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The Wasserstein distance is a metric on a space of probability measures

that has seen a surge of applications in statistics, machine learning, and ap-

plied mathematics. However, statistical aspects of Wasserstein distances are

bottlenecked by the curse of dimensionality, whereby the number of data

points needed to accurately estimate them grows exponentially with dimen-

sion. Gaussian smoothing was recently introduced as a means to alleviate the

curse of dimensionality, giving rise to a parametric convergence rate in any

dimension, while preserving the Wasserstein metric and topological structure.

To facilitate valid statistical inference, in this work, we develop a comprehen-

sive limit distribution theory for the empirical smooth Wasserstein distance.

The limit distribution results leverage the functional delta method after em-

bedding the domain of the Wasserstein distance into a certain dual Sobolev

space, characterizing its Hadamard directional derivative for the dual Sobolev

norm, and establishing weak convergence of the smooth empirical process in

the dual space. To estimate the distributional limits, we also establish con-

sistency of the nonparametric bootstrap. Finally, we use the limit distribution

theory to study applications to generative modeling via minimum distance

estimation with the smooth Wasserstein distance, showing asymptotic nor-

mality of optimal solutions for the quadratic cost.

1. Introduction.

1.1. Overview. The Wasserstein distance is an instance of the Kantorovich optimal trans-

port problem [63], which defines a metric on a space of probability measures. Specifically,

for 1 ≤ p <∞, the p-Wasserstein distance between two Borel probability measures μ and ν

on R
d with finite pth moments is defined by

(1) Wp(μ, ν)= inf
π∈�(μ,ν)

[∫

Rd×Rd
|x − y|p dπ(x, y)

]1/p

,

where �(μ,ν) is the set of couplings (or transportation plans) of μ and ν. The Wasser-

stein distance has seen a surge of applications in statistics, machine learning, and applied

mathematics, ranging from generative modeling [6, 59, 96], image recognition [84, 86], and

domain adaptation [25, 26] to robust optimization [12, 48, 75] and partial differential equa-

tions [62, 88]. The widespread applicability of the Wasserstein distance is driven by an array

of desirable properties, including its metric structure (Wp metrizes weak convergence plus

convergence of pth moments), a convenient dual form, robustness to support mismatch, and

a rich geometry it induces on a space of probability measures. We refer to [4, 87, 100, 101]

as standard references on optimal transport theory.
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However, statistical aspects of Wasserstein distances are bottlenecked by the curse of di-

mensionality, whereby the number of data points needed to accurately estimate them grows

exponentially with dimension. Specifically, for the empirical distribution μ̂n of n indepen-

dent observations from a distribution μ on R
d , it is known that E[Wp(μ̂n,μ)] scales as

n−1/d for d > 2p under moment conditions [16, 37, 46, 69, 102]. This slow rate renders

performance guarantees in terms of Wp all but vacuous when d is large. It is also a road-

block towards a refined statistical analysis concerning limit distributions, bootstrap, and valid

inference.

Gaussian smoothing was recently introduced as a means to alleviate the curse of di-

mensionality of empirical Wp [51–53, 77, 85]. For σ > 0, the smooth p-Wasserstein dis-

tance is defined as W
(σ )
p (μ, ν) := Wp(μ ∗ ³σ , ν ∗ ³σ ), where ∗ denotes convolution and

³σ =N(0, σ 2Id) is the isotropic Gaussian distribution with variance parameter σ 2. For suf-

ficiently sub-Gaussian μ, [53] showed that the expected smooth distance between μ̂n and

μ exhibits the parametric convergence rate, that is, E[W(σ )
1 (μ̂n,μ)] = O(n−1/2) in any di-

mension. This is a significant departure from the n−1/d rate in the unsmoothed case. [51]

further showed that W
(σ )
1 maintains the metric and topological structure of W1 and is able

to approximate it within a σ
√
d gap. The structural properties and fast empirical conver-

gence rates were later extended to p > 1 in [77]. Other follow-up works explored relations

between W
(σ )
p and maximum mean discrepancies [105], analyzed its rate of decay as σ →∞

[20], and adopted it as a performance metric for nonparametric mixture model estimation

[60].

A limit distribution theory for W
(σ )
1 was developed in [52, 85], where the scaled empir-

ical distance
√
nW

(σ )
1 (μ̂n,μ) was shown to converge in distribution to the supremum of a

tight Gaussian process in every dimension d under mild moment conditions. This result re-

lies on the dual formulation of W1 as an integral probability metric (IPM) over the class of

1-Lipschitz functions. Gaussian smoothing shrinks the function class to that of 1-Lipschitz

functions convolved with a Gaussian density, which is shown to be μ-Donsker in every di-

mension, thereby yielding the limit distribution. Extending these results to empirical W
(σ )
p

with p > 1, however, requires substantially new ideas due to the lack of an IPM structure.

Consequently, works exploring W
(σ )
p with p > 1, such as [77, 105], did not contain limit

distribution results for it and this question remained largely open.

The present paper closes this gap and provides a comprehensive limit distribution theory

for empirical W
(σ )
p with p > 1. Our main limit distribution results are summarized in the

following theorem, where the “null” refers to when μ = ν, while “alternative” corresponds

to μ �= ν. In what follows, the dimension d ≥ 1 is arbitrary.

THEOREM 1.1 (Main results). Let 1 < p <∞, and μ, ν be Borel probability measures

on R
d with finite pth moments. Let μ̂n = n−1 ∑n

i=1 ´Xi
and ν̂n = n−1 ∑n

i=1 ´Yi be the empir-

ical distributions of independent observations X1, . . . ,Xn ∼ μ and Y1, . . . , Yn ∼ ν. Suppose

that μ satisfies Condition (4) ahead (which requires μ to be sub-Gaussian).

(i) (One-sample null case) We have

√
nW

(σ )
p (μ̂n,μ)

d→ sup
ϕ∈C∞

0 :
‖ϕ‖

Ḣ1,q (μ∗³σ )
≤1

Gμ(ϕ),

where Gμ = (Gμ(ϕ))ϕ∈C∞
0

is a centered Gaussian process whose paths are linear and con-

tinuous with respect to (w.r.t.) the Sobolev seminorm ‖ϕ‖Ḣ 1,q (μ∗³σ ) := ‖∇ϕ‖Lq (μ∗³σ ;Rd ).

Here q is the conjugate index of p, that is, 1/p+ 1/q = 1.
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(ii) (Two-sample null case) If ν = μ, then we have

√
nW

(σ )
p (μ̂n, ν̂n)

d→ sup
ϕ∈C∞

0 :
‖ϕ‖

Ḣ1,q (μ∗³σ )
≤1

[

Gμ(ϕ)−G′
μ(ϕ)

]

,

where G′
μ is an independent copy of Gμ.

(iii) (One-sample alternative case) If ν �= μ and ν is sub-Weibull, then we have

√
n
(

W
(σ )
p (μ̂n, ν)− W

(σ )
p (μ, ν)

) d→N

(

0,
Varμ(g ∗ φσ )

p2[W(σ )
p (μ, ν)]2(p−1)

)

,

where g is an optimal transport potential from μ ∗ ³σ to ν ∗ ³σ for W
p
p , and φσ (x) =

(2πσ 2)−d/2e−|x|2/(2σ 2) is the Gaussian density.

(iv) (Two-sample alternative case) If ν �= μ and ν satisfies Condition (4), then we have

√
n
(

W
(σ )
p (μ̂n, ν̂n)− W

(σ )
p (μ, ν)

) d→N

(

0,
Varμ(g ∗ φσ )+ Varν(g

c ∗ φσ )

p2[W(σ )
p (μ, ν)]2(p−1)

)

,

where gc is the c-transform of g for the cost function c(x, y)= |x − y|p .

Parts (i) and (ii) show that the null limit distributions are non-Gaussian. On the other hand,

Parts (iii) and (iv) establish asymptotic normality of empirical W
(σ )
p under the alternative.

Notably, these result have the correct centering, W
(σ )
p (μ, ν), which enables us to construct

confidence intervals for W
(σ )
p (μ, ν).

The proof strategy for Theorem 1.1 differs from existing approaches to limit distribution

theory for empirical Wp for general distributions. In fact, an analog of Theorem 1.1 is not

known to hold for classic Wp in this generality, except for the special case where μ, ν are

discrete (see a literature review below for details). The key insight is to regard W
(σ )
p as a func-

tional defined on a subset of a certain dual Sobolev space. We show that the smooth empirical

process converges weakly in the dual Sobolev space and that W
(σ )
p is Hadamard (direction-

ally) differentiable w.r.t. the dual Sobolev norm. We then employ the extended functional

delta method [83, 90] to obtain the limit distribution of one- and two-sample empirical W
(σ )
p

under both the null and the alternative. The derivation of the alternative limit distribution re-

quires p > 1 since we rely on uniqueness (up to additive constants) of OT dual potentials,

which does not hold for p = 1. As aforementioned, limit distributions for p = 1 were derived

in [52, 85] via a markedly different proof technique that hinges on the IPM structure of W
(σ )
1 .

The limit distributions in Theorem 1.1 are nonpivotal in the sense that they depend on

the population distributions μ and ν, which are unknown in practice. To facilitate statistical

inference using W
(σ )
p , we employ the bootstrap to estimate the limit distributions and prove

its consistency for each case of Theorem 1.1. Under the alternative, the consistency follows

from the linearity of the Hadamard derivative. Under the null, where the Hadamard (direc-

tional) derivative is nonlinear, the bootstrap consistency is not obvious but still holds. This

is somewhat surprising in light of [43, 45], where it is demonstrated that the bootstrap, in

general, fails to be consistent for functionals whose Hadamard directional derivatives are

nonlinear (cf. Proposition 1 in [43] or Corollary 3.1 in [45]). Nevertheless, our application

of the bootstrap differs from [43, 45] so there is no contradiction, and the specific structure

of the Hadamard derivative of W
(σ )
p allows to establish consistency under the null (see the

discussion after Proposition 3.8 for more details). These bootstrap consistency results enable

constructing confidence intervals for W
(σ )
p and using it to test the equality of distributions.
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As an application of the limit theory, we study implicit generative modeling under the

minimum distance estimation (MDE) framework [78, 80, 104]. MDE extends the maximum-

likelihood principle beyond the KL divergence and applies to models supported on low-

dimensional manifolds [6] (whence the KL divergence is not well-defined), as well as to

cases when the likelihood function is intractable [58]. For MDE with W
(σ )
p , we establish

limit distribution results for the optimal solution and the smooth p-Wasserstein error. Our

results hold for arbitrary dimension, again contrasting the classic case where analogous dis-

tributional limits for MDE with Wp are known only for p = d = 1 [10]. Remarkably, when

p = 2, the Hilbertian structure of the underlying dual Sobolev space allows showing asymp-

totic normality of the MDE solution.

1.2. Literature review. Analysis of empirical Wasserstein distances, or more generally

empirical optimal transport distances, has been an active research area in the statistics and

probability theory literature. In particular, significant attention was devoted to rates of con-

vergence and exact asymptotics [2, 5, 8, 14, 16–18, 23, 29, 37, 38, 40, 46, 67, 69, 71, 72,

93, 94, 102]. As noted before, the empirical Wasserstein distance suffers from the curse of

dimensionality, namely, E[Wp(μ̂n,μ)] =O(n−1/d) whenever d > 2p. This rate is known to

be sharp in general [40]. The recent work by [23, 72] discovered that the rate can be improved

under the alternative, namely, E[|Wp(μ̂n, ν) − Wp(μ, ν)|] = O(n−α/d) for d ≥ 5 if ν �= μ,

where α = p for 1 ≤ p < 2 and α = 2 for 2 ≤ p <∞. Their insight is to use the duality for-

mula for W
p
p and exploit regularity of optimal transport potentials. [72] also derive matching

minimax lower bounds up to log factors under some technical conditions.

Another central problem that has seen a rapid development is limit distribution theory

for empirical Wasserstein distances. However, except for the two special cases discussed

next, to the best of our knowledge, there is no proven analog of our Theorem 1.1 for classic

Wasserstein distances, that is, a comprehensive limit distribution theory for empirical Wp that

holds for general d and p. The first case for which the limit distribution is well understood is

when d = 1. Then, Wp reduces to the Lp distance between quantile functions for 1 ≤ p <∞,

and further simplifies to the L1 distance between distribution functions when p = 1. Building

on such explicit expressions, [30] and [31] derived null limit distributions in d = 1 for p = 1

and p = 2, respectively. More recently, under the alternative (μ �= ν), [35] derived a central

limit theorem (CLT) when d = 1 and p ≥ 2. The second case where a limit distribution theory

for empirical Wp is available is when μ, ν are discrete. If the distributions are finitely discrete,

that is, μ = ∑m
j=1 rj´xj and ν = ∑k

j=1 sj´yj for two simplex vectors r = (r1, . . . , rm) and

s = (s1, . . . , sk), then Wp(μ, ν) can be seen as a function of those simplex vectors r and s.

Leveraging this, [92] applied the delta method to obtain limit distributions for empirical Wp

in the finitely discrete case. An extension to countably infinite supports was provided in [95],

while [32] treated the semidiscrete case where μ is finitely discrete but ν is general.

Except for these two special cases, limit distributions for Wasserstein distances are less

understood. To avoid repetitions, we focus here our discussion on the one sample case. In

[36], a CLT for
√
n(W2

2(μ̂n, ν) − E[W2
2(μ̂n, ν)]) is derived in any dimension, but the limit

Gaussian distribution degenerates to 0 when μ = ν; see also [34] for an extension to gen-

eral 1 < p <∞. Notably, the centering constant there is the expected empirical Wasserstein

distance E[W2
2(μ̂n, ν)], which in general can not be replaced with the (more natural) popu-

lation distance W
2
2(μ, ν). The recent preprint [71] addressed this gap and established a CLT

for
√
n(W2

2(μ̃n, ν) − W
2
2(μ, ν)) for a wavelet-based estimator μ̃n of μ, assuming that the

ambient space is [0,1]d and that μ, ν are absolutely continuous w.r.t. the Lebesgue measure

with smooth and strictly positive densities. Following arguments similar to [36], they first

derive a CLT for
√
n(W2

2(μ̃n, ν)−E[W2
2(μ̃n, ν)]) and then use the strict positivity of the den-

sities and higher order regularity of optimal transport potentials to control the bias term as

E[W2
2(μ̃n, ν)] − W

2
2(μ, ν)= o(n−1/2).
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Our proof techniques differ from the aforementioned arguments for classic Wp . Specifi-

cally, as opposed to the two-step approach of [71] described above, we directly prove asymp-

totic normality for
√
n(W

(σ )
p (μ̂n, ν)−W

(σ )
p (μ, ν)) under the alternative. Their derivation does

not apply to our case even when p = 2 since their bias bound requires that the densities of

μ and ν be bounded away from zero on their (compact) supports, which fails to hold after

the Gaussian convolution. Our argument also differs from that of [92, 95], even though they

also rely on the functional delta method. Specifically, since we do not assume that μ, ν are

discrete, W
(σ )
p can not be parameterized by simplex vectors, and hence the application of the

functional delta method is nontrivial. Very recently, an independent work [61] used the ex-

tended functional delta method for the supremum functional [19] to derive limit distributions

for classic Wp , with p ≥ 2, for compactly supported distributions under the alternative in

dimensions d ≤ 3.1

Finally, we briefly compare the smooth Wasserstein distance with entropic regularized OT

(EOT) [3, 27]. EOT enjoys fast computational methods and a similar statistical profile to that

of W
(σ )
p , in terms of parametric convergence rates [49, 73] and limit distributions [11, 33,

55–57, 65, 73], but it forfeits the Wasserstein metric and topological structure. Indeed, EOT

is not a metric even for distance-like costs c(x, y)= |x − y|p for p ∈ [1,∞), which makes it

less compatible for applications like testing or MDE.2

1.3. Organization. The rest of the paper is organized as follows. In Section 2, we col-

lect background material on Wasserstein distances, smooth Wasserstein distances, and dual

Sobolev spaces. In Section 3, we prove Theorem 1.1 and explore the validity of the bootstrap

for empirical W
(σ )
p . Section 4 presents applications of our limit distribution theory to MDE

with W
(σ )
p . Proofs for Section 3 and 4 can be found in Section 5. Section 6 provides con-

cluding remarks and discusses future research directions. Finally, the supplemental material

contains additional proofs.

1.4. Notation. Let | · | and 〈·, ·〉 denote the Euclidean norm and inner product, respec-

tively. Let B(x, r) = {y ∈ R
d : |y − x| ≤ r} denote the closed ball with center x and radius

r . Given a finite signed Borel measure � on R
d , we identify � with the linear functional

f �→ �(f ) :=
∫

f d�. Let � denote inequalities up to some numerical constants. For any

a, b ∈R, we use the shorthands a ∨ b = max{a, b} and a ∧ b = min{a, b}.
For a topological space S, B(S) and P(S) denote, respectively, the Borel σ -field on S and

the class of Borel probability measures on S. We write P := P(Rd) and for 1 ≤ p < ∞,

use Pp to denote the subset of μ ∈ P with finite pth moment
∫

Rd |x|p dμ(x) < ∞. We use

∗ to denote the convolution. Let
w→,

d→, and
P→ denote weak convergence of probability

measures, convergence in distribution of random variables, and convergence in probabil-

ity, respectively. When necessary, convergence in distribution is understood in the sense of

Hoffmann–Jørgensen (cf. Chapter 2 in [99]).

Throughout, we assume that (X1, Y1), (X2, Y2), . . . are the coordinate projections of

the product probability space
∏∞

i=1(R
2d ,B(R2d),μ ⊗ ν). To generate auxiliary random

variables, we extend the probability space as (�,A,P) = [∏∞
i=1(R

2d ,B(R2d),μ ⊗ ν)] ×
([0,1],B([0,1]),Leb), where Leb denotes the Lebesgue measure on [0,1]. For β ∈ (0,2],
let ψβ(t)= et

β − 1 for t ≥ 0, and recall that the corresponding Orlicz (quasi-)norm of a real-

valued random variable ξ is defined as ‖ξ‖ψβ := inf{C > 0 : E[ψβ(|ξ |/C)] ≤ 1}. A Borel

1[61] was posted on arXiv after the present paper was submitted to the journal.
2EOT between μ and itself does not nullify. While this issue can be corrected by considering the (centered)

Sinkhorn divergence, it still is not a metric since it lacks the triangle inequality [11].
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probability measure μ ∈ P is called β-sub-Weibull if ‖|X|‖ψβ < ∞ for X ∼ μ. We say that

μ is sub-Weibull if it is β-sub-Weibull for some β ∈ (0,2]. Finally, μ is sub-Gaussian if it is

2-sub-Weibull.

