,, <1/2 and ||k, — h =10 (uy) < € The density of

Wk Yy +tah = (1 —cty) it + ¢ty p) * Vo W.ILL WL * Vg 1S
w > 1— Ctn > —,
d(u* ) 2
Thus, by Proposition 2.1,
W (i 5 Vo + tnhns (15 Vo 4+ 1a) S tallbn = Bl 10y ) < 2tn€-
Also, by Proposition 2.1,
W (1 % Vo + talt, v 5 Vo) S W (1 Vo + talt, L% Vo) +Wp (1 % Vo, v * Vo)
Stallhll =10 ey ) +Wp (1% Yo, v 5 v) = O(1).
Likewise, W, (i1 * Yo + tyhp, v * ¥5) = O(1). Conclude that
lim sup|W (1,/1,) — W (1,h)] /1, S €.
n— oo

Further, |h(g) — fz(g)| < ”g”Hl“’(M*Vo)”h — ﬁllH,I,p(M*ya) < €. Combining Lemma 3.3, we
conclude that
W(t,h,) — V(O
lim sup (tn n: © —h(g)| Se.

n—00 n

This completes the proof.
5.4. Proofs for Section 3.4.

5.4.1. Proof of Proposition 3.8. We first prove the following lemma. We note that the
empirical distributions &8 and /i, are finitely discrete, so /7 (15 — f1,,) * y» defines a random
variable with values in H "7 (u % y,) (cf. (14) and Step 3 of the proof of Proposition 3.1).
Let Sf = S,If (X1, ..., Xp) denote its (regular) conditional law given the data (which exists
as H‘LP(,u * Y5 ) 18 a separable Banach space; cf. Chapter 11 in [42]).

LEMMA 5.4. If u satisfies Condition (4), then £8 it PoG;l almost surely.

PROOF OF LEMMA 5.4. From the proof of Proposition 3.1, the function class U * ¢,
is w-Donsker with a u-square integrable envelope. The rest of the proof follows from the
Giné—Zinn theorem for the bootstrap (cf. Theorem 3.6.2 in [99]) and repeating the arguments
in Steps 2 and 3 in the proof of Proposition 3.1. [J

The proof of Proposition 3.8 Part (i) relies on the following technical lemmas.
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LEMMA 5.5. Let V be a real seminormed space and V* be its topological dual with
dual norm ||[v*||y+ = SUPy: vy <1 v¥*(v). If G = (G (v))yev is a Gaussian process with paths
in V* and a tight measurable map into V*, then it is Gaussian in the Banach space sense,
that is, for every f € V** (the second dual of V), f(G) is a univariate Gaussian random
variable. If G is centered, that is, E[G (v)] =0 for all v € V, then G has zero Bochner mean
in V*,

PROOF. Let Vi ={v € V :|v|ly < 1}. Then the map ¢ : V* — £°°(V}) defined by ¢ :
v* > v*|y, is a linear isometry. By assumption, (G = (G (v))yey, is a Gaussian process and
a tight measurable map into £°°(V}), so by Lemma 3.9.8 in [97], it is Gaussian in the Banach
space sense, that is, for every F € (£°°(V1))*, F(tG) is Gaussian. Pick any f € V**. Then
f o1~ ! is continuous and linear on the vector subspace (V* in £°(V;). Let F denote the
Hahn—Banach extension of f o(~!;then F € (¢*°(V}))* and f(G) = (f ot"H(1G) = F(.G)
is Gaussian. Finally, if G is centered, then the proof of Lemma 3.9.8 in [97] shows that
f(G) has mean zero for every f € V**, which implies that G has zero Bochner mean by the
definition of the Bochner integral (recall from the Fernique theorem that E[||G||y+] < oo, so
the Bochner expectation exists). [J

LEMMA 5.6. Suppose that B is a real separable Banach space with norm || - || and G is
a B-valued Gaussian random variable with zero Bochner mean. Then, unless G degenerates
to zero, |G| has a continuous distribution function.

PROOF. Let F denote the distribution function of |G||. Set ro = inf{r > 0: F(r) > 0},
the left endpoint of the support of ||G||. By log-concavity of the Gaussian measure, log F' is
concave on (rg, 00), which implies that F is (absolutely) continuous on (rg, 00); see Theo-
rem 11.1 in [28]. The function F may have a jump at r¢. So it remains to verify that, unless
G degenerates to zero, F' has no jump at ro. Indeed, the argument on Pages 60-61 in [68]
shows that ro = 0. But F(0) — F(0—) =P(]|G|| =0) =0, so F hasno jump atrg=0. [J

We are now ready to prove Proposition 3.8.