For an open set O in a Euclidean space, C∞
0 (O) denotes the space of compactly supported,

infinitely differentiable, real functions on O. We write C∞
0 = C∞

0 (Rd) and define Ċ∞
0 =

{f + a : f ∈ C∞
0 , a ∈ R}. For any p ∈ [1,∞) and μ ∈ P(Rd), let Lp(μ;Rk) denote the

space of measurable maps f : Rd → R
k such that ‖f ‖Lp(μ;Rk) = (

∫

Rd |f |p dμ)1/p < ∞;

when d = 1 we use the shorthand Lp(μ)= Lp(μ;R1). Recall that (Lp(μ;Rk),‖ · ‖Lp(μ;Rk))

is a Banach space. Finally, for a subset A of a topological space S, let A
S

denote the closure

of A; if the space S is clear from the context, then we simply write A for the closure.

2. Background.

2.1. Wasserstein distances and their smooth variants. Recall that, for 1 ≤ p < ∞, the

p-Wasserstein distance Wp(μ, ν) between μ,ν ∈ Pp is defined in (1). Some basic properties

of Wp are (cf. e.g., [4, 87, 100, 101]): (i) the inf is attained in the definition of Wp , that is,

there exists a coupling π� ∈ �(μ,ν) such that W
p
p(μ, ν) =

∫

Rd×Rd |x − y|p dπ�(x, y), and

the optimal coupling π� is unique when p > 1 and μ� dx; (ii) Wp is a metric on Pp; and

(iii) convergence in Wp is equivalent to weak convergence plus convergence of pth moments:

Wp(μn,μ)→ 0 if and only if μn
w→ μ and

∫

|x|p dμn(x)→
∫

|x|p dμ(x).

The proof of the limit distribution for empirical W
(σ )
p under the alternative hinges on dual-

ity theory for Wp , which we summarize below. For a function g :Rd →[−∞,∞) and a cost

function c :Rd ×R
d →R, the c-transform of g is defined by

gc(y)= inf
x∈Rd

[

c(x, y)− g(x)
]

, y ∈R
d .

A function g :Rd → [−∞,∞), not identically −∞, is called c-concave if g = f c for some

function f :Rd →[−∞,∞).

LEMMA 2.1 (Duality for Wp). Let 1 ≤ p < ∞, μ,ν ∈ Pp , and set the cost function to

c(x, y)= |x − y|p .

(i) (Theorem 5.9 in [101]; Theorem 6.1.5 in [4]) The following duality holds,

(2) W
p
p(μ, ν)= sup

g∈L1(μ)

[∫

Rd
g dμ+

∫

Rd
gc dν

]

,

and there is at least one c-concave function g ∈ L1(μ) that attains the supremum in (2); we

call this g an optimal transport potential from μ to ν for W
p
p .

(ii) (Theorem 3.3 in [47]) Let 1 <p <∞, suppose that g :Rd →[−∞,∞) is c-concave,

and take K as the convex hull of {x : g(x) >−∞}. Then g is locally Lipschitz on the interior

of K .

(iii) (Corollary 2.7 in [34]) If 1 <p <∞ and μ� dx is supported on an open connected

set A, then the optimal transport potential from μ to ν for W
p
p is unique on A up to additive

constants, that is, if g1 and g2 are optimal transport potentials, then there exists C ∈R such

that g1(x)= g2(x)+C for all x ∈A.

The smooth Wasserstein distance convolves the distributions with an isotropic Gaus-

sian kernel. Gaussian convolution levels out local irregularities in the distributions, while

largely preserving the structure of classic Wp . Recalling that ³σ = N(0, σ 2Id), the smooth

p-Wasserstein distance is defined as follows.
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DEFINITION 2.1 (Smooth Wasserstein distance). Let 1 ≤ p <∞ and σ ≥ 0. For μ,ν ∈
Pp , the smooth p-Wasserstein distance between μ and ν with smoothing parameter σ is

W
(σ )
p (μ, ν) := Wp(μ ∗ ³σ , ν ∗ ³σ ).

The smooth Wasserstein distance was studied in [51–53, 77, 85] for structural properties

and empirical convergence rates. We recall two basic properties: (i) W
(σ )
p is a metric on Pp

that generates the same topology as classic Wp; (ii) for μ,ν ∈ Pp and 0 ≤ σ1 ≤ σ2 < ∞,

we have W
(σ2)
p (μ, ν)≤ W

(σ1)
p (μ, ν)≤ W

(σ2)
p (μ, ν)+ Cp,d

√

σ 2
2 − σ 2

1 for a constant Cp,d that

depends only on p, d . In particular, W
(σ )
p (μ, ν) is continuous and monotonically nonincreas-

ing in σ ∈ [0,+∞) with limσ↓0 W
(σ )
p (μ, ν) = Wp(μ, ν). See [77] for additional structural

results, including an explicit expression for Cp,d and weak convergence of smooth optimal

couplings. For empirical convergence, it was shown in [77] that under appropriate moment

assumptions E[W(σ )
p (μ̂n,μ)] = O(n−1/2) for p > 1 in any dimension d . Versions of this

result for p = 1 and p = 2 were derived earlier in [52, 53, 85].

2.2. Sobolev spaces and their duals. Our proof strategy for the limit distribution results

is to regard Wp as a functional defined on a subset of a certain dual Sobolev space. We will

show that the smooth empirical process converges weakly in the dual Sobolev space and that

Wp is Hadamard (directionally) differentiable w.r.t. the dual Sobolev norm. Given these, the

limit distributions in Theorem 1.1 follow via the functional delta method. Here we briefly

discuss (homogeneous) Sobolev spaces and their duals.

DEFINITION 2.2 (Sobolev spaces and their duals). Let ρ ∈ P and 1 ≤ p <∞.

(i) For a differentiable function f :Rd →R, let

‖f ‖Ḣ 1,p(ρ) := ‖∇f ‖Lp(ρ;Rd ) =
(∫

Rd
|∇f |p dρ

)1/p

be the Sobolev seminorm. We define the homogeneous Sobolev space Ḣ 1,p(ρ) by the com-

pletion of Ċ∞
0 w.r.t. ‖ · ‖Ḣ 1,p(ρ).

(ii) Let q be the conjugate index of p, that is, 1/p + 1/q = 1. Let Ḣ−1,p(ρ) denote the

topological dual of Ḣ 1,q(ρ). The dual Sobolev norm ‖ · ‖Ḣ−1,p(ρ) (dual to ‖ · ‖Ḣ 1,q (ρ)) of a

continuous linear functional � : Ḣ 1,q(ρ)→R is defined by

‖�‖Ḣ−1,p(ρ) = sup
{

�(f ) : f ∈ Ċ∞
0 ,‖f ‖Ḣ 1,q (ρ) ≤ 1

}

.

The restriction f ∈ Ċ∞
0 can be replaced with f ∈ C∞

0 in the definition of the dual norm

‖ · ‖Ḣ−1,p(ρ) since �(f + a)= �(f ) for any � ∈ Ḣ−1,p(ρ).

We have defined the homogeneous Sobolev space Ḣ 1,p(ρ) as the completion of Ċ∞
0 w.r.t.

‖ · ‖Ḣ 1,p(ρ). It is not immediately clear that the so-constructed space is a function space over

R
d . Below we present an explicit construction of Ḣ 1,p(ρ) when dρ/dκ is bounded away

from zero for some reference measure κ � dx satisfying the p-Poincaré inequality. To that

end, we first define the Poincaré inequality.

DEFINITION 2.3 (Poincaré inequality). For 1 ≤ p <∞, a probability measure κ ∈ P is

said to satisfy the p-Poincaré inequality if there exists a finite constant C such that
∥
∥ϕ − κ(ϕ)

∥
∥
Lp(κ) ≤ C‖∇ϕ‖Lp(κ;Rd ), ∀ϕ ∈ C∞

0 .

The smallest constant satisfying the above is denoted by Cp(κ).
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The standard Poincaré inequality refers to the 2-Poincaré inequality. It is known that any

log-concave distribution (i.e., a distribution κ of the form dκ = e−V dx for some convex func-

tion V :Rd →R∪{+∞}; cf. [70, 89]) satisfies the p-Poincaré inequality for any 1 ≤ p <∞
[13, 74]. In particular, the Gaussian distribution ³σ satisfies every p-Poincaré inequality (see

also [15], Corollary 1.7.3).

REMARK 2.1 (Explicit construction of Ḣ 1,p(ρ)). Suppose that there exists a reference

measure κ ∈P , with κ � dx, that satisfies the p-Poincaré inequality. Assume that dρ/dκ ≥ c

for some constant c > 0 (in our applications, ρ = ³σ or μ ∗ ³σ for some μ ∈ Pp; in either

case, the stated assumption is satisfied with κ = ³σ or ³
σ/

√
2). Let C = {f ∈ Ċ∞

0 : κ(f )= 0}.
Then, ‖ · ‖Ḣ 1,p(ρ) is a proper norm on C, and the map ι : f �→ ∇f is an isometry from

(C,‖ · ‖Ḣ 1,p(ρ)) into (Lp(ρ;Rd),‖ · ‖Lp(ρ;Rd )). Let V be the closure of ιC in Lp(ρ;Rd)

under ‖ · ‖Lp(ρ;Rd ). The inverse map ι−1 : ιC → C can be extended to V as follows. For any

g ∈ V , choose fn ∈ C such that ‖∇fn − g‖Lp(ρ;Rd ) → 0. Since ∇fn is Cauchy in Lp(ρ;Rd)

and thus in Lp(κ;Rd) (as ‖ · ‖Lp(κ;Rd ) � ‖ · ‖Lp(ρ;Rd )), fn is Cauchy in Lp(κ) by the p-

Poincaré inequality, so ‖fn − f ‖Lp(κ) → 0 for some f ∈ Lp(κ). Set ι−1g = f and extend ‖ ·
‖Ḣ 1,p(ρ) by ‖f ‖Ḣ 1,p(ρ) = limn→∞ ‖fn‖Ḣ 1,p(ρ) = ‖g‖Lp(ρ;Rd ). The space (ι−1V,‖ · ‖Ḣ 1,p(ρ))

is a Banach space of functions over Rd . Finally, the homogeneous Sobolev space Ḣ 1,p(ρ) can

be constructed as Ḣ 1,p(ρ)= {f + a : a ∈R, f ∈ ι−1V } with ‖f + a‖Ḣ 1,p(ρ) = ‖f ‖Ḣ 1,p(ρ).

The next lemma summarizes some basic results about the space Ḣ−1,p(ρ) and Ḣ−1,p(ρ)-

valued random variables that we use in the sequel. The proof can be found in Section 1 of the

Supplementary Material [54].

LEMMA 2.2. Let 1 < p < ∞ and ρ ∈ P . The dual space Ḣ−1,p(ρ) is a separable Ba-

nach space. The Borel σ -field on Ḣ−1,p(ρ) coincides with the cylinder σ -field (the smallest

σ -field that makes the coordinate projections, Ḣ−1,p(ρ) � � �→ �(f ) ∈R, measurable).

Consider a stochastic process Y = (Y (f ))f∈Ḣ 1,q (ρ) indexed by Ḣ 1,q(ρ), that is, ω �→
Y(f,ω) is measurable for each f ∈ Ḣ 1,q(ρ). The process can be thought of as a map from

� into Ḣ−1,p(ρ) as long as Y has paths in Ḣ−1,p(ρ), that is, for each fixed ω ∈�, the map

f �→ Y(f,ω) is continuous and linear. The fact that the Borel σ -field on Ḣ−1,p(ρ) coincides

with the cylinder σ -field guarantees that a stochastic process indexed by Ḣ 1,q(ρ) with paths

in Ḣ−1,p(ρ) is Borel measurable as a map from � into Ḣ−1,p(ρ).

2.3. Wp and dual Sobolev norm. In Section 3, we will explore limit distributions for

empirical W
(σ )
p . One of the key technical ingredients there is a comparison of the Wasserstein

distance with a certain dual Sobolev norm, which we present next.

PROPOSITION 2.1 (Comparison between Wp and dual Sobolev norm; Theorem 5.26 in

[39]). Let 1 < p <∞, and suppose that μ0,μ1 ∈ Pp with μ0, μ1 � ρ for some reference

measure ρ ∈ P . Denote their respective densities by fi = dμi/dρ, i = 0,1. If f0 or f1 is

bounded from below by some c > 0, then

(3) Wp(μ0,μ1)≤ pc−1/q‖μ1 −μ0‖Ḣ−1,p(ρ).
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REMARK 2.2. If ρ satisfies the q-Poincaré inequality, then for every ϕ ∈ C∞
0 with

‖ϕ‖Ḣ 1,q (ρ) ≤ 1, we have

∫

ϕ(f1 − f0) dρ =
∫
(

ϕ − ρ(ϕ)
)

(f1 − f0) dρ

≤
∥
∥ϕ − ρ(ϕ)

∥
∥
Lq (ρ)‖f1 − f0‖Lp(ρ)

≤ Cq(ρ)‖∇ϕ‖Lq (ρ;Rd )‖f1 − f0‖Lp(ρ) ≤ Cq(ρ)‖f1 − f0‖Lp(ρ),

so that Wp(μ0,μ1)≤ pc−1/q
Cq(ρ)‖f1 − f0‖Lp(ρ).

Proposition 2.1 follows directly from Theorem 5.26 of [39]. Similar comparison inequali-

ties appear in [67, 79, 103]. We include a self-contained proof of Proposition 2.1 in Section 2

of the supplementary material [54] as some elements of the proof are key to our deriva-

tion of the null limit distribution for empirical W
(σ )
p . The proof builds on the Benamou–

Brenier dynamic formulation of optimal transport [9], which shows that Wp(μ0,μ1) is

bounded from above by the length of any absolutely continuous path from μ0 to μ1 in

(Pp,Wp). The dual Sobolev norm emerges as a bound on the length of the linear interpo-

lation t �→ tμ1 + (1 − t)μ0.

3. Limit distribution theory. The goal of this section is to establish Theorem 1.1. The

proof relies on two key steps: (i) establish weak convergence of the smooth empirical pro-

cess
√
n(μ̂n − μ) ∗ ³σ in the dual Sobolev space Ḣ−1,p(μ ∗ ³σ ); and (ii) regard W

(σ )
p as a

functional defined on a subset of Ḣ−1,p(μ ∗ ³σ ) and characterize its Hadamard directional

derivative w.r.t. the corresponding dual Sobolev norm. Given (i) and (ii), the limit distribu-

tion results follow from the functional delta method, and the asymptotic normality under the

alternative further follows from linearity of the Hadamard directional derivative.

3.1. Preliminaries. Throughout this section, we fix 1 < p <∞, take q as the conjugate

index of p, and let σ > 0. For μ,ν ∈Pp , let X1, . . . ,Xn ∼ μ and Y1, . . . , Yn ∼ ν be indepen-

dent observations and denote the associated empirical distributions by μ̂n := n−1 ∑n
i=1 ´Xi

and ν̂n := n−1 ∑n
i=1 ´Yi , respectively.

3.1.1. Weak convergence of smooth empirical process in dual Sobolev spaces. The first

building block of our limit distribution results is the following weak convergence of the

smoothed empirical process
√
n(μ̂n −μ) ∗ ³σ in Ḣ−1,p(μ ∗ ³σ ).

PROPOSITION 3.1 (Weak convergence of smooth empirical process). Suppose that X ∼
μ satisfies

(4)

∫ ∞

0
e

θr2

2σ2

√

P
(

|X|> r
)

dr <∞ for some θ > p− 1.

Then, the smoothed empirical process
√
n(μ̂n − μ) ∗ ³σ converges in distribution in

Ḣ−1,p(μ ∗ ³σ ) as n → ∞. The limit process is a centered Gaussian process indexed by

Ḣ 1,q(μ ∗ ³σ ) with covariance function (f1, f2) �→ Covμ(f1 ∗ φσ , f2 ∗ φσ ). Here Covμ de-

notes the covariance under μ.

The proof of Proposition 3.1 relies on the prior work [77] by a subset of the authors, where

it was shown that the smoothed function class F ∗φσ = {f ∗φσ : f ∈F} with F = {f ∈ Ċ∞
0 :

‖f ‖Ḣ 1,q (³σ )
≤ 1} is μ-Donsker. We then prove the weak convergence in Ḣ−1,p(³σ ) following
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a similar argument to Lemma 1 in [76]. This, in turn, implies weak convergence in Ḣ−1,p(μ∗
³σ ) when μ has mean zero, since in that case Ḣ−1,p(³σ ) is continuously embedded into

Ḣ−1,p(μ ∗ ³σ ). To account for non-centered distributions, we use a reduction to the mean

zero case via translation. See also Remark 5.2 for an alternative proof for p = 2 that relies on

the CLT in the Hilbert space.

Inspection of the proof of Proposition 3.1 shows that Condition (4) implies

(5)

∫

Rd
e(p−1)|x|2/σ 2

dμ(x) <∞,

which requires μ to be sub-Gaussian; see Remark 5.1 for details. It is not difficult to see

that Condition (4) is satisfied if μ is compactly supported or sub-Gaussian with ‖|X|‖ψ2
<

σ/
√
p− 1 for X ∼ μ, and that the condition fails to hold for X ∼ ³σ/

√
p−1 (which instead

clearly satisfies (5)).

A natural question is whether a condition in the spirit of (4) is necessary for the conclusion

of Proposition 3.1 to hold. Indeed, we show that some form of sub-Gaussianity is necessary

for the smooth empirical process to converge to zero in Ḣ−1,p(³σ ).

PROPOSITION 3.2 (Necessity of sub-Gaussian condition). The following hold.

(i) If (μ̂n −μ) ∗ ³σ → 0 in Ḣ−1,p(³σ ) as n→∞ a.s., then
∫

Rd eθ |x|
2/(2σ 2) dμ(x) <∞

for any θ < p− 1.

(ii) Conversely, if
∫

Rd e(p−1)|x|2/(2σ 2) dμ(x) <∞, then (μ̂n −μ) ∗ ³σ → 0 in Ḣ−1,p(³σ )

as n→∞ a.s.