PROOF OF PROPOSITION 3.8. Part (i). Assume without loss of generality that u is not a
point mass (otherwise Wf,f) (LB, an) =11G wll =10 sy, ) = 0 and the result trivially follows).

We first verify that the limit variable ||G | z-1. P(uky) has a continuous distribution func-
tion. Recall that H 1P (1 % ) is a separable Banach space. In view of Lemmas 5.5 and 5.6
above, it suffices to verify that G, does not degenerate to zero. Since p is not a point mass,
for every xg € R4, it holds that 0 < Wyl * Vo, 8x * Vo) S (1 — 8xy) * yg||H_1,p(M*yg).
This implies that there exists at least one function f € C3° such that [ fd(u — 8x)) * yo =
[ f*ded(n —8x)) = [ f *dsdin — f * ¢g(x0) > 0. Since x > [ * ¢, (x) is continuous,
[ f*¢sdun — f * ¢y (x) is strictly positive in a neighborhood of x¢. Choosing x¢ from the
support of u, we see that Var, (f * ¢5) > 0.

Hence, we have verified that the limit variable ||G || z-1, P (ky) has a continuous distri-
bution function. In view of Problem 23.1 in [98], it suffices to prove the convergence in
probability (10) for each fixed > 0. Let T, = (fi, — p) * y» and T2 = (48 — ) * y,. By
Proposition 3.1 and Lemma 5.4, we know that

(\/ETnB’ \/ETn) = (\/ﬁ(,&f - lln) * Yo + \/ﬁ(lln — ) * Vo, \/ﬁ(lln — ) * Va)

d . S .
5 (Gl +Gu.Gy) in H P (uxys) x H VP (1w yo)
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unconditionally, where G;L is an independent copy of G, (cf. Theorem 2.2 in [66]). Thus, by
Proposition 3.5 and the second claim of the functional delta method (Lemma 3.1),

VWS (3 i) = /n® (T T,)
= {0 (VAT /nTy) + Ry
= [VA(T? = T) | =10 uayy ) + R
= V(i = fin) * Yo | 10 sy, + R

Here R,, = op(1) unconditonally. Choose €, — 0 such that P(|R,| > ¢,) — 0. By Markov’s

inequality, we have P (|R,| > €,) £o. By Lemma 5.4 and the continuous mapping theorem,
we also have

~ ~ P
fgg!PB(H\/Z(Mf - M") *Vo ”I-.I—l,ﬁ(u*y,,) = t) - P(”GMHI-'I—LP(/J,*VU) = t)| — 0.

Thus, for each ¢ > 0,
PP (VAW (A8 fun) < 1)
<PP(|Vn(iy — itn) * vo | 510 sy <t €n) + PE(|Ry| > €n)
=P(IG ull 1.0 sy < + €n) + 0B (1)
=PUGull 10 () =) +0r(D).

The reverse inequality follows similarly.
Part (ii). The argument is analogous to Part (i). Observe that, by Proposition 3.5,

V(S (B v) — 8 (fin, v)) = Vn(¥(T,F) — W (Ty))
= W (/nT,}) = Wo(J/nTy) + op(1)
= Va(T,F — T,)(g) + op(1)
= Vn((fty = in) * vo)(8) +op(1).
Taking pth root and applying the delta method, we have
1
pIWS (s, v) 1P~

The rest of the proof is completely analogous to Part (i). [

V(WS (i, v) =W (i, v)) = V(R = i) * ¥0)(8) + op(D).

PROOF OF PROPOSITION 3.9. By Lemma 5.4 and Example 1.4.6 in [99], the conditional
law of (a(A8 — fin) * yo, /n(DE — D)) * y») given the data converges weakly to the law
of (G,,Gy) in H_L”(,u * Yy ) X H_l’p(v * Y5 ) almost surely, where G, and G, are inde-
pendent. By Theorem 2.2 in [66], for T,fl = (8 — ) * v and Tnlfz =8 —v) xy,, we
have

(‘/ﬁTnl?l’ \/ETnl,;Z)
= (\/ﬁ(/lf - lln) * Yo + (i, — ) * Yo \/ﬁ(ﬁf - ‘A)n) * Yo + (b, —v) * Va)

L (Gt Gl Gy + GL)inH ™ P (i yo) x HP (05 y5)
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unconditionally, where G),, G, are copies of G, G, respectively, and G, G}, Gy, G,
are independent. Thus, by Proposition 3.7 and Lemma 3.1, for 7,, 1 = (1, — 1) * Y5 and
Ty2 = (Vy — V) * ¥, we have

V(S (s 57) = 87 (s )
=Vn(Y(TE. TE) = Y (Th1. Th2))
=T (0,0) (VnT,? 10 T} 2) — Y0.0)(Wn T 1, V0T, 2) 4 op(1)
= Vn(T,F, = T1)(9) + Vn(T,2, — Th2) (8°) + op(1)

= V(i = fn) % ¥6)(8) + V(57 — Da) % 75) () + 0p (D).
The rest of the proof is analogous to Proposition 3.8 Part (ii). [J

PROOF OF PROPOSITION 3.10. It is not difficult to see that v/2n(4, — p) # yo — G,
in H=1r (p * ¥5). By Theorem 3.7.7 and Example 1.4.6 in [99], the conditional law of
(Wn (,551 — ,5,1.) * Vo, ﬁ(ﬁ,ﬁ 2~ On) * ¥5) given the data converges weakly to the law of
(G, Gfo) in H‘l’l’(p * Vo) X H‘l’l’(p * Y, ) almost surely, where G;) is an independent

copy of G . Thus, arguing as in the proof of Proposition 3.9, for T, ;= (Bl =P *vo
(j =1,2), we have ‘

(\/ﬁTfl, ﬁTnl?z) 4 (Gll) + G%/«/E, Gf, + G‘;/\/E) in H P (p * y5) x H VP (p * y5)

unconditionally, where G}), ey G;‘) are independent copies of G,. Define ® by replacing u
with p in Section 3.2. Then, by Proposition 3.3 and the second claim of the functional delta
method (Lemma 3.1), we see that

VW (B ) = Vn®(T0) T,%)
= ®(g0) (VT2 VnTE) + op(1)
= [Vn(T,}, — T.}) | 5110 gy + 0P(D)
= Vn(B7 1 = Bn) % Vo = (72 = Bn) % Vo 1.0 (payy) + 0B (D.
The rest of the proof is analogous to Proposition 3.8 Part (i). [
5.5. Proof of Theorem 4.1.

5.5.1. Preliminary lemmas. Recall the notation E, and D, from Section 3.2.

LEMMA 5.7. Let u € Py for 1 < p < oo. Under Assumption 1, the map
(h,0) € By x No=> Wy (1 * Yo + h,vg * Vo)
is Hadamard directionally differentiable at (0, 6*) with derivative
(h,0) € By x No=> [ = (0. D) g-1.5 5y )-
Furthermore, the expansion

Wy (L * Yo +h, v *Y5) = ”h — (9 — 0%, @>“H_1’1’(;L*yg) +F(h, 60— 9*),

holds, with remainder r satisfying r(th,t(0 — 6*)) = o(t) as t | 0 uniformly w.rt. (h,0)
varying in K C E, x No, a compact subset of D, x R,



2480 GOLDFELD, KATO, NIETERT AND RIOUX

PROOF. Consider the map ¢ : (h,0) € E;, X No+> (h, (vg —vg*) * Vs) € B, X Ey. The
norm differentiability condition, Assumption 1 (vi), establishes Fréchet (hence Hadamard)
directional differentiability of ¢ at (0, 0*) with

Viogn (1, 0) = (h, (6,.D)) € Tz, xz, (0, 0).

The chain rule for Hadamard directional derivatives paired with Proposition 3.3 yields
(Po W)/(o,e*)(hy 0) = 2/,(0,9*) ° ‘ﬂ(/o,e*)(h, 0)
== 0. D) 1.0 (urye)

The final assertion follows from compact directional differentiability of the composition [90].
O

LEMMA 5.8. Assume the setting of Lemma 5.7.

(i) There exists a neighborhood N1 of 6* with N1 C N such that
C _
Wﬁf)(ﬁn"’@)igw—@*\ — W (. ), VO €N,

where C > 0 is such that ||(t, @)IIH_l,p(M*VJ) > C|t| for every t € R,
(ii) Let&, = Op(1) and ©,, := {6 € N : J/n|0 — 0*| < &,}; then, uniformly in 6 € ©,,

VAW (. v9) = |G — S/l — 0%, D) 1.5 sy + 0B (D).