3.1.2. Functional delta method. Another ingredient of our limit distribution results is

the (extended) functional delta method [43, 45, 83, 91]. Let D be a normed space and � :
� ⊂ D → R be a function. Following [83, 90], we say that � is Hadamard directionally

differentiable at θ ∈� if there exists a map �′
θ : T�(θ)→R such that

lim
n→∞

�(θ + tnhn)−�(θ)

tn
=�′

θ (h)

for any h ∈ T�(θ), tn ↓ 0, and hn → h in D such that θ + tnhn ∈�. Here T�(θ) is the tangent

cone to � at θ defined as

T�(θ) :=
{

h ∈D : h= lim
n→∞

θn − θ

tn
for some θn → θ in � and tn ↓ 0

}

.

The tangent cone T�(θ) is closed, and if � is convex, then T�(θ) coincides with the closure

in D of {(θ̃−θ)/t : θ̃ ∈�, t > 0} (cf. Proposition 4.2.1 in [7]). The derivative �′
θ is positively

homogeneous (i.e., �′
θ (ch)= c�′

θ (h) for any c ≥ 0) and continuous, but need not be linear.

LEMMA 3.1 (Extended functional delta method [43, 45, 83, 91]). Let D be a normed

space and � : � ⊂ D → R be a function that is Hadamard directionally differentiable at

θ ∈ � with derivative �′
θ : T�(θ) → R. Let Tn : � → � be maps such that rn(Tn − θ)

d→
T for some rn → ∞ and Borel measurable map T : � → D with values in T�(θ). Then,

rn(�(Tn)−�(θ))
d→�′

θ (T ). Further, if � is convex, then we have the expansion rn(�(Tn)−
�(θ))=�′

θ (rn(Tn − θ))+ oP(1).

REMARK 3.1 (Choice of domain �). The domain � is arbitrary as long as it contains the

ranges of Tn for all n, and the tangent cone T�(θ) contains the range of the limit variable T .
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3.2. Limit distributions under the null (μ = ν). We shall apply the extended functional

delta method to derive the limit distributions of
√
nW

(σ )
p (μ̂n,μ) and

√
nW

(σ )
p (μ̂n, ν̂n) as n→

∞, namely, proving Parts (i) and (ii) of Theorem 1.1. To set up the problem over a (real)

vector space, we regard ρ �→ W
(σ )
p (ρ,μ)= Wp(ρ ∗ ³σ ,μ ∗ ³σ ) as a map h �→ Wp(μ ∗ ³σ +

h,μ ∗ ³σ ) defined on a set of finite signed Borel measures. The comparison result from

Proposition 2.1 implies that the latter map is Lipschitz in ‖ · ‖Ḣ−1,p(μ∗³σ ), and Proposition 3.1

shows that
√
n(μ̂n−μ)∗³σ is weakly convergent in Ḣ−1,p(μ∗³σ ). These suggest choosing

the ambient space to be Ḣ−1,p(μ ∗ ³σ ).

To cover the one- and two-sample cases in a unified manner, consider the same map but in

two variables. Take Dμ = Ḣ−1,p(μ ∗ ³σ ), set �μ :=Dμ ∩ {h= (ρ −μ) ∗ ³σ : ρ ∈ Pp}, and

define the function � :�μ ×�μ ⊂Dμ ×Dμ →R as

�(h1, h2) := Wp(μ ∗ ³σ + h1,μ ∗ ³σ + h2), (h1, h2) ∈�μ ×�μ.

We endow Dμ ×Dμ with a product norm (e.g., ‖h1‖Ḣ−1,p(μ∗³σ ) + ‖h2‖Ḣ−1,p(μ∗³σ )). Since

the set �μ (and thus �μ ×�μ) is convex, the tangent cone T�μ×�μ(0,0) coincides with the

closure in Dμ × Dμ of {(h1, h2)/t : (h1, h2) ∈ �μ × �μ, t > 0}. We next verify that � is

Hadamard directionally differentiable at (0,0).

PROPOSITION 3.3 (Hadamard directional derivative of Wp under the null). Let 1 <p <

∞ and μ ∈ Pp . Then, the map � : (h1, h2) �→ Wp(μ ∗ ³σ + h1,μ ∗ ³σ + h2), �μ ×�μ ⊂
Dμ × Dμ → R, is Hadamard directionally differentiable at (h1, h2) = (0,0) with deriva-

tive �′
(0,0)(h1, h2)= ‖h1 − h2‖Ḣ−1,p(μ∗³σ ), that is, for any (h1, h2) ∈ T�μ×�μ(0), tn ↓ 0 and

(hn,1, hn,2)→ (h1, h2) in Dμ ×Dμ such that (tnhn,1, tnhn,2) ∈�μ ×�μ, we have

lim
n→∞

�(tnhn,1, tnhn,2)

tn
= ‖h1 − h2‖Ḣ−1,p(μ∗³σ ).

Proposition 3.3 follows from the next Gâteaux differentiability result for Wp , which may

be of independent interest, combined with Lipschitz continuity of � w.r.t. ‖ · ‖Ḣ−1,p(μ∗³σ ) (cf.

Proposition 2.1).

LEMMA 3.2 (Gâteaux directional derivative of Wp). Let μ ∈ Pp and hi ∈ Ḣ−1,p(μ),

i = 1,2 be finite signed Borel measures with total mass 0 such that hi � μ and μ+hi ∈ Pp .

Then,

d

dt+
Wp(μ+ th1,μ+ th2)|t=0 = ‖h1 − h2‖Ḣ−1,p(μ),

where d/dt+ denotes the right derivative.

REMARK 3.2 (Comparison with Exercise 22.20 in [101]). Exercise 22.20 in [101] states

that (in our notation)

(6) lim
ε↓0

W2((1 + εh)μ,μ)

ε
= ‖hμ‖Ḣ−1,2(μ),

for any sufficiently regular function h with
∫

hdμ= 0 (hμ is understood as a signed measure

hdμ). Theorem 7.26 in [100] provides a proof of the one-sided inequality that the liminf of

the left-hand side above is at least ‖hμ‖Ḣ−1,2(μ), when μ ∈ P2 satisfies μ � dx and h is

bounded. The subsequent Remark 7.27 states that “We shall not consider the converse of

this inequality, which requires more assumptions and more effort.” However, we could not

find references that establish rigorous conditions applicable to our problem under which the

derivative formula (6) holds. Lemma 3.2 provides a rigorous justification for this formula and

extends it to general p > 1.
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Given these preparations, the proof of Theorem 1.1 Parts (i) and (ii) is immediate.

PROOF OF THEOREM 1.1, PARTS (I) AND (II). Let Gμ denote the weak limit of√
n(μ̂n − μ) ∗ ³σ in Ḣ−1,p(μ ∗ ³σ ); cf. Proposition 3.1. Recall that Dμ = Ḣ−1,p(μ ∗ ³σ )

is separable (cf. Lemma 2.2), so (Tn,1, Tn,2) := ((μ̂n − μ) ∗ ³σ , (ν̂n − μ) ∗ ³σ ) is a Borel

measurable map from � into the product space Dμ ×Dμ [99], Lemma 1.4.1. Since Tn,1 and

Tn,2 are independent, by Example 1.4.6 in [99] and Proposition 3.1, (Tn,1, Tn,2)
d→ (Gμ,G

′
μ)

in Dμ×Dμ, where G′
μ is an independent copy of Gμ. Since (Tn,1, Tn,2) ∈ T�μ×�μ(0,0) and

T�μ×�μ(0,0) is closed in Dμ ×Dμ, we see that (Gμ,G
′
μ) ∈ T�μ×�μ(0,0) by the portman-

teau theorem.

Applying the functional delta method (Lemma 3.1) and Proposition 3.3, we conclude that
√
nW

(σ )
p (μ̂n, ν̂n) =

√
n
(

�(Tn,1, Tn,2)−�(0,0)
)

d→�′
(0,0)

(

Gμ,G
′
μ

)

=
∥
∥Gμ −G′

μ

∥
∥
Ḣ−1,p(μ∗³σ ).

Likewise, we also have

√
nW

(σ )
p (μ̂n,μ)=

√
n
(

�(Tn,1,0)−�(0,0)
) d→�′

(0,0)(Gμ,0)= ‖Gμ‖Ḣ−1,p(μ∗³σ ).

This completes the proof. �

3.3. Limit distributions under the alternative (μ �= ν).

3.3.1. One-sample case. We start from the simpler situation where ν is known and prove

Part (iii) of Theorem 1.1. Our proof strategy is to first establish asymptotic normality of the

pth power of W
(σ )
p , from which Part (iii) follows by applying the delta method for s �→ s1/p .

For notational convenience, define

S
(σ )
p (μ, ν) :=

[

W
(σ )
p (μ, ν)

]p
,

for which one-sample asymptotic normality under the alternative is stated next.

PROPOSITION 3.4. Suppose that μ ∈ P satisfies Condition (4), ν ∈ P is sub-Weibull,

and μ �= ν. Let g be an optimal transport potential from μ ∗ ³σ to ν ∗ ³σ for W
p
p . Then, we

have

√
n
(

S
(σ )
p (μ̂n, ν)− S

(σ )
p (μ, ν)

) d→N
(

0,Varμ(g ∗ φσ )
)

.

We again use the functional delta method to prove this proposition, but with a slightly

different setting. Set Dμ = Ḣ−1,p(μ ∗ ³σ ) as before, and consider the function � : �μ ⊂
Dμ →R defined by

�(h) := W
p
p(μ ∗ ³σ + h, ν ∗ ³σ ), h ∈�μ,

where

(7) �μ :=Dμ ∩
{

h= (ρ −μ) ∗ ³σ : ρ ∈ P is sub-Weibull
}

.

As long as μ is sub-Weibull (recall that Condition (4) requires μ to be sub-Gaussian), the set

�μ contains 0. This set is also convex, and so the tangent cone T�μ(0) coincides with the

closure in Dμ of {h/t : h ∈ �μ, t > 0}. The corresponding Hadamard directional derivative

of W
p
p is given next.
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PROPOSITION 3.5 (Hadamard directional derivative of W
p
p w.r.t. one argument). Let 1 <

p <∞, and suppose that μ,ν ∈ P are sub-Weibull. Let g be an optimal transport potential

from μ ∗ ³σ to ν ∗ ³σ for W
p
p , which is uniquely determined up to additive constants (see

Lemma 2.1(iii)). Then:

(i) g ∈ Ḣ 1,q(μ ∗ ³σ ), where q is the conjugate index of p; and

(ii) the map � :�μ ⊂Dμ →R, h �→ W
p
p(μ∗ ³σ +h, ν ∗ ³σ ), is Hadamard directionally

differentiable at h= 0 with derivative � ′
0(h)= h(g), that is, for any h ∈ T�μ(0), tn ↓ 0, and

hn → h in Dμ such that tnhn ∈�μ, we have

(8) lim
n→∞

�(tnhn)−�(0)

tn
= h(g).

As in the null case, Part (ii) of Proposition 3.5 follows from the following Gâteaux differ-

entiability result for W
p
p , combined with local Lipschitz continuity of � w.r.t. ‖ ·‖Ḣ−1,p(μ∗³σ ).

LEMMA 3.3 (Gâteaux directional derivative of W
p
p w.r.t. one argument). Let 1 <p <∞

and μ,ν,ρ ∈ P be sub-Weibull. Let g be an optimal transport potential from μ ∗ ³σ to ν.

Then

d

dt+
W

p
p

((

μ+ t (ρ −μ)
)

∗ ³σ , ν
)

|t=0 =
∫

Rd
g d

(

(ρ −μ) ∗ ³σ
)

,

where the integral on the right-hand side is well defined and finite.

REMARK 3.3 (Comparisons with Theorem 8.4.7 in [4] and Theorem 5.24 in [87]). The-

orem 8.4.7 in [4] derives the following differentiabiliy result for W
p
p . Let μt : I → (Pp,Wp)

be an absolutely continuous curve for some open interval I , and let vt be an “optimal” ve-

locity field satisfying the continuity equation for μt (see Theorem 8.4.7 in [4] for the precise

meaning). Then, for any ν ∈ Pp , we have that

(9)
d

dt
W

p
p(μt , ν)=

∫

Rd×Rd
p|x − y|p−2〈x − y, vt (x)

〉

dπt (x, y)

for almost every (a.e.) t ∈ I , where πt ∈�(μt , ν) is an optimal coupling for Wp(μt , ν). See

also Theorem 5.24 in [87]. Since (9) only holds for a.e. t ∈ I , while we need the (right)

differentiability at a specific point, the result of [4], Theorem 8.4.7, (or [87], Theorem 5.24)

does not directly apply to our problem. We overcome this difficulty by establishing regularity

of optimal transport potentials (see Lemma 5.3 ahead), for which Gaussian smoothing plays

an essential role.

We are now ready to prove Proposition 3.4 and obtain Part (iii) of Theorem 1.1 combined

with the delta method for the map s �→ s1/p .

PROOF OF PROPOSITION 3.4. By Proposition 3.1, Tn := (μ̂n − μ) ∗ ³σ ∈ �μ and
√
nTn

d→ Gμ in Dμ. Also Gμ ∈ T�μ(0) with probability one by the portmanteau theorem.

Applying the functional delta method (Lemma 3.1) and Proposition 3.5, we have

√
n
(

S
(σ )
p (μ̂n, ν)− S

(σ )
p (μ, ν)

)

=
√
n
(

�(Tn)−�(0)
) d→Gμ(g)∼N

(

0,Varμ(g ∗ φσ )
)

,

as desired. �
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3.3.2. Two-sample case. Finally, we consider the two-sample case and prove the follow-

ing, from which Part (iv) of Theorem 1.1 follows.

PROPOSITION 3.6. Let 1 < p < ∞. Suppose that μ,ν ∈ P satisfy Condition (4) and

ν �= μ. Let g be an optimal transport potential from μ ∗ ³σ to ν ∗ ³σ for W
p
p . Then, we have

√
n
(

S
(σ )
p (μ̂n, ν̂n)− S

(σ )
p (μ, ν)

) d→N
(

0,Varμ(g ∗ φσ )+ Varν
(

gc ∗ φσ

))

.

Set Dμ = Ḣ−1,p(μ ∗ ³σ ) and Dν = Ḣ−1,p(ν ∗ ³σ ). Consider the function ϒ :�μ ×�ν ⊂
Dμ ×Dν →R defined by

ϒ(h1, h2) := W
p
p(μ ∗ ³σ + h1, ν ∗ ³σ + h2), (h1, h2) ∈�μ ×�ν,

where �μ is given in (7) and �ν is defined analogously. Here we endow Dμ × Dν with a

product norm (e.g., ‖h1‖Ḣ−1,p(μ∗³σ ) + ‖h2‖Ḣ−1,p(ν∗³σ )).
We note that if g is an optimal transport potential from μ ∗ ³σ to ν ∗ ³σ , then gc is an opti-

mal transport potential from ν ∗ ³σ to μ ∗ ³σ , as gcc = g. With this in mind, Proposition 3.5

immediately yields the following proposition.

PROPOSITION 3.7 (Hadamard directional derivative of W
p
p w.r.t. two arguments). Let

1 <p <∞, and suppose that μ,ν ∈ P are sub-Weibull. Let g be an optimal transport poten-

tial from μ ∗ ³σ to ν ∗ ³σ for W
p
p . Then, (g, gc) ∈ Ḣ 1,q(μ ∗ ³σ )× Ḣ 1,q(ν ∗ ³σ ), and the map

ϒ :�μ ×�ν ⊂Dμ ×Dν →R, (h1, h2) �→ W
p
p(μ ∗ ³σ + h1, ν ∗ ³σ + h2), is Hadamard di-

rectionally differentiable at (h1, h2)= (0,0) with derivative ϒ ′
(0,0)(h1, h2)= h1(g)+ h2(g

c)

for (h1, h2) ∈ T�μ×�ν (0,0).

Given Proposition 3.7, the proof of Proposition 3.6 is analogous to that of Proposition 3.4,

and is thus omitted for brevity. As before, Part (iv) of Theorem 1.1 follows via the delta

method for s �→ s1/p .

3.4. Bootstrap. The limit distributions in Theorem 1.1 are nonpivotal, as they depend on

the population distributions μ and/or ν, which are unknown in practice. To overcome this

and facilitate statistical inference using W
(σ )
p , we apply the bootstrap to estimate the limit

distributions of empirical W
(σ )
p .

We start from the one-sample case. Given the data X1, . . . ,Xn, let XB
1 , . . . ,XB

n be an inde-

pendent sample from μ̂n, and set μ̂B
n := n−1 ∑n

i=1 ´XB
i

as the bootstrap empirical distribution.

Let PB denote the conditional probability given X1,X2, . . . . The next proposition shows that

the bootstrap consistently estimates the limit distribution of empirical W
(σ )
p under both the

null and the alternative.

PROPOSITION 3.8 (Bootstrap consistency: one-sample case). Suppose that μ satisfies

Condition (4).

(i) (Null case) We have

(10) sup
t≥0

∣
∣P

B(
√
nW

(σ )
p

(

μ̂B
n , μ̂n

)

≤ t
)

− P
(

‖Gμ‖Ḣ−1,p(μ∗³σ ) ≤ t
)∣
∣

P→ 0.