PROOF. Part (i). Assumption 1 (vi) guarantees that there exists a constant C > 0 such
that || (6 — 0*, D) IIH_l,p(M*yJ) > C|0 — 6*| for every 6 € Ny. Let N> be an open ball of radius
r centered at * whose closure is contained in Np; then there exists fg > 0 such that, for every
0 <t < tg, the remainder term r of Lemma 5.7 satisfies 7~ |r (0, (6 — 0*))| < Cr/2 for
every 0 € dN,. Hence, |r (0,0 — 0*)| < (C/2)|0 — 6*| for every 0 € tgN, =: N; as 6 — 0* =
1(6 — 6*) for some 6 € 9N, and 0 < ¢ < tg. The triangle inequality yields, for any § € N1,

W (fin, vo) = WS (1, v9) — WS (1, ),

=110 = 0" D) 1.0 ey +7(0.0 = %) = W (n. o),

= 10— 0%~ W, ).

Part (ii). Since G;,U) LY G, in H='P(u % y,) and G, is tight, the sequence (G},(f) is uni-
formly tight by Lemma 1.3.8 and Problem 1.3.9 in [99]. Pick any €, § > 0. By uniform tight-
ness, there exists a compact set K, C I-'I*I*I’(,u * Y5 ) such that IP’(G,(f) eK)>1—¢/2
for every n € N. Further, since &, = Op(1), there exists M, > 0 such that P(|&,| < M,) >
1 — €/2 for every n € N. Define the event A, = {Gf,a) e Ky N {|&,] < Mc}. Observe that
P(A;.¢) = 1 — € for every n € N. Then, on this event A, ¢, it holds that ®, C ©,  :={0 €
Ny J/nl0 —6*| < M¢}. Since O,  is compact, we have, for every 6 € O, ,

AW (fin, vg) = |G = /(6 — 6%, D) 1. sy, + V1r (7T PGL, 0 —6%).
Set &, :=Supycp, |\/r_zr(n_1/2G,<f), 6 — 6*)|. Then, on the event A, ,

< sup alr(nT2hnT ),
heKe.ul<M
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and the right hand side can be made less than § for n sufficiently large. Hence, for every
sufficiently large n,

P(1¢nl > 8) =P({I¢nl > 8} N Ane) +P({I2a] > 8} N A} ()
<P({lzal > 8} NA,e) +P(A; )
<0+e,

that is, ¢, = op(1). This implies the desired result. [

LEMMA 5.9. Under the setting of Lemma 5.7, there exists a sequence of measurable
estimators 6, satisfying W%“)(/ln, Vén) = infyeco ng)(,&n» Vo) and 6, 3 6*.

The proof of Lemma 5.9 follows from a small modification to the proof of Theorems 2
and 3 in [52], see Section 4 of the Supplementary Material [54] for complete details.

5.5.2. Proof of Theorem 4.1.  Part (i). Given the above lemmas, the proof follows closely
[80], Theorem 4.2, or [52], Appendix B.4. Let 6, be the sequence of measurable estimators
afforded by Lemma 5.9. For any neighborhood N of 6*,

; @) — i @) n
glgng (fn, ve) —ngAfJWp (fn, ve)
with probability approaching one.

By Assumption 1 (vi), there exists C > 0 such that || (¢, D) ||H—1,p(u_*ya) > C|t| for every

t € R%_ Thus, by Lemma 5.8(i), there exists a neighborhood N of 68* with N C Ny such
that

. c . _
Wi (. vg) = =16 = 6| =W (fin. ). VO € NI

Set B, = (0 € © 1 /|0 — 0*] < &) with & 1= 4/ ONGC” -10(ury,) = Op(D). By
Lemma 5.8(ii), the expansion

@) AW (i) =[G = VD =0 D)l gy + 0 (D,
holds uniformly in # € N1 N ©,,. Then, for arbitrary § € N N @;,
Cé§
(GO n (GO
Wp (/“L}’lv U@) > Eﬁ _Wp (Mﬂ? M)

=W (i, ) + op(n~"7?),
so that

inf_ W (fin, v9) > W (fin. ) + 0p(n~'/?)
HeN1NB,

> inf_ W (fin, ve) +op(n™'7%).
6eNINO,
This shows that infgee WY (2, v9) = infy ey, g, Wi (L, V) + op(n~1/2).
Now, reparametrizing by t = /n(0 —6*) and setting T}, := {t e RD : |t| < &,,0*+1//n €
N1} in (22), we have

; @) h — (o) _ .
. VW (s ve) = inf |G7 = (1, D) -1 sy, F OB (D
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Set g == G1” — (. D)l 1.5 (uny, - For any £ € R% such that |¢| > &,, we have
00 (1) = Cltl = |G | -1 (nys) > 30(0) = 3 Jinf g (1).