(ii) (Alternative case) Assume in addition that ν is sub-Weibull with ν �= μ. Let v2
1 denote

the asymptotic variance of
√
n(W

(σ )
p (μ̂n, ν)− W

(σ )
p (μ, ν)) given in Part (iii) of Theorem 1.1

and assume v2
1 > 0. Then, we have

sup
t∈R

∣
∣P

B(
√
n
(

W
(σ )
p

(

μ̂B
n , ν

)

− W
(σ )
p (μ̂n, ν)

)

≤ t
)

− P
(

N
(

0,v2
1

)

≤ t
)∣
∣

P→ 0.
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Part (ii) of the proposition is not surprising given that the Haramard directional deriva-

tive of the function � in Proposition 3.5 is � ′
0(h)= h(g), which is linear in h. Part (i) is less

obvious since the function h1 �→�(h1,0) from Proposition 3.3 has a nonlinear Hadamard di-

rectional derivative, � ′
(0,0)(h1,0)= ‖h1‖Ḣ−1,p(μ∗³σ ). Recall that [43], Proposition 1, or [45],

Corollary 3.1, show that the bootstrap is inconsistent for functionals with nonlinear deriva-

tives, but these results do not collide with Part (i) of Proposition 3.8 since our application of

the bootstrap differs from theirs. For instance, [43], Proposition 1, specialized to our setting

states that the conditional law of
√
n(�(μ̂B

n −μ,0)−�(μ̂n −μ,0))=√
n(W

(σ )
p (μ̂B

n ,μ)−
W

(σ )
p (μ̂n,μ)) does not converge weakly to ‖Gμ‖Ḣ−1,p(μ∗³σ ) in probability. Heuristically,

√
nW

(σ )
p (μ̂n,μ) is nonnegative while

√
n(W

(σ )
p (μ̂B

n ,μ) − W
(σ )
p (μ̂n,μ)) can be negative,

so the conditional law of the latter cannot mimic the distribution of the former. Further,

when μ is unknown, the conditional law of
√
n(W

(σ )
p (μ̂B

n ,μ) − W
(σ )
p (μ̂n,μ)) is infeasi-

ble. The correct bootstrap analog for W
(σ )
p (μ̂n,μ) is W

(σ )
p (μ̂B

n , μ̂n) = �(μ̂B
n − μ, μ̂n − μ),

and the proof of Proposition 3.8 shows that it can be approximated by ‖μ̂B
n − μ − (μ̂n −

μ)‖Ḣ−1,p(μ∗³σ ) = ‖μ̂B
n − μ̂n‖Ḣ−1,p(μ∗³σ ), whose conditional law (after scaling) converges

weakly to ‖Gμ‖Ḣ−1,p(μ∗³σ ) in probability.

Next, consider the two-sample case. In addition to XB
1 , . . . ,XB

n and μ̂B
n , given Y1, . . . , Yn,

let YB
1 , . . . , YB

n be an independent sample from ν̂n, and set ν̂Bn := n−1 ∑n
i=1 ´YB

i
. With a slight

abuse of notation, we reuse P
B for the conditional probability given (X1, Y1), (X2, Y2), . . . .

PROPOSITION 3.9 (Bootstrap consistency: two-sample under the alternative). Suppose

that μ and ν satisfy Condition (4) and μ �= ν. Let v2
2 denote the asymptotic variance of√

n(W
(σ )
p (μ̂n, ν̂n)− W

(σ )
p (μ, ν)) given in Part (iv) of Theorem 1.1 and assume v2

2 > 0. Then,

we have

sup
t∈R

∣
∣P

B(
√
n
(

W
(σ )
p

(

μ̂B
n , ν̂

B
n

)

− W
(σ )
p (μ̂n, ν̂n)

)

≤ t
)

− P
(

N
(

0,v2
2

)

≤ t
)∣
∣

P→ 0.

EXAMPLE 3.1 (Confidence interval for W
(σ )
p ). Consider constructing confidence inter-

vals for W
(σ )
p (μ, ν). For α ∈ (0,1), let ζ̂α denote the conditional α-quantile of W

(σ )
p (μ̂B

n , ν̂
B
n )

given the data. Then, by Proposition 3.9 above and Lemma 23.3 in [98], the interval
[

2W
(σ )
p (μ̂n, ν̂n)− ζ̂1−α/2,2W

(σ )
p (μ̂n, ν̂n)− ζ̂α/2

]

,

contains W
(σ )
p (μ, ν) with probability approaching 1 − α.

For the two-sample case under the null, instead of separately sampling bootstrap draws

from μ̂n and ν̂n (see Remark 3.4 below), we use the pooled empirical distribution ρ̂n =
(2n)−1 ∑n

i=1(´Xi
+ ´Yi ) (cf. Chapter 3.7 in [99]). Given (X1, Y1), . . . , (Xn, Yn), let ZB

1 , . . . ,

ZB
2n be an independent sample from ρ̂n, and set

ρ̂B
n,1 = 1

n

n
∑

i=1

´ZB
i

and ρ̂B
n,2 = 1

n

2n
∑

i=n+1

´ZB
i
.

The following proposition shows that this two-sample bootstrap is consistent for the null limit

distribution of empirical W
(σ )
p .

PROPOSITION 3.10 (Bootstrap consistency: two-sample under the null). Suppose that μ

and ν satisfy Condition (4). Then, for ρ = (μ+ ν)/2, we have

sup
t≥0

∣
∣P

B(
√
nW

(σ )
p

(

ρ̂B
n,1, ρ̂

B
n,2

)

≤ t
)

− P
(∥
∥Gρ −G′

ρ

∥
∥
Ḣ−1,p(ρ∗³σ ) ≤ t

)∣
∣

P→ 0,
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where G′
ρ is an independent copy of Gρ . In particular, if μ= ν, then

sup
t≥0

∣
∣P

B(
√
nW

(σ )
p

(

ρ̂B
n,1, ρ̂

B
n,2

)

≤ t
)

− P
(∥
∥Gμ −G′

μ

∥
∥
Ḣ−1,p(μ∗³σ ) ≤ t

)∣
∣

P→ 0.

REMARK 3.4 (Inconsistency of naive bootstrap). One may consider using W
(σ )
p (μ̂B

n , ν̂
B
n )

(rather than W
(σ )
p (ρ̂B

n,1, ρ̂
B
n,2)) to approximate the distribution of W

(σ )
p (μ̂n, ν̂n), but this boot-

strap is not consistent. Indeed, from the proof of Proposition 3.10, we may deduce that, if

μ= ν, then
√
nW

(σ )
p (μ̂B

n , ν̂
B
n ) is expanded as

∥
∥
√
n
(

μ̂B
n − μ̂n

)

∗ ³σ −
√
n
(

ν̂Bn − ν̂n
)

∗ ³σ +
√
n(μ̂n − ν̂n) ∗ ³σ

∥
∥
Ḣ−1,p(μ∗³σ ) + oP(1),

which converges in distribution to ‖G1
μ−G2

μ+G3
μ−G4

μ‖Ḣ−1,p(μ∗³σ ) unconditionally, where

G1
μ, . . . ,G

4
μ are independent copies of Gμ. Hence, the conditional law of

√
nW

(σ )
p (μ̂B

n , ν̂
B
n )

does not converge weakly to the law of ‖Gμ −G′
μ‖Ḣ−1,p(μ∗³σ ) in probability.

EXAMPLE 3.2 (Testing the equality of distributions). Consider testing the equality of

distributions, that is, H0 : μ = ν against H1 : μ �= ν. We shall use
√
nW

(σ )
p (μ̂n, ν̂n) as a test

statistic and reject H0 if
√
nW

(σ )
p (μ̂n, ν̂n) > c for some critical value c. Proposition 3.10 im-

plies that, if we choose c = ĉ1−α to be the conditional (1−α)-quantile of
√
nW

(σ )
p (ρ̂B

n,1, ρ̂
B
n,2)

given the data, then the resulting test is asymptotically of level α,

lim
n→∞P

(√
nW

(σ )
p (μ̂n, ν̂n) > ĉ1−α

)

= α if μ= ν.

Here α ∈ (0,1) is the nominal level. To see that the test is consistent, note that if μ �= ν, then

W
(σ )
p (μ̂n, ν̂n) ≥ W

(σ )
p (μ, ν) − W

(σ )
p (μ̂n,μ) − W

(σ )
p (ν̂n, ν) ≥ W

(σ )
p (μ, ν)/2 with probability

approaching one, while ĉ1−α =OP(1) by Proposition 3.10.

Testing the equality of distributions using Wasserstein distances was considered in [82],

but their theoretical analysis is focused on the d = 1 case, partly because of the lack of null

limit distribution results for empirical Wp in higher dimensions. We overcome this obstacle

by using the smooth Wasserstein distance.

4. Minimum distance estimation with W
(σ )
p . We consider the application of our limit

distribution theory to MDE with W
(σ )
p . Given an independent sample X1, . . . ,Xn from

a distribution μ ∈ P , MDE aims to learn a generative model from a parametric family

{νθ }θ∈� ⊂ P that approximates μ under some statistical divergence. We use W
(σ )
p as the

proximity measure and the empirical distribution μ̂n as an estimate for μ, which leads to the

following MDE problem

inf
θ∈�

W
(σ )
p (μ̂n, νθ ).

MDE with classic W1 is called the Wasserstein GAN, which continues to underlie state-of-

the-art methods in generative modeling [6, 59]. MDE with W
(σ )
p was previously examined for

p = 1 in [52] and for p > 1 in [77]. Specifically, [77] established measurability, consistency,

and parametric convergence rates for MDE with W
(σ )
p for p > 1, but did not derive limit

distribution results. We will expand on this prior work by providing limit distributions for the

W
(σ )
p MDE problem.

Analogously to the conditions of Theorem 4 in [52], we assume the following.
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ASSUMPTION 1. Let 1 < p < ∞, and assume that the following conditions hold. (i)

The distribution μ satisfies Condition (4). (ii) The parameter space �⊂R
d0 is compact with

nonempty interior. (iii) The map θ �→ νθ is continuous w.r.t. the weak topology. (iv) There

exists a unique θ� in the interior of � such that νθ� = μ. (v) There exists a neighborhood

N0 of θ� such that (νθ − νθ�) ∗ ³σ ∈ Ḣ−1,p(μ ∗ ³σ ) for every θ ∈ N0. (vi) The map N0 �
θ �→ (νθ − νθ�) ∗ ³σ ∈ Ḣ−1,p(μ ∗ ³σ ) is norm differentiable with nonsingular derivative D

at θ�. That is, there exists D= (D1, . . . ,Dd0
) ∈ (Ḣ−1,p(μ ∗ ³σ ))

d0 , where D1, . . . ,Dd0
are

linearly independent elements of Ḣ−1,p(μ ∗ ³σ ), such that
∥
∥(νθ − νθ�) ∗ ³σ −

〈

θ − θ�,D
〉∥
∥
Ḣ−1,p(μ∗³σ ) = o

(∣
∣θ − θ�

∣
∣
)

,

as θ → θ� in N0, where 〈t,D〉 =∑d0

i=1 tiDi for t = (t1, . . . , td0
) ∈R

d0 .

REMARK 4.1. Conditions (v) and (vi) are high-level conditions that warrant a discus-

sion. Since W
(σ )
p is invariant under a common location shift (W

(σ )
p (μ, ν)= W

(σ )
p (μ∗´a, ν∗´a)

for every a ∈R
d ), we may assume without loss of generality that μ has mean zero, for which

‖ · ‖Ḣ 1,q (³σ )
� ‖ · ‖Ḣ 1,q (μ∗³σ ) (as d(μ ∗ ³σ )/d³σ ≥ e−Eμ[|X|2]/(2σ 2) by Jensen’s inequality).

Assume that {νθ }θ∈� is dominated by a common Borel measure ρ on R
d and denote by fθ

the density of νθ w.r.t. ρ. Then νθ ∗ ³σ has Lebesgue density
∫

φσ (· − y)fθ (y) dρ(y), so for

every ϕ ∈ Ċ∞
0 with ³σ -mean zero, we have

(

(νθ − νθ�) ∗ ³σ
)

(ϕ)=
∫

(ϕ ∗ φσ )(y)
(

fθ (y)− fθ�(y)
)

dρ(y)

≤ Cq(³σ )‖ϕ‖Ḣ 1,q (³σ )

∫
∣
∣fθ (y)− fθ�(y)

∣
∣e

(p−1)|y|2
2σ2 dρ(y),

where we use the fact that (ϕ ∗ φσ )(y)≤ Cq(³σ )‖ϕ‖Ḣ 1,q (³σ )
e

(p−1)|y|2
2σ2 ; see (15). Hence, Con-

dition (v) is satisfied if
∫

|fθ (y) − fθ�(y)|e
(p−1)|y|2

2σ2 dρ(y) < ∞ for every θ in a neighbor-

hood of θ�. Next, assume that fθ admits the Taylor expansion fθ (y)= fθ�(y)+〈ḟθ�(y), θ −
θ�〉 + 〈rθ (y), θ − θ�〉 with rθ (y)= o(1) as θ → θ�. Then Condition (vi) holds with D(ϕ)=
∫

ϕ(x)
∫

φσ (x − y)ḟθ�(y) dρ(y) dx =
∫

(ϕ ∗ φσ )(y)ḟθ�(y) dρ(y) for ϕ ∈ C∞
0 , provided that

∫

|ḟθ�(y)|e
(p−1)|y|2

2σ2 dρ(y) <∞ and

∫
∣
∣rθ (y)

∣
∣e

(p−1)|y|2
2σ2 dρ(y)= o(1), θ → θ�.

We derive limit distributions for the optimal value function and MDE solution, following

the methodology of [10, 52, 80].

THEOREM 4.1 (Limit distributions for MDE with W
(σ )
p ). Suppose that Assumption 1

holds. Let G
(σ )
n := √

n(μ̂n −μ) ∗ ³σ be the smooth empirical process, and Gμ its weak limit

in Ḣ−1,p(μ ∗ ³σ ); cf. Proposition 3.1. Then, the following hold.

(i) We have infθ∈�
√
nW

(σ )
p (μ̂n, νθ )

d→ inft∈Rd0‖Gμ − 〈t,D〉‖Ḣ−1,p(μ∗³σ ).

(ii) Let (θ̂n)n∈N be a sequence of measurable estimators satisfying

W
(σ )
p (μ̂n, νθ̂n

)≤ inf
θ∈�

W
(σ )
p (μ̂n, νθ )+ oP

(

n−1/2).

Then, provided that argmint∈Rd0‖Gμ − 〈t,D〉‖Ḣ−1,p(μ∗³σ ) is almost surely unique, we have
√
n(θ̂n − θ�)

d→ argmint∈Rd0‖Gμ − 〈t,D〉‖Ḣ−1,p(μ∗³σ ).
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In general, it is nontrivial to verify that argmint∈Rd0‖Gμ − 〈t,D〉‖Ḣ−1,p(μ∗³σ ) is almost

surely unique. However, for p = 2, the Hilbertian structure of Ḣ−1,2(μ ∗ ³σ ) guarantees

this uniqueness. Indeed, Lemma 5.1 below (or an application of the Lax–Milgram theorem)

shows that Ḣ−1,2(μ∗³σ ) is isometrically isomorphic to a closed subspace of L2(μ∗³σ ;Rd).

Denote by E the corresponding isometric isomorphism. Setting Gμ := E(Gμ) and D =
(D1, . . . ,Dd0

) := (E(D1), . . . ,E(Dd0
)), we have

∥
∥Gμ − 〈t,D〉

∥
∥
Ḣ−1,2(μ∗³σ ) =

∥
∥Gμ − 〈t,D〉

∥
∥
L2(μ∗³σ ;Rd ).

The unique minimizer in t of the above display is given by

(11) t̂μ =
[(

〈Dj ,Dk〉L2(μ∗³σ ;Rd )

)

1≤j,k≤d0

]−1(〈Gμ,Dj 〉L2(μ∗³σ ;Rd )

)d0

j=1.

Since Gμ is a centered Gaussian random variable in L2(μ ∗ ³σ ;Rd), t̂μ is a mean–zero

Gaussian vector in R
d0 .

COROLLARY 4.1 (Asymptotic normality for MDE solutions when p = 2). Consider the

setting of Theorem 4.1 Part (ii) and let p = 2. Then
√
n(θ̂n − θ�)

d→ t̂μ, the mean–zero Gaus-

sian vector in (11).

Without assuming the uniqueness of argmint∈Rd0‖Gμ −〈t,D〉‖Ḣ−1,p(μ∗³σ ), limit distribu-

tions for MDE solutions can be stated in terms of set-valued random variables. Consider the

set of approximate minimizers

(12) �̂n :=
{

θ ∈� : W
(σ )
p (μ̂n, νθ )≤ inf

θ ′∈�
W

(σ )
p (μ̂n, νθ ′)+ n−1/2λn

}

,

where λn is any nonnegative sequence with λn = oP(1). We will show that �̂n ⊂ θ� +
n−1/2Kn with inner probability approaching one for some sequence Kn of random, con-
vex, and compact sets; cf. [80], Section 2. To describe the sets Kn, for any β ≥ 0 and

h ∈ Ḣ−1,p(μ ∗ ³σ ), define

K(h,β) :=
{

t ∈R
d0 :

∥
∥h− 〈t,D〉

∥
∥
Ḣ−1,p(μ∗³σ ) ≤ inf

t ′∈Rd0

∥
∥h−

〈

t ′,D
〉∥
∥
Ḣ−1,p(μ∗³σ ) + β

}

∈ K,

where K is the class of compact, convex, and nonempty subsets of Rd0 endowed with the

Hausdorff topology. That is, the topology induced by the Hausdorff metric dH (K1,K2) :=
inf{´ > 0 : K2 ⊂ K´

1 ,K1 ⊂ K´
2}, where K´ :=⋃

x∈K{y ∈ R
d0 : ‖x − y‖ ≤ ´}. Lemma 7.1 in

[80] shows that h �→K(h,β) is measurable from Ḣ−1,p(μ ∗ ³σ ) into K for any β ≥ 0.

PROPOSITION 4.1 (Limit distribution for set of approximate minimizers). Under As-

sumption 1, there exists a sequence of nonnegative real numbers βn ↓ 0 such that (i) P∗(�̂n ⊂
θ� + n−1/2K(G

(σ )
n , βn)) → 1, where P∗ denotes inner probability; and (ii) K(G

(σ )
n , βn)

d→
K(Gμ,0) as K–valued random variables.

The proof of this proposition is an adaptation of that of Theorem 7.2 in [80]. A self-

contained argument is provided in Section 3 of the Supplementary Material [54].

5. Remaining proofs.

5.1. Proofs for Section 3.1.1. We fix some notation. For a nonempty set S, let �∞(S)

denote the space of bounded real functions on S endowed with the sup-norm ‖ · ‖∞,S =
sups∈S | · |. The space (�∞(S),‖ · ‖∞,S) is a Banach space.
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5.1.1. Proof of Proposition 3.1. We divide the proof into three steps. In Steps 1 and 2,

we will establish weak convergence of
√
n(μ̂n −μ) ∗ ³σ in Ḣ−1,p(³σ ). Step 3 is devoted to

weak convergence of
√
n(μ̂n −μ) ∗ ³σ in Ḣ−1,p(μ ∗ ³σ ).

Step 1. Observe that

(13)
(

(μ̂n −μ) ∗ ³σ
)

(f )= (μ̂n −μ)(f ∗ φσ ).

Consider the function classes

F =
{

f ∈ Ċ∞
0 : ‖f ‖Ḣ 1,q (³σ )

≤ 1
}

and F ∗ φσ = {f ∗ φσ : f ∈F}.
The proof of Theorem 3 in [77] shows that the function class F ∗ φσ is μ-Donsker. For

completeness, we provide an outline of the argument. Since for any constant a ∈ R and any

function f ∈F , (μ̂n−μ)(f ∗φσ )= (μ̂n−μ)((f − a)∗φσ ), it suffices to show that F0 ∗φσ

with F0 := {f ∈F : ³σ (f )= 0} is μ-Donsker. To this end, we will apply Theorem 1 in [97]

or its simple adaptation, Lemma 8 in [77].

Fix any η ∈ (0,1). We first observe that, for any f ∈ F0 and any multi-index k =
(k1, . . . , kd) ∈N

d
0 , we have

(14)
∣
∣∂k(f ∗ φσ )(x)

∣
∣�

(

Cq(³σ )∨ σ−k̄+1) exp

(
(p− 1)|x|2
2σ 2(1 − η)

)

up to constants independent of f , x, and σ , where k̄ =∑d
j=1 kj . Here ∂k = ∂

k1

1 · · · ∂kdd is the

differential operator and Cq(³σ ) is the q-Poincaré constant for the Gaussian measure ³σ . To

see this, observe that

(f ∗ φσ )(x)=
∫

Rd

φσ (x − y)

φσ (y)
f (y)φσ (y) dy.

Applying Hölder’s inequality and using the fact that ‖f ‖Lq (³σ ) ≤ Cq(³σ )‖f ‖Ḣ 1,q (³σ )
≤

Cq(³σ ) (recall that ³σ (f )= 0), we obtain

∣
∣(f ∗ φσ )(x)

∣
∣≤ Cq(³σ )

[∫

Rd

φ
p
σ (x − y)

φ
p−1
σ (y)

dy

]1/p

.

A direct calculation further shows that
∫

Rd

φ
p
σ (x − y)

φ
p−1
σ (y)

dy = exp

(
p(p− 1)|x|2

2σ 2

)

,

which implies

(15)
∣
∣(f ∗ φσ )(x)

∣
∣≤ Cq(³σ ) exp

(
(p− 1)|x|2

2σ 2

)

,

establishing (14) when k̄ = 0. Derivative bounds follow similarly; see [77] for details.

Next, we construct a cover {Xj }∞j=1 of R
d . Let Br = B(0, r). For ´ > 0 fixed and r =

2,3, . . . , let {x(r)
1 , . . . , x

(r)
Nr

} be a minimal ´-net of Br´ \ B(r−1)´ . Set x
(1)
1 = 0 with N1 = 1.

It is not difficult to see from a volumetric argument that Nr =O(rd−1). Set Xj = B(x
(r)
j , ´)

for j = ∑r−1
k=1 Nk + 1, . . . ,

∑r
k=1 Nk . By construction, {Xj }∞j=1 forms a cover of R

d with

diameter 2´. Set α = �d/2 + 1 and Mj = supf∈F0
maxk̄≤α supx∈int(Xj )

|∂k(f ∗ φσ )(x)|. By

Theorem 1 in [97] combined with Theorem 2.7.1 in [99] (or their simple adaptation; cf.

Lemma 8 in [77]), F0 ∗ φσ is μ-Donsker if
∑∞

j=1 Mjμ(Xj )
1/2 <∞. By inequality (14),

max
∑r−1

k=1 Nk+1≤j≤∑r
k=1 Nj

Mj � σ−�d/2 exp

(
(p− 1)r2´2

2σ 2(1 − η)

)
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up to constants independent of r and σ . Hence,
∑∞

j=1 Mjμ(Xj )
1/2 is finite if

∞
∑

r=1

rd−1 exp

(
(p− 1)r2´2

2σ 2(1 − η)

)√

P
(

|X|> (r − 1)´
)

<∞.

By Riemann approximation, the sum on the the left-hand side above can be bounded by

´−d−1
∫ ∞

1
td−1 exp

(
(p− 1)t2

2σ 2(1 − η)

)√

P
(

|X|> t − 2´
)

dt,

which is finite under our assumption by choosing η and ´ sufficiently small, and absorbing

td−1 into the exponential function.

Step 2. Let U = {f ∈ Ḣ 1,q(³σ ) : ‖f ‖Ḣ 1,q (³σ )
≤ 1}. Recall from Remark 2.1 that

Ḣ 1,q(³σ ) ⊂ Lq(³σ ). From Step 1, we know that F ∗ φσ is μ-Donsker. The same conclu-

sion holds with F replaced by U . This can be verified as follows. From the proof of (14)

when k̄ = 0, we see that for f1, f2 ∈ Ḣ 1,q(³σ ) with ³σ -mean zero,

∣
∣(f1 ∗ φσ )(x)− (f2 ∗ φσ )(x)

∣
∣≤ Cq(³σ )‖f1 − f2‖Ḣ 1,q (³σ )

exp

(
(p− 1)|x|2

2σ 2

)

, ∀x ∈R
d .

Since the exponential function on the right-hand side is square-integrable w.r.t. μ under Con-

dition (4) and F0 is dense in U0 := {f ∈ U : ³σ (f )= 0} for ‖ · ‖Ḣ 1,q (³σ )
by construction (cf.

Remark 2.1), we see that

U0 ∗ φσ ⊂
{

g : ∃gm ∈F0 ∗ φσ such that gm → g poinwise and in L2(μ)
}

.

Thus, by Theorem 2.10.2 in [97], U0 ∗ φσ (or equivalently, U ∗ φσ ) is μ-Donsker. Since the

map �∞(U ∗ φσ ) � L �→ (L(f ∗ φσ ))f∈U ∈ �∞(U) is isometric, in view of (13), we have
√
n(μ̂n −μ) ∗ ³σ

d→G◦
μ in �∞(U) for some tight Gaussian process G◦

μ.

Let lin∞(U) denote all bounded real functionals L on U , such that L(0)= 0 and

(16) L
(

αf + (1 − α)g
)

= αL(f )+ (1 − α)L(g), 0 ≤ α ≤ 1, f, g ∈ U .

Equip lin∞(U) with the norm ‖ · ‖∞,U = supf∈U | · |. Each element in lin∞(U) extends

uniquely to the corresponding element in Ḣ−1,p(³σ ), and the extension, denoted by ι :
lin∞(U) → Ḣ−1,p(³σ ), is isometrically isomorphic. This follows from an argument simi-

lar to the proof of Lemma 1 in [76]. Indeed, it is not difficult to verify that each element

L in lin∞(U) is prelinear, that is, for every α1, . . . , αm ∈ R and f1, . . . , fm ∈ U , whenever

α1f1 + · · · + αmfm = 0, we have α1L(f1)+ · · · + αmL(fm)= 0 (use the fact that U is cen-

trally symmetric, that is, −f ∈ U whenever f ∈ U , and L(−f )=−L(f ), which follows by

taking α = 1/2 and g =−f in (16)). By Lemma 2.3.5 in [41], the function TL defined by

TL(α1f1 + · · · + αmfm)= α1L(f1)+ · · · + αmL(fm), α1, . . . , αm ∈R, f1, . . . , fm ∈ U

is well defined and linear on the linear span of U , that is, Ḣ 1,q(³σ ). Further, as

‖TL‖Ḣ−1,p(³σ )
= ‖L‖∞,U by construction, ι : L �→ TL is a linear isometry from lin∞(U)

onto Ḣ−1,p(³σ ).

Since lin∞(U) is a closed subspace of �∞(U) and
√
n(μ̂n −μ) ∗ ³σ has paths in lin∞(U),

we see that G◦
μ ∈ lin∞(U) with probability one by the portmanteau theorem and

√
n(μ̂n −

μ) ∗ ³σ
d→G◦

μ in lin∞(U). Now, since
√
n(μ̂n − μ) ∗ ³σ is a (random) signed measure that

is bounded on U with probability one, we can regard
√
n(μ̂n −μ) ∗ ³σ as a random variable

with values in Ḣ−1,p(³σ ). Conclude that
√
n(μ̂n − μ) ∗ ³σ

d→ ι ◦G◦
μ in Ḣ−1,p(³σ ) by the

continuous mapping theorem. For notational convenience, redefine G◦
μ by ι ◦G◦

μ. The limit
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variable G◦
μ = (G◦

μ(f ))f∈Ḣ 1,q (³σ )
is a centered Gaussian process with covariance function

Cov(G◦
μ(f ),G◦

μ(g))= Covμ(f ∗ φσ , g ∗ φσ ).

Step 3. We will show that
√
n(μ̂n−μ)∗³σ converges in distribution to a centered Gaussian

process in Ḣ−1,p(μ ∗ ³σ ). For X ∼ μ with a = E[X], let μ−a denote the distribution of

X − a, and let μ̂−a
n = n−1 ∑n

i=1 ´(Xi−a). It is not difficult to see that μ−a satisfies Condition

(4). Applying the result of Step 2 with μ replaced by μ−a , we have
√
n(μ̂−a

n − μ−a) ∗
³σ

d→ G◦
μ−a in Ḣ−1,p(³σ ). Since ‖ · ‖Ḣ 1,q (³σ )

� ‖ · ‖Ḣ 1,q (μ−a∗³σ ) (as d(μ−a ∗ ³σ )/d³σ ≥
e−Eμ[|X−a|2]/(2σ 2) by Jensen’s inequality), we have ‖ · ‖Ḣ−1,p(μ−a∗³σ ) � ‖ · ‖Ḣ−1,p(³σ )

, that is,

the continuous embedding Ḣ−1,p(³σ ) ↪→ Ḣ−1,p(μ−a ∗ ³σ ) holds. Thus
√
n(μ̂−a

n − μ−a) ∗
³σ

d→ (G◦
μ−a (f ))f∈Ḣ 1,q (μ−a∗³σ ) in Ḣ−1,p(μ−a ∗ ³σ ).

Observe that for ϕ ∈ C∞
0 ,

∥
∥ϕ(· + a)

∥
∥
q

Ḣ 1,q (μ−a∗³σ )
=

∫

Rd

∣
∣∇ϕ(· + a)

∣
∣q d

(

μ−a ∗ ³σ
)

=
∫

Rd
|∇ϕ|q d(μ ∗ ³σ )= ‖ϕ‖q

Ḣ 1,q (μ∗³σ )
.

Thus, the map τa : Ḣ−1,p(μ−a ∗ ³σ )→ Ḣ−1,p(μ ∗ ³ ), defined by τa(h)(f )= h(f (· + a)),

is continuous (indeed, isometrically isomorphic). Conclude that

√
n(μ̂n −μ) ∗ ³σ = τa

(√
n
(

μ̂−a
n −μ−a) ∗ ³σ

) d→ τaG
◦
μ−a =:Gμ in Ḣ−1,p(μ ∗ ³σ ).

The limit variable Gμ = (Gμ(f ))f∈Ḣ 1,q (μ∗³σ ) = (G◦
μ−a (f (· + a)))f∈Ḣ 1,q (μ∗³σ ) is a centered

Gaussian process with covariance function

Cov
(

Gμ(f ),Gμ(g)
)

= Cov(G◦
μ−a

(

f (· + a),G◦
μ−a

(

g(· + a)
))

= Covμ−a

(

f (· + a) ∗ φσ , g(· + a) ∗ φσ

)

= Covμ−a

(

f ∗ φσ (· + a), g ∗ φσ (· + a)
)

= Covμ(f ∗ φσ , g ∗ φσ ).

This completes the proof.

REMARK 5.1 (Proof of: (4) ⇒ (5)). Follow the notation that appeared in Step 1 in the

proof above. Set X ′
1 =X1 and X ′

j =Xj \⋃j
i=1 Xi for j ≥ 2. The collection {X ′

j }∞j=1 forms a

partition of Rd . Observe that e
(p−1)|x|2

2σ2 ≤∑∞
j=1 Mj1X

′
j
(x), so that

∫

e
(p−1)|x|2

σ2 dμ(x)≤
∞
∑

j=1

M2
jμ

(

X
′
j

)

≤
∞
∑

j=1

M2
jμ(Xj ).

For sufficiently small η and ´, Condition (4) ensures
∑∞

j=1 Mjμ(Xj )
1/2 <∞, which implies

∑∞
j=1 M

2
jμ(Xj ) <∞ as Mjμ(Xj )

1/2 → 0(j →∞). Conclude that
∫

e
(p−1)|x|2

σ2 dμ(x) <∞.

REMARK 5.2 (Alternative proof for p = 2). Observe that (μ̂n − μ) ∗ ³σ = n−1 ×
∑n

i=1(´Xi
− μ) ∗ ³σ = n−1 ∑n

i=1 Zi with Zi = (´Xi
− μ) ∗ ³σ , and that Z1,Z2, . . . are

i.i.d. random variables with values in Ḣ−1,p(³σ ) (cf. (14)). Since Ḣ−1,2(³σ ) is isomet-

rically isomorphic to a closed subspace of L2(³σ ;Rd) (see Lemma 5.1 ahead), we may

apply the CLT in the Hilbert space to derive a limit distribution for
√
n(μ̂n − μ) ∗ ³σ =

n−1/2 ∑n
i=1 Zi in Ḣ−1,2(³σ ). Let E : Ḣ−1,2(³σ ) → Lp(³σ ;Rd) be the linear isometry
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given in Lemma 5.1 ahead and Zi = E(Zi) be the corresponding L2(³σ ;Rd)-valued ran-

dom variables. Since L2(³σ ;Rd) is a Hilbert space, n−1/2 ∑n
i=1 Zi obeys the CLT if

E[‖Z1‖2
L2(³σ ;Rd )

] = E[‖Z1‖2
Ḣ−1,2(³σ )

] < ∞, which is satisfied under Condition (4). Indeed,

for p = 2, it is not difficult to see that the CLT in Ḣ−1,2(³σ ) holds for n−1/2 ∑n
i=1 Zi under

a slightly weaker moment condition, namely,
∫

Rd e|x|
2/σ 2

dμ(x) <∞.

5.1.2. Proof of Proposition 3.2. Part (i). Let

F=
{

f ∗ φσ : f ∈ Ḣ 1,q(³σ ),‖f ‖Lq (³σ ) ≤ 1,‖f ‖Ḣ 1,q (³σ )
≤ C

}

for some sufficiently large but fixed constant C. It is not difficult to see that limn→∞ ‖(μ̂n −
μ) ∗ ³σ‖Ḣ−1,p(³σ )

= 0 a.s. if and only if F is μ-Glivenko–Cantelli.

Suppose first that F is μ-Glivenko–Cantelli. Let FF denote the minimal envelope for F,

that is, FF(x) = supf∈F |f (x)|. By Theorem 3.7.14 in [50], FF must be μ-integrable. We

shall bound FF from below. Fix any x ∈R
d . Consider

ϕx(y)=
g
p−1
x (y)

‖gx‖p−1
Lp(³σ )

with gx(y)=
φσ (x − y)

φσ (y)
= e−|x|2/(2σ 2)+〈x,y〉/σ 2

, y ∈R
d .

Observe that ∇yϕx(y)= ((p − 1)x/σ 2)ϕx(y) and thus ‖ϕx‖Ḣ 1,q (³σ )
= (p− 1)|x|/σ 2. Thus,

for ϕ̃x = ϕx/(1 + |x|), we have ‖ϕ̃x‖Lq (³σ ) ≤ 1, ‖ϕ̃x‖Ḣ 1,q (³σ )
≤ (p− 1)/σ 2, and

(ϕ̃x ∗ φσ )(x)=
1

1 + |x|‖gx‖L
p(³σ ) =

1

1 + |x|e
(p−1)|x|2/(2σ 2).

Also, from Proposition 1.5.2 in [15], we see that ϕ̃x ∈ Ḣ 1,q(³σ ). Conclude that, as long as

C ≥ (p− 1)/σ 2,

FF(x)≥
1

1 + |x|e
(p−1)|x|2/(2σ 2).

Now, the left-hand side is μ-integrable, so that
∫

Rd eθ |x|
2/(2σ 2) dμ(x) <∞ for any θ < p− 1.

Part (ii). Conversely, suppose that
∫

Rd e(p−1)|x|2/(2σ 2) dμ(x) <∞, which ensures that FF

is μ-integrable from (14). From the proof of Proposition 3.1, for any M > 0, we see that the

restricted function class {f 1FF≤M : f ∈ F} is μ-Donsker and thus μ-Glivenko–Cantelli (cf.

Theorem 3.7.14 in [50]). Since the envelope function FF is μ-integrable, we conclude that F

is μ-Glivenko–Cantelli; cf. the proof of Theorem 3.7.14 in [50].

5.2. Proofs for Section 3.2. Recall that 1 < p <∞ and q is its conjugate index, that is,

1/p+ 1/q = 1.

5.2.1. Proof of Lemma 3.2. One of the main ingredients of the proof of Lemma 3.2 is

Theorem 8.3.1 in [4], which is stated next (see also the Benamou–Brenier formula [9]).

THEOREM 5.1 (Theorem 8.3.1 in [4]). Let I be an open interval, and let I � t �→ μt

be a continuous curve in Pp(R
d) (equipped with Wp) such that for some Borel vector field

R
d × I � (x, t) �→ vt (x) ∈R

d , the continuity equation

(17) ∂tμt +∇ · (vtμt )= 0 in R
d × I

holds in the distributional sense, that is,
∫

I

∫

Rd

(

∂tϕ(x, t)+
〈

vt (x),∇xϕ(x, t)
〉)

dμt (x) dt = 0, ∀ϕ ∈ C∞
0

(

R
d × I

)

.

If ‖vt‖Lp(μt ;Rd ) ∈ L1(I ), then Wp(μa,μb)≤
∫ b
a ‖vt‖Lp(μt ;Rd ) dt for all a < b with a, b ∈ I .
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For a vector field v :Rd →R
d , define

jp(v) :=
{

|v|p−2v if v �= 0,

0 otherwise.

Observe that w = jp(v) if and only if v = jq(w), and for any ρ ∈ P ,

∥
∥jp(v)

∥
∥
q

Lq (ρ;Rd )
= ‖v‖p

Lp(ρ;Rd )
=

∫

Rd

〈

jp(v), v
〉

dρ.

We will also use the following lemma.