Since {r e R% : |t| < &,} C T, with probability approaching one (as &, = Op(1l)), we have
inf;c7, g, (t) = inf, _pd, 9, (¢) with probability approaching one. Conclude that

i @) (i = i (o) _ .
912(’% '\/ﬁwp (I’an VQ) - té%go ||Gn (tv ©>||H71,p(u*ya) +O]P)(1)

Finally, since the map h € H‘l’P(u * Yo ) > 1nf, cpay |h — (£, D) ”H‘LP(M*VG) is continuous,
the continuous mapping theorem yields

. (@) A d . . ]
Jnf /nWi; (Mn,ve)%lé%gollGu (DM -1 sy

This completes the proof of Part (i). A
Part (i1). Let Ny be as in the proof of Part (i) and recall that 6, € N; with probability
approaching one. By the definition of 6, and Lemma 5.8(ii),

inf AW (i, vo) +op(1) = VAW (. )

=0p(1)

(23) c
= ] = 0% = VW (i, ),

=0p(1)

with probability tending to one. This implies that /n |én — 0% = Op(1). Let M, (¢) :=
IGH = (€. D 1oy, 20 M) = Gy — (€. D) 1.5y, - Observe that M, and
M are convex in ¢. Again, from the proof of Part (i), for 7, := /n (6, — 6*) = Op(1), we have

VAW (fin, v ) =My (5) + 0p(1).
Hence,
My (F) = VWS ([, vg,) + 0p(1)
. ( ) A
< inf VW (i, vg) + op (1)

= inf M, (¢) +op(1).

teR%

Since G,(f) i> G, in H‘l’l’(y, * Vo), M, (t1), ..., M, (%)) —d> (M(zy), ..., M(t;)) for any
finite set of points (t,-)f.C 1 C R% by the continuous mapping theorem. Applying Theorem 1

in [64] (or Lemma 6 in [52]) yields 7, 4 argmin, _pd, M(2).

6. Concluding remarks. In this paper, we have developed a comprehensive limit distri-

bution theory for empirical Wf,,”) that covers general 1 < p < 0o and d > 1, under both the
null and the alternative. Our proof technique leveraged the extended functional delta method,
which required two main ingredients: (i) convergence of the smooth empirical process in
an appropriate normed vector space; and (ii) characterization of the Hadamard directional

derivative of WE,U) w.r.t. the norm. We have identified the dual Sobolev space HLP(u x ¥)
as the normed space of interest and established the items above to obtain the limit distribu-
tion results. Linearity of the Hadamard directional derivative under the alternative enabled

establishing the asymptotic normality of the empirical (scaled) nyg).
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To facilitate statistical inference using Wf;), we have established the consistency of the
nonparametric bootstrap. The limit distribution theory was used to study generative mod-
eling via Wfl,”) MDE. We have derived limit distributions for the optimal solutions and the
corresponding smooth Wasserstein error, and obtained Gaussian limits when p = 2 by lever-
aging the Hilbertian structure of the corresponding dual Sobolev space. Our statistical study,
together with the appealing metric and topological structure of WI(,,U) [51,77], suggest that the
smooth Wasserstein framework is compatible with high-dimensional learning and inference.

An important direction for future research is the efficient computation of Wg’). While stan-
dard methods for computing W, are applicable in the smooth case (by sampling the Gaussian
noise), it is desirable to find computational techniques that make use of the structure induced
by the convolution with a known smooth kernel. Another appealing direction is to establish
Berry—Esseen type bounds for the limit distributions in Theorem 1.1. Of particular interest
is to explore how parameters such as d and o affect the accuracy of the limit distributions

in Theorem 1.1. [85] addressed a similar problem for empirical Wi”) under the one-sample
null case, but their proof relies substantially on the IPM structure of W; and finite sample
Gaussian approximation techniques developed by [21, 22]. These techniques do not apply to
p > 1, and thus new ideas, such as the linearization arguments herein, are required to develop
Berry—Esseen type bounds for p > 1.
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SUPPLEMENTARY MATERIAL

Additional proofs (DOI: 10.1214/23-AAP2028SUPP; .pdf). The Supplementary Material
[54] contains proofs of Lemmas 2.2 and 5.9, and Propositions 2.1 and 4.1.
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