LEMMA 5.1. Let ρ ∈ P be a reference measure. For any h ∈ Ḣ−1,p(ρ), there exists a

unique vector field E =E(h) ∈ Lp(ρ;Rd) such that

(18)

⎧

⎪
«

⎪
¬

∫

Rd
〈∇ϕ,E〉dρ = h(ϕ) ∀ϕ ∈ C∞

0 ,

jp(E) ∈
{

∇ϕ : ϕ ∈ C∞
0

}Lq (ρ;Rd )
.

The map h �→ E(h) is homogeneous (i.e., E(ah) = aE(h) for all a ∈ R and h ∈ Ḣ−1,p(ρ))

and such that ‖E(h)‖Lp(ρ;Rd ) = ‖h‖Ḣ−1,p(ρ) for all h ∈ Ḣ−1,p(ρ). If p = 2, then the map

h �→E(h) is a linear isometry from Ḣ−1,2(ρ) into L2(ρ;Rd).

The proof of Lemma 5.1 in turn relies on the following existence result of optimal solutions

in Banach spaces. We provide its proof for the sake of completeness.

LEMMA 5.2. Let (V ,‖ · ‖) be a reflexive real Banach space, and let J : V →R∪ {+∞}
(J �≡ +∞) be weakly lower semicontinuous (i.e., J (v) ≤ lim infn J (vn) for any vn → v

weakly) and coercive (i.e., J (v) → ∞ as ‖v‖ → ∞). Then there exists v0 ∈ V such that

J (v0)= infv∈V J (v).

PROOF OF LEMMA 5.2. Let vn ∈ V be such that J (vn)→ infv∈V J (v)=: J . By coerciv-

ity, vn is bounded, so by reflexivity and the Banach–Alaoglu theorem, there exists a weakly

convergent subsequence vnk such that vnk → v0 weakly. Since J is weakly lower semicon-

tinuous, we conclude J (v0)≤ lim infk J (vnk )= J . �

We turn to the proof of Lemma 5.1, which is inspired by the first part of the proof of

Theorem 8.3.1 in [4].

PROOF OF LEMMA 5.1. Let V denote the closure in Lq(ρ;Rd) of the subspace V0 =
{∇ϕ : ϕ ∈ C∞

0 }. Endowing V with ‖ · ‖Lq (ρ;Rd ) gives a reflexive Banach space because any

closed subspace of a reflexive Banach space is reflexive. Define the linear functional L :
V0 →R by L(∇ϕ) := h(ϕ). To see that L is well defined, observe that

∣
∣h(ϕ)

∣
∣≤ ‖ϕ‖Ḣ 1,q (ρ)‖h‖Ḣ−1,p(ρ)

= ‖∇ϕ‖Lq (ρ;Rd )‖h‖Ḣ−1,p(ρ).

This also shows that L can be extended to a bounded linear functional on V .

Consider the optimization problem

(19) min
v∈V

J (v) with J (v) := 1

q

∫

Rd
|v|q dρ −L(v).



2470 GOLDFELD, KATO, NIETERT AND RIOUX

The functional J is finite, weakly lower semicontinuous, and coercive. By Lemma 5.2 there

exists a solution v0 to the optimization problem (19). Further, the functional J is Gâteaux

differentiable with derivative

J ′(v;w) := lim
t→0

J (v + tw)− J (v)

t
=

∫

Rd

〈

w,jq(v)
〉

dρ −L(w).

Thus, for E = jq(v0), we have
∫

Rd 〈∇ϕ,E〉dρ = L(∇ϕ) for all ϕ ∈ C∞
0 and jp(E)= v0 ∈ V .

To show uniqueness of E, pick another vector field E′ ∈ Lp(ρ;Rd) satisfying (18). Then,

jp(E
′) ∈ V satisfies J ′(jp(E′);w)= 0 for all w ∈ V , so by convexity of J , jp(E

′) is another

optimal solution to (19). However, since J is strictly convex, the optimal solution to (19) is

unique, so that jp(E
′)= jp(E), that is, E′ =E.

Now, the map h �→ E(h) is homogeneous, as aE(h) clearly satisfies the first equation in

(18) for h replaced with ah and jp(aE(h))= |a|p−2ajp(E(h)) ∈ V . Further, as jp(E(h)) ∈
{∇ϕ : ϕ ∈ C∞

0 }L
q (ρ;Rd )

by construction, it also satisfies

∥
∥E(h)

∥
∥
Lp(ρ;Rd ) = sup

{∫

Rd

〈

∇ϕ,E(h)
〉

dρ : ϕ ∈ C∞
0 ,‖∇ϕ‖Lq (ρ;Rd ) ≤ 1

}

= ‖h‖Ḣ−1,p(ρ).

Finally, if p = 2, then j2(v)= v, so it is clear that the map h �→E(h) is linear. �

We are now ready to prove Lemma 3.2.

PROOF OF LEMMA 3.2. Let μt = μ+ th1 and νt = μ+ th2 for t ∈ [0,1]. For notational

convenience, let h= h1 − h2 ∈Dμ ∩ {finite signed Borel measures}. We will first show that

lim inf
t↓0

Wp(μt , νt )

t
≥ ‖h1 − h2‖Ḣ−1,p(μ0)

.

The proof is inspired by Theorem 7.26 in [100]. Observe that for any ϕ ∈ C∞
0 and t > 0,

h(ϕ)=
∫

Rd
ϕ dh=

∫

Rd
ϕ d

(
μt − νt

t

)

= 1

t

∫

Rd
ϕ d(μt − νt ).

Let πt ∈ �(μt , νt ) be an optimal coupling for W
p
p(μt , νt ), that is, W

p
p(μt , νt ) =

∫∫

|x −
y|p dπt (x, y). Then

1

t

∫

Rd
ϕ d(μt − νt )=

1

t

∫∫

Rd×Rd

{

ϕ(x)− ϕ(y)
}

dπt (x, y).

Since ϕ is smooth and compactly supported, there exists a constant C =Cϕ,p <∞ such that

ϕ(x)− ϕ(y)≤
〈

∇ϕ(y), x − y
〉

+C|x − y|2∧p, ∀x, y ∈R
d .

Indeed, for p ≥ 2, we can take C = C1 := supx∈Rd ‖∇2ϕ(x)‖op/2 (here ‖ · ‖op denotes the

operator norm for matrices). For 1 <p < 2, we have

ϕ(x)− ϕ(y)≤
〈

∇ϕ(y), x − y
〉

+C1C
2−p
2 |x − y|p, ∀x, y ∈ S := supp(ϕ)

with C2 := sup{|x − y| : x, y ∈ S}. Here supp(ϕ) denotes the support of ϕ, supp(ϕ) :=
{ϕ �= 0}. If x ∈ S and d(y,S) := inf{|y − z| : z ∈ S} > 1, then ϕ(x)/|x − y|p ≤ ‖ϕ‖∞, so

that we have

ϕ(x)− ϕ(y)= ϕ(x)≤
(

‖ϕ‖∞ ∨C1C
2−p
3

)

|x − y|p, ∀x ∈ S, y ∈ Sc
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with C3 := sup{|x − y| : x ∈ S, d(y, S)≤ 1}<∞. Finally, if d(x,S) > 1 and y ∈ S, then

−ϕ(y)− 〈∇ϕ(y), x − y〉
|x − y|p ≤ ‖ϕ‖∞|x − y|−p + ‖∇ϕ‖∞|x − y|1−p

≤ ‖ϕ‖∞ + ‖∇ϕ‖∞,

so that we have

ϕ(x)− ϕ(y)= − ϕ(y)

≤
〈

∇ϕ(y), x − y
〉

+
(
(

‖ϕ‖∞ + ‖∇ϕ‖∞
)

∨C1C
2−p
4

)

|x − y|p, ∀x ∈ Sc, y ∈ S

with C4 := sup{|x − y| : d(x,S)≤ 1, y ∈ S}<∞.

Now, we have

1

t

∫∫

Rd×Rd

{

ϕ(x)− ϕ(y)
}

dπt (x, y)

≤ 1

t

{∫∫

Rd×Rd

〈

∇ϕ(y), x − y
〉

dπt (x, y)+C

∫∫

Rd×Rd
|x − y|2∧p dπt (x, y)

}

≤ 1

t

[∫∫

Rd×Rd

〈

∇ϕ(y), x − y
〉

dπt (x, y)+C

{∫∫

Rd×Rd
|x − y|p dπt (x, y)

}2/(2∨p)]

= 1

t

{∫∫

Rd×Rd

〈

∇ϕ(y), x − y
〉

dπt (x, y)+CW
2∧p
p (μt , νt )

}

.

Applying Proposition 2.1 with ρ = μ, we know that Wp(μt , νt )≤ Wp(μt ,μ)+Wp(μ, νt )≤
pt(‖h1‖Ḣ−1,p(μ) +‖h2‖Ḣ−1,p(μ))=O(t) as t ↓ 0, so that W

2∧p
p (μt , νt )=O(t2∧p)= o(t) as

t ↓ 0. Further, by Hölder’s inequality, with q being the conjugate index of p, we have

∫∫

Rd×Rd

〈

∇ϕ(y), x − y
〉

dπt (x, y)≤ ‖∇ϕ‖Lq (νt ;Rd )

{∫∫

Rd×Rd
|x − y|p dπt (x, y)

}1/p

︸ ︷︷ ︸

=Wp(μt ,νt )

.

Here

‖∇ϕ‖q
Lq (νt ;Rd )

=
∫

Rd
|∇ϕ|q dμ+ t

∫

Rd
|∇ϕ|q dh2

= ‖∇ϕ‖q
Lq (μ;Rd )

+O(t), t ↓ 0.

Conclude that

h(ϕ)≤ ‖∇ϕ‖Lq (μ;Rd ) lim inf
t↓0

Wp(μt , νt )

t
,

that is,

lim inf
t↓0

Wp(μt , νt )

t
≥ sup

{

h(ϕ) : ϕ ∈ C∞
0 ,‖∇ϕ‖Lq (μ;Rd ) ≤ 1

}

= ‖h‖Ḣ−1,p(μ).

To prove the reverse inequality, let h �→E(h) be the map from Ḣ−1,p(μ) into Lp(μ;Rd)

given in Lemma 5.1. Let f 1
t = dμt/dμ= 1 + tdh1/dμ. Since μ1 = μ+ h1 is a probability

measure, we have 1 + dh1/dμ≥ 0, that is, dh1/dμ≥−1, so that f 1
t ≥ 1/2 for t ∈ [0,1/2].

Likewise, f 2
t := dνt/dμ≥ 1/2 for t ∈ [0,1/2].
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Fix t ∈ [0,1/2] and consider the curve ρs = (1 − s)μt + sνt = μt − sth for s ∈ [0,1].
Then ρs satisfies the continuity equation (17) with vs = E(−th)/((1 − s)f 1

t + sf 2
t )). By

Theorem 5.1 (Theorem 8.3.1 in [4]), we have

Wp(μt , νt )≤
∫ 1

0
‖vs‖Lp(ρs ;Rd ) ds =

∫ 1

0

(∫

Rd

|E(−th)|p

[(1 − s)f 1
t + sf 2

t ]p−1
dμ

)1/p

ds.

Since E(−th)=−tE(h) by homogeneity and 1/2 ≤ f i
t → 1 as t ↓ 0, the dominated conver-

gence theorem yields that, as t ↓ 0,

Wp(μt , νt )

t
≤
∫ 1

0

(∫

Rd

|E(h)|p

[(1 − s)f 1
t + sf 2

t ]p−1
dμ

)1/p

ds

=
∥
∥E(h)

∥
∥
Lp(μ;Rd ) + o(1)

= ‖h‖Ḣ−1,p(μ) + o(1).

This completes the proof. �

5.2.2. Proof of Proposition 3.3. Pick arbitrary (h1, h2) ∈ T�μ×�μ(0,0), tn ↓ 0, and

(hn,1, hn,2) → (h1, h2) in Dμ × Dμ such that (tnhn,1, tnhn,2) ∈ �μ × �μ. By density, for

any ε > 0, there exist c > 0 and ρi ∈ Pp for i = 1,2 such that ‖hi − h̃i‖Ḣ−1,p(μ∗³σ ) < ε for

h̃i = c(ρi − μ) ∗ ³σ . By scaling, Lemma 3.2 holds with (h1, h2) replaced by (h̃1, h̃2). As-

sume without loss of generality that n is large enough such that ‖hn,i − hi‖Ḣ−1,p(μ∗³σ ) < ε

for i = 1,2 and ctn ≤ 1/2. The density of μ ∗ ³σ + tnh̃i = ((1 − ctn)μ + ctnρi) ∗ ³σ w.r.t.

μ ∗ ³σ is

d(μ ∗ ³σ + tnh̃i)

d(μ ∗ ³σ )
≥ (1 − ctn)≥

1

2
, i = 1,2.

Thus, by Proposition 2.1, we have
∣
∣
∣
∣

�(tnhn,1, tnhn,2)

tn
− �(tnh̃1, tnh̃2)

tn

∣
∣
∣
∣

≤
2
∑

i=1

Wp(μ ∗ ³σ + tnhn,i,μ ∗ ³σ + tnh̃i)

tn

�
2
∑

i=1

‖hn,i − h̃i‖Ḣ−1,p(μ∗³σ )

≤
2
∑

i=1

(

‖hn,i − hi‖Ḣ−1,p(μ∗³σ ) + ‖hi − h̃i‖Ḣ−1,p(μ∗³σ )
)

< 4ε.

Further,

∣
∣‖h1 − h2‖Ḣ−1,p(μ∗³σ ) − ‖h̃1 − h̃2‖Ḣ−1,p(μ∗³σ )

∣
∣≤

2
∑

i=1

‖hi − h̃i‖Ḣ−1,p(μ∗³σ ) < 2ε.

Thus, using the result of Lemma 3.2, we conclude that

lim sup
n→∞

∣
∣
∣
∣

�(tnhn,1, tnhn,2)

tn
− ‖h1 − h2‖Ḣ−1,p(μ∗³σ )

∣
∣
∣
∣
� ε.

Since ε > 0 is arbitrary, we obtain the desired conclusion.
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5.3. Proofs for Section 3.3.

5.3.1. Proof of Lemma 3.3. The proof of Lemma 3.3 relies on the following technical

lemma concerning regularity of optimal transport potentials, which could be of indepen-

dent interest. Recall that any locally Lipschitz function on R
d is differentiable a.e. by the

Rademacher theorem (cf. [44]). Here and in what follows a.e. is taken w.r.t. the Lebesgue

measure.

LEMMA 5.3 (Regularity of optimal transport potential). Let 1 < p < ∞. Suppose that

μ ∈ Pp and ν ∈P is β-sub-Weibull for some β ∈ (0,2]. Let g be an optimal transport poten-

tial from μ ∗ ³σ to ν for W
p
p . Then there exists a constant C that depends only on p, d , σ , β ,

upper bounds on Eμ[|X|] and ‖|Y |‖ψβ for Y ∼ ν, and a lower bound on
∫

φσ dμ, such that

⎧

⎪
⎪
⎪
«

⎪
⎪
⎪
¬

g is locally Lipschitz,
∣
∣g(x)− g(0)

∣
∣≤ C

(

1 + |x|
2p
β
)

|x| ∀x ∈R
d ,

∣
∣∇g(x)

∣
∣≤ C

(

1 + |x|
2p
β
)

for a.e. x ∈R
d .

The proof of Lemma 5.3 borrows ideas from Lemmas 9 and 10 and Theorem 11 in the

recent work by [72], which in turn build on [24, 47].

PROOF OF LEMMA 5.3. By Theorem 11 in [72], there exists a constant C1 depending

only on p, d , β , and an upper bound on ‖|Y |‖ψβ for Y ∼ ν, such that

sup
y∈∂cg(x)

|y| ≤ C1

{
(

|x| + 1
) p
p−1 ∨ sup

y:|x−y|≤2

[

log

(
1

(μ ∗ ³σ )(By)

)] p
β(p−1)

}

, x ∈R
d ,

where ∂cg(x)= {y ∈R
d : c(z, y)−g(z)≥ c(x, y)−g(x),∀z ∈R

d} is the c-superdifferential

of g at x for the cost function c(x, y)= |x− y|p , and By = B(y,1)= {x ∈R
d : |x− y| ≤ 1}.

Next, by Proposition 2 in [81], μ ∗ ³σ has Lebesgue density fμ that is, (c1, c2)-regular

with c1 = 3/σ 2 and c2 = 4Eμ[|X|]/σ 2, that is,

∣
∣∇ logfμ(x)

∣
∣≤ c1|x| + c2, ∀x ∈R

d .

From the proof of Lemma 10 in [72], we have

(20) fμ(x)≥ e−c2
2fμ(0)e

−(1+c1)|x|2, ∀x ∈R
d .

Thus, whenever |x − y| ≤ 2,

(μ ∗ ³σ )(By)=
∫

By

fμ(z) dz≥ inf
z∈By

fμ(z)×
∫

By

dz≥ c3e
−c2

2fμ(0)e
−2(1+c1)(|x|2+9),

where c3 is a constant that depends only on d . Conclude that there exists a constant C2

depending only on p, d , σ , β , upper bounds on Eμ[|X|] and ‖|Y |‖ψβ for Y ∼ ν, and a lower

bound on fμ(0), such that

sup
y∈∂cg(x)

|y| ≤ C2

(

1 + |x|
2p

β(p−1)
)

, ∀x ∈R
d .

The rest of the proof mirrors the latter half of the proof of Lemma 9 in [72]. Since g ∈
L1(μ ∗ ³σ ) and μ ∗ ³σ is equivalent to the Lebesgue measure (i.e., μ ∗ ³σ � dx and dx �
μ∗³σ ), g(x) >−∞ for a.e. x ∈R

d . Since any open convex set in R
d agrees with the interior

of its closure (cf. Proposition 6.2.10 in [42]), the convex hull of {x : g(x) >−∞} agrees with
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R
d . Thus, by Lemma 2.1(ii) (Theorem 3.3 in [47]), g is locally Lipschitz on R

d . Further, by

Propositon C.4 in [47], ∂cg(x) is nonempty for all x ∈R
d . For any x ∈R

d and y ∈ ∂cg(x),

g(x)= c(x, y)− gc(y).

Thus, for any x′ ∈R
d ,

g
(

x′)− g(x)≤ c
(

x′, y
)

− gc(y)−
[

c(x, y)− gc(y)
]

= c
(

x′, y
)

− c(x, y)

=
∣
∣x′ − y

∣
∣p − |x − y|p

≤ p
(

|x − y|p−1 ∨
∣
∣x′ − y

∣
∣p−1)∣∣x − x′∣∣

≤ C3

[

1 +
(

|x| ∨
∣
∣x′∣∣)

2p
β
]∣
∣x − x′∣∣,

where C3 depends only on p, β , C2. Interchanging x and x′, we conclude that

(21)
∣
∣g(x)− g

(

x′)∣∣≤ C3

[

1 +
(

|x| ∨
∣
∣x′∣∣)

2p
β
]∣
∣x − x′∣∣, x, x′ ∈R

d ,

which implies the desired conclusion. �

PROOF OF LEMMA 3.3. Let μt = (μ + t (ρ − μ)) ∗ ³σ = (1 − t)μ ∗ ³σ + tρ ∗ ³σ for

t ∈ [0,1], and let gt be an optimal transport potential from μt to ν. Without loss of generality,

we may normalize gt in such a way that gt (0)= 0 for t ∈ [0,1].
We will apply Lemma 5.3 with (μ, ν) replaced with ((1 − t)μ+ tρ, ν) for t ∈ [0,1/2]. It

is not difficult to see that, as long as t ∈ [0,1/2],

E(1−t)μ+tρ

[

|X|
]

≤ Eμ

[

|X|
]

+Eρ

[

|X|
]

and

∫

Rd
φσ d

(

(1 − t)μ+ tρ
)

≥ 1

2

∫

Rd
φσ dμ.

Thus, by Lemma 5.3, there exist constants C and K independent of t such that for every

t ∈ [0,1/2],
⎧

⎪
⎪
«

⎪
⎪
¬

gt is locally Lipschitz,
∣
∣gt (x)

∣
∣≤ C

(

1 + |x|K
)

|x| ∀x ∈R
d ,

∣
∣∇gt (x)

∣
∣≤ C

(

1 + |x|K
)

for a.e. x ∈R
d .

By duality (Lemma 2.1(i)), we have with h= (ρ −μ) ∗ ³σ ,

W
p
p(μt , ν)≥

∫

Rd
g0 dμt +

∫

Rd
gc

0 dν

=
∫

Rd
g0 dμ0 +

∫

Rd
gc

0 dν + t

∫

Rd
g0 dh

= W
p
p(μ0, ν)+ t

∫

Rd
g0 dh,

so that

lim inf
t↓0

W
p
p(μt , ν)− W

p
p(μ0, ν)

t
≥
∫

Rd
g0 dh.
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Second, by construction,

W
p
p(μt , ν)=

∫

Rd
gt dμt +

∫

Rd
gc
t dν

=
∫

Rd
gt dμ0 +

∫

Rd
gc
t dν + t

∫

Rd
gt dh

≤
∫

Rd
g0 dμ0 +

∫

Rd
gc

0 dν + t

∫

Rd
gt dh

= W
p
p(μ0, ν)+ t

∫

Rd
gt dh.

Pick any tn ↓ 0. Since μ0 = μ ∗ ³σ � dx, μ0 has full support Rd , and μtn

w→ μ0, we have by

Theorem 3.4 in [34] that there exists some sequence of constants an such that gtn − an → g0

pointwise. Since we have normalized gt in such a way that gt (0) = 0, we have an → 0,

that is, gtn → g0 pointwise. Further, since |gt (x)| ≤ C(1 + |x|K)|x| for all t ∈ [0,1/2], the

dominated convergence theorem yields that
∫

Rd
gtn dh→

∫

Rd
g0 dh.

Conclude that

lim sup
n→∞

W
p
p(μtn, ν)− W

p
p(μ0, ν)

tn
≤
∫

Rd
g0 dh.

This completes the proof �

5.3.2. Proof of Proposition 3.5. Part (i). We first note that Ḣ 1,q(μ ∗ ³σ ) is a function

space over Rd . To see this, observe that if we choose a reference measure κ to be an isotropic

Gaussian distribution with sufficiently small variance parameter, then the relative density

d(μ ∗ ³σ )/dκ is bounded away from zero. Indeed, for κ = ³
σ/

√
2, we have

d(μ ∗ ³σ )

d³
σ/

√
2

(x)= 2−d/2
∫

Rd
e−|x−y|2/(2σ 2)+|x|2/σ 2

dμ(y)

= 2−d/2
∫

Rd
e|x+y|2/(2σ 2)−|y|2/σ 2

dμ(y)

≥ 2−d/2e−Eμ[|X|2]/σ 2

by Jensen’s inequality, which guarantees that Ḣ 1,q(μ ∗ ³σ ) is a function space over Rd in

view of Remark 2.1.

By regularity of g from Lemma 5.3, we know that g is locally Lipschitz and ‖g‖Lq (μ∗³σ )∨
‖∇g‖Lq (μ∗³σ ;Rd ) <∞ (the latter alone does not automatically guarantee g ∈ Ḣ 1,q(μ ∗ ³σ )).

As in Proposition 1.5.2 in [15], choose a sequence ζj ∈ C∞
0 with the following property:

0 ≤ ζj ≤ 1, ζj (x)= 1 if |x| ≤ j , sup
j,x

∣
∣∇ζj (x)

∣
∣<∞.

Let ϕj = ζjg. Each ϕj belongs to the ordinary Sobolev (1, q)-space w.r.t. the Lebesgue

measure, so ∇ϕj can be approximated by gradients of C∞
0 functions under ‖ · ‖Lq (dx;Rd )

(cf. [1], Corollary 3.23). Since μ ∗ ³σ has a bounded Lebesgue density, this shows that

ϕj ∈ Ḣ 1,q(μ ∗ ³σ ). Now,

‖∇ϕj −∇g‖Lp(μ∗³σ ;Rd ) ≤
∥
∥(∇ζj )g

∥
∥
Lq (μ∗³σ ;Rd ) +

∥
∥(ζj − 1)∇g

∥
∥
Lq (μ∗³σ ;Rd ) → 0

as j →∞, implying that g ∈ Ḣ 1,q(μ ∗ ³σ ).
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Part (ii). Pick any h ∈ T�μ(0), tn ↓ 0, and hn → h in Dμ such that tnhn ∈�μ. For any ε >

0, there exist some constant c > 0 and sub-Weibull ρ ∈ P such that ‖h− h̃‖Ḣ−1,p(μ∗³σ ) < ε

for h̃= c(ρ −μ) ∗ ³σ .

Observe that
∣
∣�(tnhn)−�(tnh̃)

∣
∣=

∣
∣W

p
p(μ ∗ ³σ + tnhn, ν ∗ ³σ )− W

p
p(μ ∗ ³σ + tnh̃, ν ∗ ³σ )

∣
∣

≤ p
(

W
p−1
p (μ ∗ ³σ + tnhn, ν ∗ ³σ )∨ W

p−1
p (μ ∗ ³σ + tnh̃, ν ∗ ³σ )

)

× Wp(μ ∗ ³σ + tnhn,μ ∗ ³σ + tnh̃).

Assume that n is large enough so that ctn ≤ 1/2 and ‖hn −h‖Ḣ−1,p(μ∗³σ ) < ε. The density of

μ ∗ ³σ + tnh̃= ((1 − ctn)μ+ ctnρ) ∗ ³σ w.r.t. μ ∗ ³σ is

d(μ ∗ ³σ + tnh̃)

d(μ ∗ ³σ )
≥ 1 − ctn ≥ 1

2
.

Thus, by Proposition 2.1,

Wp(μ ∗ ³σ + tnhn,μ ∗ ³σ + tnh̃)� tn‖hn − h̃‖Ḣ−1,p(μ∗³σ ) < 2tnε.

Also, by Proposition 2.1,

Wp(μ ∗ ³σ + tnh̃, ν ∗ ³σ )≤ Wp(μ ∗ ³σ + tnh̃,μ ∗ ³σ )+ Wp(μ ∗ ³σ , ν ∗ ³σ )

� tn‖h̃‖Ḣ−1,p(μ∗³σ ) + Wp(μ ∗ ³σ , ν ∗ ³σ )=O(1).

Likewise, Wp(μ ∗ ³σ + tnhn, ν ∗ ³σ )=O(1). Conclude that

lim sup
n→∞

∣
∣�(tnhn)−�(tnh̃)

∣
∣/tn � ε.

Further, |h(g) − h̃(g)| ≤ ‖g‖Ḣ 1,q (μ∗³σ )‖h − h̃‖Ḣ−1,p(μ∗³σ ) � ε. Combining Lemma 3.3, we

conclude that

lim sup
n→∞

∣
∣
∣
∣

�(tnhn)−�(0)

tn
− h(g)

∣
∣
∣
∣
� ε.

This completes the proof.

5.4. Proofs for Section 3.4.

5.4.1. Proof of Proposition 3.8. We first prove the following lemma. We note that the

empirical distributions μ̂B
n and μ̂n are finitely discrete, so

√
n(μ̂B

n −μ̂n)∗³σ defines a random

variable with values in Ḣ−1,p(μ ∗ ³σ ) (cf. (14) and Step 3 of the proof of Proposition 3.1).

Let LB
n = LB

n (X1, . . . ,Xn) denote its (regular) conditional law given the data (which exists

as Ḣ−1,p(μ ∗ ³σ ) is a separable Banach space; cf. Chapter 11 in [42]).

LEMMA 5.4. If μ satisfies Condition (4), then LB
n

w→ P◦G−1
μ almost surely.

PROOF OF LEMMA 5.4. From the proof of Proposition 3.1, the function class U ∗ φσ

is μ-Donsker with a μ-square integrable envelope. The rest of the proof follows from the

Giné–Zinn theorem for the bootstrap (cf. Theorem 3.6.2 in [99]) and repeating the arguments

in Steps 2 and 3 in the proof of Proposition 3.1. �

The proof of Proposition 3.8 Part (i) relies on the following technical lemmas.
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LEMMA 5.5. Let V be a real seminormed space and V ∗ be its topological dual with

dual norm ‖v∗‖V ∗ = supv:‖v‖V ≤1 v
∗(v). If G= (G(v))v∈V is a Gaussian process with paths

in V ∗ and a tight measurable map into V ∗, then it is Gaussian in the Banach space sense,

that is, for every f ∈ V ∗∗ (the second dual of V ), f (G) is a univariate Gaussian random

variable. If G is centered, that is, E[G(v)] = 0 for all v ∈ V , then G has zero Bochner mean

in V ∗.

PROOF. Let V1 = {v ∈ V : ‖v‖V ≤ 1}. Then the map ι : V ∗ → �∞(V1) defined by ι :
v∗ �→ v∗|V1

is a linear isometry. By assumption, ιG= (G(v))v∈V1
is a Gaussian process and

a tight measurable map into �∞(V1), so by Lemma 3.9.8 in [97], it is Gaussian in the Banach

space sense, that is, for every F ∈ (�∞(V1))
∗, F(ιG) is Gaussian. Pick any f ∈ V ∗∗. Then

f ◦ ι−1 is continuous and linear on the vector subspace ιV ∗ in �∞(V1). Let F denote the

Hahn–Banach extension of f ◦ ι−1; then F ∈ (�∞(V1))
∗ and f (G)= (f ◦ ι−1)(ιG)= F(ιG)

is Gaussian. Finally, if G is centered, then the proof of Lemma 3.9.8 in [97] shows that

f (G) has mean zero for every f ∈ V ∗∗, which implies that G has zero Bochner mean by the

definition of the Bochner integral (recall from the Fernique theorem that E[‖G‖V ∗]<∞, so

the Bochner expectation exists). �

LEMMA 5.6. Suppose that B is a real separable Banach space with norm ‖ · ‖ and G is

a B-valued Gaussian random variable with zero Bochner mean. Then, unless G degenerates

to zero, ‖G‖ has a continuous distribution function.

PROOF. Let F denote the distribution function of ‖G‖. Set r0 = inf{r ≥ 0 : F(r) > 0},
the left endpoint of the support of ‖G‖. By log-concavity of the Gaussian measure, logF is

concave on (r0,∞), which implies that F is (absolutely) continuous on (r0,∞); see Theo-

rem 11.1 in [28]. The function F may have a jump at r0. So it remains to verify that, unless

G degenerates to zero, F has no jump at r0. Indeed, the argument on Pages 60–61 in [68]

shows that r0 = 0. But F(0)− F(0−)= P(‖G‖ = 0)= 0, so F has no jump at r0 = 0. �

We are now ready to prove Proposition 3.8.

PROOF OF PROPOSITION 3.8. Part (i). Assume without loss of generality that μ is not a

point mass (otherwise W
(σ )
p (μ̂B

n , μ̂n)= ‖Gμ‖Ḣ−1,p(μ∗³σ ) = 0 and the result trivially follows).

We first verify that the limit variable ‖Gμ‖Ḣ−1,p(μ∗³ ) has a continuous distribution func-

tion. Recall that Ḣ−1,p(μ ∗ ³σ ) is a separable Banach space. In view of Lemmas 5.5 and 5.6

above, it suffices to verify that Gμ does not degenerate to zero. Since μ is not a point mass,

for every x0 ∈ R
d , it holds that 0 < Wp(μ ∗ ³σ , ´x0

∗ ³σ ) � ‖(μ − ´x0
) ∗ ³σ‖Ḣ−1,p(μ∗³σ ).

This implies that there exists at least one function f ∈ C∞
0 such that

∫

f d(μ− ´x0
) ∗ ³σ =

∫

f ∗ φσd(μ − ´x0
) =

∫

f ∗ φσ dμ − f ∗ φσ (x0) > 0. Since x �→ f ∗ φσ (x) is continuous,
∫

f ∗ φσ dμ− f ∗ φσ (x) is strictly positive in a neighborhood of x0. Choosing x0 from the

support of μ, we see that Varμ(f ∗ φσ ) > 0.

Hence, we have verified that the limit variable ‖Gμ‖Ḣ−1,p(μ∗³ ) has a continuous distri-

bution function. In view of Problem 23.1 in [98], it suffices to prove the convergence in

probability (10) for each fixed t ≥ 0. Let Tn = (μ̂n − μ) ∗ ³σ and T B
n = (μ̂B

n − μ) ∗ ³σ . By

Proposition 3.1 and Lemma 5.4, we know that

(√
nT B

n ,
√
nTn

)

=
(√

n
(

μ̂B
n − μ̂n

)

∗ ³σ +
√
n(μ̂n −μ) ∗ ³σ ,

√
n(μ̂n −μ) ∗ ³σ

)

d→
(

G′
μ +Gμ,Gμ

)

in Ḣ−1,p(μ ∗ ³σ )× Ḣ−1,p(μ ∗ ³σ )
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unconditionally, where G′
μ is an independent copy of Gμ (cf. Theorem 2.2 in [66]). Thus, by

Proposition 3.5 and the second claim of the functional delta method (Lemma 3.1),

√
nW

(σ )
p

(

μ̂B
n , μ̂n

)

=
√
n�

(

T B
n , Tn

)

=�′
(0,0)

(√
nT B

n ,
√
nTn

)

+Rn

=
∥
∥
√
n
(

T B
n − Tn

)∥
∥
Ḣ−1,p(μ∗³σ ) +Rn

=
∥
∥
√
n
(

μ̂B
n − μ̂n

)

∗ ³σ
∥
∥
Ḣ−1,p(μ∗³σ ) +Rn.

Here Rn = oP(1) unconditonally. Choose εn → 0 such that P(|Rn|> εn)→ 0. By Markov’s

inequality, we have PB(|Rn|> εn)
P→ 0. By Lemma 5.4 and the continuous mapping theorem,

we also have

sup
t≥0

∣
∣P

B(
∥
∥
√
n
(

μ̂B
n − μ̂n

)

∗ ³σ
∥
∥
Ḣ−1,p(μ∗³σ ) ≤ t

)

− P
(

‖Gμ‖Ḣ−1,p(μ∗³σ ) ≤ t
)∣
∣

P→ 0.

Thus, for each t ≥ 0,

P
B(

√
nW

(σ )
p

(

μ̂B
n , μ̂n

)

≤ t
)

≤ P
B(
∥
∥
√
n
(

μ̂B
n − μ̂n

)

∗ ³σ
∥
∥
Ḣ−1,p(μ∗³σ ) ≤ t + εn

)

+ P
B(|Rn|> εn

)

= P
(

‖Gμ‖Ḣ−1,p(μ∗³ ) ≤ t + εn
)

+ oP(1)

= P
(

‖Gμ‖Ḣ−1,p(μ∗³ ) ≤ t
)

+ oP(1).

The reverse inequality follows similarly.

Part (ii). The argument is analogous to Part (i). Observe that, by Proposition 3.5,

√
n
(

S
(σ )
p

(

μ̂B
n , ν

)

− S
(σ )
p (μ̂n, ν)

)

=
√
n
(

�
(

T B
n

)

−�(Tn)
)

=� ′
0

(√
nT B

n

)

−� ′
0(
√
nTn)+ oP(1)

=
√
n
(

T B
n − Tn

)

(g)+ oP(1)

=
√
n
((

μ̂B
n − μ̂n

)

∗ ³σ
)

(g)+ oP(1).

Taking pth root and applying the delta method, we have

√
n
(

W
(σ )
p

(

μ̂B
n , ν

)

− W
(σ )
p (μ̂n, ν)

)

= 1

p[W(σ )
p (μ, ν)]p−1

·
√
n
((

μ̂B
n − μ̂n

)

∗ ³σ
)

(g)+ oP(1).

The rest of the proof is completely analogous to Part (i). �

PROOF OF PROPOSITION 3.9. By Lemma 5.4 and Example 1.4.6 in [99], the conditional

law of (
√
n(μ̂B

n − μ̂n) ∗ ³σ ,
√
n(ν̂Bn − ν̂n) ∗ ³σ ) given the data converges weakly to the law

of (Gμ,Gν) in Ḣ−1,p(μ ∗ ³σ )× Ḣ−1,p(ν ∗ ³σ ) almost surely, where Gμ and Gν are inde-

pendent. By Theorem 2.2 in [66], for T B
n,1 = (μ̂B

n − μ) ∗ ³σ and T B
n,2 = (ν̂Bn − ν) ∗ ³σ , we

have
(√

nT B
n,1,

√
nT B

n,2

)

=
(√

n
(

μ̂B
n − μ̂n

)

∗ ³σ +
√
n(μ̂n −μ) ∗ ³σ ,

√
n
(

ν̂Bn − ν̂n
)

∗ ³σ +
√
n(ν̂n − ν) ∗ ³σ

)

d→
(

Gμ +G′
μ,Gν +G′

ν

)

inḢ−1,p(μ ∗ ³σ )× Ḣ−1,p(ν ∗ ³σ )
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unconditionally, where G′
μ, G′

ν are copies of Gμ, Gν , respectively, and Gμ, G′
μ, Gν , G′

ν

are independent. Thus, by Proposition 3.7 and Lemma 3.1, for Tn,1 = (μ̂n − μ) ∗ ³σ and

Tn,2 = (ν̂n − ν) ∗ ³σ , we have
√
n
(

S
(σ )
p

(

μ̂B
n , ν̂

B
n

)

− S
(σ )
p (μ̂n, ν̂n)

)

=
√
n
(

ϒ
(

T B
n,1, T

B
n,2

)

−ϒ(Tn,1, Tn,2)
)

=ϒ ′
(0,0)

(√
nT B

n,1,
√
nT B

n,2

)

−ϒ ′
(0,0)(

√
nTn,1,

√
nTn,2)+ oP(1)

=
√
n
(

T B
n,1 − Tn,1

)

(g)+
√
n
(

T B
n,2 − Tn,2

)(

gc)+ oP(1)

=
√
n
((

μ̂B
n − μ̂n

)

∗ ³σ
)

(g)+
√
n
((

ν̂Bn − ν̂n
)

∗ ³σ
)(

gc)+ oP(1).

The rest of the proof is analogous to Proposition 3.8 Part (ii). �

PROOF OF PROPOSITION 3.10. It is not difficult to see that
√

2n(ρ̂n − ρ) ∗ ³σ
d→ Gρ

in Ḣ−1,p(ρ ∗ ³σ ). By Theorem 3.7.7 and Example 1.4.6 in [99], the conditional law of

(
√
n(ρ̂B

n,1 − ρ̂n) ∗ ³σ ,
√
n(ρ̂B

n,2 − ρ̂n) ∗ ³σ ) given the data converges weakly to the law of

(Gρ,G
′
ρ) in Ḣ−1,p(ρ ∗ ³σ ) × Ḣ−1,p(ρ ∗ ³σ ) almost surely, where G′

ρ is an independent

copy of Gρ . Thus, arguing as in the proof of Proposition 3.9, for T B
n,j = (ρ̂B

n,j − ρ) ∗ ³σ
(j = 1,2), we have

(√
nT B

n,1,
√
nT B

n,2

) d→
(

G1
ρ +G2

ρ/
√

2,G3
ρ +G4

ρ/
√

2
)

in Ḣ−1,p(ρ ∗ ³σ )× Ḣ−1,p(ρ ∗ ³σ )

unconditionally, where G1
ρ, . . . ,G

4
ρ are independent copies of Gρ . Define � by replacing μ

with ρ in Section 3.2. Then, by Proposition 3.3 and the second claim of the functional delta

method (Lemma 3.1), we see that
√
nW

(σ )
p

(

ρ̂B
n,1, ρ̂

B
n,2

)

=
√
n�

(

T B
n,1, T

B
n,2

)

=�′
(0,0)

(√
nT B

n,1,
√
nT B

n,2

)

+ oP(1)

=
∥
∥
√
n
(

T B
n,1 − T B

n,2

)∥
∥
Ḣ−1,p(ρ∗³σ ) + oP(1)

=
∥
∥
√
n
(

ρ̂B
n,1 − ρ̂n

)

∗ ³σ −
√
n
(

ρ̂B
n,2 − ρ̂n

)

∗ ³σ
∥
∥
Ḣ−1,p(ρ∗³σ ) + oP(1).

The rest of the proof is analogous to Proposition 3.8 Part (i). �

5.5. Proof of Theorem 4.1.

5.5.1. Preliminary lemmas. Recall the notation �μ and Dμ from Section 3.2.

LEMMA 5.7. Let μ ∈ Pp for 1 <p <∞. Under Assumption 1, the map

(h, θ) ∈�μ ×N0 �→ Wp(μ ∗ ³σ + h, νθ ∗ ³σ )

is Hadamard directionally differentiable at (0, θ�) with derivative

(h, θ) ∈�μ ×N0 �→
∥
∥h− 〈θ,D〉

∥
∥
Ḣ−1,p(μ∗³σ ).

Furthermore, the expansion

Wp(μ ∗ ³σ + h, νθ ∗ ³σ )=
∥
∥h−

〈

θ − θ�,D
〉∥
∥
Ḣ−1,p(μ∗³σ ) + r

(

h, θ − θ�
)

,

holds, with remainder r satisfying r(th, t (θ − θ�)) = o(t) as t ↓ 0 uniformly w.r.t. (h, θ)

varying in K ⊂�μ ×N0, a compact subset of Dμ ×R
d0 .
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PROOF. Consider the map ψ : (h, θ) ∈�μ ×N0 �→ (h, (νθ − νθ�)∗ ³σ ) ∈�μ ×�μ. The

norm differentiability condition, Assumption 1 (vi), establishes Fréchet (hence Hadamard)

directional differentiability of ψ at (0, θ�) with

ψ ′
(0,θ�)(h, θ)=

(

h, 〈θ,D〉
)

∈ T�μ×�μ(0,0).

The chain rule for Hadamard directional derivatives paired with Proposition 3.3 yields

(� ◦ψ)′(0,θ�)(h, θ)=�′
ψ(0,θ�) ◦ψ ′

(0,θ�)(h, θ)

=�′
(0,0)

(

h, 〈θ,D〉
)

=
∥
∥h− 〈θ,D〉

∥
∥
Ḣ−1,p(μ∗³σ ).

The final assertion follows from compact directional differentiability of the composition [90].

�

LEMMA 5.8. Assume the setting of Lemma 5.7.

(i) There exists a neighborhood N1 of θ� with N1 ⊂N0 such that

W
(σ )
p (μ̂n, νθ )≥

C

2

∣
∣θ − θ�

∣
∣− W

(σ )
p (μ̂n,μ), ∀θ ∈N1,

where C > 0 is such that ‖〈t,D〉‖Ḣ−1,p(μ∗³σ ) ≥ C|t | for every t ∈R
d0 .

(ii) Let ξn =OP(1) and �n := {θ ∈N1 : √n|θ − θ�| ≤ ξn}; then, uniformly in θ ∈�n,
√
nW

(σ )
p (μ̂n, νθ )=

∥
∥G

(σ )
n −

√
n
〈

θ − θ�,D
〉∥
∥
Ḣ−1,p(μ∗³σ ) + oP(1).

PROOF. Part (i). Assumption 1 (vi) guarantees that there exists a constant C > 0 such

that ‖〈θ − θ�,D〉‖Ḣ−1,p(μ∗³σ ) ≥ C|θ − θ�| for every θ ∈N0. Let N2 be an open ball of radius

r̄ centered at θ� whose closure is contained in N0; then there exists t0 > 0 such that, for every

0 ≤ t ≤ t0, the remainder term r of Lemma 5.7 satisfies t−1|r(0, t (θ̄ − θ�))| ≤ Cr̄/2 for

every θ̄ ∈ ∂N2. Hence, |r(0, θ − θ�)| ≤ (C/2)|θ − θ�| for every θ ∈ t0N2 =:N1 as θ − θ� =
t (θ̄ − θ�) for some θ̄ ∈ ∂N2 and 0 ≤ t ≤ t0. The triangle inequality yields, for any θ ∈N1,

W
(σ )
p (μ̂n, νθ )≥ W

(σ )
p (μ, νθ )− W

(σ )
p (μ̂n,μ),

=
∥
∥
〈

θ − θ�,D
〉∥
∥
Ḣ−1,p(μ∗³σ ) + r

(

0, θ − θ�
)

− W
(σ )
p (μ̂n,μ),

≥ C

2

∣
∣θ − θ�

∣
∣− W

(σ )
p (μ̂n,μ).

Part (ii). Since G
(σ )
n

d→ Gμ in Ḣ−1,p(μ ∗ ³σ ) and Gμ is tight, the sequence G
(σ )
n is uni-

formly tight by Lemma 1.3.8 and Problem 1.3.9 in [99]. Pick any ε, ´ > 0. By uniform tight-

ness, there exists a compact set Kε ⊂ Ḣ−1,p(μ ∗ ³σ ) such that P(G
(σ )
n ∈ Kε) ≥ 1 − ε/2

for every n ∈ N. Further, since ξn = OP(1), there exists Mε > 0 such that P(|ξn| ≤ Mε) ≥
1 − ε/2 for every n ∈ N. Define the event An,ε = {G(σ )

n ∈ Kε} ∩ {|ξn| ≤ Mε}. Observe that

P(An,ε) ≥ 1 − ε for every n ∈ N. Then, on this event An,ε , it holds that �n ⊂ �n,ε := {θ ∈
N1 : √n|θ − θ�| ≤Mε}. Since �n,ε is compact, we have, for every θ ∈�n,ε ,

√
nW

(σ )
p (μ̂n, νθ )=

∥
∥G

(σ )
n −

√
n
〈

θ − θ�,D
〉∥
∥
Ḣ−1,p(μ∗³σ ) +

√
nr

(

n−1/2
G

(σ )
n , θ − θ�

)

.

Set ζn := supθ∈�n
|√nr(n−1/2

G
(σ )
n , θ − θ�)|. Then, on the event An,ε ,

|ζn| ≤ sup
h∈Kε ,|u|≤Mε

√
n
∣
∣r
(

n−1/2h,n−1/2u
)∣
∣,
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and the right hand side can be made less than ´ for n sufficiently large. Hence, for every

sufficiently large n,

P
(

|ζn|> ´
)

= P
({

|ζn|> ´
}

∩An,ε

)

+ P
({

|ζn|> ´
}

∩Ac
n,ε

)

≤ P
({

|ζn|> ´
}

∩An,ε

)

+ P
(

Ac
n,ε

)

≤ 0 + ε,

that is, ζn = oP(1). This implies the desired result. �

LEMMA 5.9. Under the setting of Lemma 5.7, there exists a sequence of measurable

estimators θ̂n satisfying W
(σ )
p (μ̂n, νθ̂n

)= infθ∈� W
(σ )
p (μ̂n, νθ ) and θ̂n

a.s.→ θ�.

The proof of Lemma 5.9 follows from a small modification to the proof of Theorems 2

and 3 in [52], see Section 4 of the Supplementary Material [54] for complete details.

5.5.2. Proof of Theorem 4.1. Part (i). Given the above lemmas, the proof follows closely

[80], Theorem 4.2, or [52], Appendix B.4. Let θ̂n be the sequence of measurable estimators

afforded by Lemma 5.9. For any neighborhood N of θ�,

inf
θ∈�

W
(σ )
p (μ̂n, νθ )= inf

θ∈N
W

(σ )
p (μ̂n, νθ )

with probability approaching one.

By Assumption 1 (vi), there exists C > 0 such that ‖〈t,D〉‖Ḣ−1,p(μ∗³σ ) ≥ C|t | for every

t ∈ R
d0 . Thus, by Lemma 5.8(i), there exists a neighborhood N1 of θ� with N1 ⊂ N0 such

that

W
(σ )
p (μ̂n, νθ )≥

C

2

∣
∣θ − θ�

∣
∣− W

(σ )
p (μ̂n,μ), ∀θ ∈N1.

Set �n := {θ ∈ � : √n|θ − θ�| ≤ ξn} with ξn := (4/C)‖G(σ )
n ‖Ḣ−1,p(μ∗³σ ) = OP(1). By

Lemma 5.8(ii), the expansion

(22)
√
nW

(σ )
p (μ̂n, νθ )=

∥
∥G

(σ )
n −

√
n
〈

θ − θ�,D
〉∥
∥
Ḣ−1,p(μ∗³σ ) + oP(1),

holds uniformly in θ ∈N1 ∩�n. Then, for arbitrary θ ∈N1 ∩�
c
n,

W
(σ )
p (μ̂n, νθ ) >

C

2

ξn√
n
− W

(σ )
p (μ̂n,μ)

= W
(σ )
p (μ̂n,μ)+ oP

(

n−1/2),

so that

inf
θ∈N1∩�c

n

W
(σ )
p (μ̂n, νθ ) > W

(σ )
p (μ̂n,μ)+ oP

(

n−1/2)

≥ inf
θ∈N1∩�n

W
(σ )
p (μ̂n, νθ )+ oP

(

n−1/2).

This shows that infθ∈� W
(σ )
p (μ̂n, νθ )= infθ∈N1∩�n

W
(σ )
p (μ̂n, νθ )+ oP(n

−1/2).

Now, reparametrizing by t =√
n(θ−θ�) and setting Tn := {t ∈R

d0 : |t | ≤ ξn, θ
�+ t/

√
n ∈

N1} in (22), we have

inf
θ∈N1∩�n

√
nW

(σ )
p (μ̂n, νθ )= inf

t∈Tn

∥
∥G

(σ )
n − 〈t,D〉

∥
∥
Ḣ−1,p(μ∗³σ ) + oP(1).
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Set gn := ‖G(σ )
n − 〈·,D〉‖Ḣ−1,p(μ∗³σ ). For any t ∈R

d0 such that |t |> ξn, we have

gn(t)≥ C|t | −
∥
∥G

(σ )
n

∥
∥
Ḣ−1,p(μ∗³σ ) > 3gn(0)≥ 3 inf

|t ′|≤ξn
gn
(

t ′
)

.

Since {t ∈ R
d0 : |t | ≤ ξn} ⊂ Tn with probability approaching one (as ξn = OP(1)), we have

inft∈Tn gn(t)= inft∈Rd0 gn(t) with probability approaching one. Conclude that

inf
θ∈�

√
nW

(σ )
p (μ̂n, νθ )= inf

t∈Rd0

∥
∥G

(σ )
n − 〈t,D〉

∥
∥
Ḣ−1,p(μ∗³σ ) + oP(1).

Finally, since the map h ∈ Ḣ−1,p(μ ∗ ³σ ) �→ inft∈Rd0‖h− 〈t,D〉‖Ḣ−1,p(μ∗³σ ) is continuous,

the continuous mapping theorem yields

inf
θ∈�

√
nW

(σ )
p (μ̂n, νθ )

d→ inf
t∈Rd0

∥
∥Gμ − 〈t,D〉

∥
∥
Ḣ−1,p(μ∗³σ ).

This completes the proof of Part (i).

Part (ii). Let N1 be as in the proof of Part (i) and recall that θ̂n ∈ N1 with probability

approaching one. By the definition of θ̂n and Lemma 5.8(ii),

inf
θ∈�

√
nW

(σ )
p (μ̂n, νθ )

︸ ︷︷ ︸

=OP(1)

+oP(1)≥
√
nW

(σ )
p (μ̂n, νθ̂n

)

≥ C

2

√
n
∣
∣θ̂n − θ�

∣
∣−

√
nW

(σ )
p (μ̂n,μ)

︸ ︷︷ ︸

=OP(1)

,

(23)

with probability tending to one. This implies that
√
n|θ̂n − θ�| = OP(1). Let Mn(t) :=

‖G(σ )
n − 〈t,D〉‖Ḣ−1,p(μ∗³σ ) and M(t) := ‖Gμ − 〈t,D〉‖Ḣ−1,p(μ∗³σ ). Observe that Mn and

M are convex in t . Again, from the proof of Part (i), for t̂n := √
n(θ̂n − θ�)=OP(1), we have

√
nW

(σ )
p (μ̂n, νθ̂n

)=Mn(t̂n)+ oP(1).

Hence,

Mn(t̂n)=
√
nW

(σ )
p (μ̂n, νθ̂n

)+ oP(1)

≤ inf
θ∈�

√
nW

(σ )
p (μ̂n, νθ )+ oP(1)

= inf
t∈Rd0

Mn(t)+ oP(1).

Since G
(σ )
n

d→ Gμ in Ḣ−1,p(μ ∗ ³σ ), (Mn(t1), . . . ,Mn(tk))
d→ (M(t1), . . . ,M(tk)) for any

finite set of points (ti)
k
i=1 ⊂ R

d0 by the continuous mapping theorem. Applying Theorem 1

in [64] (or Lemma 6 in [52]) yields t̂n
d→ argmint∈Rd0 M(t).

6. Concluding remarks. In this paper, we have developed a comprehensive limit distri-

bution theory for empirical W
(σ )
p that covers general 1 < p < ∞ and d ≥ 1, under both the

null and the alternative. Our proof technique leveraged the extended functional delta method,

which required two main ingredients: (i) convergence of the smooth empirical process in

an appropriate normed vector space; and (ii) characterization of the Hadamard directional

derivative of W
(σ )
p w.r.t. the norm. We have identified the dual Sobolev space Ḣ−1,p(μ ∗ ³ )

as the normed space of interest and established the items above to obtain the limit distribu-

tion results. Linearity of the Hadamard directional derivative under the alternative enabled

establishing the asymptotic normality of the empirical (scaled) W
(σ )
p .



LIMIT DISTRIBUTION THEORY FOR SMOOTH WASSERSTEIN DISTANCES 2483

To facilitate statistical inference using W
(σ )
p , we have established the consistency of the

nonparametric bootstrap. The limit distribution theory was used to study generative mod-

eling via W
(σ )
p MDE. We have derived limit distributions for the optimal solutions and the

corresponding smooth Wasserstein error, and obtained Gaussian limits when p = 2 by lever-

aging the Hilbertian structure of the corresponding dual Sobolev space. Our statistical study,

together with the appealing metric and topological structure of W
(σ )
p [51, 77], suggest that the

smooth Wasserstein framework is compatible with high-dimensional learning and inference.

An important direction for future research is the efficient computation of W
(σ )
p . While stan-

dard methods for computing Wp are applicable in the smooth case (by sampling the Gaussian

noise), it is desirable to find computational techniques that make use of the structure induced

by the convolution with a known smooth kernel. Another appealing direction is to establish

Berry–Esseen type bounds for the limit distributions in Theorem 1.1. Of particular interest

is to explore how parameters such as d and σ affect the accuracy of the limit distributions

in Theorem 1.1. [85] addressed a similar problem for empirical W
(σ )
1 under the one-sample

null case, but their proof relies substantially on the IPM structure of W1 and finite sample

Gaussian approximation techniques developed by [21, 22]. These techniques do not apply to

p > 1, and thus new ideas, such as the linearization arguments herein, are required to develop

Berry–Esseen type bounds for p > 1.
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